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Abstract

This thesis explores a perspective for explaining the origins of linguistic structure
that is based on considerations beyond the constraints of the language acquisition
device. In contrast to the theory of Universal Grammar proposed by Chomsky, this
perspective considers how the processes of language acquisition and use create a
dynamical system that is capable of adapting linguistic structure to the inductive
biases of learners. In this view it is possible to conceive of language adapting to
aid its own survival: those languages that are more reliably and easily acquired
will tend to persist for longer than their less easily learned counterparts. Thus,
linguistic structures are seen as emergent, adaptive phenomena rather than pre-
ordained features of language.

The particular issue that this thesis investigates is the extent to which language
adaptation can facilitate acquisition by general-purpose learners. In the Generative
Grammar tradition much is made of the necessity for domain-specific constraints on
the language acquisition device. (Indeed, that there must be a distinct mental com-
ponent dedicated to language tasks.) This outlook is in contrast to the connectionist
viewpoint, which posits far more moderately constrained, domain-general mecha-
nisms. This thesis examines how language adaptation can give general-purpose,
connectionist learners the appearance of being language-savvy learners.

A simulation framework is proposed in which agents attempt to communicate
simple concepts to one another using sequential utterances. In earlier simulations we
aim to maximise the learnability of a language for the communication task. Later
simulations show how the processes of language production and acquisition, when
iterated, are capable of producing such languages. In total, three series of simulations
are performed.

The first series of simulations addresses the question of how linguistic structure
adapts when sender and receiver disagree on the form of language that is easiest to

learn. Analysis reveals that, if necessary, the structural properties of language can
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take on forms that compromise between the competing constraints on sender and
receiver.

The second series of simulations considers the bottleneck of linguistic transmis-
sion: the requirement that learners generalise from a limited set of observed utter-
ances to the entire language. Results show that generalisability can be boosted in a
naive, domain-general learner by allowing language to adapt to the inductive biases
present in the learner.

The third and final series of simulations investigates how the dynamical charac-
teristics of linguistic change depend on the properties that drive the dynamics. That
is, we explore the range of conditions under which the iterated learning dynamic is
sufficient to establish a learnable language throughout the population. The results
of these simulations show that the iterated learning dynamic is indeed able to act
as a generator of languages that general-purpose learners are capable of acquiring.

The results from these studies suggest that through the dynamics of linguistic
transmission, language can adapt to the capabilities and biases of its users. Fur-
thermore, that language can exploit the inductive biases of general-purpose learning
mechanisms to facilitate their own acquisition, contrary to Universal Grammar’s

hypothesised need for an innate, domain-specific acquisition mechanism.
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Chapter 1
Introduction

Human languages exhibit a phenomenal amount of complex internal structure. In
written, spoken and signed forms of language, utterances can be decomposed into
smaller components such as words or syllables which can in turn be decomposed
into letters or phonemes. The ability to combine elements is one of the most dis-
tinctive characteristics of language. It allows the construction of arbitrarily many
expressions through the combination of simpler elements that are finite in number.
The simple elements can not be arbitrarily combined to form compound elements;
human languages impose complex constraints on how and when elements can be
combined. These constraints can range from the simple phonetic to the complex
syntactic. The combination of these constraints serves to define the structure of a
particular language.

Humans use a wide variety of languages, each of which has its own particular
structure. However, the variety of structures found in human languages does not
range arbitrarily: there appear to be limitations on the types of structures that
human languages can utilise, so called linguistic universals. What is the source of
these constraints on linguistic structure?

In the generative grammar framework pioneered by Chomsky (1957, 1965, 1981,
1986), the human learner is innately endowed with strong constraints on the types of
linguistic structure that can be acquired. Such constraints are claimed to be neces-
sary to make the task of language acquisition tractable. In the generative grammar
framework, these constraints on human language learners effectively determine the
constraints on linguistic structure.

The connectionist approach to understanding human linguistic abilities is a

marked departure from generative grammar. The connectionist framework posits
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that human learners use far more moderately constrained, domain-general learning
mechanisms to acquire language. With connectionism, it is much less clear why lan-
guages should be constrained in form. One proposal is that the languages that are
observed simply represent ‘good solutions’ to the problem of communicating com-
plex meanings over serial channels. Hence, languages have many similarities because
they use the same solution to the problem (Elman et al., 1996).

A comparatively unexplored notion is that factors beyond the innate constraints
on the human language acquisition faculty can provide constraints on linguistic
structure. A recent interest in this possibility has emerged in the community of
researchers investigating computational models of the evolution of language (par-
ticularly the evolution of syntax). This body of work considers the emergence and
subsequent evolution of language-like communication systems (i.e., communication
systems that have some internal structure and that are qualitatively more complex
than systems based on a finite repertoire of discrete signals). Since humans and
human languages are incredibly complex, and because much of human linguistic
history is unknown (‘language leaves no fossils’), the focus of much of this work has
changed from the explication of human linguistic evolution to understanding the
general principles behind the evolution of language-like systems. Unlike the gen-
eral principles of generative grammar which are based on the universal properties of
language, the general principles here refer to the underlying, universal mechanisms
that govern linguistic evolution.

The evolution-of-language approach lends itself to the perspective that language
can be viewed as an adaptive, dynamical system whose characteristics are deter-
mined by the processes of language use and language acquisition. Thus, the pertinent
question is how the properties of language use and acquisition affect the outcome of
the dynamical system.

One major result has been that weak functional constraints on language acqui-
sition can, over time, lead to the impression that languages are tightly constrained
(Kirby, 1999a). In Kirby’s model, populations of learners have a slight preference
for particular language forms over alternative forms. After repeated generations
of use and acquisition, the less preferred forms ‘die out’ in the population, leaving
only the preferred form. An observer of the languages of the final population might
conclude that the less preferred forms were not viable since no user ever employed
them. Thus, the dynamical aspects of linguistic evolution makes a weak constraint

on language use appear much stronger than it actually is. This form of result has



CHAPTER 1. INTRODUCTION 3

also been demonstrated in a connectionist setting (Batali, 1998).

A second principle that has been proposed as an underlying determinant of the
dynamics of language change has been termed the ‘bottleneck’ of linguistic trans-
mission (Kirby, 2000). Language passes from one generation to the next through
the observed linguistic experience of the learner (as well as the innate constraints
on the learner). A learner’s observation of language is necessarily finite, whereas
language (particularly in the case of human languages) can be infinite (in terms of
the number of valid expressions). Thus, the learner must derive the information
necessary for understanding and producing a limitless range of expressions from a
limited number of examples: language is squeezed through the learning bottleneck.

This requirement on the learners to generalise has an accompanying effect on
the set of viable languages: the languages themselves must be generalisable. To
be generalisable, a language must have a predictable structure. If expressions and
meanings are related arbitrarily then there is no basis on which to generalise. Thus,
the structural properties of a language may in part be due to the requirement for
generalisation (a property of the way that language is used) rather than the language
faculty.

To demonstrate the bottleneck principle in action, Kirby (1999b, 2000, 2001)
considered a computational model of a population of learners, attempting to com-
municate about a set of (structured) meanings. The members of the population
started with no language and used random invention to bootstrap the system. In
each step, a randomly chosen member was removed from the population and replaced
with a new individual which was then trained on the language of the population from
a limited number of examples (i.e., it was required to generalise). Kirby showed that
over time the language of the population changed from having no structure (random
associations between meanings and utterances) to being completely compositional
(each component of the meaning could be identified as a component of the utter-
ance). Thus, the structural properties of the language emerge as a result of the
dynamics of acquisition and use rather than directly from the constraints on the
processing mechanisms. Kirby’s claim is that the learning bottleneck may act as
one of the major factors in determining the structure of language, requiring that
languages have a generalisable structure.

A third principle proposed in the literature concerns the roles played by represen-
tation and linguistic function. The style of representation in the generative grammar

tradition is typically symbolic in nature, allowing an arbitrary relationship between
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syntax and semantics (i.e., the semantic representation need not tightly constrain
syntax because complex symbolic transformations can be applied). In contrast, the
connectionist approach to language places significant emphasis on representation,
which can radically alter the computational demands of linguistic tasks. In a series
of ‘a-life’ simulations, Cangelosi (2001) considered the relationship between concept
formation and the function of linguistic communication (i.e., what individuals were
attempting to communicate about). Cangelosi demonstrated how individuals formed
(semantic) representations that were closely related to how they interacted with the
world. The nature of these representations consequently influenced the structure of
the language that emerged. Studies by Steels (1997a) in an embodied cognition set-
ting have shown related results. Thus linguistic structure may be partly determined
by how individuals form representations through interactions with the world (i.e.,
the properties of the environment and sensors matter).

Many different computational models have been applied to studying the evo-
lution of language and there is no single accepted methodology for investigating
issues concerning the evolution of linguistic structure. FEach different model has
particular characteristics making it appropriate for studying particular phenomena.
Given the youth of the field, and the breadth of unexplored issues, it is unsurprising
that each researcher has typically developed their own model which has then been
used to highlight a phenomenon of interest. The type of model typically reflects
the researcher’s background assumptions regarding the nature of human linguistic
competence.

Much of the methodology developed in this thesis is motivated by a connection-
ist perspective on language acquisition. Thus, one of the major questions is the
extent to which the adaptation of language can produce learnable, structured lan-
guage from a general-purpose learner (i.e., one that has not been constructed with
the specific intent of acquiring the skills to perform a particular task). Neural net-
works, particularly multi-layer perceptrons combined with backpropagation-of-error
learning, are the most well-known approach to general-purpose learning. However,
they are not well suited to the temporal (or sequential) mode of processing that
seems critical for language. For these types of tasks recurrent neural networks are
more suitable, having an ability to process data with temporal dependencies while
retaining a general-purpose approach to learning. Consequently, the work presented
in this thesis is based on issues that are derived from the decision to use recur-

rent neural networks as general-purpose learners in the context of the evolution of
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language.
From the proposed methodology (presented in Chapter 3), the following issues

arise.

1. The dependence of linguistic structure on a set of conflicting constraints on
language acquisition, particularly between sender and receiver. Are aspects
of the complexity of linguistic structure a consequence of adaptation to the

intersection of a set of weak constraints?

2. How do the properties of the learning bottleneck influence the dynamics of
linguistic evolution and the resultant linguistic structures? The learning bot-
tleneck determines the nature of the generalisation requirements. As the gen-

eralisation requirements change, so should the emergent linguistic structure.

3. How do the principles underlying the evolution of language affect the dynamics
of language change in practice? How does the nature of linguistic change

depend on the particular instantiation of the underlying factors?

1.1 Thesis overview

This thesis explores a perspective for explaining the origins of linguistic structure
that is based on considerations beyond the constraints of the language acquisition
device. In particular, we consider the notion that the processes of language acquisi-
tion and use create a dynamical system responsible for the adaptation of language
to the user and the emergence of linguistic structure. Our primary issue is the range
of factors that can influence this dynamic. That is, the aspects of language acquisi-
tion and use that may be responsible for the emergence of linguistic structure in a
dynamical context.

In Chapter 2 we contrast two of the current frameworks for understanding hu-
man linguistic abilities, namely generative grammar and connectionism. The adap-
tation of language is proposed as an alternative theory and recent work within this
field is reviewed. Particular attention is paid to computational modelling, particu-
larly with respect to the syntactic features of language. Two models are reviewed
in some detail — Kirby’s (2000) Iterated Learning Model and Batali’s (1998) Nego-
tiation Model.

Following an examination of the issues involved in devising computational mod-

els, a methodological framework for studying language adaptation using recurrent
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neural networks is proposed in Chapter 3. This methodological framework serves
as the basis for all of the simulations presented in this thesis. The first of these
simulations is presented in the remainder of Chapter 3 and considers the question
of how linguistic structure adapts when sender and receiver disagree on the form of
language that is easiest to learn. Analysis reveals that, if necessary, the structural
properties of language can take on forms that compromise between the competing
constraints on sender and receiver. Results from preliminary studies for this chapter
were presented at the Second Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL98) and appear in the proceedings (Tonkes et al., 1999).

Chapter 4 considers the bottleneck of linguistic transmission: the requirement
that learners generalise from a limited set of observed utterances to the entire lan-
guage. It is human infants’ amazing abilities to generalise human languages that mo-
tivates much of the theory of generative grammar, particularly the need for domain-
specific, innate constraints on the learning mechanism. Consequently, in Chapter 4
we consider the extent to which generalisability can be boosted in a naive, domain-
general learner by allowing language to adapt to the inductive biases present in the
learner. Results show that, with successful adaptation, languages can facilitate sig-
nificant generalisation. Furthermore, we consider how changes in the properties of
the bottleneck (i.e., changes to the generalisation aspects of acquisition) change (a)
the ability of the learner to perform the generalisation task, and (b) the structural
properties of the emergent languages. This work was presented at the 1999 con-
ference on Neural Information Processing Systems (NIPS*99) and appears in the
proceedings (Tonkes et al., 2000).

The final set of simulations, presented in Chapter 5, extends the work of pre-
vious chapters to consider a population of language users. In this population of
learners we investigate how the dynamical characteristics of linguistic change de-
pend on the properties that drive the dynamics. These simulations take Kirby’s
Iterated Learning Model (reviewed in Chapter 2) and consider the generality of his
results. That is, we explore the range of conditions under which the iterated learning
dynamic is sufficient to establish a learnable language throughout the population.
The results of these simulations show that Kirby’s results can be replicated in an
alternative domain, but that there is sensitivity to the range of parameters. Kirby
attributed his results to the learning bottleneck. Chapter 5 concludes by questioning
the necessity for the type of explicit bottleneck considered by Kirby, suggesting that

the factors in his model that established structured languages can be substituted
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by alternative mechanisms that preserve the dynamical behaviour of the system.
The simulations in this chapter were presented at the Third Evolution of Language
Conference (Paris, 2000) and will appear in a volume of selected works arising from

the conference (Tonkes and Wiles, in press).






Chapter 2

Models of Language

2.1 The language puzzle

Humans are unique amongst species in their linguistic abilities. While many species
have developed complex communication systems, none rival the intricacies of hu-
man languages. At the core of language’s power is its compositional structure: the
ability to construct utterances for novel, complex meanings by the combination of
simpler parts. This capability has been referred to as, infinite expression with fi-
nite means.! Despite decades of research, the nuances of human linguistic abilities
have evaded complete explanation. Several key questions remain active topics in the
research community. The fundamental issues that remain unresolved include: how
humans process language, how humans acquire language, why language is unique
to humans, and why human languages takes on their particular forms. Given that
these foundational aspects are as yet unexplained, it is unsurprising that there exist
many competing frameworks in which language research is conducted. The most
influential of these has been the generative grammar tradition of Chomsky, but the
connectionist approach has gained substantial interest within the psycholinguistic
community. The following sections briefly characterise and contrast these two ap-
proaches. A third alternative is described which is relatively recent and considers
the evolution of language. It is this third alternative with which this thesis is most

concerned.

' Most famously by Wilhelm Von Humboldt.
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2.1.1 The generative tradition

Current linguistic theory is largely influenced by the generative grammar tradi-
tion established by Chomsky (1957) which has been refashioned over the past three
decades (Chomsky, 1965, 1981, 1986).2 The goals of this research program are
twofold. The first goal is to describe a formal grammar that accurately reflects a
language user’s intuitions about the language. That is, to provide a grammar that
accounts for primary linguistic data and which generalises in a way that a user of
the language would expect. In Chomsky’s terms, such a grammar attains descrip-
tive adequacy (Chomsky, 1965). The second goal of this program is to provide a
theory of why one (descriptively accurate) grammar provides a better account than
another, thus providing explanatory adequacy.

The generative grammar tradition has been highly successful in explaining lin-
guistic phenomena. Indeed, the field has advanced to such a state that an adequate
explanation of even one of the current linguistic theories would require more space
than is available here. However, the intricacies of generative grammar theories are
not the primary issue. What we seek to do here is to expound the broader issues
that underlie much of the work in this area so as to contrast generative grammar
with the connectionist approach to language, described later.

In Chomsky’s terms, a generative grammar is “simply a system of rules that
in some explicit and well-defined way assigns structural descriptions to sentences”
(Chomsky, 1965, p8). Significantly, Chomsky proposes that a generative grammar is
what a language user knows about language (though such knowledge is not available
via introspection). In doing so, he draws a fundamental distinction between com-
petence and performance. Whereas analysis of linguistic performance involves the
observable aspects of language (that is, concrete utterances), theories of linguistic
competence are concerned with the underlying mechanisms of language use (a gen-
erative grammar). The hypothesis is thus made that at the core of language ability
is an autonomous, modular competence that can be described by a set of discrete,
formal rules.

Finding a grammar capable of assigning an appropriate structural description
to the syntactic utterances of a language (and only the syntactic utterances) would
fulfill the goal of descriptive adequacy. To attain explanatory adequacy, a theory

must explain how language users acquire such a grammar. Such an explanation is

ZNewmeyer (1986) provides an excellent historical account of the changes made to Chomsky’s
theories and the reasons behind these changes.
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referred to as a theory of Universal Grammar (UG), and must be capable of account-
ing for cross-linguistic variation. In essence, a theory of UG lays the ground-rules for
a generative grammar; it constrains the types of constructs that are available to a
grammar, thus constraining linguistic variation. To summarise, the goals of linguists
working within Chomsky’s generative grammar tradition are: (a) to deduce gram-
mars that describe languages appropriately, and (b) to find a grammar formalism
for which there are appropriate mechanisms that explain language acquisition and
account for language variation. Before describing the prevailing opinion on these
two issues, it is helpful to consider some of the motivating issues.

The first important observation is the so-called poverty of the stimulus (Chom-
sky, 1965). The linguistic data that a human infant is exposed to — human linguistic
performance — is notoriously noisy. Not only would many utterances be considered
ungrammatical if closely inspected, but the learner is provided with no informa-
tion as to which utterances are grammatical and which are ungrammatical. From
this seemingly intractable position, children almost universally manage to acquire
a language virtually identical to that of their parents. This feat is even more re-
markable given Gold’s (1967) analysis of the situation in terms of formal grammar
induction. Gold considered the case of a learner trying to identify a language, L,
from some class of languages, C, given examples of strings in the language. Gold
proved that if the learner is presented with positive examples only (that is, only
grammatical strings)®, then the task is not possible for any superfinite class of lan-
guages, C. Chomsky (1956, 1957) had proposed complex grammar formalisms to
describe human linguistic competence. He argued that grammars associated with
finite-state mechanisms were inadequate, and instead advocated transformational
phrase-structure grammars. Since grammar classes of this complexity are not learn-
able in the limit from only positive examples, linguistic theories had to provide a
plausible explanation of how human infants could acquire language.

The observed critical period of language acquisition, whereby learners must be
exposed to a language early in life for them to successfully acquire it, is another
phenomenon that linguistic theories seek to explain. A third factor that has influ-
enced the nature of linguistic theories is evidence of rapid creolisation (Bickerton,
1983), a phenomenon whereby children in a community whose adults are only able

to communicate using a pidgin, develop their own language within a single genera-

3The situation for human infants who are presented with unlabelled grammatical and ungram-
matical strings is even more difficult.
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tion. That is, the children learn language from non-linguistic data. However, by far
the most significant fact that a linguistic theory must explain is the ubiquity and
uniqueness of language in the human species: every human group employs language,
but no other species uses a system of communication that resembles language.

To address these issues, Chomsky (1965) posits the existence of an innately
specified, domain-specific, modular language acquisition device (LAD) as a theory
of UG. The proposed structural details of the LAD have varied over time (Chomsky,
1981, 1986), but the underlying theme remains the same. Essentially, the LAD
consists of high-level constraints on the nature of generative grammar, such as those
posited by the well-known X-bar theory (Jackendoff, 1977). A consequence of this
theory is that language acquisition reduces to the problem of finding the appropriate
settings of the high-level constraints that match those of the learner’s community.
The formal learnability arguments such as those of Gold (1967) are thus countered:
the critical period can be explained as a ‘switching off’ of a disused module, and
rapid creolisation is a plausible outcome of such an innate component. Furthermore,
the problem of language capacity being a uniquely human characteristic is answered
by claiming a unique endowment of an appropriate LAD. Cross-linguistic variation is
merely a matter of the range of parameter settings allowed by the LAD. Similarities
between languages are perceived to be a consequence of the same set of constraints
imposed by the LAD.

While the above summary outlines the major premises of the generative grammar
tradition, there is nevertheless much scope for debate, for example, on the precise
constraints inherent in UG. Since this thesis focuses on an alternative approach to
understanding linguistic competence, these issues will not be pursued. However,
one area of significant contention that is of immediate relevance to the work in this
thesis, is the origin of the LAD. The type of innately specified LAD proposed by
Chomsky necessitates genetic specification. Chomsky has been wary of attributing
this genetic specification to a gradual process of Darwinian adaptation, leaving some
commentators (for example, Deacon, 1997), to label Chomsky’s approach (perhaps
somewhat unfairly) as a ‘hopeful monster’ theory.* Other researchers, most no-
tably Pinker (1994; Pinker and Bloom, 1990), have argued that gradual, Darwinian

evolution can account for the emergence of an innate linguistic competence.

4That is, a theory relying on a large-scale mutation to endow some hominid ancestor with a
functioning LAD where none existed previously.
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2.1.2 The dynamical hypothesis

Although the underlying foundations of the generative grammar tradition, sketched
above, have been widely accepted, they are by no means the only framework for con-
sidering language abilities. The rebirth of connectionism in the mid-1980s, which
owes much to the pioneering work of Rumelhart and McClelland and the PDP
Research Group (Rumelhart and McClelland, 1986b; McClelland and Rumelhart,
1986), led to a reconsideration of the differences between symbols and (distributed)
representations with intrinsic content. Compared with the limitations of ‘brittle’
symbolic representations, connectionist approaches offered the advantages of toler-
ance to noise and variation with graceful degradation. Many connectionist models
also had the ability to learn from examples. Given its early successes, the connec-
tionist approach was inevitably applied to the modelling of linguistic phenomena,
including text-to-speech mapping (Sejnowski and Rosenberg, 1990), English verb
morphology (Rumelhart and McClelland, 1986a; Hare and Elman, 1995), and sim-
ple grammars (Pollack, 1987; Cleeremans et al., 1989; Elman, 1990). However, the
field has not been without sharp criticism from many in the symbolic tradition.

While the connectionist paradigm showed much early promise in a wide range of
domains, a damning critique of its potential applications to language was published
(Fodor and Pylyshyn, 1988), arguing that connectionism was incapable of support-
ing the recursive operations necessary for language, particularly systematicity and
compositionality, without resorting to ‘mere implementation’. That is, since neu-
ral networks are capable of simulating arbitrary symbolic automata (Siegelmann,
1993), it follows that they can in principle demonstrate both compositionality and
systematicity. Fodor and Pylyshyn argued that such a solution would be uninfor-
mative, and insisted that connectionist automata were incapable of demonstrating
these qualities using connectionist-style distributed representations. In the following
years, much work focussed on disproving these claims (van Gelder, 1990; Chalmers,
1990; Christiansen and Chater, 1994; Hadley and Hayward, 1995), though it would
be fair to say that to this day, no consensus has been reached (Jagota et al., 1999,
present an interesting range of opinions). Nevertheless, studies of connectionist nat-
ural language processing (CNLP) have continued.

The introduction of the simple recurrent network (SRN) with its associated pre-
diction paradigm has been particularly influential (Elman, 1990, see Fig. 2.1). In
a surprising result Elman trained an SRN to predict lexical items generated by an

artificial, simplified fragment of English grammar. After training, it was shown
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Figure 2.1: Elman’s simple recurrent network (SRN; Elman, 1990). The SRN differs
from feedforward neural networks in its ability to process temporal dependencies. At
each time step the hidden units are copied back to the context layer. On the following
time step, the context layer acts as an additional set of inputs for the hidden layer.
Thus, the activations of the hidden units at time ¢ + 1 depend on the activations of
the hidden units at time ¢. More precisely, for a network with [ inputs, ing...in;_1,
and H hidden units, hidg...hidg_,, the activation of the jth hidden unit at a

time ¢ + 1 is given by hz'dj,tH = f(Zi:O,I—l W; NG 411 + Zj':O,H—l wIH:,jhidj',t),
with some appropriate (nonlinear, differentiable) squashing function, f, and weight
matrix, w. Elman used this architecture with a prediction paradigm. A string of
tokens, perhaps representing words or phonemes, is presented to the network one at
a time. At each step the network is required to predict the next input token. That
is, the input vector at time ¢ + 1 is the target output vector at time t.

that the SRN had derived syntactic categories such as noun and verb as well as
finer grade semantic distinctions. Thus, syntactic categories were derived from the
statistics of language usage, as found in the examples provided during training. The
connectionist conception of linguistic ability represents a radical departure from the
orthodox linguistic tradition outlined earlier. Instead of the Chomskyan notion of an
autonomous language competence implementing grammatical rules and independent
of the issues of language performance, there is the dynamical hypothesis (Pollack,
1991; Elman, 1995; van Gelder, 1998) which eschews the competence/performance
distinction, and blurs the distinction between many of Chomsky’s (1981) proposed
language ‘modules’.

The idea is not merely that competence grammar needs to incorporate
statistical and probabilistic information; rather, it is that the nature of

language is determined by how it is acquired and used and therefore
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needs to be explained in terms of these functions and the brain mecha-
nisms that support them. Such performance theories are not merely the
competence theory plus some additional assumptions about acquisition
and processing; the approaches begin with different goals and end up
with different explanations for why languages have the properties they
have. (Seidenberg, 1997, p1601).

Work on CNLP, by Elman and others, demonstrated that linguistic performance
could result from a dynamical mechanism, and that significant aspects of language,
such as syntax, could be acquired through statistical means (Elman, 1991; Weckerly
and Elman, 1992; Christiansen and Chater, 1999; see also the recent special issue
of Cognitive Science, edited by Christiansen et al., 1999 which shows the breadth of
research in the area). The claim is not that human infants are tabula rasa learners,
rather that the innate endowment required for linguistic competence is not neces-
sarily as domain-specific, modular, or high-level as that proposed by Chomsky.

While the dynamical approach to language differs substantially in form from the
symbolic approach, there is nevertheless a strong underlying connection between
the two. Indeed, the complexity of tasks used in connectionist studies is typically
described with respect to symbolic automata theory. It has been shown analytically
that recurrent networks are Turing-equivalent (Siegelmann, 1993), reducing to deter-
ministic finite automata (Casey, 1996; Maass and Orponen, 1998) or below (Maass
and Sontag, 1999) in the presence of different types of noise (for related work, see
Moore, 1998). More surprisingly, the results from empirical connectionist studies
have provided evidence that recurrent networks are capable of learning to process a
variety of regular languages (Cleeremans et al., 1989; Pollack, 1991) simple context-
free languages (Sun et al., 1990; Wiles and Elman, 1995; Blair and Pollack, 1997;
Rodriguez et al., 1999) and a simple context-sensitive language (Chalup and Blair,
1999), albeit with some difficulty on the more complex classes (see, for example,
Bengio et al., 1994; Bodén et al., 1999).

These results from connectionist language processing appear prima facie to con-
tradict the learnability results that influenced the development of generative gram-
mar theory (e.g., Gold, 1967). The CNLP community has responded to this dilemma
in a variety of ways. One counter-claim is that Gold’s conception of learnability is

11

inappropriate for the dynamical hypothesis; “... the child’s task is learning to use
language, not grammar identification” (Seidenberg, 1997, p1601), a view that is

certainly in keeping with the rejection of Chomskyan linguistic competence as an
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appropriate framework for understanding human language acquisition. In Gold’s
model of learnability, success is attained only when the precise target grammar has
been identified; there is no margin for error. Thus, for the connectionist view of
language acquisition, which focuses on language use rather than grammar identifi-
cation and allows some deviation from the ideal target, Gold’s learnability results
do not strictly follow.

Notwithstanding arguments over the nature of learnability, it remains to be
demonstrated how the CNLP approach can add appropriate learning constraints
to satisfy Gold’s conditions, just as Chomsky’s UG constrains generative grammar.
CNLP rejects the strong form of innateness proposed by generative grammar (Chom-
sky, 1981; Pinker and Bloom, 1990), citing the lack of evidence for such an innate
LAD from either studies of neurological development or studies of genetic action (El-
man et al., 1996; Deacon, 1997). Instead, CNLP researchers argue for much weaker

constraints and re-emphasise the significant role played by learning.

Innate capacities may take the form of biases or sensitivities toward
particular types of information inherent in environmental events such as
language, rather than a priori knowledge of grammar itself. (Seidenberg,
1997, p1603).

The ‘starting small’ hypothesis has been proposed along these lines (Elman,
1993).° The argument is that the immaturity of human infants, and the associated
limitations on memory and processing, gives them a significant advantage in learning
language by providing them with an appropriate bias. Unlike the generative gram-
mar tradition, this ‘innate’ component is not domain-specific, but rather a general
property of the cognitive system.

The dynamical approach to language has pushed for a reconceptualisation of the
concept of innateness (Elman et al., 1996). Arguing from an ontogenetic perspective,
Elman et al. suggest that claims of some (behavioural) traits being innate are
imprecise, and that explanatory precision comes from describing how something is
innate, that is, describing how the mechanisms of development lead to the observed
characteristics. Only in this type of framework is it possible to understand the

sympathetic roles played by nature and nurture.

5See also Rohde and Plaut (1997) for results that contradict those presented by Elman. Newport
(1990) also offers a similar hypothesis to that of Elman.
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2.1.3 The essence of the debate

Before continuing, it is worthwhile contrasting the relative positions of the two
camps. Beyond issues regarding the nature of the language processing machinery
(that is, whether it is best characterised as a symbolic or a sub-symbolic system), the
most important difference between the generative grammar tradition and the connec-
tionist approach is the question of innateness. The Chomskyan tradition argues for
a domain-specific, modular language competence (UG) which provides much of the
necessary grammar processing abilities and which reduces the problem of language
acquisition to the setting of high-level parameters corresponding to the appropriate
language. In contrast, the connectionist paradigm emphasises the significance of the
role played by learning, claiming that statistically based learning, combined with
much weaker domain-general biases, is sufficient for explaining language acquisition.

It is fair to say that at this time, models in the generative grammar tradition
are capable of processing a wider range of syntactic constructions than connectionist
models, a not unexpected result given the relative maturity of the two fields. Never-
theless, for those who doubt the plausibility of a ‘language instinct’, connectionism
provides an attractive alternative. Two reasons are apparent for the connectionist
approach’s popularity amongst psycholinguists: a focus on the co-dependencies be-
tween development and learning; and a willingness to consider the knowledge that
may be gleaned from the statistical properties of the linguistic environment. In-
deed, it is the perception of the cognitive plausibility of CNLP that has won many
proponents.

The question remains as to how appropriate learning constraints can be added to
connectionist models, and the types of constraints that are necessary for successful
learning. That is, an open issue is how (and what) prior knowledge should be incor-
porated into connectionist models. Certainly, connectionism is opposed to the types
of explicit knowledge posited by generative grammar and instead considers knowl-
edge in the form of biases arising from development (for example, Elman, 1993).
This thesis considers an additional factor that might explain children’s remarkable
adeptness for language acquisition: that languages themselves adapt to be learned
by human infants (Christiansen, 1995). Just as human infants may have some form
of prior knowledge about the languages to which they will be exposed, languages
may incorporate prior knowledge about the human language learning mechanisms.

Working within the connectionist paradigm, we aim to test the conditions under

which aspects of languages can adapt to the weak biases of a learner, thus giving
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the impression of a learner with innate linguistic expertise.

2.2 Modelling the emergence of language

The question of language emergence offers an alternative approach to understanding
human linguistic competence. What motivates us to look at this field is the hypoth-
esis that language adapts to aid its own survival. As other authors (Christiansen,
1995; Deacon, 1997) have pointed out, this hypothesis is not entirely new; Darwin
(1890) for example, raises the possibility. Simply put, this hypothesis proposes that
languages themselves can be seen as adaptive systems that are subject to selection
pressures imposed by their human users. In Christiansen’s view, “natural language
is akin to an organism whose evolution has been constrained by the properties of
human learning and processing mechanisms” (Christiansen, 1995, p9).

The consequence of this view is evident when placed in contrast with the typi-
cal portrayal of the problem. Rather than asking how humans manage to process
language, the suggestion is that we instead ask how languages have adapted to be
processed by humans. Of course, the absence of language in other species indicates
that humans must have some innate biological capacity that enables language use.
The question is the extent to which humans’ capabilities are innate. Section 2.1
discussed the dichotomy between linguists in the generativist tradition of Chomsky
who argue for an innate, domain-specific language module that reduces language
acquisition to the setting of language parameter ‘switches’, and the connectionists
who contend that human learning utilises the statistics of the information available
in the environment. The adaptation of language provides an additional mechanism
through which naive learners may give the appearance of expertise.

The study of language emergence has something of a blighted history. The
speculative nature of much work in the field culminated in the infamous 1866 decision
by the Société Linguistique de Paris to ban publication of papers on the topic.
Nevertheless, the field is enjoying renewed interest as evidenced by the growing
popularity of conferences in the area, such as the successful ‘Evolution of Language’
conference series (Hurford et al., 1998; Knight et al., 2000). The study of language
origins is, necessarily, a highly cross-disciplinary field, drawing from anthropology
(Noble and Davidson, 1996), neurology (Deacon, 1997), primate studies (Savage-
Rumbaugh and Lewin, 1994), creolisation studies (Bickerton, 1983; Senghas, 1995),

computational modelling (Hare and Elman, 1995) and evolutionary computation
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(Kirby, 2000; Batali, 1998).

However, in this thesis we want to take a computational perspective on language
adaptation. We are not so much concerned with knowing how human languages in
particular came to be, but the necessary (computational) prerequisites for language-
systems in general to emerge. That is, we are not so much focused on theories such
as ‘language evolved in response to increased socialisation of human ancestors’ as
we are in knowing what computational changes (which may or may not have been
a consequence of socialisation) resulted in language emergence. The area of inter-
est is the computational aspects of language emergence; genetic, behavioural, social
and environmental aspects will be considered only in terms of their computational
consequences. In the future it may be possible to more generally incorporate such
broader factors into computational models, but at this stage modelling is not suffi-
ciently sophisticated.

It is important, at this point, to draw a distinction between language systems
and signalling systems. The defining distinction between language and signalling
systems is that the utterances of language systems are structured and decomposable.
That is, language utterances are compositional in nature. In contrast, the signals
produced by a signalling system are atomic — there is no way to analyse an utterance
by breaking it into smaller parts. The consequences of this distinction are profound.
To acquire a signalling system an individual must be exposed to every possible
utterance. If the population needs to communicate N meanings, they must employ
N distinct signals. Alternatively, with language systems, individuals need only be
exposed to some set of discrete tokens and acquire some means of assembling these
tokens into complete utterances. The number of communicable concepts can then
grow combinatorially with the number of atomic tokens and rules for assembly.

The primary issue addressed by computational simulations of signalling systems
is the necessary and sufficient conditions for populations to converge on expressive
systems. Expressive systems are those in which it is possible to unambiguously
express each meaning; that is, one without homonyms. Such a system provides
maximum communicative benefit. A common model for these simulations is one that
provides a mapping between signals and meanings via a lookup table (for example,
Lewis, 1969; Hurford, 1989). Early simulations established that it was possible for
expressive systems to emerge as a result of either genotypic evolution or learning (for
example, MacLennan and Burghardt, 1994; Werner and Dyer, 1991). However, due

to the large number of interacting factors, the analysis determined neither necessary
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nor sufficient conditions. A sufficient condition was established by Oliphant and
Batali (1996) who proposed a learning procedure called the obverter and showed
that if every agent in a population uses this procedure, then convergence on an
expressive language is guaranteed. The obverter algorithm requires that agents
choose to send the signal that has the maximum probability (averaged across the
population) of being understood. This work has been extended to show how a variety
of algorithms, many of which are biologically and socially plausible approximations
to the obverter procedure, also guarantee convergence, and the relative rates at
which each converges (Oliphant, 1999).6 The other major focus of research in this
area examines the necessary social conditions for signalling systems to successfully
emerge, for example if it is necessary for the sender or receiver to attain some benefit
from communication (Batali, 1995). Given the highly social context in which human
language occurs, these issues are certainly significant from a language perspective.
However, basic issues in creating a viable computational model of language need to
be addressed before many of the broader social factors can be incorporated. It is
these basic computational issues (such as the necessary types of learning algorithm,
how individuals are rewarded for successful communication, and the length of time
learners must be exposed to the language of the community) with which this thesis
is concerned.

Three aspects of language have been examined using computational modelling of
language origins: phonetics and phonology, the lexicon, and syntax (Steels, 1997b).
Work in the first area, that of phonetics and phonology, considers the emergence of
perceptual and articulatory systems that facilitate the recognition and production
of distinctive vocal features. These issues are outside the scope of this thesis.

The second area of work, that of lexicon formation, explores the formation of the
relationship between form and meaning (the symbol grounding problem) and how
a population comes to agree on this relationship.” Several different computational
frameworks have been proposed to study these issues, ranging from abstract sim-
ulation (Hutchins and Hazlehurst, 1995) through ‘artificial life’ worlds that share
some characteristics with real environments (Cangelosi and Parisi, 1998; Cangelosi,
2001), to agents embodied in robotic implementations (Steels, 1996). Of this work,

the role that symbol-grounding plays in determining utterance structure in Can-

6Interestingly, the obverter procedure seems to be particularly important for establishing ex-
pressive language systems, a point that we will return to later in §2.2.1.

"In this sense, studies of lexicon formation have significant overlap with studies of signalling
systems discussed earlier.
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gelosi’s (2001) work, while not of direct relevance, makes an interesting point for
this thesis. In his simulations, a population of neural network agents forage in a
simulated ecology for mushrooms that vary in size and may be poisonous. Agents
try to categorise the mushrooms they encounter and communicate information about
the mushrooms to other agents. Significantly, the symbol-meaning associations on
which the populations converge are related to the categorisation task that the agents
must perform. That is, the representations that the agents form as a result of the
categorisation task (as dictated by the external environment), directly influence the
symbol-meaning association formed by the agent, and in later simulations, affect the
way that the agents generalise utterances for novel environmental stimuli.

Some researchers modelling in the third area of language emergence, syntax, tend
to regard lexicon formation as a secondary issue, and one which can be divorced from
the problem of syntax (though notably, not Steels, 1997a). Cangelosi’s results indi-
cate that the lexicon may play a more significant role in the emergence of syntactic
structures, for the reason that the formation and structure of the meaning domain
will have a direct influence on the nature of the relationship between meanings and
utterances. While these results are not of direct relevance, they provide a warning:
that the choice of semantic domain and agent is not an arbitrary one, and that we
should expect different languages to emerge for different domains.

The third area of work, the emergence of syntax, is most related to this thesis

and is reviewed in greater detail.

2.2.1 Modelling the emergence of syntax

Two classes of frameworks can be distinguished amongst computational models of
the emergence of syntax, identifiable as macro-evolutionary and micro-evolutionary
models (Briscoe, 2000). Macro-evolutionary models treat language as an abstract
entity. Rather than modelling language as discourse involving specific utterances, it
is instead viewed as a set of parameters or features.® Macro-evolutionary models also
often assume idealised conditions such as infinite populations and non-overlapping
generations for analytic tractability (Briscoe, 2000). Using this type of model, Nowak
et al. (2000) explored the evolutionary dynamics of the transition from non-syntactic
to syntactic communication, showing that syntactic communication is advantageous

only when the number of required unique signals exceeds some threshold. Other

8This view is compatible with the generativist linguistic tradition.
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macro-evolutionary models have explored dynamics of language change (Niyogi and
Berwick, 1995a,b), giving insights from dynamical systems theory into the reasons
underlying historical changes in human languages. Most relevantly, Kirby (1998,
1999a) presents a macro-evolutionary model where linguistic universals emerge as a
result of differential learnability of linguistic structures. This result is particularly
interesting in terms of the debate on language innateness and specificity outlined
in §2.1. It demonstrates that linguistic universals, often cited as evidence for a
Chomskyan LAD, can emerge from the dynamics of social interaction and do not
require genetic specification. This theme of dynamics of social interaction is one
which runs through most simulations of the emergence of language, including those
presented in later chapters.’

In contrast to macro-evolutionary approaches, the micro-evolutionary approach
models language emergence on the level of individual utterances from specific mem-
bers of a finite, heterogeneous population.'® The focus of this thesis is how specific
learning mechanisms influence language emergence, making a micro-evolutionary
style model the appropriate choice of model class. The most popular approach
has been to model the individuals of a population as symbolic grammar systems
(Hashimoto and ITkegami, 1995, 1996; Briscoe, 1998; Kirby, 2000; Batali, in press),
staying within the bounds of orthodox linguistic approaches to language produc-
tion and comprehension. Batali’s early work using neural network based agents is
a notable exception (Batali, 1998). This distinction is an important one given the
discussion of §2.1, in that the particular choice of approach significantly impacts on
the types of simulations that can be performed.

There is much similarity in the basic premise of all of these micro-evolutionary
simulations. A population of agents is created without a co-ordinated language.
Each agent has its own mechanism for producing and understanding utterances; I-
language in Chomsky’s (1986) terms. During the course of the simulation, agents
contribute utterances to an arena of use (E-language), which other members of the
population try to understand and learn from. The changes resulting from learning
affect the future utterances of the learner. Consequently, a complex dynamic is

established between acquisition and production, shown in Fig. 2.2.

9Note that the issue in these studies is not the specific social context (e.g., that there were small
groups of nomadic hunter-gatherers), but the more general outcomes of such an environment (e.g.,
that learners are exposed to language produced by a restricted subset of the population).
10That is, a population of simulated entities that varies across some set of parameters be it the
weights of a neural network or the rules in a grammar.
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The issues addressed by work on micro-evolutionary models of syntax emergence
concern the conditions under which this dynamic can lead to stable, expressive lan-
guage systems, including the types of phenomena observed in human languages.
Hashimoto and Ikegami (1995) show how this dynamic can lead to an increase in
grammar complexity (as measured with respect to the levels in the Chomskyan hier-
archy) over time. However, with increased grammar complexity comes an increased
parsing cost and populations may converge on a less-complex grammar. The lan-
guages evolve under a trade-off between expressivity and tractability — the benefit
that a highly expressive language confers must be balanced with the cost of acquiring

and using that language.
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Figure 2.2: Language dynamic that results from repeated cycles of production and
acquisition. (Adapted from Kirby, 2001, Fig. 5, p109.)

Rather than considering the dynamic of language evolution alone, Briscoe (1998)
considers a co-evolutionary dynamic between language, and a Chomskyan style lan-
guage acquisition device. Thus, in terms of Fig. 2.2, not only is the language being
transmitted between generations via an acquisition device, but the properties of this
device are also changing from generation to generation. Briscoe’s results suggest
that languages evolve subject to the learnability, parsability and expressivity re-
quirements imposed by the linguistic environment, and that a truly co-evolutionary
dynamic occurs despite the fact that changes in social phenomena (such as language)
occur at a vastly different time-scale to genetic change.

Two micro-evolutionary models, in particular, have been major influences on
this thesis. The first, by Batali, is known as the Negotiation Model (Batali, 1998,
in press). The second, by Kirby is called the Iterated Learning Model (Kirby,
2000, 1999b, 2001). The primary distinction between these two models is the way

in which individuals interact, that is, the structure of social interaction. Whereas
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the population in Batali’s simulations constitutes a single generation, in Kirby’s
simulations inter-generational dynamics are the driving force. Given the relevance of
these two approaches to the work that is presented in later chapters, it is worthwhile

to review them here in some detail.

The Negotiation Model

Batali’s (1998) work represents the most significant connectionist account of lan-
guage emergence in a population of simulated agents. Through a series of linguistic
interactions a population of recurrent neural networks becomes adept at using a
systematically structured language to communicate a set of concepts (representing
meanings such as ‘me happy’ or ‘you sick’). The concept representations were them-
selves compositional, being formed by the concatenation of a referent vector (one of
ten vectors of four bits representing, for example, ‘me’) and a predicate vector (one
of ten vectors of six bits representing, for example, ‘happy’). Networks communicate
by sending sequences of symbols (represented as four-bit vectors) to each other. On
receiving a signal, an agent propagates the sequence of symbols through its weights,
with the interpreted meaning being the final output of the network. Interestingly,
the same network is used for both production and comprehension through the ap-
plication of an algorithm that provides an approximation to the obverter procedure
referred to earlier. The essential idea behind this approach is that to communicate
some meaning M, an agent tries to produce an utterance U such that if it were to
hear U itself, it would interpret it as meaning M.'! The course of simulations is as

follows.

1. Randomly select an agent from the population.

2. Randomly choose ten meanings and ten teachers from the population (one for

each meaning).

3. Train the learner to correctly interpret the teachers’ utterances with the back-

propagation algorithm.

4. Return to step (1).

1Tf we consider an agent as a mapping from utterances to meanings A : U — M, then an agent
tries to produce utterances by the inverse of its own comprehension function A~!. In Batali’s work
with recurrent neural networks, A~! cannot be analytically determined from A so a local search is
used to provide an approximation.
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Interestingly, the populations are fixed; no agent enters or leaves. Rather, a pop-
ulation must reach a consensus on language conventions through a series of ‘negoti-
ations’. Batali reports that over time, populations do indeed converge on common
languages. These language are expressive (all meanings are communicated uniquely,
there are no homonyms or synonyms), consistent (all agents express meanings sim-
ilarly) and comprehensible (agents understand each other’s utterances). Moreover,
the languages show some degree of systematic structure; ‘predicate’ and ‘referent’
roles can be identified in the agents’ utterances corresponding to the predicate and
referent values present in the meaning.

The interesting question that arises from the results of these simulations is why
the population should converge on a systematic language. The space of possible
languages is very large, and the vast majority are non-systematic in nature, so
there appears to be an attractor for systematic structures in the dynamics of the
negotiation process. On the issue of why this structure in particular emerges in
the language, Batali postulates that the largest contributing factor to the observed
results is the very nature of neural network representations. Neural networks of the
type used by Batali have an implicit assumption of ‘smoothness’. That is, they have
a bias towards mapping similar input values to similar output values, the upshot
of which is that it is simply more difficult to represent irregular mappings than
regular ones. Consequently, the neural network agents in Batali’s simulations inject
a bias into the negotiation dynamic that predisposes the population towards finding
systematic languages.

Neural networks are of course capable of representing complex mappings, so the
potential is there for the population to converge on a language with an arbitrarily
complex convention for mapping meanings to utterances. The systematicity of the
observed languages is therefore an emergent property of the system. The dynamics of
language interaction result in the emergence of a language which has the appearance
of design.

These results demonstrate that significant properties of language, in this case
compositionality, can be emergent properties from the dynamics of linguistic in-
teraction and need not be pre-specified by an innate linguistic competence. There
are, however, some potentially problematic issues in the design of the simulations.
One of the more significant aspects of the negotiation model is the immortality of
the population. Somewhat unrealistically, individuals never leave the population.

The model fails to capture the interaction of an inexperienced, immature individual
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learning from a mature one. As a consequence of this design, agents will eventually
be exposed to every possible meaning — the agents are not required to generalise.'?
The other facet of the simulations that warrants closer attention is the dependency
on an obverter-like procedure for producing utterances: what has come to be known
as the ‘inverse learning’ requirement. At least in terms of the neural network imple-

mentation, it seems a somewhat anomalous mechanism for production.

The Iterated Learning Model

A different approach to realism in linguistic interaction is described by Kirby (1999b,
2000, 2001), who presents a compelling demonstration of the emergence of grammar
in the absence of any phylogenetic adaptation.'®> A population of ten language users,
modelled as context-free grammars, are arranged in a ring such that each individual
has two neighbours. Individuals are capable of talking about simple meanings,'*
using strings produced from a restricted alphabet. Individuals are equipped with
a learning mechanism, but the initial population has no grammar. That is, the
initial population consists of a mechanism for acquiring language, but no language
to acquire.

To bootstrap the system, Kirby introduces the notion of random invention: if an
individual wants to communicate a particular meaning but has no way of expressing
that meaning, it either says nothing or, with small probability, produces a random

string. The course of a simulation runs as follows.

1. Replace a randomly chosen individual with a new individual.

2. Produce a corpus of training examples from the utterances produced by the

new individual’s neighbours.
3. The new individual induces an internal grammar based on this corpus.

4. Return to step (1).

12Tn Jater simulations, Batali (1998) allowed only 90 of the 100 meaning vectors to be used during
the negotiation process. While agents were reasonably adept at generalising to the remaining 10
meanings after the negotiation process, the amount of generalisation required is small compared
with human language acquisition.

13Unless otherwise noted, the description refers to the first simulations performed, though not
the first published (Kirby, 2000).

14These meanings were represented as either <agent, action, patient> 3-tuples (Kirby, 2000),
recursive 3-tuples (Kirby, 1999b), or 2-tuples with some probability distribution (Kirby, 2001).
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At the start of a simulation run, the training corpora are typically small and
contain examples that are more-or-less random. Gradually, the training corpora
become larger as each individual’s grammar becomes more expressive. After a period
of time, individuals start to regularise their grammars in a compositional manner,
using common substrings for common parts of a meaning. Eventually, the population
comes to use a fully compositional language where every utterance can be broken
into subcomponents, each representing a part of the meaning tuple.

Kirby deliberately chose the size of the training corpora so that it was highly
unlikely that an individual would be exposed to the full set of (meaning, utterance)
pairs. That is, the only way that an agent could acquire a complete grammar was
to generalise from a limited subset of exemplars. Kirby hypothesises that it was this
feature of the simulations — the ‘learning bottleneck’ — that caused the fundamental
shift in the languages produced, from non-compositional to compositional.

If meanings and utterances are randomly associated, then there is no structure on
which to base a generalisation mechanism. An unobserved association must therefore
remain unknown. In contrast, with a systematic relationship between meanings and
utterances, it is possible to generalise from a limited set of observed exemplars.
This dichotomy, Kirby argues, introduces a ‘glossogenetic’ selection pressure for
languages that can be expressed by a few general purpose rules and can be induced
from a smaller set of examples. For these languages, it is not necessary to see every
(meaning, utterance) pair. Instead, the general relationship between meanings and
utterances can be derived from a suitably chosen subset of exemplars.

Not only do Kirby’s results replicate Batali’s major finding — that significant
features of language can be emergent properties from the dynamics of language
transmission — they also show that this phenomena can occur under more realistic
assumptions about linguistic interactions. Furthermore, Kirby’s later studies (Kirby,
2001) demonstrate how the same process responsible for the emergence of composi-
tional language can (under some assumptions) be responsible for stable irregularity
in a language.

Although there is no phylogenetic adaptation during the course of Kirby’s sim-
ulations, the model incorporates phylogenetic adaptation implicitly in the design of
the individuals’ language learning mechanisms. That is, the starting point of the
simulations is a population of individuals that are innately endowed with a partic-
ular learning mechanism. Although Kirby highlights the importance of languages

themselves being systems that adapt to their human hosts, inherent in his choice of
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learning algorithm is a strong form of language-specific learning bias. Kirby’s lan-
guage induction algorithm was originally developed specifically for computational
linguistics so it is perhaps not surprising that the chosen algorithm is biased to-

wards inducing language-like, compositional structures.

2.3 Dynamics of linguistic transmission

At this point, it seems appropriate to reconsider our motivating hypothesis (that
language adapts to aid its own survival), in light of the results of the computational
simulations presented above. The work surveyed above explores the issues associated
with this hypothesis in greater detail. It suggests that language must be considered
in terms of the dynamics of the linguistic interactions that allow it to propagate. Be-
cause language is always being propagated via production and acquisition (Fig. 2.2),
it is inevitably being shaped by those two processes. Consequently, for a language
to persist over time it must be capable of being transmitted unchanged through
both processes. Such a language can be said to be a fixed-point of the dynami-
cal system of linguistic propagation (assuming perfectly reliable transmission). An
important issue is what happens to languages that are imperfectly transmitted, par-
ticularly whether the transmission dynamic has an attractor for particular forms of
languages. The results on the obverter procedure (Oliphant and Batali, 1996; Batali,
1998) suggest that a necessary requirement for language to emerge is a particular
relationship between the production and comprehension processes. This condition is
by no means sufficient, and Kirby’s (1999a) results emphasise the crucial role played
by the learning algorithm which must recover an entire language from a limited set
of examples that make it through the ‘learning bottleneck’. While referring to the
‘adaptation’ of language is something of a biomorphism, the results presented above
indicate that for a relatively stable language system to emerge, the dynamics of lan-
guage transmission must be of a particular type: those that temper language into

reliably transmissible forms.

2.4 Directions

We have discussed two frameworks for considering language — generative grammar
and connectionism — highlighting the differences between the two, particularly on

the subject of innate knowledge of language. We then introduced an alternative
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hypothesis for explaining human infants’ extraordinary linguistic talents: the adap-
tation of language. With computational modelling, this hypothesis may be applied
to both generativist (Kirby, 2000) and connectionist (Batali, 1998) frameworks. This
thesis focuses on the connectionist approach, concerning itself with probing the ex-
tent to which the adaptation of language can facilitate learning by general-purpose
(connectionist) learning mechanisms. The work differs from and extends previous

work by

using a different semantic domain,

considering language change when sender and receiver are computationally

distinct,

focusing on the potential generalisability of languages, and

considering the impact of different styles of social interaction.






Chapter 3

Getting the Point Across

3.1 Modelling a language domain

The computational modelling of language origins requires significant infrastructure

for simulations. The following issues must be addressed.

o Who or what is communicating? The design of the language agent defines its
computational properties and plays a crucial role in determining the range of
ways in which meanings can be mapped to messages (and vice-versa). The
other factor in this design decision is the choice of learning algorithm which
dictates how the agent incorporates the incomplete and inconsistent informa-
tion available in the environment into its mechanisms for producing and un-
derstanding language. Previous work has considered neural networks (Batali,
1998; Cangelosi and Parisi, 1998), context-free grammar systems (Kirby, 2000),
finite-state automata (Hashimoto and Tkegami, 1996) and other, more exotic

systems such as robots (Steels, 1997a).

e What are they trying to communicate? Most models of communication assume
that there is some underlying semantic domain on which language agents base
their communication. Synthetic, abstract semantic information may be given
directly to the agents, for example in the form of N-tuples (Kirby, 2000) or
binary vectors (Batali, 1998). Alternatively, agents may inhabit some environ-
ment, the salient semantic features of which must be gleaned from the agents’
interactions with the external world. Such environments may be real (Steels,
1997a) or simulated (Cangelosi, 2001).

31
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e How do they communicate? Humans utilise a range of media for language,
with spoken, written and signed forms being the most salient. It is apparent
that (external) language can be described symbolically.! Consequently, most
simulations assume some sort of symbolic communication channel (the only
exception to this observation that the author is aware of is the work of Saun-
ders and Pollack, 1996, who used a real value between 0 and 1 as the signal).
Since simulations of language systems (as opposed to simpler signalling sys-
tems) utilise compositional linguistic structures, the communication channels
of previous studies allow the transmission of a sequence of symbols. How the
agents deal with this sequential aspect may have implications for the kinds of

meaning/utterance relationships that can be formed.

e How do they interact? Language (and communication in general) is a shared
task involving both a sender and a receiver. Moreover, within a population,
linguistic interactions occur between many different pairs of senders and re-
ceivers. The issue of ‘who talks to whom about what’ may not immediately
appear to be of much significance. However, as discussed in §2.2.1, the dynam-
ics of linguistic interaction can be the driving force behind linguistic change.
While some studies have considered language interactions as a logical outcome
of an environment, most have introduced the notion of ‘language games’: a
contrived series of interactions with the agents and task determined by the
experimenter. Typically, the goal of the game is to communicate a meaning
in a unidirectional manner (that is, without intermediate feedback from the
receiver). The sender and receiver may be chosen randomly from the popula-
tion, or the population may have a topology that limits interaction to within
some neighbourhood. An additional design decision is the degree to which
the receiver is given access to the intended meaning of the sender: in many
simulations the receiver is given explicit access to the intended meaning as a

basis for learning.

A further aspect that warrants consideration is whether the population is
static, or whether agents enter and leave the population over time. For non-
static populations, the decision must be made on how and when agents are
replaced. Rewarding successful communication may introduce genotypic se-

lection, which former studies have often explicitly tried to avoid.

IThe existence of written language demonstrates this point.
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It is important to note that the goal of the design process is not necessarily to
replicate as accurately as possible all of the features of the human environment. Not
only is this task intractable, but it fails to be informative about which aspects of
the environment are necessary and/or sufficient for language to emerge, and which
are spurious. The design process is one of compromise. The need for an environ-
ment with an appropriate degree of complexity must be balanced by the need for a
system that can be efficiently simulated and is amenable to detailed analysis. The
simulations must be designed in such a way that the phenomenon of interest can be
studied in isolation. To reiterate a point made in §2.2, the broader research goals
are not to describe the conditions under which human languages evolved; it seems
doubtful that such an outcome could ever be attained. Rather, the aim is to describe
the necessary and sufficient (computational) properties that a system must exhibit
to permit language-like communication systems.

The goal of this thesis is to explore the extent to which languages can adapt to
be learned by general-purpose learners, and the conditions under which this adap-
tation might occur. The design of the simulation framework reflects this general
goal. While each of the following chapters considers different models, the under-
lying simulation framework remains largely unchanged throughout the thesis. It is
the general framework that will now be described, particularly with respect to the

design issues raised above.

3.1.1 A simulation framework for studying the evolution of
language

As noted in §2.1.2, the work in this thesis is presented within the connectionist
paradigm. Hence, we have chosen to model language agents as neural networks.
Particularly, we have chosen to use recurrent neural networks (RNNs) for their
sequence-processing abilities and for their history of use in language domains (for
example, Elman, 1991) and in former studies of language evolution (Batali, 1998).
While there may be a history of applying RNNs in language domains, they are nev-
ertheless general purpose learners; they were neither designed especially for language
tasks, nor are they restricted to performing only those tasks. A variety of algorithms
are available for training RNNs, the most well-known of which include (‘vanilla’)
backpropagation, backpropagation through time (BPTT; Rumelhart et al., 1986)
and real-time recurrent learning (RTRL; Williams and Zipser, 1989). Again, these
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are general-purpose algorithms, based on generic gradient descent, and developed
without regard to specific linguistic issues. While we expect the choice of learning al-
gorithm to play a significant role, our issue is the adaptation of language to a learner,
not one of finding the best learning algorithm. BPTT is the chosen algorithm since
it is expected to be best suited to the task. (The on-line capabilities of RTRL are
unnecessary, and BPTT may offer some advantages over standard backpropagation
on temporal tasks.)

Whereas the choice of language agent was largely determined by a philosophi-
cal commitment to a particular paradigm (connectionism), the choice of semantic
domain presents a wide variety of options. The structure of the semantic domain
should, in some way, be reflected in the structure of its associated language. That
is, utterances for related meanings should be related. This relationship is the basis
for generalisation, a crucial element in studies of language. Creating a complex do-
main introduces the risk of making the learning task overly difficult.? In Cangelosi’s
(2001) work, the structure of the semantic domain is determined by the interactions
of an agent with a simulated environment. However, for tractability and simplic-
ity of analysis we shall consider an artificially created semantic domain. Whereas
previous studies have used domains related to propositional logic (including Batali’s
1998 neural network simulations), we will use a domain that has a qualitatively
different structure. Quite simply, the semantic domain is the unit interval [0, 1], a
subset of the real numbers. Each ‘meaning’ or ‘concept’ is simply a point in this
interval. While this domain is quite simple it nevertheless has some interesting prop-
erties. Foremost, is that this domain has an obvious distance metric. It is reasonable
to talk about the distance between two meanings, giving a (continuously varying)
measure of how well a concept is communicated. Furthermore, the domain is con-
tinuous; there are infinitely many different meanings so that the system may begin
to differentiate, on finer-grained scales, between different concepts.

In keeping with tradition, utterances are modelled as sequences of (discrete)
symbols. As with most connectionist modelling, symbols are represented with a
one-hot encoding.®> RNNs, which typically assume continuous output values, can

generate such symbols in a variety of ways. The most common approach — winner-

20f course, in the case of humans, the semantic domain has an amazing degree of complexity.
However, as any modeller will attest, constructing a model that fails to exhibit interesting behaviour
is a dishearteningly frequent occurrence. Creating a task with an appropriate degree of difficulty,
so that the behaviour of the system is neither suppressed nor vacuous is the fundamental dilemma.

3For example, symbols a, b and ¢ may be represented as vectors [1 0 0], [0 1 0] and [0 0 1]
respectively.
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takes-all — is to set the largest output activation to 1 and the remainder to 0. An
utterance is thus a sequence of such transformed activations, produced sequentially
by the sender, for example, ([100], [010], [100], [001], [010]) which might be denoted
(a,b,a,c,b) or simply abacb.

The final major simulation design category, that of agent interaction, varies quite
widely through the following chapters. Further discussion of this issue will take place
independently in each chapter.

Given this sketch of the basic simulation framework, we are now in a position to
consider the languages that might be useful in such a system. Clearly, we should not
expect that human languages are the most suitable for this architecture. If human
languages are subjected to any sorts of functional constraints, they are the functional
constraints of their human users. That is, human languages are appropriate for
communicating meanings as represented in the human mind, with human cognitive
machinery, using human perception and action. There is little reason to expect that
we could be so fortuitous as to have proposed a system with identical constraints
to those of humans, so it should not be expected that there will necessarily be a
significant similarity to the kinds of linguistic structures found in human languages.
We might expect then, that the languages that do emerge from the system will
reflect the underlying semantic domain, that is, the unit interval. Indeed, we find
that the emergent languages exhibit properties similar to those of number systems.
While the simulation design does not mirror the conditions under which human
language emerged, it does allow the exploration of the general principles behind the

emergence of structured communication systems.

3.1.2 On the role of bias in learning

As noted in §2.1, one of the major questions in linguistics concerns the reason that
human languages assume certain forms. The set of observed human languages do not
seem to vary limitlessly. Rather, they appear to be constrained by some universal
principles. The adaptive-language hypothesis suggests that the properties of human
learning mechanisms, to which languages must adapt, serve to constrain the range of
viable languages. If the learning mechanisms that humans employ for language are
not domain-specific, as some connectionists propose, then what makes one language
more suitable than another? The conjecture that we consider in this thesis is that it
is the (weak) inductive biases of (general-purpose) learners that act as the selection

pressure for languages.
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All learning algorithms include some form of bias. Quite simply, bias is the set of
factors that determine the choice of hypothesis. The principle can be easily demon-
strated by considering a one-dimensional non-linear regression problem. Given a
finite number of samples from an unknown function, possibly with the addition of
noise (), g(z1) + €1,-..,9(x,) + €, the task is to recover the underlying function,
g(x). Standard practice is to postulate that g belongs to some parameterised class
of functions, F.* That is, hypotheses of ¢ are drawn from F. The choice of F
introduces the first major source of bias, model bias, creating what is commonly
known as the bias/variance dilemma (Geman et al., 1992). If F' is chosen to be a
class capable of representing arbitrary functions, it is said to have high variance.
Conversely, classes that have limited representational capacity are said to have high
bias. Choosing a class with high variance introduces the risk that the noise compo-
nent of the samples may be incorrectly assumed to be part of the target function
(known as overfitting). Choosing F' to have strong bias risks excluding the target
function (i.e., where g ¢ F'). This maxim is depicted graphically in Fig. 3.1. In
the case of neural networks, the model bias is determined by the architecture of the
network. In general, adding hidden units decreases the bias of a neural network (and
reciprocally increases the variance).

Selection of a particular hypothesis space is not the only source of bias in this
simple example. Once a class F' has been chosen, the question remains as to which
hypothesis to choose from F'. Given the finite set of samples, there may be multiple
hypotheses in F' that are consistent with the data.® For example, in the case of our
non-linear regression problem, if we choose F' to be the class of pth order polynomials,
and if there are no more than p samples, then there are infinitely many consistent
hypotheses. Alternatively, if there are more than p + 1 points, there may be no
consistent hypotheses. In this case the hypothesis needs to be selected on the basis
of some measure of desirability, such as sum-squared error.® Optimising this metric
with respect to the parameters of the model class may be a non-trivial exercise

in itself, as is the case for neural networks. The manner in which a particular

4We shall avoid the issue of strictly non-parametric approaches.

5Tt is often the case that finding the consistent hypotheses in F' is not a tractable task. This
problem typically arises when F' is chosen to be a general-purpose learner, such as a neural network
(Blum and Rivest, 1992).

6For the simple regression problem here, the squared error for a particular example, z;, is the
squared difference between the actual value of the function, g(x;), and the hypothesised value of
the function, f(z;). That is, SSE(z;) = (9(x;) — f(z;))?. The sum-squared error value is obtained
by summing each of the squared errors over a set of examples, zg, ..., Zy.
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hypothesis is chosen introduces a search bias. Note that the matter of search bias
is not unrelated to that of model bias since a larger hypothesis space will tend to
have a greater number of consistent hypotheses from which to choose. (Of course, a
consistent hypothesis may be suboptimal since the sample data may contain some
degree of noise.) In the case of neural networks, the search bias is determined by
the learning algorithm and its associated parameters (such as backpropagation) and
the cost function.

T T T T
Sample data  © i
Target function
High variance — = — \
High bias -~ - g

— - - d - - =—F == =1 = = 4

Figure 3.1: Non-linear regression demonstrating the role of model bias. A hypothesis
space that is too large may cause overfitting. A hypothesis space that is too small
may be incapable of representing the target function.

While there is much theory regarding the relationship between the complexity of
the data and the complexity of the hypothesis space (most notably Valiant, 1984),
it is difficult to put into practice. For many interesting choices of F', such as neural
networks, the theoretical properties are difficult to establish. However, the general
principles of the theory can be applied. They suggest that the bias of the hypothesis
space, F', should be tailored to the known properties of the problem. Essentially, the
bias of the algorithm should incorporate prior knowledge of the problem domain.

Returning to the issue of language learning, we see that generative grammar
incorporates a learning mechanism with a high bias, tailored to a specific class of
languages. This bias is primarily a model bias (the principles and parameters frame-
work restricts the hypothesis space) that a priori constrains the range of languages
that can be represented (i.e., the available hypotheses about which grammar is gen-
erating the observed utterances). The conjecture that is explored in this thesis is

that languages can adapt to be learnable by mechanisms without such strong intrin-
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sic bias by adapting to the search bias (or inductive bias) of their learners. What
this conjecture implies for the human learner is that an infant’s intuitions and gener-
alisations about language would generally be correct because languages have evolved

to exploit the kinds of assumptions human infants make.

3.2 Talking backwards

The issue that we take up in this chapter is what happens when the innate biases
of sender and receiver are different. If languages adapt to be learnable by their
users, is it possible for a learnable language to emerge when the most sympathetic
language is different for sender and receiver? If one views sending and receiving
as computationally distinct processes (albeit tightly coupled), one must also accept
that the optimal language for each process may be different. Can a language mediate
the different forces brought to bear upon it by the competing interests of its users?
In this chapter we aim to demonstrate the principle that a language can adapt to
accommodate opposing learning biases.

The paradigm for this work involves two recurrent neural networks, which try
to communicate a meaning, represented by a point in the unit interval, [0,1] C
R. One network, the encoder, acts as the sender and is presented with points,
x; € [0,1]. The encoder produces a sequence, s; € ¥*, of symbols taken from an
alphabet, ¥ = {0,1},” which is serially transmitted across a channel to a decoder
network, acting as receiver. The decoder network receives the sequence as input, and
outputs y; € [0,1]. If the communication is successful, then y; should approximate
x;. The set of transmitted sequences, S = |J,{s;} C ¥*, forms a language or code
for communicating the interval (see Fig. 3.2).

It is possible to accomplish this communication task using a numeric encoding,
typically recognised as the “standard” binary representation (where the sequence
of transmitted symbols corresponds to its base-two representation). There are two
canonical ways in which such a sequence can be transmitted — either the most
significant bits (MSB) of the message can be sent first, or the least significant bits

(LSB) can be sent first.® Consequently, the initial simulations consider the sender

"The choice of 0 and 1 as symbols is arbitrary: ‘a’ and ‘b’ or ‘ba’ and ‘di’ would be equally
appropriate.

8The question of the order in which bits should be sent is a notorious issue in computing that
arises when two computers attempt to communicate over some serial communication medium (Co-
hen, 1981). Some manufacturers chose to send the least significant bit first (called Little-Endians
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Message (bit sequence, m)

<1,1,0,1>
Encoder Decoder
0.8125 = - 0.8125
(real number, x) (real number, y)

Figure 3.2: Getting the point across. Two recurrent networks are used as sender and
receiver for a communication channel. The sender (encoder) is presented with a real
number, z € [0, 1] C R and outputs a sequence of symbols, m € ¥*, ¥ = {0,1}. This
sequence of symbols is then used as input for the receiver (decoder), which outputs
a value, y € [0,1] C R, after all symbols in the sequence have been processed. If
the communication is successful, then y approximates z. If a numeric encoding is
used (see text) then the input value 0.8125 would be encoded as (1,1,0,1), since
0.812519 = 0.11015. The decoder, upon receiving the sequence, would output 0.8125.

and receiver separately, trying to learn to produce and understand these two alterna-
tive languages (§3.3). These initial simulations suggest that, within this framework,
the learning biases of the sender are in conflict with those of the receiver. Whereas
the senders more easily learn the MSB-first languages, the receivers more easily learn
the LSB-first (MSB-last) languages.

Given these initial results, we consider the combined sender-receiver system
(where sender and receiver are at liberty to determine their own code) under two
conditions (§3.4). In one simulation condition, the order of messages is reversed
so that the biases of the sender and receiver are aligned. In the other condition,
no reversal is performed. Analysis shows that the languages that emerge show a
structural compromise between the competing biases of sender and receiver when
no reversal is performed (§3.4.2).

In the final series of simulations, the sender is unrestricted in sending messages of
varying length (§3.5), unlike the situation in earlier simulations where every message
is of a fixed, predetermined length.? The simulations of §3.3 and §3.4 indicate that

in Cohen’s Jonathon Swift-inspired account) whereas other chose to send the most significant bit
first (Big-Endians) creating havoc when computers produced by different manufacturers wanted
to communicate. While there are no meaningful parallels with the work presented here, the corre-
spondence is an interesting one.

9For those familiar with Cohen’s (1981) treatise on the Big-Endian versus Little-Endian debate
in computing, by loose analogy this condition presumes no fixed word length.
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decoders are able to exploit the existence of a fixed message length to enable them
to more easily process MSB-first sequences. Removing this artifice strengthens the

opposition between sender and receiver.

3.3 Study 1: Encoders, decoders and the numeric

code

The first series of simulations investigates the ability of the individual encoders and
decoders to perform their respective mappings in isolation. In total, four mappings

are considered.
1. Encoding a real value as an MSB-first numeric sequence.
2. Encoding a real value as an LSB-first numeric sequence.
3. Decoding from an MSB-first numeric sequence to a real value.

4. Decoding from an LSB-first numeric sequence to a real value.

3.3.1 Encoders

The encoder is a first-order network, with recurrent connections from the output to
the hidden units, as well as from the hidden units back to themselves (Fig. 3.3).*
A single binary-threshold output unit codes 0 when off and 1 when on; a simpler
alternative to a winner-takes-all approach, practicable when only two values are
required. The networks are presented with a concept value at the first time-step,
and an input value of 0 for subsequent time-steps. Concepts are chosen in accordance
with a numeric binary encoding. The chosen concepts are those that can be encoded
with exactly k bits (i.e., {n27%}, 0 < n < 2¥), and networks are given k time-steps
in which to perform the encoding. These sets of concepts will be referred to as the
k-bit values or k-bit precision. The sequence of outputs, taken from the network at
each time-step is taken to be the encoding of the concept; the utterance associated

with the given meaning.

10Egsentially a combination Jordan/Elman network. This architecture is similar to that used by
Christiansen and Chater (1999). The additional connection from the output to the hidden layer
provides the hidden units with an explicit representation of what the network has output — the
network “hears” what it “says”. The additional weights also simplify the dynamics of the network.
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Figure 3.3: MSB First Encoder. A recurrent network that takes a real number in
the unit interval [0, 1] and encodes it to the numeric code, MSB-first. The hidden
unit uses a linear threshold activation function that saturates at -1 and 1, and the
output unit is a binary (0.5) threshold unit. The input value is presented at the first
time-step only, subsequent inputs are 0. The network can encode values of arbitrary
precision if allowed to produce a sufficiently long output sequence. In algorithmic
terms, the recurrent weight of the hidden unit performs the equivalent of a “shift
left” operation, and the negative weight from the output unit masks the “highest-
order” bit. The activation of the hidden unit tracks the value that remains to be
encoded.

Given this general architecture, it is relatively straightforward to hand-code a
network with a single hidden unit to perform an encoding for a numeric MSB-first
sequence. A linear-threshold activation function, as in Eqn. (3.1), is used for the
hidden unit.

1,ifz>1
act(z) =< —1,if 2 < -1 (3.1)

x, otherwise

Such a network is shown in Fig. 3.3. By contrast, a network that performs the LSB-
first encoding requires a large number of hidden units. For any value encoded with
this scheme, the first output symbol is different to that of neighbouring values.'!

3
16

2

HFor example, with 4-bit precision the first symbol of the encoding for - is 1, whereas for 6
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This encoding creates a fractal structure on the space which is difficult to process
‘bottom-up’ (i.e., from the fine-grained structure to the coarse structure). The fractal

nature of the numeric encoding can be seen from a graphical depiction (Fig. 3.4).

0 m 12 3/4 31/32

Figure 3.4: Representation of 5-bit numeric encoding. The range of concepts values
varies along the z-axis, and the resulting code is shown against the y-axis. White
areas represent the 0 symbol, and black areas the 1 symbol. The MSB encoding
may be read off bottom-to-top, the LSB encoding top-to-bottom. For example, % is
encoded as (1,0,0,0,0) (MSB-first) and (0,0,0,0,1) (LSB-first).

3.3.2 Decoders

Simple recurrent networks (Elman, 1990) were used for the decoders. The task for
the decoders was the inverse of the encoder’s task with minor variations. Given a
sequence of symbols, the decoder was required to produce the corresponding con-
cept. The difference from the encoder’s task was that each sequence presented to a
decoder was enclosed by start-of-sequence and end-of-sequence markers. For exam-
ple, an encoding of (0, 1,0, 1) would be presented to the decoder as (#,0,1,0,1,$),
where # and $ are start and end symbols respectively. These additional symbols
become important later when we consider variable-length encodings (§3.5), but did
not appear to greatly influence the results presented in this section. To accommo-
date this change in the symbol set, the symbols sent by the encoder were recoded
from their original single binary values to a (four dimensional) one-hot encoding.
The encoders were not required to produce these symbols as it added unnecessary
complexity.

Unlike the encoder, the decoder is capable of decoding either MSB- or LSB-
first, albeit with some important asymmetries. Fig. 3.5 shows hand-coded simple
recurrent networks that decode (a) MSB-first and (b) LSB-first. Although an LSB-
first decoder is able to decode sequences of varying lengths with only a single hidden

unit, an MSB-first decoder with the same architecture can only decode strings of

and 7 the first symbol is 0.
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a known length. That is, for the MSB-first decoder the solution for k-bit precision
does not generalise to (k+1)-bit precision, whereas for the LSB-first decoder it does.
With three hidden units (whose activations are initialised to zero before presentation
of a string) it is possible for the MSB-first decoder to process strings of arbitrary
length (Fig. 3.6). However, we have never observed this solution as a result of
learning, indicating that it is difficult to find for the learning algorithms we have
used.

(a) MSB-first (b) LSB-first

Figure 3.5: Simple recurrent networks that decode numeric sequences (a) MSB-first
and (b) LSB-first. The input to the network is wrapped with start and end markers.
After presentation of the end marker, the output unit activation is the value of the
concept corresponding to the input sequence. Linear threshold activation functions
(Eqn. (3.1)) are used for hidden and output units on both networks. Whereas the
LSB-first decoder (b) is able to decode sequences of arbitrary length, the MSB-first
decoder (a) can only decode sequences of known length, k, with one of its weights
dependent on this value. In both cases, activations of the hidden units are set to
zero before each string is processed. The MSB network effectively performs the
operation: output, ; = output; X 2 + input, ; X 27% where k is the length of the
sequence. The LSB decoder works in the opposite direction, computing output,,, =
(output; + input,; ,)/2.

3.3.3 Learning a fixed language

Although solutions could be hand-coded for the static language mappings (at least
in three of four cases), it was unknown whether a solution could be learned. A series
of simulations was designed to test whether the MSB-first or LSB-first codes could
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Figure 3.6: A recurrent network that decodes numeric sequences of arbitrary length
MSB-first. Weights not shown have value 0. The network performs the MSB de-

coding by maintaining the value 27 on the first hidden unit and propagating this
value to the third hidden unit. The weight from the 0 input to the second hidden
unit acts as a gate on this propagation, so that the activation of hidden unit three
is unchanged on 0 input. In this solutions the hidden units delay the propagation
of the intermediate values and the $ symbol is necessary for the solution to arrive
at the output unit at the right time. As for the former decoders, activations of the
hidden units are reset to zero before each string is processed.

be learned by either encoders or decoders. Given the relative ease in hand-coding
solutions for the four mappings, we expected that weights for LSB-first encoders and
MSB-first decoders would be harder to find than for MSB-first encoders and LSB-
first decoders. In place of a gradient descent learning algorithm, we use a simple
(1+1)-Evolutionary Strategy (Béck and Schwefel, 1993) to optimise the weights.'?
This algorithm has much in common with a simple hill-climber — both ensure that
any accepted solution is better than the current-best solution — and for reasons of
ideological similarity, the algorithm used in these simulations will be referred to as
a hill-climbing algorithm.

For this algorithm, a “champion” network was created with initially random
weights, distributed uniformly between -0.1 and 0.1. A single mutant was then gen-

erated by randomly perturbing the weights of the champion according to a N (0, o)

12This technique has proven effective at finding recurrent networks that process reasonably com-
plex languages (Tonkes et al., 1998; Chalup and Blair, 1999, for example,).
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normal distribution. If the mutant was better than the champion at encoding or
decoding the language, then the mutant became the new champion. Another mu-
tant was then generated from the champion. The performance of each network was
assessed by assuming an ideal numeric encoder or decoder counterpart. The fitness
of an agent was thus the sum-squared error between encoder input and decoder out-
put. It is this fitness value that determined whether or not the mutant network was
superior to the champion network.

Since the encoders use a binary threshold output, a small change in the weights
may have no effect on the output of the networks (i.e., the activation landscape
consists of a series of steps, rather than being a smoothly varying surface). Conse-
quently, the standard deviation (o) with which mutants were generated was modu-
lated throughout the course of the simulations. Whenever the mutant and champion
encoded the input-set equally well, o was increased by 0.1%, to broaden the search.
In the case of equally-good encodings, the mutant is declared the winner so that
the space around a particular solution is better explored. Furthermore, whenever a
mutant lost to the champion, o was mutated with 1% Gaussian noise, with an upper
limit of 0.1. No change was made to 0 when the mutant won. The same scheme was
employed for simulations performed with the decoders, although in this case it was
improbable for mutant and champion to perform equally well, since a decoder’s con-
tinuous output means that it does not share the same type of discretised activation
landscape.

The concept values chosen to be communicated were selected by taking a “staged
learning” approach that has previously been used for language learning tasks (for ex-
ample, Tonkes et al., 1998). For the encoders, initially only two values, 0 and %, were
presented with the target single-symbol encodings being (0) and (1) respectively for
both the MSB- and LSB-first encodings. Once an encoder was able to perform this
mapping, 0, i,% and % were encoded into 2-symbol sequences: (0, 0), (0, 1),(1,0)
and (1,1) respectively in the MSB-first case, and (0,0), (1,0),(0,1) and (1,1) re-
spectively in the LSB-first case. In general, once 2* values could be successfully
communicated using k-symbol sequences, encoders were given 25! values to encode
into (k+1)-symbol sequences. The activations of the networks were reset to 0 before
each value was encoded.

Similarly, decoders were initially presented with the strings of length one, bounded
by start and end markers, (#,0,$) and (#,1,$). When decoders could decode these

strings to an appropriate degree of accuracy, the length (and number) of strings was
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increased. Decoders were judged to be “correct” when the decoded value was closer
to the relevant encoded value than any other value in the input set (i.e., within Qk%
of the desired value for k-bit precision). Again, activations of the decoder were reset
to 0 before presentation of each sequence.

Simulations were run for a maximum of 100K generations, or until all 32 5-
bit values could be communicated accurately. Simulations were performed using
networks with 1, 2, 3 and 5 hidden units. Fifty encoders and fifty decoders were
evolved in each condition for both LSB- and MSB-first encodings.

3.3.4 Encoder and decoders: Results

As expected, the results of these simulations (shown in Table 3.1) indicate that
there is an asymmetry in the sequence order preferred by the encoders and decoders.
Whereas the encoders were far more successful on MSB-first sequences, the decoders
were more successful at finding solutions to LSB-first sequences. For the encoders in
the LSB case, no network was ever able to encode more than 2-bit values, whereas
in the MSB case, networks of all sizes were able to encode 5-bit values, the most
successful of which (in terms of the number reaching the maximum precision) were

the networks with 2 hidden units.

Table 3.1: Performance of encoders and decoders on MSB- and LSB-first tasks.
Shown are the number of networks, from the fifty trials, that were able to encode
or decode 5-bit values within 100K generations, and the average precision finally
obtained.

Number at 5-bit Precision Average Precision
Hidden Units (out of 50) (standard deviation)
MSB First | LSB First MSB First | LSB First
Encoders 1 11 0 2.00 (1.28) | 0.98 (0.14)
2 18 0 2.84 (1.75) | 1.14 (0.35)
3 11 0 3.00 (1.29) | 1.28 (0.45)
5 7 0 3.20 (1.03) | 1.56 (0.50)
Decoders 1 0 19 1.22 (0.55) | 2.42 (2.06)
2 0 26 1.62 (0.53) | 3.28 (1.88)
3 0 30 2.02 (0.59) | 4.14 (1.29)
5 0 22 2.39 (0.85) | 3.82 (1.40)

Of the decoders presented with strings LSB-first, 30 of 50 were able to perform

the task for 5-symbol input sequences. The best performance observed was with
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a decoder with three hidden units. No MSB-first decoders were successful on 5-
symbol sequences, although with 5 hidden units, one network out of the 50 was able
to process 4-symbol sequences and 27 could process 3-symbol sequences. The asym-
metry of these results suggests that the encoder, combined with the hill-climbing
algorithm, has a bias towards learning MSB-first languages, whereas the decoder

and hill-climber combination has a bias towards learning LSB-first languages.

3.3.5 Backpropagation through time

Hill-climbing is an atypical algorithm for neural network learning. It is an ‘undi-
rected’ search method and can be quite slow. It thus makes sense to employ a more
conventional learning algorithm, in this case BPT'T. In the combined system there
is no sensible way to train the encoder with this algorithm since the language is not
fixed and there are consequently no target outputs. However, if we assume that the
decoder “understands” what the encoder is communicating (i.e., the decoder has as
a target value the input to the encoder; a common assumption in many studies of
language learning) then the decoder may be trained towards a target in the typical
manner.

Backpropagation works best with an activation function with a non-zero gradient
everywhere, so we replaced the linear threshold activation function used for the hill-
climbers (which has zero gradient when the summed input is not between -1 and 1)
with Eqn. (3.2) which is linear in the interval [—1, 1] and has a non-zero gradient

everywhere.

20-1ifz> 1.0
act(z) =4 -2.0-1,if 2 < —1.0 (3.2)
x, otherwise
For training, networks were unfolded for up to 5 time-steps, but no further than
the start of a message. Networks were only given a target value on presentation of
the end-of-sequence symbol, $; no errors were propagated as a result of intermediate
outputs.
Simulations were performed for both MSB- and LSB-first encodings, again using
a staged learning approach, in much the same manner as the simulations in §3.3.3.
The networks’ performances were tested after each epoch and precision was incre-
mented accordingly. Decoders were trained for a maximum of 10K epochs with a

learning rate of 0.01 and a momentum value of 0.9.
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A similar set of results was obtained for the decoders trained with BPTT as
was obtained using the hill-climbing algorithm. The success of the decoders in each
condition is documented in Table 3.2. Decoders of all sizes learned to decode values
of 5-bit precision when presented with LSB-first sequences. No decoders attained this
level of precision when presented with MSB-first sequences, although some networks

with more than a single hidden unit could decode 4-bit values.

Table 3.2: Performance of decoders trained with BPTT on both MSB- and LSB-first
tasks. Shown are the number of networks, from the fifty trials, that were able to
decode 5-bit values within 10K epochs, and the average precision finally obtained
(cf Table 3.1).

Number at 5-bit Precision Average Precision
Hidden Units (out of 50) (standard deviation)
MSB First | LSB First MSB First | LSB First
1 0 24 1.08 (0.40) | 2.92 (2.02)
2 0 35 1.80 (1.40) | 3.88 (1.90)
3 0 20 2.06 (1.71) | 2.64 (2.17)
5 0 7 0.86 (1.16) | 1.36 (1.76)

Again, the performance of the LSB-first decoders exceeded that of the MSB-first
decoders. The performance of the larger networks was disappointing, with many
failing to decode values of even 1-bit precision and many others failing at 2-bit
precision. The BPTT-trained decoders were often able to find good solutions more
quickly than the hill-climbers, in terms of both the number of weight updates and
simulation time.'® Indeed, in the LSB-first condition, many networks were able to
decode 5-bit values after as few as 200 epochs.

These results provide further indication that the decoders have a bias for LSB-
first languages over MSB-first languages. Even with a different learning algorithm,
with an inevitably different search bias, LSB-first languages were more readily
learned. This result suggests that either the learning biases of BPTT and hill-
climbing are acting similarly (quite plausible given that both are trying to minimise
squared error), or that the architectural bias of the network is playing a significant

role.

IBBPTT has far greater computational complexity per weight update than hill-climbing.
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3.4 Study 2: The combined system — forwards

and reversed

Having established that both encoders and decoders are capable of learning a pre-
determined code in isolation (for at least some conditions), we turn to the question
of whether the combined system is able to develop its own code (as originally de-
scribed in Fig. 3.2). Rather than fixing the language and finding adroit encoders
and decoders, we allow the language to vary with the qualification that communi-
cation should be successful (that is, the decoder’s output should approximate the
encoder’s input). Note that unlike Batali’s (1998) simulations, sender and receiver
are independent. There is no explicit mechanism through which a change to the
encoder causes a change in the decoder; the decoder must actively learn when the
language produced by the encoder changes.

The results of study 1 (§3.3) suggest that the encoder and decoder have quite
different biases in terms of the codes that are easier to learn. More specifically, we
are led to the conjecture that if a code is among those acceptable for the encoder,
then the reverse of that code is likely to be acceptable for the decoder. To test this
conjecture we conducted experiments of the combined system under two different
conditions: the forwards condition, in which the symbols produced by the encoder
are passed on in the same order to the decoder, and the reversed condition, in which
the symbols produced by the encoder are effectively buffered on a stack, and then
presented to the decoder in the reverse order to which they were produced by the
encoder.

As noted in §3.1, the type of interactions that occur between the agents of a com-
munity can play a significant role in language emergence. The simulations presented
in this section employ a very simple dynamic, using only a single encoder and a sin-
gle decoder. Preliminary simulations attempted to use the hill-climbing algorithm
simultaneously on both the encoder and decoder. These simulations proved unsuc-
cessful, with both the forwards and reversed systems failing to produce expressive
languages. Consequently, an asymmetric approach was taken, applying BPTT to
the decoder, and reserving hill-climbing for the encoder. Encoders were evaluated
by training a decoder (with random initial weights) using BPTT on the languages
they produced. This approach encourages the output of the encoder towards a code
that is learnable by the decoder.

Random mutations to encoders often result in uninteresting languages, where
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relatively few different utterances are used to communicate the interval (i.e., the
set of utterances is highly homonymous). Since learnability by BPTT is an expen-
sive function to evaluate, computational tractability required a simple precursory
examination to eliminate poor encoders. Encoders were thus screened on the basis
of their variability (the number of different encodings they produce for the set of
inputs). If the mutant failed to demonstrate greater variability than the champion,
it was discarded without training a decoder. Thus, there is an artificially introduced
selective pressure for variability in the encoders (they are required to “babble”).!4
Note however, that encoders with more variable codes will still only survive if the
code they produce is learnable by the decoder.

To summarise, languages are evolved by hill-climbing in the weights of the en-
coder. Mutated encoders are subjected to a two-stage evaluation function, compris-
ing (a) the number of unique strings produced for the input set; and (b) the sum-
squared error of a random decoder, trained on the output of the encoder. Again
we apply the principle of staged learning, initially using only 1—bit precision, incre-
menting by 1 each time an encoder and decoder can successfully communicate all
concepts, to a maximum of 5—bit precision. The process is summarised in Fig. 3.7.

The interactions in this model introduce an asymmetry between encoder and
decoder. The language of the system is determined by the encoder, which changes
slowly over time, and does not learn in the orthodox sense. Conversely, with each
small change in the encoder, an entirely new decoder is trained. Nevertheless, the
biases found in §3.3 remain. Candidate encoders should still tend to produce MSB-
first languages, and each decoder should still find LSB-first languages easier to learn.
The conflicting biases express themselves in the encoder; LSB-first languages should
(in the forwards system) lead to higher fitness, but it is difficult to find weights for
an encoder to generate these languages.

One further aspect of the simulations warrants attention. In study 1, only the
minimum number of symbols were sent: when 2% values were being encoded, k
symbols were sent. For the combined system this condition was relaxed to permit
more than the strict minimum number of symbols to be sent, thus allowing codes
that achieve less than optimal efficiency. For the reversed systems, values of k—bit
precision were encoded into k£ + 2 symbols, and for the forwards systems, values of

k—bit precision were encoded into 2k symbols. Greater bandwidth was given to the

14When this condition was weakened to allow mutants to be of equal variability but producing a
different encoding, simulations were typically unsuccessful within the limited time afforded them.
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1. Set k = 1.

2. Create an initial champion encoder with random weights distributed uni-
formly between -0.1 and 0.1.

3. Train a random decoder with BPTT on the output of the champion
encoder for n epochs. In each epoch, present all k—bit concepts. After
training, compute the squared error between champion encoder input
and decoder output, summed across all 2% concepts. Assign this error to
the champion encoder.

4. Create a mutant encoder.

(a) Create a mutant encoder by perturbing the weights of the champion
with A (0,0) Gaussian noise.

(b) Present each of the 2¥ meanings to the mutant encoder. Calculate
the number of unique strings produced.

(c) If the mutant encoder produces more unique strings than the cham-
pion encoder (or if the mutant encoder produces 2 unique strings),
proceed to step (5). Otherwise, return to step (4a).

5. Repeat step (3), but for the mutant encoder.

6. If the error assigned to the mutant encoder is less than that assigned to
the champion encoder, make the mutant encoder the new champion. Fur-
thermore, if the mutants correctly communicate all values, increment k.
(A concept is correctly communicated if the absolute difference between
encoder input and decoder output is less that 2F+1))

7. Return to step 2.

Figure 3.7: Algorithm for combined encoder/decoder system.

forwards system since, unlike the reversed system, we do not expect it to develop a
code as compact as the numeric code.
Fifty systems were evolved in both the forwards and reversed conditions, for a

® or until all 5-bit values could be successfully com-

maximum of 100 generations'
municated. Decoders were trained for k£ x 750 epochs, k being the precision of the
communicated values. Decoders were trained under the same conditions as those in

§3.3.5: BPTT with a learning rate of 0.01 and a momentum of 0.9. Both encoders

30ne generation being the selection of a mutant encoder and the subsequent training of a
decoder.
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and decoders had 2 hidden units.

3.4.1 Forwards and reversed: Results

Simulations produced systems capable of communicating values of varying levels of
precision, show in Table 3.3.1% The forwards systems, sending 2k symbols, attained
an average precision of 3.18 bits, whereas the reversed systems, sending k+2 symbols
attained an average precision of 4.36 bits. The evolution of the system is clearly
more successful when the communicated sequence is reversed. This result is not
unexpected since the natural biases of the encoders and decoders push the system
towards a solution in the reversed case, whereas the path to a successful solution is

less clear in the forwards case.

Table 3.3: Performance of learners grouped by the level of precision obtained by
systems in both the forwards and reversed conditions.

Final Precision Reached || Forwards (2k) | Reversed (k + 2)
3 41 1
4 9 30
5 0 19
Total 50 50

3.4.2 Analysis of codes

In this section we analyse what, if any, were the differences between the codes
produced in the forwards systems and reversed systems. This analysis is performed
by (a) visual inspection of the emergent codes, and (b) measurement of how quickly
the information that the code provides to the decoder increases with successive
symbols.

In all cases, systems trained with the reversed channel produced codes similar
in nature to the MSB-first numeric code of section 2. One code produced by an
encoder with a reversed channel, for 5-bit precision, is shown graphically in Fig. 3.8
(cf Fig. 3.4). Some similarities are apparent between the evolved code and the

numeric code. The similarities between the evolved code and the numeric code can

16Note that whereas Table 3.1 and Table 3.2 show how many networks attained 5-bit precision
for varying numbers of hidden units, this table and Table 3.5 document the final precision attained
by each system, having 2 hidden units for both encoder and decoder.



CHAPTER 3. GETTING THE POINT ACROSS 93

0 1/4 1/2 3/4 31/3:

Figure 3.8: Graphical depiction of a code for communicating 5-bit values produced
by a system from the reversed condition. The first output symbol from the encoder
(and consequently the last input symbol to the decoder) is shown as the bottom
row. Note the similarities to the numeric binary code shown in Fig. 3.4.

be seen by examining the rate at which each bit changes across the concept space.
Over the range of inputs, the first symbol (shown as the bottom row of Fig. 3.8)
alternates only once: the first symbol for encoding the smallest seven inputs is a
0, and for the largest nine inputs a 1. For the second symbol four such sequences
are apparent, with an increasing number for subsequent symbols. The code shows
a clear significance from first bit to last, as found in the numeric codes. Moreover,
the direction of significance (MSB-first) is as anticipated.

Many of the evolved codes did not share such obvious similarities with the nu-
meric code as that in Fig. 3.8. Table 3.4.2 and Fig. 3.9 shows a typical code com-
municated by a reversed system for 4-bit values. On initial inspection, this code
appears to be unrelated to a numeric code. However, interchanging symbols in the
first, third and fifth positions in the sequence (i.e., replacing 0 with 1 and vice-
versa) place the messages in the same numeric ordering as the inputs. This type of
transformation was common to many codes but was by no means universal, others
already being in numeric order (or reverse numeric order). The phenomenon may
be attributed to negative recurrent weights that invert the significance of alternate
symbols.

To provide a more direct comparison between the codes from the forwards and
reversed systems, an additional 50 reversed systems were evolved allowing 2k sym-
bols to be sent by the encoder, as used in the forwards case. Of these 50 systems
46 attained at least precision 4, the maximum attained by the forwards systems.
Additional systems were also trained in the forwards condition, to bring the total
number of forwards systems at 4-bit precision to 14. These 14 forwards and 46
reversed 4-bit codes were further analysed to study the effect of the differing biases

on the form of the evolved code.
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Table 3.4: Language for a reversed system at 4-bit precision. Interchanging symbols
in alternate positions in the message (symbols 1, 3 and 5), shown in the third
column, transforms the code into a numeric order. The symbol-swapping behaviour
is a consequence of having negative recurrent weights that oscillate the interpretation
of successive symbols. These codes are depicted in Fig. 3.9.

Input | Message | Alternately Negated | Output
0.0000 | 100111 001101 0.0029
0.0625 | 100100 001110 0.0420
0.1250 | 111001 010011 0.1211
0.1875 | 111111 010101 0.1943
0.2500 | 110010 011000 0.2738
0.3125 | 110011 011001 0.3136
0.3750 | 110000 011010 0.3608
0.4375 | 001001 100011 0.4424
0.5000 | 001111 100101 0.4945
0.5625 | 001100 100110 0.5412
0.6250 | 000011 101001 0.6105
0.6875 | 000000 101010 0.6577
0.7500 | 000001 101011 0.7272
0.8125 | 000111 101101 0.8002
0.8750 | 011000 110010 0.8488
0.9375 | 011001 110011 0.9184

A cursory inspection of the two sets of codes did not suggest any obvious struc-
tural differences, both sets of codes resembling the numeric code to some extent.
What we expected to observe in the forwards codes was a bias to balance the in-

formation more evenly throughout a sequence, to cater for the biases of both the

(a) normal (b) alternately negated

Figure 3.9: Graphical depiction of codes listed in Table 3.4.2. (a) The code as
produced by the encoder. (b) The code with every other symbol negated (0 and 1
interchanged).
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encoder and decoder. To find how information was distributed throughout the codes
we considered the optimal squared-error (OSE) that a decoder could possibly ob-
tain if it only saw the first n bits of the code, for 0 < n < 2k. If the first n bits of
each message are sufficient to identify it uniquely from the messages sent for other
meanings, then each point can be precisely determined and the OSE of the code is
0. If two or more messages share the same initial n bits, then the optimal decoder
outputs their average value, and the OSE can be calculated accordingly.

For an MSB-first numeric code, OSE drops very quickly as n increases since the
most significant bits are at the beginning of the sequence. Conversely, for an LSB-
first numeric encoding, OSE decreases slowly for the first values, then very rapidly
for later ones. Fig. 3.10 shows these curves for numeric 4-bit MSB-first and LSB-first
numeric encodings. Note that while the curves for the numeric code are symmetric,
this observation does not necessarily follow for the evolved codes which are longer

than optimal.'”

1.4 T T

I
MSB First
LSB First ------

Optimal Squared Error

0 I I :
0 1 2 3 4

Number of Bits, n

Figure 3.10: Least squared error obtainable by an optimal decoder after seeing only
the first n bits of MSB-first and LSB-first numeric codes.

For the evolved codes, two scenarios are considered: the OSE of the code when
read from the first bit sent by the encoder to the last bit sent (i.e., from the per-
spective of the encoder); and from the last bit sent by the encoder to the first bit
sent (as would be seen by a decoder in the reversed condition). These statistics can

be used to indicate where the ‘effective information’ is positioned in the code. The

7Consider a code formed by the concatenation of an MSB-first code and an LSB-first code,
resulting in perfect information in the first half of the code when viewed in either direction.
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Figure 3.11: Least squared error obtainable by an optimal decoder after seeing the
first n bits of codes developed by the forwards and reversed systems when read
both first-to-last and last-to-first. The lower two curves represent languages that
are presented first-to-last (i.e., as they normally would be in the forwards condition)
while the upper two curves represent languages presented last-to-first (i.e., as they
normally would be presented in the reversed condition). The two inner curves are
from the languages produced from forwards systems and the outer two curves are
from language evolved in the reversed condition.

resulting pair of curves is effectively the same as for the graph in Fig. 3.10 since an
LSB code is simply an MSB code viewed in reverse. Fig. 3.11 shows the average
OSE for both the forwards and reversed systems, when viewed both first-to-last and
last-to-first.

Comparing the pairs of first-to-last/last-to-first curves in Fig. 3.11 with those
of Fig. 3.10 reveals some of the differences between the codes of the forwards and
reversed systems. The MSB-first numeric code has the strongest possible ordering
of significance from first bit to last, and the area between the MSB-first and LSB-
first curves is consequently large. In Fig. 3.11 the area between the curves of the
reversed systems is larger than that for the forwards systems, suggesting that the
reversed systems tend to develop codes with stronger ordering of significance than
the forwards systems, as predicted. Calculating the area between the curves for
each code in both the forwards and reversed systems, and comparing the two groups

using a Mann-Whitney U test'®, reveals a statistically significant difference in the

18The Mann-Whitney U test is a non-parametric version of the ¢ test.
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two populations (p < 0.05). The graph demonstrates that the effect of the opposing
biases in the forwards system is to distribute information more evenly throughout
the sequence.

The differences between the codes of the forward and reversed systems, while
significant, are not extreme. The similarities may be attributable to the encoder
having a greater bias than the decoder. When the language was fixed in study 1
(§3.3), the MSB decoders were far more successful than the LSB encoders, possibly
because the networks took an approach similar to the MSB-first decoder in Fig. 3.5.
Preventing this solution then, may make the strength of biases between encoders and
decoders more consistent, thus causing a greater distinction between codes evolved

in the forwards and reversed conditions.

3.5 Study 3: Variable length codes

In the simulations presented thus far, the encoders have generated an externally
specified number of symbols (either k + 2 or 2k). In the following series of simula-
tions, encoder networks have an additional output unit that can be used to control
the length of sequence produced. So long as this additional output remains on, sym-
bols are sent in the same manner as the previous simulations. When this output unit
turns off, or some maximum number of symbols is reached, an “end-of-sequence”
(EOS) symbol is added to the message, and communication ceases. The additional
output unit may be considered as a “push-to-talk” unit.!® This change allows en-
coders to send the same sequences when the number of values to be communicated
increases.?’ It also makes success less likely for the type of MSB-first decoder in
Fig. 3.5 which can only process sequences of known length.

Simulations were performed in much the same manner as those in the previous
section, with some minor changes regarding EOS. In both the previous and following
series of simulations, encoders were selected on their ability to produce a wider
variety of codes. In the following simulations, once an encoder attains maximum
variability, subsequent encoders are generated to maintain variability in the codes,

but also to increase the number of EOS symbols produced (i.e., to increase the

19Whether or not this unit feeds back to the hidden layer is largely inconsequential since its
output remains constant throughout the encoding of a message, thus acting as an additional bias
input.

20For example, for a fixed-length numeric code an encoder would send #00$ for the concept 0 at
2-bit precision, and #000$ for the same concept at 3-bit precision. With variable-length messages
the encoder could send the message #0$ for the concept 0, regardless of the precision.
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number of strings that are properly terminated). Additionally, a small error (2-2(++1)
at k-bit precision) is added to the entire system for each string that is successfully
communicated but improperly terminated, to differentiate between systems with
different numbers of properly terminated sequences, yet similar error.

As before, 50 forwards and reversed systems were evolved to a maximum of 5-bit
precision. Simulations were repeated under the same three different conditions used
in study 2: forwards systems using a maximum of 2k symbols per message, and
reversed systems using either k£ + 2 or 2k symbols per message.

The performance of the systems in this series of simulations was significantly
worse than in the fixed-length case (not surprisingly since it is necessarily a more
difficult task). None of the reversed systems with a maximum message size of k + 2

1

symbols attained 5-bit precision.?’ Results are summarised in Table 3.5. Again,

the systems that reversed the encoders’ output outperformed those in which the

messages were transmitted unchanged.

Table 3.5: The level of precision obtained by systems in both the forwards and
reversed conditions. The forwards systems, sending 2k symbols, attained an average
precision of 2.90 bits. The reversed systems attained an average precision of 3.30
bits when transmitting £ + 2 symbols and 3.44 bits when transmitting 2k symbols.

Final Precision Reached || Forwards (2k) | Reversed (k + 2) | Reversed (2k)
2 6 4 1
3 43 27 27
4 1 19 21
3 0 0 1
Total 50 50 50

As in the fixed-length case, both the forwards and reversed systems produced
codes that could be placed in numeric order. The introduction of the EOS symbol
created one novel difference: to be placed in numeric order the EOS often had to be
assigned a value, indicating that it served as more than a syntax marker. A typical
code found by a reversed (k + 2) system is shown in Table 3.5. This table also
shows the code from the only forwards system that attained 4-bit precision, which
is clearly of a different nature to the reversed system’s code. While some reversed
systems produced codes of a similar nature to this forward system’s code, none were
as regular. Codes from a reversed (2k) system and the best forwards system are

depicted graphically in Fig. 3.12.

21 Although one of two preliminary simulations did reach 5-bit precision.
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Table 3.6: Left: Language for a variable length, reversed system at 4-bit precision,
evolved with k + 2 symbol channel length. Interpreting the EOS symbol ($) as a
value greater than 1, places the messages in numeric order. Right: Language for a
variable length forwards system at 4-bit precision, evolved with channel length 2k.

These languages are also depicted graphically in Fig. 3.12(a) and (c).
Reversed (k + 2)

Forwards (2k)

Input || Message | Numeric | Output || Message Output
0.0000 || 000000$ | 0000002 | -0.0037 || 00000000$ | -0.0019
0.0625 || 0000$ 00002 0.0631 | 0000000$% | 0.0660
0.1250 || 000$ 0002 0.1251 || 00000018 | 0.1177
0.1875 || 00$ 002 0.2132 | 000000% 0.1867
0.2500 || 010000$ | 0100002 | 0.2384 | 000001$ 0.2506
0.3125 || 0% 02 0.3309 | 00000$ 0.3126
0.3750 || 10000$ | 100002 0.3829 | 00001$ 0.3790
0.4375 || 1000$ 10002 0.4279 | 0000$ 0.4382
0.5000 || 100$ 1002 0.4909 | 0001$ 0.5047
0.5625 || 10$ 102 0.5790 || 000% 0.5629
0.6250 || 11000% | 110002 0.6366 || 001$ 0.6294
0.6875 || 1100$ 11002 0.6822 || 00$ 0.6868
0.7500 || 110$ 1102 0.7452 || 01$ 0.7532
0.8125 || 11100$ | 111002 0.8219 || 0% 0.8097
0.8750 || 1110$ 11102 0.8671 || 1% 0.8646
0.9375 || 11110$ | 111102 0.9371 || $ 0.9380

Calculating the average OSE for the two sets of codes, as was done in study 2
(the fixed length case), shows a difference between the codes of the two conditions.
Fig. 3.13 shows the average OSE for the reversed systems and for the single forwards
system at 4-bit precision. Again, the two curves of the forwards system are closest
together, indicating that information is distributed more evenly throughout the code
(this result is not surprising considering the code, shown in Table 3.5). With only
one forwards code it is difficult to draw conclusions, though there does appear to be

a significant difference between the two sets of codes.??

22The two sets of codes from systems at 3-bit precision were also compared using this test, but
showed no significant difference.
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(a) reversed, k + 2

(b) reversed, 2k (c) forwards

Figure 3.12: Graphical depiction of variable length codes for communicating values
of 4-bit precision from (a) reversed systems sending k£ + 2 symbols (b) reversed
systems sending 2k symbols and (c) forwards systems sending 2k symbols. In this
figure, 1 is represented by black regions, 0 by white regions, with the grey areas
showing where the encoder stopped producing output. Both codes were evolved
using 2k symbol channel length, in contrast to the reversed code of Table 3.5 which
was evolved with a maximum of £ + 2 symbols in the communication channel. Note
that languages (a) and (c) are described textually in Table 3.5.

3.6 Discussion and conclusions

The beginning of this chapter discussed the issues involved in creating a simulation
framework for studying the emergence of structured communication systems, and
proposed such a framework. This framework centered around RNNs as the commu-
nicative agents. This choice of agent raised many methodological issues. Foremost
amongst these issues was the difficulty in searching through encoders in study 2.
Encoders were evaluated by training a decoder with BPTT, a computationally ex-
pensive task. To reduce the number of these evaluations, encoders were first screened
on their expressivity (step 4.b in Fig. 3.7). This cursory screening, while making the
search task tractable, restricted the way in which encoder-space was searched. In

particular, it precluded smaller but more easily learned languages.
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Figure 3.13: Optimal squared error obtainable from the one forwards system code
for 4-bit precision, and the average obtainable from the reversed system codes at
4-bit precision. As in Fig. 3.11 the inner curves correspond to the forwards system
and the lower curves result from calculating OSE first bit to last.

A further issue in searching through encoder-space was the problem of gener-
ating expressive encoders. Many heuristics (involving the choice of o, the level of
mutation) were used to try and produce more expressive mutant encoders. Even
so, the search often took tens of thousands of iterations to find a more expressive
mutant.

For the decoders too, there were methodological issues. The decision to take
a staged learning approach interacted with the forwards/reversed simulation con-
dition. In the reversed case, the hand-coded solution with the single hidden unit
(Fig. 3.5b) is valid across different levels of precision, unlike the hand-coded solu-
tion with the single hidden unit in the forwards case (Fig. 3.5a) which has a weight
dependent on the precision. The staged learning approach thus interferes with the
forwards condition, but not the reversed condition, and is thus a potential confound.
Simulations in the following chapters remove the staged learning aspect, suggesting
that it was unnecessary.

The simulations of the first study (§3.3) established the differing biases of the
encoders and decoders on the numeric encoding task. In the second and third stud-
ies (§3.4 and §3.5), languages were evolved so that these biases either opposed each
other (the forwards case) or complemented each other (the reversed case). The struc-

ture of the forwards languages showed a compromise between the opposing biases
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of encoder and decoder. The optimal squared-error (OSE) measurement showed
that in the forwards languages, information was more evenly distributed throughout
the sequence than in the reversed languages. This feature provides a compromise
between placing the information at the beginning of the sequence (as preferred by
the encoder) and placing it at end of the sequence (as preferred by the decoder).

In the framework presented, the adaptation of languages takes place in the ab-
sence of phylogenetic change — the biases of the encoder and decoder remain con-
stant throughout a simulation. In reality, phylogenetic adaptation of language users
may help to eliminate the differences between sender and receiver biases. However,
the simulations demonstrate that adaptation of a language may be a contributing
factor for the mediation of inconsistent biases. In Kirby’s (2000) work there is no
distinction between the constraints on the sender and those on the receiver, only a
notion of what is easier to parse. In such a case, Kirby shows that the languages
that proliferate are those that take on the forms that are easier to parse. Drawing
a distinction between sender and receiver adds an extra source of bias to the sys-
tem. When those biases are different, languages may take on forms that provide a
compromise between the competing constraints.

Throughout this chapter the importance of learnability to the survival of a lan-
guage has been emphasised — languages that match the innate learning biases of
their users will tend to be more successful. In the simulations presented, the fitness
of a language is determined by the success with which a decoder learns. Those
languages that are “more learnable” by a decoder will have a greater chance of
surviving. However, the encoder determines the language that is evaluated by the
decoder. As demonstrated in §3.3, the encoder, in conjunction with the hill-climbing
strategy, has a strong search bias for MSB-first languages. No doubt the introduc-
tion of a more realistic learning mechanism into the encoder would have important
consequences that have not been considered. However, the simplified domain that
we have presented contains the necessary elements to demonstrate the effect of con-

flicting biases on the shape of a language.



Chapter 4
Evolving Generalisable Languages

The previous chapter considered a language evolving in the presence of opposing
biases from sender and receiver. However, those simulations did not take into ac-
count one of the defining aspects of language — generalisation. The language skills
of agents were never tested on data to which they had not previously been exposed.
The focus in this chapter is on the extent to which languages can adapt to be gen-

eralisable from a small amount of data.

4.1 The importance of generalisation

Generalisation is a core aspect of language, particularly with respect to syntax.

! syntactic structures provide

While words and phonemes are restricted in number,
for an infinite range of expressions. Whereas the human learner can expect to be
exposed to the entire range of words and phonemes, a substantial proportion of the
utterances to which they will be exposed will be unique constructions. Without the
ability to generalise from the finite set of utterances to which they have previously
been exposed, the human learner would be unable to understand or produce novel
utterances, thus restricting human languages to expressing a finite range of concepts.
The most apparent form of generalisation used by humans is systematicity.?

The earlier work of both Batali (1998) and Kirby (2000) considered the issue of

generalisation. In these studies the required level of generalisation is not comparable

gnoring morphosyntactic issues.

2Given a novel word, and its meaning, humans have few problems using it in a novel context.
For example, if T tell you that ‘to ploof’ means to hit somebody over the head with a large, stuffed
animal, you have no trouble understanding phrases such as, “Bob ploofed Jim,” or, “Bob got
ploofed.”

63



CHAPTER 4. EVOLVING GENERALISABLE LANGUAGES 64

with human learners. In Batali’s simulations, learners are presented with 90 carefully
selected meanings of the 100 possible. In Kirby’s simulations, learners are presented
with 100 meanings, randomly chosen from 100 possible meanings. While the chances
of choosing 100 unique concepts are small, there is a high probability that a sub-
stantial number of the available examples will be chosen. In later studies (Batali, in
press; Kirby, 1999b), where the number of available meanings is much higher, the
degree of generalisation required is far more considerable. However, in both of these
cases the learning mechanism severely restricts the kinds of generalisations that a
learner may make because of an implicit assumption of systematicity. That is, the
learning mechanisms have a (strong) search bias for systematic generalisation.

From the perspective of human languages, the assumption of systematicity seems
a valid one since systematic generalisation is a ubiquitous phenomenon. However,
while human languages may exhibit this form of generalisation, it may not be a
necessary characteristic of languages in general. If, as stated earlier, the goal is to
uncover the general principles behind language emergence, rather than the specific
conditions that occurred during the evolution of human languages, then it seems
inappropriate to restrict the learning mechanism to a specific class. It may be
that there are viable languages where the required form of generalisation is unlike
classical symbolic systematicity, or that systematicity is an emergent property of the
dynamics of language transmission, independent of the type of learning mechanism
involved. Thus, considering large-scale generalisation from a learner such as that
used in the previous chapter (i.e., a recurrent neural network) will help to broaden
the available evidence as to the necessary and sufficient conditions under which
language may emerge.

As discussed earlier, generalisability of language is necessary for communication
of a large (possibly unbounded) set of meanings. Thus, it seems likely that gen-
eralisability plays a role in glossogenetic selection (selection of linguistic features).
Those linguistic structures that can be reliably generalised from fewer examples will
be more easily acquired by learners, and thus more likely to be successfully trans-
mitted between generations (Kirby, 2000). If languages do indeed adapt to aid their
own survival, then they should be expected to adapt to more easily generalisable
forms. What makes one form more easily generalisable than another? The general-
isability of a language is primarily determined by the generalisation characteristics
of the learning mechanism. As discussed in §3.1.2, the generalisation properties of a

learner are determined by its inductive biases: the predisposition towards choosing
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particular hypotheses from those that are consistent with the data. We might expect
then, that languages will evolve to exploit the inductive biases of their learners to
enhance their generalisability.

In the simulations of both Kirby (2000) and Batali (in press), the evolved lan-
guages facilitated systematic generalisation, as would be expected given the learning
mechanisms employed. However, these learning mechanisms were tightly constrained
as to the type of grammar that would be generalised from a given set of data. That
is, learners made very consistent generalisations. The same can not be said of recur-
rent neural networks (or neural networks in general), where the outcome of learning
may be sensitive to the initial weights of the network (Kolen and Pollack, 1990)
or the selection of training data. Small differences between networks may lead to
radically different outcomes for learning. An open question is whether a language
can evolve to assist generalisation in such a fickle learner. The first study in this
chapter demonstrates that languages can indeed facilitate an impressive degree of
generalisation in such a learner.

In the traditional view of learning, where the task is fixed, the difficulty of the
task itself is a significant determinant of the likely accuracy of generalisation. In
the simulations considered thus far, this problem has been largely avoided since the
task (in the form of the language) is free to vary. There remains however, a higher-
level task, that of end-to-end communication. That is, the combined sender-receiver
system has the overall task of accurately communicating a concept. The basic case
is where the desired output of the receiver mimics the input to the sender. However,
other schemes are possible.

It is possible to envisage a situation where the communicative goal of the sender
is to convey some aspect of a given concept, rather than the concept itself; where
the desired output of the receiver is some function of the input to the sender. In the
second study in this chapter we require that the output of the decoder network ap-
proximate some function of the encoder’s input (that is, where y = f(z) in Fig. 3.2).
By considering a range of such functions, it is possible to analyse whether a lan-
guage can evolve to support specific generalisation requirements, that is whether
the language supports a particular form of generalisation. The extent to which the
generalisation performance of the learners is due to the assistance given by the lan-
guages, rather than the sophistication of the learners themselves can be tested by
‘migrating’ the languages. That is, by moving a language evolved in a system with

one communicative goal to a system with a different goal and measuring the success
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with the ‘migrant’ language facilitates (learned) communication on the ‘native’ task.

While the learning mechanism is the source of the generalisation properties, a
variety of other factors can contribute. The most apparent of these is the data itself.
Obviously, as the amount of (labelled) data given to a learner increases, the data
should begin to overwhelm the inductive biases of the learner since less generali-
sation is required. The manner in which training data is selected may also play a
role. Intuitively, one would expect that to be more reliably generalisable, training
data should be sampled from a broad distribution across the space. However, the
most desirable distribution of data may depend on the properties of the learner and
task (Elman, 1993). By analogy with the argument for language adaptation to the
learning mechanism, this notion suggests that languages may adapt to be learnable
from a specific set (or distribution) of examples. That is, languages may evolve to
become easily generalisable from just those examples to which a child is likely to
be exposed in its environment. The third study in this chapter considers a fixed
learning environment, where each individual learns from the utterances produced
from an unvarying set of concepts, thus giving language the opportunity to adapt
to a stable learning environment.

To summarise, the aim of this chapter is to explore the issue of generalisation
as it pertains to the evolution of language-like communication systems. Particu-
larly, we consider whether a language can adapt to become learnable (and gener-
alisable) by a general-purpose learner from sparse data. This work extends that
of Batali and Kirby by considering an alternative learning mechanism (and task)
that has markedly different learning properties, namely that generalisation is less
predictable. The simulation results add weight to the claim that an appropriately
constructed language can enhance the generalisation abilities of learners by exploit-
ing their inductive biases. Studies two and three examine the role that the learning
environment may provide in facilitating generalisation. The second study in this
chapter considers variations of the communicative task. A variety of languages are
evolved for different communicative tasks with the simulation results indicating that
languages may be capable of adapting to facilitate specific forms of generalisation.
The third study considers the conjecture that language adaptation may exploit the
fact that learners’ environments have much in common. The results are inconclu-
sive, but raise some interesting possibilities regarding languages and the learning

environment of their users.
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4.2 Simulation design

4.2.1 Communication task

The simulation approach used in this chapter is broadly similar to that used in
the previous chapter. Two recurrent neural networks, one acting as sender, the
other as receiver, attempt to communicate a “concept” represented by a point in
the unit interval, [0,1] over a symbolic channel (see Fig. 3.2). The major change
in the communicative task introduced in this chapter is the choice of alphabet. In
the previous chapter, messages were (fixed or variable-length) sequences of symbols
from an alphabet of size two (¥ = {0,1}), bounded by start-of-sequence and end-
of-sequence markers ($ and #). These symbols were represented by a one-hot vector
encoding (i.e., [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]). Such a restricted alphabet
makes it difficult to convey much information with short messages, and imposes
constraints on the types of languages that are feasible. Consequently, the alphabet
in this chapter has been expanded to ten symbols, as well as an additional end-
of-sequence marker. The start-of-sequence token has been omitted as it plays no
significant role — resetting the weights of the decoder network between utterances
is sufficient.

The one-hot encoding scheme used in the previous chapter would require each
symbol to be an eleven dimensional vector, one dimension for each of the ten symbols
and end-of-sequence. From a learning perspective it is not possible to generalise this
form of representation (i.e., knowing how to use one symbol gives no information
on how to use the other symbols) so an individual must be exposed to each symbol
during learning to be able to correctly interpret it. While this behaviour accords
closely with the notion of a symbol, it is impractical for the simulations in this chap-
ter which use very small training sets, making it probable that learners will not be
exposed to the entire range of symbols. Thus, the symbols in this chapter are more
‘informationally dense’ than those used in the previous chapter. An alternative ap-
proach is consequently taken in converting the continuously valued network outputs
into symbols.

The encoder network has five (continuously-valued) output units that must be
transformed into one of eleven symbols, denoted A, B, ..., J and $ (where $ is
again the end-of-sequence marker). These symbols correspond to the binary vectors
1,1,0,0,0], [1,0,1,0,0], ..., [0,0,0,1,1] and [0,0,0,0, 0] respectively: each of the

message symbols are five-bit patterns, with two bits on and three off, with the end-



CHAPTER 4. EVOLVING GENERALISABLE LANGUAGES 68

of-sequence marker being all zeros. Network outputs are transformed into these
patterns in the following way. If none of the encoder network’s output units has an
activation greater than 0.5, then $ is sent. Otherwise, the two highest activations
are saturated to a value of 1, the remainder set to 0, and the corresponding pattern
sent (‘two-winners take all’). Hence, to encode a concept x € [0,1], the encoder
network is presented with a sequence of inputs (z,0,0,..). At each step, the output
units of the network assume one of eleven states: all zero ($) or exactly two units on
(A, ..., J). This transformed output activation vector is then sent to the decoder. If
the $ symbol is produced, propagation of activation through the encoder network is
halted. Otherwise propagation continues for up to five steps, after which the output
units assume the zero ($) state, such that the end-of-sequence marker is always sent.

The general architecture for the networks remains the same from the previous
chapter, with five hidden units used for both encoder and decoder. To conform to
the change in symbol encoding, the encoder network has five output units and the

decoder network five inputs.

4.2.2 Interaction dynamics

The results from the previous chapter indicated that, due to conflicting constraints
of the encoder and decoder, it is easier for the decoder to process strings that are
in the reverse order to that produced by the encoder. In this chapter, the primary
aim is to test the extent to which a language can exploit the inductive biases of
learners, so it seems reasonable to simplify the learning task as much as possible.
Consequently, the input to the decoder is taken to be the reverse of the output from
the encoder, (except for §, which remains the last symbol). For clarity, utterances
will be written in the order produced by the encoder. Each input pattern presented
to the decoder matches the output of the encoder — either two units are active,
or none are. As before, the decoder network is trained with BPTT to produce the
desired value on presentation of the final symbol in the sequence (which will always
be $).

The hill-climbing strategy used in the previous chapter is again applied to the
encoder network (see Fig. 3.7), with some changes to the way in which learning is
used to evaluate the network. Whereas before decoders were trained using a staged
learning approach, with all values of a given precision appearing in the training set,
this chapter’s focus on generalisation requires an alternative approach. Since the

encoder’s input space is continuous and impossible to examine in its entirety, the
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input range is approximated with 100 uniformly distributed examples from 0.00 to
0.99. From this space of 100 concepts, decoders are trained on a small, randomly
selected subset for 400 epochs. After training, decoders’ language abilities are de-
termined by calculating the sum-squared error across the entire range of concepts.
The evaluation of encoder networks in the hill-climbing algorithm (Fig. 3.7) is thus:
(a) whether the mutant encoder produces a greater number of unique messages; and
(b) whether a decoder with random initial weights has, after training on the output
of the mutant encoder, a lower sum-squared error than the decoder trained on the
output of the current champion.

The simulation design addresses the issue of generalisation by utilising a training
set that is smaller than the entire space. The hill-climbing algorithm, defined on the
encoder, searches for a network that produces a language that a random decoder can
generalise from a small training set. The existence of such an easily generalisable
language would demonstrate that languages that evolve to exploit the biases present
in their learners may not need an additional, specifically tailored, innate language
competence. The search process is primarily aimed at finding a language that is
easy to learn, rather than at finding the encoder network itself. The results from
the previous chapter suggest that languages constructed by reversing the output of
the encoder provide likely candidates. That is, the search space that is formed by
the languages that are the reversed output of encoder networks is expected to be
suitably biased towards producing easily generalisable languages. This space is also

amenable to search via the weights of the encoder network.

4.3 Study 1: Evolving for generalisability

It seems unreasonable to expect that, from just five training examples, a decoder
could successfully generalise to an entire language. Consider again the regression
problem, shown in Fig. 3.1. It is obvious that as the number of labelled examples
decreases, the problem becomes harder. For a learner with low model bias, the
number of consistent hypotheses may be immense. Such a learner, when coupled
with an algorithm with little search bias, could be expected to find any of the many
alternative hypotheses. It is thus expected that the learning task should be hard
for the recurrent neural network learner used here. (Note that for the language
task, simple linear interpolation is not possible since generalisation is based on the

symbolic structure of the language, rather than the properties of the concept space.)
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Ten encoder networks were evolved with the hill-climbing algorithm for 10000
generations.®> All ten runs used encoders and decoders with five hidden units. At
the conclusion of the evolution phase the final languages were extracted and used to
train 100 new random decoders under the same conditions as during evolution (i.e.,
five examples, 400 epochs). These additional 100 learners provide a more accurate
measure of the learnability of the evolved language than the single learner used in
the evolution phase. Hence, it is these learners that are used to evaluate the ease

with which the evolved languages can be learned.

4.3.1 Study 1: Results

To provide a summary of the results, it is convenient to define a performance criterion
that can be used to categorise whether or not a decoder has adequately acquired a
language. The choice of criterion is arbitrary, but inspection of a variety of trained
decoders suggested that a sum-squared-error across the 100 points in the space of
less than 1.0 represented a creditable solution to the communication task, given its
difficulty. Such a decoder is defined to have learned the language. Furthermore, a
language is defined to be reliably learnable when at least 50% of random decoders
are able to learn it (to the above criterion) within 400 epochs.

Under the measure outlined above, all of the evolved languages were learnable by
some decoders with the ‘hardest’ language having only 20 successful learners, and
the ‘easiest’ having 72 successful learners (the mean being 48). Of the ten languages
evolved, five were reliably learnable. Encoders employed, on average, 36 unique
utterances (minimum 21, maximum 60) to communicate the 100 points (i.e., all of
the evolved languages had a substantial degree of homonymity). There was a strong
correlation between the size of the language and the number of successful learners
(r = 0.83). That is, the larger languages were more learnable.

The language abilities of the evolved encoders and trained decoders are best
demonstrated pictorially. However, it is impractical to provide a complete descrip-
tion of each of the ten trials. Thus, the remainder of this section provides a detailed
examination of one of the ten trials. The language that emerged from this trial was

one of the more learnable (the third best of the ten), but the general behaviour is

3 As before, one generation represents the creation of a more variable, mutated encoder and the
subsequent training of a decoder. More generations were possible in these simulation than those
in the previous chapter due to the decreased amount of learning, both in terms of the amount of
learning data and the number of training epochs.
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qualitatively representative of all ten trials.

The structures of the evolved languages makes it possible to depict them as trees.
This representation is similar in spirit to that used in the previous chapter (e.g.,
Fig. 3.4) but is more suitable for languages with larger alphabets. Furthermore, the
set of training examples form a sub-tree of the complete language tree. Showing both
the training set sub-tree (see Fig. 4.1) and the complete language tree (see Fig. 4.2)
highlights the inherent difficulty of the generalisation task: decoders must complete
the entire tree structure from a fragment of the same size as that highlighted.

Since the communicative goal is the accurate transmission and reception of a
point, plotting the decoder’s output against the encoder’s input should yield a curve
similar to y = z. Furthermore, it is possible to see how the dynamics of a decoder
construct this approximation from successive symbols (Fig. 4.3). This series of
figures highlights the recursive nature of the language (and the way it is processed).
The decoder’s output does not monotonically approach the desired output. Rather,
similar sub-structures are constructed across the space and are differentiated by
symbols that are received later. This effect is most apparent in Fig. 4.3(d) where
similar structures appear in both halves of the space. In other networks, the effect
is more marked.

This section has to this point considered only the final language produced by
the hill-climbing algorithm. Also of interest is the progress that the system makes
from an initial language, produced by a random encoder, to the final language. To
this end, the most relevant statistic is how the hill-climbing algorithm improved the
language over time (see Fig. 4.4). This figure shows a monotonic improvement, over
time, as guaranteed by the hill-climbing algorithm. However, the languages pro-
duced by the encoders have been subjected to a very unreliable evaluation function:
learnability by a single, random decoder from five random training examples. The
‘true learnability’ of the language is thus unlikely to be precisely the same as the
estimate of the learnability made during the evolution phase.

The large number of languages that are evaluated will also cause the learnability
of a language to be over-estimated. For a given language, the performance of all
possible learners with all possible training examples will have some distribution of
errors. The most desirable languages are those in which all learners do well (i.e,
a distribution with small variance and with a mean error close to zero). In effect,
the hill-climbing algorithm used in these simulations estimates the distribution from

a single example — the decoder trained during the evolution phase. Since this
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Figure 4.3: Decoder output after seeing the first n symbols in the message, for
n=1(a) ton =6 (f) (from the language in Fig. 4.2 and the training examples
from Fig. 4.1). The z-axis is the encoder’s input, the y-axis is the decoder’s output
at that point in the sequence. The five points that the decoder was trained on are
shown as crosses in each graph. After the first symbol (A, B, C, E or $), the decoder
outputs one of five values (a) with more states after successive symbols. Subsequent
symbols in each string specify finer gradations in the output. Note that the output is
not constructed monotonically, with each symbol providing a closer approximation
to the target function, but rather recursively, only approximating the linear target
at the final position in each sequence. Structure inherent in the sequences allows
the system to generalise to parts of the space it has never seen. Generalisation is
not based on interpolation between symbol values, but rather on their compositional
structure.
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Figure 4.4: Language improvement during the course of evolution. Each ‘step’ in this
figure corresponds with the ascendancy of a champion encoder/decoder pair (note
the logarithmic scale on the z-axis). The fitness of this pair, (shown on the y-axis)
is the squared error after training, summed across all 100 test concepts. (Recall that
when this value is less than one, the decoder is said to have adequately learned the
language according to the definition given earlier.)

algorithm searches for the single best learner, the learner that it finds is likely to be
from the best part of the distribution of all learners on the language. Although the
estimate of learnability provided by the single learner is unreliable, it is expected
that the better learners will tend to come from better distributions. That is, those
languages whose single trained decoder has very low error should also tend to have
reasonable distributions of errors across all learners.

Given the unreliability of the learnability measure in Fig. 4.4, it seems pertinent
to test the learnability of the networks with a more reliable measure. Such testing
can be done by taking each of the 34 ‘champion’ encoders and training 100 new
decoders on the language produced (see Fig. 4.5). The resulting estimate of the
‘true learnability’ curve is not monotonic decreasing, reflecting the unreliability of
the learnability measure used in Fig. 4.4. However, the general trend of the curve is
towards more learnable languages, as expected.

Together, Figs. 4.4 and 4.5 show the learnability statistics of the language as
it evolves, but fail to be informative about the changing structure of the language.
In Fig. 4.5, five positions are highlighted on the graph (labelled [1] through [5)).
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Figure 4.5: Estimate of true learnability of languages during the course of evolu-
tion. Each point in this figure corresponds to a champion encoder in Fig. 4.4 (which
appears as a ‘step’) with the z-axis collapsed across the generations. The language
produced by the encoder is tested by training 100 random decoders on five random
examples (chosen differently for each decoder) and then testing generalisation per-
formance across the range of 100 concepts. The y-axis thus plots the median squared
error summed across the 100 concepts. The median is used rather than the mean
since the distributions have a substantial positive skew. Recall that languages with
a median squared error of less than one are deemed reliably learnable. Also shown
is the number of unique utterances produced across the range of concepts. The
languages at the five highlighted points are shown in Fig. 4.6 (see text for details).

The languages produced by the champion encoder at each of these five positions are

shown in Fig. 4.6. The final language from this trial appeared in Fig. 4.2.

At the beginning of the trial there are very few unique strings, resulting in
a highly homonymous language. Learnability is poor as a consequence of the

lack of information in the language.

After the seventh successful mutation, the language has grown but remains
quite irregular. A completely different set of symbols are being used to those
that were in use earlier, and the language shows some similarities with the final
language (Fig. 4.2). The same string (I$) is used to encode two non-contiguous

regions, separated by the empty string ($).
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Successful mutation 16: the language continues to grow, but remains inad-
equately learnable. The same general structure is retained, although the F

symbol makes a reappearance (it appeared earlier at )

Successful mutation 17: in a single mutation the language undergoes mas-
sive regularisation. Learnability sees a substantial increase. Shorter strings
disappear, and an entire branch of the tree (headed by J) disappears. Some

irregularities remain, particularly the symbols F and A which occur only rarely.

Successful mutation 26: the learnability of the language improves even further
as does its regularity. Apart from the lone I node (which will appear in half
the language given its position), the tree is comprised of B, C and E nodes. The
order of symbols is readily apparent, with B always the left-most child node
(when it appears), followed by C then E. This ordering is consistent at each

level of the tree.

Successful mutation 33: the learnability of the language, as determined by the
more reliable measure, worsens. Irregularities return. Much of the structure
from has returned, most notably the J branch. The A symbol appears
throughout much of the tree (as it does in [4]), where in [5] there appeared
only B, C and E.

4.3.2 Study 1: Discussion

Given the paucity of training data, it is surprising that a language with any degree
of learnability could be found. While the reliability with which decoders learned was
not spectacular, they certainly were far more successful than anticipated given the
difficulty of the task. The five training examples provide only a sparse coverage of
the space, and their random sampling leaves a significant possibility of a pathological
distribution (e.g., if all five example concepts are taken from a very small region of
the space).

Additional tests were performed on the final languages where learners were pro-
vided with a greater number of training examples, either ten or twenty. As expected,
with more training examples (and hence diminished likelihood of unrepresentative
sampling), learners fared far better. When learners were given ten training exam-
ples, the ten languages were on average learned by 86% of decoders. With twenty

training examples, the ten languages were on average learned by 97% of decoders.
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Figure 4.6: Languages at five points during course of evolution as marked in Fig. 4.5.
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As the amount of training data provided to learners increases, their performance
also increases. An interesting question that arises for consideration in future work
is thus the trade-off between the amount of training data and the degree of success
(i.e., the point at which is it preferable to forego increases in learnability for reduced
training).

Further simulations attempted to establish whether evolved languages were suited
to being learnable from a specific number of examples. That is, whether the lan-
guage was more easily learnable from M examples than N examples (M # N). This
relationship was tested by taking languages that had been evolved to be learned from
M examples, Lj;, and languages that had been evolved to be learned from N ex-
amples, Ly, and comparing the learnability of Ly, and Ly from N examples. No
relationship could be established between the size of the training corpora during
evolution and the size of corpora during testing.

The sparse, random sampling of the training data caused by the small training
corpora was not the only potential source of difficulty. Each of the 100 decoders
used to test the final language had different initial weights, creating an additional
source of variability and uncertainty in the learning process. Why then, were learn-
ers so successful when learnability theory might suggest otherwise? Inspection of
the decoder networks’ performances on the training examples (by examining the
errors at the training examples in graphs such as that shown in Fig. 4.3) revealed,
not unexpectedly, that in most cases errors at the training examples were small.
BPTT had no significant problems minimising training error (i.e., finding a consis-
tent hypothesis), but this observation does not explain why generalisation was so
successful.

Restricting the search for learnable languages to those produced by an encoder
network provides part of the answer: sampling languages from this subspace is far
more likely to produce a learnable language than sampling from the entire space
of possible languages. However, two questions remain. Why are even these lan-
guages learnable (i.e., why should any language be learnable if RNNs are such fickle
learners)? Why should this subspace in particular be learnable, rather than any
other?

The answer to the first question appears to be that, at least for the task un-
der consideration, BPTT has a considerable search bias. The previous chapter
demonstrated the ease with which a decoder could be constructed (Fig. 3.5). The

dynamics of the hidden unit in this network are straightforward, being dominated
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by a single attractor.* The dynamical properties of a network determine its general
behaviour. If the dynamics that are established in a network by minimising error
on training data correspond to the dynamics required for the whole problem, then
generalisations are more likely to be accurate. Thus, a plausible explanation for the
consistently correct generalisation in the decoder is that the appropriate dynamics
are easy to establish in the decoder network. BP'T'T starts with a network with small
random weights. These networks are likely to already have an attractor dynamic
(Wiles and Elman, 1995). The five training examples are then sufficient to set the
required parameters for driving the dynamics, thus leading to good generalisation
performance.

An intuitive answer to the second question — that of why encoders produce
learnable languages — follows from a similar consideration of the dynamics. Since
both the encoder and decoder network are so closely related (both are recurrent
neural networks), they are governed by similar computational mechanisms. The
types of dynamics that can be established in the encoder can also be established
in the decoder. The fact that the two processes are related provides some benefit.
Consider again the non-linear regression problem of Fig. 3.1. There will be some
advantage to choosing a learner from the same class as the target function: if the
labelled data is known to be generated by a polynomial, it makes sense to try to
fit that data with a polynomial curve. The dynamics of the encoder constructed in
the previous chapter (Fig. 3.3) are dominated by a repelling fixed point, and two
associated attracting fixed points. This dynamic is effectively the inverse of the
dynamic found in the decoder. The correspondence between encoder and decoder
implies that for any easily-found encoder, there should be an associated, easily-found
decoder.

While recurrent neural networks may have relatively small model bias, the results
of this study suggest that, when combined with BPTT, they may have a significant
search bias. On the decoding task under consideration, the search space provided
by the encoder network assists in exploiting this search bias so that learnability is
boosted beyond what might be expected. If a real learned communication system

were to have similarly exploitable biases then we might expect a similar outcome:

4That is, in the absence of any input, the activation of the hidden unit will tend toward some
fixed value over time, regardless of the starting activation value. More substantial coverage of the
dynamics of RNNs can be found elsewhere in the literature (Wiles and Elman, 1995; Tino et al.,
1995; Rodriguez et al., 1999; Bodén et al., 1999, for example,), and is outside the scope of this
thesis.
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that a learner’s guesses about the language would tend to be correct since the lan-

guage could evolve to match the intuitions of its learners.

4.4 Study 2: Evolving for different generalisations

The first study demonstrates that for the recurrent neural network learner there
exist languages that can be generalised from few examples. Study 2 probes the role
that the language plays in generalisation. Particularly, the simulations address the
question of whether a language can support different generalisation requirements.
Study 1 §4.3 considered the case where the decoder’s required output was the same
as the encoder’s input, yielding the approximation to the line y = z in Fig. 4.3(f).
Given a set of pairs of concepts (x) and utterances (U), {(z1,U1), ..., (n, Un)} (i€,
the labelled data of the training set), the decoder was required to generalise the
relationship for all utterances, U — x. In the simulations presented in this section,
decoders are instead given a set {(f(z1),U1),...,(f(zn),U,)} and are required to
generalise the relationship, U — f(x).

The introduction of the function f(-) changes the nature of the relationship that
the decoder is required to generalise. As an extreme example, consider the case
where f(x) = k for some constant, k. With such a function, the language should be
trivially generalisable. However, if the language has many different utterances, then
the learner will be required to generalise each different utterance to the same (output)
concept. If the language has only a single utterance, then learning is trivial. The
opposite extreme is where f(z) is defined such that the outputs for similar values
of z are unrelated (e.g., where f(x) produces a randomly chosen value). In this
case, languages such as those found in the previous section cannot be successfully
generalised by the decoder. What is required in this case is a re-ordering of the
utterances so that utterances are ordered with respect to f(z) rather than z (i.e.,
where similar utterances encode similar values of f(x) rather than x). In these two
examples, the structure of the language can significantly alter the difficulty of the
generalisation task. The choice of f for a learner will be referred to as the world.

The simulations thus aim to demonstrate that the generalisation performance
found in §4.3 does not stem from an omnipotent learner, rather, that the structure
of the language itself facilitates learning. For this assertion to be true, languages
that have been chosen so as to be learnable in one world should not be as easily

learned in an alternative world, unless of course the two worlds are in some way
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homologous (e.g., f(z) =z and f(z) = —x).

Two sets of ten languages were evolved, each set using a different world: ei-
ther the same world as in the first set of simulations, or a set of random steps
(see Fig. 4.7). On the completion of the evolution phase, the final languages were
tested for learnability in four different worlds (including the one in which they were
evolved). The four worlds — identity, random-step, sine and cubic — were chosen

so as to vary in monotonicity and continuity.

e The identity world is both monotonic and continuous.
e The random-step world is non-monotonic and non-continuous.
e The sine world is non-monotonic and continuous.

e The cubic world is monotonic and continuous like the identity world, but differs

by having a non-constant derivative.

Again, testing was performed by training 100 new random decoders. Languages
were evolved in the same manner as in §4.3, with the exceptions that ten training
examples were used rather than five, and the hill-climbing algorithm was run for

only 1000 generations.

4.4.1 Study 2: Results and analysis

As expected, languages were substantially more learnable in their ‘native’ worlds (see
Table 4.1). Languages evolved for the identity mapping were on average learned by
64% of decoders trained on the identity task compared with 0%—29% in the other
worlds. Languages evolved for the random-step task were learned by 60% of decoders
trained on the random-step task but only 0%-24% when trained in other worlds.
Decoders generally performed poorly on the cubic function, despite some similarities
with the identity function, and no decoder learned the sine task from either set of
evolved languages.

Some additional tests were performed with alternative functions for both evolu-
tion and testing, including two quadratic functions (one monotonic, the other ‘U’
shaped). In every case, learners in the native world of the language outperformed
learners from non-native worlds.

Presumably, the learners in the native world of the language outperform learners
in non-native worlds because the structure of the language has adapted to be gener-

alisable in a specific way. That is, the structure of the language captures properties
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I
(a) identity (b) random-step
(c) sine (d) cubic

Figure 4.7: Four alternative ‘worlds’ that impose different generalisation require-
ments on learners. These functions show the desired relationship between encoder
input, shown on the z-axis, and decoder output, shown on the y-axis. The identity
world (a) is the same as that used in §4.3. Languages were evolved for learnability
in either the identity or random-step worlds and were tested for learnability in all
worlds (i.e., (a) and (b) are used for both evolution and testing, and (c) and (d) are
reserved for testing).

of the structure of the environment (world), which learners then exploit. Surpris-
ingly, an initial inspection of the two sets of languages (identity and random-step)
revealed no obvious structural features that would indicate one was more suited to a
random-step world than the other (see Fig. 4.8). Certainly, the figure shows a clear
difference between the relative sizes of the languages, with the identity language hav-
ing twice as many distinct strings as the random-step language. This result is to be
expected — unlike decoders in the identity world, random-step decoders only have
five different output values. Consequently, languages with many different utterances
are probably suboptimal (but inevitable given the requirement for constantly larger
languages in the hill-climbing algorithm, Fig. 3.7).

Differences beyond the sizes of the languages are revealed by consideration of the
structure of the language with respect to the structure of the environment (Fig. 4.9).

Since the random-step world is broken into five equally-sized pieces we expect that
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Table 4.1: Learnability of languages in different worlds. Languages were evolved to
be learnable in either the identity or random-step worlds, then tested for learnability
in the four worlds shown. Each cell summarises the learnability of ten languages,
each tested by training 100 new random decoders. The first number in each cell
in the table shows the number of languages out of ten that were reliably learnable
(i.e., successfully learned by at least 50 of the learners). The number in parentheses
is the number of successful learners out of 100, averaged across the ten languages.
The two results shown in bold are the cases where the test and evolution conditions
were the same. In both cases, learnability is substantially better in ‘native’ worlds,
with seven or eight of the ten languages reliable learnable.

Test World
10 (100)
Evolution World || identity | random-step | sine | cubic
identity 7 (64) 0 (5) 0(0) | 1(29)
random-step 2 (24) 8 (60) 0(0)|0(17)

good languages should use easily distinguished utterances in each range. The lan-
guage shown in Fig. 4.8(b) demonstrated this effect. The first level of the tree is
broken into three regions covered by J, D and A. The J symbol covers exactly the first
two fifths of the concept space, the D covers the next two fifths, and the A symbol
covers the remaining fifth. Within the region covered by J, JD covers the first fifth of
the (entire) space, and JJ and JE cover the remainder. Thus, all concepts in the first
step are encoded by strings starting with JD; those in the second step are encoded
by strings starting with JJ or JE; those in the third and fourth steps are encoded
by strings starting with D and those in the final step are encoded by strings starting
with A. The language makes no clear distinction between the third and fourth steps
— the border between them falls inside the region encoded by DDDAG$. However,
these two steps are the least important to differentiate since they have such similar
heights (see Fig. 4.7b). Thus, the steps of the world are encoded by the first (and
more ‘significant’ in numeric terms) symbols of each utterance, making the steps
easily distinguishable. Conversely, the language that was evolved in the identity

world (Fig. 4.9a) has no clear relationship to the random-step world.

4.5 Study 3: Generalisation from a fixed set

In the former two studies in this chapter, decoders were trained on the output of
encoders for randomly selected concepts. All concepts were equally likely to be
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chosen. In some cases an unfortunate choice of examples made learning extremely
difficult, for example, if all of the examples were chosen from the same region of the
concept space. In contrast, it seems likely that there is much commonality between
the learning environments of human children, and that this environment is in some
sense semantically constrained, at least in a statistical sense. This suggestion is
different to that of Elman (1993) where the constraints are imposed internally in
the infant by constraints on the available processing power. Rather, the suggestion
is that the environment of the human infant is shaped by external, non-linguistic
processes that produce a predictably structured learning environment.

The third study considered whether languages could adapt to be learnable from
a specific set of concepts. The results of study 2 (§4.4) suggested that decoders
had difficulty generalising to the sine function. To provide a challenging task, the
systems in this study were all evolved with the sine generalisation task. Two sets of
simulations were performed (studies 3A and 3B). In the first set of simulations (3A,
the variable environment condition), ten languages were evolved to be generalisable
from ten examples, randomly chosen for each learner. This first set of simulations
was essentially a repeat of the simulations of study 2 (§4.4) but with the sine function
instead of either the linear or random-step function. In the second set of simulations
(3B, the fized environment condition), ten languages were evolved to be generalisable
from ten examples. These ten examples were chosen randomly, but were the same
for each learner within each of the trials (i.e., one set of concepts was randomly
generated for each trial). For convenience, the ten sets of training examples used
in study 3B are denoted A, B, ..., J, and the languages that were evolved for each
of these sets L4, Lg,...,Ls. The ten languages evolved in the fixed environment
simulations (study 3A) are denoted Ly, ..., Lio.

If languages can indeed boost their learnability by adapting to the learning en-
vironment of learners, then it should be expected (a) that languages will be more
learnable when the learning environment is stable than when it is not, and (b) that
languages will be more learnable in their ‘native’ environment (i.e., when learners are
in the same environment in which the language evolved). To test the first of these
assertions, 100 random decoders were trained on each of the ten languages from the
variable environment (again using different training examples for each learner) as
well as on each of the ten languages from the fixed environment (using the same
training examples as during evolution). The learnability of the two sets of languages

were then compared.
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To test whether languages were particularly suited to being learned from the
examples used in the evolution phase, 100 decoders were trained on each of the
ten languages (Ly, ..., Ls) using the example sets A, B and C (these sets were
chosen arbitrarily). The results from these tests are then compared with the results
collected from study 3B, where 100 decoders were trained on the examples used

during evolution.

4.5.1 Study 3: Results and discussion

The results from studies 3A (variable environment) and 3B (fixed environment)
clearly demonstrate that, on average, a learner is more likely to be successful in
the fixed environment than in the variable environment. Languages in the variable
environment condition (3A) were successfully acquired by only 2.8 learners on aver-
age, compared with 28.3 learners for the fixed environment condition (3B). However,
even in the fixed environment a substantial proportion of languages were not learned
by any learners. Inspection of the sets of training examples revealed that sets F
and Z were unrepresentative of the concept space. For example, neither F nor 7
contain any examples between 0.3 and 0.6, the region of most rapid change in the
sine function. Similarly, training sets G and J fail to cover sizeable regions of the
concept space where the gradient of the sine function is large. Set B has no obvious
challenging properties. These observations indicated that the language evolution
process was incapable of overcoming the challenges imposed by difficult training
sets. The learnability of the languages produced from both the fixed environment
trials and variable environment trials is shown in Table 4.2.

The results presented in Table 4.2, can not give an unambiguous indication of
whether languages can adapt to be learnable from a specific set of examples. Cer-
tainly the results show that the fixed environment trials outperformed the variable
environment trials on average. However, the results may be a consequence of the
training set alone rather than the interaction between training set and language evo-
lution (e.g., Lg may be a particularly well chosen set of examples). A clearer picture
of the interaction between training set and language evolution should be given by
the results of the second set of tests.

It was expected that languages would be considerably easier to learn from the set
of examples from which the language was evolved to be learned. Such a result would
follow from the adaptation of the language to the training examples, and would

manifest itself by having learnability from the ‘native’ training set substantially
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Table 4.2: Learnability of languages evolved in study 3 for both the variable learning
environment (study 3A) and the fixed learning environment (study 3B). The table
shows the number of successful learners (to the 1.0 criterion used previously) out
of 100 trained for each of the evolved languages. Although the average success rate
is considerably higher for the fixed environment, there are a comparable number of
languages that are not learned by any learners. Note that the language labels are
arbitrary, so that L; has no relationship with Ly4.

Variable Environment (3A) Fixed Environment (3B)
Language ‘ Successful learners (of 100) || Language ‘ Successful learners (of 100)
Ly 4 L4 60
L, 0 Ly 0
Ly 0 L¢ 49
Ly 0 Lp 12
Ls 13 L¢ 98
Lg 0 Lr 0
L, 0 Lg 0
Lg 3 Ly 54
Lg 6 Lt 0
L10 2 Lj 1

better than learnability from a ‘foreign’ training set. The results are not so clear.

For languages L4, Le and Lg, the predicted pattern of results occurs, and for
languages Lg, Lz, Lg and Lz where all learners failed to reach the criterion, the
results provide no evidence either way. However, for languages Lp, Ly and Lg
the results are contrary to what was expected. For each of these three anomalous
languages, learnability is better on training set C than on the set for which they
were evolved. Table 4.3 documents all of the results.

There appear to be two general effects. The first is that some sets of training
examples are easier to learn from than others, independent of the language (e.g.,
set C). The second effect is the expected one, namely that the language does evolve
to become learnable from a specific training set (e.g., L4 and Lg). However, the
results are insufficiently clear to permit any strong conclusions to be drawn along
these lines. The notion that languages may exploit consistent learning environments
to boost generalisability remains an interesting prospect for future work. A weaker
conclusion that may be drawn from the results of this section is simply that the choice
of training examples plays an important role. Indeed, one of the main benefits of
the environment in which human infants acquire language may simply be that it

ensures that the distribution of examples is not pathological.
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Table 4.3: Learnability of languages from various training sets. The learnability of
each of the ten languages evolved with a fixed learning environment was tested on
three alternate training sets, A, B and C. Each cell in the table shows the number
of successful learners (to the 1.0 criterion used previously) out of 100 trained for
the given language and set of training examples. These results may be compared
with the learnability of the language from its ‘native’ training set, shown in column
* (also shown in part 3B of Table 4.2). Note that each of the pairs marked *¢
represents the same result.

Number of successful learners out of 100
Training set during testing

Language | A | B | C *

Ly 60% | 21| 0 60°

Lg 0 |0°| 0 0°

L¢ 2 | 4 |49° 49¢

Lp 0 1| 44 12

L¢ 0 | 0] 31 98

Lr 0|00 0

Lg 0|00 0

Ly 0 |0 84 54

Lt 0|0 O 0

Ly 0 |39 98 1

4.6 Discussion: External factors in generalisation

The first study showed that a language could be learned from five strings by a
recurrent network. Generalisation performance included correct decoding of novel
branches as well as symbols in novel positions (Fig. 4.2). The second study high-
lighted how a language could be evolved to facilitate different forms of generalisation
in the decoder. The third and final study aimed to demonstrate that languages could
also be tailored to be generalised from a specific set of examples. In this study, all
languages were preferentially learned from either their native training set or set C.
The results were not sufficiently clear to be able to draw any strong conclusions, but
they were suggestive that some relationship may form between the language and its
training set.

The three series of simulations modified the language environment of the decoder
in different ways: (1) the relationship between utterances and meaning; (2) the type
of generalisation required from the decoder by the external environment; and (3) the
particular utterances and meanings to which a learner was exposed. In each case,

the language environment of the learner was sculpted to exploit the biases present in
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the learner. Batali’s (1994) method of providing learners with an additional bias in
the form of initial weights was also likely to have been effective in assisting learning.
However, the purpose of the simulations in this chapter was to investigate how
external factors could assist in simplifying learning, rather than the phylogenetic

evolution of language-specific competences.

“The key to understanding language learnability does not lie in the richly
social context of language training, nor in the incredibly prescient guesses
of young language learners; rather, it lies in a process that seems other-
wise far remote from the microcosm of toddlers and caretakers — lan-
guage change. Although the rate of social evolutionary change in learning
structure appears unchanging compared with the time it takes a child to
develop language abilities, this process is crucial to understanding how
the child can learn a language that on the surface appears impossibly

complex and poorly taught.” (Deacon, 1997, p115).

This chapter has considered the ways in which languages may exploit the char-
acteristics of their learners to boost their generalisability. The results suggest that
the requirement of an innate language competence may be pushed back — that the
biases of general-purpose learning mechanisms can be exploited by judicious choice
of language. In all of the simulations in this chapter, enhancement of language learn-
ability is achieved through changes to the learner’s environment, without resorting
to the addition of biases to the language acquisition device.

The types of languages that were evolved in this chapter are unlike either human
languages or the artificial languages that emerged from the simulation work of Kirby
(1999b) and Batali (1998). This difference in languages is likely due to differences
in the semantic domains, utterance domains, and in the learners themselves. Most
significantly, the languages that emerged in this chapter were not compositional in
nature: it was not possible to draw a direct correspondence between components
of an utterance and components of the meaning. These studies thus provide evi-
dence that compositionality is not the only viable form of linguistic structure, and
that compositional generalisation is not a necessary condition for the emergence of
language-like communication systems. While compositionality is a dominant feature
of human languages, the results suggest that there are viable alternatives. Thus,
models that strive to understand the general principles behind the emergence of
language-like communication system should not, like Kirby (2000), utilise a learner

that assumes compositionality.






Chapter 5

Emergence of Language in a

Population

The studies presented in the previous two chapters have considered the case of a
single sender communicating with a single receiver. In these studies, the sender
evolved to produce a learnable language that enabled accurate communication. The
language that emerged was then used to teach new receivers, yielding a one-to-
many relationship between senders and receivers. This simulation design captures
an important building block in a communication system but fails to model many
other factors. Two features of the model in particular are easily recognisable as
misrepresentations of a realistic communication system: the lack of a population of
speakers and an artificial distinction between senders and receivers.

In the model that was considered in the previous chapters, there was only ever
one sender in any given generation. The language of the system was thus defined
by the language of that individual. In more realistic communication systems there
are many senders. Each of these senders may possibly have its own idiosyncratic
language that differs slightly from that spoken by the remainder of the population.
While there may be no canonical language, there is nevertheless broad agreement
across the population. Such agreement is obviously advantageous to a population;
if individuals agree on a uniform language, then once an individual acquires that
language, it can communicate with all members of the population.

One problem for a population is how to reach consensus on a language, that is,
how the individuals’ languages converge on a standard form. As noted in §2.2, pop-
ulation convergence is often studied in the context of signalling systems. However,

there are some significant differences between language systems and signalling sys-
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tems that seem important for convergence. Primary amongst these differences is the
need to co-ordinate the use of linguistic structures. In signalling systems the signals
are atomic, whereas for language a population must agree not only on what a given
signal means, but also on the meaning of a composition of symbols. Furthermore,
learners must generalise this structure from a limited subset of examples.

The processing constraints of a language’s users may determine some of its prop-
erties: the population agrees on a particular protocol because it is the simplest form
to process. In this case, consensus is ‘built-in’ to the users. For example, in Chap-
ter 3, encoders were strongly biased towards MSB first languages, so it would be easy
to establish an MSB first language in a population of encoders. Other properties of
a language may be determined arbitrarily, agreed on only for the sake of convention.
For example, in Chapter 3 there was no reason why 0 should have been preferred
over 1 when indicating small values. Indeed, many systems produced languages with
‘negated’ semantics or other exotic forms (§3.4.2), an expected outcome given the
use of arbitrary symbols. The issue of agreement on symbols is essentially the prob-
lem of signalling systems, and that literature is informative as to how agreement
can be reached (Oliphant, 1999, for example). These two examples (MSB versus
LSB and 0 versus 1) represent opposite extremes; one being entirely constrained
by processing limitations, the other being entirely arbitrary. In reality, the situa-
tion is far more complex. Most properties fall somewhere between predetermination
and arbitrariness and can not, in general, be determined independently of the other
properties of the language.

In the traditional generative grammar approach, Universal Grammar (UG) pro-
vides strong, innate constraints on linguistic form, thus solving much of the consen-
sus problem. However, English and Japanese are very different languages so there
remains some degree of flexibility. The flexibility goes beyond the simple surface fea-
tures of language, such as which word to use for a given meaning (analogous to the
0/1 case above), and extends into syntactic structures. An alternative explanation
that has been considered throughout this thesis is that the dynamics of linguistic
interaction, when coupled with learning biases much weaker than the innate con-
straints of UG, may be sufficient for establishing syntactic conventions. Previous
chapters have established that a language can be ‘designed’ to be easily acquired by
such a learner. This chapter considers the conditions under which a population of
such learners can reach consensus on an appropriate language, that is, the conditions

under which the population converges on an easily acquirable language.
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In Chapter 3 an explicit distinction was made between the processes of sending
and receiving. This distinction was made to demonstrate a point: that language
may need to adapt to the different constraints and biases inherent in the sending
and receiving tasks. A more likely scenario is one in which the two processes are
related. For example, in humans the ability to produce comprehensible utterances
comes (at least partly) from listening to others. That is, the knowledge of what to
send is based on the receiving process: information is shared between the sending and
receiving ‘modules.” At this point it is unclear how to best model the dependencies
between sending and receiving. (Indeed, it is unclear exactly what the dependencies
are.) The complete separation of an individual’s sending and receiving behaviours
seems inappropriate, as does the assumption that the functions must be inverses. In
this chapter, the choice is made for pragmatic reasons, as a result of some preliminary
simulations (§5.1).

Thus, the simulations presented in this chapter extend the work of the previous
chapters in two ways: the inclusion of a population model, and the ability of agents
to both send and receive. The aim is to investigate the conditions under which a
population of weakly biased learners can converge on a learnable language. These
simulations are closely related to Kirby’s Iterated Learning Model that was reviewed
in §2.2.1.

Kirby (1999b) showed how the space of observed languages might be constrained
by a language learning dynamic. As languages are passed from one generation
to the next, they are filtered through the learning experience. Importantly, this
filter acts as a bottleneck since a language learner can never observe every sentence
in the language. Kirby argues that a consequence of this dynamic is a pressure
for languages to evolve towards forms that are easy generalisable by learners, and
presents some intriguing simulations to demonstrate his point.

Kirby’s simulations (like all computational models), considered an idealised sys-
tem. Consequently, although Kirby showed that a language-learning evolutionary
dynamic was sufficient to evolve a learnable language under a particular set of cir-
cumstances, the generality of his results is open to debate. For computational models
such as Kirby’s, it is important to establish the features of the abstraction that lead
to the observed results. That is, we should strive to understand which parts of
the abstraction are required, those that are superfluous, and those that must be
constrained to a critical range of values.

In this chapter we explore Kirby’s simulations in greater detail. Kirby credited
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his results to a ‘learning bottleneck’ but did not test this issue directly as he did not
consider variations in learners, tasks or parameters. His choice of learner was moti-
vated by the fact that it had been developed as an algorithm for grammar induction,
and the choice of semantic domain was constrained so as to have combinatorial struc-
ture. The question we consider is whether the learning bottleneck is the primary
factor with other kinds of learners and a differently structured semantic domain.
Kirby’s learning mechanisms looked for common substrings and inferred generalised
rules for generating them. We believe that this assumption is unnecessarily strong,
and that a weaker assumption can be tested in an alternative framework.
Preliminary simulations revealed some unexpected behaviour that was to play an
important role in determining the simulation methodology used in the studies in this
chapter. While these simulations can be said to have failed, the manner in which they
did so was instructive, reaffirming the notion that languages adapt to be more easily
acquired and demonstrating the need for an obverter-like procedure (that is, using
the agent’s own ‘receive’ behaviour to determine its ‘send’ behaviour, as described
in §2.2.1). The basic design and outcome of these simulations is briefly presented
in §5.1. The perceived failings of this preliminary model motivated the design of
the methodology presented in §5.2 where comparisons are made with Kirby’s model,
with particular regard to the learning model and the differently structured domain.
Simulations within this framework were performed varying two parameters: the
amount of training data supplied to the learners (the size of the bottleneck), and
the size of the population (§5.3). An analysis of why the results vary across changes
in these parameters relates the results back to Kirby’s work (§5.4). The simulations
of §5.5 further explored how Kirby’s results depended upon experimental conditions,

this time by varying aspects of the learning environment.

5.1 A first attempt: The obverter requirement

A preliminary simulation design considered the case of a population of encoders.
These simulations were closely modelled after Kirby’s Iterated Learning Model (see
§2.2.1, p26). The population was arranged in a ring. In each step of the simulation,
one individual was replaced by a new, untrained individual. The new individual was
then taught to mimic the language productions of its two neighbours by observing
a set of (meaning, utterance) pairs. The meaning domain was the same as in the

previous chapter (i.e., the unit interval, approximated by 100 points) as were the
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encoders (recurrent neural networks). In the simulations of previous chapters, it was
not possible to use BPTT for training the encoders since there was no fixed target
output (the language was free to vary) and there were no other decoders from which
to learn. In these preliminary simulations, the existence of a population of encoders
meant that new encoders had a target language (the language of the pre-existing
population) and so could be trained with BPTT rather than the hill-climbing method
previously used. The alphabet was reduced to a size of four, with the symbols (4, B, C
and D) being represented by one-hot encoded vectors (i.e., [1,0,0,0],...,[0,0,0, 1]).

Initially, the members of the population had unrelated languages. The success of
the population was measured by the similarity of different encoders’ utterances for
a given meaning. It was expected that, over time, the languages of the population
would converge on a reliably learnable form.

The simulation results confirmed this prediction albeit in a somewhat unex-
pected way: the populations converged on totally homonymous languages. In these
languages, the same utterance is used to express every meaning, thus making it
impossible for the receiver to recover the intended meaning. Such a language is
not expressive, but the only requirement on the population was for agreement, not
expressivity. Furthermore, these types of languages are perhaps the simplest to ac-
quire and are consequently resistant to change through the language transmission
dynamic. Thus, the results are what (in retrospect) should have been expected:
the population converges to the attractor of the transmission dynamic — the most
reliably transmissible form.

While the results supported the hypothesis, they failed to do so in a satisfactory
manner. Numerous changes were made to the original simulation design with the aim
of encouraging expressivity in the encoders (i.e., the use of different utterances for
different meanings). None of these changes resulted in populations that converged on
expressive languages. This string of failures suggested the same conclusion drawn by
both Batali and Kirby (personal communication): that a system based on mimicry
alone is inadequate and that an obverter-like process is necessary. The simulations

utilising the obverter procedure are presented in the following sections.

5.2 Methodology

The basic methodology was similar to that of Kirby’s (see p26), with the significant

difference that we used recurrent neural networks (RNNs) rather than symbolic
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grammars to model communicative agents, and also employed a different mean-
ing domain. In Kirby’s original simulations, the agents attempted to communicate
simple predicates denoting agent, action and patient (“Who did what to whom.”)
represented as triples (or 3-tuples). These simulations used the same simple seman-
tic domain as in previous chapters, where meanings were represented as points in the
unit interval [0, 1], which for simplicity are restricted to 100 values of 0.01 increments
(i.e., 0,0.01,0.02,...,0.99). Similar to Kirby’s simulations, agents communicated a
meaning by sending a sequence of up to six symbols which were taken from an al-
phabet of size four. Following standard neural network practice, the symbols are
represented as four-dimensional binary vectors [1,0,0,0], [0,1,0,0], [0,0,1,0] and
[0,0,0,1], which will be denoted A, B, C and D respectively.

The simulations in previous chapters used one RNN for encoding (taking a mean-
ing and producing a sequence of symbols) and a separate RNN for decoding (taking
the sequence of symbols and producing a meaning). The present series of simula-
tions used a population of agents with a homogeneous network architecture, capable
of both sending and receiving. After the failures noted above, we determined that
the most appropriate approach was to use a population of decoder networks and use
the same obverter approach to message production used by Batali (1998). Thus, the
decoders of the previous chapters were given the ability to also act as encoders.’

To decode an utterance, the activations of the network were reset to zero and
the sequence of symbols was propagated through the weights of the network. Once
the entire sequence had been propagated, the decoded meaning could be read off the
output unit. Producing an utterance involved the obverter procedure — a network
attempted to produce the utterance which, if the network were to hear, would be
understood to correspond to the desired meaning. That is, if we consider an agent
as a mapping from utterances to meanings A : U — M, then the obverter procedure
tries to produce utterances by approximating the inverse of its own comprehension
function A~'. The mechanics of the process are the same as those used by Batali
(1998) and are best described with a hypothetical example.

Suppose that an agent wants to communicate the meaning 0.63. To do so, the
agent must find the utterance which it understands to mean 0.63 (or as close to it as

possible). The first step is to reinitialise the activations of the network to zero. The

!n this study the decoders were (first-order) RNNs having four input units (corresponding to
the vectors that form the symbols available to the language), five hidden units, and a single output
unit (corresponding to the one-dimensional ‘meaning’. These units were connected in a simple
recurrent network architecture (Elman, 1990).
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Figure 5.1: A population of communicating agents. Each agent was modelled by a
simple recurrent network and could communicate with two neighbours so that the
population formed a ring.

sequence of symbols is then determined by an iterative process. Four copies of the
network are made, one for each different symbol. Each of the four different symbol
vectors is then propagated through its corresponding network, and the outputs are
examined. Suppose that the A network output is 0.4, B is 0.9, C is 0.1 and D is
0.2. Since A produced the output closest to the target meaning (0.63), A is taken to
be the first symbol of the utterance. Four copies of the A network are then made
(since A was the winning symbol) and the four symbols are propagated through
those networks. This step produces meanings for AA, AB, AC and AD. Whichever of
these four sub-utterances produces the meaning closest to the target is then used
to spawn a further four networks. The process repeats until either adding symbols
fails to improve the output of the network (for example if A was better than AA, AB,
AC and AD) or the maximum number of six symbols is reached. This final string is
then communicated to the other agent(s).

The population of networks was arranged in a ring so that each individual had
two neighbours. The following sequence of events closely follows Kirby (2000), and
was repeated 2500 times. Fach cycle of this algorithm is called a generation, even
though only one member of the population changes. Thus, 2500 individuals are

trained in total. The basic organisation of the population is depicted in Fig. 5.1.

1. Replace a randomly chosen network by a new network with small random
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weights taken from a uniform distribution between -0.3 and 0.3.

2. Create a set of (meaning, utterance) training examples by encoding a set of
randomly chosen concepts with a neighbouring agent. The training set contains

utterances produced by both neighbours.

3. Train the new network on the training corpora. The network is trained with
BPTT using a learning rate of 0.01 and a momentum term of 0.9 to produce the
appropriate meaning upon presentation of an utterance. The entire training

corpus is presented to the network 1000 times.

4. Evaluate the communicative accuracy of the population in the following way.
Every combination of sender and receiver, regardless of location, attempts to
communicate the 100 meanings. The squared communicative error for each
meaning is summed giving a communicative error score for each (sender, re-
ceiver) pair. These scores are then averaged, giving a measure of the average

communicative error for the population.

5. Return to step (1).

Two parameters of the simulations were varied — the size of the training corpus
and the size of the population — with three variations of these parameters. In the
first variation we used a population of size ten and a training corpus of size ten. The
second variation increased the size of the training corpus to twenty while keeping
the population size at ten. The third variation increased the size of the population
to twenty while using the larger training corpus size of twenty examples. This set of
simulations is denoted as series 1 and the three combinations of parameter settings as
studies 1A (small population, small corpora), 1B (small population, large corpora)
and 1C (large population, large corpora). Importantly, the size of the training
corpus was chosen to always be significantly less than the size of the full meaning
set. Consequently, networks were required to generalise well beyond the examples

in the training corpus to communicate about the full set of meanings.

5.2.1 Putting it all together

This section briefly describes what happened during a typical run. The initial pop-
ulation of networks were untrained and generally produced uninteresting languages.

Networks were unable to produce enough unique utterances to differentiate each
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meaning. Typically, networks were only able to produce three or four different
strings which were reused for many of the 100 meanings. In almost all cases each
unique utterance was used for a single contiguous range of meanings. For example,
a network may have sent DDDD for meanings with values between 0.00 and 0.35, DDBD
for meanings with values between 0.36 and 0.65 and DBBB for meanings with values
from 0.66 to 0.99. Furthermore, the agents in the population disagreed on which
utterance corresponded to a given meaning. The average communicative accuracy
was consequently very poor and agents had little success even in understanding their
own utterances. (The degree to which an agent comprehended its own utterances
could be tested by taking two copies of the agent, one of which acted as sender, the
other as receiver, and measuring their communicative error.)

One of the agents was then replaced with a new individual. The new individual
was trained on a set of examples produced by its two neighbours. Since the output of
the two neighbours was unrelated, the training data for the new network was likely
to be a confusing blend. After training, the new network shared some characteristics
of the languages produced by its neighbours and was usually able to understand its
own utterances. The communicative accuracy of the newly trained network was
typically better than the remainder of the population.

After several agents had been replaced and new ones trained, contiguous sections
of the population began to have reasonably high agreement on which utterances to
use for which meanings. The consistency was never perfect, but networks did tend
towards using similar strings for a given meaning. Often, one contiguous subset of
the population would use one convention for a region of the meaning space, while the
remainder of the population would use a different convention. For example agents
one to five may use AAAB to communicate 0.50 while agents six to ten use DDDC
to communicate the same meaning. At this stage, the vocabulary of the agents
expanded to around twenty unique utterances. That is, agents were capable of
differentiating twenty regions of the meaning space where initially they were able
to differentiate only three or four. From this point onwards, the course of the
simulation was dependent on the choice of parameters. The next section elaborates

on this point.
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5.3 Base results: Series 1

For each of the three combinations of population size and training data parameters,
three separate runs of the simulation were performed with different seeds of the
random number generator producing different sets of initial weights and different
choices of training examples. In all cases, simulations performed under the same
parameters yielded qualitatively and quantitatively similar results. The results pre-
sented here are based on the communicative accuracy of the populations, averaged
across the three trials performed for each set of simulation parameters. The com-
municative error between a sender and a receiver was determined by the squared
error between the meaning intended by the sender and the meaning as understood
by the receiver, summed across the 100 possible meanings. The communicative error
for the population as a whole was taken to be the average communicative error for
every possible combination of sender and receiver. Following on from the previous
chapter, a communicative error score of one or less is taken to be an acceptable level
of communicative accuracy.

With a small population size and with small training corpora (study 1A), the
populations always failed to reach consensus on a language, as shown in Fig. 5.2.
After a brief initial period where communicative error dropped quickly, the error
increased again. Throughout the course of a run, the communicative accuracy of
the population continued to oscillate, and even during the better periods, the popu-
lations failed to communicate with an acceptable degree of error. During the initial
improvement in accuracy and during subsequent periods of good performance, indi-
vidual’s languages showed a reasonable level of agreement with some other members
of the population, and there were easily distinguishable ‘families’ of languages. The
populations that are responsible for the periods of high error show little coherence.
Although small subsets of the population (two or three individuals) may use lan-
guages that are somewhat similar, there is no consensus amongst the population at
large.

Keeping the same population size as for the previous study while increasing the
amount of training data presented to new agents (study 1B) significantly improved
performance (see Fig. 5.3). There was a rapid initial convergence as the population
reached consensus on a language. The languages produced across the population
were not identical, however they were sufficiently similar for accurate communica-

tion. While the performance of the population remained on average quite good,
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Figure 5.2: Communicative error over time for a population of size ten, using ten
examples to train new individuals (study 1A). With these parameters, the population
failed to converge on an acceptable language.

there were several transient increases in error. During these periods, part of the
population used a significantly different language, where the population agreed on
some regions of the meaning space but not on others. Interestingly, the populations
on either side of these transient failures may have used languages that were differ-
ent. That is, following the ‘corruption’ of the language, the population sometimes
reconverged on a different language to that used previously.

Increasing the population size (study 1C) significantly slowed the rate of change
of the population (see Fig. 5.4). With the larger population size there was a pro-
longed period before convergence to an acceptable level of agreement. Indeed, for
an initial period the communicative error of the population was substantially higher
than at the start. In this region the utterances used by some agents for meanings
close to zero were the same as those that other agents use for meanings close to
one, and vice versa, giving a worse-than-chance error when they attempted to com-
municate with one another. Furthermore, under these conditions the population
remained unstable in the same way as the case above. Running the simulation for
more that 2500 generations revealed that after the population converged, the same
increases in error occur. Moreover, the periods of increased error were of greater
duration than those observed in the smaller populations.

A representative example of the types of languages found in a population is
shown in Table 5.1.
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Figure 5.3: Communicative error over time for a population of size ten, using twenty
examples to train new individuals (study 1B). Although the population converged to
a good language, there were several periods of high error during which two competing
languages appeared. In these situations the original language could be replaced by
a new variant.

5.4 Analysis of base results

From observing the change in the languages of the population over time we have
been able to conclude that much of the behaviour shown in Figs. 5.2, 5.3 and 5.4,
and the differences between the study conditions, can be attributed to one cause.
Namely, that if a learner failed to acquire the language of its neighbours, then
nothing prevented that individual teaching its poorly formed language to subsequent
learners. The most significant factor in the failure of an individual to learn was the
data presented to the learner. If the ten or twenty training examples were chosen
poorly (for example, if they were all less than 0.5), it was much harder for the
learner to successfully generalise to the remainder of the space. Utterances for
similar meanings tend to be similar so if an agent knew the utterance associated
with a meaning such as 0.78 it was more likely to be able to guess the meaning of
the utterance associated with 0.75 than it was to guess the meaning of the utterance
associated with 0.10.

As the number of training examples increased, the probability of an inadequate
sampling of the space diminished. Hence, the population shown in Fig. 5.2 which
used ten training examples was far less stable than the population shown in Fig. 5.3

which used twenty training examples. Other factors, such as the initial weights of
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Figure 5.4: Communicative error over time for a population of size twenty, using
twenty examples to train new individuals (study 1C). The population behaved sim-
ilarly to that in Fig. 5.3 but on a much slower time-scale. If the population was
allowed to run beyond the 2500 generations shown here, similar intrusions of rogue
languages caused intermittent periods of high error.

the learner may have also caused learning failures. However, further simulations
(85.5.1) indicate that the initial weights did not play as significant a role as the
distribution of training data.

The differences in time to convergence between Figs. 5.3 and 5.4 can be attributed
to greater propagation delays associated with the increase in population size. With
a population of size ten, individuals were at most five neighbours away from any
other individual. Consequently, the speed with which a change in a language could
propagate through the entire population was much greater than with the larger pop-
ulation size (twenty). Once a population formed two (or more) distinct languages it
also took a greater time before one came to dominate. Assuming that the languages
were equally learnable, one comes to dominate only through providing a dispropor-
tionate number of examples in the training corpora of new individuals. Since there
was random selection of which neighbour provided a training example, language dis-
persal involves a degree of chance. An increase in population size increased the size

of the region that had to be ‘conquered’, slowing the dispersal process.
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Table 5.1: The utterances used by a neighbourhood of a population for a subset
of the meaning space. This small sample shows two competing language forms.
Where the first three agents used strings beginning with B for meanings with low
numerical values, the other three agents used strings beginning with D. Note that
agent 4 showed some similarities to both families. This example also demonstrates
that even within one language ‘family’ there was significant variability.

‘ Concept H Agent 1 Agent 2 Agent 3 Agent 4 Agent5 Agent 6 ‘

0.00 BBBBBB BBBBBB BBBBBB DDDDDD DDDDDD DDDDDD
0.01 BBBBBB BBBB BBBBBB DDDDDD DDDDDD DDDDDD
0.02 BBBBBB BBB BBB DDDDD DDDDDD  DDDDDD
0.03 BBBBBB BB BBB DDDD DDDDD DDDDDD
0.04 BBBBBB BB BB DDDB DDDD DDDDDD
0.05 BBBBBB BB BB DDD DDD DDDDDD
0.06 BBBBBB B BB DDD DDD DDDDDD
0.07 BBBBBB B B DDD DD DDDDDD
0.08 BBBB B B DDB DD DDDDDD
0.09 BBB B B DDB DD DDDDDD
0.10 BBB B B DDB DD DDDDDD
0.11 BB B B DD DD DDDDDD
0.12 BB B B DD D DDD
0.13 BB BDB B DD D DDD
0.14 BB BDB B DD D DD

0.15 BDD BDB B DD D DD

0.16 BDD BDB BDB D D DD

0.17 BD BDB BDB D D DD

0.18 BD BD BD D D DD

0.19 BD BD BD D D D

0.20 B BD BD DB D D

0.21 B BD BD DB D D

5.5 Varying the learning environment: Series 2,
3 and 4

Just as in Kirby’s simulations we have seen the emergence of co-ordinated, struc-
tured communication as a result of the dynamics of linguistic transmission. While
not all of Kirby’s results have been replicated (which we would not expect given the
changes made to Kirby’s simulation design), we have seen that one of the signifi-
cant outcomes (structured communication) does replicate with a different learning
mechanism and a different semantic domain. We have also see that a successful

outcome can be highly dependent on such factors as the size of the population and
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the amount of training data available to new individuals. In this section we consider
alternative aspects of the learning environment that can influence the outcome of
language evolution. The analysis of the first series of simulations indicated that part
of the reason why populations could fail to converge was that a single learner with
an idiosyncratic language could corrupt future generations. Kirby explicitly sought
to simulate language emergence in the absence of selection pressure to explore the
power of glossogenetic adaptation alone. Hence, idiosyncrasies could not be elimi-
nated from a language by a mechanism that removed the poorer speakers from the
population. Consequently, the three factors that we vary in series 2—4 are chosen
for their potential to either prevent learners from failing, or to stop failed learners
propagating their half-formed languages.

It is well understood that failures in neural networks to learn a task can often be
attributed to the choice of the initial weights (Kolen and Pollack, 1990). Simulation
series 2 repeated the simulations of series 1, but instead of generating the initial
weights of new individuals randomly, all new individuals started with the same
weights. Making this change allowed a language to emerge that was learnable from
a specific starting point. This technique has proven successful in other work (Tonkes
et al., 2000; Batali, 1994).

Another potential cause of learning failure that we have identified is the selection
of training data from which new individuals learn. Learners were presented with a
set of (meaning, utterance) pairs, where the meaning was a value between 0 and 1. If
the selection of meanings in the training sample failed to provide sufficient coverage
of the full meaning space, then it was much harder for the learner to generalise
to unseen examples as they were dissimilar to the previously seen examples. In
simulation series 3, rather than training new learners on different, randomly chosen
examples, new learners were trained on the same (randomly chosen) meanings.

In series 4, the variation to series 1 was that the ‘neighbourhood’ assumption
was violated. Instead of using neighbours to provide the training data for new
individuals, a ‘teacher selection’ principle was applied. After every time-step, each
individual was given a score based on how well it was understood by the rest of the
population (i.e., the portion of error that an individual contributed to the overall
error, as plotted in Figs. 5.2, 5.3 and 5.4). This score was used to select which
networks generated the examples in a training corpus presented to a learner, based
on a proportional selection mechanism (the probability of selection was inversely

proportional to error). If a network failed to learn the language of its community
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then it would be unlikely to be selected to provide examples to train new individuals,
thus limiting its impact on future generations.
In summary, the simulations of §5.2 three were repeated under three different

conditions:

1. Using the same set of initial weights for each new learner (series 2: fixed

weights).

2. Using the same set of meanings to train each new learner (series 3: fixed

examples).

3. Choosing the ‘best’ networks to generate the training examples for the new

learners (series 4: teacher selection).

Again, population size and the training corpus size were varied and the simu-
lations from three different random seeds were repeated under each condition (i.e.,
three repetitions of each of studies 2A, 2B, 2C, etc.).

5.5.1 Results of Varying the Learning Environment

In all cases, the three repetitions of a condition yielded quantitatively similar results.
However, across the conditions, the results varied radically. In the ‘fixed weights’
condition, the populations rapidly achieved reasonably low communicative error (see
Fig. 5.5). This effect may be attributable to the fact that all members of the initial
population were identical (having the same, untrained weights). However, as in the
original series of simulations, the population was unable to maintain this low degree
of error and the error fluctuated markedly.

In stark contrast, the populations in the ‘fixed examples’ condition took longer
to converge in each case but showed a remarkable degree of stability (see Fig. 5.6).
Although there were some increases in error after the population had apparently
converged, the error remained low. Surprisingly, there was no significant difference
in the accuracy of the networks when the amount of training data was varied. As
before, the C condition resulted in a slower progression towards the general pattern
found in the A condition.

The populations in the ‘teacher selection’ condition demonstrated yet another
pattern of error (see Fig. 5.7). Again, the population rapidly attained a reasonable

degree of communicative accuracy (low error). Any increases in error were very
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(2C) Large population, more training data.

Figure 5.5: Communicative error of populations over time when new individuals
always started from the same initial weights (series 2). Since all individuals were
originally identical, the population converged quickly. However, as in §5.3 the pop-
ulation frequently departed from an established convention.
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Figure 5.6: Communicative error of populations over time when new individuals were
always trained on the same set of meanings (series 3). In all cases, the population
was much more stable than its counterpart in the original simulation. Convergence
was still slow for larger populations.
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short-lived, far more so than in the original simulations. With a small population
and a small amount of training data (study 4A) the population was still unstable,
but was much better on average than in the original simulations (Fig. 5.2). Even
with a larger size, the population very quickly arrived at a point of low error and

tended to remain there, despite the occasional increases in error.

5.5.2 Analysis of Learning Environments

As in §5.3, the changes in the population were analysed by observing the changes in
the languages generated by each population. Apart from the initial improvements
in communicative accuracy, the results of the ‘fixed weights’ populations were effec-
tively the same as in the original study, indicating that the choice of initial weights
was largely irrelevant. Conversely, the performance of populations in the ‘fixed ex-
amples’ condition suggested that the choice of training data was of vital importance.
In this condition, only a single training corpus was generated. The probability that
this particular corpus was unrepresentative of the meaning space was small, as it
was for networks trained in the original simulations. In the original simulations,
2500 different corpora were generated, one for each learner. The probability that
some of these corpora were unrepresentative of the meaning space far exceeds the
probability that the single corpus in the later simulations was unrepresentative. If,
by chance, the single corpus was chosen poorly, we might expect that the popula-
tion might never have been successful. The results of the ‘fixed weights’ and ‘fixed
examples’ simulations lead us to hypothesise that the populations evolved languages
to a point where they were reliably learnable regardless of the initial weights of a
network, and that only poorly chosen training samples prevented individuals from
learning.

Populations in the ‘teacher-selection’ condition successfully reduced the influence
of rogue learners. The impact can be best seen from the length of time that any
population experienced high error. Particularly with a population size of ten and a
training corpus of size twenty (study 4B, the middle graph in Fig. 5.7), the length
of periods of increased error closely followed the expected lifespan of an individual
(ten time-steps on average). This observation suggests that while a rogue learner
may have lowered the communicative error of the population, it did not pass its
incompatible language to future generations. Communicative accuracy was thus
restored once the rogue learner left the population. The effect was much less clear

with the smaller training corpus since the probability of multiple successive failed
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(4C) Large population, more training data.

Figure 5.7: Communicative error of populations over time when new individuals
were taught by the better communicators in the population (series 4). Convergence
was rapid, even for larger populations. Periods of higher error tended to be transient.
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learners was considerably higher. Increases in the number of inconsistent networks
in the population increased the probability of further inconsistent networks, hence

the instability in this case.

5.6 Discussion

This final section considers what correspondences can be drawn between the frame-
work of these studies and characteristics of human language learners and environ-
ments. Simulations of populations of communicating simple recurrent networks
showed that in favourable circumstances, languages could emerge in the absence
of phylogenetic adaptation (§5.3).

The results demonstrate that one of Kirby’s major findings — that a structured
communication system can emerge from the dynamics of language transmission —
has a generality beyond his original domain. While the kinds of language structures
that emerged in our simulations were significantly different to those that emerged
from Kirby’s simulations, such a result should not be unexpected. The agents em-
ployed the most appropriate structures for their respective communication tasks.
Given the structure of the languages produced in these studies, the results of the
simulations may be used to refute claims that classical compositional syntactic struc-
tures are the only viable form of linguistic structure. Thus, human languages exhibit
compositional structure not because it is the only valid alternative, but because
other constraints on human communicative needs (such as the similarity structure
of meanings as represented in the human mind) necessitate compositionality.

The effect of manipulating the two parameters in the simulations — population
size and training corpus size — suggests some interesting implications for human
languages. The results showed that populations converged on languages regardless
of the population size, although time to convergence was slowed by the larger pop-
ulation. Conversely, increasing the size of the training corpus (which can be viewed
as increasing a learner’s exposure to language, perhaps by increasing the critical
period) vastly improved the success of populations. While it is not possible to claim
that the same would be true of human populations, the results suggest an interest-
ing hypothesis for the emergence human languages: that a precondition of language
emergence is a sufficiently protracted period of learning so that an infant will be
exposed to a critical volume of training data.

The modifications to the learning environment made in section §5.5 are also sug-
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gestive of the desirable conditions for language emergence. The first modification
(fixed weights) may be viewed as analogous to a very weak genetic endowment of
linguistic knowledge. This modification proved unsuccessful at improving the com-
municative accuracy of the population. In the second modification (fixed examples),
the learning environment is consistent for every individual — every learner has the
same set of experiences. With this environment, populations were far more success-
ful at accurate communication. It is not outlandish to suggest that for humans,
there is some degree of commonality between learning environments, although no
two humans will share the exact same set of experiences.

Preventing failed learners from acting as teachers was also effective in maintaining
the language of a population, but still required that learners were given sufficient
training data. This condition introduced a selection mechanism, something which
Kirby deliberately avoided adding. However, in populations where learners can fail,
and then corrupt future learners, our simulations show that some kind of selection
mechanism is important to maintain population stability. Such a mechanism may
be manifested in a real-world situation by the direction of a learner’s attention away
from speakers with impaired language abilities, or by the social exclusion of such
speakers, so that they do not contribute to learners’ input to the normal extent.

Although Batali (1998) also used neural networks in his simulations, he did not
include any generational component, instead using a static population. In his model,
the agents in the population communicated amongst themselves until a consensus
was reached. Consequently, after the first round of ‘negotiations,” agents were no
longer naive about the language of the community, making it difficult to look at
changes in the language due to selection pressure for (naive) learnability. Batali
also used a different semantic domain and his population lacked any kind of spa-
tial organisation. However, it is interesting to note that Batali’s populations were
successful in producing basic combinatorial language structures despite the lack of
an explicit ‘learning bottleneck’ — the very mechanism to which Kirby ascribes the
success of his simulations. One possible explanation for this disparity is that the
learning mechanism itself may provide an implicit bottleneck. One feature of neural
networks is their tendency to generalise based on similarity. Consequently, it is much
easier for a neural network to learn a regular language than an irregular one; it may
even be the case that a neural network will be unable to learn some irregular forms.
In a series of negotiations, it would thus be expected that the more easily learn-

able forms (i.e., the regular languages) would persist — networks would compromise
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on the easier forms. By contrast, in Kirby’s simulations, learners were not able to
‘forget’ associations between meanings and utterances: once a learner acquired an
association, it remained for life. Thus, Kirby’s learners lacked this implicit bottle-
neck since they always succeeded at finding a grammar that was consistent with the
training data (assuming that the training data itself was consistent).

To provide a comparison between Kirby’s explicit bottleneck, and the hypothe-
sised implicit bottleneck of the neural network learner, we ran a control study which
repeated the first series of simulations (described in §5.2), without removing individ-
uals from the population. Instead, an individual was chosen to be given additional
(learning) exposure to the language of its neighbours as in Batali’s simulations. With
small populations and small training corpus sizes, the population quickly reached a
communicative error score of around one. The languages of these populations were
still unstable, although not to the same extent as the population shown in Fig. 5.2.
Increasing the amount of training data received in each round resulted in a much
more stable population. Even though populations in this condition periodically dis-
agreed, such events were not as catastrophic as those in Fig. 5.3. With a large
population and large training corpora, populations were slow to attain reasonable
communicative accuracy, much as in Fig. 5.4, though the initial period of very high
error was much shorter.

These results, although they are only preliminary, suggest that Kirby’s explicit
learning bottleneck may not be necessary. Certainly, they indicate that the role of
the bottleneck is not as straightforward as Kirby described. Of course, in the case of
human languages there clearly is such a bottleneck between generations of learners.
Further work may help to determine whether this bottleneck plays a fundamental
role, or is merely incidental to the course of language emergence. What seems
plausible is a relationship between the implicit bottleneck of the learning mechanism,
and the explicit bottleneck in Kirby’s simulations.

The major contribution of this chapter is to broaden our ideas of when structured
communication systems emerge (and are stable) and when they do not. These studies
suggest that critical factors for the emergence of these systems include the training
corpus size, and the method for selecting training data. The chapter also consid-
ers the types of language structures that emerge from a given situation. Human
languages are the only natural example of symbolic structured communications sys-
tems that we have. It is difficult to establish the causes for such unique phenomena.

Computational models allow us to construct a variety of communication systems
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and to explore the conditions under which language-like systems can emerge. By
examining the conditions under which language does, and does not emerge, we can
explore hypotheses about the significant aspects of the human environment that led
to the evolution of human languages. The long-term goal is to deduce the general
principles behind the emergence of language and properties of those languages. The

work presented in this chapter represents a small step towards that goal.



Chapter 6
Discussion

This thesis has explored a perspective for explaining the origins of linguistic struc-
ture that is based on considerations beyond the constraints of the language acqui-
sition device. In particular, the work presented in this thesis has considered the
notion that the processes of language acquisition and use create a dynamical system
through which linguistic structure emerges (see Fig. 6.1). This thesis has presented
simulations that have probed the relationship between features of the transmission

dynamic and features of the emergent linguistic structures.

6.1 Summary and review

The motivation for considering the language transmission dynamic was presented in
Chapter 2. This chapter began by contrasting two approaches to understanding hu-
man linguistic abilities: the generative grammar approach and the connectionist (or
dynamical) approach. One of the major differences between the two approaches that
the chapter highlighted was the extent and nature of innate linguistic knowledge:
strong, domain-specific constraints (UG) versus weaker, domain-general learning bi-
ases. The adaptation of language to the user was reviewed as an alternative theory
for explaining how human infants acquire the language of their community so read-
ily. In this viewpoint, linguistic structures are an emergent property of the dynamics
of linguistic transmission which arise in response to the needs of language users and
learners. The Evolution of Language community was identified as having studied
the problem of human linguistic competence from this perspective.

The latter half of Chapter 2 reviewed previous approaches to modelling the

evolution and adaptation of language. This work spans a broad array of fields
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and considers a range of linguistic phenomena. Within this broad field, agent-based
computational modelling of syntax was identified as the area of interest and two
previous models were reviewed in detail: Batali’s (1998) Negotiation Model and
Kirby’s (2000) Iterated Learning Model.

Chapter 3 discussed the issues involved in formulating a model of language
adaptation. This discussion was then used to introduce the basic simulation frame-
work that was used in the remainder of the thesis. The proposed framework com-
prised a semantic domain (the continuum of points between 0 and 1), a language
learning and processing mechanism (recurrent neural networks coupled with the
backpropagation-through-time algorithm) and a message domain (sequences of sym-
bols encoded as binary vectors). This simulation framework was then used to inves-
tigate how linguistic structure might adapt when sender and receiver had different
learning biases.

Preliminary simulations considered sender and receiver separately and demon-
strated that, for the proposed model, the languages that were most suited to the
sender were the reverse of those most suited to the receiver. Further simulations con-
sidered the combined sender-receiver system under two different conditions. In one
condition, messages were reversed between sender and receiver (that is, the receiver
received the reversed message of the sender) thus making the same language suited
to both sender and receiver. In the other condition, message order was preserved.
Analysis of the languages that emerged in these simulations revealed structural dif-
ferences between the languages produced in the two conditions. The structure of
languages in the preserved order condition (where sender and receiver preferred dif-
ferent languages) showed evidence of a compromise between the differing constraints
of sender and receiver. The results of these simulations demonstrated a situation in
which linguistic structure was determined by the intersection of the sender’s (quite
strong) constraints with the receiver’s (relatively weak) constraints.

The simulations of Chapter 4 considered the role that the bottleneck of lin-
guistic transmission plays in determining linguistic structure. The initial simula-
tions examined the extent to which emergent linguistic structure could overcome
the problems posed by this bottleneck for a naive, domain-general learner. Building
on the results of Chapter 3 it was shown that, through judicious selection, linguis-
tic structure could be capable of facilitating a significant degree of generalisation
without the need to add specific constraints to the learner. While the learners may

have been domain-general they were not unbiased. Hence, the languages could ex-
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ploit the inherent biases of the learners to boost their own generalisability. The
linguistic structures that emerged were successful because they matched the gen-
eralisation characteristics of their learners. These simulations demonstrated that
language adaptation could facilitate acquisition by a general-purpose learner despite
a particularly constricted learning bottleneck.

Additional simulations in Chapter 4 considered how properties of the bottleneck
resulted in different structural features in the emergent languages. Manipulating the
aspect of the meaning that the sender was required to communicate showed that the
structure of the emergent languages was specifically adapted to the communicative
task — that the structure of the languages facilitated particular forms of generali-
sation. A final set of simulations in this chapter aimed to show that generalisability
could be further boosted if aspects of the learning environment were kept constant.
That is, the bottleneck was made to be consistent between generations and thus
allowed linguistic structure to be generalisable from a specific learning environment.
While the results of these simulations were inconclusive they were suggestive of some
adaptation taking place.

The single-sender/single-receiver simulations of earlier chapters were extended
to a population of agents in Chapter 5. This extension enabled the investigation
of how the properties of populations influenced the dynamical characteristics of
linguistic transmission and thus the emergence of structure. One of the noteworthy
problems for a population is reaching consensus on linguistic structure. That is, the
requirement for the members of the population to have similar languages that are
mutually understood. The first study in this chapter investigated how convergence
on a learnable language was affected by (a) population size and (b) training corpus
(or bottleneck) size.

The results showed that under suitable conditions the dynamics of linguistic in-
teraction were sufficient to establish a learnable language throughout the population,
as in Kirby’s (2000) simulations. This result indicates that Kirby’s findings regard-
ing the emergence of linguistic structure from the dynamics of linguistic transmission
have generality beyond his chosen model. Furthermore, the simulation results sug-
gest that the dynamic is parameterised by (at least) the population size and training

corpus size. Particularly, that in the Iterated Learning Model

e the bottleneck size has a substantial impact on the likelihood of a successful

outcome, with larger training corpora preferable;
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e the population size controls the rate at which languages propagate through

the population, but has little effect on the likelihood of a successful outcome.

Analysis of the behaviour of populations revealed that the major factor prevent-
ing the stable convergence of the population on a language was the occurrence of
learners that failed to acquire the language of the population. These learners then
passed their ‘corrupted’ languages on to later learners, corrupting the language of
the entire population. Further simulations were performed to investigate mecha-
nisms by which the damage from these failed learners could be minimised. That is,
factors that could change the linguistic transmission dynamic so as to lead to a more
successful outcome. Three mechanisms were tested: (a) keeping the initial state of
the learners constant, (b) keeping the learning environment constant, and (c) using
the better speakers in the population to provide the training material for new indi-
viduals. Of these approaches, (b) and (c¢) proved effective at helping the population
maintain a uniform language. The constancy of the learning environment and the
method for generating training material can thus be seen as important principles

guiding the dynamics of linguistic transmission.

6.2 Dynamics of linguistic transmission revisited

In terms of addressing the question of how linguistic structure emerges from the
dynamics of linguistic transmission, the simulations of Chapters 3 and 4 are quali-
tatively different from those of Chapter 5. With respect to Fig. 6.1, the simulations
of the earlier chapters considered only a single iteration of the transmission dynamic
and applied an ad hoc method (the hill-climbing algorithm) to optimise the lan-
guage for that single interaction. The results of these simulations can therefore not
be taken as evidence of the types of linguistic structures that are likely to emerge,
but rather the types of linguistic structures that are more likely to persist if they
do emerge (or alternatively, the types of linguistic structures that a language must
exhibit to survive).

The contribution made by the simulations of Chapters 3 and 4 lies not in showing
the emergence of linguistic structure, but in highlighting the extent to which a specif-
ically chosen language can facilitate acquisition by a general-purpose learner. If, as
proposed, the dynamics of linguistic transmission are sufficient to produce desirable
languages, then the results suggest that the need for innate, domain-specific con-

straints on language acquisition can be considerably weakened from those claimed
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Figure 6.1: The dynamics of language transmission as explored in the thesis. A
language dynamic results from repeated cycles of production and acquisition. Chap-
ters 3 and 4 optimised languages by considering only one iteration of the dynamic,
shown as lighter shading. Chapter 5 considered the full iterated system, shown as
darker shading. (Adapted from Kirby, 2001, Fig. 5, p109; also appearing in this
thesis as Fig. 2.2).

by proponents of generative grammar. This demonstration of the ability of lan-
guage adaptation to facilitate acquisition by a domain-general learner is one of the
significant contributions of this thesis.

The simulations of Chapter 5 considered the iterated dynamic of language trans-
mission, rather than the single transmission from speaker to learner studied in the
previous chapters. Whereas the earlier chapters investigated the extent to which a
language could be synthetically adapted to a general-purpose learner, Chapter 5 was
concerned with studying the conditions under which the transmission dynamic could
act as a generator of learnable languages. Thus, the contribution made by Chapter 5
is in exploring the range of conditions under which a population of general-purpose
learners can, through the dynamics of linguistic transmission, generate (and reach

consensus on) a learnable language.

6.3 Implications of methodology

The decision to employ a connectionist learner impacted the thesis in terms of both
the aspects of language emergence that were explored as well as the basic method-

ological approach.

e One of the motivating factors for choosing connectionist learners was their

general-purpose approach to learning via algorithms such as backpropagation
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through time. This thesis has successfully demonstrated that language can be
tailored to exploit the biases of such a general-purpose learner, thus facilitating

acquisition.

e Compared with Kirby’s (2000) symbolic agents, the connectionist agents have
different properties with respect to expressivity (using a unique utterance for
each meaning). With Kirby’s agents there are no constraints in creating ar-
bitrarily complex mappings between utterances and meanings. Indeed, for
Kirby’s agents it is quite easy to represent (but not necessarily learn) a lan-
guage that is composed of random associations between utterances and mean-
ings. In contrast, it was difficult to reduce homonymity in the connectionist
encoder. The networks naturally mapped similar meanings to similar utter-
ances and it was often difficult for them to discriminate between adjacent
meanings. This difference in the biases of the agents resulted in differences in

the emergent languages.

e The presence of distinctly different (in fact, opposite) biases between sender
and receiver was a direct result of using connectionist models. These biases
of recurrent networks were unexpected but allowed the exploration of how

language could evolve to mediate conflicting biases.

e Connectionist models, while conceptually simple, are computationally expen-
sive. When coupled with the evolutionary approach explored in this thesis, the
computational demands become substantial. Consequently, the studies in this
thesis were only able to explore a limited domain so that simulations remained
tractable. Even so, significant compromises had to be made in the hill-climbing
algorithm in Chapters 3 and 4, which was unable to search the space of lan-
guages as thoroughly as desired (in particular, the undesirable constraint that

mutant encoders had to be strictly more expressive than the champion).

As yet, there is no standard computational model for the evolution of language,
which is not surprising given that the field is still trying to determine the relevant
factors. Previous researchers have typically employed a model that is appropriate
for demonstrating some phenomenon. The computational model used in this thesis
is no exception: it represents another unique approach. However, there are some
close similarities between the present model and those of Batali (1998) and Kirby

(2000). In fact, Chapter 5 can be seen as a direct bridge between these two models.
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In the simulations of that chapter, a simple recurrent network using the obverter
procedure for production (Batali’s learner) is placed in the context of a spatially
arranged population with random death (Kirby’s transmission dynamic). The pos-
itive results of Chapter 5 thus serve to highlight the generality of both Batali’s and
Kirby’s results: Batali’s learners can generate a learnable language within the It-
erated Learning Model and Kirby’s results are not critically reliant on a particular
learning algorithm.

Despite the similarities in the learners of the present work and Batali’s (1998)
earlier work, the end results — in terms of the emergent languages — are quite dif-
ferent. Certainly there are significant differences between the transmission dynamic
in Batali’s populations and that here. However, the more likely determinant of this
discrepancy in languages is the choice of semantic domain. Whereas Batali chose
a combinatorial domain, the present work has used a continuous domain. In each
case, the emergent languages are suited to the semantic domain. Such a difference is
in accordance with Cangelosi’s (2001) observation that an agent’s interaction with
the world plays a significant role in determining emergent linguistic structure.

In Kirby’s (2000) simulations, populations started with no initial language. The
language of a population was then bootstrapped via the process of random invention.
In contrast, the starting languages in the systems considered in this thesis typically
consisted of a very small number of unique utterances used to describe a wide variety
of meanings (i.e., highly homonymous, poorly expressive languages). In Kirby’s sim-
ulations expressive power came from finding common sub-terms between randomly
invented utterances (structure was built in a ‘top-down’ manner). In the simulations
of this thesis, expressive power typically came from extending or varying existing
utterances for finer discriminations (structure was built in a ‘bottom-up’ manner).
This difference between the two simulation frameworks is mirrored in the debates
surrounding the evolution of human languages. The two competing theories in that
field concern whether human proto-language was formed by the simplification of a
set of complex, holophrastic utterances (where utterances are not compositional;
Wray, 1998) or by combination of simpler elements (Bickerton, 1990). Interestingly,
the simulation results presented here, combined with Kirby’s results, suggest that
both are viable alternatives.

The structures of the emergent languages from the simulations in this thesis gen-
erally had much in common with one another. Every language employed number-like

structures. That is, there was a strong ordering of significance within an utterance,
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based on the position of a symbol within the sequence. Each symbol then, came
to have a meaning which was modified by its position within the sequence. This
structure allowed learners to successfully generalise to symbols in novel positions.
Learners needed only to learn the relative value of symbols (e.g., that A represented
a value twice as large as B) and the relative value of positions (e.g., that the first
position contributed one half of the meaning, the second position contributed one
quarter of the meaning, etc.) to determine the meanings of novel utterances.

Kirby reasoned that the emergent structures in his simulations were a result of
the bottleneck of linguistic transmission forcing languages to take on generalisable
characteristics. This thesis proposed that for some learners, such as connection-
ist learners, there is an additional, implicit bottleneck. The implicit bottleneck is
caused by constraints on learners’ representations whereby it is more difficult to
represent non-structured (random) languages. Thus, in the simulations presented
in this thesis, languages were so structured partly because it was expedient for the
agents. The presence of the implicit bottleneck can be observed by examining how
the languages emerged. Languages started as highly homonymous and then gradu-
ally added structure to differentiate meanings. The highly homonymous languages
at the start of the evolutionary process demonstrate that there was a strong simi-
larity assumption (that similar meanings should have similar utterances) built in to
the encoder; that there existed a bias towards treating similar meanings similarly.

The implicit bottleneck is effectively a functional constraint on language use and
acquisition since it makes some languages more easy to represent than others. It may
have been possible for networks to represent less structured languages, but it was
less tractable for them to do so. The fact that languages became highly structured
was thus in keeping with Kirby’s earlier work (Kirby, 1999a) which demonstrated
that weak functional constraints could, over time, dramatically reduce the range of

observed languages.

6.4 Conclusions

This thesis has identified a variety of factors, beyond the constraints on the learner,
that might act to constrain linguistic structure or which are important for enabling
the emergence of linguistic structure from the dynamical system of language trans-

mission.

e The relationship between the biases of sender and receiver. Linguistic structure
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is constrained by the intersection of sender and receiver biases.

e The communicative task. The generalisation requirements of the learner (e.g.,
the different worlds of Chapter 4) alter the structural characteristics of the
evolving language so that the language is best suited to the generalisation
task.

e The constancy of the learning environment. The conditions in the simulations
of Chapters 4 and 5 — whereby the learning environment was consistent for
each learner — allowed languages to adapt to be learned from a particular

experience.

o The size of the ‘bottleneck’. While in Chapter 4 it was demonstrated that a
language could be evolved to be learned from few examples, the simulations of
Chapter 5 suggested that for the transmission dynamic to act as a generator
of languages, the bottleneck had to be sufficiently large so that learners could

reliably and consistently acquire the language.

e The source of learners’ linguistic data. The simulations of Chapter 5 showed
that the method for generating training data (i.e., the choice of speaker) could

radically influence the likelihood of language emergence.

While many of the specific results presented in this thesis are independent of the
connectionist paradigm, the use of connectionist models in the simulations permits
some interesting observations that seem pertinent to connectionist natural language
processing (CNLP). One of the criticisms of CNLP is the inability of connectionist
models to generalise systematically (Fodor and Pylyshyn, 1988). In this thesis, lan-
guages were evolved to be learnable by a simple recurrent network. These evolved
languages had quasi-systematic structures that are generalisable from few instances.
In the type of framework used in this thesis (the evolutionary language perspective),
learners need not be capable of acquiring arbitrary quasi-systematic languages. In-
stead, the language can adapt to the capabilities of the learner. Much work in the
CNLP paradigm concerns probing the capabilities of connectionist learners. The
results of this thesis suggest that the choice of learner is (to some degree) inconse-
quential; that language can adapt to fit the needs of the learner. In essence, the
suggestion is that the question asked by CNLP — that as to what sort of learner
is necessary to acquire human languages — needs to be considered in terms of how

human language came to be in its present forms.
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In the generative grammar framework, the range of human languages is directly
constrained by UG. Thus, UG is a theory of both constraints on cross-linguistic
variation and constraints on the language acquisition device. This thesis (and the
evolutionary approach in general) has made a clear distinction between the two.
The argument is that the constraints on the language acquisition device are filtered
through the dynamics of language transmission. The constraints on cross-linguistic
variation are therefore the end-point of a series of complex interactions, rather than
a direct result of constraints on the learner. This thesis has examined the ways
in which linguistic structure (and thus constraints on linguistic variation) can be
shaped by those interactions.

The languages that have been produced by the agents during the course of sim-
ulations in this thesis have been far simpler than human languages. Such a result
is unsurprising given the relative simplicity of both the simulated semantic domain
and agents. Nevertheless, there are some interesting aspects of complex structure
in the languages produced in the simulations that have some parallels with human
languages. The first important observation is that the simulated languages have
considerable internal structure, most easily demonstrated by the structural analyses
of Chapters 3 and 4. In these structures, symbols could be interpreted as having
specific meanings (typically either ‘more’ or ‘less’) which were dependent on their
position (‘a little more’; ‘a lot more’). The structures of the evolved languages were
quasi-systematic. Although there was a large-scale organisation to the languages
there were many discrepancies. These irreqularities did not preclude learnability.
Thus, the evolved languages were highly structured, imperfectly regular and learn-
able by a general-purpose mechanism.

This thesis suggests that complex, semi-regular linguistic structures can adapt so
as to facilitate its acquisition by general-purpose learning mechanisms. The implica-
tion for human language is that generative grammar’s arguments for domain-specific,

innate constraints on the human language acquisition device can be curtailed.

6.5 Further Work

The simulations performed in this thesis have, by necessity, used a highly abstracted,
simplified, and idealised model of language, language user, and environment. These
types of abstraction are fundamental to the modelling approach in that they allow

the extrication of the relevant factors (and, of course, a tractable implementation).
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The goal of the current research program is not (strictly) to describe the condi-
tions of human language evolution, but rather to understand the general principles
behind the emergence of language-like communication systems. The work presented
in this thesis is therefore not directly aimed at capturing specific aspects of the hu-
man scenario, but at finding the critical aspects of the general situation. At present,
no model of language emergence features all of the factors that are relevant to the
emergence of language. Indeed, it seems likely that the field as a whole has not even
identified all of the relevant factors.

This thesis has considered a variety of circumstances in which language emerges
using a simplified model. As the complexity of the model increases, we should also
expect an increase in the variety of factors that influence the emergence of language
in the model. Thus, future work on the current model should consider increasing
the complexity of learner, language and environment. Doing so should help enable

exploration of other relevant factors in the emergence of language.
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