James Bonaiuto
2008
Mind & Society 7(1):43-64, 2008
We focus on the evolution of action capabilities which set the stage for language, rather than analyzing how further brain evolution built on these capabilities to yield a language-ready brain. Our framework is given by the Mirror System Hypothesis, which charts a progression ...MORE ⇓
We focus on the evolution of action capabilities which set the stage for language, rather than analyzing how further brain evolution built on these capabilities to yield a language-ready brain. Our framework is given by the Mirror System Hypothesis, which charts a progression from a monkey-like mirror neuron system (MNS) to a chimpanzee-like mirror system that supports simple imitation and thence to a human-like mirror system that supports complex imitation and language. We present the MNS2 model, a new model of action recognition learning by mirror neurons of the macaque brain and augmented competitive queuing, a model of opportunistic scheduling of action sequences as background for analysis of modeling strategies for ``simple imitation'' as seen in the great apes and ``complex/goal-directed imitation'' as seen in humans. Implications for the study of language are briefly noted.
2006
The mirror system hypothesis: From a macaque-like mirror system to imitationPDF
Proceedings of the 6th International Conference on the Evolution of Language, pages 3-10, 2006
The Mirror System Hypothesis (MSH) of the evolution of brain mechanisms supporting language distinguishes a monkey-like mirror neuron system from a chimpanzee-like mirror system that supports simple imitation and a human-like mirror system that supports complex imitation and ...MORE ⇓
The Mirror System Hypothesis (MSH) of the evolution of brain mechanisms supporting language distinguishes a monkey-like mirror neuron system from a chimpanzee-like mirror system that supports simple imitation and a human-like mirror system that supports complex imitation and language. This paper briefly reviews the seven evolutionary stages posited by MSH and then focuses on the early stages which precede but are claimed to ground language. It introduces MNS2, a new model of action recognition learning by mirror neurons of the macaque brain to address data on audio-visual mirror neurons. In addition, the paper offers an explicit hypothesis on how to embed a macaque-like mirror system in a larger human-like circuit which has the capacity for imitation by both direct and indirect routes. Implications for the study of speech are briefly noted.