Language Evolution and Computation Bibliography

Our site (www.isrl.uiuc.edu/amag/langev) retired, please use https://langev.com instead.
M. Zhang
2018
Phonemic evidence reveals interwoven evolution of Chinese dialectsPDF
arXiv, 2018
Han Chinese experienced substantial population migrations and admixture in history, yet little is known about the evolutionary process of Chinese dialects. Here, we used phylogenetic approaches and admixture inference to explicitly decompose the underlying structure of the ...MORE ⇓
Han Chinese experienced substantial population migrations and admixture in history, yet little is known about the evolutionary process of Chinese dialects. Here, we used phylogenetic approaches and admixture inference to explicitly decompose the underlying structure of the diversity of Chinese dialects, based on the total phoneme inventories of 140 dialect samples from seven traditional dialect groups: Mandarin, Wu, Xiang, Gan, Hakka, Min and Yue. We found a north-south gradient of phonemic differences in Chinese dialects induced from historical population migrations. We also quantified extensive horizontal language transfers among these dialects, corresponding to the complicated socio-genetic history in China. We finally identified that the middle latitude dialects of Xiang, Gan and Hakka were formed by admixture with other four dialects. Accordingly, the middle-latitude areas in China were a linguistic melting pot of northern and southern Han populations. Our study provides a detailed phylogenetic and historical context against family-tree model in China.
2014
Physics of life reviews 11(2):280-302, 2014
We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation ...MORE ⇓
We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.
2013
PNAS 110(24):9698--9703, 2013
It is generally difficult to define reasonable parameters and interpret their values in mathematical models of social phenomena. Rather than directly fitting abstract parameters against empirical data, we should define some concrete parameters to denote the sociocultural factors ...MORE ⇓
It is generally difficult to define reasonable parameters and interpret their values in mathematical models of social phenomena. Rather than directly fitting abstract parameters against empirical data, we should define some concrete parameters to denote the sociocultural factors relevant for particular phenomena, and compute the values of these parameters based upon the corresponding empirical data. Taking the example of modeling studies of language competition, we propose a language diffusion principle and two language inheritance principles to compute two critical parameters, namely the impacts and inheritance rates of competing languages, in our language competition model derived from the Lotka–Volterra competition model in evolutionary biology. These principles assign explicit sociolinguistic meanings to those parameters and calculate their values from the relevant data of population censuses and language surveys. Using four examples of language competition, we illustrate that our language competition model with thus-estimated parameter values can reliably replicate and predict the dynamics of language competition, and it is especially useful in cases lacking direct competition data.