Massimo Warglien
2007
PNAS 104(18):7361-7366, 2007
We investigate in a series of laboratory experiments how costs and benefits of linguistic communication affect the emergence of simple languages in a coordination task when no common language is available in the beginning. The experiment involved pairwise computerized ...MORE ⇓
We investigate in a series of laboratory experiments how costs and benefits of linguistic communication affect the emergence of simple languages in a coordination task when no common language is available in the beginning. The experiment involved pairwise computerized communication between 152 subjects involved in at least 60 rounds. The subjects had to develop a common code referring to items in varying lists of geometrical figures distinguished by up to three features. A code had to be made of a limited repertoire of letters. Using letters had a cost. We are interested in the question of whether a common code is developed, and what enhances its emergence. Furthermore, we explore the emergence of compositional, protogrammatical structure in such codes. We compare environments that differ in terms of available linguistic resources (number of letters available) and in terms of stability of the task environment (variability in the set of figures). Our experiments show that a too small repertoire of letters causes coordination failures. Cost efficiency and role asymmetry are important factors enhancing communicative success. In stable environments, grammars do not seem to matter much, and instead efficient arbitrary codes often do better. However, in an environment with novelty, compositional grammars offer considerable coordination advantages and therefore are more likely to arise.
2006
Symbol Grounding and Beyond: Proceedings of the Third International Workshop on the Emergence and Evolution of Linguistic Communication, pages 16-30, 2006
We start by providing an evolutionary scenario for the emergence of semantics. It is argued that the evolution of anticipatory cognition and theory of mind in the hominids opened up for cooperation about future goals. This cooperation requires symbolic communication. The meanings ...MORE ⇓
We start by providing an evolutionary scenario for the emergence of semantics. It is argued that the evolution of anticipatory cognition and theory of mind in the hominids opened up for cooperation about future goals. This cooperation requires symbolic communication. The meanings of the symbols are established via a ``meeting of minds.'' The concepts in the minds of communicating individuals are modelled as convex regions in conceptual spaces. We then outline a mathematical framework based on fixpoints in continuous mappings between conceptual spaces that can be used to model such a semantics.