Christopher M. Conway
2018
Animal Cognition 21:267-284, 2018
Humans and nonhuman primates can learn about the organization of stimuli in the environment using implicit sequential pattern learning capabilities. However, most previous artificial grammar learning studies with nonhuman primates have involved relatively simple grammars and ...MORE ⇓
Humans and nonhuman primates can learn about the organization of stimuli in the environment using implicit sequential pattern learning capabilities. However, most previous artificial grammar learning studies with nonhuman primates have involved relatively simple grammars and short input sequences. The goal in the current experiments was to assess the learning capabilities of monkeys on an artificial grammar-learning task that was more complex than most others previously used with nonhumans. Three experiments were conducted using a joystick-based, symmetrical-response serial reaction time task in which two monkeys were exposed to grammar-generated sequences at sequence lengths of four in Experiment 1, six in Experiment 2, and eight in Experiment 3. Over time, the monkeys came to respond faster to the sequences generated from the artificial grammar compared to random versions. In a subsequent generalization phase, subjects generalized their knowledge to novel sequences, responding significantly faster to novel instances of sequences produced using the familiar grammar compared to those constructed using an unfamiliar grammar. These results reveal that rhesus monkeys can learn and generalize the statistical structure inherent in an artificial grammar that is as complex as some used with humans, for sequences up to eight items long. These findings are discussed in relation to whether or not rhesus macaques and other primate species possess implicit sequence learning abilities that are similar to those that humans draw upon to learn natural language grammar.
2005
Multiple-cue integration in language acquisition: A connectionist model of speech segmentation and rule-like behaviorPDF
Language Acquisition, Change and Emergence: Essays in Evolutionary Linguistics, 2005
Considerable research in language acquisition has addressed the extent to which basic aspects of linguistic structure might be identified on the basis of probabilistic cues in caregiver speech to children. In this chapter, we examine systems that have the capacity ...
2002
The role of sequential learning in language evolution: Computational and experimental studiesPDF
Simulating the Evolution of Language 8.0:165-188, 2002
After having been plagued for centuries by unfounded speculations, the study of language evolution is now emerging as an area of legitimate scientific inquiry. Early conjectures about the origin and evolution of language suffered from a severe lack of empirical evidence to ...
2001
Trends in Cognitive Sciences 5(12):539-546, 2001
Sequential learning plays a role in a variety of common tasks, such as human language processing, animal communication, and the learning of action sequences. In this article, we investigate sequential learning in non-human primates from a comparative perspective, focusing on ...MORE ⇓
Sequential learning plays a role in a variety of common tasks, such as human language processing, animal communication, and the learning of action sequences. In this article, we investigate sequential learning in non-human primates from a comparative perspective, focusing on three areas: the learning of arbitrary, fixed sequences; statistical learning; and the learning of hierarchical structure. Although primates exhibit many similarities to humans in their performance on sequence learning tasks, there are also important differences. Crucially, non-human primates appear to be limited in their ability to learn and represent the hierarchical structure of sequences. We consider the evolutionary implications of these differences and suggest that limitations in sequential learning may help explain why non-human primates lack human-like language.