Karla Stepanova
2018
IEEE Transactions on Cognitive and Developmental Systems 10(3):784-794, 2018
Language has evolved over centuries and was gradually enriched and improved. The question, how people find assignment between meanings and referents, remains unanswered. There are many of computational models based on the statistical co-occurrence of meaning-reference pairs. ...MORE ⇓
Language has evolved over centuries and was gradually enriched and improved. The question, how people find assignment between meanings and referents, remains unanswered. There are many of computational models based on the statistical co-occurrence of meaning-reference pairs. Unfortunately, these mapping strategies show poor performance in an environment with a higher number of objects or noise. Therefore, we propose a more robust noise-resistant algorithm. We tested the performance of this novel algorithm with simulated and physical iCub robots. We developed a testing scenario consisting of objects with varying visual properties presented to the robot accompanied by utterances describing the given object. The results suggest that the proposed mapping procedure is robust, resistant against noise and shows better performance than one-step mapping for all levels of noise in the linguistic input, as well as slower performance degradation with increasing noise. Furthermore, the proposed procedure increases the clustering accuracy of both modalities.