Olga Feher
2017
Atypical birdsong and artificial languages provide insights into how communication systems are shaped by learning, use, and transmissiondoi.orgPDF
Psychonomic bulletin & review 24:97-105, 2017
In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss ...MORE ⇓
In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social-cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language.
Philosophical Transactions of the Royal Society B: Biological Sciences 372:499-504, 2017
At the onset of vocal development, both songbirds and humans produce variable vocal babbling with broadly distributed acoustic features. Over development, these vocalizations differentiate into the well-defined, categorical signals that characterize adult vocal behaviour. A ...MORE ⇓
At the onset of vocal development, both songbirds and humans produce variable vocal babbling with broadly distributed acoustic features. Over development, these vocalizations differentiate into the well-defined, categorical signals that characterize adult vocal behaviour. A broadly distributed signal is ideal for vocal exploration, that is, for matching vocal production to the statistics of the sensory input. The developmental transition to categorical signals is a gradual process during which the vocal output becomes differentiated and stable. But does it require categorical input? We trained juvenile zebra finches with playbacks of their own developing song, produced just a few moments earlier, updated continuously over development. Although the vocalizations of these self-tutored (ST) birds were initially broadly distributed, birds quickly developed categorical signals, as fast as birds that were trained with a categorical, adult song template. By contrast, siblings of those birds that received no training (isolates) developed phonological categories much more slowly and never reached the same level of category differentiation as their ST brothers. Therefore, instead of simply mirroring the statistical properties of their sensory input, songbirds actively transform it into distinct categories. We suggest that the early self-generation of phonological categories facilitates the establishment of vocal culture by making the song easier to transmit at the micro level, while promoting stability of shared vocabulary at the group level over generations.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'.
Philosophical Transactions of the Royal Society B: Biological Sciences 372:489-509, 2017
Linguistic universals arise from the interaction between the processes of language learning and language use. A test case for the relationship between these factors is linguistic variation, which tends to be conditioned on linguistic or sociolinguistic criteria. How can we ...MORE ⇓
Linguistic universals arise from the interaction between the processes of language learning and language use. A test case for the relationship between these factors is linguistic variation, which tends to be conditioned on linguistic or sociolinguistic criteria. How can we explain the scarcity of unpredictable variation in natural language, and to what extent is this property of language a straightforward reflection of biases in statistical learning? We review three strands of experimental work exploring these questions, and introduce a Bayesian model of the learning and transmission of linguistic variation along with a closely matched artificial language learning experiment with adult participants. Our results show that while the biases of language learners can potentially play a role in shaping linguistic systems, the relationship between biases of learners and the structure of languages is not straightforward. Weak biases can have strong effects on language structure as they accumulate over repeated transmission. But the opposite can also be true: strong biases can have weak or no effects. Furthermore, the use of language during interaction can reshape linguistic systems. Combining data and insights from studies of learning, transmission and use is therefore essential if we are to understand how biases in statistical learning interact with language transmission and language use to shape the structural properties of language.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'.
2013
Nature 498(7452):104–108, 2013
Human language, as well as birdsong, relies on the ability to arrange vocal elements in new sequences. However, little is known about the ontogenetic origin of this capacity. Here we track the development of vocal combinatorial capacity in three species of vocal learners, ...MORE ⇓
Human language, as well as birdsong, relies on the ability to arrange vocal elements in new sequences. However, little is known about the ontogenetic origin of this capacity. Here we track the development of vocal combinatorial capacity in three species of vocal learners, combining an experimental approach in zebra finches (Taeniopygia guttata) with an analysis of natural development of vocal transitions in Bengalese finches (Lonchura striata domestica) and pre-lingual human infants. We find a common, stepwise pattern of acquiring vocal transitions across species. In our first study, juvenile zebra finches were trained to perform one song and then the training target was altered, prompting the birds to swap syllable order, or insert a new syllable into a string. All birds solved these permutation tasks in a series of steps, gradually approximating the target sequence by acquiring new pairwise syllable transitions, sometimes too slowly to accomplish the task fully. Similarly, in the more complex songs of Bengalese finches, branching points and bidirectional transitions in song syntax were acquired in a stepwise fashion, starting from a more restrictive set of vocal transitions. The babbling of pre-lingual human infants showed a similar pattern: instead of a single developmental shift from reduplicated to variegated babbling (that is, from repetitive to diverse sequences), we observed multiple shifts, where each new syllable type slowly acquired a diversity of pairwise transitions, asynchronously over development. Collectively, these results point to a common generative process that is conserved across species, suggesting that the long-noted gap between perceptual versus motor combinatorial capabilities in human infants1 may arise partly from the challenges in constructing new pairwise vocal transitions.
2009
Nature 459(7246):564-568, 2009
Culture is typically viewed as consisting of traits inherited epigenetically, through social learning. However, cultural diversity has species-typical constraints(1), presumably of genetic origin. A celebrated, if contentious, example is whether a universal grammar constrains ...MORE ⇓
Culture is typically viewed as consisting of traits inherited epigenetically, through social learning. However, cultural diversity has species-typical constraints(1), presumably of genetic origin. A celebrated, if contentious, example is whether a universal grammar constrains syntactic diversity in human languages(2). Oscine songbirds exhibit song learning and provide biologically tractable models of culture: members of a species show individual variation in song(3) and geographically separated groups have local song dialects(4,5). Different species exhibit distinct song cultures(6,7), suggestive of genetic constraints(8,9). Without such constraints, innovations and copying errors should cause unbounded variation over multiple generations or geographical distance, contrary to observations(9). Here we report an experiment designed to determine whether wild-type song culture might emerge over multiple generations in an isolated colony founded by isolates, and, if so, how this might happen and what type of social environment is required(10). Zebra finch isolates, unexposed to singing males during development, produce song with characteristics that differ from the wild-type song found in laboratory(11) or natural colonies. In tutoring lineages starting from isolate founders, we quantified alterations in song across tutoring generations in two social environments: tutor-pupil pairs in sound-isolated chambers and an isolated semi-natural colony. In both settings, juveniles imitated the isolate tutors but changed certain characteristics of the songs. These alterations accumulated over learning generations. Consequently, songs evolved towards the wild-type in three to four generations. Thus, species-typical song culture can appear de novo. Our study has parallels with language change and evolution(12-14). In analogy to models in quantitative genetics(15,16), we model song culture as a multigenerational phenotype partly encoded genetically in an isolate founding population, influenced by environmental variables and taking multiple generations to emerge.