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1. Introduction

Considerable research in language acquisition has addressed the extent to which basic aspects of

linguistic structure might be identified on the basis of probabilistic cues in caregiver speech to

children. In this chapter, we examine systems that have the capacity to extract and store various

statistical properties of language. In particular, groups of overlapping, partially predictive cues are

increasingly attested to in research on language development (e.g., Morgan & Demuth, 1996). Such

cues tend to be probabilistic and violable, rather than categorical or rule-governed. Importantly, these

systems incorporate mechanisms for integrating different sources of information, including cues that

may not be very informative when considered in isolation. We explore the idea that conjunctions of

these cues provide evidence about aspects of linguistic structure that is not available from any single

source of information, and that this process of integration reduces the potential for making false

generalisations. Thus, we argue that there are mechanisms for efficiently combining cues of even very

low validity, that such combinations of cues are the source of evidence about aspects of linguistic

structure that would be opaque to a system insensitive to such combinations, and that these

mechanisms are used by children acquiring languages (for a similar view, see Bates & MacWhinney,

1987). These mechanisms also play a role in skilled language comprehension and are the focus of so-

called constraint-based theories of sentence processing (Cottrell, 1989; MacDonald, Pearlmutter &

Seidenberg, 1994; Trueswell & Tanenhaus, 1994) that emphasise the use of probabilistic sources of

information in the service of computing linguistic representations. Since the learners of a language

grow up to use it, investigating these mechanisms provides a link between language learning and

language processing (Seidenberg, 1997).

In the standard learnability approach, language acquisition is viewed in terms of the task of

acquiring a grammar (e.g., Pinker, 1994; Gold, 1967). This type of learning mechanism presents

classic learnability issues: there are aspects of language for which the input is thought to provide no

evidence, and the evidence that does exist tends to be unreliable. Following Christiansen, Allen &

Seidenberg (1998), we propose an alternative view in which language acquisition can be seen as

involving several simultaneous tasks. The primary task—the language learner’s goal—is to

comprehend the utterances to which she is exposed for the purpose of achieving specific outcomes. In

the service of this goal the child attends to the linguistic input, picking up different kinds of

information, subject to perceptual and attentional constraints. There is a growing body of evidence that

as a result of attending to sequential stimuli, both adults and children incidentally encode statistically

salient regularities of the signal (e.g., Cleeremans, 1993; Saffran, Aslin & Newport, 1996; Saffran,

Newport & Aslin, 1996). The child’s immediate task, then, is to update its representation of these

statistical aspects of language.  Our claim is that knowledge of other, more covert aspects of language
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is derived as a result of how these representations are combined through multiple cue integration.

Linguistically relevant units (e.g., words, phrases, and clauses) emerge from statistical computations

over the regularities induced via the immediate task.  On this view, the acquisition of knowledge about

linguistic structures that are not explicitly marked in the speech signal—on the basis of information

that is—can be seen as a third derived task. We address these issues in the specific context of learning

to identify individual words in speech. In the research reported below, the immediate task is to encode

statistical regularities concerning phonology, lexical stress and utterance boundaries. The derived task

is to integrate these regularities in order to identify the boundaries between words in speech.

The remainder of this chapter presents our work on the modelling of early infant speech

segmentation in connectionist networks trained to integrate multiple probabilistic cues. We first

describe past work exploring the segmentation abilities of our model (Allen & Christiansen, 1996;

Christiansen, 1998; Christiansen et al., 1998). Although we concentrate here on the relevance of

combinatorial information to this specific aspect of acquisition, our view is that similar mechanisms

are likely to be relevant to other aspects of acquisition and to skilled performance. Next, we present

results from a new set of simulationsi that extends the coverage of the model to include recent

controversial data on purported rule-learning by infants (Marcus, Vijayan, Rao & Vishton, 1999). New

empirical predictions concerning the role of segmentation in rule-like behavior is derived from the

model, and confirmed by artificial language learning experiments with adult participants. Finally, we

discuss how multiple cue integration works and how this approach may be extended beyond speech

segmentation.

2. The Segmentation Problem

Before an infant can even start to learn how to comprehend a spoken utterance, the speech signal must

first be segmented into words. Thus, one of the initial tasks that the child is confronted with when

embarking on language acquisition involves breaking the continuous speech stream into individual

words. Discovering word boundaries is a nontrivial problem as there are no acoustic correlates in

fluent speech to the white spaces that separate words in written text. There are however a number of

sub-lexical cues which could potentially be integrated in order to discover word boundaries.  The

segmentation problem therefore provides an appropriate domain for assessing our approach insofar as

there are many cues to word boundaries, including prosodic and distributional information, none of

which is sufficient for solving the task alone.

Early models of spoken language processing assumed that word segmentation occurs as a

byproduct of lexical identification (e.g., Cole & Jakimik, 1978; Marslen-Wilson & Welsh, 1978).

More recent accounts hold that adults use segmentation procedures in addition to lexical knowledge
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(Cutler, 1996). These procedures are likely to differ across languages, and presumably include a

variety of sublexical skills. For example, adults tend to make consistent judgements about possible

legal sound combinations that could occur in their native language (Greenburg & Jenkins, 1964).  This

type of phonotactic knowledge may aid in adult segmentation procedures (Jusczyk, 1993).

Additionally, evidence from perceptual studies suggests that adults know about and utilise language

specific rhythmic segmentation procedures in processing utterances (Cutler, 1994).

The assumption that children are not born with the knowledge sources that appear to subserve

segmentation processes in adults seems reasonable since they have neither a lexicon nor knowledge of

the phonological or rhythmic regularities underlying the words of the particular language being

learned. Therefore, one important developmental question concerns how the child comes to achieve

steady-state adult behaviour. Intuitively, one might posit that children begin to build their lexicon by

hearing words in isolation. A single word strategy whereby children adopted entire utterances as

lexical candidates would appear to be viable very early in acquisition. In the Bernstein-Ratner (1987)

and the Korman (1984) corpora, 22-30% of child directed utterances are made up of single words.

However, many words, such as determiners, will never occur in isolation. Moreover, this strategy is

hopelessly underpowered in the face of the increasing size of utterances directed toward infants as

they develop. Instead, the child must develop viable strategies that will allow her to detect utterance

internal word boundaries regardless of whether or not the words appear in isolation. A more realistic

suggestion is that a bottom-up process exploiting sub-lexical units allows the child to bootstrap the

segmentation process. This bottom-up mechanism must be flexible enough to function despite cross-

linguistic variation in the constellation of cues relevant for the word segmentation task.

Strategies based on prosodic cues (including pauses, segmental lengthening, metrical patterns, and

intonation contour) have been proposed as a way of detecting word boundaries (Cooper & Paccia-

Cooper, 1980; Gleitman, Gleitman, Landau & Wanner, 1988).  Other recent proposals have focused

on the statistical properties of the target language that might be utilised in early segmentation.

Considerable attention has been given to lexical stress and sequential phonological regularities—two

cues also utilised in the Christiansen et al. (1998) segmentation model.  In particular, Cutler and her

colleagues (e.g., Cutler & Mehler, 1993) have emphasised the potential importance of rhythmic

strategies to segmentation. They have suggested that skewed stress patterns (e.g., the majority of

words in English have strong initial syllables) play a central role in allowing children to identify likely

boundaries. Evidence from speech production and perception studies with preverbal infants supports

the claim that infants are sensitive to rhythmic structure and its relationship to lexical segmentation by

nine months (Jusczyk, Cutler & Redanz, 1993). A potentially relevant source of information for

determining word boundaries is the phonological regularities of the target language. A recent study by

Jusczyk, Friederici & Svenkerud (1993) suggests that, between 6 and 9 months, infants develop
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knowledge of phonotactic regularities in their language. Furthermore, there is evidence that both

children and adults are sensitive to and can utilise such information to segment the speech stream.

Work by Saffran, Newport & Aslin (1996) show that adults are able to use phonotactic sequencing to

determine possible and impossible words in an artificial language after only 20 minutes of exposure.

They suggest that learners may be computing the transitional probabilities between sounds in the input

and using the strengths of these probabilities to hypothesise possible word boundaries. Further

research provides evidence that infants as young as 8 months show the same type of sensitivity after

only three minutes of exposure (Saffran, Aslin & Newport, 1996). Thus, children appear to have

sensitivity to the statistical regularities of potentially informative sublexical properties of their

languages such as stress and phonotactics, consistent with the hypothesis that these cues could play a

role in bootstrapping segmentation. The issue of when infants are sensitive to particular cues and how

strong a particular cue is to word boundaries has been addressed by Mattys, Jusczyk, Luce & Morgan

(1999).  They examined how infants would respond to conflicting information about word boundaries.

Specifically, Mattys et al. (Experiment 4) found that when sequences which had good prosodic

information but poor phonotactic cues where tested against sequences that had poor prosodic but good

phonotactic cues, the 9-month-old infants gave greater weight to the prosodic information.

Nonetheless, the integration of these cues could potentially provide reliable segmentation information

since phonotactic and prosodic information typically align with word boundaries thus strengthening

the boundary information.

2.1. Segmenting using multiple cues

The input to the process of language acquisition comprises a complex combination of multiple sources

of information. Clusters of such information sources appear to inform the learning of various linguistic

tasks (see contributions in Morgan & Demuth, 1996). Each individual source of information, or cue, is

only partially reliable with respect to the particular task in question. In addition to previously

mentioned cues—phontactics and lexical stress—utterance boundary information has also been

hypothesised to provide useful information for locating word boundaries (Aslin et al., 1996; Brent &

Cartwright, 1996). These three sources of information provide the learner with cues to segmentation.

As an example consider the two unsegmented utterances (represented in orthographic format):

Therearenospacesbetweenwordsinfluentspeech#

Yeteachchildseemstograspthebasicsquickly#

There are sequential regularities found in the phonology (here represented as orthography) which

can aid in determining where words may begin or end. The consonant cluster sp can be found both at

word beginnings (spaces and speech) and at word endings (grasp). However, a language learner
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cannot rely solely on such information to detect possible word boundaries. This is evident when

considering that the sp consonant cluster also can straddle a word boundary, as in cats pajamas, and

occur word internally as in respect.

Lexical stress is another useful cue to word boundaries. For example, in English most disyllabic

words have a trochaic stress pattern with a strongly stressed syllable followed by a weakly stressed

syllable. The two utterances above include four such words: spaces, fluent, basics, and quickly. Word

boundaries can thus be postulated following a weak syllable. However, this source of information is

only partially reliable as is illustrated by the iambic stress pattern found in the word between from the

above example.

The pauses at the end of utterances (indicated above by #) also provide useful information for the

segmentation task. If children realise that sound sequences occurring at the end of an utterance always

form the end of a word, then they can utilise information about utterance final phonological sequences

to postulate word boundaries whenever these sequences occur inside an utterance. Thus, knowledge of

the rhyme eech# from the first example utterance can be used to postulate a word boundary after the

similar sounding sequence each in the second utterance. As with phonological regularities and lexical

stress, utterance boundary information cannot be used as the only source of information about word

boundaries because some words, such as determiners, rarely, if ever, occur at the end of an utterance.

This suggests that information extracted from clusters of cues may be used by the language learner to

acquire the knowledge necessary to perform the task at hand.

3. A Computational Model of Multiple-cue Integration in Speech Segmentation.

Several computational models of word segmentation have been implemented to address the speech

segmentation problem.  However, these models tend to exploit solitary sources of information.  For

example, Cairns, Shillcock, Chater & Levy (1997) demonstrated that sequential phonotactic structure

was a salient cue to word boundaries while Aslin, Woodward, LaMendola & Bever (1996) illustrated

that a back-propagation model could identify word boundaries fairly accurately based on utterance

final patterns. Perruchet & Vinter (1998) demonstrated that a memory-based model was able to

segment small artificial languages, such as the one used in Saffran, Aslin & Newport (1996), given

phonological input in syllabic format. More recently, Dominey & Ramus (2000) found that recurrent

networks also show sensitivity to serial and temporal structure in similar miniature languages. On the

other hand, Brent & Cartwright (1996) have shown that segmentation performance can be improved

when a statistically-based algorithm is provided with phonotactic rules in addition to utterance

boundary information. Along similar lines, Allen & Christiansen (1996) found that the integration of

information about phonological sequences and the presence of utterance boundaries improved the
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segmentation of a small artificial language. Based on this work, we suggest that the integration of

multiple probabilistic cues may hold the key to solving the word segmentation problem, and discuss a

computational model that implements this solution.

Christiansen et al. (1998) provided a comprehensive computational model of multiple cue

integration in early infant speech segmentation.  They employed a Simple Recurrent Network (SRN;

Elman, 1990) as illustrated in Figure 1. This network is essentially a standard feed-forward network

equipped with an extra layer of so-called context units. At a particular time step, t, an input pattern is

propagated through the hidden unit layer to the output layer (solid arrows). At the next time step, t+1,

the activation of the hidden unit layer at the previous time step, t, is copied back to the context layer

(dashed arrow) and paired with the current input (solid arrow). This means that the current state of the

hidden units can influence the processing of subsequent inputs, providing a limited ability to deal with

integrated sequences of input presented successively.

[Figure 1 about here]

The SRN model was trained on a single pass through a corpus consisting of 8181 utterances of

child directed speech. These utterances were extracted from the Korman (1984) corpus (a part of the

CHILDES database, MacWhinney, 1991) consisting of speech directed at pre-verbal infants aged 6–16

weeks. The training corpus consisted of 24,648 words distributed over 814 types and had an average

utterance length of 3.0 words (see Christiansen et al. for further details). A separate corpus consisting

of 927 utterances and with the same statistical properties as the training corpus was used for testing.

Each word in the utterances was transformed from its orthographic format into a phonological form

and lexical stress assigned using a dictionary compiled from the MRC Psycholinguistic Database

available from the Oxford Text Archiveii.

As input the network was provided with different combinations of three cues dependent on the

training condition. The cues were (a) phonology represented in terms of 11 features on the input and

36 phonemes on the outputiii  (b) utterance boundary information represented as an extra feature (UB)

marking utterance endings, and (c) lexical stress coded over two units as either no stress, secondary or

primary stress (see Figure 1). The network was trained on the immediate task of predicting the next

phoneme in a sequence as well as the appropriate values for the utterance boundary and stress units. In

learning to perform this task it was expected that the network would also learn to integrate the cues

such that it could carry out the derived task of segmenting the input into words.

With respect to the network, the logic behind the derived task is that the end of an utterance is also

the end of a word. If the network is able to integrate the provided cues in order to activate the

boundary unit at the ends of words occurring at the end of an utterance, it should also be able to

generalise this knowledge so as to activate the boundary unit at the ends of words which occur inside
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an utterance (Aslin et al., 1996). Figure 2 shows a snapshot of SRN segmentation performance on the

first 37 phoneme tokens in the training corpus. Activation of the boundary unit at a particular position

corresponds to the network’s hypothesis that a boundary follows this phoneme. Black bars indicate the

activation at lexical boundaries, whereas the grey bars correspond to activation at word internal

positions. Activations above the mean boundary unit activation for the corpus as a whole (horizontal

line) are interpreted as the postulation of a word boundary. As can be seen from the figure, the SRN

performed well on this part of the training set, correctly segmenting out all of the 12 words save one

(/slipI/ = sleepy).

[Figure 2 about here]

In order to provide a more quantitative measure of performance, accuracy and completeness scores

(Brent & Cartwright, 1996) were calculated for the separate test corpus consisting of utterances not

seen during training:

Accuracy =
Hits

Hits + FalseAlarms

Completeness =
Hits

Hits + Misses

Accuracy provides a measure of how many of the words that the network postulated were actual

words, whereas completeness provides a measure of how many of the actual words that the net

discovered. Consider the following hypothetical example:

# t h e # d o g # s # c h a s e # t h e c # a t #

where # corresponds to a predicted word boundary. Here the hypothetical learner correctly segmented

out two words, the and chase, but also falsely segmented out dog, s , thec, and at, thus missing the

words dogs, the, and cat. This results in an accuracy of 

† 

2
2 + 4

= 33.3% and a completeness of

2
2 + 3

= 40.0% .

With these measures in hand, we compare the performance of nets trained using phonology and

utterance boundary information—with or without the lexical stress cue—to illustrate the advantage of

getting an extra cue. As illustrated by Figure 3, the phon-ub-stress network was significantly more

accurate (42.71% vs. 38.67%: c2 = 18.27, p < .001) and had a significantly higher completeness score

(44.87% vs. 40.97%: c2 = 11.51, p < .001) than the phon-ub network. These results thus demonstrate
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that having to integrate the additional stress cue with the phonology and utterance boundary cues

during learning provides for better performance.

[Figure 3 about here]

To test the generalisation abilities of the networks, segmentation performance was recorded on the

task of correctly segmenting novel words.  The three cue net was able to segment 23 of the 50 novel

words, whereas the two cue network only was able to segment 11 novel words. Thus, the phon-ub-

stress network achieved a word completeness of 46% which was significantly better (c2 = 4.23, p <

.05) than the 22% completeness obtained by the phon-ub net. These results therefore support the

supposition that the integration of three cues promotes better generalisation than the integration of two

cues. Furthermore, the three cue net also developed a trochaic bias, and was nearly twice as good at

segmenting out novel bisyllabic words with a trochaic stress pattern in comparison to novel words

with an iambic stress pattern.

Overall, the simulation results from Christiansen et al. (1998) show that the integration of

probabilistic cues forces the networks to develop representations that allow them to perform quite

reliably on the task of detecting word boundaries in the speech streamiv.  This result is encouraging

given that the segmentation task shares many properties with other language acquisition problems

which have been taken to require innate linguistic knowledge for their solution, and yet it seems clear

that discovering the words of one’s native language must be an acquired skill. The simulations also

demonstrated how a trochaic stress bias could emerge from the statistics in the input, without having

anything like the “periodicity bias” of Cutler & Mehler (1993) built in. Below, we take our approach

one step further demonstrating how our model can accommodate recent evidence regarding rule-like

behaviour in infancy.

4. Simulation 1: A Multiple-cue Integration Account of Rule-like Behaviour

The nature of the learning mechanisms that infants bring to the task of language acquisition is a major

focus of research in cognitive science.  With the rise of connectionism, much of the scientific debate

surrounding this research has focused on whether rules are necessary to explain language acquisition.

All parties in the debate acknowledge that statistical learning mechanisms form a necessary part of the

language acquisition process (e.g., Christiansen & Curtin, 1999; Marcus et al., 1999; Pinker, 1991).

However, there is much disagreement over whether a statistical learning mechanism is sufficient to

account for complex rule-like behaviour, or whether additional rule-learning mechanisms are needed.

In the past this debate has primarily taken place within specific areas of language acquisition, such as

inflectional morphology (e.g., Pinker, 1991; Plunkett & Marchman, 1993) and visual word recognition

(e.g., Coltheart, Curtis, Atkins & Haller, 1993; Seidenberg & McClelland, 1989).  More recently,
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Marcus et al. (1999) have presented results from experiments with 7-month-olds, apparently showing

that the infants acquire abstract algebraic rules after two minutes of exposure to habituation stimuli.

The algebraic rules are construed as representing an open-ended relationship between variables for

which one can substitute arbitrary values, “such as ‘the first item X is the same as the third item Y,’ or

more generally, that ‘item I is the same as item J’” (Marcus et al., 1999, p. 79).  Marcus et al. further

claim that a connectionist single-mechanism approach based on statistical learning is unable to fit their

experimental data.  In Simulation 1, we present a detailed connectionist model of these infant data,

supporting a single-mechanism approach employing multiple-cue integration while undermining the

dual-mechanism account.

Marcus et al. (1999) used an artificial language learning paradigm to test their claim that the infant

has two mechanisms for learning language. The subjects were seven-month old infants randomly

placed in one of two experimental conditions. In the first two experiments, the conditions were ABA

or ABB.  Each word in the sentence frame ABA or ABB consisted of a consonant and vowel sequence

(e.g., ‘li wi li’ or ‘li wi wi’).  During a two-minute long familiarisation phase the infants were exposed

to three repetitions of each of 16 three-word sentences.  The test phase in both experiments consisted

of 12 sentences made up of words the infants had not previously been exposed to.  The test items were

broken into 2 groups for both experiments: consistent (items constructed with the same sentence frame

as the familiarisation phase) and inconsistent (constructed from the sentence frame the infants were

not trained on) — see Table 1.  In the second experiment the test items were altered in order to control

for an overlap of phonetic features found in the first experiment.  This was to prevent the infants from

using this type of statistical information.  The results of the first and second experiments showed that

the infants preferred the inconsistent test items to the consistent ones.  In the third experiment, which

we focus on in this paper, the ABA grammar was replaced with an AAB grammar.  The rationale was

to ensure that infants could not distinguish between grammars based solely on reduplication

information.  Once again, the infants preferred the inconsistent items to the consistent items.

[Table 1 about here]

The conclusion drawn by Marcus et al. (1999) was that a single mechanism that relied on only

statistical information could not account for the results because none of the test items appeared in the

habituation part of the experiment. Instead they suggested that a dual mechanism was needed,

comprising a statistical learning component and an algebraic rule learning component.  In addition,

they claimed that a SRN would not be able to model their data because of the lack of phonological

overlap between habituation and test items. Specifically, they state,
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Such networks can simulate knowledge of grammatical rules only by being trained on all

items to which they apply; consequently, such mechanisms cannot account for how

humans generalise rules to new items that do not overlap with the items that appeared in

training (p. 79).

We demonstrate that SRNs can indeed fit the data from Marcus et al.  Other researchers have

constructed neural network models specifically to simulate the Marcus et al. results (Altmann &

Dienes, 1999; Elman, 1999; Shastri & Chang, 1999; Shultz, 1999). In contrast, we do not build a new

model to accommodate the results but take the existing SRN model of speech segmentation presented

above and show how this model—without additional modification—provides an explanation for the

results.

The Christiansen et al. (1998) model acquired distributional knowledge about sequences of

phonemes, the associated stress patterns, and the occurrence of utterance boundaries.  This knowledge

allowed it to perform well on the task of segmenting the speech stream into words.  We suggest that

this knowledge can be put to use in secondary tasks not directly related to speech

segmentation—including artificial tasks used in psychological experiments such as Marcus et

al. (1999).  This suggestion resonates with similar perspectives in the word recognition literature

(Seidenberg, 1995) where knowledge acquired for the primary task of learning to read can be used to

perform other secondary tasks such as lexical decision.

Marcus et al. (1999) state that they conducted simulations in which SRNs were unable to fit the

experimental data.  As they do not provide any details of the simulations, we assume (based on other

simulations reported by Marcus, 1998) that these focused on some kind of phonological output that the

SRNs produced.  Given our characterisation of the experimental task as a secondary task, we do not

think that the basis for the infants’ differentiation between consistent and inconsistent stimuli should

be modelled using the phonological output of an SRN. Instead, we focus on the model’s ability to

integrate the phonological input with utterance boundary information in order to segment out the

individual words in the test items.

4.1. Method

Networks. Corresponding to the 16 infants in the Marcus et al. study, we used 16 networks similar to

the SRN used in Christiansen et al. (1998) with the exception that the original phonetic feature

geometry was replaced by a new representation using 18 features (see Appendix).  Each of the 24

SRNs had a different set of initial weights, randomized within the interval [0.25;-0.25].  The learning

rate was set to 0.1 and the momentum to 0.95.  These training parameters were identical to those used

in the original Christiansen et al. model.  The networks were trained using the standard back-
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propagation learning algorithm (Rumelhart, Hinton & Williams, 1986) to predict the next constellation

of cues given the current input segment.

Materials. The materials from Experiment 3 in Marcus et al. (1999) were transformed into the

phoneme representation used by Christiansen et al. (1998).  Two habituation sets were created: one for

AAB items and one for ABB items (see Table 1).  The habituation sets used here, and in Marcus et al.,

consisted of three blocks of 16 sentences in random order, yielding a total of 48 sentences in each

habituation condition.  As in Marcus et al. there were four different test sentences: ‘ba ba po’, ‘ko ko

ga’ (consistent with AAB); ‘ba po po’ and ‘ko ga ga’ (consistent with ABB). The test set consisted of

three blocks of randomly ordered test sentences, totalling 12 test items.  Both the habituation and test

sentences were treated as a single utterance with no explicit word boundaries marked between the

individual words.  The end of each utterance was marked by activating the utterance boundary unit.

All habituation and test items were assigned the same level of primary stress.

Procedure. The networks were first trained on a single pass through the Korman (1984) corpus as the

original Christiansen et al. model.  This corresponds to the fact that the 7-month-olds in the Marcus et

al. study already have had a considerable exposure to language, and have begun to develop their

speech segmentation abilities (Jusczyk, 1997, 1999).  Next, the networks were habituated on a single

pass through one of the habituation corpora—one phoneme at a time—with learning parameters

identical to the ones used during the pretraining on the Korman corpus.

The networks were then tested on the test set (with the weights “frozen”) and the activation of the

utterance boundary unit was recorded for every phoneme input in the test set for the purpose of

scoring the network performance on the derived task. The boundary unit activations across the seven

input tokens for each item were separated into two groups according to whether they were recorded for

test sentences consistent or inconsistent with the habituation pattern.

For the purpose of measuring word segmentation performance, the mean utterance boundary

activation was calculated across all the habituation items for each network.  Following Christiansen et

al. (1998), a network was said to have postulated a word boundary whenever the boundary unit

activation in a test sentence was above its habituation mean cut-off. The word segmentation

performance for consistent and inconsistent sentences was then quantified in terms of accuracy and

completeness scores (Brent & Cartwright, 1996; Christiansen et al., 1998).

4.2. Results

For each of the sixteen networks, accuracy and completeness scores were computed across all test

items, and submitted to the same statistical analyses as used by Marcus et al. for their infant data. The

accuracy scores were submitted to a repeated measures ANOVA with condition (AAB vs. ABB) as
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between network factor and test pattern (consistent vs. inconsistent) as within network factor.  The

left-hand side of Figure 4 shows the accuracy scores for the consistent and inconsistent items pooled

across conditions. There was a main effect of test pattern (F(1,14)=4.78, p < .05), indicating that the

networks segmented significantly more actual words out from the inconsistent items (49.55%)

compared to the consistent items (39.44%).  Similarly to the infant data, neither the main effect of

condition, nor the condition ¥ test pattern interaction were significant (F's < 1). The completeness

scores were submitted to a similar analysis, and the results are shown in the right-hand side of Figure

4. Again, there was a main effect of test pattern (F(1,14)=5.76, p < .04), indicating that the networks

were significantly better at segmenting out the words in the inconsistent items (35.76%) compared to

the consistent items (28.82%). Neither the main effect of condition, nor the condition ¥ test pattern

interaction were significant (F's < 1).  The higher accuracy and completeness scores for the

inconsistent items suggests that they would stand out more clearly in comparison with the consistent

items, and thus explain why the infants looked longer towards the speaker playing the inconsistent

items in the Marcus et al. study.

[Figure 4 about here]

Marcus et al. claim that a dual-mechanism system—involving a statistical learning mechanism and

a rule-learning mechanism—is needed to account for the infant data.  In contrast, Simulation 1 shows

that a separate rule-learning component is not necessary to account for the data. This simulation shows

how our SRN model of word segmentation can fit the data from Marcus et al. (1999) without invoking

explicit rules.  The pretraining allowed the SRNs to learn to integrate the regularities governing the

phonological, lexical stress, and utterance boundary information in child-directed speech. We suggest

that during the habituation phase, the networks then developed weak attractors specific to the

habituation pattern and the phonology of the syllables used.  These attractors will at the same time

both attract a consistent item (because of pattern similarity) and repel it (because of phonological

dissimilarity), causing interference with the derived task of word segmentation.  The inconsistent

items, on the other hand, will tend to be repelled by the habituation attractors and therefore do not

suffer from the same kind of interference, making them easier for the network to process.

Multiple-cue integration learning enabled the SRN model to fit the infant data.  Importantly, the

model—as a statistical learning mechanism—can explain both the distinction between consistent and

inconsistent items as well as the preference for the inconsistent items.  Note that a rule-learning

mechanism by itself only can explain how infants may distinguish between items, but not why they

prefer inconsistent over consistent items.  Extra machinery is needed in addition to the rule-learning

mechanism to explain the preference for inconsistent items.  Thus, the most parsimonious explanation

is that only a statistical learning device is necessary to account for the infant data.  The addition of a

rule-learning device does not appear to be necessary.
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5. Simulation 2: The Role of Segmentation in Rule-like Behavior

Segmentation plays a crucial role in our multiple-cue integration model of the Marcus et al. data.  In

contrast, the previous accounts of the infants' rule-like behavior do not couch their explanation in

terms of such basic components of speech processing.  Nevertheless, the previous connectionist

models implicitly rely on pre-segmented input to model the infant data.  All the models use syllabic

input representations, and require that the input be segmented into three-syllable sentences.  Sentential

segmentation is accomplished outside of the models by way of marking the beginnings and endings of

sentences (Altmann & Dienes, 1999; cf.  Dienes et al., 1999), by resetting the network before each

sentence (Dominey & Ramus, 2000), by only doing error correction after every third syllable (Elman,

1999), or by only having three nodes to encode variable position (Shastri & Chang, 1999) or syllable

input (Shultz, 1999).  The importance of this pre-segmentation is highlighted, if we make the pauses

between words (250 ms) the same length as the pauses between sentences (1000 ms).  Leaving

sentential segmentation aside, an increase in the time between syllables should have little effect on the

performance of the models—except perhaps for the Dominey and Ramus model in which the

increased time between syllables may result in an inability to distinguish between consistent and

inconsistent items (Dominey, personal communication).  However, having same-length gaps between

words and sentences are likely to make sentential segmentation harder.  If this affects rule-like

behavior then it has to be explained outside the models by some kind of segmentation device.

Similar considerations apply to learning mechanisms that acquire explicit symbolic rules.  Marcus

et al. (1999) characterized algebraic rules as representing an open-ended relationship between

variables for which one can substitute arbitrary values. Their Experiment 3 was designed to

demonstrate that rule-learning is independent of the physical realization of variables in terms of

phonological features.  The same rule, AAB, applies to—and can be learned from—‘le le we’ and ‘ko

ko ga’ (with ‘le’ and ‘ko’ filling the same A slots and ‘we’ and ‘ga’ the same B slot).  As the abstract

relationships that this rule represents only pertain to the value of the three variables, the amount of

time between them should not affect the application of the rule.  Thus, just as the physical realization

of a variable does not matter for the learning or application of a rule, neither should the time between

variables.  The same rule AAB, applies to—and can be learned from—‘le [250ms] le [250ms] we’ and

‘le [1000ms] le [1000ms] we’ (the ‘le’s should still fill the A slots and the ‘we’s the B slot despite the

increased duration of time between the occurrence of these variables).  Nevertheless, even though the

rule should in principle apply, performance constraints arising outside the rule-learning component

may prevent it from being retrieved (Marcus, personal communication).  Thus, if rule-like behavior is

affected by same-length gaps between words and sentences, then a separate segmentation component

will be needed.
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We expect, however, that this pause manipulation can be accommodated by our multiple-cue

integration mechanism model—without any need for pre-segmentation machinery.  In the model, the

preference for inconsistent items is explained in terms of differential segmentation performance.

Lengthening the pauses between words, as indicated above, would in effect solve the derived task for

the model, and should result in a disappearance of the preference for inconsistent items.  Thus, we

predict that the model should show no difference between the segmentation performance on the

consistent and inconsistent items when pauses between words have the same length as pauses between

sentences.  To test this prediction, we carried out a new set of simulations.

5.1. Method

Networks. Sixteen SRNs as in Simulation 1.

Materials. Same materials as in Simulation 1 except that utterance boundaries were inserted between

the words in the habituation and test sentences, simulating a lengthening of pauses between words

(from 250 ms to 1000 ms) such that they have the same length as the pauses between utterances.

Procedure. Same procedure as in Simulation 1.

5.2. Results

The completeness scores were submitted to the same analyses as in Simulation 2.  As illustrated by

Figure 5, the segmentation performance on the test items was improved considerably by the inclusion

of utterance boundary-length pauses between words.  As predicted, there was no difference between

accuracy scores for consistent (74.43%; SE: 6.92) and inconsistent items (72.26%; SE: 7.86) (F(1,14)

= .71). Neither was there a difference between the completeness scores for consistent (70.14%; SE:

7.622) and inconsistent items (70.49%; SE: 7.966) (F(1,14) = .02). As before there were no other

effects or interactions (F's < 1), save for an interaction between condition and test pattern for accuracy

(F(1,14) =5.55, p < .04). This interaction was due to somewhat lower accuracy scores for the

inconsistent condition in the AAB habituation pattern.

[Figure 5 about here]

Simulation 2 thus confirms the predicted effect of same-length pauses between words and

sentences in the dual-task single-mechanism model. Without including an additional segmentation

component, the previous connectionist models would suggest that the pause manipulation should not

affect the rule-like behaviorv. Similarly, learning mechanisms that acquire explicit symbolic rules

would need to appeal to segmental performance constraints outside the rule component, in order to

make the same predictions; otherwise, the pause manipulation would not be expected to affect rule-
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learning.  To corroborate our model's predictions for the role of segmentation in rule-like behavior, we

conducted an artificial language learning experiment using adult subjects.

6. Experiment 1: Replicating the Marcus et al. (1999) Results

Before investigating the role of segmentation in rule-like behavior, we need to first establish whether

adults in fact exhibit the same pattern of behavior as the infants in the Marcus et al. study.  The first

experiment therefore seeks to replicate Experiment 3 from Marcus et al. using adult subjects.

6.1. Method

Participants. Sixteen undergraduate students were recruited from introductory Psychology classes at

Southern Illinois University.  The participants earned course credit for their participation.

Materials. We used the original stimuli that Marcus et al. (1999) created for their Experiment 3.  Each

word in a sentence was separated by 250 ms. The 16 habituation sentences for each condition were

created by Marcus et al. using the Bell Labs speech synthesizer.  The original habituation stimuli were

limited to two predetermined sentence orders.  To avoid potential order effects, we used the SoundEdit

16 version 2 software for the Macintosh to isolate each sentence as a separate sound file.  This allowed

us to present the habituation sentences in a random order for each subject.

The stimuli for the test phase consisted of four additional sentences that were either consistent or

inconsistent with the training grammar.  As mentioned earlier, these sentences contained no

phonological overlap with the habituation sentences.  Like the habituation stimuli, each word in a

sentence was separated by a 250 ms interval.  As before, we stored the test stimuli as separate

SoundEdit 16 version 2 sound files to allow a random presentation order for each subject.

Procedure. The participants were seated in front of a Macintosh G3 PowerPC equipped with a New

Micros button box.  Participants were randomly assigned to one of two conditions, AAB or ABB. The

experiment was run using the PsyScope presentation software (Cohen, MacWhinney, Flatt, and

Provost, 1993) with all stimuli played over stereo loudspeakers at 75dB. The participants were

instructed that they were taking part in a pattern recognition experiment.  They were told that in the

first part of the experiment their task was to listen carefully to sequences of sounds and that their

knowledge of these sound sequences would be tested afterwards.  Participants listened to three blocks

of the 16 randomly presented habituation sentences corresponding either to the AAB or the ABB

sentence frame.  A 1000 ms interval separated each sentence as was the case in the Marcus et al.

experiment.
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After habituation, the participants were instructed that they would be presented with new sound

patterns that they had not previously heard.  They were asked to judge whether a pattern was “similar”

or “dissimilar” to what they had been exposed to in the training phase by pressing an appropriately

marked button.  The instructions emphasized that because the sounds were novel, they should not base

their decision on the sounds themselves but instead on the patterns derived from the sounds.  The

participants listened to three blocks of the four randomly presented test sentences.  After the

presentation of each test sentence, the participants were prompted for their response.  Participants were

allowed to take as long as they needed to respond.  Each test trial was separated by a 1000 ms interval.

6.2. Results

For the purpose of our analyses, the correct response for consistent items is “similar” while the correct

response for inconsistent items is “dissimilar”.  The mean overall score for correct classification of test

items was 8.81 (SE: 0.63) out of a perfect score of 12.  A single-sample t-test showed that this

classification performance was significantly better than the chance level performance of 6 (t(15) =

4.44, p < .0005).  The participants' responses were then submitted to the same statistical analysis as

the infant data in Marcus et al. (and Simulation 1 and 2 above).  Figure 6 (left) shows the mean

number of consistent and inconsistent test items that were rated as dissimilar to the habituation items.

As expected, there was a main effect of test pattern (F(1,14) = 18.98, p < .001), such that significantly

more inconsistent items were judged as dissimilar (4.5; SE: 0.40) than consistent items (1.69; SE:

0.40).  Neither the main effect of condition, nor the condition ¥ test pattern interaction were significant

(F's < 1).

Experiment 1 shows that adults perform similarly to the infants in Marcus et al.'s Experiment 3,

thus demonstrating that it is possible to replicate their findings using adult participants instead of

infants.  This result is perhaps not surprising given that Saffran and colleagues were able to replicate

statistical learning results obtained using adults participants (Saffran, Newport & Aslin, 1996) in

experiments with 8-month-olds (Saffran, Aslin, et al., 1996).  More generally, their results and ours

suggest that despite small differences in the experimental methodologies used in infant and adult

artificial language learning studies, both methodologies appear to tap into the same learning

mechanisms.  More generally, one would expect that the same learning mechanisms—statistical or

rule-based—would be involved in both infancy and adulthood, and that similar results should be

expected in both infant and adult studies with the kind of material used here.

[Figure 6 about here]
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7. Experiment 2: Segmentation and Rule-like Behavior

Having replicated the Marcus et al. (Experiment 3) infant data with adult participants, we now turn our

attention to the effect of same-length pauses between words and sentences on the learning of rule-like

behavior.

7.1. Method

Participants. Sixteen additional undergraduate students were recruited from introductory Psychology

classes at Southern Illinois University.  The participants earned course credit for their participation.

Materials. The training and test stimuli were the same as in Experiment 1 except that the 250 ms

interval between words in a sentence was replaced by a 1000 ms interval using the SoundEdit 16

version 2 software.  The 1000 ms interval between sentences remained the same as before.

Procedure. The procedure and instructions were identical to that used for Experiment 1.

7.2. Results

The mean overall classification score was 5.75 (SE: 0.32) out of 12.  This was not significantly

different from a chance level performance of 6 (t < 1).  The responses of the participants were

submitted to the same further analysis as in Experiment 1.  Figure 6 (right) shows the mean number of

consistent and inconsistent items rated as dissimilar.  As predicted by Simulation 3, there was no main

effect of test pattern in this experiment (F(1,14)=.56), suggesting that the participants were unable to

distinguish between consistent (2.75; SE: 0.17) and inconsistent (2.5; SE: 0.24) items.  As in

Experiment 1, both the main effect of condition and the interaction between condition and test pattern

interaction were not significant (F's = 0).

These results show that preference for inconsistent items disappears when the pauses between

words and sentences have the same length.  This corroborates the prediction from the dual-task,

single-mechanism model, underscoring the role of segmentation in rule-like behavior.  Crucially, our

approach to the Marcus et al.  (1999) study as tapping into the derived task of word segmentation,

allows the model to make the correct predictions without requiring additional machinery to perform

sentential segmentation.  The previous connectionist models, on the other hand, appear to require

additional sentential segmentation components to account for the results from Experiment 2.  This is

also true for learning mechanisms that acquire explicit symbolic rules as suggested by Marcus et al.

Without appealing to performance limitations arising from processing devices external to the rule-

learning component, the lack of difference between consistent and inconsistent items in our artificial

learning study cannot be explained.  The combination of simulation and experimental results presented
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here suggest that the multiple-cue integration model provides a compelling account of rule-like

behavior in infants and adults.

8. General Discussion

In this chapter, we have suggested that the integration of multiple probabilistic cues may be one of the

key elements involved in children’s acquisition of language. To support this suggestion, we have

discussed the Christiansen et al. (1998) computational model of multiple cue integration in early infant

speech segmentation. We have also showed through simulations and experiments that the model

provides a single mechanism for learning the statistical structure of the speech input, while the

representations acquired through multiple cue integration at the same time also allow the model to

exhibit rule-like behaviour, previously though to be beyond the scope of SRNs (cf. Marcus et al.,

1999). Taken together, we find that the Christiansen et al. model in combination with the simulations

and experiments reported here provide strong evidence in support for multiple cue integration in

language acquisition. In the final part of this chapter, we discuss two outstanding issues with respect to

multiple cue integration: how it works and how it can be extended beyond speech segmentation.

8.1. What makes multiple-cue integration work?

We have seen that integrating multiple probabilistic cues in a connectionist network results in more

than a just a sum of unreliable parts. But what is it about multiple cue integration that facilitates

learning? The answer appears to lie in the way in which multiple cue integration can help constrain the

search through weight space for a suitable set of weights for a given task (Christiansen, 1998;

Christiansen et al., 1998). We can conceptualise the effect that the cue integration process has on

learning by considering the following illustration. In Figure 6, each ellipse designates for a particular

cue the set of weight configurations that will enable a network to learn the function denoted by that

cue. For example, the ellipse marked A designates the set of weight configurations that allow for the

learning of the function A described by the A cue. With respect to the simulations reported above, A,

B and C can be construed as the phonology, utterance boundary, and lexical stress cues, respectively.

[Figure 7 about here]

If a network using gradient descent learning (e.g., the back-propagation learning algorithm) was

only required to learn the regularities underlying, say, the A cue, it could settle on any of the weight

configurations in the A set.  However, if the net was also required to learn the regularities underlying

cue B, it would have to find a weight configuration which would accommodate the regularities of both

cues. The net would therefore have to settle on a set of weights from the intersection between A and B

in order to minimise its error. This constrains the overall set of weight configurations that the net has
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to choose between—unless the cues are entirely overlapping (in which case there would not be any

added benefit from learning this redundant cue) or are disjoint (in which case the net would not be able

to find an appropriate weight configuration). If the net furthermore had to learn the regularities

associated with the third cue C, the available set of weight configurations would be constrained even

further.

Turning to the engineering literature on neural networks, it is possible to provide a mathematical

basis for the advantages of multiple cue integration. Here multiple cue integration is known as

“learning with hints”, where hints provide additional information that can constrain the learning

process (e.g., Abu-Mostafa, 1990; Omlin & Giles, 1992; Suddarth & Holden, 1991). The type of hints

most relevant to the current discussion is the so-called “catalyst hints”. This involves adding extra

units to a network such that additional correlated functions can be encoded (in much the same way as

the lexical stress units encode a function correlated with the information provided by the phonological

input with respect to the derived task of word segmentation). Thus, catalyst hints are introduced to

reduce the overall weight configuration space that a network has to negotiate. This reduction is

accomplished by forcing the network to acquire one or more additional related functions encoded over

extra output units. These units are often ignored after they have served their purpose during training

(hence the name “catalyst” hint). The learning process is facilitated by catalyst hints because fewer

weight configurations can accommodate both the original target function as well as the additional

catalyst function(s).  As a consequence of reducing the weight space, hints have been shown to

constrain the problem of finding a suitable set of weights, promoting faster learning and better

generalisation.

Mathematical analyses in terms of the Vapnik-Chervonenkis (VC) dimension (Abu-Mostafa, 1993)

and vector field analysis (Suddarth & Kergosien, 1991) have shown that learning with hints may

reduce the number of hypotheses a learning system has to entertain. The VC dimension establishes an

upper bound for the number of examples needed by a learning process that starts with a set of

hypotheses about the task solution. A hint may lead to a reduction in the VC dimension by weeding

out bad hypotheses and reduce the number of examples needed to learn the solution. Vector field

analysis uses a measure of “functional” entropy to estimate the overall probability for correct rule

extraction from a trained network. The introduction of a hint may reduce the functional entropy,

improving the probability of rule extraction. The results from this approach demonstrate that hints may

constrain the number of possible hypotheses to entertain, and thus lead to faster convergence.

In sum, these mathematical analyses have revealed that the potential advantage of using multiple

cue integration in neural network training is twofold: First, the integration of multiple cues may reduce

learning time by reducing the number of steps necessary to find an appropriate implementation of the

target function. Second, multiple cue integration may reduce the number of candidate functions for the
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target function being learned, thus potentially ensuring better generalisation. As mentioned above, in

neural networks this amounts to reducing the number of possible weight configurations that the

learning algorithm has to choose between.vi  Thus, because the phonology, utterance boundary and

lexical stress cues designate functions that correlate with respect to the derived task of word

segmentation in our simulations, the reduction in weight space not only resulted in a better

representational basis for solving this task, but also lead to better learning and generalisation.

However, the mathematical analyses provide no guarantee that multiple cue integration will

necessarily improve performance. Nevertheless, this is unlikely to be a problem with respect to

language acquisition because, as we shall see next, the input to children acquiring their first language

is filled with cues that reflect important and informative aspects of linguistic structure.

8.2. Multiple cue integration beyond word segmentation

Recent research in developmental psycholinguistics have shown that there is a variety of probabilistic

cues available for language acquisition (for a review, see contributions in Morgan & Demuth, 1996).

These cues range from cues relevant to speech segmentation (as discussed above) to the learning of

word meanings and to the acquisition of syntactic structure. We briefly discuss the two latter types of

cues here.

Golinkoff, Hirsh-Pasek & Hollich (1999) studied word learning in children of 12, 19 and 24

months of age. They found that perceptual salience and social information in the form of eye gaze are

important cues for learning the meaning of words. The study also provided some insights into the

developmental dynamics of multiple-cue integration. In particular, individual cues are weighted

differently at different stages in development, changing the dynamics of the multiple cue integration

process across time. At 12 months, perceptual salience dominates—only names for interesting objects

are learned—other cues need to correlate considerably for successful learning. Seven months later, eye

gaze cues come into play, but the children have problems when eye gaze and perceptual salience

conflict with each other (e.g., when the experimenter is naming and looking at a perceptually

uninteresting object). Only at 24 months has the child’s lexical acquisition system developed

sufficiently so that it can deal with conflicting cues. From the viewpoint of multiple cue integration,

this study thus demonstrates how correlated cues are needed early in acquisition to build a basis for

later performance based on individual cues.

There are a variety of cues available for the acquisition of syntactic structure. Phonology not

only provides information helpful for word segmentation, but also includes important probabilistic

cues to the grammatical classes of words. Lexical stress, for example, can be used to distinguish

between nouns and verbs. In a 3,000 word sample, Kelly & Bock (1988) found that 90% of the

bisyllabic trochaic words were nouns whereas 85% of the bisyllabic iambic words were verbs (e.g., the
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homograph record has stress on the first syllable when used as a noun and stress on the second

syllable when used as a verb). They furthermore demonstrated that people are sensitive to this cue.

More recent evidence shows that people are faster and more accurate at classifying words as nouns or

verbs if the words have the prototypical stress patterns for their grammatical class (Davis & Kelly,

1997). The number of syllables that a word contains also provides information about its grammatical

class. Cassidy & Kelly (1991) showed that 3-year-olds are sensitive to the probabilistic cue that

English nouns tend to have more syllables than verbs (e.g., gorp tended to be used as a verb, whereas

gorpinlak tended to be used as noun). Other important cues to noun-hood and verb-hood in English

include differences in word duration, consonant voicing, and vowel types—and many of these cues

have also been found in other languages, such as Hebrew, German, French, and Russian (see Kelly,

1992, for a review).

Sentence prosody can also provide important probabilistic cues to the discovery of grammatical

word class. Morgan, Shi & Allopenna (1996) demonstrated using a multivariate procedure that content

and function words can be differentiated with 80% accuracy by integrating distributional, phonetic and

acoustic cues. More recently, Shi, Werker & Morgan (1999) found that infants are sensitive to such

cue differences. Sentence prosody also provides cues to the acquisition of syntactic structure. Fisher &

Tokura (1994) used multivariate analyses to integrate information about pauses, segmental variation

and pitch and obtained 88% correct identification of clause boundaries. Other studies have shown that

infants are sensitive to such cues (see Jusczyk, 1997, for a review). Additional cues to syntactic

structure can be derived through distributional analyses of word combinations in everyday language

(e.g., Redington, Chater & Finch, 1998), and from semantics (e.g., Pinker, 1989).

As should be clear from this short review, there are many types of probabilistic information

readily available to the language learner. We suggest that integrating these different types of

information similarly to how the segmentation model was able to integrate phonology, utterance

boundary and lexical stress information is also likely to provide a solid basis for learning aspects of

language beyond speech segmentation. Indeed, a recent set of simulations inspired by the one

described here have demonstrated that the learning of syntactic structure by an SRN is facilitated when

it is allowed to integrate phonological and prosodic information in addition to distributional

information (Christiansen & Dale, 2001). Specifically, an analysis of network performance revealed

that learning with multiple-cue integration resulted in faster, better, and more uniform learning.  The

SRNs were also able to distinguish between relevant cues and distracting cues, and performance did

not differ from networks that received only reliable cues.  Overall, these simulations offer additional

support for the multiple-cue integration hypothesis in language acquisition.  They demonstrate that

learners can benefit from multiple cues, and are not distracted by irrelevant information.



23

9. Conclusion

In this chapter, we have presented a number of simulation results that demonstrate how multiple cue

integration in a connectionist network, such as the SRN, can provide a solid basis for solving the

speech segmentation problem. We have also discussed how the process of integrating multiple cues

may facilitate learning, and have reviewed evidence for the existence of a plethora of probabilistic

cues for the learning of word meaning, grammatical class and syntactic structure. We conclude by

drawing attention to the kind of learning mechanism needed for multiple cue integration.

It seems clear that connectionist networks are well suited for accommodating multiple cue

integration. First, our model of the integration of multiple cues in speech segmentation was

implemented as an SRN. Second, and perhaps more importantly, the mathematical results regarding

the advantages of multiple cue integration were couched in terms of neural networks (though they may

also hold for certain other, non-connectionist statistical learning devices). Third, in the service of

immediate tasks, such as encoding phonological information, connectionist networks can develop

representations that can then form the basis for solving derived tasks, such as word segmentation.

Symbolic, rule-based models, on the other hand, would appear to be ill equipped for accommodating

the integration of multiple cues. First, the probabilistic nature of the various cues is not readily

captured by rules. Second, the tendency for symbolic models to separate statistical and rule-based

knowledge in dual-mechanism models is likely to hinder integration of information across the two

types of knowledge. Third, the inherent modular nature of the symbolic approach to language

acquisition further blocks the integration of multiple cues across different representational levels (e.g.,

preventing symbolic models from taking advantage of phonological cues to word class).

Connectionism has shown itself to be a very fruitful—albeit controversial—paradigm for research

on language (see, e.g., Christiansen & Chater, 2001b, for a review, or contributions in Christiansen,

Chater & Seidenberg, 1999; Christiansen & Chater, 2001a). Based on our work reported here, we

further argue that connectionist networks may also hold the key to a better and more complete

understanding of language acquisition because they allow for the integration of multiple probabilistic

cues.
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Appendix

                The Phonemes from the MRC Psycholinguistics Database and Their Feature Representations

Symbol IPA cons. son. labial cor. dorsal front hi low mid tense cont. nasal laminal strid. post. lateral voiced
& Q 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1
3 Œ 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1
0 Å 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1
@ ´ 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
A A 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1
I I 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1
O ç 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1
U U 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1
V √ 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
a A 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1
e e 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1
i i 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1
o o 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1
u u 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1
p p 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b b 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
t t 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
d d 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
k k 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
g g 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
f f 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
v v 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
T T 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
D D 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1
s s 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0
z z 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1
S S 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0
Z Z 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1
h h 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
m m 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
n n 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
9 N 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
l l 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1
r r 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
w w 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1
j j 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Note. Cons. = consonantal; son. = sonorant; cor. = coronal; cont. = continuant; strid. = strident; post. = posterior.
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Table 1. The Habituation and Test Stimuli for the Two Conditions in Marcus et al. (1999).

Test Stimuli

Habituation Stimuli Consistent Inconsistent

AAB Condition de de di,  de de je,  de de li,  de de we ba ba po ba po po

ji ji di,  ji ji je,  ji ji li,  ji ji we ko ko ga ko ga ga

le le di,  le le je,  le le li,  le le we

wi wi di,  wi wi je,  wi wi li,  wi wi we

ABB Condition de di di,  de je je,  de li li,  de we we ba po po ba ba po

ji di di,  ji je je,  ji li li,  ji we we ko ga ga ko ko ga

le di di,  le je je,  le li li,  le we we

wi di di,  wi je je,  wi li li,  wi we we
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Figure Captions

Figure 1.  Illustration of the SRN used in Christiansen et al. (1998).  Arrows with solid lines indicate

trainable weights, whereas the arrow with the dashed line denotes the copy-back weights (which are

always 1). UB refers to the unit coding for the presence of an utterance boundary.  The presence of

lexical stress is represented in terms of two units, S and P, coding for secondary and primary stress,

respectively. (Adapted from Christiansen et al., 1998).

Figure 2.  The activation of the boundary unit during the processing of the first 37 phoneme tokens in

the Christiansen et al. (1998) training corpus.  A gloss of the input utterances is found beneath the

input phoneme tokens. (Adapted from Christiansen et al., 1998).

Figure 3.  Word accuracy (left) and completeness (right) scores for the net trained with three cues

(phon-ub-stress—white bars) and the net trained with two cues (phon-ub—grey bars).

Figure 4.  Word accuracy (left) and completeness (right) scores in Simulation 1 for the consistent

(white bars) and the inconsistent test items (grey bars).

Figure 5. Word accuracy (left) and completeness (right) scores in Simulation 2 for the consistent

(white bars) and the inconsistent test items (grey bars).

Figure 6. The mean proportion of consistent (white bars) and inconsistent (grey bars) test items rated

as dissimilar to the habituation pattern in Experiments 1 (left) and 2 (right).

Figure 7.  An abstract illustration of the reduction in weight configuration space that follows as a

consequence of accommodating several partially overlapping cues within the same representational

substrate. (Adapted from Christiansen et al., 1998).
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Footnotes

                                                       

i Parts of the simulation results have previously been reported in conference proceedings:

Christiansen, Conway & Curtin (2000).

ii Note that these phonological citation forms were unreduced (i.e., they do not include the

reduced vowel schwa). The stress cue therefore provides additional information not available

in the phonological input.

iii Phonemes were used as output in order to facilitate subsequent analyses of how much

knowledge of phonotactics the net had acquired.

iv These results were replicated across different initial weight configurations and with

different input/output representations.

v Even though the Dominey and Ramus (2000) model is predicted to display similar behavior

to our dual-task model (Dominey, personal communication), it is nevertheless still vulnerable

to this problem because it requires pre-segmented input (i.e., resetting of internal states at the

start of each sentence) to account for  the original Marcus et al. (1999) results

vi It should be noted that the results of the mathematical analyses apply independently of

whether the extra catalyst units are discarded after training (as is typical in the engineering

literature) or remain a part of the network as the simulations presented here.


