Language Evolution and Computation Bibliography

Our site (www.isrl.uiuc.edu/amag/langev) retired, please use https://langev.com instead.
Stuart Semple
2016
PNAS 113(19):E2750-8, 2016
Identifying universal principles underpinning diverse natural systems is a key goal of the life sciences. A powerful approach in addressing this goal has been to test whether patterns consistent with linguistic laws are found in nonhuman animals. Menzerath's law is a linguistic ...MORE ⇓
Identifying universal principles underpinning diverse natural systems is a key goal of the life sciences. A powerful approach in addressing this goal has been to test whether patterns consistent with linguistic laws are found in nonhuman animals. Menzerath's law is a linguistic law that states that, the larger the construct, the smaller the size of its constituents. Here, to our knowledge, we present the first evidence that Menzerath's law holds in the vocal communication of a nonhuman species. We show that, in vocal sequences of wild male geladas (Theropithecus gelada), construct size (sequence size in number of calls) is negatively correlated with constituent size (duration of calls). Call duration does not vary significantly with position in the sequence, but call sequence composition does change with sequence size and most call types are abbreviated in larger sequences. We also find that intercall intervals follow the same relationship with sequence size as do calls. Finally, we provide formal mathematical support for the idea that Menzerath's law reflects compression-the principle of minimizing the expected length of a code. Our findings suggest that a common principle underpins human and gelada vocal communication, highlighting the value of exploring the applicability of linguistic laws in vocal systems outside the realm of language.
2013
ArXiv Preprint, pages 1303.6175, 2013
A key aim in biology and psychology is to identify fundamental principles underpinning the behavior of animals, including humans. Analyses of human language and the behavior of a range of non-human animal species have provided evidence for a common pattern underlying diverse ...MORE ⇓
A key aim in biology and psychology is to identify fundamental principles underpinning the behavior of animals, including humans. Analyses of human language and the behavior of a range of non-human animal species have provided evidence for a common pattern underlying diverse behavioral phenomena: words follow Zipf's law of brevity (the tendency of more frequently used words to be shorter), and conformity to this general pattern has been seen in the behavior of a number of other animals. It has been argued that the presence of this law is a sign of efficient coding in the information theoretic sense. However, no strong direct connection has been demonstrated between the law and compression, the information theoretic principle of minimizing the expected length of a code. Here we show that minimizing the expected code length implies that the length of a word cannot increase as its frequency increases. Furthermore, we show that the mean code length or duration is significantly small in human language, and also in the behavior of other species in all cases where agreement with the law of brevity has been found. We argue that compression is a general principle of animal behavior, that reflects selection for efficiency of coding.