Language Evolution and Computation Bibliography

Our site (www.isrl.uiuc.edu/amag/langev) retired, please use https://langev.com instead.
Journal :: Journal of Statistical Mechanics: Theory and Experiment
2011
Journal of Statistical Mechanics: Theory and Experiment, 2011
Language dynamics is a rapidly growing field that focuses on all processes related to the emergence, evolution, change and extinction of languages. Recently, the study of self-organization and evolution of language and meaning has led to the idea that a community of language ...MORE ⇓
Language dynamics is a rapidly growing field that focuses on all processes related to the emergence, evolution, change and extinction of languages. Recently, the study of self-organization and evolution of language and meaning has led to the idea that a community of language users can be seen as a complex dynamical system, which collectively solves the problem of developing a shared communication framework through the back-and-forth signaling between individuals.

We shall review some of the progress made in the past few years and highlight potential future directions of research in this area. In particular, the emergence of a common lexicon and of a shared set of linguistic categories will be discussed, as examples corresponding to the early stages of a language. The extent to which synthetic modeling is nowadays contributing to the ongoing debate in cognitive science will be pointed out. In addition, the burst of growth of the web is providing new experimental frameworks. It makes available a huge amount of resources, both as novel tools and data to be analyzed, allowing quantitative and large-scale analysis of the processes underlying the emergence of a collective information and language dynamics.

2010
Agent based models of language competition: macroscopic descriptions and order--disorder transitionsPDF
Journal of Statistical Mechanics: Theory and Experiment 2010(04):P04007, 2010
Abstract. We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language X or language Y, while the second model incorporates a third state XY, representing ...
2009
Journal of Statistical Mechanics: Theory and Experiment, pages P02059, 2009
We introduce a class of stochastic models for the dynamics of two linguistic variants that are competing to become the single, shared convention within an unstructured community of speakers. Different instances of the model are distinguished by the way agents handle variability ...MORE ⇓
We introduce a class of stochastic models for the dynamics of two linguistic variants that are competing to become the single, shared convention within an unstructured community of speakers. Different instances of the model are distinguished by the way agents handle variability in the language (i.e., multiple forms for the same meaning). The class of models includes as special cases two previously-studied models of language dynamics, the Naming Game, in which agents tend to standardise on variants they have encountered most frequently, and the Utterance Selection Model, in which agents tend to preserve variability by uniform sampling of a pool of utterances. We reduce the full complexities of the dynamics to a single-coordinate stochastic model which allows the probability and time taken for speakers to reach consensus on a single variant to be calculated for large communities. This analysis suggests that in the broad class of models considered, consensus is formed in one of three generic ways, according to whether agents tend to eliminate, accentuate or sample neutrally the variability in the language. These different regimes are observed in simulations of the full dynamics, and for which the simplified model in some cases makes good quantitative predictions. We use these results, along with comparisons with related models, to conjecture the likely behaviour of more general models, and further make use of empirical data to argue that in reality, biases away from neutral sampling behaviour are likely to be small.
Journal of Statistical Mechanics: Theory and Experiment, pages P12008, 2009
Since language is tied to cognition, we expect the linguistic structures to reflect patterns we encounter in nature and analyzed by physics. Within this realm we investigate the process of protolanguage acquisition, using analytical and tractable methods developed within physics. ...MORE ⇓
Since language is tied to cognition, we expect the linguistic structures to reflect patterns we encounter in nature and analyzed by physics. Within this realm we investigate the process of protolanguage acquisition, using analytical and tractable methods developed within physics. A protolanguage is a mapping between sounds and objects (or concepts) of the perceived world. This mapping is represented by a matrix and the linguistic interaction among individuals is described by a random matrix model. There are two essential parameters in our approach. The strength of the linguistic interaction $\beta$, which following Chomsky's tradition, we consider as a genetically determined ability, and the number $N$ of employed sounds (the lexicon size). Our model of linguistic interaction is analytically studied using methods of statistical physics and simulated by Monte Carlo techniques. The analysis reveals an intricate relationship between the innate propensity for language acquisition $\beta$ and the lexicon size $N$, $N \sim \exp(\beta)$. Thus a small increase of the genetically determined $\beta$ may lead to an incredible lexical explosion. Our approximate scheme offers an explanation for the biological affinity of different species and their simultaneous linguistic disparity.
2007
Journal of Statistical Mechanics: Theory and Experiment, pages P06009, 2007
Until recently, models of communication have explicitly or implicitly assumed that the goal of a communication system is just maximizing the information transfer between signals and 'meanings'. Recently, it has been argued that a natural communication system not only has to ...MORE ⇓
Until recently, models of communication have explicitly or implicitly assumed that the goal of a communication system is just maximizing the information transfer between signals and 'meanings'. Recently, it has been argued that a natural communication system not only has to maximize this quantity but also has to minimize the entropy of signals, which is a measure of the cognitive cost of using a word. The interplay between these two factors, i.e. maximization of the information transfer and minimization of the entropy, has been addressed previously using a Monte Carlo minimization procedure at zero temperature. Here we derive analytically the globally optimal communication systems that result from the interaction between these factors. We discuss the implications of our results for previous studies within this framework. In particular we prove that the emergence of Zipf's law using a Monte Carlo technique at zero temperature in previous studies indicates that the system had not reached the global optimum.