Language Evolution and Computation Bibliography

Our site (www.isrl.uiuc.edu/amag/langev) retired, please use https://langev.com instead.
Bonnie van der Hulst
2013
Animal Cognition 16(2):165-175, 2013
A hallmark of the human language faculty is the use of syntactic rules. The natural vocalizations of animals are syntactically simple, but several studies indicate that animals can detect and discriminate more complex structures in acoustic stimuli. However, how they discriminate ...MORE ⇓
A hallmark of the human language faculty is the use of syntactic rules. The natural vocalizations of animals are syntactically simple, but several studies indicate that animals can detect and discriminate more complex structures in acoustic stimuli. However, how they discriminate such structures is often not clear. Using an artificial grammar learning paradigm, zebra finches were tested in a Go/No-go experiment for their ability to distinguish structurally different three-element sound sequences. In Experiment 1, zebra finches learned to discriminate ABA and BAB from ABB, AAB, BBA, and ABB sequences. Tests with probe sounds consisting of four elements suggested that the discrimination was based on attending to the presence or absence of repeated A- and B-elements. One bird generalized the discrimination to a new element type. In Experiment 2, we continued the training by adding four-element songs following a ‘first and last identical versus different’ rule that could not be solved by attending to repetitions. Only two out of five birds learned the overall discrimination. Testing with novel probes demonstrated that discrimination was not based on using the ‘first and last identical’ rule, but on attending to the presence or absence of the individual training stimuli. The two birds differed in the strategies used. Our results thus demonstrate only a limited degree of abstract rule learning but highlight the need for extensive and critical probe testing to examine the rules that animals (and humans) use to solve artificial grammar learning tasks. They also underline that rule learning strategies may differ between individuals.