Angeliki Lazaridou
2018
Compositional Obverter Communication Learning From Raw Visual InputPDF
arXiv, 2018
One of the distinguishing aspects of human language is its compositionality, which allows us to describe complex environments with limited vocabulary. Previously, it has been shown that neural network agents can learn to communicate in a highly structured, possibly compositional ...MORE ⇓
One of the distinguishing aspects of human language is its compositionality, which allows us to describe complex environments with limited vocabulary. Previously, it has been shown that neural network agents can learn to communicate in a highly structured, possibly compositional language based on disentangled input (e.g. handengineered features). Humans, however, do not learn to communicate based on well-summarized features. In this work, we train neural agents to simultaneously develop visual perception from raw image pixels, and learn to communicate with a sequence of discrete symbols. The agents play an image description game where the image contains factors such as colors and shapes. We train the agents using the obverter technique where an agent introspects to generate messages that maximize its own understanding. Through qualitative analysis, visualization and a zero-shot test, we show that the agents can develop, out of raw image pixels, a language with compositional properties, given a proper pressure from the environment.
Emergent Communication through NegotiationPDF
arXiv, 2018
Multi-agent reinforcement learning offers a way to study how communication could emerge in communities of agents needing to solve specific problems. In this paper, we study the emergence of communication in the negotiation environment, a semi-cooperative model of agent ...MORE ⇓
Multi-agent reinforcement learning offers a way to study how communication could emerge in communities of agents needing to solve specific problems. In this paper, we study the emergence of communication in the negotiation environment, a semi-cooperative model of agent interaction. We introduce two communication protocols – one grounded in the semantics of the game, and one which is a priori ungrounded and is a form of cheap talk. We show that self-interested agents can use the pre-grounded communication channel to negotiate fairly, but are unable to effectively use the ungrounded channel. However, prosocial agents do learn to use cheap talk to find an optimal negotiating strategy, suggesting that cooperation is necessary for language to emerge. We also study communication behaviour in a setting where one agent interacts with agents in a community with different levels of prosociality and show how agent identifiability can aid negotiation.
Emergence of Linguistic Communication from Referential Games with Symbolic and Pixel InputPDF
arXiv, 2018
The ability of algorithms to evolve or learn (compositional) communication protocols has traditionally been studied in the language evolution literature through the use of emergent communication tasks. Here we scale up this research by using contemporary deep learning methods and ...MORE ⇓
The ability of algorithms to evolve or learn (compositional) communication protocols has traditionally been studied in the language evolution literature through the use of emergent communication tasks. Here we scale up this research by using contemporary deep learning methods and by training reinforcement-learning neural network agents on referential communication games. We extend previous work, in which agents were trained in symbolic environments, by developing agents which are able to learn from raw pixel data, a more challenging and realistic input representation. We find that the degree of structure found in the input data affects the nature of the emerged protocols, and thereby corroborate the hypothesis that structured compositional language is most likely to emerge when agents perceive the world as being structured.
2016
Multi-Agent Cooperation and the Emergence of (Natural) LanguagePDF
arXiv, 2016
The current mainstream approach to train natural language systems is to expose them to large amounts of text. This passive learning is problematic if we are interested in developing interactive machines, such as conversational agents. We propose a framework for language learning ...MORE ⇓
The current mainstream approach to train natural language systems is to expose them to large amounts of text. This passive learning is problematic if we are interested in developing interactive machines, such as conversational agents. We propose a framework for language learning that relies on multi-agent communication. We study this learning in the context of referential games. In these games, a sender and a receiver see a pair of images. The sender is told one of them is the target and is allowed to send a message from a fixed, arbitary vocabulary to the receiver. The receiver must rely on this message to identify the target. Thus, the agents develop their own language interactively out of the need to communicate. We show that two networks with simple configurations are able to learn to coordinate in the referential game. We further explore how to make changes to the game environment to cause the “word meanings” induced in the game to better reflect intuitive semantic properties of the images. In addition, we present a simple strategy for grounding the agents’ code into natural language. Both of these are necessary steps towards developing machines that are able to communicate with humans productively.