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Abstract

The mental lexicon is a complex structure organised in terms of phonology,
semantics and syntax, among other levels. In this thesis | propose that this
structure can be explained in terms of the pressures acting on it: every aspect
of the organisation of the lexicon is an adaptation ultimately related to the
function of language as a tool for human communication, or to the fact that
language has to be learned by subsequent generations of people. A collection
of methods, most of which are applied to a Spanish speech corpus, reveal
structure at different levels of the lexicon.

e The patterns of intra-word distribution of phonological information
may be a consequence of pressures for optimal representation of the
lexicon in the brain, and of the pressure to facilitate speech
segmentation.

e An analysis of perceived phonological similarity between words
shows that the sharing of different aspects of phonological similarity
is related to different functions. Phonological similarity perception
sometimes relates to morphology (the stressed final vowel determines
verb tense and person) and at other times shows processing biases
(similarity in the word initial and final segments is more readily
perceived than in word-internal segments).

e Another similarity analysis focuses on cooccurrence in speech to
create a representation of the lexicon where the position of a word is
determined by the words that tend to occur in its close vicinity.
Variations of context-based lexical space naturally categorise words
syntactically and semantically.

e A higher level of lexicon structure is revealed by examining the
relationships between the phonological and the cooccurrence
similarity spaces. A study in Spanish supports the universality of the
small but significant correlation between these two spaces found in
English by Shillcock, Kirby, McDonald and Brew (2001). This
systematicity across levels of representation adds an extra layer of
structure that may help lexical acquisition and recognition. | apply it
to a new paradigm to determine the function of parameters of
phonological similarity based on their relationships with the syntactic-
semantic level. I find that while some aspects of a language's
phonology maintain systematicity, others work against it, perhaps
responding to the opposed pressure for word identification.

This thesis is an exploratory approach to the study of the mental lexicon
structure that uses existing and new methodology to deepen our
understanding of the relationships between language use and language
structure.
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Chapter 1. Introduction

The mental lexicon is a complex structure where words are organised in
terms of their phonology, syntax, semantics as well as other non-linguistic
aspects. In this thesis I take the mental lexicon to embody the human
language capacity, a robust system adapted ultimately to the pressures
imposed by communication and by learnability. I assume that linguistic
aspects of the mental lexicon are reflected in the structure of speech, and,
conversely, that the linguistic information contained in speech contributes to
the development of new mental lexicons in human children and to the
subsequent adjustments to the existing lexicons in adulthood. I use mainly
corpus-based methods to analyze patterns of information in speech - which
reflect the structure of the mental lexicon - and explain them as adaptations

to the pressures that may have brought them about.

This chapter justifies and expands on these assumptions. It first defines and
characterizes the object of study - the mental lexicon. It reviews recent
literature on language structure, complexity and adaptiveness to motivate
the adoption of a complex, adaptive mental lexicon model. Then it reviews
the literature on statistical learning, the link between the patterns found in
speech and the mental lexicon structure inferred from them. Finally, it
sketches the different methodologies employed and it provides an overview
of the contents of chapters two to six, stating their aims, motivating the
research they present and explaining how they relate to each other in the

general organisation of the thesis.



1.1 Defining the mental lexicon

Throughout this thesis I assume that organisation of the lexicon is based on
relationships between words. I emphasize that the adaptive structure of the
lexicon is a consequence of the pressures acting on it. From this standpoint,
for instance, syntax can be viewed as an emergent property, a consequence of

the way the lexicon is structured.

The mental lexicon is accessed in every act of linguistic communication. We
need to find the word that denotes the meaning we want to express, or the
meaning of a word we hear or read. These basic tasks are bound to be greatly
facilitated if the mental lexicon is organised in some way. Priming studies
show that words are linked to each other along many dimensions. Some
dimensions are studied by linguistic disciplines (phonological, semantic,
syntactic) and others, by other disciplines (emotional, social, context-
interactional). When a word is activated, other words of similar form
(Goldinger, Luce & Pisoni, 1989; Luce, Pisoni & Goldinger, 1990), meaning
(Meyer & Schevaneldt, 1971; see Neely 1991 for review), syntax (Sereno,
1991), orthography (Segui & Grainger, 1990), emotional content (Wurm,
Vakoch, Aycock, & Childers, 2003) etc are also activated, suggesting that the
mental lexicon is complex and highly interconnected. Words are defined to a
large extent in terms of their fluid relationships of similarity to the rest of the
words. At a given point in time we can ask: Are two words pronounced in a
similar way? Do they point to similar concepts? Do they tend to occur close
to the same words in speech? Are they used in similar social situations? Do
they have similar affective connotations? In this thesis I present a model of
the mental lexicon based on the relationships between words at different

levels.



We can define the mental lexicon as the collection of words one speaker
knows and the relationships between them, and the lexicon of a language as
the collection of words in a language and the relationships between them.
The individual mental lexicons - in Chomskyan terminology, I-language, or
internal language (Chomsky, 1986) - are more or less complete instantiations
of the lexicon of the language. The lexicon is also manifested as the words in
the speech stream during communication, and as writing - Chomsky’s E-
language, or external language. This definition practically equates the lexicon
with the language capacity. Indeed, throughout this thesis I assume a mental
lexicon that incorporates at least the major elements of language - phonology,
syntax and semantics - and can be used interchangeably with the term

‘language’.

Language has been characterized by some authors as a complex adaptive
system (CAS), and language change, as the evolution of a CAS (Gell-Mann,
1994; Kirby, 1999). A CAS is essentially a system that adapts through a
process of self-organisation and selection. Dooley (1997) gives a nominal
definition of CAS!: ‘(It) behaves/evolves according to three key principles:
order is emergent as opposed to predetermined, the system's history is
irreversible, and the system's future is often unpredictable. The basic
building blocks of the CAS are agents, semi-autonomous units that seek to
maximize some measure of goodness, or fitness, by evolving over time...”
Mufwene (2001) also supports the view that languages are complex adaptive
systems, and goes as far as defining them as having life. Being an adaptive

system necessarily implies that the mental lexicon constantly evolves. In this

' Complex adaptive system: definition in Dooley (1997), based on the works of Gell-Mann
(1994), Holland (1995), Jantsch (1980), Maturna and Varela (1992), and Prigogine and
Stengers (1984).



thesis I look at a synchronic sample of Spanish speech. The main source of
data is a corpus of transcribed speech recorded in Spain in the early 1990’s
(Marcos Marin, 1992). However, the explanations of the traits of the lexicon
always take into account that the mental lexicon is a system evolving under
the effect of a set of often conflicting, probably interacting and potentially

changing pressures.

1.1.1 Pressures on the structure of the lexicon

The lexicon is under many pressures: words have to be able to be
pronounced, transmitted, processed and decoded, and they have to be
acquired by new speakers; the representations of the lexicon have to be
stored in the brain in such a way that there are connections between the
different aspects of a single word as well as over whole categories of words;
words and the relationships between them need to allow people to
communicate concepts and their relationships. This indicates that the lexicon
is content-addressable at every level, allowing us to access words in terms of

syntactic category, phonological characteristics and meaning among others.

Therefore, factors such as the nature of the human neural substrate
underlying language processing, the characteristics of our articulatory and
auditory systems, principles of efficiency of information storage and
information transmission, the nature of concept representations, and human
parental and social relationships, among others, constrain the structure of the
mental lexicon. Some of these factors are universal and some are not. All
normal human newborns are capable of learning any human language, so
factors originating in the processor (any elements of human hardware related
to speech perception, processing and production) must be universal. Other
factors such as social and interactional pressures and language-external

influences (such as the concepts that speakers can talk about), vary across



societies, and therefore are not universal. Cross language analyses of the

information in speech can help determine the universality of the pressures.

The mental lexicon must adapt to optimise language processing, and this has
to happen efficiently over the brain substrate supporting the lexicon, which

has its own properties and limitations.

1.1.1.1 Homeostasis

The structure of the lexicon must be flexible enough to adapt to all the
pressures that act on it. On the other hand it must be robust enough to
maintain its identity. The pressures mentioned above can be viewed as
dimensions in an adaptive landscape. The lexicon is constantly adapting to
changes in these pressures in order to find an optimal state in the landscape
at each moment. The mechanism by which the lexicon, as a complex system,
is able to juggle all those often contrary pressures is called homeostasis,
defined in the Merriam Webster Online Dictionary as ‘a relatively stable state
of equilibrium or a tendency toward such a state between the different but
interdependent elements or groups of elements of an organism, population,

or group’.

De Rosnay (1997) states that homeostasis is the essential condition for the
stability and survival of complex systems. It helps the system withstand the
multitude of pressures that act on it. Homeostasis” main effect is a resistance
to change, but it accommodates necessary alterations. The system reacts to
every change in the environment in order to maintain the internal balances.
Aitchison (2001) emphasizes ‘the extraordinarily strong tendency of
language to maintain and neaten its patterns’. As happens in the ‘butterfly
effect’ in another complex system, the weather, the reactions are

unpredictable or even counterintuitive (Forrester, 1975). When one expects



an effect as the result of a precise action, an unexpected and often contrary
action occurs instead. This is so because of the complexity of the system and
of the relationships between its elements. In pharmacology, a new drug that
treats one problem usually has many unforeseen collateral effects. This
happens because of the intricate interrelations within physiological systems.
In the context of trying to establish a plausible origin of language, Keller
(1994) offers a generalisation of Mandeville’s paradox? that highlights the fact
that individual actions - prompted by individual selfish (‘bad”) motives - can
have emergent effects that are positive for the society as a whole. Aitchison
(2001) provides some examples of attempts by language to restore a structure
equilibrium which have ‘lead to quite massive, unforeseen disruptive
changes, which trigger one another off in a long sequence’. The disruption
has always been kept in check by homeostatic pressures, which is proven by
the facts that language has never ceased to be learned by humans nor
stopped serving its purpose as a system of human communication. In a
complex system such as the lexicon, the consequences of one change to one
aspect of the representation of one element can potentially reach the whole
system, as illustrated by examples of sound shifts such as Grimm’s Law
(Bammesberger, 1992, cited in Aitchison, 2001). Grimm’s Law describes how
in the Germanic branch of Proto-Indo-European [bh][dh][gh] became
bl[d]ig]; [bl[dllg] became [pl[t][k] and [pl[tI[k]became [f][th][h]. Another
example is the American Northern cities vowel shift, which is still taking

place (Labov, 1994, cited in Aitchison, 2001).

? Mandeville published in 1705 a poem entitled 'The fable of the bees', whose leitmotiv was
that every single individual vice made a beneficial contribution to the well-being of society
(Keller 1994).



These long-range effects are also present in distributed connectionist models
of the mental lexicon, where the processing of each word is affected by the
whole lexicon. In a distributed representation, each node in the network
participates in the representation of all the words. Examples of this are
Seidenberg and McClelland’s (1989) feedforward network model of reading;
Plaut, McClelland, Seidenberg and Patterson’s (1986) attractor network
model of reading; Hinton and Shallice’s (1991) model of dyslexia based on a
lesioned attractor network; and Gaskell and Marslen-Wilson’s (2002) study of
the effects of the competition between phonological and semantic aspects of

word representations.

A homeostatic lexicon is a delicately balanced system where a change in one
of the levels of representation of one element may affect the structure of the
whole system. A change in a word’s meaning or in its syntactic use, or a
growing trend to pronounce a vowel differently will have consequences for
all the words in the lexicon. Other factors such as the pressure for being a
useful communication tool for humans, or the pressure for being easy to

learn by human infants keep the possible changes in check.

1.1.1.2 The principal pressures: communication and learnability

Among the pressures operating on the lexicon described above I emphasize
the preservation of (or the quest for) structural characteristics of the lexicon
that allow humans to communicate. The main such characteristic is a
correspondence between the conceptual and the linguistic domains through
symbolic reference, the uniquely human system of reference (Deacon, 1997).
Peirce (1897, 1903) proposed three levels of reference: iconic, indexical and
symbolic. Icons are signs that resemble the objects they stand for, such as a
photograph of a dog representing a dog. Indexes indicate or provide clues; as

to what their references are, for instance the symptoms of a disease or a



thermometer for the temperature. In symbols, the relationship between sign
and meaning is arbitrary; examples of symbols include words (where the
form does not resemble neither does it indicate the meaning), colour codes,

and in general any form of conventional language.

Other traits of the lexicon that allow humans to communicate efficiently are
adaptations to the pressures imposed by language production, perception
and processing capacities. The phonological inventory, speech rate, prosody
and other traits of speech are adapted to characteristics of the organs of
speech and of the auditory system, which constrain the sounds we can
produce and perceive. The temporal nature of speech and the potential noise
in the environment affect the structure of the phonological information
transmitted in utterances (this theme is developed in chapter two). Memory
capacity affects, for example, the amount of information that can be stored in
the short-term memory in order to process aspects of language. For instance,
Baddeley, Thomson and Buchanan (1974) described the word length effect
whereby lists of short words are easier to recall than lists of long words. It
also affects how many items we can store in the short-term memory in order
to process the syntactic relationships between them (see Caplan & Waters,

1999 for recent review).

Some authors have emphasized the role of learnability in shaping language.
Kirby and Hurford (2002) propose that universal language characteristics are
ultimately adaptations to the successful transmission of language from
individual to individual and from generation to generation, as is well
exemplified in their iterated learning model (ILM), where the key pressure
behind the emergence of a linguistic trait (e.g. compositionality) is the
cultural transmission bottleneck. A key conclusion of the ILM for

compositionality emergence is that if the training set is too small, it does not



allow for generalisation, and if it is too large, the pressure to generalize
diminishes and holistic (non-compositional) languages are equally adaptive.
Compositionality is an adaptation of language whose function is to make
language learnable given the ‘poverty of the stimulus’ — the fact that children
are exposed to limited, imperfect linguistic data, and that they receive
practically no feedback on their performance. Here the environmental
constraint is the nature of the human relations that lead to the poverty of the
stimulus, the adaptation that language has evolved to match it is
compositionality. Kirby, Smith and Brighton (2004) also emphasize
learnability as the main pressure acting on language. Deacon (1997) writes:
‘The structure of language is under intense selection pressure because in its
reproduction from generation to generation it must pass through a narrow
bottleneck: children’s minds. (...) So, languages should change through
history in ways that tend to conform to children’s expectations; those that
employ a more kid-friendly logic should come to outnumber and replace

those that don’t’.

The pressures acting on language (or the lexicon) can be explained at two
different levels of adaptation: the phylogenetic and the cultural levels.
Phylogenetic explanations focus on the emergence of language within the
evolution of the Homo species since its appearance between 10”7 and 10° years
ago. During this time, parts of the anatomy of humans evolved in such a way
that language became possible. Language is an adaptation with a function in
human societies that make humans fitter. Language is a human phenotypic
trait with a genetic basis which is the object of natural selection (Deacon,
1997; Hurford, 1989; Komarova & Nowak, 2003; Nowak & Komarova, 2001;
Pinker & Bloom, 1990; see also Wagner, Reggia, Uriagereka, & Wilkinson,

2003 for an exhaustive review of computational simulations of language



emergence). If the evolutionary advantage that language conferred on
humans is that of communication, then the neuroanatomical traits that allow
language to serve as a communication tool are under great pressure to be
preserved. During hominid evolution, language adapted to being easily
learned, and/or the brain adapted to learn it easily. From the point of view of
the structure of language, the traits that make it easily learnable are also

under great pressure to be preserved.

Cultural evolution explanations focus on the evolution of language since the
appearance of Homo sapiens sapiens between 10° and 10* years ago. In this
evolutionarily short time, human anatomy has remained essentially
unchanged. Lexicon traits are adaptations whose function ultimately leads to
the better transmission of language and to the better communication of
concepts. Lexicon traits are coded in a transmissible replicable medium —
speech - and are the object of lexicon selection. Croft’s (2000) ‘linguemes’,
Kirby's (1999) 'variants', Mufwene’s (2001) ‘linguistic features’, Nettle's (1999)
linguistic items' or Worden’s (2000) ‘word feature structures’ are pieces of
linguistic information that are selected for or against in the framework of
linguistic evolution. In these studies, human fitness is only one
environmental factor, and not the driver of evolution. The drivers of
evolution are the reproducibility of language itself, that is, its ability to be
replicated in successive generations of humans; in other words, its

adaptation to be learned by human infants.

These two explanations complement each other by focusing on different
timescales and levels at which language evolution takes place. In the
phylogenetic approach, the emergence of language in humans, there is also a
place for a cultural evolution approach. A joint approach sheds light on the

co-evolution of language and humans. In the phylogenetic timescale, an

10



evolving processor precipitated language evolution. In the cultural timescale,
languages are stable with respect to their developmental environment, the
processor, because this environment is stable, and other pressures come to

the foreground to guide the cultural evolution of language.

This thesis relates to cultural explanations of language evolution, presenting
the ever-changing lexicon as the result of juggling the multiple pressures that
act on it. What is crucial in my arguments is that the pressures leave their
mark in the structure of the lexicon. My main assumption is that an analysis
of the different pressures can help characterize the structure of the lexicon,
and conversely, the structure of the lexicon can be explained in terms of the
pressures that operate on it. I assume that the lexicon is a complex system
with emergent properties that cannot be attributed to any one of its elements,
but are only apparent when the system is taken as a whole. I look for those
properties at different levels of representation, such as the phonological and
the syntactic-semantic level. I also look for emergent properties involving
both of those levels simultaneously, and propose that one of the pressures
acting on the structure of the mental lexicon is the tendency towards
systematicity, or structure-preserving mappings across different levels of

representation.

1.1.1.3 Summary

This section has defined the mental lexicon as a complex entity embodying at
least the principal elements of language, which is able to change its structure
adaptively to accommodate external pressures while preserving a structure
that allows it to serve as a communication system between humans and to be
learned easily by infants. The following chapters of the thesis will offer
explanations of the structure of the mental lexicon that take into account the

pressures that operate on it. Summing up,

11



* The mental lexicon is an embodiment of language where linguistic
information is encoded in the complex relationships between words at

many levels.

* The lexicon is a complex adaptive structure that constantly responds

to the many pressures that operate on it.

* This thesis attempts to explain characteristics of the structure of the

lexicon as adaptations to those pressures.

1.1.2 Statistical learning

The methods I employ in the thesis use speech data to infer the structure of
the mental lexicon. I am therefore assuming that the brain is able to perform
complex calculations on the input it receives from speech in order to develop
and subsequently adjust the mental lexicon. This is only possible if it is
sensitive to statistical patterns of information in speech, and this sensitivity is

explained by the statistical learning literature.

Throughout this thesis I assume that most of the support for language
acquisition is not in the human brain but in the structure of language itself
(Deacon, 1997). This is an application to language of the more general
principle proposed by Anderson (1991) that ‘the mind has the structure it has
because the world has the structure it has’. The methods described below
help reveal the complex patterns of information and of organisation
embedded in the structure of the lexicon. The patterns are probabilistic or
statistical, such as the calculation of information as entropy or the definition
of the position of a word in the semantic space as a pattern of cooccurrences

with other words.

During language acquisition these patterns are extracted by infants from the

linguistic environment, and assimilated to gradually configure the lexicon

12



structure of their language. This presupposes that human infants are
sensitive to statistical patterns in the input speech. This section reviews
studies that show mechanisms for the statistical learning of various aspects

of language.

Plunkett (1997) offers a review of multidisciplinary approaches to early
speech perception, word recognition, word learning and the acquisition of
grammatical inflections which, he suggests, demonstrate how linguistic
development can be driven by the interaction of general learning
mechanisms, highly sensitive to particular statistical regularities in the input,
with a richly structured environment which provides the necessary
ingredients for the emergence of linguistic representations that support
mature language processing’. Redington and Chater (1997) review successful
computational probabilistic and distributional approaches to speech
segmentation and the acquisition of inflectional morphology, syntactic
category and lexical semantics and end their review with an optimistic note
that a combination of different sources of information might one day attain
close to human performance. The volume edited by Bod, Jay and Jannedy
(2003) contains probabilistic approaches not only to phonology, morphology,
syntax and semantics, but also to sociolinguistics and language change. The
following sections briefly review the literature of statistical learning of

phonology, syntax and semantics.

1.1.2.1 Phonology

Probabilistic cues in speech help infants to acquire the phonological system
of their language. Maye, Werker and Gerken (2002) showed that
phonological categories are inferred from statistical modes in use of the
phonetic space: they determined that infants are sensitive to patterns in input

speech to track the distribution of speech sounds in their mother tongue.
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They familiarized 6 and 8 month old infants to unimodal and bimodal
distributions of instances of use of a continuum of speech sounds based on a
phonetic contrast, and then tested the infants” categorisation of the sounds.
The unimodal distribution should indicate that the contrast is linguistically
irrelevant and, as predicted, children exposed to it acquired a one-category
representation of the sounds. The bimodal distribution should indicate that
the contrast is linguistically important, and children exposed to it acquired a
two-category representation. Pierrehumbert (2003a) argues that infants learn
from superficial statistical properties of speech, but later on, when the lexicon
is well developed, the phonological system is refined by internal feedback
from type statistics over the lexicon (phonotactic information). This later
refinement exploits the confluences across levels of representation that make

bootstrapping and generalisation possible.

Peperkamp and Dupoux (2002) studied how infants who still do not have a
semantic lexicon might infer the underlying word forms that appear in
speech as different phonological variants. They examined word phonological
variants containing phonemes and allophones in different languages and
proposed a learning mechanism based on an examination of the distribution
of either surface segments® or surface word forms. They conclude that
semantic knowledge is unnecessary to retrieve word forms from a structured

set of variant instances of the word in speech.

Maye, Werker and Gerken (2002) suggest that ‘in addition to its probable role
in speech perception, this sensitivity [to probabilistic patterns in speech]

contributes to word segmentation (Saffran, 2001; Saffran, Aslin & Newport,

° The word ‘segment’ is used synonymously with ‘phoneme’ as a more theory-neutral term.
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1996; Saffran, Newport & Aslin, 1996; Christiansen, Allen & Seideberg, 1998)
and the acquisition of constraints on speech sound sequences (Jusczyk, Luce

and Charles-Luce, 1994 & Zamuner, 2001) and grammatical structure

(Gémez & Gerken, 1999; and Saffran, 2001)".

For recent reviews on statistical phonological learning, see Peperkamp (2003)

and Pierrehumbert (2003b).

1.1.2.2 Syntax

Redington and Chater (1997) differentiate between language external and
language internal approaches to learning syntactic categories. Semantic
bootstrapping (Pinker, 1984) is a language external approach that exploits the
correlation between word categories (especially noun and verb) and objects
and actions in the environment. Language internal approaches can make use
of regularities between phonology and syntactic categories (Kelly, 1992),
regularities between intonation and syntactic structure (Morgan & Newport,
1981) and distributional analysis. Cooccurrence statistics is a type of
distributional information that can be extracted with computational or
connectionist methods. It creates word representations that capture the
cooccurrences of target and context words in a corpus within a small
window (typically between 2 and 10 words), which reflect syntactic category.
Mintz (2003) introduces the idea of ‘frames’, or frequent combinations of two
words with one intervening word, and argues its validity to predict syntactic
category. Connectionist models use a form of Hebbian learning to capture
the cooccurrence statistics of the corpus in the weights of the network

(Rumelhart & McClelland, 1986).

Manning (2003) reviews the trend that linguistic units are continuous and

quantitative in contrast with generative grammar’s discrete and qualitative
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units. He motivates a probabilistic approach to syntax acquisition with
arguments from language acquisition, language change, and typological and
social variation, and exemplifies it with an exploration of verb

subcategorizaton.

1.1.2.3 Semantics

Some recent statistical approaches to semantic learning focus particularly on
learning symbolic association, the relationship between an object and its
name. Smith and Vogt’s (2004) cross-situational statistical learning model
suggests that learning word form-meaning pairings is achieved through
inference over multiple contexts; the form that more consistently co-occurs
with one aspect of the context will be assigned to that aspect. Symbolic links
are under the pressure of biases such as ‘mutual exclusivity” - the tendency
towards a one-to-one mapping between forms and meanings (Marksman,
1989; Merriman & Bowman, 1989; see also Smith, 2004) or the ‘whole object
bias’ — the fact that when children learn a new word, they prefer to associate
it with an object rather than with a feature of an object or an action
(McNamara, 1982). Unpublished research by Houston-Price (2004) supports
a distributional mechanism for the acquisition of the mapping between a
label and an object. She showed 15 and 18 month infants two visual stimuli.
The infants then heard a label, and a few seconds later the target stimulus
would move (salience condition) or the image of a face would turn towards
it, and the infants heard the label again. The infants never learned the
association of the label and the correct stimulus, but did learn the association
of the label to the incorrect stimulus in the salience condition. This means that
they associated the label with the stimulus that was more consistent during
the two presentations of the label, namely the stationary image. This supports

the view that acquisition of naming is mediated by probabilistic distributions
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of features of the stimuli together with probabilistic distributions of

occurrences of the labels.

Word cooccurrence statistics, apart from capturing syntactic category, are
also widely used to construct semantic representations (Lund & Burgess,
1996; Schultz, 1993; Landauer & Dumais, 1997; and McDonald, 2000; see also
Curran, 2004, for review). Cooccurrence statistics capturing semantics will be

further reviewed and developed in chapter four.

Having seen a definition of a complex, adaptive mental lexicon; the corpus-
based methodologies employed in the thesis; and a review of statistical
learning that psycholinguistically grounds the corpus-based methodologies, I

now present an overview of chapters two to six of the thesis.
1.2 Thesis overview

1.2.1 Methods

Underlying the whole thesis is the assumption that the information necessary
to configure the mental lexicon in a human brain is found in speech (and
text). Language acquisition is possible thanks to the human brain's sensitivity
to the linguistic information in speech — humans raised in the absence of
linguistic input do not develop language. The lexicon configuration and
associations between words at all levels change over a speakers’ lifetime
owing to exposure to more and more speech (and text). The main point is
that relevant analyses of speech should reveal the patterns of information

that shape the mental lexicon.

Most of the research reported in this thesis is corpus-based. The main corpus
used is the “Corpus oral de referencia del Espafiol’ (Marcos Marin, 1992), a
one million word Spanish transcribed speech corpus compiled in Spain in the

early 1990’s. I also use parts of a Spanish transcribed speech corpus of
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interactions between a young child and her close relatives, the ‘Maria’ corpus
(Lopez Ornat, 1994). Both corpora include Spanish spoken in Spain only,
mainly the standard Castilian variety, which is important for consistency.
Corpora are assumed to be representative samples of a language. In the case
of Spanish only a one million word corpus of transcribed speech was
available for research purposes, although larger news text corpora were
available. A corpus of transcribed speech, with all its grammatical and
speech errors, repetitions etc, is a more accurate representation of the
external manifestation of language than a corpus of written text.
Consequently, I chose to work with the speech corpus and relied on

statistical analyses to reduce the impact of the size of the corpus.

One consequence of using two contemporary corpora is that it offers a
synchronic snapshot of Spanish. I have not presented any diachronic
analyses, although some of the conclusions reached in the thesis have
implications for language change. In the conclusion chapter I briefly sketch a
theoretical framework for the evolution of the adaptive lexicon that takes

into account the findings of the thesis.

The one non corpus-based study is the empirical exploration of the
phonological space presented in chapter three. Here I used a
psycholinguistic-inspired forced-choice paradigm to collect participants’
impressions on phonological similarity between words. The data collection
was done on the Internet in order to reach Spanish speakers living in Spain.
The results are then used in chapter five to construct a quantitative
representation of the phonological level of the lexicon based on word
similarity, and also in chapter six to ground corpus-based findings about

phonological similarity.
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The corpus data has been subject to several very different analyses, in many
cases based only on the words of two consonant-vowel structures: cvcv, such
as mesa, pelo, mira, and cvccv, such as banco, tengo or marca. In chapter two I
use a method drawn from Information theory first developed to improve
encryption techniques. I extract all the words of structure e.g. cvcv and
consider the entropy - an elaboration of the probability distributions - of each
phone for each segment position. The result quantifies the distribution of

phonological information over words of that structure.

Chapter four exploits a very different type of information contained in the
corpus. It focuses on word distributional information, which quantifies the
degree to which words tend to occur near each other in speech. This is
assumed in the literature to capture syntactic and semantic information, and
I use two versions of the corpus (the surface forms and the lemmatised
forms) and two measures of cooccurrence (one including content and
function words in the calculations, and other including content words only)
to establish the effect of those parameters in the kind of information captured

by the cooccurrence representation of speech.

Chapters five and six bring together the phonological information obtained
in chapter three and the semantic and syntactic information extracted in
chapter four and tests the existence of systematicity between them. These
two chapters are based on the calculation of Fisher divergence, extensively
described in chapter five, developed to calculate the correlation between
similarity matrices, and a Monte-Carlo analysis to measure the significance

of such a correlation.

Chapter six uses methods from Artificial Intelligence to explore the effects of
the parameters of phonological similarity between words on the correlation

found in chapter five. A random search of the parameter space returns
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information on the behaviour of the phonological parameters with respect to
the phonology-semantics systematicity. A hill-climbing search finds the
parameter configuration that yields the optimal phonology-semantics
systematicity. The novelty in this methodology lies in the use of phonology-
semantics systematicity to characterize the function of different aspects of the

phonological lexicon.

Having briefly presented the methodologies employed in the thesis, I now

outline the structure of the thesis.

1.2.2 Thesis organisation

The lexicon is shaped, among others, by communication pressures. Words
need to be stored in the representational space; transmitted over a potentially
noisy channel, and decoded by the listener, and all of this has to happen in
an efficient way. In chapter two I employ Information theory tools to
measure the efficiency of lexical information storage, transmission and
decoding. Comparing the within-word information and redundancy
distributions of different representations of a set of words can help
determine how well adapted each representation is to the requirements of its

representational space.

I propose a lexicon architecture where words are represented over different
levels - phonological, syntactic, semantic. The lexicon is defined by
relationships of similarity between words at each level. The position of each
word in such a structure is given by its similarity to every other word at each
level. Chapters three and four are devoted to quantitatively define the

phonological and the syntax-semantic lexicon levels, respectively.

Chapter three presents an empirical exploration of the phonological

similarity space: a psycholinguistic paradigm obtains relative values for
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several parameters of phonological similarity between two words such as
‘sharing the first consonant’ or ‘having the same stressed vowel in final
position’. These results fill a gap in the literature on phonological similarity
in general, and of Spanish in particular. I offer explanations of the resulting
parameter values, linking them to the psycholinguistic literature. These
phonological similarity parameter values, derived from human judgements,
are used later in the thesis (chapter five) to calculate the phonological
similarity between words in two subsets of the lexicon. The pairwise
similarity measures obtained are a quantitative expression of the

configuration of the phonological level of the lexicon.

Chapter four deals with the semantic level of the lexicon, also configured as
the set of all pairwise similarity values between words. In this case the
similarity between two words is based on whether they tend to occur close to
the same words in speech. I review cooccurrence-based similarity metrics
and then construct a syntactic-semantic lexicon similarity representation. I
explore what types of information we can extract from cooccurrence-based
word representations of the Spanish lexicon, such as information on syntactic
category, gender, and meaning. Since syntactic gender is not present in
English, the analysis of gender classification is a novel application of

cooccurrence-based word representations.

The structure of the lexicon is constrained by the nature of its neural
substrate, so characterizing the organisation of aspects of language can help
infer aspects of the nature of the underlying brain substrate, and this
knowledge can help design language processing computer architectures
capable of similar functions. Conversely, the existing knowledge in
neuroanatomy and neurophysiology can help narrow the choice of the

possible brain architectures that would support our lexicon. In this respect,
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when the brain needs to deal with complex inputs, it tends to use
representations that preserve the structure of stimuli over different parts of
the brain. The best studied brain systems that are closest to language in
anatomical and functional terms - visual, auditory, somatosensory and motor
- use structure-preserving (systematic) representations at their various
processing stages, so I propose that they are a good candidate to be the ones

used in language processing.

With this in mind, I assume that structure-preserving systematicity is a
general property of the neural substrate, and that the relationships between
the conceptual and the linguistic levels are crucial in the structure of the
lexicon. Therefore, we should see traces of that systematicity between the
semantic level and other linguistic levels such as phonology and syntax. This
brings us to the main hypothesis in chapter five, namely that there is a
pressure towards a structure-preserving mapping between the phonological
and the syntax-semantic lexical representations. This hypothesis has been
tested for English. Shillcock, Kirby, McDonald and Brew (2001, submitted)
showed that words that occur in similar contexts are more phonologically
similar than expected by chance. In chapter five I replicate their study with a
slightly different methodology to test whether the same is true for Spanish,
which would support the universality of systematicity between word
phonology and syntax-semantics. If this correlation is universal, then it
would have to be explained in terms of the evolution of the lexicon against
the background of universal pressures. Chapter five continues with an
attempt to remove syntactic information from the data and the methods in
order to establish the influence of a correlation between the form and the
meaning levels of the lexicon. Finally, I replicate Shillcock et al.’s (2001)

methodology again to test whether, as they found in English, the correlation
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is driven by 'communicatively salient' words. The results obtained with my

limited data suggest that this is also the case in Spanish.

The phonology-semantics correlation is not without problems. It seems to
challenge the Saussurean principle of arbitrariness of the sign, which states
that the form of a word is arbitrary and independent of its meaning;
according to Saussure, a dog could equally be called ‘caterpillar’, but a
structure-preserving mapping between the space of form representations and
context representations would not allow this. I address this philosophical
issue and suggest that a dog could indeed suddenly be called ‘caterpillar’,
but then the rest of word forms in the lexicon would also need to change to
accommodate this change. While for any one word the form is independent
of the meaning, the relationships between forms are not independent from

the relationships between meanings.

The correlation found in chapter five is the basis of further explorations in
chapter six, where the measure of systematicity is used to quantify and
characterize the phonological lexicon. I use the correlation between
phonology and semantics to build a quantitative phonological space for
Spanish. This methodology reveals the effects of robust pressures working
not only towards but also against systematicity between phonology and

syntax-semantics.
To sum up,

* This thesis explores the structure of language embodied in the mental
lexicon, a complex system of words organized along many
dimensions and defined in terms of relationships of similarity

between each other.
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The exploratory methods in this thesis seek to define the structure of
different levels of the mental lexicon by quantifying relationships
within and between words. I explain these levels of organisation in
terms of the pressures acting on the lexicon at the phonological and
syntax-semantic levels, and also of a pressure for systematicity across

those different levels of representation.

The novel applications of the methods are intended to explore new
ways to tackle the structure of the mental lexicon and to pave the way
for further research with larger corpora and different languages as
well as with experimental paradigms that can offer new insights into

the forces that shape language.
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Chapter 2. The distribution of phonological

information within Spanish words

This chapter’ describes the information profile, a measure of the distribution
of phonological information across segments in a word set. It calculates the
information profiles of a representation of the mental lexicon and of the
words uttered in speech. Assuming that the lexicon structure is the result of
the pressures that act on it, I propose that the intra-word distribution of
phonological information can be explained in terms of the pressures acting
on the mental lexicon representation in the brain and on the phonological

representation of speech.

2.1 Introduction

In this chapter | measure the distribution of phonological information in
Spanish words, and try to explain it as adaptations to aspects of the two main
pressures we saw in chapter one: serving as a tool for human communication

and being easy to learn by humans.

A word has to meet several phonological requirements in order to be part of
a language. It has to be distinguishable from the other words, and it has to
use the segments® and conform to the phonotactics of the language. In this
chapter | suggest it also tends to fit in with the rest of the words in terms of
its phonological information structure. | assume the principle behind the
rational analysis proposed by Anderson (1991) that the output of cognitive
processes is an optimal response to the information-processing demands of

the environment, and hypothesize that the information structure of the

" Parts of this chapter were contained in Tamariz and Shillcock (2001); a copy of this paper is
included as Appendix H.

? The word ‘segmen’t is used synonymously with ‘phoneme’ as a more theory-neutral term.
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mental lexicon reflects the processing demands of the lexicon substrate in the
brain. Additionally, 1 assume that the information structure of words as
sequences of sounds in speech reflects the information processing and
communication demands of the potentially noisy medium over which they
are transmitted -words are produced in a way that minimizes the loss of
information due to the noise in the communication channel and to potential

misperception by the listener.

In view of these assumptions | propose that the distribution of phonological
information of word representations at different levels of abstraction can
help reveal the optimal processing solutions arrived at by the brain. |
examine the information structure of the lexicon (the collection of word types
we use when we speak) and of the words used in speech (word tokens)
expecting to see adaptations to the demands of the different representational
spaces in which the two word systems occur. In addition to this, | analyze the
information structure of words from a corpus of child-directed speech,
assuming the demands of the small, growing lexicon of a young child are
different from those of a larger, more stable adult lexicon, and that adults
have evolved a way of speaking to children that optimally meets those

demands (see Elliot, 1981 on child-directed speech).

| use the concepts of entropy and redundancy from communication theory
introduced by Shannon (1948) to construct the information profile of word
systems. These profiles reflect the distribution of information across the
segment positions of words, and | argue that they can be used to measure
how suitably and efficiently each word representation (the lexicon and

speech) is adapted to the demands of its representational space.

In 1975, Grice formulated the ‘cooperation principle’ in a series of maxims or
rules stating what a good conversation contribution should be like, but that

are applicable to all forms of human communication:

« Maxim of quantity (make your contribution as informative as is

required, but not more informative than is required).
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* Maxim of quality (try to make a contribution that is true).
* Maxim of relevance (be relevant).

« Maxim of manner (be perspicuous: avoid obscurity and ambiguity; be

brief and orderly).

The maxims of quantity and manner are particularly relevant to this chapter.
The phonological lexicon should contain enough information to allow clear
and unambiguous communication, but at the same time it has to be stored in
the limited representational space in the brain. Speech should be economical

without compromising clarity.

In this corpus-based study, | assume the set of word types in the corpus
represent the phonological forms of words in the mental lexicon, subject
mainly to the pressure to optimize the usage of the available representational
space. If this was the only pressure acting on the phonological lexicon, all
segments would be as likely to occur in all positions, in fact all the possible
segment combinations would exist as words. However, in reality other
pressures interact with optimal storage — phonotactics limit the possible
segment combinations, the pressure for prompt lexical recognition
concentrates the information towards the beginning of words, and efficient
processing constraints press for a monotonic structure where information is
incremental and where later information does not invalidate or contradict

earlier information.

The child-directed types correspond to the developing mental lexicon. We
should expect to see an evolution towards the mature mental lexicon
structure in samples of speech directed to an increasingly older child. The
developing mental lexicon is laying out the scaffolding of its structure, and
can be expected to prioritize clarity over optimisation of storage. The main
pressures here are to adapt to the processor sensitivities, reflected in

phonological and lexical acquisition.
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Secondly, | assume that the word tokens, including frequency information,
represent the phonological form of speech. Speech is subjected to the
pressures of communication. The main pressure on communication is that of
efficient transmission of the acoustic signal from the speaker to the hearer in
the face of potential noise. Pressures to overcome potential noise should be
the same in adults as in children, so in the child-directed token set, as in the
case of adult tokens, we can expect that an important constraint in terms of
information content should be efficient transmission. The phonological form
of speech is also subject to other processing constraints. One of the crucial
problems facing speech recognition is the segmentation of the speech stream
into words. | expect to find an information profile of the word phonology

that facilitates segmentation, both in child-directed and in normal speech.

| first look at the corpora from which the data are extracted and explain how
to build the information profiles using the concept of entropy. Then I look at
the information profiles of the different word systems to see how they reflect
the efficiency of the representations in the face of the demands of their

respective representational spaces.

2.2 Data

Our main source of data is the ‘Corpus oral de referencia del espafiol’ an
orthographical Spanish speech corpus (Marcos Marin, 1992) containing one
million words (with a vocabulary of 41,000 word types). This corpus is made
up of transcribed recordings ranging from everyday conversations to radio
broadcasts and technical and scientific addresses. In the second part of the
study | also use a corpus of Spanish speech addressed to a child extracted
from the 83,000 word corpus “Maria” (Lopez Ornat, 1994), described in more

detail in § 2.6.1 below.

Note that this study includes unfinished words, mistakes and, crucially, all
derived and inflected words, assuming in principle the Full Listing

hypothesis (Jackendoff, 1975; Butterworth, 1983) whereby all word forms are
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stored in the mental lexicon and productive morphological rules are only

used to produce or understand novel words.

2.2.1 Transcription

Both corpora, ‘Corpus oral de referencia del espafol’ and ‘Maria’, are
orthographically transcribed. In the absence of a large speech corpus
phonetically transcribed by experts, these are the best large speech data sets
available for Spanish. The corpora were automatically transcribed using 50
phonemes and allophones: vowels: Za/, /e/, /i/, /o/, /u/, 74/, /¢é/, /i/,
/6/, /u/. Consonants: /p/, /v/, /t/, /d/, /k/, /9/, /m/, /n/, I'n/, /</,
/il [T, 1o/, IS/, 13/, I/, LV, K/, /t)/; semivowels: /i/, /u/;
semiconsonant /j/, voiced approximants /p/, /o/, /y/, voiceless
approximants /B/, /o/, /y/, labiodental /m/, dental /n/ and /I/,
palatalised /n/ and 71/, velarized /n/, /z/, dental voiced /s/, dental /s/,
fricative /:/, voiced /o/ and a silenced consonant /@/. The transcription
included phoneme interactions such as assimilation, following the rules set
out in Rios Mestre (1999). Diphthongs were treated as two separate
segments, as is usual in Spanish phonological research. The corpora were
divided into chunks separated by pauses - change of speaker, punctuation
mark and pause marked in the corpus. The resulting text was automatically
transcribed word by word and then phoneme interactions were introduced
at word boundaries within the chunks, following the same rules as for the

intra-word transcription.

2.2.2 Word sets

For a clearer picture of the profiles, particularly towards the end of the word,
I work with four sets of equal length words: all the 4, 5, 6 and 7 segment long
words from the corpus. Word recognition typically occurs before the end of
the word is uttered (Marslen-Wilson & Tyler, 1980), and information about
word-length is usually available once the nucleus is being processed

(Grosjean, 1985), so | assume an idealised processing where recognition
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processes are restricting their activities to the subset of words in the lexicon
that match the word being uttered in terms of approximate overall length.
The particular word lengths were chosen because the structure of shorter
words is simpler - although I did not use the 1, 2 and 3 segment long words
because they do not allow for so much incremental interpretation, meaning
that for the set of same length words, the first sesgment carries most of the
information of the word. Also, working with equal-length word groups
means less variation in the internal structure of each word-length group,
which could potentially obscure the word-internal information distribution.
Additionally, the selected word lengths are equidistant from the modes of
the word-length distributions of the types and the tokens (see Figure 2.1).
The sum of these four word lengths accounts for 37% of the tokens and 45%
of the types. So any conclusions of this study are restricted to words of

intermediate length (4-7 segments).
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Figure 2.1. Word-length distribution in the 42,000 tokens and one million types from the
speech corpus.

2.3 Methodology

2.3.1 Entropy

Goldsmith (2000) suggests that information theory concepts such as
probability and entropy are the natural quantitative measures of many of the

concepts used by linguists in general and by phonologists in particular.
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I will use entropy as introduced by Shannon (1948), and further developed as
a tool to estimate the efficiency of communication and information (Shannon,
1951). Recent developments in new information technologies have
highlighted the need for an efficient way to store and transmit information,
and entropy has been used extensively in encryption studies (e.g. Cachin,
1997; Van Droogenbroek & Delvaux, 2002), and also in speech recognition
studies (e.g. Yannakoudakis & Hutton, 1992; Shen, Hung & Lee, 1998),
speech production studies (Van Son & Pols, 2003) and in natural language

processing (e.g. Berger, Della Pietra & Della Pietra, 1996).

Entropy (H) is defined for a finite scheme (i.e., a set of events such that one
and only one must occur in each instance, together with the probability of
them occurring) as a reasonable measure of the uncertainty or the
information that each instance carries. For example, the finite scheme formed
by the possible outcomes when throwing a dice has maximum entropy: each
of the six sides of the dice has 1/6 probability of occurring and it is very
difficult to predict what the outcome will be (high entropy). A loaded dice,
on the other hand, has an unequal probability distribution, and the outcome
is less uncertain (low entropy), with, say, number three having a %
probability of occurring. Entropy is a statistical measure of irregularity and it
has been defined as the amount of surprise experienced when encountering a

new element.

For probabilities (p,, p,, P,.--P,):

H:'Z(pi'log p.)
(Note that I use base 2 logarithms throughout this chapter.)

The relative entropy (H,,) is the measured entropy divided by the maximum

entropy H__, which is the entropy when the probabilities of each event

occurring are equal and the uncertainty is maximized. Using the relative
entropy allows us to compare entropies from systems with a different

number of events.
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H, .. =logn
(where n is the number of possible outcomes);
Hrel = H / Hmax

Redundancy is a measure of the constraints on the choices. When
redundancy is high, the system is highly organized, and more predictable,
i.e. some choices are more likely than others, as in the case of the loaded dice.
If entropy reflects irregularity, redundancy measures regularity in a system.

Redundancy is defined as:

Iq:l-Hrel

2. 3. 2 Calculation of the Information Profile

The entropy and redundancy of letters in a text has been used in corpus
studies before, for instance in the calculation of the entropy of letters in a
dictionary of over 93 thousand words (Yannakoudakis & Angelidakis, 1988).
This study examines the variation of entropy within words. | use the
information profile of a set of words as calculated by Shillcock, Hicks, Cairns,
Chater and Levy (1995) and Tamariz and Shillcock (2001) - a plot of the

relative entropy of each segment position of a set of words.

The information profile is a plot of the entropy calculated for each segment
position of a set of words of equal length, using the set of Spanish segments
as the finite scheme - for each position, the possible ‘outcomes’ are the
Spanish segments (/a/, /b/, /d/, /e/, /1/ etc).

The calculation of the entropy for each position is as follows. First, count the
occurrences of each segment in the position. The probability of each segment
is the number of actual occurrences divided by the total number of all
segments in that position. The entropy for that position is given by the sum
of the products of the probability of each segment multiplied by its
logarithm. This entropy divided by the maximum entropy for that position

equals the relative entropy.
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Figure 2.2. Information profile of words of length 7. The linear trend line equation is shown
above with a slope (m) value of -0.0251. The mean relative entropy (H,_) value and the
variance are also shown.

The plot of the relative entropy for all word positions is the information
profile (e.g. the one shown in Figure 2.2). The shape of the information
profile can be represented by the slope’ of the linear trend line of the entropy

values. Equation (1) gives the linear trend line:
y=mx+n

In equation (1), (m) is the slope, and it indicates the overall shape of the
information profile, particularly the difference in entropy levels at the
beginning and the end of the word. We have to take into account that for
equally shaped information profiles, the slope gets flatter as word-length
increases. Figure 2.2 shows a typical information profile, with entropy rising
after the first two positions and dropping sharply in the final position. The
slope (m) shows a negative value, indicating that the linear trend line drops
towards the end of the words. A positive value would indicate a line rising
from left to right, and a zero, a perfectly horizontal trend line. Because all the

slope values obtained are negative, the figures below will show (-m) for

° Another possible representation of the information profile is the variance of segmental
entropy values. The slope retains information about overall shape of the profile, but it is not
normalised for word length. The variance normalizes for word-length, but it loses the
information about the overall shape of the profile. The results of the comparisons presented
in this chapter are the same whether we use the variance or the slope of the linear trend line,
with higher variances correlated with steeper slopes.
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clarity. I will also examine the mean relative entropy across the profile,

simply the average of the segmental relative entropy values.

The information profile as defined above means that, as we perceive the
sequence of speech segments, we have information about how predictable or

unpredictable each segment is.

I now report some applications of the information profile and then go on to
compare the information profile of words in speech and in the mental

lexicon.

2.4 Applications of the information profile

2.4.1 The levelling effect of accurate word representations

Noting that in the absence of other constraints, the phonological information
profile of words would tend to be flat, with information distributed evenly
across word segments, Tamariz and Shillcock (2001) proposed the principle
that processes that make the representation of words more robust yield
flatter information profiles, and compared the slopes of information profiles

generated by the same speech corpus used in the present chapter.
2.4.1.1 Fast-speech

Tamariz and Shillcock (2001) compared two transcriptions of the words in a
corpus of Spanish transcribed speech (Marcos Marin, 1992) - a citation
transcription (the idealised pronunciation found, for example, in dictionary
entries) and a transcription including fast speech processes (described in §
2.2.1 above, including assimilation, which occurs when the articulation of
one consonant affects the way an adjacent consonant is pronounced, e.g. the
fact that a n is pronounced as ng when it comes before a velar consonant such
as k or g). The fast speech transcription consistently yielded flatter
information profiles in four samples of a corpus of Spanish speech (the
words of length 4, 5, 6 and 7). Additionally, the fast speech transcription

generated lower entropy levels (higher redundancy). Speech communication
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is under pressure to overcome environmental noise. The higher predictability
introduced by consonant assimilation in the transcription may be a response
to that pressure. It could help deal with the loss of information produced by

random noise and thus enhance communication.

Fast-speech processes are an adaptation to the ‘least effort’ pressure. This
pressure is in conflict with that of intelligibility. The production mechanisms
attempt to alter the pronunciation in order to do as little work as possible,
but the pressure of intelligibility only allows those changes that do not
hinder comprehension. The whole system has evolved under the two
pressures and seems to have reached a state where ‘lazy’ actions are also

good for communication.
2.4.1.2 Inflection and derivation

Some current models of lexical access propose two parallel word recognition
routes, a whole-word route and a morpheme-based one (e.g. Wurm, 1997, for
English; Colé, Segui & Taft, 1997, for French). Following this hypothesis, the
full forms of words need to be stored in the mental lexicon, as proposed by
Jackendoff (1975) and Butterworth (1983). It is relevant, then, to study the
behaviour of the set of all word types, including derived and inflected
words, that appear in speech. I compared the information profiles of the
speech types with those of matching words (4, 5, 6 and 7-segment words)
from a dictionary wordlist (the 28,000 headwords from the Harrap Compact
Spanish Dictionary, 1999). The dictionary profiles yield steeper slopes (one-
tailed paired t-test, t=3.86, df=3, p<0.05), and lower levels of entropy (one-
tailed paired t-test, t=3.85, df=3, p<0.05) than the speech lexicon. The
dictionary lexicon contains almost no inflected or derived words. It has
steeper information profiles, indicating that inflections and derivations alone
are not responsible for lower entropy towards the end of words, and its

entropy levels are lower, indicating it is a less complex system.

The comparisons of fast-speech versus citation transcription and of the

speech lexicon versus a dictionary lexicon support the hypothesis that the
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information profile slope steepness is a good predictor of quality of

representation.

2.4.2 Other word segmentations

Single segments are not the only possible units to calculate entropy. | tested
the effect of using the finite scheme of bigrams® instead of that of segments in
the comparison of citation and assimilation transcriptions, and found similar
results to those with the segment finite scheme. For the speech tokens,
assimilation transcription profiles are significantly flatter than the citation
profiles (one-tailed paired t-test, t=5.01, df=3, p<0.01). The average relative
entropy of bigram profiles is lower than that of the segment profiles, but it
reacts similarly to transcription, with lower entropy for assimilation

transcription (one-tailed paired t-test, t=14.65, df=3, p<0.001).

These results indicate that the distribution of information over the full word
length can be measured equally well using bigrams or segments. The
flattening effect of the assimilation transcription also holds when measured
with bigrams. One of the principles of this study is to use the least
computationally expensive methodology that is sensitive to the information
required, so the similar results obtained with the large bigram finite scheme
endorse the use of the smaller segment finite scheme in the calculation of the

information profiles.

2.5 Word representations in speech and in the mental lexicon

By adopting a vision of language as embodied in the mental lexicon, this
thesis is focusing on words as the basic units of language. | now examine the
intra-word distribution of phonological information in two sets of words
extracted from the same speech corpus, namely the list of the unique words

used by the speakers (types) and the collection of all the word tokens uttered.

* Bigrams can be equated to the transitions between one segment and the next (e.g. in the
word admitir we find the bigrams ad, dm, mi, it, ti, ir).
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This section examines these two aspects of the same corpus to see how well

they are adapted to the different pressures acting on them.

2.5.1 The mental lexicon

| take the set of all word types in the corpus to be a representation of a full-
listing mental lexicon (Butterworth, 1983). | assume that phonology plays an

important role in the organization of the mental lexicon.

I now appeal to a pressure towards an optimal processing strategy for the
storage of the mental lexicon to explain aspects of the information profile of
the word types. Shillcock et al. (1995) propose the general principle of
maximum storage efficiency, whereby information should be spread as
evenly as possible over the representational space in the brain. Entropy is a
measure of information content. If the demands of efficient storage were the
only factor at play, all segments in the lexicon would have the same
probability of occurring anywhere in the word, and then the relative entropy
would equal one (maximum uncertainty). However, in reality, constraints
such as morphological rules, phonotactic limitations and even sound
symbolism (the observation that certain sounds appear to convey certain
hues of meaning- see, e.g. Hinton, Nichols & Ohala, 1994) introduce
redundancy in the system, preventing storage from being maximally
efficient. An analysis of the information profile or word types can reveal the
effect of those constraints on the within-word information structure of the

mental lexicon.

2.5.2 Speech transmission and speech segmentation

As outlined in the introduction, | assume that the tokens from the corpus
represent speech. Word tokens are the word types plus information about

their frequency in speech.

This assumption with all its consequences (that analyses of the tokens will

reveal the pressures acting on speech) is a testable one. | assume that if we
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assigned random or scrambled frequencies to the word types, the resulting
information profiles would be different from those obtained with the real

frequencies, and crucially, they would be different for different word groups.

Speech occurs over a noisy channel. Noise, in the information theory sense, is
a random disturbance of the channel that introduces uncertainty in the
correspondence between the produced and the received signal. In a noisy
channel, a more redundant (lower entropy) message will be more likely to be
reconstructed without errors by the receiver. High frequency, on the other
hand, reduces uncertainty. In the calculation of the entropy of word tokens,
all token occurrences are taken into account, meaning that more frequent
words contribute more to the information profile. This means that because
high-frequency words are uttered many times, it is very likely that they are
partially obscured by a random noise occurrence. But because high-
frequency words are taken into account many times and therefore contribute
more to the information profile (a general property of the lexicon, tacitly
known by speakers of a language), they are easier to reconstruct without

error.

The process of speech perception includes the segmentation of the
continuous sound stream into words. Segmentation is, therefore, a critical
issue for speech representation (tokens), but not for the representation of
words in the mental lexicon (types). Different approaches emphasize
different factors that help achieve speech segmentation. In English, metrical
structure seems to be a good predictor of word boundaries, which tend to be
found immediately before strong syllables (Cutler 1990, Cutler & Butterfield,
1992). Cutler and Carter (1987) found that over 90% of all English content
words begin with a strong syllable, but this is not the case in Spanish, so the
equivalent of metrical structure (stress) might not be so relevant to
segmentation in that language. Norris, McQueen, Cutler and Butterfield
(1997) suggested that a Possible Word Constraint (PWC) could ease word

recognition by limiting the number of lexical candidates activated by a given
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input. This constraint requires that, whenever possible, the input should be
segmented into a string of feasible words. Any segmentation resulting in
impossible words (e.g. a single consonant) is not allowed. Norris et al. 1997
used a word spotting task to demonstrate that adults find words such as
apple more easily in vuffapple than in fapple, because vuff is a possible word,
whereas f is not. The PWC approach requires previous knowledge of the
possible lexical units, which infants do not possess during the initial stages of
language acquisition (although Johnson, Jusczyk, Cutler and Norris’s 2003
results indicate that 12-month-old infants already use the possible word
constraint in segmentation of fluent speech). McQueen (1998) adds to the
PWC the phonotactics and other statistical regularities that constrain what
can be a possible word and where words can start and end. Saffran, Newport
and Aslin (1996) suggest that distributional cues are crucial in the initial
lexical segmentation of (adult) language learners. They found that the
transitional probabilities between syllables in a language were enough for
learners of an artificial language to hypothesize word boundaries (even
though prosodic cues would enhance performance). Cairns, Shillcock, Chater
and Levy (1997) used neural networks and conventional statistics to
demonstrate that segmental distributional information in English is an
important cue to segmentation and it could allow infants to bootstrap into
increasingly complex strategies to end with an adult segmentation

competence.

Most of the variation between information profiles in the present study is
found at the beginning and, particularly, at the end of words, where word
boundary transitions occur. This is also relevant to the principle that
phonological reduction usually takes place at the end of the word or the
syllable, occasionally leading to material being dropped, together with a
compacting of the beginning of the word. The information profile of words
thus reflects these differential probabilities that help speech segmentation by

showing increased redundancy at the end of words - during word
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processing, the appearance of redundant segments (e.g. one of the reduced
set of segments that usually occur at the end of words) provides a cue to the

word ending.

In summary, phonological statistical regularities such as distributional cues
seem to play an important role in speech stream segmentation. This should
be reflected in a more marked drop of entropy in the final position of the

information profiles of the tokens as compared to the types.

2.5.3 Comparison of the information profiles

A comparison of the information profiles generated by the types and the
tokens, in the light of the pressures acting on the mental lexicon and on the
communication channel that is speech, indicates how well adapted each
word set is to the constraints of its representational substrate. | expect the
information profile of the types to be flatter and to have higher levels of
entropy, reflecting a pressure for a more efficient use of the representational
space; on the other hand, | expect the profiles of the tokens to be more
redundant, reflecting the complexity introduced by the different word
frequencies, and steeper, reflecting the pressure to facilitate the segmentation

of speech into words.

0.07 - 0.9 -
W Tokens W Tokens
0.06 - 0.85 4
0O Types ] O Types
0.05 | yp o 0.8
S 0.75 -
€ 0.04 - =
o T 07
Q 0.03 - o)
g 2 0,65 -
D) @
0.02 -
g 0.6 -
0.01 - 0.55 A
0 0.5 —
4 5 6 7 4 5 6 7
word length w ord length

Figure 2.3. Slopes of the information profiles Figure 2.4. Mean relative entropy of the

of the corpus (tokens) and the lexicon (types) information profiles of the corpus (tokens)

across the four word lengths. and the lexicon (types) across the four word
lengths.

40



Figure 2.3 shows that the word types generate mostly flatter information
profiles, although the results are only marginally significant (one-tailed
paired t-test, t=2.57, df=3, p=0.08). As we saw in Figure 2.2, the main
contributor to the descending slope of information profiles is the last
segment. If we compute the effect of this segment alone by subtracting the
slope of all-but-the-last-segment from the slope of all the segments, we
obtain significant differences between the tokens and the types (one-tailed
paired t-test, t=5.28, df=3, p<0.01). Similarly, if we measure the effect of the
last segment using the level of relative entropy of the last segment as a
percentage of the mean relative entropy of the other segments, the
comparison between tokens and types is significant across the four word
lengths (one-tailed paired t-test, t=6.74, df=3, p<0.01).

We see in Figure 2.4 that, as predicted, the mean relative entropy values are
significantly higher for the types (one-tailed paired t-test, t=3.66, df=3,
p<0.05).

Slopes are flatter in the types, indicating a more even distribution of entropy
across all word segments. Given the phonotactic constraints of the language,
which must account for at least some of the redundancy and differential
entropy across segments, it seems that segments are very evenly spread in
the lexicon, particularly in shorter words, allowing (or caused by the need of)
an efficient representation. Word-final segments, particularly, are

significantly more evenly spread in the types than in the tokens.

The tokens present steeper slopes, reflecting lower entropy levels in the last
word segments, as predicted. Given the flatter profiles found in the types,
this trend must be due to the fact that more frequent words show a more
marked low entropy final segment, or more predictable (redundant) word-

end patterns.
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Figure 2.5. Slopes of the information profiles of the 100 most frequent word types and of 100
types of frequency=4 across three word lengths.

Figure 2.5 shows the slopes of the information profiles of the most frequent
100 types in the corpus (frequency range [50,000-877]) and 100 types of
frequency 4 from word length groups 4, 5 and 6 (there were not enough
words of length 7 in the corpus to include them in this comparison). The
slope values indicate that the high-frequency words, particularly shorter
ones, generate steeper profiles (one-tailed paired t-test=4.48, df-2, p<0.05).
Shorter words tend to have higher frequencies than longer ones (see Figure
2.1 above), suggesting that high-frequency words make better use of the
statistical regularities of the lexicon to become more easily recognizable as
independent units. The results shown in Figure 2.5 also suggest that frequent
words have more informative beginnings and more redundant endings. This
could help understand the progressive phonological reduction and eventual
dropping of the endings of high-frequency words, and also the higher
communicative effectiveness of frequent words - the information

concentrated at the beginning of the word allows early recognition.

Relative entropy values are higher in the types than in the tokens (Figure
2.4), reflecting the higher complexity introduced by the frequencies (most

words being considered more than once).
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However, it is also apparent that while the high level of relative entropy is
constant in the lexicon (types), in the corpus (tokens), it is lower for shorter
words. This can be due partly to the fact that shorter words are more
frequent — and the frequency distribution of longer words is closer to the
distribution of types (frequency = 1 for all of them). Additionally, the high
level of entropy in the lexicon (even distribution of phoneme frequencies
across the word) in the short words suggests that many of the possible
phoneme combinations do exist as words. However, the lower level in the
corpus reflects the fact that some of these words are being used much more

frequently than others.

The information profiles of the lexicon reflects that it is adapted to an
efficient storage solution, and that of word tokens reflects that they are well
adapted to being segmented from the speech stream. However, a child’s
lexicon and ability to segment speech may have different requirements,

which should be reflected in the information profile.

2.6 Child-directed speech

I assume that speech addressed to a child is adapted to help develop an
optimal strategy for lexical acquisition. Because children need to be able to
identify and process new words, the structure of their smaller, ever-
expanding mental lexicon should reflect a greater emphasis on lexical
acquisition demands and less on lexical efficient storage demands than the
adult mental lexicon. On the other hand, the potential environmental noise in
the channel transmitting the message and thus the constraint for producing
intelligible speech is the same for adults and for children, therefore the sets of
adult and child-directed tokens should show the same adaptation to

intelligibility constraints.

Young children are acquiring basic phonologically-encoded features of the
language, such as word segmentation, so it can be expected that they need

word boundaries to be more marked. The child’s main language input comes
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from their caregivers, who seem to adapt their speech to their young
audience in different respects. Speech addressed to children is characterized
by special prosody (Kemler Nelson, Hirsh-Pasek, Jusczyk & Wright-Cassidy,
1989), high pitch and other distinctive acoustic measures (Fernald & Kuhl,
1987; Slaney & McRoberts, 2003), short Mean Utterance Length and simple
syntactic structure (Tse, Kwong, Chang & Li, 2002), clearer phonological
segmental information (Kuhl, Andruski, Chistovich et al. 1997), the inclusion
of special vocabulary and special grammatical uses (‘mummy is here’ instead
of ‘I am here’), and a higher neighbourhood density, which implies that
children first learn words with more frequent sounds and sound
combinations (Coady & Aslin, 2003). | argue that child-directed speech also
tends to be different from normal adult speech in the informational contour
of the words used, and child-directed speech contours should emphasize
word boundaries. Many studies suggest that children are sensitive to the
phonological statistical information in a language from an early age, and
they seem to use it in the segmentation of continuous speech into words.
Christophe, Dupoux, Bertoncini and Mehler’s (1994) experiments carried out
with three-day-old infants in French suggest that they can discriminate
between items that contain a word boundary and items that do not. This
result indicates that newborns could be sensitive to cues that correlate with
word boundaries, and that they could use these cues during lexical
acquisition. Mattys and Jusczyk (2001) report that 6-12 month old infants are
already sensitive to the probabilistic phonotactics of the language that is
spoken around them. Jusczyk, Luce and Charles-Luce (1994) report that 9-
months infants prefer to listen to lists of monosyllables containing phoneme
sequences that are frequent in their language than to lists containing
infrequent (although legal) sequences. There are other reports of sensitivity
of 10 month old children to cues to word boundaries such as statistical
regularities (Jusczyk, 1999), and of the sensitivity of 9 month olds to how
phonotactic sequences typically align with word boundaries (Mattys,

Jusczyk, Luce & Morgan, 1999). Nine-month olds also prefer legal over illegal
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word boundary clusters (clusters of sounds which are allowed or not
allowed to occur at the beginning of a word in a specified language) within
their own language (Friederici & Wessels, 1993). These pieces of research
were carried out using English and French, but | assume that the same
strategy is employed in Spanish, which is, like French, a syllable-timed
language. Also, the fact that these effects are observed as such early ages
suggests that they are not language-specific. Cairns, Shillcock, Chater and
Levy (1997) demonstrated that the distribution of phonetic segments in
English is an important cue to segmentation. Statistical information is also
the basis of word segmentation by a connectionist network trained with
child-directed speech (Christiansen, Allen & Seidenberg, 1998).

In summary, very young infants are sensitive to statistical cues to
segmentation in the spoken language they hear. These cues could also help
lexical acquisition. More predictable word-endings in the lexicon could help
the child segment words from speech and recognize them as lexical units.
This should be reflected as a drop in entropy at the end of the word type

information profile.

2.6.1 Data

The data in this section come from “Maria” corpus (Lopez Ornat, 1994), an
83,000 word corpus of speech interaction between an only child (between the
ages of 1.25 and 4) and her parents and, to a much lesser extent, other
relatives. For the present study only the speech addressed to the child was
taken into account. After removing the child’s utterances and all corpus
annotations 41,138 word tokens were left. The lexicon used in the corpus of
child-directed speech has 3,895 word types, which represents a rather
restricted vocabulary compared with the numbers of word types found in
similar size samples from the adult speech corpus and from the text corpus.
The average type:token ratio per 10,000 is 0.21 (range 0.20, 0.22) for 5 samples
of the adult corpus and 0.16 (range 0.14, 0.17) for 4 samples of the child

corpus. Incidentally, the four chronologically ordered 10,000-word samples
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from the child corpus produced increasingly higher type:token ratio values,
reflecting the increasingly varied vocabulary employed when addressing a
growing child. Another difference between the two corpora was the word
length distribution. Child-directed speech was made up of shorter words, on
average: the mode for the normal (adult) speech corpus was 7 segments
compared with 5 for the child-directed speech corpus, and there were fewer

long words in the child-directed speech (Figure 2.6).
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Figure 2.6. Distribution of word-lengths in the 3,895 types and the 41,000 tokens from the
corpus of child-directed speech (Cf. Figure 2.1 for the same distribution of adult types and
tokens).

The word frequency distribution of the child-directed corpus also has a
significantly different standard deviation from that of the adult corpus. |
tested this with a Monte-Carlo test: the SD of the 41,138-word child-directed
frequency distribution is 73.4. | then calculated the SD of 100 random
samples of the same size extracted from the adult corpus, and found that the
child-directed SD was significantly higher than any of them, being an outlier
(p<0.01) of the distribution of adult-corpus sample SD’s (thus the observed
SD could not have occurred by chance). This is explained by the fact that the
child-directed speech contains significantly less very low frequency words

than the samples of the adult corpus.

Another feature of this corpus of child-directed speech is the higher presence
of nouns and adjectives with diminutive suffixes -ito, -ita, -itos and -itas.
Diminutives are typical of positive affect speech in Spanish, including

interaction with children (see Melzi & King, 2003, for a recent review of the
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use of diminutives in general and in Spanish in particular). Kempe and
Brooks (2001) experiments in Russian — where diminutives are also a
pervasive feature of child-directed speech — suggest that the function of
diminutives is to help acquire grammatical gender. There are almost five
times more diminutive types and eight times more diminutive tokens in the
child-directed than in the adult speech corpus (1.37% of word types vs. 0.17%
in the adult speech, and 5.65% of the word tokens vs. 1.17% in the adult
speech).

I assume that the phonological structure of child-directed speech triggers and
directs the progressive organisation of a new mental lexicon structure in the
child’s brain. I argue below that the characteristics of child-directed speech
reflect the pressures acting on the developing mental lexicon, which are
different and occasionally opposed to those acting on the adult mental
lexicon. A comparison of the information profile obtained with the types and
tokens from a child-directed and an adult corpus may reflect the effects of

those different pressures.

I expect that, unlike adult types, the child-directed types do not yield
‘optimally efficient’ flat profiles, since children have a lot of representational
space available. The child-directed tokens, represented speech, will behave
like the adult tokens, since the pressures of communication over a noisy

channel are the same for both adults and children.

2.6.2 Comparison of the information profiles

Figures 2.7 and 2.8 show the slopes and level of relative entropy of the
information profiles of the tokens and types of the child-directed speech (Cf.

Figures 2.3 and 2.4 for the same comparisons on the adult corpus).
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Figure 2.8. Mean relative entropy of the
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from the corpus of child-directed speech
across the four word lengths.

Figure 2.7 shows the very similar slopes generated by the tokens and types of

child-directed speech. The relative entropy levels (Figure 2.8), however, are

significantly different (one-tailed paired t-test, t=4.99, df=3, p=0.01)

Figures 2.9 and 2.10 compare the slopes and mean relative entropy values of

the child-directed information profiles with those of the adult corpus (data

presented in § 2.5.3) , averaged over the four word lengths.
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Figure 2.9 shows a summary of the slopes and the relative entropy values for
the adult and the child-directed tokens and types (Figures 2.3, 2.4, 2.7 and
2.8). There is no significant difference between the slopes generated by the
adult and child-directed corpora. The difference in the slopes of the types,
however, is significant across the four word lengths (one-tailed paired t-test,
t=4.23, df=3, p<0.05). Figure 2.10 shows significantly higher relative entropy
in the adult data (one-tailed paired t-test, t=4.133, df=3, p<0.05 for the tokens
and t=12.7, df=3, p<0.01 for the types).

As expected, the slopes are similar in child-directed and adult tokens in the

face of similar environmental noise levels and segmentation requirements.

The fact that the child-directed types do not show the flatter slopes found in
the adult types is due to the different slopes generated by frequent and
infrequent types in both corpora. | calculated the information profiles of the
50 most frequent types (frequency range [1,800-164]) and 50 types of
frequency 2 in the 4, 5 and 6-segment words from the corpus of child-

directed speech (Figure 2.11).
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Figure 2.11. Slopes of the information profiles of the 50 most frequent types and of 50 types
of frequency=2 across 3 word lengths from the corpus of child-directed speech. (Cf. Figure
2.5 for the similar data from the adult corpus).
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The slopes of the high and low-frequency words are significantly different
(one-tailed paired t-test, t=4.36, df=2, p<0.05). This result can be compared to
the calculations done on the adult corpus shown in Figure 2.5 above, even
though the number of words and the frequencies are lower for the child-

directed corpus, given the fewer types and tokens in this corpus.

A comparison of Figures 2.11 (for child-directed types) and 2.5 (for adult
speech types) reveals that the high-frequency types generate similar slopes in
both the adult and the child-directed corpora (between 0.030 and 0.049).
However, infrequent types are flatter in the adult (between 0.008 and 0.017)
and steeper in the child-directed speech corpus (between 0.066 and 0.035).
The type profiles are calculated using one count of every word, as opposed
to the tokens, where each word is counted as many times as it appears in the
corpus. Therefore, infrequent words have a bigger impact on the types than
on the tokens, and this is reflected in the slopes. Additionally, the child-
directed corpus contains relatively fewer high-frequency words than the
adult corpus - the frequency distribution of the tokens is flatter in the speech-
directed corpus (SD = 73.4) than in the adult-directed corpus (SD= 495 -
average of the SD’s of the 100 random samples from the adult corpus of the
same size as the child corpus used in the Monte-Carlo test in § 2.6.1). The
higher number of low-frequency types in the child-directed corpus explains

the steeper slope of the child-directed types.

These steeper profiles of the child-directed types are due to the lower
entropy level in the last segment. The more redundant, predictable word-
endings relative to normal adult speech may be reflecting the caregivers’
speech helping children identify word boundaries. This outcome is achieved
at least partly through the higher presence of nouns and adjectives with a

diminutive suffix, a strong characteristic of Spanish child-directed speech.

| argued earlier that the flatter slope of low-frequency tokens in adult speech
reflected the fact that these words have unusual word endings. | propose that

the steeper slope of low-frequency types in child-directed speech reflects the
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fact that word endings are very predictable. This would help segmentation
and thus recognition and acquisition of novel words by children who have
never heard them before. Note that most low-frequency words in child-
directed speech will be high-frequency in the adult speech, and adult low-
frequency words will probably not be present at all in the child-directed
speech. Adults will use previous knowledge of a low-frequency word in
order to segment it in speech, whereas children need strong clues to the

word boundaries of words that are new to them.

The results in Figure 2.10 also confirm the prediction that the level of relative
entropy should be lower (higher redundancy) in the child-directed than in
the adult types. This difference in relative entropy in the child-directed and
adult types is also reflected in the tokens. In line with normal speech, the
frequencies in the tokens introduce redundancy and lower the relative

entropy of the types.

Summary of sections 2.5 and 2.6. In these two sections | have
calculated and compared the information profiles generated by
words from an adult-speech and from a child-directed speech

corpus.

* For the types — representing the mental lexicon — we have
seen that, while adult speech profiles were very flat, child-
directed speech profiles are not, suggesting that the
efficiency of storage pressure is less strong in the smaller

infant mental lexicon than in the adult mental lexicon.

* As for the tokens — representing words in speech - both
adult speech and child-directed speech information profiles
were steep, suggesting that the pressures for efficient
communication in a potentially noisy medium and for
speech segmentation are similar for both children and

adults.
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* Additionally, we have seen that the even distribution of
phonological information in the types (flat profiles for
types) is driven by low frequency words in the adult
corpus, while frequent words show steep profiles that can
be more easily exploited in speech segmentation. In the
child corpus, the low-frequency words present very steep
profiles, perhaps to help segment new words as they are

introduced in the child’s vocabulary.

2.7 The role of features: manner and place of articulation

This section tests a different way of calculating the information profiles. For
the calculation of entropy, instead of using the finite set of segments, | now

use features such as manner and place of articulation.

Manner of articulation speech features are best transmitted by the auditory
channel, whereas place of articulation are best transmitted by the visual
channel (Robert-Ribes, Schwartz, Lallouache & Escudier, 1998): in a noisy
environment, seeing the speaker's face improves message intelligibility
(Girin, Schwartz & Feng, 2001). Conflicting information from the two
channels generate fused responses reflected, for instance, in the McGurk
effect (McGurk & MacDonald, 1976): when presented simultaneously with

the sound ‘ba’ and an image of a face pronouncing ‘ga’, people perceive ‘da’.

I compare the results of the last two sections with similar information
profiles calculated with the finite sets of 17 ‘manner of articulation (plus
vowel)’ and 19 ‘place of articulation (plus vowel)’ features (see Appendix A

for full lists of features).
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Fig 2.12. Information profiles of 6-segment tokens from the speech corpus, calculated using
the finite scheme of phonemes, of manner of articulation features and of place of articulation
features.

Manner and place of articulation information are distributed differently in
the word. Figure 2.12 shows the profiles by phoneme and by manner and
place of articulation of 6-segment long words from the corpus. Place of
articulation is most informative in the word-initial position, where manner of
articulation is relatively redundant in that position. The highest redundancy

in the last segment is best captured by the phoneme analysis.

Figures 2.13 and 2.14 present a comparison of the information profile slopes
and mean relative entropy generated by the segment finite set (the results
already presented in § 2.5 and § 2.6) and by the manner and place of

articulation finite sets.

mphon O manner @ place 0.9 4 mphon O manner @ place

mean Hrel

—

tokens types tokens types

; ) tokens types tokens types
adult child-directed adult child-directed

Figure 2.13. Values of the slopes (left) and of the mean H,_, (right) averaged over the four
word lengths of the analysis by phoneme, by manner of articulation and by place of
articulation using the assimilation transcriptions of the speech (adult) corpus and the child-
directed corpus.

53




Figure 2.13 shows that manner of articulation yields the flattest contours,
particularly for the tokens, both in the adult and the child-directed corpora.
In terms of average relative entropy, both manner and place of articulation
behave similarly, with higher values than the phonemes, except in the adult
types (lexicon), where the most efficient encoding seems to be attained with

phonemes.

Manner of articulation information is more evenly spread across words than
place of articulation, and in speech (tokens) this suggests that it is more
immune to noise and could have an important role in auditory speech
production and recognition. This means that manner of articulation encodes
speech robustly in the absence of visual contact. In the lexicon (types), the
even spread of manner of articulation information suggests that it produces a
more efficient encoding and thus could have an enhanced role in the
organization of the phonological mental lexicon. This is also supported by
the fact that manner of articulation slopes are steeper in the types than in the
tokens — manner of articulation might be encoding internal word structure in

the types, but not in the tokens.

Place of articulation, providing visual information, shows much steeper
slopes than manner of articulation, even steeper than phoneme slopes. This
suggests that place of articulation is not an efficient dimension to organise
the mental lexicon storage; however, the sharp difference of entropy between
word-beginnings and endings is a good clue to speech segmentation (see
Figure 2.12).

Summing up, while manner of articulation seems to encode auditory
information more robustly, place of articulation encoding may be responding

to the pressure to facilitate speech segmentation.
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2.8 Conclusion

This chapter has examined the information profiles of words found in
spoken language, a measure of how well different word systems are adapted
to the informational requirements of their representational spaces. The
information profile is calculated with a computationally inexpensive
methodology that still finds reflections of the pressures acting on the
distribution of phonological information within Spanish words. The
consistency of the profiles’ behaviour over four independent word groups
(words of length 4, 5, 6 and 7) supports the robustness of this method. The
information profile calculated with different finite sets (segments and
features) show comparable results, each reflecting different aspects of the

phonological information structure of words.

The profile found in the adult lexicon supports the claim that it reflects
phonological distributional features that allow an optimal strategy of storage
in the brain. However, the features of the lexicon of child-directed speech do
not respond in the same way. Caregivers’ speech is adapted to meet other
critical demands that interfere with an efficient storage strategy at this early

age.

The profiles of two different token sets (adult-directed and child-directed
speech) show that they are equally well adapted to good communication

over a potentially noisy medium.

The vocabulary employed with children has a more marked drop in entropy
levels at the end of words, which could enhance word-boundary recognition
and help with lexical acquisition. In adults, segmentation cues are clearer in
the corpus, helping with speech stream segmentation, one of the crucial

problems of language recognition.

Calculation of the information profiles generated by manner and place of
articulation features suggests that while manner encodes a robust auditory

representation of speech, place may serve as a cue for speech segmentation.
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In conclusion, | have shown that information profiles of spoken words and of
the lexicon are a useful tool to measure distributional aspects of large
samples of language, and can be used to test and potentially falsify particular
aspects of psycholinguistic theories about speech production and

recognition, the mental lexicon, and lexical acquisition.
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Chapter 3. The structure of the phonological mental

lexicon

This chapter describes a mental lexicon geometry defined by quantifiable
relationships at several levels between words. It concentrates on the
phonological level of the mental lexicon, particularly on representations
based on similarity. It presents a psycholinguistic empirical exploration of a
phonological parameter space that can be used as a tool to define the

phonological lexicon structure.

3.1 Similarity-based mental lexicon structure

The last two chapters have emphasized the complexity of the mental lexicon.
Chapter one described the mental lexicon structure as the result of juggling
the many different pressures acting on it. Chapter two described emergent
characteristics of the intra-word phonological level, and how this level
responded to pressures such as intelligibility, storage and processing
constraints. This section reviews approaches to the lexicon based on
relationships between words, where each word's phonology, syntax and
semantics is defined in terms of its similarity to the rest of the words in the

lexicon.

Chapter two considered the phonological lexicon as a set of words that
responds as a system to communication and acquisition constraints. It
examined the distribution of entropy, a measure of the information content,
in the phonological representation of words. Entropy is defined in terms of
probabilities in a set of elements. It makes no sense to talk about the entropy
of one word, but in the statistical framework of linguistic communication,
each word occurs in speech with a certain probability. An unconstrained
system evolves towards a state of maximum entropy, where all elements

occur with the same probability. Deviations from this state of maximum

57



entropy are a reflection of the pressures that operate on the system. In
chapter two | found traces of the effect of communication, segmentation and

acquisition needs on the phonological lexicon structure.

This chapter focuses again on the lexicon as a system, but at the word level
instead of the segment level. | look at explanations of lexicon organisation
where each word is defined by its relationships with the rest of the words,
for instance the word 'cat’ is defined phonologically by its similarity to other
words like 'mat’ and 'cab’, and by its differences from words like 'lease’ or
‘friendliness’; syntactically, it is defined by its similarity to other nouns like
‘chair’ and 'glove' and by its difference from words from other categories
such as 'the’ and 'go’; semantically, it is defined by its similarity to 'dog’ and
'purr’ and its differences from 'cloud’ and 'write'. These examples illustrate
the emergence of categories in a lexicon structure based on similarity: words
belonging to the same category will be close together along the dimension

measuring that category.

The aim of this chapter and the next is to obtain two similarity-based
representations of the lexicon: one at the word-form level and another at the
cooccurrence-based level. These will be brought together in chapter five,
where | test the existence of systematic relationships between them. In the
present chapter | review studies suggesting that the lexicon is structured in
terms of similarity between words at many levels, and then concentrate on
metrics of phonological similarity. Finally | present a psycholinguistic study
that measures the relative impact of phonological parameters such as
'sharing the initial consonant' or 'sharing the stress on the final syllable' on
perceived word similarity. The resulting parameter values will be used in
chapter five's metric of phonological similarity to produce quantitative

representations of samples of the Spanish phonological lexicon.
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3.1.1 Lexicon levels

Many studies have shown evidence suggesting that similarity plays a role
the structure of the mental lexicon. Words can be categorised in terms of
their phonology, semantics and syntax, among other levels. One widely used
paradigm that reveals these similarity relationships between words is
priming. In priming experiments, participants are exposed to a prime word
for a short time, and are subsequently shown a target word. Prime and target
are related semantically, phonologically or at another level, according to
what lexical level the experiment addresses. An analysis of the effect of
exposure to the prime on processing of the target reveals aspects of the
lexicon organisation and representation at the relevant level. Primes can have
facilitatory or inhibitory effects on target processing. Facilitation usually
occurs with rapid presentation and it does not rely heavily on attention or
processing effort. Inhibition occurs later during lexical processing and may
involve more attention or strategic processing (Faust & Gernsbacher, 1996;
Neely, 1991). Facilitatory priming reveals a more direct reflection of the
mental lexicon structure, since it is not affected by conscious or controlled

processing.

The priming effect can be explained by a process of spreading activation
(Collins & Loftus, 1975): when a word representation is activated, the
activation spreads to word representations that are closely related to it. For
example, hearing the word ‘cat' activates semantically related words such as
'purr’ and 'dog’. When one of these related words is subsequently presented,
the participant reacts to it sooner because it was already partially activated.
This assumes that the representations of related words are more closely
connected to each other than to unrelated words. Priming is proportional to
relatedness, so the strength of the priming effect between a target and its
prime is a measure of how closely related they are. The relatedness between
two words can be defined as the similarity between them at the relevant

level.
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A whole body of literature on semantic priming suggests a lexicon organised
in terms of semantic similarity relationships between words (Meyer &
Schevaneldt, 1971; see Neely 1991 for review). The lexical decision task has
been used extensively to demonstrate semantic priming: participants have to
decide whither a string of characters is a real word or not. The typical effect
Is that when participants are shown for instance the word ‘cat’, the time they
take to recognize it as a word is shorter if they were shown the prime ‘purr’
than if the prime was ‘puff’. Manipulation of the semantic relationships
between primes and target words has helped study the structure of the

semantic mental lexicon.

Other studies focus on phonological similarity: Frisch, Pierrehumbert and
Broe (2004) studied the interactions of different phonotactic constraints in
Arabic and found that the more similar two homorganic (same place of
articulation) consonants are, the less they tend to cooccur within the same
root. They propose a model of the phonological lexicon where constraints are
graded rather than absolute, and interact with each other in complex ways.
Saffran (2003) and Pierrehumbert, (2001b, 2003b) emphasize statistical
learning of phonology, suggesting that the organisation of the phonological

lexicon is learned from the statistical properties of the linguistic input.

Morphosyntactic priming results are reported in several papers: Sereno
(1991) found that prime words facilitated targets from the same syntactic
class in a lexical decision task (but not in a naming task). Sanchez-Casas, Igoa
and Garcia-Albea's (2003) priming and lexical decision experiments in
Spanish also suggest that morphology is represented in the mental lexicon
and it may play a central role in word identification and recognition. Other
paradigms also reveal the morphological organisation of the lexicon:
Bozsahin (2002) proposes a Combinatory Categorial Grammar-based
interface between inflectional morphology, syntax and semantics that

exploits systematic relationships between the three lexical levels, and Saffran
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(2003) suggests that morphology is also learned from statistical patterns in

speech.

The lexicon also seems to be organised in terms of the orthographic form of
words. Segui and Grainger (1990) used a priming paradigm to reveal that
words were activated by primes with similar orthography, and the number
and frequency of the neighbours affected the degree of this activation.
Andrews (1997) notes some differences between orthographic priming effects
in English and in other languages with more transparent orthography such
as Spanish and English, such as less influence of high-frequency

orthographic neighbours on lexical retrieval.

Similarity of nonlinguistic lexical aspects also has been found to influence
processing and to affect the lexicon structure. Kjellmer (2000) found that
foreign words are more likely to enter the lexicon of a language if there was
no native equivalent, but also due to social aspects such as fashion and
prompting by the media. Type of social interactions has been shown to
influence the evolution of the lexicon (Baldwin, 2000; Vogt & Coumans,
2003). Finally, the lexicon also seems to be organised in terms of similarity of
words' emotional connotation. Wurm, Vakoch, Aycock and Childers (2003)
isolated the effect of very specific emotional lexical connotations such as
'‘danger’ and ‘usefulness’ on word naming times, and in a perceptual
matching and classification task, Mullennix, Bihon, Bricklemyer, Gaston and

Keener (2002) showed the effect of emotional tone of voice.

Having seen how words are organised in the mental lexicon in terms of their
semantics, phonology, syntax, orthography and some non-linguistic aspects,

the next section briefly reviews theories of category construction

3.1.2 Categories within lexicon levels

The organisation of the mental lexicon is reflected in the existence of word
categories at different levels of linguistic description. Category construction

has been dealt with by different theories throughout history, as Murphy
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(2002) explains: according to the classical theory of concepts (Frege, 1862-
1960), concepts are represented in the mind as definitions or lists of necessary
conditions to belong to that category. Classic categories in cognitive
psychology such as the syntactic category 'noun’' or the phonological
category 'bilabial' were defined a priori by rules. Later, Rosch’s (1978)
typicality effect studies showed that people agree about whether an example
iIs a good member of a category to a surprisingly large extent. This prompted
two opposing theories, both involving similarity comparisons: in prototype
theory, concepts are represented in long-term memory as the best or most
prototypical instance, and categorization is achieved by comparing the
observed item to stored prototypes and matching it with the prototype it is

most similar to. In exemplar theory, many or all instances (exemplars) of a

category are stored, and categorization is achieved by comparing the
observed item to all the stored exemplars and determining the number of
exemplars it is similar to and the extent of this similarity. The exemplar
theory of categorisation has been applied to speech perception and
production by Jonhson (1997), Lacerda (1995) and Pierrehumbert (2001), and
to phonological acquisition by Maye, Werker and Gerken (2000), who
propose that the acquisition of linguistic categories such as phonemes is
brought about by the memory traces of perception of many exemplars of the

categories in speech.

The next section reviews similarity-based models of the mental lexicon.

3.1.3 Similarity-based mental lexicon models

In this section | briefly review models where the structure of the mental

lexicon is determined by relationships between words.

Guthrie, Pustejovsky, Wilks and Slator (1996) review analyses performed on
machine readable dictionaries that, apart from extracting explicit information
such as definitions, exploit implicitly available phonological, semantic and

syntactic information. They focus on cooccurrence approaches that extract
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part of speech (Byrd et al., 1987), form noun and verb taxonomies (Amsler &
White, 1979), create semantic networks (Alshawi, 1989), create semantic
lexical hierarchies (Beckwith, Fellbaum, Gross, & Miller, 1991), reflect the
acquisition of semantic features (Guthrie, Slator, Wilks, & Bruce, 1990;
Pustejovsky, 1991) and construct semantically coherent word-sense clusters
(Slator, 1991; Wilks et al., 1993). All these kinds of information can be
included in an analogue of the mental lexicon, a ‘lexical database’ (e.g.
Nakamura & Nagao, 1988), that can be used in natural language processing

tasks such as sense disambiguation.

Connectionist models of the lexicon include those of Miikkulainen (1997) and
Philips (1999). The former presents an unsupervised connectionist model
called DISLEX, consisting of orthographic, phonological and semantic
feature maps. The geometry of each map and the interconnections between
maps are configured by Hebbian learning and self-organization based on the
cooccurrence of the lexical symbols and their meanings. Philips (1999)
proposes a connectionist mental lexicon that, apart from lexical semantics,

includes information about grammatical category, frequency and phonology.

The Analogical Model of Language (AML) (Skousen, 1995) was proposed as
an alternative to connectionist language models. AML attempts to reflect
how speakers determine linguistic behaviours. When speakers need to
perform an operation on an unfamiliar word such as derive it or place stress
on it, they access their mental lexicon and search for words that are similar to
the word in question. Then they apply the derivation or stress pattern of the
similar words to the target word. AML has been used to predict stress
placement in Spanish (Barkanyi, 2000; Eddington, 2000), the choice of linking
elements in Dutch noun-noun compounds (Krott, Schreuder & Baayen, 2002),

and Spanish diminutive formation (Eddington, 2002).

Having reviewed similarity-based approaches to the mental lexicon, the next
section outlines the similarity-based mental lexicon model adopted in the rest

of this thesis.
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3.1.4 A similarity-based model of the mental lexicon

| assume a mental lexicon configuration consisting of different levels of
organisation, each of which is defined by relationships of similarity between
each word and every other word with respect to that level. In such a
configuration, categories emerge as groups of words that are close together

in that level of description (see Figure 3.1).

Figure 3.1. One level of description of the words in the lexicon. The black dots are the words;
the lines between them represent relationships of similarity: the shorter the line, the more
similar the two words it joins. The overall configuration of the lexicon is defined by the
similarity relationships between words. Categories emerge from the resulting geometry (the
clusters in the grey ovals). Note that in reality the lexicon would not be representable in a
two-dimension plane.

For example, the phonological level of the mental lexicon is defined by the
phonological similarity between each word and every other word. In such a
structure, the identity of the words themselves becomes unimportant. Each
word's position is defined by its similarity values to every other word (this
could be visualised by rotating the whole structure represented in Figure 3.1;
the actual positions of the words is irrelevant, what counts is their relative
position to each other). Categories can be identified at different levels (e.g.
phonological, semantic) and along different dimensions within levels (e.g.
words stressed on the final syllable). I assume that those groupings can be

explained in terms of pressures acting on the lexicon structure.

| assume that speech contains the information patterns necessary to organize
categories at the different linguistic levels of the lexicon (phonological,

semantic, syntactic). This is linked to the important role of statistical learning
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in using the information in speech during the development of the lexicon in
language acquisition: the stochastic patterns in speech incrementally define
the relationships between words. | therefore assume that relevant analyses of
speech should reveal the patterns of information that shape the mental

lexicon.

Using a corpus as an approximation to speech, this chapter and the next
explore the information revealed by the analysis of two types of speech
information patterns - phonological and cooccurrence-based (including

syntactic and semantic information), respectively.

This section has looked at models of a structured mental lexicon organised in
terms of similarity between words at different levels. The next section
focuses on the phonological level of the lexicon, reviewing metrics of
phonological similarity and finally presenting an empirical study to measure
the impact of different parameters on perceived phonological similarity

between words.

3.2 Phonological similarity

The phonological level of the lexicon is composed of discrete units: the
segments of the language. Words are temporal combinations of those
segments. The similarity between two words in the phonological space
depends on the configuration of the space in that language - two words may
be perceived as phonologically similar for example if they share the initial
segment; if they rhyme; if they both contain segments with the same place or

manner of articulation; if they are stressed on the same syllable.

The function of detecting phonological similarities (or differences) between
words is to classify and distinguish lexical items. Some phonological features
of a word may contribute more than others to lexical classification. The
aspects of words where similarity is more easily detected in a particular
language must correspond to the more salient parameters of the

phonological word representation in the mental lexicon. Or, in other words,
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phonological aspects of the mental lexicon organization that contribute more
to classification will be the aspects that are easier to detect by the processor.
Finding which parameters of word form have a greater impact on similarity,
and how they relate to each other can help us understand the functions of
those parameters in the organization of the mental lexicon of a language.
Such an analysis can contribute to understand the processor's biases to pay
attention to specific lexical aspects, and the adaptations of the lexicon to

those biases.

This section reviews metrics of phonological similarity and presents an
empirical approach to measure the relative importance of word-form
parameters for the detection of word-form similarity in Spanish words. This
study examines two sets of bisyllabic word structures (cvcv and cvceev) and
attempts to establish the impact of the different segments, of stress and of

syllabic structure on perceived word-form similarity.

3.2.1 Metrics of phonological similarity

Different lines of research have devised metrics of phonological similarity,

from purely psycholinguistic studies to language engineering.

Many methods to measure phonological similarity consider the segmental
level. Focusing on speech production, speech error analyses such as slip-of-
the-tongue studies provide information on the importance of different
segments for overall word-form similarity. By comparing which phonemes
are replaced by which in speech errors, Stemberger (1991) composed a
confusion matrix that quantifies the degree of confusability between each
phoneme pair. The more confusable two phonemes are, the more similar
they are assumed to be in a language's phonological representation map.
Stemberger's confusion matrix has been used to test the accuracy and
psychological plausibility of other similarity metrics. For instance, Frisch

(1996) used it to support his choice of a phoneme similarity metric based on
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phoneme representations derived from Broe's (1993) structured specification

theory.

The priming paradigm has been used in psycholinguistics to study word
recognition (see an overview in Zwitserlood, 1996). A target word is
preceded by a prime word that shares one parameter with the target. If the
prime affects the processing of the target, then the parameter they share must
be involved in lexical access. In priming studies of phonological similarity,
when the prime and target shared the initial segments the results are
conflicting (see review in Radeau, Morais & Segui, 1995), but sharing the
final segments, particularly if they rhyme, has been shown to facilitate target

processing (see Dumay et al., 2001, for review).

Phonological similarity has also been measured in relation to the
phonological similarity effect described by Conrad and Hull (1964), who
found that when people are asked to recall a list of words, they perform
worse if the words sound similar to each other. (Although Lian & Karslen,
2004, recently found that the effect depends on the type of phonological
similarity considered, as reviewed in § 6.2.3.3 in chapter six). This effect is
also found when words are read instead of heard, which is best explained by
Baddeley and Hitch (1974) model of working memory that includes a
component that recodes visual (orthographic) information into a
phonological representation. In order to study the phonological similarity
effect, researchers needed sets of phonologically similar and dissimilar
stimuli. One method used to quantify phonological dissimilarity is Psimetrica
(Phonological Similarity METRIC Analysis), developed by Mueller,
Seymour, Krawitz, Kieras and Meyer (2003) to test models of verbal working
memory - yielding results in support of Baddeley’s model. For each word
pair, Psimetrica returns a multi-dimensional vector that includes information
about dissimilarity along a number of parameters such as rhyme, stress
pattern or syllable onset match. This technique first defines each word in

terms of a number of parameters or dimensions, it then aligns the two words
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and quantifies the level of matching for each dimension and finally, the
results are averaged over all the word pairs to yield the mean phonological

dissimilarity profile of the word set.

Several methods for measuring word similarity across languages were
developed with the purpose of automatic cognate identification. Cognates
are words from different languages that share the same etymological origin,
such as 'pronounce’ in English and 'pronunciar’ in Spanish, both derived
from the Latin verb ‘pronuntiare’. These methods look for orthographically
or phonetically similar words across different languages. This task involves
searching and matching, including finding the word alignment that yields
the best possible similarity score. Some of these methods measure the
similarity of orthographic forms, such as the Longest Common Subsequence
Ratio or LCSR (Melamed, 1999), which divides the length of the common
subsequence (common characters in the same order) by the length of the
longest of the two strings; and Dice’s coefficient, used by Brew and McKelvie
(1996) which equals the number of shared bigrams multiplied by two
divided by the sum of bigrams from the two strings. Other methods measure
the similarity of phonological forms, such as ALINE (Kondrak, 2000), that uses
a list of parameters based on phonological features ranked by salience and
then finds the optimal alignment of strings. The best parameter values for
finding cognates are found by a hill-climbing search that optimises the

values for the task at hand (in this case, cognate matching).

McMahon and McMahon (2003) propose that quantitative methods drawn
from the field of genetics should be applied to language classification into
families. They used measures of phonological similarity between cognates to
generate an unrooted phylogeny tree for Indo-European languages. Another
quantitative approach is that of Kirby and Ellison (in preparation), who
carried out a study of language phylogeny based on similarity within and
between languages. They created vector representations of the phonological

lexicons of 95 different languages (using edit-distances to compare words
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within each language — and not cognates across languages). They then
compared the 95 languages using the divergence of their distributions of
confusion probabilities. Finally, using a neighbour joining algorithm, they
constructed a language phylogenetic tree that reflected a plausible evolution

of the Indo-European language family.

Phonological similarity is also used in a spoken document retrieval method
(Crestani, 2003) that combined phonological and semantic similarity of the
term used in a search with the terms contained in the documents to be
searched. Crestani used a metric of phonological similarity between two
words devised by Ng (1999) that uses the values in a phone confusion matrix
(how liable is each phoneme to be misperceived or used instead of another

one).

The last few paragraphs present many studies that have measured
phonological similarity, some focusing on individual segments and some on

whole words, for a variety of purposes, briefly summarised in Table 3.1.

Parameters Paradigm Results

Shared phonemes Speech errors Phoneme confusion matrix

Shared segmental positions  Priming Determines impact of
parameters on lexical
processing

Various at different levels Quantitative Quantifies impact of parameters

(rhyme, stress, shared methods on phonological similarity

sequences)

Table 3.1. Summary of metrics of phonological similarity.

The next section presents a metric of similarity between whole word-forms
based on identity at the segmental level that measures the relative
importance of the position, the stress pattern and the syllabic structure. This
metric is different from the ones described above in several respects. First,
unlike the phoneme similarity studies, | measure whole word similarity
rather than single segments. Second, using a psycholinguistic methodology
means that, as in the case of priming studies, | am not measuring pure

phonological similarity, but rather word-form similarity, since other factors
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such as morphology may affect the results. Third, unlike cognate
identification and document matching, this empirical metric is not looking
for certain types of similarity with a specific purpose in mind. Rather, | offer
parameter combinations in a forced choice task and analyze people’s
responses. Finally, this method does not take into account the identity of the
phonemes compared, as spoken document retrieval systems do. Instead, |
consider the positions in the words together with information on whether
they are consonants or vowels and whether they are stressed or not. | then
measure the impact of these parameters on the estimation of the overall

perceived similarity between word-forms.

The next section describes the study and discusses the results in the light of

current psycholinguistic theories.

3.2.2 Word-form similarity perception in Spanish: an empirical

approach

The focus of this thesis is the structure of the mental lexicon, assuming a
lexicon organised in terms of relationships of similarity between words at
different levels. This section concentrates on building up a quantitative
model of the phonological mental lexicon; chapter four presents a
guantitative approach to the syntax-semantic lexicon. Chapter five brings the

two together and looks for systematic relationships between the two levels.

This section presents an empirical metric of phonological similarity aimed at
determining the relative impact of different parameters on the perception of
phonological word similarity. Using a forced-choice paradigm on pseudo-
words, this Internet-based study tested the impact of sharing single and
multiple segments (e.g. sharing the initial consonant; sharing all the vowels)
and stress on two word structures: cvcv and cvcev. The resulting parameter
values are used later to configure the quantitative model of the phonological

lexicon.
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3.2.2.1 Participants

All participants had Spanish as their mother tongue and lived in Spain. 55
participants (30 male, 25 female) between their teens and their sixties, from
ten Spanish regions participated in this on-line study (See Table 3.2 for full
demographic data). They were recruited through an e-mail message sent to a
linguistics web forum, to friends and also to university students requesting
them to take part in an experiment and forward the message on to their
acquaintances. Participants were directed to a web form containing the
instructions and the materials. At the end of the form there was a small
guestionnaire where they were asked about their region of origin, age group,
sex and about the main strategy they had followed while doing the test

(simply looking at the words, reading them in their heads or reading them

out loud).

Origin Age Strategy
Madrid 13 <20 1 Look 2
Galicia 12 21-30 15 Loud 30
Andalusia 12 31-40 23 Silent 23
Murcia 4 41-50 10
Asturias 4 51-60
Castille 4 > 60 1
Aragon 2
Basque C. 2
Catalonia 1
Valencia 1

Table 3.2. Participant age, origin and strategy.

3.2.2.2 Materials

The participants were presented with orthographic stimuli on a computer
screen. In a study concentrating on phonological aspects of the word-form,
stimuli could have been acoustic, but this posed difficulties in an Internet-
based study. The unreliability of the quality of sound data over the Internet

and of the sound playing equipment in remote terminals shifted the balance
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in favour of orthographic stimuli. | assume that Baddeley and Hitch’s (1974)
orthography-to-phonology recoding system mentioned above is at work;
besides, the instructions to the participants emphasized that they should
focus on the sound of the stimulus nonwords. This means that participants
are accessing their idealised phonological representations, which should be

conventionally equivalent for all speakers of the same language.

Participants were presented with nonword triads like the one shown in Table
3.3, containing one nonword on the left and two on the right such that the
two on the right were similar to each other, and different to the one on the
left, except that each of them shared one parameter with it. Since every word
must be stressed on one syllable, when stress was not an issue all three
words in a triad would be stressed on the first syllable (most common,
unmarked stress in Spanish). All the possible parameter combinations for
cvev and cvecv words were presented. Parameter combinations that cannot
occur simultaneously such as ‘sharing the stress on the first syllable vs.
sharing the stress on the second syllable’ were excluded (see Appendix B for

complete stimulus list).

; 0 mélto
slnta

o mulko

Table 3.3. An example nonword triad. In this case the top word on the right shares the third
consonant (t) with the word on the left and the bottom word shares the stressed vowel in the
first syllable (0). These are the two parameters that we are comparing here.

| prepared two stimulus lists, each consisting of 83 cvcev and 39 cvcev triads
(a total of 122). Each triad represented one parameter combination. The
parameters are features that two words can have in common. Table 3.4
shows the parameters used in this study for the two word groups. To avoid
any order effects, the two words on the right of the triad would appear in
each possible order about half of the time. In order to keep the test time low
and encourage participation and completion, each informant only saw a set

of 45 triads that were randomly selected from one set of 122, presented in a
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random order. A random ordering was automatically generated each time

the experiment was run, so it was different for each participant.

cvev cvcey
cl Same initial consonant cl Same initial consonant
c2 Same 2™ consonant
Single c2 Same 2™ consonant c3 Same 3" consonant
segment 1 same 1% vowel vl Same 1% vowel
V2 Same 2" vowel v2 Same 2" vowel
tcl3 Same consonants 1 and 3
] tc23  Same consonants 2 and 3
Multiple
segment tc Same two consonants 3c Same three consonants
tv Same two vowels tv Same two vowels
Syllable str Same syllabic structure (cvc-cv or
structure CV-CcVv)
sl Same stress (on 1 syllable) sl Same stress (on 1% syllable)
s2 Same stress (on 2 syllable) s2 Same stress (on 2" syllable)
sv2  Same stressed vowel in the 1% svi Same stressed vowel in the 1%
Stress syll syllable
sv2  Same stressed vowel in the 2™  sv2 Same stressed vowel in the 2™

syll syllable

Table 3.4. Parameters used in the study for cvcv and cvcev nonwords.

Note that not all these parameters are independent of each other. (The only
truly independent parameters are the single segment parameters c1, c2, c3,
vl and v2). When two words share the parameter ‘two vowels’, they
necessarily share ‘vowel 1’ and ‘vowel 2’ as well. As we see in the example in
Table 3.5 below, all three words share the first vowel, so when people decide
which of the words on the right is more similar to mopi, the result is
measuring the influence of parameter ‘sharing the second vowel (when they

already share the first one)’.

. 0 sote
mopi .
0 sOti

Table 3.5. Example triad comparing non-independent parameters ‘vowel 1’ and ‘two
vowels’.

Stimulus nonwords were written using only letters with a transparent
orthography-phonetics relationship, also avoiding the use of Spanish

graphemes i, ch and Il. In order to make the nonword stimuli natural to the

73



Spanish ear, their phonotactic probabilities were matched to words of the
same structure extracted from a corpus (Marcos Marin, 1992). The
frequencies of the consonants in the stimulus nonwords mirrored those of
words of the same structures from a speech corpus. For cvcv words, the
similarity between the distribution of the consonants was significantly
correlated with their corpus counterparts (first consonant: Pearson’s r = 0.82;
df = 12; p<0.001; second consonant: Pearson’s r = 0.69; df = 11; p<0.01). For
cveev words, consonant cluster frequencies were significantly correlated with
those in the corpus (Pearson’s r = 0.70; df = 49; p<0.001), but the similarity of
first consonants was not (Pearson’s r = 0.46; df = 11; p<0.09). Note that given
the small set of frequent consonant clusters in Spanish, it is difficult to find
combinations of cluster and first consonant that are not real words for the

cvccev set.

Another measure of wordlikeness (the extent to which a sound string is
typical of a language) is the lexical neighbourhood density. Neighbourhood
density is calculated by counting the number of words in a corpus (Marcos
Marin, 1992) that sound similar to a target: (a) words of the same length that
differed from the stimuli by a 1-phoneme substitution (measure used by e.g.
Ziegler, Muneaux & Grainger, 2003); (b) words up to 6 phonemes (for 4-
phoneme stimuli) and up to 8 phonemes (for 5-phoneme stimuli) that
contained the stimulus - similar to Stoianov’s (2001) approach, who consider
syllables that share at least two segments as contributing towards similarity,
and neighbourhood; and (c) longer words that rhymed with the stimulus -
the neighbourhood density metric used by De Cara and Goswami’s (2003)
includes rhyme, and indeed they suggest that rhyme has a special role in the
development of phonological awareness. As expected, the neighbourhood
densities of the stimulus nonwords are lower than those of similar real

words.
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Figure 3.2. Neighbourhood density (average number of phonological neighbours) of
stimulus nonwords and similar words from the corpus.

Figure 3.2 compares the neighbourhoods of cvcv and cvcev nonwords with
those of all the words of the same structure found in the corpus. The
phonological space of a language is to a large extent used up by the real
words. Phonologically adaptive forms are used again and again, that is why
nonwords cannot be expected to have as many neighbours as real words, but

there are similarly shaped distributions of neighbours for cvcv and cvccv.

Even though place and manner of articulation features in the stimuli were
not controlled for, in most cases the consonants used in one stimulus set are
different from the consonants used in the other stimulus set for the same

comparison.
3.2.2.3 Method

Participants were directed to an Internet link to the experiment web page,
where they first saw the instructions. Below these were 45 stimulus triads
randomly selected from the 122 from one set. Participants were asked to read
the nonword triads and determine which of the two words on the right
sounded more similar to the word on the left. Participants were directed to
pay attention to stress, which was marked in all stimuli as an acute on the
corresponding vowel (the usual orthographic stress mark in Spanish).
Additionally, participants were instructed not to think too much, and to
select their first spontaneous choice. The results, together with the
demographic data, were automatically emailed back to the experimenter for

analysis.
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This design was intended to reveal which parts or aspects of the word people
focus on more when they read the stimuli, particularly what is more salient
when they look for phonological similarity. Sound similarity is mentioned in
the instructions, so we were recording meditated choices, rather than
automatic responses as in priming paradigms. Also, participants could take
their time and read the stimuli several times, which allows for other factors
to play a role in the choice. When asked which of the two stimuli on the right
sounds more like the target, people activate and match the representations of
the three stimuli. 1 used nonwords so that direct semantic representations
were not available, although the semantics of the stimuli’s phonological
neighbours could influence the choice. In order to minimise that problem, |

used two different nonword triads for each parameter comparison.
3.2.2.4 Results

| obtained an average of 20 responses (minimum: 10, maximum: 31) for each
pairwise parameter comparison. The results for cvcv and cvcev stimuli were
analyzed separately. For each pairwise comparison of parameters, | counted
the proportions of respondents that favoured each option to obtain the
‘winner’ of that comparison. For example, in the triad comparing parameter
‘cl’ and ‘c2’ for cvcev words, 14 out of 21 respondents selected ‘cl’ and 7
selected ‘c2’, so the winner is ‘cl’. | then calculated a weight between zero
and one that expressed the confidence of the result that the winner is ‘b’,
such that if everybody prefers the same parameter the weight for the winner
is 1; if the responses were fifty-fifty, the weight is 0, and there is no winner. |
calculate that by dividing the difference between the number of people who
chose ‘c1’ (14) minus the number of people who chose ‘c2’ (7) divided by the
total of responses (21). In our example, (14-7)/21=0.33, meaning that 0.33
more people preferred ‘cl’ than ‘c2’, so for this comparison we would have a
weight of 0.33. Tables 3.6 and 3.7 below show matrices containing the
weights obtained for all the pairwise parameter comparisons for cvcv and

cvcecev stimuli.
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cvev cl c2 vl v2 tc tv sl s2 svl sv2
cl -0.57 -0.48 -0.38 1 0.64 0.42 0.21 -0.09 0.5
c2 0.57 -0.07 0.58 0.56 0.8 0.65 0.48 -0.07 0.73
vl 0.48 0.07 -0.17 1 0.86 0.43 -0.22 n.a. 0.81
v2 0.38 -0.58 0.17 0.58 0.17 0.58 0.26 0.26 n.a.
tc -1 -0.56 -1 -0.58 0.22 0.04 -0.16 -0.71 0.07
tv -0.64 -0.8 -0.86 -0.17 -0.22 -0.4 -0.24 -0.45 -0.08
sl -0.42 -0.65 -0.43 -0.58 -0.04 0.4 n.a. 0.74 n.a.
s2 -0.21 -0.48 0.22 -0.26 0.16 0.24 n.a. n.a. 0.86
svl 0.09 0.07 n.a. -0.26 0.71 0.45 -0.74 n.a. n.a.
sv2 -0.5 -0.73 -0.81 n.a. -0.07 0.08 n.a. -0.86 n.a.

All param. -1.25 -4.21 -3.26 -1.82 3.68 3.85 0.97 -0.52 -0.32 2.88
All segm. -0.20 -2.43 -2.24 -0.72 2.92 2.68

Single seg. 1.43 -1.07 -0.38 0.02

cveev cl c2 c3 tc13 tc23 3c vl v2 tv sl s2 svl sv2
cl -0.33  -0.5 0.4 0.05 0.88 -0.5 -0.28  0.83 0.58 0.57 -0.1 0.74
c2 0.33 -0.57 041 1 1 0.36 0.6 0.55 0.79 0.3 -0.11 1

c3 0.5 0.57 1 0.69 1 0.83 0.26 1 0.65 0.6 0.08 0.83
tcl3 -0.4 -0.41 -1 0.06 0.83 -0.17  -0.13 043 0.33 -0.14  -0.55 0.67
tc23 -0.05 -1 -0.69  -0.06 0.69 0.42 -0.08  0.13 0.39 0.69 -0.88  0.68
3c -0.88 -1 -1 -0.83  -0.69 -086 -083 -0.33 -009 -033 -038 -0.25
vl 0.5 -0.36 -0.83 0.17 -0.42  0.86 -0.04 1 0.29 0.57 n.a. 0.67
v2 0.28 -0.6 -0.26  0.13 0.08 0.83 0.04 1 -0.08 -0.27 -0.05 na.
tv -0.83 -055 -1 -043 -0.13 0.33 -1 -1 0.17 -055 045 0
sl -0.58 -0.79 -0.65 -0.33 -0.39 0.09 -0.29  0.08 -0.17 n.a. -0.74  na.
s2 -0.57  -0.3 -0.6 0.14 -0.69 0.33 -0.57  0.27 0.55 n.a. n.a. 1
svl 0.1 0.11 -0.08 0.55 0.88 0.8 n.a. 0.05 0.45 -0.74  na. n.a. n.a.
sv2 -0.74 -1 -0.83 -0.67 -0.68 0.25 -0.67 na. 0 n.a. -1

str 0.33 0.62 0.68 0.58 n.a. na. 0.44 0.76 0.64 0 0.14 -0.6 1
All par. -1.99 504 -7.33 1.05 -0.25  7.90 -1.96  -0.38  6.07 2.30 0.57 -4.20 6.34
All segm. -0.21 -3.06 -5.17 1.37 0.64 6.42 -043 -074 523

Sing. sg. 1.61 -0.73 -2.16 0.73 0.54

str

-0.33
-0.62
-0.68
-0.58

n.a.
-0.44
-0.76
-0.64

-0.14
0.6

-4.60

Tables 3.6 and 3.7. Results of all parameter comparisons for cvcv and cvccv words. A
positive value means that the parameter on the top row is the winner and a negative value
means the parameter on the left column is the winner. The top right halves of the matrices
are completed with the corresponding values (multiplied by (-1)). Missing values
correspond to parameter combinations that were impossible to combine in a stimulus triad.
The three bottom rows of each table show the parameter values considering all parameters
(obtained by adding the values on each column), considering all but the stress and structure
related parameters (obtained by adding the values on the cells corresponding to the
segment-related parameters), and considering the single segments only (obtained by adding
the values on the cells corresponding to the individual segments only). C1, c2, c3 =
consonants 1, 2 and 3; v1, v2 = vowels 1 and 2; tc = two consonants; tv = two vowels; 3c =
three consonants; s1, s2 = same stress on the 1% and 2™ syllable; sv1, sv2 = same stressed
vowel on the 1% and 2™ syllable.
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In order to obtain a single value for each parameter, | sum the weights for
that parameter with respect to all the other parameters (add each column of
Tables 3.6 and 3.7). A positive value indicates that the parameter is a net
winner, that is to say it wins over more parameters than it loses against,
and/or it scores higher relative to other parameters. A negative value
indicates it is a net loser — it loses against more parameters than it wins over
and/or it scores lower relative to other parameters. Figures 3.3 and 3.4
illustrate the parameter values obtained when we take all parameters into
account for cvcev and cvcev stimuli (the general parameter values). These
values are unitless, and, because they have been calculated on a square

matrix, they add up to zero (for each word group).

Values of the phonological similarity Values of the phonological similarity
parameters for cvcv words parameters for cvccv words
519 8 4 tv sv2

tc tv

sv2 3¢

parameter value
parameter value

parameters parameters

Figures 3.3 and 3.4: Parameter values for cvcv and cveev words.

The results show a high consistency between the two independent word
groups cvcev and cvcev: the values of counterpart parameters in cvcv and
cvcev are significantly correlated when we take all parameters into account
(R’=0.83, df =11, p<0.01) and when we take all the single and multiple
segment parameters into account (R°=0.88, df =7, p<0.02). They are not
significantly correlated for single segment parameters only (R’=0.71, df =2,
n.s.) but this is only due to the low number of data points compared (four,

which gives 2 degrees of freedom for the calculation of the significance).

This between-group consistency indicates that participants made similar
choices for the two independent word groups. This adds internal consistency

and robustness to the study, and validity to the methodology employed.
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The results for each parameter in the three different measurements (taking
into account all parameters, multiple segments and single segments) are well
correlated, as can be seen in Figures 3.3 and 3.4. The only visible discrepancy
is the relative values of the first and second vowels (vl and v2) in cvcecv
words. This is due to the fact that it was impossible to construct a stimulus
triad for the comparison v2 against sv2 (same stressed vowel in the same
syllable). The high value of sv2 in this word group lowered the values of the

parameters that were compared against it, but not of v2.

The high number of regions of origin involved for 55 participants does not
allow for accurate measurements of region of origin effects. The strategy
followed by participants (reading the stimuli out loud or silent - imagining
the sound of it in their heads) did not have an effect on the parameter values
(the correlation between the results generated with loud and silent strategies

is R°= 0.76 for both cvcv and cvcev).
3.2.2.5 Discussion
Segment positions

The values of the individual comparisons and the general parameter values
reveal different aspects of word form similarity processing. For instance, we
can compare the relative importance of the different segment positions in the
assessment of word similarity either by examining how each segment fares
against each of the other word segments (see Figures 3.5 and 3.6) or by
comparing the general values of the segmental units; the first method focuses
on relationships at the segment level, and the second takes into account the
more complex and subtle relationships of each segment with all segmental

and nonsegmental parameters that characterize its general value.
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Figures 3.5 and 3.6. Relationships between the pairs of segmental parameters for cvcv and
cveev words. The arrows depart from the winner and arrive at the loser. The left-hand

column shows the weights.
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Figures 3.7 and 3.8. Parameter values of the segment positions of cvcv and cvcev words,
measured considering all parameters, all segmental parameters and single segment
parameters, and the single segment parameters only.

Figures 3.7 and 3.8 show the results obtained using single segment

information (grey triangles), using all segment-related information (white

circles), and using all parameters, including information about stress and

syllabic structure (black squares) (see calculation of the values in Tables 3.7

and 3.7 above). The single segmental measurements only take into account

the information shown in Figures 3.5 and 3.6 above, and miss the fact that all

segments are net losers (negative parameter values) with respect to the
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whole parameter set. We see that similarity at word initial and final segments
Is perceived more readily than in the middle of the word, another expression
of the ‘bathtub effect’ found by Brown and McNeil (1966) in their tip-of-the-
tongue studies. (The name of this effect comes from the image of the word
represented as in figures 3.7 and 3.8, as someone lying in a bathtub with only
their head and feet above the surface of the water.) Brown and McNeil (1966)
read to participants the definitions of relatively obscure target words and
then recorded the (wrong) words they produced when they claimed to have
the target ‘in the tip of their tongue’. Some of the words recorded sounded
like the targets and other had similar meanings. They counted the matches
between the few initial and final segments of the targets and the words
recorded and found a bathtub effect, with matches at the beginning and end
of the word up to 50% of the times and much less matching in the middle.
Studies of malapropisms (wrongly selected similar-sounding words recorded
from natural speech) show even higher matches or near-matches between
errors and targets at the word initial (80%) and word final (70%) sounds,
with much lower agreement levels in the middles (Aitchison & Straf, 1982;
see also Fay & Cutler, 1977 and Hurford, 1981). This effect is most salient for
the initial and final segment, rapidly decaying already for the second and
last-but-one segments (Browman, 1978). The present results support the
claim that word initial and final segments are prominent in lexical

representation.
Vowels and consonants

Figures 3.9-3.12 show the relative importance of vowels and consonants
using all the segment-related parameters in cvcv and cvcev words (see

calculation of the values in Tables 3.7 and 3.8 above).
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Figures 3.9, 3.10, 3.11 and 3.12. Parameter values for single and multiple consonants and
vowels cvev and cveev words.

The most salient feature in Figures 3.9-3.12 is, unsurprisingly, that the more
consonants or vowels two words share, the more similar they are perceived
to be. Additionally, the consonant structure (sharing all consonants) and the
vowel structure (sharing all vowels) have an equivalent weight in
determining similarity in both word groups (after allowing for the fact that
cveev word consonant structure has three elements whereas cvev has only
two). Some studies have suggested that vowels and consonants are
processed by distinct neural mechanisms at the cortical level. Caramazza,
Chialant, Capazzo and Miceli (2000) described the case of two aphasics with
impaired processing of vowels and consonants, respectively. Boatman, Hall,
Goldstein, Lesser and Gordon’s (1997) experiments with patients with
implanted subdural electrodes showed that electrical interference at different
brain sites could impair consonant discrimination or vowel and tone
discrimination. These studies suggest not only that consonant and vowel

processing are distinct but also that the vowel structure, being processed
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together with tone, could be a kind of supra-segmental level exploited in
speech perception. (Differences between consonant and vowel processing are

further explored in chapter six of this thesis.)

In cvcev words, sharing the two syllable-initial consonants ¢l and c3
(equivalent to the two consonants in cvcv words) has a higher value than
sharing consonants c2 and c3. In the great majority of stimulus nonwords,
consonants c2 and c3 are in different syllables (e.g. bun-ta, kas-te). Again, the
limited stimulus cv structures precludes a full analysis, but this result
indicates that syllable-initial consonants form the skeleton of the word
consonant structure. Clements (1991) proposed the Sonority Dispersion
Principle that the sharper the rise in sonority between the beginning of the
syllable and the nucleus, the better the syllable. The paradigm of ‘good*
syllable would, therefore, be ‘cv’. If we assume a bias to process syllables as
‘cv’ as a default, it makes sense for syllable-initial consonants to form the
word consonant skeleton and to be more salient in processing than for

instance cluster consonants or syllable-final consonants.

As far as the individual segments are concerned, the word-initial consonant
in both word groups is most salient for similarity perception, followed by the
vowels; other consonants obtain the lowest values in any measurement (see
Figures 3.3 and 3.4 above). The final vowels (and, in cvcv words, also the first
vowel) have values close to the initial consonant. The study only included
stimuli starting with a consonant and ending with a vowel, so these results
cannot rule out that vowels are more salient than consonants, but given that
the initial segment position (in our two word-groups) is very salient,
consonants appear to be more salient than they really would be in a more
heterogeneous stimulus set. If we had had stimuli starting with a vowel or
ending with a consonant, we might have found that the vowel structure is
more salient than the consonant structure. As for the end of words, whereas
single consonant values are lower towards the end of the word, the final

vowel, usually a site for a gender or a verbal morpheme, shows a relatively
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high value. This supports the idea that there is a bias for attention to be
focused on the parts of the word in Spanish where morphological
information concentrates. This hypothesis could be further tested with a
cross-language study involving languages with different sites for

morphology.
Stress

The design of this study included four parameters related to stress, namely
sharing the stress on the first syllable, on the second syllable, sharing the
same stressed vowel on the first syllable and on the second syllable. Figures
3.13 and 3.14 show the general values for these parameters (calculated taking

into account comparisons with all parameters).
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Figures 3.13 and 3.14. General values of the stress parameters in the two word groups. sl =
stress on 1% syllable; s2 = stress on 2™ syllable; sv1 = same stressed vowel on 1% syllable; sv2
= same stressed vowel on 2" syllable.

Sharing the stressed vowel in final position (sv2) obtains the highest values
for both word groups, as well as third and second positions in the general
parameter rankings for cvcv and cvcev words, respectively, as seen in
Figures 3.3 and 3.4. This could reflect the fact that the most common Spanish
verb tenses (present, simple past and future) and persons (first and third
singular) are encoded by contrasts in the identity and stress of the final
vowel (Table 3.8). See Appendix D for a full list of the 31 words stressed on
the last syllable out of the 324 cvcv words of frequency greater or equal to

100 in a Spanish speech corpus (Marcos Marin, 1992).
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-ar -er, -ir

pres past fut pres past fut
1* -0 -é -ré -0 -f -ré
3 -a -6 -ré -e -i6 -rd

Table 3.8: Regular verb morphemes for first and third persons (singular) in the three most
common tenses in Spanish (present, simple past and future) for verbs ending in —ar, -er and —
Ir.

The stimuli were nonwords, but we cannot claim that the use of nonwords
precludes the perception of word-final phonemes as morphemes. E.g. the
nonword bunki could be perceived as the first person singular of the past
tense of non-verb ‘bunker’ or ‘bunkir’. If morphology perception interferes
with phonology perception, in the triad [bunki (teska or tesmi)], tesmi could be
found more similar to bunki because it could be perceived to be sharing the

same tense and person.

In order to explore this issue, | included stimuli ending in U, which is not a
verbal morpheme. However, in such triads participants still found words
sharing the stressed U more similar than those sharing any other parameter,
including sharing the three consonants. All participants responding to the
triad [kandu (kinda or pirgu)] found pirgud was more similar to the base word
than kinda. Morphology, then, cannot be directly responsible for the high
score of the parameter ‘same stressed vowel on the second syllable’.
However, important information such as verb morphology occurs at the
word final position when it is occupied by a stressed vowel. It could be
adaptive to focus attention on any phonological variation in that segment
position when it is stressed. Stressed final vowels, then, seem to be very

salient in terms of perceived form similarity in Spanish.

Sharing the stress on the first syllable generated high general values and
ranking position (fourth for both cvcv and cvccev, see Figures 3.3 and 3.4). In
Spanish, most words are stressed on the penultimate syllable: see e.g. the
stress distribution of the results in Barkanyi (2002) for common word

structures, or the small proportion (10%) of words stressed on the last
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syllable in the 324 cvcv words of frequency greater or equal to 100 in a
Spanish speech corpus (Marcos Marin, 1992). This means that, even though
many words share the stress on the first syllable, this parameter is salient in

the perception of phonological similarity.
Syllabic structure

This parameter only applies to cvcecv words, and compares two possible
syllable structures: cv-ccv and cvc-cv (e.g. da-blo vs. dan-go) within the same
consonant-vowel structure (cvccv). This parameter loses to every other
parameter, which suggests it is of little importance for the perception of
word-form similarity in cvcev words. Rouibah and Taft (2001) examined the
processing units involved in the reading of French polysyllabic words and
concluded that ‘the syllabic structure that is so clearly manifested in the
spoken form of French is not involved in visual word recognition’. Perhaps,
then, visual presentation of the stimuli is obscuring the effect of this
parameter on perceived word-form similarity, and auditory presentation

would have resulted in a higher parameter value.
3.2.2.6 Comparison with the information profiles

Figures 3.7 and 3.8 above (single segments) can be compared with the
information profiles in chapter two. The profiles resulting from the results
above represent prominence in aspects of lexical access related to word-form
similarity. The segmental entropy used in chapter two reflects the joint effect
of all the pressures on intra-word phonological form. Van Son and Pols
(2003) proposed that greater speaking effort is concentrated on more
information-laden parts of the word, whereas predictable items are
phonologically reduced. Mirroring this reasoning for perception, | assume
that more attention is paid to the parts of the word where information tends
to be concentrated. Figures 3.15 and 3.16 show the information prominence
of cvev and cvcev words (the redundancy values of the segments,
redundancy being 1 - entropy, from chapter two) and the attention

prominence of cvcv and cvcev word segments (the segmental parameter
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values: the black squares in Figures 3.7 and 3.8 above), which I interpret to be
reflecting the amount of attention the corresponding segments attract (or

how much people focus on the segments) when judging word-form

similarity.
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Figures 3.15 and 3.16. Similarity and information (redundancy) profiles of cvcv and cveev
words (lines drawn to show the profile shape). X-axis indicates parameters.

The correlations between these two measures are R = 0.21 for cvcv words
and R* = 0.46 for cvcev words. The relationship between these two profiles is
that similarity should be easily detected in perceptually salient word
segments, and redundancy, a measure of complexity and organization,
should be higher in positions that encode aspects of the lexicon structure.
Similarity and redundancy should be correlated in places where it is
important to detect variability among a small number of possible segments
that encode e.g. a morpheme. The closest parallels between the two profiles
are the high values at the last segment preceded by the lowest values in the
last-but-one segment. The main difference is the relatively high similarity
and low redundancy in the first sesgment. The first segment in Spanish is not
a usual site for morphological information, therefore it shows low
redundancy, but it is important for word recognition, so it shows high
similarity prominence (it is the focus of attention). The last segment, on the
other hand, is the site of morphology (gender, number and verb inflections)

in such short words, and shows, as expected, high redundancy values. It also
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shows high similarity, meaning that a lot of attention is focused on the

identity of this segment.
3.2.2.7 Conclusions and future work

Different approaches to the study of phonological lexical structure and the
relationships between them help to understand the functions of word-form
parameters. This section has reviewed metrics of phonological similarity and
has presented an empirical metric to analyse phonological similarity at the
word level in Spanish that fills a gap in the literature. The empirical metric
was based on a two-way forced choice between nonwords sharing different
word-form parameters with a third nonword. These parameters were the
same segment in the same position for individual and combinations of all
word segment positions, the same stress pattern or stressed vowel and the

same syllabic structure (in cvcev only).

In agreement with the findings of tip-of-the-tongue, speech error and
malapropism studies, | observe that word initial and final segments are more
salient than the middle ones in this similarity-judgement task. Word-initial
salience and vowel and consonant structure salience could be related to
phonological word representation (with implications for word production
and recognition). Salience of the identity of a stressed vowel in word-final
position could be explained as an enhanced attention to the usual site of
morphology. Correlations between the information profile and the salience
of single segments further stress the intertwined roles of morphology and

lexical phonology in the perception of form similarity.

The paradigm presented may be used to establish a hierarchy of parameters
of phonological similarity in other languages. A similar study applied to
several languages could help establish if the relative salience of the
parameters is universal or language-specific and help classify languages by
the parameters configuring their phonological mental lexicon. Also, the

application of the metrics reviewed at the beginning of the chapter to
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Spanish could support (or otherwise) and potentially qualify the results

found here by analysing other levels of phonological description of Spanish.

The quantitative parameter values obtained with the psycholinguistic study
presented in this chapter will be used in chapter five to calculate word-pair
similarity values in order to configure a phonological similarity lexicon
structure. First, chapter four reviews and applies methods to calculate

cooccurrence-based similarity between words.
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Chapter 4. The structure of the mental lexicon as

defined by patterns of word cooccurrence

The aim of this chapter is to obtain a representation of the syntactic-semantic
level of the lexicon based on similarity between words. The chapter focuses
on word-cooccurrence methods to define the position of words in the
syntactic-semantic space and reviews ways of measuring similarity between
them. It presents an application of one such metric to a subset of the Spanish
lexicon and explores how this statistical approach to the representation of the

mental lexicon performs in semantic and syntactic tasks.

4.1 A similarity-based semantic space

In the conceptual approach of semantics (Jackendoff, 1983) meaning is
equated to conceptualizations, which are determined largely by the
environment. | take the view that language itself is part of the environment
that determines conceptualizations. Words and the way they are used in
speech play a part in building the mental representations of concepts. The
semantic space is configured by the structure of the world, but also by the
structure of language. This interplay of mental representations and language
is expressed as the grammatical constraint that Jackendoff (1983) puts on a
theory of semantics: that a semantic theory must support systematicity in the

relationship between syntax and semantics.

There are many approaches in the literature to configuring the semantic
space (including semantics or meaning, syntax and possibly other kinds of
information). Smith, Shoben and Rips (1974) proposed a feature-based
semantic space where the defining dimensions are features such ‘red’,
‘living’ etc. Concepts are defined by sets of defining features, e.g. ‘pigeon’
could be defined as ‘living’, ‘flying’, ‘grey’, ‘with feathers’ etc. This model

explained priming, naming delays, typicality effects and semantic deficits
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found in brain damaged patients, but it was criticised as being a descriptive
framework that did not reflect the real underlying structure of the semantic
lexicon. (See review of feature-based approaches to semantics in McNamara
& Miller, 1989).

Connectionist approaches to modelling feature-based semantic
(dis)similarity include Rodd, Gaskell and Marslen-Wilson's (2004) model of
the effects of semantics in word recognition. They used a feedforward
network architecture where words with multiple meanings had distributed
representations in a high-dimensional semantic feature space; during the

learning phase, each meaning formed one stable attractor basin.

Others have configured the semantic space using the structure of thesauri
such as Roget’s thesaurus or WordNet. A thesaurus-based semantic space is
defined by the distance between pairs of words in the thesaurus, and the
basic metric is the number of links between nodes. For instance, already in
the fifties Osgood, Suci, and Tannenbaum (1957) used Roget's Thesaurus to
help construct bipolar scales based on semantic opposites, such as "good-
bad" or "fast-slow" to measure the results of psychological experiments.
Jarmasz (2003) reviews recent uses of Roget's thesaurus in natural language

processing.

Budanitsky and Hirst (2001) assess the performance of methods based on
WordNet in a spell-checking task. Thesaurus-based semantic spaces have
been criticised because of the limited and inconsistent coverage provided by
the available thesauri (Curran, 2004), and Budanitsky and Hirst (2001) point
out that lexical semantic relatedness is often constructed in context and

cannot be determined exclusively by resources such as WordNet.

One way to overcome these shortcomings is to substitute feature-sets and
thesauri with word distributional statistics extracted from real language
samples such as a large corpus. One such approach is Landauer and Dumais’
(1997) Latent Semantic Analysis (LSA). They counted occurrences of target

words in whole articles of a children’s encyclopaedia, and constructed a
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matrix of rows representing word types by columns representing the articles
in which the types appear. Each value corresponds to the number of times
the word type occurs in the article. They reduced the dimensionality of the
word-by-article matrix using a technique called singular value
decomposition. The resulting 500-dimension matrix represents a semantic
space where the similarity between word types or between articles can be
calculated. The LSA semantic space contains no information about word-
order and hence syntax. The LSA approach has been used to explain
semantic similarity (Kintsch, 2001) and to perform complex tasks such as
metaphor interpretation (Kintsch & Bowles, 2002), complex problem solving
(Quesada, Kintsch & Gomez, 2001), automatic essay grading (Foltz, Laham &
Landauer, 1999) and automatic tutoring (Wiemer-Hastings, Wiemer-
Hastings & Graesser, 1999; Kintsch, Steinhart, Stahl, Matthews & Lamb,
2000).

The rest of this chapter will focus on context window methods that locate
words by considering what words they occur close to in text or speech. This
is based on the idea that the meaning of a word is determined by the
linguistic contexts in which it occurs. In context space models (also called
hyperspace models because the resulting representations are
multidimensional spaces) each target word is located by a vector whose
components are counts of occurrences of context words in the vicinity of the
target. The ‘vicinity’ is defined by the size and shape of a window, for
instance, five words before or after the target word, or the preceding word

only.

Figure 4.1 illustrates the process of calculating the vectors that represent the
position of words in a cooccurrence-based hyperspace (see caption for

explanation).
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Al though we are born with pretty much all the brain cells we wll
ever have, | believe it is the growh

cells of the brain after birth.
And wh is amazing about the brain is that it is constantly
evolving every nonment we are alive, so that although born into a
boom ng, buzzing confusion,(.)

v/ the | we | of is that | are Cooccurrence matrix:
cells 3 1 1 0 1 0
) Rows = target words.
brain 4 1 1 4 1 0
growth 4 0 0 1 1 0 Columns = context words.
born 1 1 0 0 1 2

Figure 4.1. Calculation of the cooccurrence vectors in a text. The counts are based on the
piece of text at the top of the Figure. In this example the target words are four high-
frequency content-words, and the context-words are six high-frequency function words. |
consider a context window of five words before and after the target word in the text (e.g., for
the first occurrence of the word ‘cell’, the window comprises the words in grey around it).
The value in each cell in the cooccurrence matrix is the total number of times that the target
and the context word appear within five words of each other in the text.

McDonald (2000) points out two properties of this kind of distributional
statistics that make them appropriate for psycholinguistic modelling -
objectivity and language independence. Distributional statistics are objective
because they make minimal assumptions when exploiting the statistical
patterns present in speech. As for language independence, results obtained
using French, German and Mandarin corpora (Redington, Chater, Huang,
Chang, Finch & Chen, 1995) mirror those obtained for English. The results of
Curran (2004) also indicate that context window approaches to measuring
semantic similarity yield reasonable results while being computationally
cheap and orders of magnitude computationally faster than shallow parsers
such as CASS, Sextant of Minipar (6-7 minutes as opposed to hours or even
days to extract information from the same corpus) - see Curran (2004) for

review.

Context space models have been used to categorise words syntactically
(Finch & Chater, 1992; Redington, Chater & Finch, 1998; Daelemans, 1999;
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Christiansen & Monaghan, in press), categorise words semantically (Levy &
Bullinaria, 1998; McDonald, 2000; Curran, 2004) and model semantic and
associative priming (Lund, Burgess & Atchley, 1995; Lund, Burgess & Audet,
1996; McDonald & Lowe, 1998; McDonald, 2000).

The calculation of a semantic vector space (which can be represented visually

as Figure 3.1 in chapter three), requires the following elements:

» A corpus of text where the cooccurrences between targets and context-

words will be counted,
» aset of target words,
» aset of context words, which provide the dimensions of the space,

» a context window around the target words, where the occurrences of

context words are counted,
 amethod to calculate the vectors,

* amethod to calculate the distance between vectors.

The next section looks at these parameters in detail.

4.1.1 Elements and parameters of the semantic hyperspace
4.1.1.1 The corpus

The size of the corpus affects the robustness of the cooccurrence-based
representations. Large corpora produce vector representations that are more
immune to noise due to restricted corpus-size. Patel, Bullinaria and Levy
(1998) and Curran (2004) found that an increase in the size of the corpus
improved their results, even for very large corpora (Curran used a two
billion word corpus). Several hyperspace studies in English use (subsets of)
large corpora such as the British National Corpus (BNC, around 90 million
written and 10 million transcribed spoken words) or USENET (a corpus of

around 170 million word corpus of newsgroup text).
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On the subject of spoken versus text corpora, McDonald (2000) gives three
reasons why speech is better than text. First, speech is the primary
environment for language acquisition. (I would add that speech is the
primary source of human communication.) Second, the smaller type:token
ratio of speech provides a more reliable source of contextual information and
thus the construction of denser vectors. Third, the results he obtained with
the spoken subset of the BNC (around 10 million words) fitted isolated word

recognition data better than similar size text BNC subsets.

The chosen corpus may be lemmatised or otherwise prepared before
counting the cooccurrences (e.g. McDonald, 2000). Lemmatisation removes
all morphology and leaves only word stems, affecting the information
carried by the vectors. This eliminates possible morphology-based clusters in
the hyperspace. Annotated corpora can be used to disambiguate between
homophones in the counts, refining the quality of the vectors, for example
McDonald (2000) and Monaghan and Christiansen (2004) both took
information about the syntactic category of words from the CELEX database;
Curran (2004) marked up the corpus including sentence splitting,

tokenization and part of speech tagging.
4.1.1.2 The context

Context window methods count occurrences of a number of context words
within a window of a number of words before and/or after the target word.
The target words are the nodes in the semantic space. More target words

mean a more complete Space.

The main variables in the context are the window size (how many words
around the target word are considered) and shape (are the context-words to
be counted to the left, to the right of the target, or both) and the number and
choice of context words that are included in the calculation of the vector

components.

95



The window extends over a number of words or characters to the left and/or
to the right of the target word. Some studies employ large windows of
around 500 words (Yarowsky, 1992; Beeferman, 1998), but this makes the
calculations computationally expensive. Others use small windows both for
syntactic and semantic categorisation tasks: Finch and Chater (1996), two
words to either side; Lowe and McDonald (2000), 5 words to either side;
McDonald (2000), up to 10-20 words to either side; Curran (2004),
combinations of 1-3 words to either side (finding the best results for one
word to each side and with two words to the left). Patel, Bullinaria and Levy
(1998) searched the parameter space in an attempt to optimize the window
size and shape against two evaluation criteria: the ratio of mean Euclidean
distances between semantically related and unrelated words, and a measure
of syntactic categorisation. They found that the best results were obtained by
counting the left and right contexts separately (as two components of the
vector), using window sizes between two and 16 words. However, Levy,
Bullinaria and Patel (1998), using different criteria for the optimisation of the
parameter space - semantic and syntactic categorisation and synonym choice
- found that the best results were obtained by averaging the contents of the
left and right windows with window sizes between one and seven words.
Monaghan, Chater and Christiansen (in press) used a window of one word to
the left (the preceding word only) for a noun-verb discrimination task
(carried out using both distributional and phonological clues). Mintz (2003)
developed a different form of window called ‘frame’ consisting of a pair of
words that occur separated by one intervening word, e.g. ‘a _ of’. He showed
that frequently occurring frames accurately predicted the syntactic category
of the intervening word. Monaghan and Christiansen (2004) compared
Mintz’s method with Monaghan, Chater and Christiansen’s (in press)
preceding word window and found that while the frames had a higher
accuracy for noun-verb classification, the preceding word window classified

a much higher proportion of words.
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The number of context words determines the dimensionality of the space. It
is usually a few hundred: Finch and Chater (1992) used 150 context words;
Lund and Burgess (1996) used 200, and claimed that adding more context
words did not alter the results; Lowe and McDonald (2000) used 536 context
words; McDonald (2000) used 446 context words..

The choice of context words defines the type of information that the space
captures. Some studies simply select the most common words in the corpus
(Finch and Chater, 1992; Redington, Chater and Finch, 1998), while others
remove from that set a series of very frequent uninformative words such as
prepositions, conjunctions, determiners, pronouns etc, which they claim are
so ubiquitous that they do not help judging semantic similarity (Lowe and
McDonald, 2000; McDonald, 2000; Jarmasz, 2003). Yet other studies add extra
constraints to the context word set, for example McDonald (2000) and Lowe
and McDonald (2000) chose the most reliable context words — those that
produced the most consistent cooccurrence patterns across a number of sub-
corpora. However, Levy and Bullinaria (2001) found that adding the most
frequent words in the corpus (mostly functors) to Lowe and McDonald’s
reliable context words significantly boosted the results in a semantic
categorisation task. A word context set consisting mainly of function words
also seems to help categorise words syntactically (Finch & Chater, 1992 and
Redington, Chater & Finch, 1998).

To sum up, syntactic categorisation tends to be best achieved with very small
windows and functors in the context word set, and semantic categorisation,

with larger windows and content words in the context word set.
4.1.1.3 Metrics of similarity

Vector space models of the semantic lexicon assume that semantically similar
words tend to occur in similar contexts. This section reviews the most
commonly used methods to measure similarity between word context

vectors.
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Among the geometric similarity metrics (illustrated in Figure 4.2) are the
Euclidean distance, which is the distance between the two points located by
vectors in a space and the City Block (also called Manhattan and
Levenshtein) distance, so called because of the way you have to go from A to
B in a grid-like geometry such as the Manhattan streets and avenues, in
straight perpendicular lines, and turning at the corners. The City Block and
Euclidean distance metrics are sensitive to vector length, but this problem
can be overcome by measuring similarity as the cosine of the angle between
the two position-vectors. The cosine focuses on the difference between the
directions of the vectors (see Figure 4.2), and is not sensitive to vector length,
which makes it appropriate to compare words of similar frequency, but it is
sensitive to vector sparseness, so it should be used to compare vectors of

similar sparseness.

oA
;/ D/ :CB1
& o“
/b/'B CB2

Figure 4.2. Three geometrical similarity measures between points A and B: the City Block
distance is CB1 + CB2; the Euclidean distance is D; the cosine distance is the cosine of angle
a.

Other metrics commonly used in information retrieval are the Dice metric
(also used to measure phonological similarity, see § 3.2.1), which is twice the
ratio between shared attributes and the total number of attributes for each
target word, and the Jaccard metric, which compares the number of common
attributes with the number of unique attributes for each pair of targets.
Similarity coefficients have also been used in Internet search engines (e.g.
Tudhope & Taylor, 1996). Information-theory metrics include the Kullback-
Leibler divergence (or relative entropy) and Hellinger distance, both of

which quantify the differences between two probability distributions.
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Curran (2004) compares the behaviour of most of the metrics explained
above, plus several variants including weight functions designed to assign a
higher value to context words that are more indicative of the meaning. He
found that Dice and Jaccard performed best in a semantic task. Levy,
Bullinaria and Patel (1998) compare the Euclidean, City Block, Cosine,
Hellinger and Kullback-Leibler metrics and found that the last two (the

information theoretic metrics) perform best in semantic tasks.

In the studies presented in the rest of this thesis | use the cosine to measure
the similarity between the cooccurrence vectors of two words (following
McDonald, 2000) as the cosine of the angle they form. The cosine of the angle
between the vectors locating words x and y is calculated as follows (for
vectors defined by n components):

XY,

=1

cos(x, y) =
PRIING
j=1 j=1

Following the same logic as the analysis of phonological similarity, the

aspects of the lexicon where semantic similarity is more easily detected must
correspond to the more salient structural parameters of the representational
space of the semantic lexicon. In cooccurrence statistics methods, the
parameters are distributional cooccurrence patterns of words. Different types
of words play different parts in defining the semantic space. Section 4.2
explores a semantic hyperspace representation of the Spanish lexicon
generated with cooccurrence statistics. In particular it examines the role of
syntactic category (focusing on nouns and verbs), of semantics proper and of

gender in the organization of the semantic hyperspace.

4.2 Exploring the Spanish semantic lexicon

Having adopted the convention to call the space generated by cooccurrence

statistics "semantic”, and accepted that this space not only contains properly
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semantic, but also syntactic and possibly other types of information, this
section goes on to explore the structure of a semantic space calculated on a
Spanish speech corpus. The focus of this section is to discover what word

categorisations emerge from the distributional patterns in speech.

The calculation of the semantic vector space is analogous in some ways to the
acquisition of the mental lexicon. Both the lexicon acquisition process and the
vector space calculation count transform and categorise occurrences of items
in speech and both end up with a structured collection of words. The main
assumption behind semantic vector spaces is that the resulting hyperspace

structure organisation is similar to the organisation of the mental lexicon.

This section will first describe the calculation of the semantic spaces on a
Spanish speech corpus (with two variables: lemmatisation of the corpus and
presence of functors in the context-word set); then it explores the role of the
two variables in syntactic categorisation, in semantic tasks and in gender
categorisation. The sections below compare directly the performance of
vectors computed on a lemmatised corpus with vectors computed on a
surface-form corpus in Spanish, testing the impact of inflections on syntactic
categorisation and semantic tasks. The full-listing hypothesis proposed by
Butterworth (1983), saying that all surface forms are individually listed in the
mental lexicon, would be supported if surface forms are found to perform

better than lemmas.

Christiansen and Monaghan (in press) observe that functors occur at phrase
boundaries, which may reveal syntactic category, so the presence of functors
in the context-word set should help syntactic categorisation, but not semantic
tasks. Spanish inflected functors (determiners) in the surface-form corpus
should help gender classification. Therefore | expect that gender
classification should do better in the surface-form corpus, since gender

morphemes are removed during lemmatisation.

100



4.2.1 Configuration of a Spanish semantic space

This section explains how | constructed the hyperspace representation of the
Spanish semantic lexicon that is the basis of the analyses of syntactic
category, gender and semantic clustering described in § 4.2.2 to § 4.2.4. In
those analyses | manipulate two variables: the presence of morphology in the
corpus and the presence of function words as context words in the
calculation of the word vectors. Some of the other parameters are set in order

to maximize vector quality given the limited size of the corpus available.

| created vectors for each of a number of target words — all the types above a
certain frequency, which in practice coincides with the set of content and
function context words (see Table 4.1 below). Here the corpus size

constraints the number of frequent words able to generate dense vectors.

These vectors are created by counting the number of times that each context
word appears within 5 words of the target word in the corpus. The frequency
counts are then transformed into probability distributions to normalise for
word frequency. | measured the similarity between two vectors as the cosine
of the angle they form, because this metric is not sensitive to vector length,
and it performs well in semantic tests (Lowe & McDonald, 2000; McDonald,
2000). The following sections describe the other elements involved in the

configuration of the semantic hyperspace.
4.2.1.1 The corpus

The distributional statistics in this section are based on the same corpus used
in chapter three, namely ‘Corpus oral de referencia del espafiol’ an
orthographical Spanish speech corpus (Marcos Marin, 1992). The words are
transcribed phonetically using the same citation rules as in chapter two of
this thesis. After removing all tags the corpus has 897,395 word tokens
(38,847 types). This is much smaller corpus than those used in the studies

mentioned in § 4.1.1.1 above. The spoken part of the BNC used in other
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studies mentioned above is about ten times larger'. Even with this important
limitation, the distributional statistics provide information at the levels
explored, namely syntactic category, gender and semantics. | assume that
more refined vectors based on a larger corpus would provide even more

detailed information including subtler nuances.
4.2.1.2 Lemmatisation

One of the variables in this study is whether the corpus contains surface
forms (all word forms as found in speech, including gender, plural and verb
inflections) or lemmas only (uninflected words). The corpus is not annotated,
so instead of lemmatising the whole corpus by hand, | only lemmatised types
of frequency greater of equal to 100, plus a few other types that added
together would generate a lemma of frequency greater or equal to 100. The

lemmatisation process comprised:

» Replacing feminine and plural inflections with the masculine singular

form.

» Replacing all verb forms, including all persons and tenses, participles
and infinitives, with the verb root: the infinitive without the final -r.
Exceptions include forms of verb ser (be), which were replaced with
the most common form, 3" person singular of the present tense, ‘es’;
forms of verb ir (go) were left as ‘ir’, because the forms resulting from
the regular substitutions, ‘se’ and ‘i’ are homophonous with the very
common impersonal pronoun ‘se’ and the conjunction ‘y’ (and),

respectively.

« Removing the ending ‘-mente’ (equivalent to English ‘-ly’) from

adverbs.

' I could not find a larger corpus of spoken European Spanish available for research, which
limits the quality of the resulting vectors and therefore of the hyperspace. There are enough
differences between the varieties of Spanish spoken across Latin America to make it
desirable to use a single variety.
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 Merging very frequent compound forms, e.g. ‘por favor’ (please)

becomes ‘porfavor’ and ‘sin embargo’ (however) becomes

‘sinembargo’.
4.2.1.3 Context words and dimensionality

This is the second variable manipulated in this study. Although several
studies assume that semantic information is best captured by contexts
consisting of content words and syntactic information by function word
contexts (Lowe & McDonald, 2000; McDonald, 2000; Jarmasz, 2003), Levy
and Bullinaria (2001) found that adding functors to their context-word set
significantly boosted the performance of their metric in a semantic test. This

study examines the performance of two context word sets:

1) Content and function words: all word types above a certain frequency
threshold.

2) Content words only: the words remaining after removing function words

from set (1).

In the 'content word' condition | removed determiners, prepositions and
conjunctions, plus the auxiliary verbs ser, estar (be) and haber (have) from the
context-word list. Table 4.1 shows the dimensionality of the spaces generated

by the different context word sets.

surface lemma
content+funct. 394 (2200) 523 (=100)
content only 320 (=200) 481 (=100)

Table 4.1. Number of context words (in brackets, threshold frequency) in the surface-form
and the lemmatised corpus, when considering all words or content words only.

In a small corpus, a low number of dimensions will yield denser vectors. In
order to obtain vectors of similar density with both versions of the corpus,
the frequency threshold for the surface form version of the corpus is 200, and

that for the lemmatised version is 100.
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4.2.1.4 Window size

The cooccurrence vectors were calculated by transforming the raw
cooccurrence counts within a window of five words to the left and five to the
right, all conflated in a single value, into probability distributions. Window
size is not a variable in this study - its effect has been extensively analyzed
for English (8 4.1.1.2). | chose a window size that generated reasonable
results in most English tests, but that was not too small — again, to prevent
sparse vectors given the small corpus available. Also, the eleven words
contained in this window size take approximately 2.5 seconds to pronounce
in a naturalistic Spanish spontaneous speech rate of 250 words per minute.
This is close to the 2 seconds proposed by Baddeley, Thomson and Buchanan
(1975) as the time-span of working memory. This 2.5 second window
includes the five words that will be relevant for the processing of the target

word, plus the five words in whose processing the target word is involved.
4.2.1.5 The vector spaces

I calculate four vector spaces using the methods and parameters above to be
used in the studies presented in § 4.2.2 and 8§ 4.2.3 below. | count the
occurrences of one of two context word sets within a window of five words
to the left and five to the right of the target words in two different versions of

the corpus and two context-word sets. This results in four conditions:

1. Surface-form corpus, content and functors: the targets and the context
words are the same: the 394 word types of frequency greater or equal to

200 in the surface-form corpus.

2. Surface-form corpus, content words only: the target words are the
same as in condition 1; the context words are the 320 content words left

after removing functors from the context-word set in condition 1.

3. Lemmatised corpus, content and functors: the targets and the context
words are the same: the 523 word types of frequency greater or equal to

100 in the surface-form corpus.
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4. Lemmatised corpus, content words only: the target words are the
same as in condition 3; the context-words are the 481 content words left

after removing functors from the context-word set in condition 3.

The rest of this chapter explores the performance of these four vector spaces

in various syntactic and semantic categorisation tests.

4.2.2 Exploring syntactic category

In this section | use the four vector spaces calculated above and explore how
different parameters contribute to syntactic word categorisation. | review
approaches to syntactic categorisation using distributional cues and present
an application to Spanish, focusing on the effect of corpus lemmatisation and
of the presence of functors in the context word set on the categorization of all

words, and then more specifically on verb-noun classification.
4.2.2.1 General syntactic categorisation

In this section | examine how distributional information can help categorize
words syntactically. Frequency helps predict some parts of speech, notably

function words. Figure 4.3 shows the frequency rank of syntactic categories.

Distribution of syntactic categories in the frequency rank
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frequency rank

Figure 4.3. Syntactic category of the 394 surface form words of frequency greater or equal to
200 in the corpus, ranked by frequency. Each dot represents one word, and there is only one
word per frequency rank position.
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The most frequent words are to the left, in the higher rank positions, the
more infrequent to the right of the graph, in the lower rank positions. The
only obvious categorisation that could be derived from frequency
information alone is that between functors and content words, since functors

tend to be significantly more frequent than content words.

Simple cooccurrence statistics also reflect syntactic category. Figure 4.4
shows the distribution of words by part of speech ranked according to their

average cooccurrence-based similarity with other words.

Distribution of syntactic categories in the average semantic
similarity rank
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average semantic similarity rank

Figure 4.4. Syntactic category of the 394 surface form words of frequency greater or equal to
200 in the corpus (context including content and function words) ranked by average
similarity value.

Similarity was calculated for all word pairs as the cosine of the angle formed
by the two vectors representing the two words in the pair. The distances
from each word to every other word were averaged, and then all words were
ranked by average cooccurrence-similarity value. As in the frequency rank,
function words, being so ubiquitous, cooccur with many words and cluster
at the top of the similarity rank. But the cooccurrence-statistics based ranking
offers more information: we also see that numerals are on average far from
other words (a closer examination reveals that they are very close to each

other, forming a cluster), and that verbs tend to be more similar on average
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to other words, while nouns tend to be less similar on average from the rest

of the words.

More complex computations should achieve a more accurate syntactic
categorisation of words. Section 4.2.1.5 outlined the characteristics of the four
vector spaces that | will use for the tests in this section. | now investigate the
effect of functors in the context-word set and of inflectional morphemes in
the target-word sets on the ability of the vector space to predict the part of

speech of words.

The ability to predict the part of speech or syntactic category has been tested
in different ways: Levy, Bullinaria and Patel (1988) used the part-of-speech
tags in the BNC to construct a syntactic categorization test. They calculated
the centroid of a large number of vectors of words of each part of speech
category, and then took the 100 most frequent words of each category and
checked which centroid they were closest to. This method correctly
categorised over 90% of the words using a window of one word to the left
only or to the right and left. Redington, Chater and Finch (1998) calculated
600-dimension vectors for the 1,000 most frequent words in the corpus. They
considered a window of two words to the left and right, and the information
for positions two words to the left, one to the left, one to the right and two to
the right were stored in separate vector components. The context words were
the most common 150 words, which included a large proportion of functors.
Redington, Chater and Finch’s (1998) syntactic categorisation test involved
hierarchical clustering of the vectors using Spearman’s rank to measure
vector similarity. Their method offered the possibility to introduce a cut-off
point of similarity level, which they set at 0.8 to obtain the best
categorisation. This wunsupervised method (the syntactic category
information was not provided prior to the cluster construction) correctly
categorised 90% of nouns and 72% of verbs (chance baselines of 25% and

14%, respectively).
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| present a supervised syntactic categorisation test also based on hierarchical
clustering that categorized each word according to the category of the

majority of its nearest neighbours in the space.
Method

The vectors in the four sets in 8§ 4.2.1.5 above were manually tagged for
syntactic category. Ten categories were used: noun, adjective, verb, adverb,
functor, proper name, exclamation, personal pronoun, indefinite pronoun
and numeral. Functors included determiners, prepositions and conjunctions;
personal pronouns included possessives; indefinite pronouns included the
Spanish equivalent of wh- pronouns such as qué, quién, como (what, who,
how). I performed a hierarchical cluster analysis in SPSS (vector similarity
metric: cosine) on each vector space and obtained a dendrogram with

clusters of part-of-speech labels (See figure 4.5).

algn pron ————
alquien  pron

algon  pron ———
harce  noun

qUiEH  pron

dormi werh

wale ad

cudnde  pron

cito pron

dande  pron

qué pron ————

G0E3 HOUH B —

Figure 4.5 Part of a dendrogram showing hierarchical clustering (method: cosine) or words
in a vector space (condition: lemmatised, functors and content. Words and part-of-speech
labels are shown.

| performed a categorisation task on this dendrogram in the following way:
given a new word whose position in the space (and therefore in the
dendrogram) is known, it is categorised as belonging to the predominant

category in its local cluster. I first consider each terminal-level cluster
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(marked in red in Figure 4.5); if there is one majority category’ (as in the fist
and third terminal-level clusters in Figure 4.5), then | count words of the
majority category in that cluster as correctly categorised. If there is no
majority in a cluster (as in the second terminal-level cluster in Figure 4.5), |
consider that words in that cluster cannot be correctly categorised. Words
clustered at the next level up (the two bottom words in Figure 4.5) count as
correctly categorised if they belong to the majority category in the higher-
level cluster. In the example in Figure 4.5, pronoun ‘que’ is correctly
categorised because the majority of the words in the second-level cluster
including the seven bottom words in the dendrogram are pronouns too. | did
this only for the first two levels (considering more levels could only improve

the results).
Results

This method categorised high proportions of words correctly. As seen in the
summarised results in Figure 4.6, the presence of functors in the context-
word set clearly improved the performance both in the surface-form (two-
tailed paired t-test, t=2.23; df=9, p=0.05) and the lemmatised (two-tailed
paired t-test, t=2.21, df=9, p=0.05) versions of the corpus. Surface-forms were

marginally better categorised than lemmas (t-tests not significant).

Correctly categorised @ (-) functors

words O (+) functors
0.7

0.6 4 ] ]
0.5 4
0.4 4
0.3
0.2 4
0.1 4

0

proportion

surface lemmas

? For 2-element clusters, there is only a majority if both items are the same category. Then,
the classification algorithm will classify each of them correctly by assigning it the same
category as the other item in the cluster. For larger clusters, | consider a majority of at least
two items more than the next most frequent category in the cluster.
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Figure 4.6. Results of syntactic categorisation task using the four vector spaces.

Figure 4.7 shows the proportion of correctly categorised words in each
syntactic category, compared with chance levels. Baseline chance levels are
proportional to the number of nouns, proper names, numerals etc in the
target-word set. Some syntactic categories were categorised better than

others, but all were categorised correctly well above chance levels, as seen in

Figure 4.7.
1 Correctly categorised words B surface (+functors)
09 | O lemmas (+functors)
08 - i2 baseline (surface)
0.7 - . baseline (lemmas)
5 0.6
& 0.5 -
g
5 0.4 -
0.3 -
0.2 -
0.1 -
0 -
noun  pn num adj verb adv funct p-pron i-pron excl

Figure 4.7. Proportion of words of the ten different syntactic categories that were correctly
categorised in the two vector spaces that included functors in their context-word set. Chance
baseline levels also shown. (All result-baseline two-tailed paired t-tests yield significances
p<0.01).

The graph shows the proportions of words correctly categorised in the two
best-performing vector spaces (those including functors in their context-
word sets). This comparison shows the effect of corpus lemmatisation on a

syntactic categorisation task.
Discussion

As we see in Figure 4.7, nouns, numerals, proper names, adjectives and
indefinite pronouns are better categorised in the lemmatised corpus. Verbs,
adverbs, personal pronouns and, particularly, functors, however, are better
categorised in the surface-form corpus. This suggests that conflating all

noun, adjective and indefinite-pronoun surface forms into their lemmas
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helps categorise them syntactically. On the other hand, conflating all surface
forms of a verb into a single lemma hinders verb categorisation. Nouns,
adjectives and indefinite pronouns can take gender and plural inflections. In
the second group, only verbs change between versions of the corpus, with

inflections removed from the lemmatised version.

Of the word categories which do not change between the surface and the
lemmatised corpus versions, the largest difference is found in functors,
which are better categorised in the surface-form corpus. As indicated by the
results in Figure 4.6, the role of functors is to relate words to one another in
the sentence, so it could be said that they categorise, but do not need to be
categorised. Since relationships between words in Spanish are also signalled
by agreement (in number and gender between nouns and adjectives, in
number between subjects and verbs) inflected words provide a more fine-
grained, and therefore more accurate, categorisation of functors than lemmas
do.

These results support the idea that gender and number inflections on one
hand and verb inflections on the other have different roles in syntactic
categorisation. The difference between English noun (number) and verb
(person and tense) morphology was pointed out by Tyler, Bright, Fletcher,
and Stamatakis (2004), whose fMRI studies of noun and verb processing
suggest that while noun and verb stems representations do not differ, verb
and noun morpho-phonology engage different neural systems. The present
results suggest that while nouns and adjectives are better categorised in a
vector space based on the word root (lemma), verb categorisation is helped

by the variety introduced by verb inflections.

The next section looks more closely at the classification of nouns and verbs in

a vector space.

4.2.2.2. Nouns and verbs
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Chiarello, Shears and Lund (2000) proposed a measure of noun-verb
distributional typicality: the degree to which a word appears in similar
contexts as other words of the same grammatical category. They used
cooccurrence vectors for the target words (calculated using Lund & Burgess’
1996 method) and calculated the distance between all word pairs. For each
target word, they subtracted the average distance between the target and all
the nouns from the average distance between the target and all verbs. The
resulting score, which they called noun-verb distance difference (NVDD),
was high for nouns occurring in contexts similar to other nouns, and low for
nouns occurring in atypical noun contexts; this score was low for verbs
occurring in contexts similar to nouns and high for verbs occurring in
contexts similar to other verbs. Monaghan, Chater and Christiansen (2003)
found that a similar calculation of distributional typicality predicts response
time in a verb/noun decision task. Christiansen and Monaghan (in press)
argue that phonological and distributional information together can
accurately discriminate syntactic category. They point out that where
distributional cues are not reliable, for instance in function words,
phonological cues are very informative. Their two experiments with a 2-
word frame and a preceding-word window indicate that distributional cues
classify nouns better than verbs. In the experiment in the last section | found
the same with a window of five words to the left and five to the right (see
Figure 4.7). Christiansen and Monaghan suggest that verb classification relies
more on word-internal cues. In this section | test how good a vector space
generated with a five-word window to the left and right is for noun-verb
classification. By using the four vector spaces described in § 4.2.1.5, | explore
the effect of inflection and of function words in the context in that
categorization. | have adapted Chiarello, Shears and Lund’s (2000) method in
order to explore the distributional typicality of Spanish nouns and verbs. The
main difference between the present study and those reviewed above is the
size of the window where context-words are counted. As explained above,

given the reduced size of the Spanish speech corpus available, | need a larger
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window in order to obtain vectors dense enough for the similarity

calculations. | explain the major result divergences in terms of this difference.
Method

Using only the nouns and verbs (see Table 4.2) from the vector spaces
described in 8§ 4.2.1.5, the average similarity was calculated between each
word and every other noun and each word and other every verb. The
method for calculating similarity was, again, the cosine of the angle between
the two vectors. Then | calculated the average similarity to verbs minus the

average similarity to nouns to obtain that word’s distributional typicality.

Nouns Verbs
Surface-forms 101 86
Lemmas 207 80

Table 4.2. Number of nouns and verbs in the surface-form and the lemmatised corpus
versions.

Results

Figure 4.8 shows the general results for the classification of nouns and verbs.
While almost 100% of verbs are classified correctly in all conditions (white
bars in Figure 4.8), classification of nouns relies heavily on the presence of

functors in the context-word set.

Correctly classified O verb
nouns and verbs = noun
1 - S S
0.8
0.6 -
0.4
0.2
0 == ‘
(+functors) (-functors) (+functors) (-functors)
surface-forms lemmas

Figure 4.8. Proportions of correctly classified nouns and verbs in the four vector spaces.
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Figures 4.9, 4.10, 4.11 and 4.12 show distributions of nouns and verbs in the
polarized noun-verb distributional typicality space. Words with negative
values are more similar on average to nouns, and words with positive values
are more similar to verbs. | present the distributions of nouns and verbs in
separate graphs for each of the four spaces described in § 4.2.15
(combinations of surface-form and lemmatised corpus and content and
function word or content word only context-word sets). White bars represent
correctly classified words; black bars, incorrectly classified words. (The green

bars represent ‘person nouns’ such as ‘man’, ‘woman’, ‘child’, ‘mother’, ‘father’).

nouns verbs
40 | 40 -
30 A 30 -
20 - 20 -
10 4 10 4
0 0
-0.1 -0.06-0.02 0.02 0.06 0.1 0.4 More -01 -004 002 008 01
closer to closerto
<---nouns verbs---> <---nouns verbs--->

Figure 4.9. Corpus: surface-form. Context: content and function words.

nouns verbs
40 A 40 1 _
30 30 4
20 4 20
10 A 10 -
0 i 0 T T T T T T T T T T T T T
-01 -01 -0 0.02 006 01 014 -0.1 -004 002 008 0u4
closerto closerto
<---nouns verbs---> <---nouns verbs--->

Figure 4.10. Corpus: surface-form. Context: content words only.
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Figure 4.11. Corpus: lemmatised. Context: content and function words.
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-0.1 -0.06-0.02 0.02 0.06 01 0.4 More -0.1 -0.06-0.02 0.02 0.06 0.1 0.4 More
closerto closerto
<---nouns verbs---> <---nouns verbs--->

Figure 4.12. Corpus: lemmatised. Context: content words only.

In Figure 4.10, the four correctly classified nouns are part of formulaic
greetings (tardes, noches, gracias — afternoon, night, thanks) or go with

numbers (minutes - minutes).

The green bars in the graphs represent the proportion of nouns in the
adjacent black bars that are ‘person nouns’. These nouns form a clear sub-
population within the nouns showing a distinct behaviour at this level of
analysis. Person nouns are markedly closer to verbs than the rest of nouns in
all but the last condition (lemmas, no functors). Person nouns are discussed

in § 4.2.3.2 below.
Discussion

The majority of nouns and verbs are correctly classified when nearby

functors are taken into account. Interestingly, the modes and shapes of the
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noun and verb distributions are very distinct in all cases. This indicates that,
even though nouns are closer to the verb side of the distribution typicality
spectrum in the spaces calculated without functors, they can still be
separated from verbs. As we saw above, Christiansen and Monaghan (in
press) found that a 1 or 2-word window classified nouns better than verbs.
Their method is closest to our (+functor) conditions, where nouns were most
accurately classified. These two results put together suggest that noun
classification relies on the preceding word. In a lexicon representation based
on cooccurrence, nouns may be very accurately classified by being
consistently preceded by one of a reduced set of words, namely determiners.
Christiansen and Monaghan’s results suggest that verbs are the marked
category. Our results seem to indicate the opposite, with nouns being closer
to verbs in the absence of cues. This may be due to the small number of
vector components that reflect the cues for nouns (determiners). The small
number of components cannot reflect the very high frequency of determiners
in speech which determines noun acquisition. Christiansen and Monaghan
show that while phonological cues are more useful for the acquisition of the
verb category, distributional cues, especially determiners (and language
external cues, such as cooccurrence with objects in the environment) are
more useful in the case of nouns. This means that the larger window in the
present results may have introduced extra information that obscures the

markedness of the noun, which was evidenced in smaller window studies.

The fact that nouns are better classified in the lemmatised corpus can be
explained in terms of token frequencies: the lemmatised corpus contains only
one lemma for each four surface-form determiners (combinations of
masculine and feminine, singular and plural), and nouns are classified by the
fewer but denser vector components corresponding to the conflated forms of

the determiners.

The present results, in the context of the literature reviewed above, suggest

that different parameters of the vector space reveal different speech patterns.
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It is difficult to characterize them as syntactic or semantic, but the next

section reviews the literature on distributional cues in semantic tasks.

4.2.3 Exploring semantics

We have seen that different levels of cooccurrence analysis, particularly
different sizes of the context window reveal different aspects of the structure
of the lexicon. Very small windows accurately categorise words syntactically.
Very large windows, such as those used in LSA do very well in semantic
tasks (Landauer and Dumais, 1997): this approach scored 64% correct in the
synonym part of the TOEFL English test, where the task was to choose the
closest meaning words to a target words out of four options. Smaller
windows also capture semantics, as shown by Levy, Bullinaria and Patel's
(1998) results for the same English test: in a larger corpus (90 million words
against 4.6 million used by Landauer and Dumais) with information
theoretic similarity metrics their method obtained up to 76% correct with

windows of two or three words to left and right.

In 1995, Stubbs examined the semantic content of cooccurrence-based word
representations. Corrigan (2004) also used cooccurrence to examine the
semantic connotations of words, revealed by their statistical usage patterns.
Corrigan’s case study shows that cooccurernce with reported negative events

give the verb ‘happen’ negative connotations.

Other explorations of the semantic structure information contained in
intermediate-size window cooccurrence vectors include the Hyperspace
Approach to Language (HAL) (Lund, Burgess & Atchley, 1995; Lund &
Burgess, 1996; Lund, Burgess & Audet, 1996). HAL predicted that the more
similar two words were in the space - similarity measured as the Euclidean
distance between vectors - the more they would facilitate each other in a
lexical decision task. In a categorisation task of words belonging to semantic
groups such as body parts, animals, countries etc, they distinguished words

that cooccurred with each other from words that appeared in similar
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contexts, and claimed that the former were associated by temporal contiguity
while the latter were semantically associated. Associative priming would be
due to semantic association. This prediction was confirmed by Bullinaria and
Huckle (1997), who found that lexical decision priming correlated with

distances in a semantic vector space.

Finch and Chater (1992) found that in the cluster analysis dendrograms that
represented syntactic categories, some clusters also represented semantic
groupings. The limitations of dendrograms resulting from cluster analysis as
a tool for rigorous comparison of semantic content of different cooccurrence

spaces was pointed out by Huckle (1995).

Levy, Bullinaria and Patel (1998) used a semantic test based on Battig and
Montague (1969) semantic category norms, which were collected by asking
people to name, for example, ‘units of time’ of ‘four-footed animals’. Levy,
Bullinaria and Patel calculated the centroid of ten members from each
category. Their classifier computed the distance between the target word and
each of the centroids, choosing the closest category. They obtained the best
scores (around 65% of words correctly categorised) with windows of around

10 words and information theoretic similarity measures.

McDonald (2000) used a psychologically-grounded criterion - Miller and
Charles (1991) work on semantic similarity judgements - to assess the
validity of cooccurrence-based semantic similarity measures. The similarity
measures obtained in the vector space (with a window size of three words to
each side and similarity measured as the cosine of the angle formed by two

vectors) were strongly correlated with the psychologically-based ones.
4.2.3.1 Cluster analysis

These studies show that cooccurrence statistics do capture lexical semantic
structure. There are no standard tests in Spanish such as the English test used
by Landauer and Dumais (1997) or of semantic similarity norms for Spanish

words like those of Miller and Charles (1991) that | can use to compare the
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effect of lemmatisation and of functors in the context word set on semantic
categorisation in a cooccurrence vector space. Below are a few examples of
dendrogram clusters that clearly reflect semantics (like those found by Finch
and Chater, 1992). Appendix D contains some more.

e o T
kominika=¥0 commmication

informas¥on  infomation ——| ‘

presidEnte pre sident |
gob¥Erna g o =TT E T
minl st ro: minister |

C ol ity

Eeal: real, roval —I_
komuand 44

anmtamyErt  coancil
milldad: city

Figure 4.13. Some example semantic clusters obtained in the surface-form corpus using
content words only as context words.

4.2.3.2 Person nouns

Figures 4.9 to 4.12 above show the distinct distributions of person nouns (see
Appendix E for full lists of person nouns). The distributions of person nouns
are in most cases significantly different from those both of verbs and of the
rest of nouns. The average distribution typicalities of the person nouns are, in
all cases, between those of nouns and verbs. Figure 4.14 shows the mean of

the noun, verb and person noun distributions in Figures 4.9 to 4.12 above.

O verb H person noun O other noun
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surface forms lemmas

Figure 4.14. Means of the distributions of verbs, nouns and person nouns in the noun-verb
polarised spaces, in the four conditions. Asterisks indicate level of significance of difference
with person nouns distribution (two-tailed t-tests) (* p<0.05; ** p<0.001).
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This level of cooccurrence analysis reveals the existence of a sub-group,
person nouns, which behaves in a consistent way, significantly distinct from
nouns and verbs. They are nouns, but they show an atypical behaviour.
Person nouns can be considered a syntactic sub-class or a semantic cluster.
They do behave as a separate syntactic category and additionally they are

linked to a semantic class of referents in the world (people).

4.2.4 Exploring gender

Most of the published work on lexical hyperspaces generated by
cooccurrence distributions is based on English, which has no grammatical
gender. This study of a Spanish semantic space provides an opportunity to
explore whether distributional statistics capture gender, and what they can
tell us about it. This section first reviews the function of grammatical gender
and then examines the effect of corpus lemmatisation and of the context

word set on the categorization of masculine and feminine nouns.
4.2.4.1 The function of gender

In Spanish, all nouns are either masculine or feminine, and their determiners
(with a few phonology-driven exceptions) and adjectives agree with them in
gender. The function of grammatical gender is not clear. Apart from its role
in designating male and female for some nouns referring to people and to
animals such as nifio/nifia (boy/girl), gato/gata (cat masc./fem.), gender is not
related to sex. The Real Academia Espafiola (1973) states that the gender
assigned to Spanish nouns is influenced by formal, semantic, etymological
and analogical factors. It seems, though, that linguistic information such as
syntactic and morpho-phonological factors is more important than semantic
information in the recognition of the gender of nouns (Perez Pereira, 1991).
The masculine is the unmarked, generic form - the masculine form nifio (boy)
may denote either a boy or a girl; the masculine plural hijos (children) may
include sons and daughters. The masculine form has more roles, and wider

semantics than the feminine, and hence is more indeterminate than the
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feminine form (Real Academia Espafola, 1973). Alarcos (1994) states that the
variety of masculine and feminine word forms and the arbitrariness in the
assignation of gender to word meanings make it difficult to define the
meaning of gender. He considers gender as a grammatical trait or morpheme
that classifies nouns into two different combinatorial categories (masculine
and feminine) not ascribed to semantics. Gender may sometimes indicate sex,
size (feminine nouns usually indicate larger size) and other semantic
relationships, such as general concept (feminine) vs. particular instance
(masculine), but for Alarcos, the main function of gender is to signal
relationships between words, and thus to make possible a flexible word
ordering. In example (1) below, the gender of the adjective viejo (old)
disambiguates whether it refers to candelabro (masculine), as in 1a, or to plata
(feminine), as in 1b. In example (2), gender agreement allows contorted word

orderings.
(1a) el candelabro (m.) de plata (f.) viejo (m.) (the old [silver candelabra])
(1b) el candelabro (m.) de plata (f.) vieja (f.) (the [old silver] candelabra)

(2) del monte en la ladera por mi mano plantado tengo un huerto
(‘of the mountain on the side by my hand planted | have an orchard’)

(I have an orchard planted by my own hand on the side of the mountain)

To sum up, the main function of grammatical gender, and of singular/plural,
is a syntactic one: to classify and clarify the functions and relationships of
words within a sentence. This function could have been taken by other
classifications such as animate/inanimate, as is the case in other languages
(Hernandez, 2001).

The next section presents a gender categorisation task based on distributional
cues, and the effect on it of lemmatisation and of functors in the context-

word set.

4.2.4.2 Categorisation of nouns by gender
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This study uses the same categorisation method employed in § 4.2.2.2 above,
but now to categorise masculine and feminine nouns in the same four vector

spaces.

I consider the same two versions of the corpus, the surface-form version
including masculine and feminine inflections, and the lemmatised version,
where gender and number inflected forms such as nifio, nifia, nifios and nifias
are conflated into the unmarked masculine form, nifio. The second variable is

the presence of functors in the context-word set.
Results

Figure 4.15 shows the proportions of masculine and feminine nouns that
were correctly classified in the four conditions. While almost 100% of
masculine nouns are classified correctly in all conditions (white bars in
Figure 4.15), classification of feminine nouns is greater in the surface-form
corpus, and is also helped by the presence of functors in the context-word
set. Gender classification without functors in the lemmatised corpus was not
expected to be good, but was tested nevertheless to see to what extent
cooccurring content words were able to provide clues to the gender of the
word, as suggested by Boroditsky's (2001) claim that gender influences the
way people think of objects, and hence the semantics of gendered nouns. No

evidence of this effect is apparent in the present results.

Correctly classified 0 masc
masculine and feminine words m fem
1+ I

0.8
0.6 -
0.4 -
0.2 -
0

(+functors) (-functors) (+functors) (-functors)

surface-forms lemmas
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Figure 4.15. Proportions of correctly classified masculine and feminine nouns in the four

vector spaces.

Figures 4.16 to 4.19 show the distribution of masculine and feminine nouns

by difference between similarity to masculine minus similarity to feminine.

40 -
30 -
20 -
10 -
0 -
-008 -0.04
<--fem

fem

0 004 0.08 More
closerto
masc--->

masc
40 +
30
20 A
10 4
0 i
-008 -004 O 004 0.08 More
closerto
<---fem masc--->

Figure 4.16. Surface-form corpus; context: content and function words.
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Figure 4.17. Surface-form corpus; context: content words only.
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Figure 4.18. Lemmatised corpus; context: content and function words.
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40 fem 40 masc
30 + 30 +
20 20
10 | 10 |
0 0

-0.005 0005 005 0.025 0035 More -0.005 0.005 005 0.025 0035 More
closerto closerto
<-fem masc---> <--fem masc-->

Figure 4.19. Lemmatised corpus; context: content words only.

These graphs are similar to those in § 4.2.2.2 with white bars representing
correctly classified words and black bars representing words that are closer

to the opposite gender.

Gender classification is better than chance in the surface-form version of the
corpus, particularly when functors are included in the context-word set.
There are eight wrongly classified feminine nouns in Figure 4.16: the
feminine word agua (water), which takes the masculine article, plus seven
plural nouns (out of a total of nine plural nouns in the target word set). The
wrongly classified plurals are: gracias, mujeres, veces, cosas, horas, personas and
pesetas (thanks, women, times, things, hours, persons and pesetas); of these,
only ‘women’, ‘things’ and ‘persons’ are preceded in the majority of cases by
determiner ‘las’. The other words are mainly preceded by numerals or other

words.
Discussion

The results above suggest, as predicted, that noun inflections and
cooccurrence with functors provide the best cues for gender categorisation.
The fact that the feminine word agua, which takes masculine determiners, is
such an outlier indicates that the main cues for gender are determiners,

agreeing in gender (and number) with the noun they precede in Spanish.
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Figures 4.16 to 4.19 show that in the absence of the appropriate cues,
feminine words are more similar to masculine words than to other feminine

words, reflecting the fact that feminine is the marked gender.

4.3 Conclusions and future work

This section has explored the information contained in cooccurrence-based
vector spaces, and has explained why these seem to be psychologically
plausible mental representations of speech. | have shown that even a space
generated with a fixed window using a simple similarity metric contains

information leading to syntactic and semantic categorisations.

Using a corpus of Spanish transcribed speech | have tested the effects of
including functors as dimensions in the vector space and of removing the
inflections from the corpus. The most reliable cue for syntactic categorisation
and for the binary classification of nouns and verbs and of gendered words
appears to be cooccurrence with functors and content words. The effect of
lemmatisation is mixed: gendered nouns are better categorized in a fully
inflected corpus; verbs and nouns are better classified in a lemmatised
corpus; in the task of categorising all words by syntactic category, the results
for nouns, proper names, numerals and adjectives were better in the
lemmatised corpus, while the results for verbs, adverbs and functors were

better in the surface form corpus.

All these results together support the view that functors have a crucial role in
the scaffolding of syntactic categorisation, and that, while nouns and
adjectives are better characterized when cooccurrence with functors is taken
into account, verbs and adverbs are better characterized by the distributions
of verb inflections. A possible extension to the tests presented in this chapter
would be to include a condition where the context-word set is composed of
function words only. In that condition | would expect to see similar or

improved results in syntactic tests, but worse results for semantic tests.
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Designing a quantitative semantic task for Spanish such as synonym-choice
would allow the comparison of cooccurrence spaces calculated with different
parameter values. With such a test in place, and ideally a larger corpus, it
would be possible to explore systematically the parameter space - window
size, context-word set and similarity metric — in the steps of Levy, Bullinaria
and Patel (1998). Knowledge about the type of information captured by the
different parameter configurations could help design tools for the automatic
extraction of syntactic or semantic information from speech cooccurrence
patterns. This exploration would also provide theoretical insights into the
way syntactic and semantic information are encoded in speech, and their

interactions.

The previous chapter presented an empirical exploration of Spanish
phonological similarity parameters that can be used to build a phonological
similarity space. In this chapter | have studied the information captured in a
cooccurrence-based syntactic-semantic similarity space. The following
chapter brings these two similarity spaces together and tests the existence of

systematic relationships between them.

126



Chapter 5. Cross-level systematicity in the lexicon

This chapter deals with the hypothesis that there is systematicity in the
lexicon. Introductory chapter one proposed that the lexicon is an adaptive
system where each word’s phonology, semantics, and syntax is defined in
terms of its relationships with those of the rest of the words. Chapter three
examined parameters of phonological similarity; chapter four, a metric of
semantic similarity. This chapter tests the hypothesis that the two spaces
configured using phonology and semantics, two independent measures of
word similarity, are systematically related to each other. Section 5.1
introduces and motivates the hypothesis and reviews the literature of the
issues that it touches on. Section 5.2 presents and discusses two experiments
that test form-meaning systematicity. Section 5.3 examines which types of
words drive the systematicity, testing Shillcock, Kirby, McDonald and Brew’s
(2001, submitted) claim that systematicity is driven by certain
‘communicatively salient words’. Finally, section 5.4 discusses the results of

the chapter in the light of the literature.

Phonological level

Semantic level

Figure. 5.1. Systematicity between the phonological and the semantic levels of the lexicon:
words that are close together in the phonological level tend to be close together in the
semantic space, and vice versa.
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5.1 Systematicity in the lexicon

The previous two chapters looked at methods to measure phonological and
semantic relationships between words. The resulting lexicon levels, defined
in terms of similarity between all word pairs, follows structuralism in that
words are defined not by their inherent qualities, but as elements in a
system. For Saussure ([1916] 1983), language is organized as “an internal
system of signs which exist in a system of relationships and differences”.
Throughout this thesis | have emphasized the lexicon’s different levels of
representation. Chapter one defined the lexicon as an adaptive system
finding the optimal solution to the several pressures that act on it. The
present chapter deals with the assumption that one of those pressures is a
general bias in the brain for structure-preserving mapping between related
representations, and proposes that there exists systematicity between the
levels of the lexicon measured in previous chapters (phonological and

cooccurrence-based).

Systematicity is a basic, pervasive property of language. The relationship
between language and meanings is fundamentally systematic. Anderson’s
(1991) study of categorisation concludes that the structure of the
environment determines the structure of concepts. This is also evidenced in
the relationships between syntactic compositionality and grammatical
meaning: similar syntactic structures express similar relationships between
concepts. Systematicity between morpho-phonology and meaning is less
obvious, but nonetheless present, with morphemes with similar phonology
denoting similar word syntactic properties — for example, as we saw in
chapter three, many Spanish tenses and person morphemes are encoded in
final stressed vowels. It should not come as a surprise, then, that the
relationships between word forms and word meanings are also systematic.
In particular, in this chapter | focus on the systematicity between the two
levels examined in past chapters: phonology and semantics. Among the

implications of such systematicity is the hypothesis that words with similar

128



phonological representations tend to have similar semantic representations,
and conversely, words with different phonological representations tend to
have different semantic representations, already tested for English by
Shillcock, Kirby, McDonald and Brew (2001, submitted).

Naturally, this effect is expected to be extremely small, as a multitude of
other conflicting constraints act on words’ phonology and semantics. Word
form-meaning systematicity is a logical extension of the pervasive trend for
language-referent systematicity, and only seems surprising because it is
masked by the effects of other demands on the structure of the lexicon, not
least the need to make words within the same semantic group sound
different from each other so that they can be easily distinguished. | propose
that a degree of systematicity is useful in language acquisition and
comprehension, and that though not readily apparent, it is there and its

effects are measurable if we use the appropriate methods.

This section first examines the background research on phonology-semantics
systematicity and then addresses some issues such as what could be the
function of the systematicity, why it might exist and how it relates to

Saussure’s arbitrariness of the sign principle.

5.1.1 Background

The work presented in this chapter and the following one is based on a study
by Shillcock, Kirby, McDonald and Brew (2001), further developed in a
submitted manuscript (Shillcock, Kirby, McDonald & Brew, submitted).
Shillcock et al. looked at the structure of the English lexicon and found a
small but significant correlation between the phonological and semantic

distances’ between words; specifically, they propose that certain

' Note that Shillcock et al. (2001) use distances where | use similarities. They are two ways of
measuring the same phenomenon. A high similarity is a small distance, and vice versa. Their
metric of phonological distance increases with the number of mismatches; my measure of
phonological similarity increases with the number of matches. They measure semantic
distance as (1 — cosine), while | measure semantic similarity as the cosine.
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‘communicatively important words’ show a high correlation between their
phonological and semantic distances to the rest of the words. In this chapter |
apply a methodology similar to Shillcock et al.’s to two subsets of the

Spanish lexicon.

Shillcock et al. considered the 1733 most frequent monosyllabic,
monomorphemic English words in the British National Corpus and
calculated the distance between all the possible word-pairs. They first
produced values for the distance between segments - they assigned penalties
for mismatches between segment features such as vowel/consonant, vowel
length, consonant voicing etc. For the calculation of the phonological
distance between each word-pair, they applied the Wagner-Fisher edit
distance algorithm - the number of changes, including deletions and
insertions, necessary to turn one word into the other (Wagner & Fisher, 1974)
- using the mismatch penalties described above for the changes, and an extra
penalty for deletions and insertions. For the semantic distance they
constructed a cooccurrence-based 500-dimension vector space based on the
100 million-word British National Corpus. (The cooccurrence-based vector
space method is explained and reviewed at length in § 4.1 in chapter four.)
They lemmatised the corpus to reduce vector sparseness and measured the
semantic distance as 1- cosine of the angle between the two word
cooccurrence vectors. Finally, they obtained a correlation between the
phonological and the semantic distances of Pearson’s r = 0.061, which a

Monte-Carlo analysis showed to be significant (p<0.001, one-tailed).

Having shown a significant systematicity between phonology and semantics
in the English lexicon, Shillcock et al. (2001) ranked the individual words
according to their correlation value — they calculated, for each word, the
correlation between its phonological and semantic distances to every other
word. They found that ‘filler' words such as oh, er and ah were positioned at
the top of the rank. Shillcock, Kirby, McDonald and Brew (submitted) extend

that study and find that swear-words, personal pronouns and proper hames
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all are high in the correlation rank. They propose that these are
communicatively important words that tend to be preserved in individuals
with a range of language impairments. Shillcock et al. (2001, submitted) point
out that their phonological and semantic distance metrics were separately
developed for different projects, and that they are theory-independent, and

therefore objective methods.

5.1.2 Preliminary issues

The notion of a systematic lexicon with high-order relationships across levels
of representation raises some questions, such as: What benefit could a
systematic lexicon bring to language processing? Why would it occur in the
brain? Does it not contradict the Saussurean arbitrariness of the sign

principle? This section addresses these three fundamental issues.
5.1.2.1 The function of the phonology-semantics systematicity

As we saw in chapter one, the structure of the lexicon is subjected to many
pressures, which are sometimes opposed to each other. Here | concentrate on
one of those pressures, namely the bias towards structure-preserving
representations of words over the phonological and the semantic levels. This
pressure may be an inevitable consequence of the nervous system
representational principles. | assume that if the systematicity is there and it is
measurable, it is so for a reason; if it had neutral or adverse effects, other
pressures on the lexicon would have swamped its effects effectively
removing it. This section presents some functions that the phonology-

semantics systematicity could be serving.

In their paper on Latent Semantic Analysis, Landauer and Dumais (1997) say
that young teenagers learn on average 10-15 new words a day; the authors
claim that exploiting the weak distributional interrelations between words at
the right level ‘can greatly amplify learning by a process of inference’.

Systematicity could further help not only young learners, but also adults

131



confronted with a novel word: the form of a word provides additional clues

to its possible meaning.

The Iterated Language Model (Kirby & Hurford, 2002), based on
computational simulations of language evolution, proposes that the cultural
transmission of language leads to the evolution of languages that exploit

structure in both the meaning and the signal spaces.

Additionally, Shillcock et al. (submitted) argue that the more
communicatively salient words such as speech editing terms (such as oh, ah,
er), swear-words, personal pronouns and proper nouns, assert themselves
within the lexicon by preserving high phonology-semantic correlation
values. This suggests the existence of a core lexicon including the strongly
systematic, communicatively important words that form the scaffolding of
the lexicon and provide some of the clues necessary for the inference of
meaning from form. The rest of the words, not so constrained for

systematicity, fill up the lexicon body.

There is even a commercial application based on the idea of form-meaning
systematicity. The principle is implicit in the activity of some recently created
companies specialised in creating company and product names. They invent

new words aimed at conveying the desired meanings.
5.1.2.2 Structure-preserving representations

Gallistel (1990) defined a representation as a precise correspondence (an
isomorphism) between objects and relations in the environment and
structure-preserving systems in the brain. As Halliday (1992) explains,
within each sensory area of the nervous system, objects and their
relationships are represented several times at different processing stages. For
example, in the visual system, the retinal image, a highly structure-
preserving two-dimensional representation of the visual field, is transmitted
to the Lateral Geniculate Nucleus, consisting of six retinotopically mapped

layers, and from there to the visual cortex, also retinotopically mapped.
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Figure 5.2. Retinotopic representation of a stimulus (left) on the striate cortex (right) of a
monkey. From Tootell, Silverman, Switkes and De Valois (1982).

This means that two points that are close together in the proximal stimulus
(the first representation in the retina) will be represented by cells that are
close together at every stage of processing. In Figure 5.2 we see how the
representation on the striate (visual) cortex maintains the fundamental
structure of the stimulus. The same happens in hearing, with structure-
preserving tonotopic representations of sounds. Different frequencies are
perceived by different areas of the cochlea in the inner ear, so that similar
frequencies in the acoustic stimulus are represented together in the proximal
stimulus. The structure of the proximal stimulus is maintained in successive

representations in the primary auditory cortex and in the associative cortex.

In the somatosensory cortex and in the primary motor cortex, adjacent parts
of the body end up being represented close together in the cortex (see Figure
5.3). Additionally, these two maps, which lie along each other in the cortex,
also map each other. The somatosensory and the motor homunculi (cortex
representations) are somehow distorted representations of the human
anatomy. Apart from the tendency towards isomorphism, other constraints
affect the representation, such as the fact that the homunculus proportions
are driven by the number of sensory receptors in the skin, or the limitations
of the projection of the 3D human body surface onto the 2D cortex. However,
behind these other constraints it is easy to see that general anatomical

structure is preserved.
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% j Eevtr - ebsdomingd —J\
Figure 5.3. Structure-preserving map of the body surface represented on the somatosensory

cortex; this map is called the homunculus (little man’ in Latin). From Penfield and
Rasmussen (1950).

Structure preserving representations are pervasive in the mammalian brain
and present strong processing advantages (Halliday, 1992). First, they make
possible analytic processes such as breaking down the stimulus into a
number of different types of information, such as colour, orientation and
motion in the visual system, which are also represented in a structure-
preserving way (see Figure 5.4). The visual proximal stimulus is initially
processed by different retinal neuron systems that transform it into a series
of jigsaw-like representations, each of them concerned with one aspect of the

stimulus. These are the three planes in Figure 5.4.

Motion

Stimulus Colour Orientation

Figure 5.4. Three modality topographical representations of a rotating red oval stimulus. For
each visual field (each square in the grids), different modalities of information are processed.

Second, they allow synthetic processes to occur, such as grouping, concerned

with building large-scale descriptions, and integration of the different
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modalities of information. Grouping consists of considering all the pieces of
information about one aspect of the stimulus. Elements that share some
physical similarity such as colour or orientation are grouped together. For
example, taking into account the orientation of all the pieces of the visual
field (centre plane in Figure 5.4) allows inference of the shape of the stimulus
object. Visual grouping makes descriptions more concise: for example the
motion plane in Figure 5.4 can be described as a long list of X points each
moving in a different direction, or, if grouped together, as rotation
movement. Integration is concerned with putting together information from
the different aspects of the stimulus (colour, motion etc) allowing, for
instance, the perception of objects as sets of features: in Figure 5.4, ‘one red
rotating oval’. These processes make descriptions more manageable by
focusing on general properties of the objects and allow generalisation and

inference.

Factors such as preserving structure and making generalisations define the
systematicity of representations. In the case of language, a representation is a
precise correspondence between words and the relationships between them
and structure-preserving systems in the brain. The lexicon is represented
over different modalities: phonology, syntax, semantics etc. | assume that the
faculty of language, like other processing modalities, presents systematicity
across representations. This chapter deals fundamentally with the
systematicity between two types of information contained in speech:
phonological and semantic information. Systematicity implies that language
processing involves generalizing from and integrating the different types of

information present in the linguistic stimulus (mainly speech, but also text).

The requirements for systematicity, then, are structure-preserving
representations and mechanisms to extract, integrate and generalize over
different modalities of information contained in the stimulus (the latter have

been reviewed under statistical learning in chapter one). Summing up,
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systematicity of mental representations is ubiquitous in the nervous system

and it provides a tool for generalisation and inference.
5.1.2.3 Arbitrariness of the sign

One consequence of the systematicity between word forms and meanings is
that it presupposes an intralinguistic determinism of word forms and
meanings - given the meaning of word X (its distributional patterns in use),
there is a bias for word X to contribute to the overall lexicon systematicity. In
other words, there is a bias for word X to have a form that contributes to a
phonological level of the lexicon that systematically relates to the semantic
level. Therefore its form is not arbitrary. This relates to Saussure’s
arbitrariness of the sign principle. For Saussure ([1916] 1983) a linguistic sign
is a sound pattern linked to a concept. He proposes that signs are involved in
two types of relationships: signification, or the link between the form and the
concept, and value, determined by the relationships between the signs that
form part of a system (Figure 5.5). The following words by Saussure point to
a complex lexicon where relationships between words are crucial: “To think
of a sign as nothing more than a combination of a sound pattern with a
concept would be to isolate it from the system to which it belongs, it would
be to suppose that a start could be made with individual signs, and a system
constructed by putting them together. On the contrary, the system as a
united whole is the starting point, from which it becomes possible, by a

process of analysis, to identify its constituent elements”.

Figure 5.5. Schematic representation of Saussurean relationships of signification (within the
sign) and of value (between signs).
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Saussure proposed as the first principle of language the arbitrariness of the
sign, or the fact that there is no necessary, intrinsic, direct or inevitable
relationship between the form and the meaning of a sign. The arbitrariness of
the sign was already noted by Aristotle and by Plato (in the Cratylus
dialogue). In the present study we are also looking at parameters relating to
form and concepts: phonological and semantic word representations.

Arbitrariness, then, refers to the signification.

The arbitrariness of signification is not without critics. The sound symbolism
literature assumes that there are universal associations between certain
sounds and certain meanings. Sound symbolism proposes the opposite to the
arbitrariness of the sign principle, namely the idea of a correlation between
the form and the meaning of words; and in particular, the claim that
phonemes bear information about or are associated with certain meaning
(e.g. Magnus, 2001). Sapir (1929) observed correlations between back and
front vowels and the notions of big and small, respectively, and Ultan (1978)
found that these associations occur cross-linguistically. Kelly, Leben and
Cohen (2003) found that certain obstruent consonants are perceived as hard
and masculine while sonorants are perceived as soft and feminine. This kind
of studies, among others, are carried out and applied today in firms
specialising in naming new products to characterize the product and to

appeal to different consumer groups.

Shillcock et al. (submitted) argue that clusters of similar-meaning words
containing similar consonant clusters such as street, strip, stream, stripe, strap,
etc, which could be the most visible examples of phonology-semantic
systematicity, in fact do not contribute to that systematicity, and tend to
appear towards the bottom of their systematicity ranking (perhaps because
they form a cluster of self-sustained systematicity that can afford to do

without systematicity with respect to the rest of the lexicon).

Jespersen, a proponent of sound symbolism or phonosemanticism, wrote: ‘Is

there really much more logic in the opposite extreme which denies any kind
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of sound symbolism (apart from the small class of evident echoisms and
‘onomatopoeia’) and sees in our words only a collection of accidental and
irrational associations of sound and meaning? ...There is no denying that
there are words which we feel instinctively to be adequate to express the

ideas they stand for.’ (Jespersen, 1922).

Jespersen’s last observation can be related to the non arbitrariness of the value
of the sign. Already Sapir (1929) and Firth (1935) felt that speech sounds
carried meaning, but suggested their meaning was not inherent to them.
Rather, this was a result of “phonetic habit”, a tendency to give similar
meanings to words with similar sounds. Chandler (2001) also points out that
“the principle of arbitrariness does not mean that the form of a word is
accidental or random (..). Whilst the sign is not determined

extralinguistically, it is subject to intralinguistic determination”.

This is consistent with systematicity, which implies that while any one
word’s phonology is independent from its semantics, the relationships
between words’ phonological representations are not independent from the
relationships between their semantic representations. In the systematic
lexicon a dog could suddenly be called ‘caterpillar’, or someone could use the
word ‘tree’ as a verb, but not without consequences: the rest of the lexicon
would need to modify itself to accommodate the change. In an adaptive
lexicon always juggling the pressures it is subjected to, such a change could
bring instability. This would trigger a chain-reaction of events in the general

direction of increasing the stability of the whole system.

In section 5.1 | have described the methods and results of the studies of
Shillcock et al. (2001, submitted), which show that there is a small but
significant correlation between the structure of the form and of the meaning
representational spaces of English words. This correlation arguably reflects
communicatively important words, and could facilitate word perception,
help the acquisition of new words in childhood and the understanding of

novel words in adulthood. | have shown that such systematicity across
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representations is pervasive in the nervous system, and it presents important
advantages for processing. This model of the lexicon is not in conflict with
the arbitrariness of the sign principle, since the relationship between each
form and its meaning remains arbitrary; the systematicity applies between
the space of word forms and the space of word meanings in a given
language. The next section applies a methodology similar to Shillcock et al.’s

to test systematicity in the Spanish lexicon.

5.2 Testing phonology-semantic systematicity in the Spanish

lexicon

In this section | test the hypothesis that there is systematicity between
phonology and semantics in Spanish. All the principles discussed above are
universal: the learning requirements, the neural structure and the
philosophical characteristics of symbols apply to all languages. This section
tests, among other things, the universality of the phonology-semantic
systematicity. If it exists in Spanish as well as in English, there are more
grounds to suppose that it is a universal phenomenon and to expect to find it

in other languages.

Systematicity implies that words that are phonologically similar will tend to
be semantically similar. In order to test this hypothesis, | configure a
phonological space and a semantic space by calculating the phonological and
the semantic similarity distances between all the word pairs in two different
subsets of the lexicon. The hypothesis to be tested is that for a set of word
pairs, their phonological and semantic similarity values will be significantly
correlated. Section 5.2.1 describes the methodology employed in this test.
Section 5.2.2 describes the implementation of the systematicity test using
those methods, and presents and discusses the results. Section 5.2.3 is an
attempt to remove particularly syntactic information from the calculation of
the correlation in order to test the correlation between word form and word

meaning.
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5.2.1 Methodology

In this section | first describe the metrics of phonological and semantic
similarity employed. Then | describe at length and motivate the use of an
information-based correlation measure, Fisher divergence, which | use later
to calculate the correlation between the phonological and the semantic
spaces. Finally, | describe the test used to determine the significance of the

correlation: a Monte-Carlo analysis.
5.2.1.1 Phonological similarity

For the phonological similarity | use a parameter-based method that applies
the results of the study in chapter three. In that study participants had to
select which of two test non-words sounded more similar to a target
nonword. The test nonwords shared different parameters with the target, for
example they shared the same initial consonant, same final vowel, same two
vowels, stress on the same syllable etc. The result was a scale of values that
reflected the relative impact of each parameter on the participants’

perception of phonological similarity.

cvev cveev
cl -1.25 cl -1.99
c2 -4.21 c2 -5.04
vl -3.73 c3 -7.33
v2 -1.83 vl -1.96
tc 3.68 v2 -0.34
tv 3.85 tcl3 1.05
sl 0.97 tc23  -0.25
s2 -0.52 3c 7.90
svli 0.14 tv 6.07
sv2 2.88 str -4.60
sl 2.30
s2 0.57
svl -4.20
sv2 6.34

Table 5.1 Parameter values for cvcv and cveev words, from chapter three. (See § 3.2.2.4 for
calculation of the values.) C1, c2, ¢3 = consonants 1, 2 and 3; v1, v2 = vowels 1 and 2; tc = two
consonants; tv = two vowels; 3¢ = three consonants; sl, s2 = same stress on the 1st and 2nd
syllable; sv1, sv2 = same stressed vowel on the 1st and 2nd syllable.
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In chapter three’s analysis of the relative importance of these values, the fact
that some of them were positive and some negative was informative. For the
metric of phonological similarity we need to make all values positive so that
sharing a parameter always makes two words more similar, to a degree
proportional to the parameter value. In order to do that, | recalculate the
parameter values from the empirical result matrices obtained in chapter three
(shown in Tables 3.6 and 3.7). For the calculation of a given parameter value,
| add together the positive values in its column. This way | only take into
account the parameters it wins over. Because Fisher divergence is sensitive to
the magnitude of the values, | transform the obtained parameter values into

a probability distribution, shown in Table 5.2.

cvev cveev
cl 0.085 cl 0.049
c2 0.008 c2 0.031
vl 0.022 c3 0.016
v2 0.032 vl 0.080
tc 0.223 v2 0.065
tv 0.214 tc13 0.188
sl 0.117 tc23  0.050
s2  0.053 3c 0.048
svl 0.082 tv 0.156
sv2 0.165 str 0.076

sl 0.068

s2 0.002

svl 0.157

sv2 0.014

Table 52 New parameter values for cvcv and cvecv words (transformed into probability
distributions).

The similarity metric algorithm used in the present test is illustrated in Table
5.3 below and works as follows: first the values from the study in chapter
three are transformed into a probability distribution (so that their sum equals
1); then, for each word pair, the algorithm checks whether the two words
share each of the parameters in the study in chapter three. If they do, it adds

the value for that parameter to the similarity value of the pair (e.g. pair ‘pAra
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— pEro’ shares consonants one and two, the two consonants at the same time,
and the accent on the first syllable, so it has marks in the cl1, c2, 2c and al
cells. The resulting phonological similarity value for each word pair, shown
on the right-hand column in Table 5.3, is the sum of the values of the

parameters the two words share.

Empirical

param
0.085
0.008
0.022
0.032
0.223
0.214
0.117
0.053
0.082
0.165

Param: cl1 c2 vl V2 tc tv sl s2 svl sv2 Phon.Sim.

pAra  pEro X X X X 0.232
kOmo pEro X X 0.150
kOmo pOka X X X 0.221

Table 5.3. Calculation of phonological similarity of three example word pairs

5.2.1.2 Semantic similarity

Semantic similarity is calculated using the same vector space approach used
in 8 4.2.1, in chapter four, applied to the surface-form version of the ‘Corpus
oral de referencia del espafiol’ (Marcos Marin, 1992). Each word’s position
vector is calculated by counting the cooccurrences with a set of context-
words. The metric of similarity between two word vectors is the cosine of the
angle formed by the two word’s position vectors (the cosine as a measure of

similarity is explained at length in chapter four, § 4.1.1.3).
5.2.1.3 Correlation between similarity spaces: Fisher divergence

I need a tool to calculate a correlation between the phonological and the
semantic spaces, which are defined by the similarity between every word
pair in a subset of the lexicon (see Figure 5.6). In this section | will work
through an imaginary example whose starting point are the fictitious
semantic and phonological spaces in Table 5.4 represented as matrices of
distances between pairs of the words 0,1,2,3 and 4. (Note that using distances
and similarities should produce the same results, as long as the same

measure is used in both the phonological and the semantic spaces.)
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SEM | 0 1 2 3 4 PHON | O 1 2 3 4
0 0 0 0

1 034 0 1 013 O

2 0.78 0.98 0 2 0.48 056 O

3 0.86 034 0.17 O 3 044 062 021 O

4 0.13 0.79 056 0.26 O 4 035 059 066 05 O

Table 5.4. Fictitious semantic and phonological spaces for a lexicon consisting of words
0,1,2,3 and 4.

Shillcock et al. (2001, submitted) measure the correlation between the
phonological and the semantic distances with Pearson’s r. Pearson’s
correlation assumes data normality and independence. The sets of pairwise
distance (or similarity) measures are not necessarily normally distributed,
indeed, on many occasions they are multimodal distributions. The data are
not independent either. Independence means that one value cannot be
predicted from observation of other values, but in our phonological and
semantic architectures, each pairwise similarity value depends on all the
other similarity values, and if we change one value, the other values will be

affected.

Figure 5.6. Three points in a 2D space.

For instance, Figure 5.6 shows three points in a two-dimensional space. If we
change the distance between A and C, the distance between B and C may
also change. This seems to imply that Shillcock et al.’s calculations are
fundamentally flawed. However, some preliminary tests with Pearson’s r on
the Spanish data showed significant results similar to those obtained for
English. The statistical significance levels attained imply that it is very
unlikely that this would have happened by chance, so the possibility remains

open that correlating the phonological and the semantic spaces with

143



Pearson’s r is measuring some potentially different aspect of systematicity

between them.

Measuring the correlation with Spearman rank coefficient misses multimodal
distributions (which do occur in the phonological space). Given that we will
be dealing with large data sets, a two-sample z-test would also be
appropriate, and indeed z-scores are highly correlated to Fisher divergence

values (R*>0.96).

I measure the correlation between phonological and semantic similarities
using Fisher divergence, a symmetric variant of Fisher information used by
Ellison and Kirby (in preparation) in a similar task, namely measuring the
divergence of distance matrices between the phonologies of different

languages.

The calculation of Fisher divergence involves converting the distance values
in each space into probability distributions, calculating the geometric mean
for each word-pair and then computing for each word the difference in
information in the two spaces (the confusion probability) multiplied by the
geometric mean. Fisher divergence presents several advantages over other
correlation metrics: it correlates matrices; it takes unitless probability
distributions as input and it relates to Information theory. Also, the
confusion probability for each word-pair can be interpreted as a
psychometric measurement, namely the probability that one word is

mistaken for the other.

The first step in the calculation of Fisher divergence is transforming the sets
of distances into probability distributions: each pairwise distance between
two words becomes the probability of confusion of word y with word X in
each space C(y]x; space). Intuitively, the more distant two items, the lower
their confusion probability. Note that these are theoretical confusion
probabilities, different from the actual probability that one word is misheard
as another one in a conversation, and also different from the values obtained

in chapter three from the comparison of similar non-word stimuli. For the
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calculation of the confusion probabilities we need n, a normalising constant
to make the sum of confusion probabilities for each word x equal to 1 (see
Table 5.5):

n(X; Space) - Z e—K.dist(x, y; space)
Oy

y=0 y=1 y=2 y=3 y=4 sum

SEM

n(0) 1 + 079 + 058 + 055 + 091 = 3837
n(1) 079 + 1 + 051 + 079 + 058 = 3.665
n(2) 058 + 051 + 1 + 089 + 068 = 3.656
n(3) 055 + 079 + 089 + 1 + 084 = 4.065
n(4) 091 + 058 + 068 + 0.84 + 1 = 4.006
PHON

n(0) 1 + 091 + 072 + 074 + 078 = 4.153
n(1) 091 + 1 + 0.68 + 065 + 066 = 3.907
n(2) 072 + 068 + 1 + 086 + 063 = 3.893
n(3) 074 + 065 + 086 + 1 + 071 = 3.959
n(4) 078 + 066 + 063 + 0.71 + 1 = 3.789

Table 5.5. Calculation of n for each word.

Now we can calculate the semantic and phonological confusion probability

distributions (Table 5.6):

C(y| x; space) = i @ Kdist(x. y; space)]
n

(X)
Clylx; 1 2 3 4 sum
sem)
0 0.2606 0.2059 0.1518 0.1436 0.2382 1
1 0.2155 0.2728 0.1383 0.2155 0.1578 1
2 0.1593 0.1387 0.2735 0.2431 0.1855 1
3 0.1355 0.1944 02187 0.246 0.2054 1
4 0.2281 0.1444 0.1693 0.2085 0.2497 1
i”m T 0.9991 0.9561 0.9516 1.0567 1.0365
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gr%lr):) 0 1 2 3 4 sum
0 0.2408 0.2201 0.1727 0.1775 0.1889 1
1 0.2339 0.2559 0.1736 0.1665 0.17 1
2 0.1842 0.1743 0.2569 0.2221 0.1626 1
3 0.1862 0.1643 0.2183 0.2526 0.1786 1
4 0.2071 0.1753 0.167 0.1866 0.2639 1
i”m T 1.0521 0.9899 0.9885 1.0053 0.9641

Table 5.6. Confusion probability distributions.

—O—sem —e— phon

o
w

confusion probability
o
N

o
[

00000 11111 22222 33333 44444
01234 01234 01234 01234 01234

word pair

Figure 5.7: Confusion probabilities between each word x (top row of x-axis) and word y
(bottom row of x-axis) in the context space and the phonological space. We have separate C’s
for each word.

Let us focus on the confusion probabilities of word 0 in the phonological
space (the leftmost five black circles in Figure 5.7). Given word 0 (e.g. cat),
these values are the theoretical probabilities that when a speaker says cat, the
listener will hear each of the words 0, 1, 2, 3, and 4, given their phonology.
The sum of all these probabilities (all the possible outcomes) is 1. The first
value (pair 0, 0: cat, cat) is the probability that the listener will hear cat when
the speaker says cat, and, as expected, it is the highest of all. The second
word must sound rather similar to cat, because it has a high confusion
probability. The third one is the most different, and so on for the rest of word
0, and for the rest of the words. Note that in this example, for each word, its

confusion probability with itself (0,0) (1,1) (2,2) (3,3) (4,4) is the highest of all,
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which is to be expected, and reflects the fact that the distances of every word
from itself is 0 (Table 5.4). The probability distributions C are in asymmetric

square matrices since n(x) will not always equal n(y).

Note that the matrices in Table 5.6 are completely full, showing the confusion
probabilities between each word and every other word, while the original
semantic and phonological distance matrices only contained one value for
every pair. The confusion probability matrices are not symmetrical, as they
consider each word independently. This fact is unique to the calculation of

correlations between distance matrices.

The normalising constant K tells us how ‘clear’ each word is. It affects the
weight given to the inequalities between the confusion probabilities of each
pair. If K=0, all C(y|x) =1/(nr of words); this means that when someone says
cat, the listener is as likely to understand cat as any of the other words (very
inefficient communication). As K increases, the pair differences that equal 0
go to 1 and the rest will decrease in value and tend to 0 (see Figure 5.8). This
means when someone says cat, the listener will have better and better

chances of hearing cat. In this thesis | have used K =1 in all calculations.

>
= 1 —O— ctxt %‘ 1 ‘oo otxt %‘ 1
© - [} = <
S 0.75 4 K=0.001 —e— phon § 0.75 —e—phon § 0.75
g 0.5 g 0.5 g 0.5
S 025 3 2
g Y 3 0.25 2 0.25
g 0\HH\HH\HH‘HH‘HH‘ § O\\\\\\\\\\\\\\\\\\\\\\\\\\ § O
(8]

00112 3 4 4 0011233414

0 314203114 031420314

word pair w ord pair

Figure 5.8. Confusion probabilities C(ylx) obtained with different K’s. (Note that not all
word pair labels appear on the x axes.)

Fisher divergence tells us how different the two distributions shown in
Figure 5.7 are. In order to calculate Fisher divergence F for each word, we
first need to define the geometric mean distribution Q(y]x; sem, phon) of
C(y]x; sem) and C(y|x; phon). First we calculate the normalising constant k

for each word (Table 5.7).
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k(x; sem, phon) =" \/( C(y | x; sem) C(y | x; phon) )

Table 5.7. Normalising constants k for each word

k0=
kl=
k2=
k3=
k4=

0.997029
0.996984
0.997787
0.996874
0.998588

Now | use k in the calculation of the geometric mean distribution Q (Table

5.8):

Q(y | x; sem, phon) = /( C(y | x; sem) C(y | x; phon) )/ k(x; sem, phon)

Q(ylx; SEM, PHON)

0

0.2513
0.2252
0.1717
0.1593
0.2177

A W NP O

sum --
> 1.0251

1
0.2135
0.265
0.1558
0.1793
0.1593

0.9729

0.1624
0.1554
0.2656
0.2192
0.1684

0.971

3
0.1601
0.19
0.2329
0.25
0.1975

1.0306

4
0.2128
0.1643
0.1741
0.1921
0.2571

1.0003

A

Table 5.8. Geometric mean distribution Q.

Figure 5.9: As Figure 5.7, but showing also the Geometric mean Q for each word pair.

We calculate the Fisher Divergence F for each word (Table 5.9):

F (x; sem, phon) = > (log(C(y | x; sem) - log(C(y | x; sem))* Q (y | x; sem, phon)

confusion probability
o o
N w

o
=

—O0—sem —e—phon

Q
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01234 01234 01234
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01234

Oy
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For each word (x), for every other word (y) we take the square of the
difference of logs of the confusion probability for that pair. This is the
difference in information content (bits) of the pair in the semantic space and
the phonological space, squared. The Geometric mean Q for that pair tells us

how much weight we should give to that squared difference.

F(0)= 0.0496
F(1)= 0.0503
F(2)= 0.0369
F(3)= 0.0521
F4)= 0.0235

Table 5.9. Fisher Divergence for each word.

The Fisher Divergence is the sum of all word divergences:

F (sem, phon) =" (x; sem, phon)

Oy
In the present example, Fisher divergence = 0.212

A high Fisher divergence value indicates a low correlation, and a low value,

a high correlation.
5.2.1.4 Significance of the correlation

Fisher divergence is a unitless measure of how different (or divergent) the
phonological and semantic spaces are. One way to determine the significance
of this unitless measure is a Monte-Carlo analysis, which quantifies the
probability that the Fisher divergence obtained could have occurred by

chance.

The Monte-Carlo analysis to determine the significance of a correlation
between two variables is carried out like this: first | calculate the veridical
correlation, and then | calculate the correlation between one of the variables
and the scrambled values of the other variable a number of times. The idea
behind a Monte-Carlo analysis is that if the two variables are correlated,
scrambling one variable tends to worsen the correlation value obtained. On

the other hand, if the two variables are not really correlated, scrambling is as
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likely to increase as to decrease the correlation. The significance is
determined by the position of the veridical correlation value in the
distribution of random correlations, for example, if the veridical correlation
falls in the 4" place of a list of 100 random results, its p value is estimated to
be 4/100 = 0.04.

There is a type of Monte-Carlo analysis called the Mantel test (Legendre &
Legendre, 1998) which calculates the significance of the correlation between
two distance matrices, but it usually employs Pearson’s r or Spearman’s rank
as correlation measures. | adapt Mantel’s test by using Fisher divergence
instead, and follow Mantel’s randomisation method. In order to randomize
the values of one of the matrices (e.g. the phonological similarity matrix), |
permutate its rows and columns and | calculate the correlation between the
original semantic similarities and the scrambled phonological similarities.
Permutating the rows and columns has the same effect as scrambling the
word pairs before calculating the pairwise phonological similarities. In this
study | have compared the veridical Fisher divergence values with 1000

randomisations to obtain robust significances.

5.2.2 Measuring the phonology-semantic correlation

I now apply the methods explained above to a two independent subsets of a

corpus of Spanish transcribed speech, and present and discuss the results.
5.2.2.1 Materials

The words to configure the semantic and phonological spaces were extracted
from the same Spanish transcribed speech corpus used in preceding
chapters. The surface-form version of the corpus was used, meaning that the
word-forms contained some morpho-phonological information. The
semantic word vectors were calculated counting cooccurrences with function
and content words, as this factor combination had the best performance in
the experiments presented in chapter four. | consider two separate subsets of

the phonetically transcribed Spanish lexicon: the 252 words of structure cvcv
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and the 146 words of structure cvccv of frequency greater or equal to 20 in

the surface-form corpus.
5.2.2.2 Procedure

The correlation between the phonological and the semantic space is tested
separately for the cvcv and the cveev word groups. For each group | calculate
the phonological similarity and the semantic similarity between all the
possible word-pairs. | calculate the phonological similarity using the method
described in 8 5.2.1.1 above. For the semantic similarity, words are extracted
from the surface-form corpus, and vectors are calculated on the same corpus,
counting the cooccurrences with function and high frequency content words
(see § 5.2.1.2). Table 5.10 shows the empirically obtained values for both

word groups, transformed into probabilities in such a way that they add up

to one.
cvev cveev
cl 0.070 cl 0.053
c2 0 c2 0.023
vl 0.023 c3 0
v2 0.057 tc13 0.083
tc 0.187 tc23 0.070
tv 0.191 3c 0.151
sl 0.123 vl 0.053
s2 0.088 v2 0.069
svl 0.092 tv 0.132
sv2 0.169 sl 0.095
s2 0.078
svl 0.031
sv2 0.135
str 0.027

Table 5.10. Phonological similarity parameter values used in the calculation of the
phonological space configuration.

Having obtained a semantic and a phonological similarity value for all word
pairs, | calculate the correlation between them using Fisher divergence, and |

perform a Monte-Carlo analysis to test its significance.
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5.2.2.3 Results

Table 5.11 shows the correlation values (Fisher divergence) for the veridical
(unscrambled) phonological and semantic pairwise similarities for the cvcv
and the cvcev word groups. It also shows the number of words configuring
the spaces, and the significance of the correlation, calculated with a Monte-
Carlo analysis with 1000 randomisations. Figure 5.10 shows histograms of
the Fisher divergence values obtained with random word pairings,
indicating the position of the Fisher divergence obtained with the veridical

pairs.

Fisher divergence Nr.words Significance
cvev  5.03 252 p<0.05
cveev  2.18 146 p<0.001

Table 5.11. Correlation values (Fisher divergence) between phonological and semantic
similarity for the cvev and cveev word groups, and its significance. (The lower the Fisher
divergence values, the more correlated phonology and semantics are.)

100 cvev 140 + cveev
120 -
80
§ 60 % gl
© S 80
5 40 5 601
N < 404
E 20 \ g 0. /
0 0
> ‘b D D R ™ D W @
N A AP A SRR N NN
Fisher divergence Fisher divergence

Figure 5.10. Histogram plots showing the results of the Monte-Carlo analysis for cvcv and
cveev words. The veridical results are in the white bins, also indicated by the arrows.

5.2.2.4 Discussion

The results in Table 5.11 and Figure 5.10 show significant correlations
between phonological and semantic similarity in cvcv and cvcev words
Spanish. A close analysis of how each similarity space was calculated can
help understand what drives this correlation. Phonological similarity is

calculated with the parameter values obtained in the study presented in
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chapter three. The choice of parameters is debatable, and that study could
have included more parameters, such as sharing not only the same segment
in the same position, but also the same phoneme in a different position; or
include feature-based instead of segment-based parameters, for instance
sharing the same voicing, manner and place of articulation in the same or in
a different position. I examine the phonological similarity side of the
correlation more closely in the next chapter. The main point is that the

phonological similarity metric is psychologically informed.

The metric of semantic similarity is based on the condition from chapter four
where semantic similarity was measured on a surface-form (non-lemmatised)
corpus, and the cooccurrences with both function and content words were
computed (surface, functors + content words, see 8§ 4.2.1.5). As we saw in
chapter four, these two conditions together best capture syntactic aspects
such as part of speech or gender. Let us examine the relationship of each of
them to syntax. First, surface forms contain morphemes such as verb endings
and gender markings. The correlation could be driven by syntactic factors,
such as the fact that feminine words, plurals and past tenses occur in similar
contexts. Second, the main role of functors is to organize syntactic
relationships, to signal which word relates to which other: in the phrase ‘a
bag of chips’, ‘a’ indicates that ‘bag’ is a noun, and ‘of” indicates that ‘chips’ is
connected to ‘bag’. In the calculation of the position vectors, | counted each
time a word cooccurred with ‘a’, ‘of’ etc, giving us clues to the word’s

syntactic category.

All of this indicates that the correlation between phonology and our measure
of semantics may be driven by syntax, at least to some extent. In the next
section | attempt to eliminate syntax from the similarity metrics and so

discern the influence of other factors such as meaning on the correlation.
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5.2.3 Distilling the correlation between word form and meaning

The correlation found between the phonological and the semantic distances
in § 5.2.2 could be driven solely by syntax, reflecting the match between the
morphosyntactic information contained in word phonology and syntactic
information captured by words’ cooccurrence with functors. Another
contributing factor to the correlation could be phonological typicality, the
fact that different syntactic classes have different phonological
characteristics: Kelly (1992, 1996) shows phonological differences between
English nouns and verbs. For example, disyllabic nouns tend to have initial
stress whereas disyllabic verbs tend to have final stress; on average, nouns
have more segments, more syllables and longer duration than verbs; and
nouns tend to have more low vowels and more nasal consonants than verbs.
(See also Durieux & Gillis, 2000, and Monaghan, Chater & Christiansen, 2003,

for reviews.)

Another factor could be phonological priming, the putative tendency to
produce words containing sounds that are similar to recently uttered or
heard words. The effect of (short-range) phonological priming could be
eliminated from the correlation metric by using very large context windows
such as those of Landauer and Dumais (1997). Phonological priming can be
considered as a reflection of the similarity-based structure of the
phonological lexicon on speech. An uttered word activates similar-sounding
words more than different-sounding words, so the former are more likely

than the latter to be uttered soon after.

Among the more tentative contributing factors to the correlation found in §
5.2.2 is the bias towards systematicity between the phonology and the
meaning levels of the lexicon discussed above. We saw in chapter four that
cooccurrence-based semantic similarity spaces do capture meaning, as
shown by the facts that they model semantic priming and that they perform

above average in semantic tests (§ 4.2.3).
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This section aims to test the correlation between word form and word
meaning by removing the influence of syntax from the semantic similarity
metric. One way to eliminate the influence of syntax in the correlation would
be to use the lemmatised corpus and remove the functors from the context
word sets in the calculation of the vectors. That condition performed worst of
all in syntactic classification tasks: part of speech (§ 4.2.2.1), nouns and verbs
(8 4.2.2.2) and masculine and feminine nouns (§ 4.2.2.4); but it performed
well in a semantic task such as noun classification of '‘person nouns' (8
4.2.2.3). However, during lemmatisation, as well as losing their morphemes,
certain words have their root changed, and this affects their position in the
phonological similarity space. For instance, feminine inflections are an
integral part of words and cannot be removed without losing phonological
information about the word ending, syllabic structure and length.
Lemmatisation replaces irregular forms of verbs by their (regular) stem.
Verbs present an additional problem. The canonical verb form, the infinitive,
has one of three very characteristic endings: stressed -ar, -er or -ir. My
lemmatisation removes the final -r, but still leaves a syntactically

conspicuous final stressed -a, -e or -i.

An alternative way of eliminating the effect of syntax on the correlation is to
use the surface forms, but to exclude parameters that may pick up on the
morphology from the phonological similarity metric. | do not remove the
parameters directly related to the last segment, site of the gender morpheme,
for several reasons. The last segment is a site of important phonological
information, as we saw in chapters two and three, and dispensing with it
altogether leaves an incomplete picture of the word’s phonology. Feminine
endings are not always inflections of a masculine stem: most feminine words
are uninflected (in the aggregate cvcv and cvcev words, only 22% are
inflections of a masculine stem), and the ending is arguably part of their

phonological identity. Besides, it is not always the case that feminine words
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end in -a, and masculine in -0, with about 15% of masculine and feminine

words ending in -e (see Figure 5.11).
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Figure 5.11. Final segment of the aggregate cvcv and cvecv gendered words.

(Note that plural inflections are not an issue, since the two word-groups at
hand both end in a vowel, and are all singular.) As explained in chapter three
(8 3.2.2.5.3), the stress-related parameters — sharing the stress on the same
syllable and sharing the same stressed vowel on the same syllable — reflect
morphological similarity related to verb tense and person. Therefore,
removing the stress-related parameters should eliminate most of the

morphosyntactic information from the phonological similarity metric.

Summing up, | attempt to remove the effects of syntax by eliminating
cooccurrences with functors in the semantic space and by eliminating stress-
related parameters from the phonological similarity metric. The next section
presents a measurement of a correlation with the new, relatively syntax-free

data.
5.2.3.1 Materials

As in § 5.2.2, | use the 252 cvcv and the 146 cvcev phonetically transcribed
words of frequency greater or equal to 20 in the surface-form corpus. The
position vectors for the semantic similarity calculations take into account

cooccurrences with content words, but not with functors.
5.2.3.2 Procedure

The procedure is essentially the same as that of the last section, with a few

crucial differences. For the semantic similarity, the calculation of each word’s
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position vector considers the cooccurrences of the target word with the
content words - but not with the functors - of frequency greater or equal to
200 in the corpus. The phonological similarity metric calculates the
parameter values in the same way as in § 5.2.2.2, but now excluding the
parameters related to stress (stress in the same syllable and same stressed
vowel in the same syllable) and to syllabic structure. See the new parameter
values in Table 5.12. Note that these values are different and not completely
correlated with the values in Table 5.10 above, because the removed

parameters did not intervene in their calculation.

cvev cveev

cl 0.178 cl 0.081

c2 0.009 c2 0.028

vl 0.021 c3 0

v2 0.072 tc13 0.105

tc 0.388 tc23 0.094

tv 0.332 3c 0.321
vl 0.082
v2 0.043
tv 0.246

Table 5.12. Phonological similarity parameter values used in the calculation of the
correlation.

5.2.3.3 Results

Table 5.13 shows the correlation values (Fisher divergence) for the cvcv and
the cvcev word groups, the number of word pairs configuring the spaces,
and the significance, calculated with a Monte-Carlo analysis of 1000
randomisations. Table 5.13 and Figure 5.12 show the results of the Monte-
Carlo analysis, indicating the position of the Fisher divergence obtained with

the veridical pairs.

Fisher divergence Nr.words Significance
cvev  7.79 252 p<0.05
cveev  3.69 146 p=0.09

Table 5.13. Correlation value (Fisher divergence) and significance for the cvev and cveev
word groups after removing syntactic cues from phonological and semantic similarity
metrics.
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Figure 5.12. Histogram plots showing the results of the Monte-Carlo analysis for cvcv and
cveev words. The veridical results are in the white bins.

5.2.3.4 Discussion

The results obtained after eliminating syntactic information from the data are
significant for cvcv words, but only marginally significant for cvccv words.
However, the fact that near significance values are obtained in two
independent word-groups adds robustness to the results. This indicates that
word form may be correlated with word meaning, but the results are not
totally conclusive. Nevertheless, they are encouraging, given the rough
phonological and semantic similarity metrics employed and the relatively
small samples of the lexicon tested. It would be interesting to test the
correlation with a phonological similarity metric including more parameters
and a more robust semantic similarity based on a larger corpus and perhaps
using a larger context window. Chapter six will offer some insight in some of

these directions.

These results, together with those of section 5.2.2, show that there is a
measurable significant correlation between the cooccurrence-based and the
phonological levels of representation of the Spanish lexicon. I have shown
that part of this correlation can be attributed to syntax, but a small part may
rely on the meaning of the concepts denoted by words. The next section

looks at the word classes that drive the phon-sem systematicity.
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5.3 The systematicity of different word classes

Shillcock et al. (2001, submitted) obtained a measure of the phon-sem
systematicity for each word, reflecting how well each word fits in with the
rest of the lexicon. Shillcock et al. (2001, submitted) found that certain
communicatively important word classes tended to obtain very good
correlation values, and they proposed that these words reflect the pressure

towards systematicity to a greater extent than the rest of the lexicon.

In this section | calculate the correlation (Fisher divergence) between the
phonological and semantic similarity of each word with every other word,
and so can rank them by how well words fit in a phonology-semantics
systematic lexicon. | examine the effect of syntactic category and of gender
on word fitness in a systematic lexicon, and also look at some of the

communicatively important word groups proposed by Shillcock et al.

5.3.1 Method

I replicate Shillcock et al.’s methodology to calculate each cvcv and cvcev
word’s phon-sem correlation, with the difference that | use Fisher
Divergence (see § 5.2.1.3) as a measure of the phonology-semantics (phon-
sem) correlation, instead of Pearson’s r. As in Also, as in § 5.2., | measure the
correlation between phonological and semantic similarity (instead of distance).
In the example explaining the calculation of Fisher divergence in § 5.2.1.3, the
correlation values for individual target words appear in Table 5.9. | calculate
the rankings of cvcv and cvcev words by Fisher divergence in the ‘syntax’
and the ‘no syntax’ conditions, with the similarity calculations explained in §
5.2.2 and 8§ 5.2.3, respectively. (The complete rankings of cvcv and cvcev
words by Fisher divergence in the 'no syntax' condition are shown in

Appendix F.)

In order to determine how each class of words behaves in terms of the phon-
sem correlation, | examine the distribution of the word classes in the list of

words ranked by their correlation value.
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5.3.2 Results
5.3.2.1 Syntactic factors: noun-verb and gender

This section examines the behaviour of syntactic classes with respect to
phon-sem systematicity, looking at how nouns and verbs on the one hand,
and masculine and feminine words on the other hand behave in the phon-
sem correlation ranks. 1 examine both the ‘syntax’ and the ‘no syntax’

rankings.

Monaghan, Chater and Christiansen (2003) proposed that the phonological
and the collocational typicality of a word with respect to its syntactic
category enhance word processing. The words at the top of the correlation-
ranked list have, obviously, a stronger match between their phonology and
their semantics (which includes meaning and syntax), which is another
expression of typicality. | now test whether nouns and verbs have different
degrees of phonological typicality by looking for any differences in their

distributions in the ranked list.

In line with the tests presented in chapter four, | will also look for an effect of
gender on word systematicity. Table 5.14 shows the results of two-tailed t-
tests applied to the comparisons between nouns and verbs on one hand, and

masculine and feminine words on the other hand.

'syntax’ ‘no syntax’
N-V gender N-V Gender
cvev V>N M>F N>V M=F
t=3.36 t=3.00 t=2.49 t=0.52
df=90 df=58 df=90 df=58
p=0.001**  p=0.004** p=0.01* p=0.60
(n.s.)
cveev V=N M=F N>V M>F
t=1.18 t=1.04 t=3.88 t=1.76
df=31 df=39 df=31 df=39
p=0.5 (n.s.) p=0.6 (n.s.) p<0.001**  p=0.08

(n.s.)

Table 5.14. Results of two-tailed t-tests for the distributions of syntactic category (verbs and
nouns) and gender (masculine and feminine) in the phon-sem correlation word rankings.
Statistically significant results in bold. Fist line states which word type distribution is higher
in the rank; t=t-value; df=degrees of freedom; p=significance.
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Although not all results are statistically significant, some trends are apparent
in Table 5.14. For the verb-noun distinction, the more heavily inflected verbs
tend to present higher phon-sem correlation values in the 'syntax' condition.
In this condition, where the measurements of both phonology and semantics
in this condition are laden with syntax, the phon-sem correlation is a
manifestation of phonological typicality of syntactic categories. Therefore,
these results support the idea that verbs have greater phonological typicality
than nouns (although at least part of the phonological typicality must be

based on the similarly-sounding word inflections).

In the ‘no syntax’ condition where the phonological and semantic similarity
metrics remove a great deal of the syntax (§ 5.2.3), the phon-sem correlation
cannot be equated with typicality of syntactic categories. Differences in the
distributions of nouns and verbs are more likely to be related to word
meaning as captured by cooccurrence statistics. In this condition, nouns

present better systematicity than verbs.

Christiansen and Monaghan’s (in press) studies for English suggest that
while cooccurrence statistics alone classify nouns better than verbs,
classification of verbs relies more on word-internal cues. In agreement with
those suggestions for English, the results presented in Table 5.14 above for
Spanish also indicate that cooccurrence statistics, combined with
phonological information, classify nouns better than verbs. Verb
classification seems to rely on morphology (encoded in word-final
phonological regularities) and also on patterns of cooccurrence with functors,

as in the 'syntax' condition.

As far as gender is concerned, results are less clear, although there is a
general trend for masculine words to be more systematic than feminine
words. This suggests that the interaction between gender and systematicity is
weaker than that of syntactic category and systematicity, and perhaps a

larger set of data would reveal finer aspects of it.
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Still on the subject of gender, in the cvcv word group there are six gender-
incongruous words - words that have the typical ending of one gender, while
grammatically taking the opposite gender, such as mano (hand), which looks
masculine because it ends in the typical masculine phoneme -o, but it is
actually feminine: una mang blanca (a white hand). The gender-incongruous
words are mano (hand), moto (motorbike), foto (photograph), tema (subject),
cura (priest) and sida (AIDS). This incongruity can be kept only in relatively
frequent words, and some gender-incongruous words which fell into disuse
actually changed their grammatical gender to match their form. Differences
in systematicity between the genders could help explain gender-incongruous
words. In the 'syntax’ condition, because cooccurrence with (gendered)
determiners and other functors is part of the metric, gender incongruous
words are expected to group with the words of the same grammatical gender
(e.g. la mano would group with feminine words). In the 'no syntax' condition,
if incongruous words are grouped with words of the same grammatical
gender (la mano grouping with la casa, la mesa etc), then we can infer that their
'semantic’ gender is grammatically encoded by the determiners; if, on the
other hand, they group with words with the same ending and opposite
syntactic gender (la mano grouped with el perro, el pato), then we can infer that

their 'semantic' gender is determined by their form.

In the 'syntax' condition, the six incongruous words are in the bottom half of
the ranked word list, with the three masculine-form, grammatically feminine
words at the very bottom (positions 203, 244 and 248 out of 252). In the 'no
syntax' condition, while the three feminine-form, grammatically masculine
words stay in similar rank positions, the masculine-form, grammatically
feminine words go up in the correlation ranking to group with the more
systematic, normal masculine words. This is true particularly of the less
frequent moto (goes up to position 154 from 203) and foto (goes up to position
91 from 248), while mano is still quite close to the bottom in position 206 out

of 252.

162



This small effect supports the claim that semantic gender is driven by word
form. Studies on a larger section of the lexicon in a larger corpus, using the
gender differences in phon-sem systematicity could help determine what

drives the gender of words — form or syntax.

This section has shown that there are differences in the degree of
systematicity between syntactic classes, and that those differences depend on
the way systematicity is measured. If we include syntax in the similarity
metrics, inflected forms are more systematic, as expected. If we remove
syntax from the similarity metrics, the unmarked syntactic classes show

higher phon-sem systematicity.

The next section examines the behaviour with respect to systematicity of
Shillcock et al's (2001, submitted) proposed communicatively salient words, in

Spanish.
5.3.2.2 Communicatively salient words

Shillcock et al.’s (2001, submitted) studies in English found that what they
termed communicatively important word classes, namely speech editing
terms (such as oh, ah, er), swear-words, personal pronouns and proper nouns,
tended to appear high in correlation ranking. The word groups considered in
this chapter contain very few words belonging to those classes, but I
nevertheless attempt to find out whether the communicatively salient classes

available rank high in Spanish, mirroring the results for English.

There are no editing terms or personal pronouns in the sets, and only two
swear-words in the cvcv group. The swear-words are puta and cofio, and
perhaps the less offensive culo could be added to this group, because it is part
of a few very rude expressions. They rank 31* (puta) 35" (culo) and 247"
(cofio) out of 252, respectively in the 'syntax' condition, and 11", 70" and 163",
respectively, in the no syntax. There is no indication, then, that swear words

are particularly systematic in Spanish.
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There are 15 cvcv proper nouns (nine person's first name, three place names,
one family name and one month name), and 10 cvccv proper nouns (6
person's first names and three place names). Figure 5.13 shows the
distribution of cvcv proper nouns in the 'no syntax' condition as an
illustration. Table 5.15 shows the results of two-tailed t-tests between the
distributions of all words and the distributions of proper nouns in the two

word-groups and the two conditions.

0.052 - Distribution of proper nouns .
in the general ranking (cvcv, no syntax) f-'

0.042 1
0.032 |
0.022 | ‘Aﬂ"r

0.012 # A proper nouns

0.002

Fisher div.

1 23 45 67 89 111 133 155 177 199 221 243
ranked w ords

Figure 5.13. Illustrative example of the distribution of proper nouns in the ranking of words
by phon-sem correlation (Fisher divergence).

'syntax’ ‘no syntax’
cvev  t=17.55 t=2.74
df=14 df=14
p<0.001** p=0.01**
t=0.81 t=4.29
cveev  df=8 df=8
p=0.44 (n.s.) p<0.01**

Table 5.15. Comparisons of the proper noun distributions with the distribution of the rest of
the words. t=t-value; df= degrees of freedom; p=statistical significance.

Figure 5.13 shows how proper nouns cluster at the top of the ranking, with
low Fisher divergence values. Table 5.15 shows that they do so significantly
in three out or four cases. In the case where they do not cluster at the top it is
worth noting that the four proper nouns placed at the end of the ranking that

stop the clustering being significant are the three place names in the set. In

164



the 'syntax' condition, place proper nouns go down in the rank, becoming

more differentiated from person proper nouns in both cvcv and cvcev words.

Spanish proper nouns, then, particularly person first names (as opposed to
place names), are significantly clustered at the top of the ranking, supporting

the results found by Shillcock et al. for English.

An examination of the distribution of other word classes in the Spanish word
phon-sem systematicity ranking revealed that numerals have distinct
distributions. There are two numerals in each word group: doce (twelve), cero
(zero) in the cvcv group and quince (fifteen) and cinco (five) in the cvcev
group. Figure 5.14 shows the position of the words divided by the total

number of words.

Position of numerals A syntax
in the ranking < no syntax
0.4
A
o 0.3
=
[¢]
. 0.2 A
o
0.1 S 6____&_.
0 [od
cero doce quince  cinco
cvcv cvccev

Figure 5.14. Significance of the position at the top of the rankings of the two cvcv and the
two cveev numerals. Dashed line marks the p=0.05 significance threshold.
Numerals are found towards the top of the rank in all cases, statistically

significantly so in the 'no syntax' condition in both word groups.

It might be argued that these results with these particular numerals is due,
on the phonological side, to the fact that they sound very similar and, on the
semantic side, to the fact that numerals are tightly clustered in the
cooccurrence space, as we saw in chapter four (Figure 4.4). This is not a
complete explanation, however, since the phonological similarity metric
employed, based on sharing the same segments in the same position, does not

pick up much of the phonological similarity between doce and cero, and
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quince and cinco. Therefore, we cannot rule out that high systematicity is a

general property of numerals.

This section has confirmed that it is possible to measure the contribution to
systematicity of individual words it also has presented results that support
Shillcock et al.'s claim that certain word classes contribute more than others
towards systematicity in the lexicon. It has also shown that the similarity

metrics greatly affect the behaviour of word classes in terms of systematicity.

The 'syntax' condition can be considered to represent an aggregate syntax-
semantic level of the lexicon, and the 'no syntax' condition, the semantic level
of the lexicon. The results for syntactic categories and for gender (Table 5.14)
and for proper nouns (Table 5.15) suggest that the phonology-syntax
systematicity can lead to different classifications of words than phon-sem
systematicity, showing once again a complex multilevel multidimensional

lexicon.

5.4 General discussion

The tests reported in 8§ 5.2 show there is a significant correlation between the
phonological and the cooccurrence-based levels of the Spanish lexicon. When
syntax is removed from the paradigm (8 5.3), the correlation is significant for
one word group, but only marginally significant for the other. In this
discussion | analyse how my results for Spanish fit in with those of Shillcock
et al. for English and offer possible explanations as to why their result’s
statistical significance was better. Table 5.16 summarises the results of my
two tests and Shillcock et al.’s study, and the similarities and differences

between them.
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Shillcock et al.

Exp 1(85.2.2)

Exp 2 (85.2.3)

Result p<0.001 p<0.05 ; p=0.001 p<0.05; p<0.1
(significance of the

correlation)

Nr. of words 1733 252 ;146 252 ; 146

Nr. of pairs 1,500,778 31,626 ; 10,585 31,626 ; 10,585

Phon. similarity
metric

Wagner-Fisher edit
distance with
psychologically
motivated penalty

Psychologically
motivated
parameters (incl.
some reflecting

Psychologically
motivated
parameters, (excl.
those reflecting

values morphology) morphology)
Lemmatisation of  Yes No No
the corpus
Context words (in  Content Content+functors Content

sem. similarity
metric)

Word structure

Different length and
syllabic structure
(monosyllabic only)

Same length and
syllabic structure
(bisyllabic)

Same length and
syllabic structure
(bisyllabic)

Table 5.16. Comparison of the results and experimental variables of Shillcock et al. (2001,
submitted) and the two tests presented in this chapter.

Both Shillcock et al’s English study and Experiment 2 for Spanish made an
effort to remove syntax, if the approaches were slightly different. Shillcock et
al.’s results claim to capture meaning but not syntax is based on the
lemmatisation of the corpus. As | explained in § 5.2.3 above, while
lemmatisation of English words is relatively straightforward and leaves the
stem unchanged in the majority of cases, lemmatisation of Spanish words has
unwanted consequences for word phonology. My approach to removing
syntax was to exclude the phonological similarity parameters that captured
verb tense and person, the main morphosyntactic elements in my data. Both
Shillcock et al. and my ‘no syntax’ condition removed syntax from the

semantic representations by excluding functors from the context word set in

the calculation of the vectors.

Shillcock et al.’s phonological similarity metric, an edit distance algorithm,
used penalties for mismatches between words based on psychologically
motivated perceptual differences between phonemes. Crucially, they also

introduced an unmotivated high penalty for word length mismatch. My data
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consisted of two word sets of equal length and syllabic structure, so length
could not play a role in my phonological similarity metric. All my
phonological similarity parameter values were psychologically plausible:
they were the direct result of a study of people’s phonological similarity
judgements (reported in chapter three). However, they were very limited.
They only compared segments in the same position (first with first, second
with second etc), ignoring cases where the same segments appeared in a
different position. This metric does not pick up, for example, the
phonological similarity between mato and toma. My parameters were based
on phoneme identity, so unlike Shillcock et al.’s, my metric did not take into

account feature sharing.

The size of the corpus and of the lexicon sample studied also makes Shillcock
et al.’s study more reliable. Their word set was one order of magnitude larger
than my cvcv and cvccv sets, and their pair set, i.e. the number of pairwise
phonological and semantic distances, two orders of magnitude larger than
mine. Shillcock et al.’s semantic vectors were calculated on a 100 million
word corpus, whereas my corpus was only 1 million words. This means that
both their phonological and semantic spaces are more fine-grained than the

ones used in this chapter.

All this suggests that even though my phonological parameters were more
psychologically plausible, Shillcock et al.’s were more fine-grained and,
together with a larger, higher-definition data-set, they may have produced
more refined spaces. Additionally, it is possible that word length, absent
from my metric, plays an important role in the phonological space (this last

possibility is further explored in chapter six).

On the other hand, Shillcock et al. calculated the correlation between the
phonological and semantic spaces using Pearson’s r, which, as we have seen,
is not appropriate in cases like this where measures are not normally

distributed and, crucially, independent of each other. I used an information-

168



theory measure appropriate to measure the correlation of two similarity

matrices.

Section 5.3 has shown that, in Spanish, certain word classes support
phonology-semantics systematicity. These results are consistent with those of

Shillcock et al.’s (submitted) for English.

This chapter has combined the methodologies presented in chapters three
and four to build a method to measure the correlation between the
phonological and the semantic levels of the lexicon, and has indicated that
there is a significant correlation between them, at least partly brought about
by word meaning. We have also seen that certain word classes seem to drive
this correlation. An in-depth analysis has shown that there is scope for
refinement in the methods. Taken together, the results for Spanish presented
here and Shillcock et al.’s (2001, submitted) results for English support the

universality of the correlation.

The next chapter introduces a new methodology to explore the phonological
similarity parameter space, based on the correlation between phonology and
semantics measured in the present chapter. The results further support the
existence of a pressure for systematicity in the lexicon, and also reveal traces

in the phonological lexicon of the opposed pressure for word intelligibility.
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Chapter 6. The phonological lexicon structure and

systematicity

Chapter five showed evidence supporting the existence of a systematic
relationship between the phonological and the semantic levels of the lexicon
- the latter including word morphosyntax as well as meaning. This
systematicity is the basis of the new approach to the study of the
phonological level of the lexicon. | examine the impact of different
parameters of phonological similarity on systematicity in an attempt to
reveal the pressures that configure the phonological structure of the mental
lexicon. I show how while certain parameters seem to contribute to
systematicity, others seem to respond to opposed pressures that go against

systematicity, but help word recognition.

6.1 Introduction

The phonological structure of the monolingual mental lexicon has been
studied with different methodologies based on lexical recognition (Cutler,
Dahan & Van Donselaar, 1997), production (Van Son & Pols, 2003), syntactic
structure (Kelly 1996, Christiansen & Monaghan, in press) or intra-word
organisation (chapter two of this thesis). This chapter presents theory-
independent corpus-based methods that aim at discovering aspects of the
phonological mental lexicon. These methods assume and are based on a
systematic relationship between the phonological and the syntax-semantic
levels of the mental lexicon. This means that the semantic lexicon level,
through its systematic relationship with the phonological level, plays a part

in the evaluation of the parameters that configure the phonological lexicon.

In chapter five | presented evidence supporting the existence of a pressure
for systematicity across levels of representation of the lexicon, particularly of

the tendency for word phonological similarity to correlate with word
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semantic similarity. This ‘phon-sem’ correlation may be driven by the
phonological space, by the semantic space, or by both. It may be the case that
the phonology of words adapts to match their semantic and syntactic
relationships, or that the meanings adapt to match the words' phonological
relationships. In a complex adaptive lexicon it is more likely that both spaces
have coevolved under the pressure for systematicity that links them. In this
chapter I concentrate on the phonological side of the correlation and attempt
to answer questions such as: How well do phonological spaces configured
with different parameter sets correlate with the semantic space? Is the
empirical, psychologically plausible set of parameter values particularly
good for the correlation? Can we use the phon-sem correlation to predict the

values of parameters of phonological similarity?

The methodology employed involves evaluating a phonological parameter
space in terms of its correlation with the semantic space (the phon-sem
correlation), in two ways: first, a random search of the parameter space
returns a general measure of how each phonological parameter affects the
phon-sem correlation; second, a hill-climbing search returns the parameter
configuration that obtains the best phon-sem correlation. This information is
contrasted and compared with the empirical parameter values from chapter

three, and the results are discussed.

I also describe the application of the above methods to new word groups, for
which | do not have empirical parameter values. In one of those cases | use
the methodology to make a testable prediction of what the empirical
parameter values might be in the new word group. Finally, | discuss the
combined results of the different methodologies employed in the chapter

and draw some conclusions. The hypotheses to be tested are:

. that the psychologically plausible parameter configuration produces a
better phon-sem correlation than most randomly generated configurations,

because | assume a pressure towards phon-sem systematicity in the lexicon;
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. that, nevertheless, the parameter values yielding the optimal phon-
sem correlation will be different from the empirical values, and this can be
explained in terms of pressures on the lexicon structure other than phon-

sem systematicity;

. that we can make testable predictions based on the phon-sem
correlation, for instance, predict what the empirical phonological parameter

values will be for a word-group.

6.2 A random search of the phonological lexicon

A random search provides a general idea of the behaviour of dependent
variables with respect to an independent variable. In this case, we are
interested in the behaviour of parameters of phonological similarity with

respect to phon-sem systematicity.

| search a phonological parameter space using a random search algorithm: |
generate a random configuration of values of parameters of phonological
similarity. The random configuration is used to calculate the phonological
similarity in all the word pairs in a sample of the lexicon. | correlate these
pairwise similarity values with the semantic similarity values for the same
word group. (As in chapters four and five, semantic similarity is based on
cooccurrence, and the phon-sem correlation is measured with Fisher
divergence.) | use the phon-sem correlation value obtained to evaluate the
initial phonological parameters - a high correlation indicates that the random
parameter values tend to contribute to systematicity, and a low correlation

indicates that the random parameter values tend to go against systematicity.

6.2.1 Data

I perform random searches in three independent phonological spaces: those
formed by cvcv, cveev and cvevev words. | already used the cvev and cveev
word groups in chapter five: the 252 words of structure cvcv and the 146

words of structure cvcev of frequency greater than or equal to 20 in the
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surface-form version of the ‘Corpus oral de referencia del espafiol’ (Marcos
Marin, 1992). For the third group | extract the 148 cvcvcv words of frequency
greater than or equal to 20 from the same corpus version. The semantic
similarity values are calculated exactly in the same way as those of the cvcv
and cvcecv word groups, with the same context words for the ‘syntax’ and ‘no
syntax’ conditions as in cvcv and cvcev words. As in chapter five, the 'syntax’
condition includes stress parameters in the calculation of phonological
similarity and functors and content words in the semantic similarity
algorithm; the 'no syntax' condition excludes stress parameters from the
phonological similarity algorithm and functors from the semantic similarity
algorithm. For the phonological similarity metric of cvcvev words, | extend
the parameter set to accommodate the different word structure, and include,
for instance, 'sharing three vowels', 'sharing the stress on the antepenult

syllable’ (see all parameters in Figure 6.4 below).

cvcv Cvccv cvcvev

words (freq >20) 252 146 148
nr. param. (syntax) 6 9 14
nr. param. (no syntax) 10 14 20
empirical param. values yes yes no

Table 6.1. Some information on the three independent lexicon subsets tested in this chapter.

Any similarities between the parameter impact values obtained in these
three independent spaces would further support the existence of

systematicity between phonological and semantic lexical relationships.

6.2.2 Method

6.2.2.1 The hyperspace

The general mechanism of this random search consists of measuring the
correlation between many randomly generated phonological similarity
spaces and the semantic similarity space. An analysis of the covariance of the
random phonological similarity parameters with the correlation values will

reveal which parameters are driving the correlation.

173



cl c2 vl v2 tc tv Fisher d.
0.087517  0.212833  0.055019  0.084772  0.29637 0.263489  7.774749
0.17769 0.008853  0.021369  0.071753  0.388484  0.331852  7.790784
0.210902  0.203684  0.071964  0.105185  0.280549  0.127717  7.803025
0.220101  0.214613  0.037353  0.035377  0.233557  0.258999  7.808966
0.161624  0.178805  0.078445  0.067063  0.268136  0.245927  7.812247
0.058123  0.314918  0.019214  0.01777 0.281783  0.308192  7.813697
0.260471  0.246922  0.101917  0.038547  0.309919  0.042223  7.815148
0.109106  0.318201  0.087451  0.067963  0.265865  0.151413  7.841004
0.253304  0.274158  0.073371  0.04138 0.26691 0.090877  7.842624
0.075941  0.00366 0.130133  0.109758  0.482546  0.197963  7.844313
0.125452  0.138836  0.099334  0.039778  0.309391  0.287209  7.84574

Table 6.2. Eleven points, extracted from the top of the systematicity-ranked 2000 random
points in the 6-dimensional phonological parameter space for cvcv words (no syntax). The
first six columns show the random parameter values and the last column, the Fisher
divergence between the phonological space calculated with those parameters and the
semantic space. In bold, the empirical values and their corresponding Fisher divergence.

The random search of the parameter space follows the following steps:

1.

I generate a set of random parameter values (like the non-bold lines in

Table 6.2) and normalise them in such a way that they add up to one'.

I use these parameter values to compute the phonological similarity

values for all the word pairs in a set.

I calculate the Fisher divergence between those pairwise phonological
similarity values and the veridical semantic similarities (those
calculated in chapter four and also used in chapter five) for the same

word pairs (the phon-sem correlation).

I keep a record of the random parameter values (first six columns in
Table 6.2) and the phon-sem correlation obtained with them (right-

hand column in Table 6.2).

| repeat steps 1 to 4 2000 times.

' In order to counter Fisher divergence’s sensitivity to the magnitude of the data, all the
random parameter sets are normalised. This way, the sum of all values is always one, and
the fluctuation in phonological similarity value magnitude is a function of the relative
parameter values only.
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The result of the random search approach is a multidimensional hyperspace,
the dimensions being the parameters of phonological similarity. Each set of
random parameter values represents a point in the hyperspace. Each point
has an associated systematicity value, determined by the phon-sem
correlation — the correlation between the phonological level of the lexicon
calculated with the random parameter value set, and the semantic level of
the lexicon. To help visualize this hyperspace, Figure 6.1 shows just two of

the many dimensions involved in its configuration (tc and v1).

P R

Figure 6.1: Surface plot of the phon-sem correlation showing two phonological parameters:
first vowel (v1) and two consonants (tc) (cvcv words, 'syntax' condition). The surface is
created by 2000 3D points. The horizontal position of each point is given by the values of
phonological parameters tc and v1. The height is given by the phon-sem correlation (Fisher
divergence) obtained with the parameter value combination.

The valleys in the surface correspond to the best phon-sem correlation (low
Fisher divergence). In the example in Figure 6.1, if we hold all other
parameters constant, the best correlation (dark green valley) is obtained by
the lowest values of vl combined with intermediate tc values. The worst

correlation is obtained with very low tc and very high v1 values (red corner).

Note that the phonological similarity parameters are not always independent

of each other. In the random search, however, parameter values are random
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and independent in each run of the algorithm described above; for the
calculation of the linear parameter impact values each parameter was

compared independently with Fisher divergence.

6.2.2.2 Extracting parameter impact values from the hyperspace

The effect of each parameter on systematicity may be assessed with a
regression analysis, which answers the question: to what extent the values of
one parameter predict the Fisher divergence values? (In Table 6.2, a
regression tells us to what extent the values in each of the first six columns
predict the values in the right-hand column). Regression analysis can be
used to determine the nature of the effect of each parameter on systematicity
— is it linear or non-linear? What model fits the effect best? It also returns a

guantitative measure of the impact of each parameter on systematicity.

Linear relationships between the parameters and systematicity are revealed
by the linear covariance of each parameter with the phon-sem Fisher
divergence. Linear covariance can be measured with a number of tools: the
regression linear r’, the covariance, and the correlation coefficient Pearson's r.
These three measures correlate perfectly with each other, and in this study |
choose to use Pearson's r because it is the only one that indicates whether a
parameter value is directly or inversely proportional to the phon-sem Fisher
divergence. For example, in order to measure the effect of the first consonant
(c1) on the phon-sem correlation | calculate Pearson's r for the first and the

last columns in Table 6.2.

In a linear relationship, a low Fisher divergence value indicates a high phon-
sem systematicity, so | use the negative of Pearson’s r as the measure of the
linear covariance of the parameter with systematicity. A positive covariance
indicates that high values of the parameter in question improve the
systematicity measured. Conversely, a negative covariance indicates that low
value of the parameter improve the systematicity. A covariance near zero

indicates that the parameter does not greatly affect the systematicity.
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The linear covariance may be only an approximation, since | do not know
whether the parameters affect the correlation linearly. | test all the nonlinear
functions available in SPSS (2003) on each parameter and obtain an r’ value

for each nonlinear model:

» _ SR SSR = regression sum of squares

r—=——

SST = total sum of squares

This r* is a measure of how well each model fits the data. | run a curve
estimation of the following regression models: linear, logarithmic, inverse,
guadratic, cubic, compound, power, sigmoid, growth, exponential and
logistic, and examine the r’ obtained by each. Myers (1990) warns of one
problem of such exploratory use of regression: 'Several models can be fit that
would be of nearly equal effectiveness. Thus the problem that one deals with
is the selection of one model from a pool of candidate models'. To deal with
this problem, Stevens (1992) suggests cross validating the models on
different data sets. Similar performance of the models across the
independent word groups cvcv, cveev and cvevev will help identify the most

reliable regression function.

6.2.2.3 The empirical parameter values

The random search and analysis of covariance will return values
representing the phonological parameter's impact on the phon-sem
correlation (this will be expanded in § 6.2.3.1); these parameter values may
be consistent across the independent word-groups, supporting phon-sem
systematicity. | now describe a method to substantiate the claim that these
parameters are exploiting phonological similarity, and not some other
information pattern in the lexicon. The test is based on comparing the
random-search, corpus-based parameter impact values with the empirical
parameter values obtained in chapter three. The empirical values measured
the impact of each parameter on perceived phonological similarity, so a

correspondence between them and the impact values obtained with the
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random search will support the claim that we are indeed exploring a

phonological similarity space.

The psycholinguistic study in chapter three returned empirical values for the
parameters of phonological word similarity for cvcv and cvcev words. In
chapter five | calculated the phon-sem correlation based on those parameter
values and found it to be significant. | will use the data from chapter three to
ground the random search: | expect to find that the parameter impact values
obtained with the random search are similar in some ways to the empirical
ones. This would mean that phonological structure of the lexicon predicted
by the phon-sem correlation is similar in some ways to the phonological
structure of the lexicon derived from the empirical data in chapter three, and

would provide extra evidence in favour of the systematic lexicon.

Note that in chapter three | only tested cvcv and cvcev words, so | do not
have empirical parameter values for cvcvev words. Later in this section | will
use information from the other word-groups as well as the results of the
random and the hill-climbing searches to predict empirical parameter values

for cvcvev words.

The empirical values employed here are calculated in a slightly different
way than the ones shown in chapter three. Here we need a set of positive
values that can be normalised so that they add up to one (see Footnote 1 in
pag. 174), so in the matrices in chapter three (8 3.2.2.4) | only add, for each
column, the positive values. That means that, for each parameter, | only count

the values related to the parameters it wins over.

The empirical parameter values calculated in this way are shown in Figure

6.2.
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Figure 6.2. Empirical parameter values obtained from psycholinguistic testing (chapter
three) for cvcv and cveev words, calculated taking stress into account (‘syntax' condition)
and not taking it into account (‘no syntax' condition).

These empirical parameter values are very similar to those obtained in
chapter three with a slightly different calculation, and their main features are
the same: the more consonants or vowels shared, the more similar two
words are perceived to be; the initial consonant is the most salient single
segment; and sharing the stressed final vowel greatly increases perceived
similarity. They are also the same used in chapter five, but this time they

have not been transformed into a probability distribution.

6.2.3 Results for cvcv, cvecv and cvevev words

I calculate 2000 random points for each of the three phonological spaces:

cvev, cveev and cveveyv, each in two conditions, 'syntax' and 'no syntax'.
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| calculate first the linear impact parameter values and then examine how

linear and nonlinear models fit the relationship of each parameter with

systematicity.

6.2.3.1 Systematicity-driven linear parameter impact values

The following Figures show the linear impact values of the phonological
parameters in the cvcv and the cveev (Figure 6.3) and the cvevev (Figure 6.4)
word groups, in the ‘syntax’ and ‘no syntax’ conditions. The bars represent
the covariance of each parameter with the phon-sem systematicity. (Note

that these bars represent the effect of the joint application of all parameters to

the phonological space calculation.)

cvcev, syntax

06 - cvev, syntax 06 -
0.4 + tc s2 sv2
_:,_, 02 {¢1 ©2 sl _:,_,
5 5
o 07 @
] ]
o) o)
O 02+ tv o
< v2 <
04
vl svl
-06 A vi svi 06
cvcv, no syntax 06 cvccev, no syntax
0.6 - tc = 3c

(-Pearson'sr)
(-Pearson's r)

Figure 6.3: Linear ‘parameter impact’ values, representing the impact of the phonological
similarity parameter on the phon-sem correlation. Two conditions, syntax and no syntax
are shown for the cvcv and cveev word groups. White bars= consonant-related parameters;
grey bars=vowel-related parameters; black bars=stress-related parameters; striped
bar=structure-related parameter. Unless otherwise stated, p<0.01.
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(-Pearson'sr)
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Figure 6.4: Same as Figure 6.3 above, but for cvcvcvy words. Unless otherwise stated,

p<0.01.

The parameter impact values show a high level of coherence across the three

word groups. Comparable parameters across groups are highly correlated,

as shown in Table 6.3.

‘syntax’ ‘no syntax’
cvev cveev cvev cveev
(10) (14) (6) (10)
cvcev (14) | 0.86 cvcev (10) | 0.84
cvevey 0.90 0.94 cvevey 0.95 0.90
(20) (14)

Table 6.3. Consistency across word-groups in the ‘syntax’ and ‘no syntax’ conditions: R?of
counterpart parameter impact values indicates covariance of the parameters with respect to
lexicon systematicity in three independent word groups - cvcv, cvcev and cvevev. The
number of parameters in each condition is shown in brackets. All p<0.01.

These high across-group correlations provide support for the methodology

employed, indicating that the phonological parameters have the same impact

on phon-sem systematicity in three independent subsets of the lexicon. In
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other words, this consistency supports the existence of systematicity between
the phonology and the semantics of the lexicon - if there was no phon-sem
systematicity in the lexicon, the phon-sem correlation would not have
generated the same phonological parameter values in three independent

word groups.

One similarity between the three word groups is that sharing all consonants
or all vowels (tc, 3c, tv, 3v) tends to have greater impact on systematicity
(higher parameter values) than sharing single consonants or vowels (c1, c2,
c3, vl1, v2, v3). The only exception is sharing the final vowel (v3) in the
'syntax’ condition in cvcvev words, with a higher impact than sharing any
combination of vowels. The morphosyntactic information encoded by the

final vowel may explain its positive impact in the ‘syntax’ condition.

Figures 6.3 and 6.4 show that most consonant parameters (in white) have
positive impact on systematicity, while vowel parameters (in grey) have a
negative impact. The only exceptions are negative c2 (the syllable-final
consonant) and c3 (the second-syllable initial consonant) in cvccv words.
Other exceptions are sharing all vowels in cvcev and cvevev words, and, as
mentioned earlier, the last vowel in cvcvev words. Note that impact value of
the final vowel is much lower in the 'no syntax' condition than in the 'syntax’
condition in all three word groups. This may be explained by the fact that
the final vowel carries in many instances morphosyntactic information:
when correlated with syntax-laden semantic representations, the
phonological representations are more influenced by the weight of the last

vowel.

Another common feature of the 'syntax' condition across word groups is the
high impact value of stress parameters in the last and one-but-last syllable.
In the three word groups, sharing the stress on the same syllable brings two
words close together in the phonological similarity space. Because the
parameter impact value is so high, we know that words sharing the stress on

the same syllable must be close together in the semantic similarity space too.
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Sharing the same stressed vowel has very different effects depending on the
syllable. The same stressed vowel on the final syllable makes words very
phonologically similar. The stressed final vowel, as explained in § 3.2.2.5,
encodes important verb morphosyntactic information. The fact that the
present methodology so clearly picks up the importance of parameter sv2 in
the phonological similarity space when correlated with a syntax-laden
semantic space both endorses the methodology and confirms the syntax-
phonology space correlation proposed by the phonological typicality
literature (Durieux & Gillis, 2000; Kelly, 1992, 1996; Monaghan, Chater &
Christiansen, 2003). Enhancing final stressed vowel distinction at the
phonological level greatly improves the phon-sem correlation, so this
parameter must be driven by verb endings, with their highly systematic

relationships between phonological and cooccurrence-based representations.

Sharing the stressed vowel on the penultimate syllable has a very negative
impact on systematicity. Over 80% of Spanish bi- and trisyllablic words are
stressed on the penultimate syllable, so the negative impact value indicates
that sharing the same stressed vowel in the penultimate syllable
(phonologically similar words) makes words semantically dissimilar. This is
going against the systematicity pressure, but may help an opposed pressure:
the pressure for words to be easily distinguished from each other,

particularly words that occur in similar contexts.

This suggests that while the identity of the final stressed vowel organises the
systematic lexicon on a morphosyntactic dimension, the identity of the vowel
in the stressed penultimate syllable may be crucial for word differentiation

and recognition.

The linear impact values have given us an idea of the role each phonological
similarity parameter plays on the phon-sem correlation. The next section
explores which regression models best predict the behaviour of the

parameters.
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6.2.3.2 Regression curve estimation parameter models

The linear covariance values have provided us with a rough idea of how
each parameter affects the systematicity between lexical phonology and
semantics, particularly of whether their impact is positive or negative. This
section looks at how different regression equations model the relationship

between the phonological parameters and the phon-sem correlation.

I run the linear and ten nonlinear standard regression functions (logarithmic,
inverse, quadratic, cubic, compound, power, sigmoid, growth, exponential
and logistic) available in SPSS (2003) on the data. Appendix G shows the r’
for all the functions in the cvcv word-group in the 'syntax’ and the 'no
syntax' conditions. The functions’ fit for the different parameters is highly
consistent across groups, satisfying Stevens' (1992) test to find the most
reliable regression function. Figure 6.5 shows an illustration of the r*for one
word-group (cvev) in the 'no syntax' condition. An examination of the r’
(measuring how well models fit the data) reveals some connections with the

linear impact parameter values shown in Figures 6.3 and 6.4 above.

0o - B linear 0O S-curve @ exponential

r-squared
o
[e2]

o
3
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cl c2 tc vl v2 tv

parameter

Figure 6.5: Measure of the fit of three regression models to the cvcv parameters in the 'no
syntax' condition to the phon-sem systematicity.

. The linear function is never the best predictor of the phon-sem
correlation given the parameter data, but it obtains its best r’values for

negative-impact parameters.
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. The growth, exponential, logistic and compound functions return very
similar r* values. | take one representative from this group: the

exponential function.

. The best single predictor of negative-impact parameters (such as same
vowel and same stressed vowel in the penultimate syllable) is the

sigmoid or S-curve function.

. The worst single predictor of negative-impact parameters is the inverse

function.

. The best compound predictor of the sign of the parameter impact is the
sign of exponential r* minus the S-curve r’. In positive impact
parameters, exponential r*> S-curve r’. In negative impact parameters,

exponential r’< S-curve r’,

The combined results from § 6.2.3.1 and § 6.2.3.2 supports the claim that
there are two classes of parameters with respect to phon-sem systematicity.
The second hypothesis stated in § 6.1 predicted that the study of the
parameters of phonological similarity with respect to the phon-sem
systematicity would reveal pressures in the lexicon different than those
contributing to systematicity. Here we have two classes of parameters, one
contributing to and the other working against systematicity. Figure 6.6

shows one illustrative example of each class.

Fisher div as a function of tc Fisher div as a function of v2
(cvev, 'no syntax’) (cvev, 'no syntax’)

Fisher div.
Fisher div.

'l..O.

0 02 0.4 0.6 0 0.2 04 0.6
value of 'tw o consonants' value of 'vowel 2'

() (b)

Figure 6.6. Scatter plot of Fisher divergence against individual parameter values. Two
parameters are shown: (a) two consonants and (b) vowel 2 , in the cvcv word group, 'no
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syntax' condition. The empirical parameter values are also shown as larger red points.

The two classes of phonological similarity parameters with respect to the

organisation of the mental lexicon are:

1. Class one parameters: Individual and groups of consonants, the

stressed syllable and the identity of the final stressed vowel have
positive impact values on phon-sem systematicity and are best
modelled by an exponential function Y =b0*(e®™"). High
systematicity (low Fisher divergence values) is brought about by high
parameter values - see Figure 6.6 (a). This suggests that words sharing
these phonological traits tend to be closer together in the

cooccurrence-based semantic space.

2. Class two parameters. Individual vowels and the identity of the

penultimate-syllable stressed vowel have negative impact values on
phon-sem systematicity, possibly playing a role in word

differentiation and identification. They are best modelled by a

bo+ (2L
0+ and also reasonably well

sigmoid curve function Y = e
modelled by a linear function Y = b0 + blt. High systematicity (low
Fisher divergence values) is brought about by low parameter values
(see e.g. Figure 6.6 (b)). This suggests that words sharing these
phonological traits tend to be far apart in the cooccurrence-based

semantic space.

6.2.3.3 The function of class one and class two parameters in Spanish

Class one parameters either are closely linked to narrow niches of syntactic
function (such as the final stressed vowel encoding verb tense and person) or
offer many combinatorial possibilities (such as the consonants in a word).
These two characteristics are desirable in parameters that drive systematicity
between phonology and word cooccurrence: the links with syntactic function

obviously so; the high combinatorial power better allowing systematic
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relationships of phonological space with the multidimensional cooccurrence

space.

Class two parameters allow fewer combinatorial possibilities (there are only
five vowels in Spanish compared with 18 consonants) and may be related to
word differentiation, the pressure opposed to systematicity in the
configuration of the lexicon structure. The fact that, in cvcev words, ¢2 and ¢3
are class-two parameters supports the connection with combinatorial power:
only seven consonants can occupy the syllable-coda position (c2) in Spanish,
and the following consonant (c3) is constrained by c2 (see Figure 6.7). (One
way of determining the importance of the differential combinatorial power
of vowels and consonants would be a cross-linguistic comparison of the
result of this kind of study in languages with many and with few contrastive

vowels.)

Extent of ¢2 constraining ¢3
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o
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second consonant

Figure 6.7. Redundancy measures the extent to which c¢3 can be correctly guessed once c2 is
known, in cvcev words. Redundancy is 1 — relative entropy (see chapter two for definitions
of entropy and redundancy).

In the discussion of the results of chapter three’s study of parameters of
phonological similarity | mentioned several studies suggesting the
differential processing of vowels and consonants. | expand that review here
linking it to systematicity. If consonants and vowels work for and against
systematicity, respectively, this may indicate that certain neural
mechanism(s) contribute to systematicity while other(s) work against it,

perhaps contributing to word recognition.

Cole, Yan, Mak, Fanty and Bailey (1996) presented participants with English

speech where either consonants of vowels had been rendered
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incomprehensible. They found that vowels are clearly more important for
recognition than obstruent consonants in test sentences where both were
equally represented. They studied extreme cases where either consonants or
vowels were not available to the listener; in natural speech, however, they
claim that there is a mutual interaction of consonants and vowels, and that
we recognize a word thanks to its vowel structure given its consonant

structure or vice versa.

Boatman, Hall, Goldstein, Lesser, and Gordon’s (1997) experiments with
patients with implanted subdural electrodes showed that electrical
interference at different brain sites could impair consonant discrimination or

vowel and tone discrimination.

A study of two Italian-speaking aphasics with selective impaired processing
of vowels and consonants, respectively, suggests that vowels and consonants
are processed by different neural mechanisms (Caramazza, Chialant,
Capazzo & Miceli, 2000). In that study it was clear that the differences were
brought about by the vowel-consonant distinction, and not by a distinction
in the degree of voicing. Monaghan and Shillcock's (2003) connectionist
model of Caramazza et al.'s effect showed that separable processing of
vowels and consonants is an emergent effect of a divided processor

operating on feature-based representations.

In another study in Spanish, Perea and Lupker (2004) found that nonwords
created by transposing two consonants of a target word primed the target
word (e.g. caniso primed casino). However, when two vowels were
transposing no priming occurred (e.g. anamil did not prime animal). Perea
and Lupker propose that these differences could arise at the sub-lexical
phonological level, and mention that the transposition of two consonants
preserve more of the sound of the original than the transposition of two
vowels, and mention as supporting facts the appearance of vowels as
phonological units earlier in life than consonants (Bertoncini, Bijeljac-Babic,

Jusczyk, Kennedy & Mehler, 1988) and the earlier spelling of vowels than of
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consonants in Spanish (Ferreiro & Teberosky, 1982). These results suggest
that, at least in languages like Spanish and Italian, vowels and consonants
are processed separately and might contribute to the lexicon structure in

different ways.

Chapter three mentioned the ‘phonological similarity effect’ (PSE) found by
Conrad and Hull (1964) - when people are asked to recall a list of words,
they perform worse if the words sound similar to each other. In a recent
paper, Lian and Karslen (2004) tested the PSE of consonant-vowel-consonant
nonwords with Norwegian participants, and analysed the impact on PSE of
three parameters of phonological similarity - sharing middle vowels (mal,
sar, tas), sharing the consonant frames (kal, kol, kul) and sharing the rhyme
(kal, mal, sal) - with two tasks: recall and recognition of the words in the list.
Their results bear on the differential processing of consonants and vowels.
They found an absence or reversal of PSE in several conditions. Sharing mid-
vowels did not produce PSE, and sharing the consonants and sharing the
rhyme actually reversed the PSE, that is to say, lists of words sharing the
consonant frames and the rhyme were generally recalled and recognised
better than distinct word lists. What is most relevant to the present discussion
is the fact that consonant frame lists (kal, kol, kul) were recalled and
recognised better than rhyme lists (kal, mal, sal), showing an advantage of
vowel variation over consonant variation in this kind of tasks. Consonant
frame lists could be easily placed in the systematic consonant-based
dimension (in the k_| position). It is then easy to memorise which of the few
possible vowel (Norwegian has 11 vowels) were present; the order can be
expected to be easily recalled considering that most transposition speech
errors involve consonant transpositions, and very few vowel transposition
(e.g. the first 40 phonological substitution errors in Italian returned by the

online Max Plank speech error database’ comprise 27 consonant

2 Max Plank speech error database online at http://www.mpi.nl/world/corpus/sedb/.
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substitutions, 7 vowel substitutions and 6 other errors; in English, 24
consonant substitutions, 10 vowel substitutions and 6 other errors),

indicating that the vowel order is more easily memorised.

Some papers support the hypothesis that my proposed 'class two' parameters
may be important in Spanish word recognition. Ikeno et al. (2003) explain
that when foreigners from different language backgrounds speak English,
their foreign accent reflects their native language characteristics. For
instance, Flege, Bohn and Jang (1997) report that Koreans - whose native
language distinguishes between long and short vowels - exaggerate the long-
short vowel distinction in English. Ikeno et al. (2003) report that Spanish
speakers tend to use more full vowels and less shwas than native English
speakers when speaking English, probably because there is no reduction to

schwa in Spanish.

A number of studies suggest that stress information is processed
independently of segmental information. Cutler's (1986) results show that, in
English, stress distinctions between pairs such as trusty-trustee do not affect
the outcome of lexical decision tasks; French speakers’ judgement about
nonword similarity is not affected by stress differences (Dupoux, Pallier,
Sebastian-Galles, & Mehler, 1997). The effect in English is explained by the
fact that word stress strongly correlates with segmental information — vowel
quality — with most stressed vowels pronounced fully and most unstressed
vowels reduced to schwa; therefore, stress information is redundant and
speakers can rely on segmental information only. In French, all words are
stressed on the last syllable, so stress does not help differentiate between
words. French speakers therefore do not pay attention to stress information

when judging similarity.

In Spanish, among other languages, stress information cannot be predicted
from segmental information. In these languages, prosody may help reduce
the number of competitors in word recognition, i.e. the number of

candidates activated given an acoustic input (see review in Cutler, Dahan &
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Van Donselaar, 1997). Pallier, Cutler and Sebastian- Gallés (1997) compared
the abilities of Spanish and Dutch speakers to separately process segmental
and stress information with a classification task of cvcv words. Their results
suggest that in these languages, segmental information cannot be processed
independently of stress information. In Dutch, stress contrasts are usually
accompanied by syllable weight contrasts, with stress falling on the strong
syllable, but in Spanish, stress is independent of weight, with many cvcv
words made up of two equal weight syllables. As expected, Pallier, Cutler
and Sebastian-Gallés (1997) found that segmental judgements are more

affected by stress in Spanish than in Dutch.

In this section | have reviewed evidence that class one parameters have links
with syntactic function; that class one parameters have higher combinatorial
power than class two parameters; that different neural mechanisms may
underlie processing of consonants (class one) and vowels (class two); and
finally, that class two parameters vowel identity and stress may be important

for word recognition in Spanish.

These studies, together with the results presented in past sections, support
the division of function between class one parameters (help maintain
systematicity, which in turns helps generalisation and inference) and class

two parameters (help word recognition in a systematic lexicon).

6.2.4 The empirical parameter values against the systematicity-

driven impact parameter values

In this section | tackle the question of how well adapted the empirical
parameters are to the pressure for systematicity. As stated above, | expect
that the empirical parameters will prove to be well, but not perfectly,
adapted to the systematicity pressure. The linear impact values for each
parameter obtained in the last section are a measure of the parameter’s
influence on the systematicity between phonology and semantics. A match

between this influence and the empirical parameter values grounds the
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existence of a link between perceived word phonological similarity and

word semantic similarity.

I approach this problem by comparing the phon-sem correlation obtained
with the empirical parameters, and the phon-sem correlations obtained with
random parameter values. | do this in same the two conditions as in the
previous section ('syntax' and ‘no syntax’) for the two word groups for which

| obtained empirical values, cvcv and cvccev.

| insert the empirical parameter values along with the Fisher divergence
obtained with them (e.g. the bold line in Table 6.2 above) among the 2,000
random parameter configurations and corresponding Fisher divergences. |
calculate the rank of the empirical Fisher divergence in the 2,000 list. In this
Monte-Carlo analysis the statistical significance of the empirical Fisher
divergence can be calculated from its position in the ranking. Figure 6.8
shows those positions in the two conditions for the two word groups,

together with the empirical Fisher divergence values and their significance.
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Figure 6.8. Position of the Fisher divergence obtained with the empirical phonological
parameter values in word groups cvcv, cvcev in the 'syntax' and 'no syntax' conditions.
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Empirical Fisher divergence value shown; significance: * p<0.05, **p<0.01

In three out of the four conditions the empirical parameter configuration
yields significantly high Fisher divergences (measuring the phonology-
semantic correlations). In the syntax condition for cvcv words, the
correlation is marginally significant (p=0.065). This means that the empirical
parameter configurations tend to yield a significantly high phon-sem
systematicity; | explain this in terms of the pressure for systematicity across
levels of representation in the lexicon. Additionally, the skewed-to-the-left
graphs in Figure 6.8 illustrate the fact that randomly generated parameter
configurations are more likely to yield a low systematicity lexicon. The
empirical parameters yield a highly systematic lexicon, suggesting that the

phonological lexicon is under a strong pressure for systematicity.

An illustration of this significance can be seen in Figure 6.6 (a) and (b) above.
The large red dots in the Figures represent the position of the empirical
parameter value and the Fisher divergence it helps obtain. In both cases,

Fisher divergence is low, indicating high systematicity.

In order to determine the extent of the pressure for systematicity, | measure
how unlikely it is that the empirical parameters would generate
systematicity. Class one parameters - such as two consonants, illustrated in
Figure 6.6 (a) — show the effect of a strong pressure for systematicity: the
position of the parameter in the random space is highly significant (one-
tailed Monte-Carlo, p<0.01). In the case of class two parameters - such as
vowel two, illustrated in Figure 6.6 (b) — the empirical parameter value is not
significant (one-tailed Monte-Carlo, p=0.21 n.s.). This means that, while both
parameters contribute to systematicity, class one parameters are under
strong pressure to do so, but class two parameters only support it because it
is easy for them to do so - because of their low combinatorial power, many

words will be similar to each other along those parameters.
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Discrepancies between the empirical values and the systematicity-driven

impact values can be explained at least in two ways. One, when asked to

judge phonological similarity, people show evidence of pressures on the

lexicon other than systematicity, for example, they may be focussing on

aspects of the word that help differentiate between similar-sounding words.

Alternatively, the parameter

impact values obtained above may be

overfitting to the data set. The second explanation can be ruled out if there is

consistency across word groups. Figure 6.9 shows how the empirical values

covary with the correlation-driven parameters.
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(d) R* = 0.34; df=8; p<0.05

Figure 6.9. Scatter plot of the parameter impact values obtained in § 6.2.3.1, against the
empirical parameter values shown in Figure 6.2, based on the study in chapter three.
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Parameters on the top-left half are more important for phonological similarity in the
empirical task than in the systematicity-driven metric. Parameters on the bottom-right half
are more important for phonological similarity in the systematicity driven metric than in
the empirical task. Correlation between the two axes (R?) is also shown; the triangles
correspond to the parameters that stop R’from being significant.

Most of the correlation-driven values correlate well with the empirical ones.
In general, the corpus-based methodology yields higher consonant values
(consonant parameters placed in the bottom-right half of the graphs), while
the empirical method yields higher values for the vowels (vowel parameters
in the top-left half of the graphs). This indicates that while the correlation is
more driven by consonants, people focus more on vowels when asked to tell

how similar words sound.

Additionally, in the cvcv group, parameters c2 and s2 do not correlate well,
with corpus-based values much higher than empirical values. The two
counterpart parameters in cvcev - ¢3 (last syllable-onset consonant) and s2 -
are among the worst correlating parameters, supporting the fact that the
misalignment is not due to overfitting. The low correlation of these two
parameters may be due to the onset consonant of the final syllable being
important for syntax-semantic word categorization, but somehow people not

consciously noticing it when directed to compare the way words sound.

These two facts seem to indicate a divergence in the two methodologies
employed in the test of systematicity between the phonological and the
semantic levels of the lexicon. Across-group consistency in the correlation-
driven parameter values indicates that the parameters behave in the same
way in all word groups, supporting the robustness of the methodology.
Across-group consistency in the empirical parameters (8 3.2.2.4) supports the

robustness of the empirical study methodology.

The fact that the empirical values differ from the correlation-driven ones
may be due to the nature of the psycholinguistic task presented in chapter
three. Participants were asked which of two pseudo-words sounded more

similar to a third pseudo-word. This may have biased the choices. Perhaps if
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they had been asked which of the two pseudo-words they thought meant
something more similar to the third pseudo-word, they would have drifted
away from the concrete word form, and allowed access to a more holistic
word representation. Such a task would elicit judgements of systematicity
more effectively, and it might have produced parameter values more similar
to the systematicity-driven impact values. This poses an empirical question

that can only be resolved with further tests.

The analysis of the results of the random search of the phonological
parameter space with respect to systematicity, together with the empirically

obtained parameter values returns the conclusions summarised in Table 6.4.

Class one parameters Class two parameters
parameters consonants; stress; vowels, stressed

stressed final vowel penultimate-syllable vowel
impact on systematicity positive negative
best regression model exponential sigmoidal
systematicity-driven vs. systematicity > empirical empirical > systematicity
empirical values
function maintain systematicity word identification

Table 6.4. Two classes of phonological similarity parameters with respect to phon-sem
systematicity.

The random search of the phonological parameter space suggests that there
are two classes of parameters with respect to phon-sem systematicity -
consonant parameters, stress placement and the stressed final vowel all
contribute to systematicity, while the identity of the stressed vowel in the
penultimate syllable works against it. These two classes are also best
modelled by different regression functions, exponential for class one and
sigmoidal curve for class two. | suggest that the class two parameters are
crucial in the differentiation of words with similar phonology that tend to
occur in similar contexts. Contrasting the empirical parameter values
derived from chapter three with the random-search values obtained above
supports this different-function hypothesis. While the parameter values
obtained with the empirical study and the random-search are generally well

correlated, the systematicity-driven random search accorded higher values
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to class one parameters, and lower values to class two parameters than

people did.

6.2.5 Random search of an extended phonological parameter

space

In this section | apply the methodology in § 6.2.1 to search a more fine-
grained phonological similarity parameter space adapted to words of any
structure and length. This space takes into account word syllable structure
and includes parameters related to the identity and the features of the
segments in different syllable positions; to stress; to the rhyme and the word-
onset (the first few segments); to one word being contained in the other; and
finally to word length, which studies in English (Shillcock et al., 2001,

submitted) suggest have a strong effect on phonological similarity.

| suggested at the end of chapter five that word length might play a crucial
role in the phon-sem correlation in Spanish, but word length effects could
not be tested with the equal-length sub-sets of the corpus employed (cvcv
and cvcecv words) . In order to test this, and at the same time possibly reveal
other important parameters of phonological similarity, | explore
systematicity in an extended sample of the lexicon: the 516 highest-frequency
words from the same corpus of Spanish transcribed speech used throughout
this thesis. Unlike the length- and consonant-vowel structure-homogeneous
cvev, cveev and cvevev groups, this word set includes short and long words

of various CV structures.

The methodology in § 6.2.2.2 is applied to the phonological and semantic
spaces generated with the 516-word group. The semantic similarity between
the 132,870 word-pairs is calculated in the same way as in chapters four and
five, with the same context words for the 'syntax’ and ‘no syntax’ conditions.
The phonological similarity metric required a new parameter set adapted to
the varying word length and structure, and is explained in detail in the next

section.
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6.2.5.1 The phonological similarity metric

This exploration of a phonologically heterogeneous lexicon includes
parameters related to the whole word, such as difference in word length, one
word being contained in the other, or sharing initial segment features; other
parameters are related to the syllables, such as sharing the syllable onset and
coda or having the same word CV structure; yet others relate to stress,
rhyme and vowel features. Such a general approach applied to a varied
lexicon sample yields a general guide as to what parameters affect the phon-

sem systematicity in the whole lexicon.

Segment

onset consonant

cluster consonant

vowel

W[IN|FL,|O

glide
4 coda consonant

Table 6.5. Organisation of the syllable segments.

For the calculation of the phonological similarity of each word-pair, the two
words were divided up into syllables and then the segments in each syllable
were placed into a fixed template (see Table 6.5) so that each element could

be compared with its counterparts in other syllables.

The two words to be compared were aligned along the stressed syllable’ (see
Figure 6.10) and parameters related to syllable-position were compared
between aligned syllables and their adjacent syllables (e.g. in Figure 6.10,
syllable mo in the top-centre word is compared with all three syllables in the
bottom-centre word: the one directly below it, and those to its right and left;
syllable ni in the top centre word is compared with ri and ta in the bottom-

centre word).

° This is motivated by the fact that in Spanish poetry metrics the stress of the last syllable in
a line alters the count of the number of syllables. Spanish rhyme needs the end of the lines
to be stress-aligned.

198



di rek ti ba ar mo ni ka ba ul

Ro ka ga ri ta me sa

Figure 6.10. The two words to be compared are aligned along their stressed syllable
(stressed syllables in bold).

The phonological similarity metric compares pairs of words and computes a

similarity value based on the following parameters:

. same manner of articulation, place of articulation, sonority, voicing (6
categories, following Burquest & Payne, 1993) in the syllable-onset,

syllable-coda, and word initial consonants;

. same phoneme identity in the syllable-onset, syllable-coda and word

initial consonants;

. same vowel openness (open, medium, closed) and position (anterior,

central, posterior);
. presence of a glide (semivowel or semiconsonant);

. presence of the same cluster consonant, i.e. the second consonant in a 2-

consonant cluster;

. one word being contained in the other in terms of syllables - e.g. ce-ga-
to (blind) and ga-to (cat), but not glo-bo (balloon) and lo-bo (wolf),

because in the second pair there is a discrepant syllable boundary.

. one word being contained in the other, but not in terms of syllables -

e.g. glo-bo (balloon) and lo-bo (wolf);
. same CV word structure;
. same vowel structure (sharing all the vowels in the same order);

. sharing the stress on the same syllable (last, penultimate,

antepenultimate);

. similar word onset (number of common segments in the first syllable);
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. similar rhyme (number of common segments in the last syllable);

. same final-syllable vowvel;

. different length (this parameter penalises word length discrepancies
between the two words in the pair, measured in segments).

6.2.5.2 The linear parameter impact values

Figure 6.11 shows the linear parameter impact values calculated with 135
random parameter configurations, following the same method described in 8§

6.2.2 and also employed in § 6.2.3.1.
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Figure 6.11. ‘Parameter impact’ values. Two conditions, ‘syntax’ and ‘no syntax’, are shown
for the ‘all word’ group. (Note that length difference is a penalisation parameter.)
Continuous line indicates p=0.05; discontinuous line indicates p=0.01.

Table 6.6 shows the significant parameter impact values that contribute to

(class one) and work against (class two) the phon-sem systematicity.

Class one parameters Class two parameters

'syntax’ word length; word initial manner syllable onset sonority, manner of
and place of articulation; stress in  articulation, voicing, and place of
the antepenultimate syllable; one articulation; syllable-coda sonority
word containing the other; cluster
consonant

'no syntax' word length; word initial voicing syllable-onset voicing and place of
and sonority; cluster consonant, articulation
word CV structure; word vowel
structure

Table 6.6. Parameter impact values that reach significance in the 'all word' group.

The highest positive impact value corresponds to word length difference,

with an impact value of 0.62 in both conditions. This parameter works as a

200



penalisation in the calculation of word similarity. In the phonological
similarity metric, the 'length-difference' parameter value (multiplied by the
length in segments in the longest word minus the length in segments in the
shortest word in the pair) is subtracted from the pair's phonological
similarity. In other words, the higher the parameter value, the more length
difference is penalised in terms of word similarity. This means that, as
suggested in chapter five, length difference plays a crucial role on the
phonological similarity side of the phon-sem systematicity, and may be one
of the reasons why the phon-sem correlation obtained in chapter five (8§

5.2.3) did not reach statistical significance.

Word initial consonant features contribute to systematicity, with the 'syntax’
condition placing more emphasis on manner and place of articulation, and
the 'no syntax' in voicing and sonority. The initial consonant is, as reviewed
in chapter three, crucial in lexical representation; its positive impact on the
phon-sem correlation suggests this parameter contributes to systematicity.
The cluster consonant also seems to contribute to systematicity in this group
of words of any CV structure (but not so in cvccv words, where we saw that
the cluster consonant ¢3 worked against systematicity). The measurement in
the two word groups is different in that in cvccv words the cluster consonant
was always in the same position in the word, whereas here, comparisons
across different syllables are also taken into account. Further studies would
be necessary to determine the role of the cluster consonant, for instance, a
more detailed phonological similarity metric testing the effects on
systematicity of parameters 'same consonant cluster in the aligned syllable'
against 'same cluster consonant in a different syllable’. Sharing the stress in
the last and antepenultimate syllables also contributes to systematicity,
consistent with the cvcv, cvcev and cvevev studies. Containment of one word
by the other also works in favour of systematicity. In their paper about the
possible word constraint in word segmentation, Norris, McQueen, Cutler
and Butterfield's (1997) showed that, in English, it is easier to detect e.g. the

word apple when embedded in vuffapple (where vuff could be an English
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word) than when embedded in fapple (where f could not be a word in
English). In Spanish, the first condition is similar to our parameter ‘'one word
contained by the other in terms of syllables’, and the second condition can be
assimilated to our parameter 'one word contained by the other in terms of
segments, but not syllables' e.g. glo-bo and lo-bo, where g (or any sequence
containing part of a syllable) cannot be a word. Norris et al. used a word
spotting task, and in the present case, the two words are being compared in
terms of their similarity, but the present results suggest that, in Spanish,
containment is recognized and contributes to the phonological lexicon

organization in both conditions.

Class two parameters, working against systematicity, and possibly helping
word recognition, relate to syllable onset and syllable coda features. These
parameters affect all syllables in the word, not only in the initial syllable.
Sharing the stress on the penultimate syllable also negatively impacts
systematicity. Because the phonological similarity metric compared not only
aligned syllables in the two words, but also each syllable with the one before
and after (Figure 6.10), I cannot make assumptions as to the relevance of
these parameters in different word positions. The results suggest that
syllable onset and coda consonant features, independent of position in the
word, help to distinguish otherwise similar sounding words which tend to

appear in similar contexts.

These results generally agree with those from the cvcv, cveev and cvevev
word study. Single vowel impact values do not reach statistical significance,
but the word vowel structure (sharing all the vowels in the same order)
does. This parameter is comparable to 'two vowels' in cvcv and cveev words,
and 'three vowels' in cvcvev words, and, like them, has a positive impact on
systematicity. Stress-related parameter values reflect those obtained in the
cvev, cveev and cvevev word groups, namely positive impact value for the
last and last-but-two syllables, negative for the last-but-one, although only

the impact of shared stress in the last-but-two syllable reaches significance.
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One discrepancy is the mentioned difference between the behaviour of the
cluster consonant in cvccv words against the present group of words of any

CV structure.

Among the parameter impact values not reaching significance is sharing the
full segments in any position - a common theme in the results is the fact that
consonant features' impact on systematicity is stronger than that of the
corresponding full segment. The presence of glides and vowel features, most
syllable-coda consonant features (except sonority in the 'syntax' condition),

rhyme and sharing initial syllable segments are not significant either.

This random search included many interdependent phonological variables,
and this may have affected the results. Additionally, only 135 points of the
space were calculated (against 2,000 for the cvcv, cvcev and cvevev spaces).
This means that these results are only preliminary, but, together with those
from the larger random searches, they indicate that this methodology has
potential to reveal interesting aspects of the structure of the phonological

lexicon.

6.2.6 Summary of section 6.2

The random-search methodology has quantified the impact of individual
phonological parameters on the systematicity between phonological and
context-based similarity in three subsets of the lexicon (cvcv, cvcev and

cvevev words). Two classes of parameters were apparent:

Class one parameters are best modelled by an exponential function; these
parameters either allow many phonological combinations or are linked to
morphosyntax. These parameters contribute to systematicity: words that
tend to occur in similar contexts in speech also tend to share consonants and

the final stressed vowel.

Class two parameters are best modelled by a sigmoid function and also by a

linear function. These parameters have a low combinatorial power. They
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work against systematicity: words that tend to occur in different contexts in

speech tend to share vowels and the stressed syllable.

This suggests that while class one phonological parameters contribute to
systematicity in the lexicon, class two parameters might be helping the
identification and recognition of otherwise similar sounding words which

tend to occur in similar contexts.

The empirical parameter values obtained from the psycholinguistic study
reported in chapter three correlated well with the random search parameter
values, suggesting that some parameters (class one) are under pressure to
promote systematicity in the lexicon while others (class two) oppose

systematicity to help word identification.

An exploration of an extended parameter space showed the strongly positive

impact of word length similarity on systematicity.

The high consistency of the parameter values across independent lexicon
subsets supports that the phonological organisation of the lexicon is the
consequence of the interaction of the pressure for systematicity and the

opposed pressure for word intelligibility.

The next section looks for the parameter configurations that yield the best
possible phon-sem correlations, and again compares them with the empirical
parameter values to extract conclusions relevant to the lexicon's phonological

structure.

6.3 A hill-climbing search of the phonological lexicon

In 8§ 6.2 | generated random phonological parameter configurations,
calculated a phonological similarity space with them and measured how
well the phonological space correlated with an independently-measured
semantic space. All these randomisations could be visualised as a surface

(Figure 6.1) with peaks of low correlation and valleys of high correlation. In
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this case | use a parameter optimisation technique called hill-climbing’ that
goes directly to the areas of high correlation. It is an algorithm designed to
find the phonological parameter configuration that obtain the optimal phon-

sem correlation.

Comparing the 'optimal’ parameter values that obtain the most systematic
lexicon with the empirical parameter values can help determine what other
constraints are acting on the mental lexicon and their effect on systematicity.
For example, if the best phon-sem correlation is obtained by placing a lot of
emphasis on consonants in the processing of phonological similarity, why
did people actually place more emphasis on vowels in the study reported in

chapter three?

6.3.1 Method

In order to attempt to find the parameter configuration that returns the best
phon-sem correlation (the lowest point in the surface in Figure 6.1) | draw a
method from the field of Artificial Intelligence called hill-climbing search.
The general principle behind it is that a random parameter configuration is
evaluated according to some metric; then one random change is made to one
of the parameters, and the changed parameter configuration is evaluated
again. If the evaluation is better, the random change is kept, otherwise it is
discarded. This process is repeated until a stable state is reached, signalled
by the fact that no change in any of the parameters improves the evaluation

criterion.

Figure 6.12 shows a graphic representation of a hill-climbing search in the

two-parameter space already shown in Figure 6.1. The following explanation

* The standard name ‘hill-climbing search’ seems to indicate that we are looking for the
highest point in a search space. In the present case, however, the best result is the lowest
point (low Fisher divergence means high phon-sem correlation). | keep the method name,
hill-climbing, but ask the reader to bear in mind that in this study we are actually talking
about ‘valley descending’.
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of my implementation of the hill-climbing search will use this Figure as an

illustrative example.

P T e

Figure 6.12. The blue line represents the path of the hill-climbing search, from the yellow
area towards the green area. Note again that the term ‘valley-descending’ would be more
appropriate in this particular case.

In the present case, the evaluation metric for the informed search is the

phon-sem correlation measured with Fisher divergence, and the algorithm

works like this:

1. | start off with a randomly generated phonological parameter set (the
top end of the blue line, defined by the parameter values t¢c=0.28 and
v1=0.26). Since Fisher divergence is sensitive to the magnitude of the
data, this random parameter set is converted into a probability

distribution (as | did in the random search).

2. Using these parameter values, | calculate the distances between all the

word-pairs in the group to produce a phonological similarity space.

3. | calculate the correlation (using Fisher divergence, or FD) between
this phonological similarity space and the cooccurrence-based

semantic similarity space (the same used in section 6.1.2, and in

chapter five).
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4. | change one of the parameters: | randomly add or subtract a small
amount to one of the parameters (0.05 for 200 iterations, 0.02 for a

further 200 iterations and 0.01 for the rest of the iterations).

5. | repeat steps 2 and 3 with the new parameter set. If the new FD is
higher than the old one, | discard the change and make another
random change. If the new FD is lower than the old one, | keep the

change and go to step 4.

These steps are repeated until no random changes return a better FD, that is,
until the blue line in Figure 6.12 reaches the lowest point of the valley. In
practice, | repeated the algorithm until no change is detected in FD for 50

iterations.

An informed search like this does not tell us about the overall shape of the
surface; it only shows downhill paths. One problem of this kind of algorithm
is that the path could end up in a local minimum, a point which is lower
than its surrounding area, but it is not the overall lowest point in the surface.
The ever-descending path cannot escape from local minima, and going into
one prevents us from finding the lowest valley representing the best
parameter configuration. This potential problem can be ameliorated by
doing several runs of the algorithm with different initial random
configurations, the equivalent of starting in different points in the surface in
Figure 6.12. | ran the search twice for each space and arrived at practically

the same parameter configurations. The following results show one of them.

I applied this algorithm to the cvcv, cvcev and cvevev words in both the
'syntax’ and the 'no syntax' conditions. The results are shown and discussed

in the next section.

6.3.2 Results

Table 6.7 shows the FD's obtained with the phonological parameter

configurations for cvcv, cvcev and cvevev words with the methodology
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explained above, in the 'syntax’ and the 'no syntax' conditions (the FD's

obtained with the empirical parameter values are shown for comparison).

syntax no syntax

FD FD FD FD

(hill-climb.)  (empiric.)  (hill-climb.)  (empiric.)
cvev 3.34 5.03 5.76 7.79
cveev 1.64 2.18 2.80 3.69
cvevev 1.94 n.a. 3.21 n.a.

Table 6.7. Fisher divergence correlation values obtained with the empirical and the hill-
climbing parameter values in the ‘syntax’ and the ‘no syntax’ conditions.

These FD's are well below those found in the random space searches of past
sections, because the hill-climbing algorithm actively looks for the best
possible parameter configuration, and refines it to obtain such optimal

values that would be very unlikely to occur by chance.

To illustrate this improbability, we can place the results from the informed

search in context, in the systematicity spaces from § 6.2.4.
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Figure 6.13. Distribution of FD values obtained with 2000 random parameter sets, with the
empirical parameters (emp, in the white bin; *p<0.05, **p<0.01) and with the parameter
values from the hill-climbing algorithm (h-c).
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Figure 6.13 shows the distribution of Fisher divergence values obtained with
2000 random parameter sets, and the position of the empirical values
(already shown in Figure 6.8) and of the parameter values resulting from the
hill-climbing search. It is clear that the hill-climbing search obtains a very
good phon-sem correlation, far better than any of the 2000 obtained with

random parameter configurations.

The parameter value configurations that obtained the lowest Fisher
divergence for cvcv and cvcev words are shown in Figure 6.14 and for

cveveyv in Figure 6.15.

Ccvceyv, +syntax 05 - CvCcev, +syntax
sv2 :
04 4
8 3
= < 03
© >
> =
9] £ 02
S
o IS
S 8 g4]
o g8
a o
S clc2c3 str
O 4
svl
-0.1
Ccvcv, no syntax cvccev, no syntax
- 1,
1 tc
— 3c
0.8 4 —
m 0.8 qj;
> =
= ©
>
> 06 c 0.6
Q
E E 0.4
04 - 7
:
©
o 02 | e 0.2
- tc13 tv
N ) 1 ) tv cl c2 c3 D tc23 vl v2
c c \ \%
0 2 O 0 = = O

Figure 6.14: Parameter values obtained with a directed search of the phonological
parameter space. These are the parameter configurations that obtained the best phon-sem
correlation values after 650 iterations of the search algorithm. Two conditions, syntax and
no syntax are shown for the cvcv and cvcev word groups. White bars= consonant-related
parameters; grey bars=vowel-related parameters; black bars=stress-related parameters;
striped bar=structure-related parameter.
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Figure 6.15 The same as Figure 6.14, but for cvcvev words.

The configurations returned by the hill-climbing search and shown in
Figures 6.14 and 6.15 consistently rely heavily on the same small number of
parameters - a combination of stressed vowel on the last syllable, stress on
the last syllable and all consonants in the 'syntax' condition, and simply all

consonants in the 'no syntax' condition.

The hill-climbing methodology strongly relies on a parameter (sharing all
consonants) affecting a minute proportion of the word pairs constituting our
sample lexicons (0.007% of cvcv words, 0.006% of cvcev words and 0.001% of
cvevev words). The phonological parameters analyzed form a surface like
that depicted in Figure 6.1, but multidimensional. This hypersurface may be
such that one parameter has a much steeper gradient than the rest, so that
the search (blue line in Figure 6.12) goes down in the direction of that
parameter so fast that the effects of the gradients of other parameters are

obscured. This may be the case with the parameter 'sharing all consonants'.
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I ran the search twice for each word group and also examined the across-
group consistency to double-check that the search did not end up in a local
minimum. Additionally, as seen in Table 6.8, the consistency across word-

groups is remarkably high.

'syntax’ ‘no syntax’

cvev (10) cvcev (14) cvev (6) | cveev (10)
cvecev (14) | 0.78 cveev (10) | 0.99
cvevev (20) | 0.87 0.94 cvevey (14) | 0.99 0.95

Table 6.8. Consistency across word-groups in the 'syntax' and ‘no syntax’ conditions: R’ of
counterpart parameter values. The number of parameters is shown in brackets. All p<0.01.

These R* values show a high degree of convergence between the three
parameter configurations, indicating that the hill-climbing algorithm finds
similar phonological organisation with respect to systematicity in three
independent subsets of the lexicon. This convergence supports the reliability
of the methodology. Let us now examine how the parameter values obtained
with the hill-climbing method correlate with the parameter impact values

and with the empirical values (Table 6.9).

R? Impact Empirical
cvev 0.43 (df=8)* | 0.25 (df=8)
'syntax’  cvecv | 0.35 (df=12)* | 0.32 (df=12)*
cvevev | 0.15 (df=18)* | n.a.
cvev 0.36 (df=4) 0.50 (df=4)*
no  cvcev | 0.35(df=8)* | 0.61 (df=8)*
syntax cvevev | 0.30 (df=12)* | n.a.

Table 6.9. Correlations (R?) of the parameter values obtained with the hill-climbing search
with the parameter linear Impact values, and with the Empirical values. (* p<0.05; **p<0.01.)

The parameter impact values resulting from the random search and the hill-
climbing values were based on the systematicity between the phonological
and the semantic levels of the lexicon. The empirical parameters were
obtained from psycholinguistic tests on word-form data alone. Table 6.9
shows that eight out of ten correlations are statistically significant, and the
two that are not have very few degrees of freedom (df=4). In particular, the

empirical values correlate best with the values returning the best phon-sem
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correlation in the 'no syntax' condition, where word representations rely

most on word meaning.

A scatter plot of the hill-climbing parameter values against the empirical

parameter values will reveal more about the correlations, as well as the

discrepancies between the two metrics in a similar way as the scatter plots

between the linear parameter impact values (Figure 6.3) and the empirical

values (Figure 6.2). An analysis of the behaviour of the empirical values

against the correlation-driven values might help reveal pressures other than

systematicity affecting the structure of the lexicon.
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Figure 6.16. Scatter plot of the 'optimal' values against the parameter values obtained empirically

in chapter three.
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Figure 6.16 and Figure 6.14 above show that the phon-sem systematicity is
driven to a very high extent by similar last-syllable stressed vowels and
similar word consonant structures. The empirical measurements presented
in chapter three suggest that people also rely mainly on the stressed final
vowel for phonological similarity. However, it also suggests that people
attach almost as much importance to vowels as to consonants, which is not

reflected in the hill-climbing results.

This further supports the distinction between class one and class two
parameters proposed above, the former (mainly consonants and the stressed
final vowel) contributing to phon-sem systematicity, and the latter (vowels
and the stressed syllable), focused on by people, working against
systematicity. As suggested above, class two parameters could be helping to
distinguish individual words from others that may be used in similar

contexts.

Figures 6.14 and 6.15 show that the hill-climbing phonological space relies
strongly on a few parameters, almost dismissing the others. The selected
parameters, not surprisingly, are related to syntax (stress) in the 'syntax’
condition. In the 'no syntax' condition, systematicity is driven in all word
groups mainly by 'sharing all consonants'. In the surface-form words in our
data-sets, only half or less of the word pairs that share all consonants also
share the same root (45% of cvcv pairs, 37% of cvcev pairs and 50% of cvevev
pairs) (e.g. forms of the same verb, masculine and feminine forms of the
same noun or adjective). In a lemmatised corpus, words sharing the same
root would be conflated into the same lemma, and there would be no pairs
of words sharing the same root. One problem with lemmatisation is that the
vowel structure would also be altered, affecting the phonological

representations of words.

The fact that the systematicity-driven metric relies heavily on sharing all
consonants might simply be telling us that words sharing the same root have

similar cooccurrence patterns in speech. But over half of the pairs sharing the
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three consonants have different roots, indicating that sharing the consonant
structure is the main contributor to systematicity between phonology and

semantics in the lexicon.

As suggested above, the reliance on few parameters can be an artefact of the
hill-climbing algorithm, favouring the parameter with the steepest gradient.
Removing the ‘winning’ parameter should reveal the next best parameter.
Indeed, this seems to have happened in the two conditions. In the ‘syntax’
condition, sv2 is the clear winner, obscuring the contribution of other
parameters towards the correlation. In the ‘no syntax’ condition, when stress

is removed, the important role of the consonant structure is revealed.

6.3.3 Summary of section 6.3.

The hill-climbing search optimised the parameter configuration to obtain the
best phon-sem systematicity in the lexicon. In the ‘'syntax’ condition,
systematicity is driven by stress parameters. In the 'no syntax' condition, by

sharing all consonants.

The random and the hill-climbing searches of the phonological parameter
space have returned different quantitative information about the parameters.
The next section integrates all this information to make a testable prediction

about the empirical values for cvcvev words.

6.4 Predicting empirical parameter values for CVCVCV words

We now know how the phonological parameters behave with respect to the
phon-sem correlation (impact values, 8 6.2.3.1) and which parameter
configurations obtain the optimal phon-sem correlation (hill-climbing
values, 8§ 6.3.2 ), for cvcev, cveev and cvevev words. | also have empirical
parameter values for cvcv and cvcev words. | can now integrate all this
information and use it to predict the empirical values of some of the

phonological parameters for cvcvev words.
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Table 6.10 shows the parameters that can be considered as counterparts in

the three word-groups. (Note that syllables are counted from the end of the

word.)
cvev cveev cvevey
cl cl cl word-initial consonant
c2 c2 c3 2" syllable-initial consonant
tc 3c 3c all consonants in the word
vl vl v2 last-but-one syllable vowel
v2 v2 v3 last syllable vowel
tv tv 3v all vowels in the word
sl sl s2 stress on last-but-one syllable
s2 s2 s3 stress on last syllable
svl svl sv2 stressed vowel on last-but-one syllable
sv2 sv2 sv3 stressed vowel on last syllable

Table 6.10. Counterpart parameters for the cvcv, cveev and cvevev word-groups.

For each parameter, | have eight values. For instance, for the word-initial

consonant c1, one value for each measure in each word group (Table 6.11).

cl

cvcv CvCcv | cvevev

hill-climbing

0.0080 | -0.002 | 0.0027

parameter impact

0.1593 | 0.212 | 0.1228

empirical value

0.1776 | 0.098 X

Table 6.11. Known values of phonological value c1 obtained with different methodologies.

I can combine these known values to predict the empirical values for cvcvev

parameters. This can be done 'manually’ by looking at the values for the

same parameter in different word groups and across methods, and

extrapolate a value for x. The advantage of a manual method is that | can

take into account factors such as the fact that cvcvev words' syllabic structure

is more similar to that of cvcv words. This method returns the predicted

‘empirical’ parameter values for cvcvev words shown in Figure 6.17.
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Figure 6.17. Predicted empirical parameter values for the cvcvecv word group.

These are theory-driven testable values which, if confirmed by an empirical
study of cvcvev words similar to that described in chapter three, would
further support the pressure for systematicity between the phonological and

the semantic levels of the lexicon.

6.5 Conclusions

The present chapter is based on the hypothesis, tested in chapter five, that
there are systematic relationships between the phonological and the syntax-
semantic levels of representation of the lexicon. It has explored the measure
of such systematicity as a tool to study and predict the organization of the
phonological level of the lexicon. This exploratory analysis had some
limitations, for instance, the corpus size limits the accuracy of the
cooccurrence-based word representations. It must also be noted that the
parameters included in the metrics of the phonological (segment-based
against, for example, feature-based) and the cooccurrence-based (window-
size, similarity metric etc) spaces were not ad-hoc, but were used in
independent previous studies; using parameters specifically selected for
finding, say, systematicity might have yielded clearer results. However, in
an exploratory study such as this, the impact of the different parameters is
only discovered a posteriori. In this exploration of a new paradigm the high

levels of convergence between the results obtained with three independent
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subsets of the lexicon support their reliability and the robustness of the

methods.

| set out to test the hypotheses that the pressure for systematicity between
the phonological and the semantic levels of the lexicon would make
empirical phonological parameter values return a significant phon-sem
correlation; that the phon-sem correlation obtained with the empirical
parameters would not be the best possible, because pressures other than
systematicity affect the phonological structure of the lexicon; and finally, that
the phon-sem correlation could be used to make testable predictions about

the phonological space.

The random search method returned parameter impact values, a measure of
how each parameter influences the phon-sem correlation, for four different
lexicon subsets: cvev, cveev and cvevev words, and all words. The results are
significantly consistent across the first three word groups, indicating that the
phon-sem correlation (a measure of the systematicity in the lexicon) is based
on the same types of phonological characteristics, such as stress and

consonant identity and position, for different word groups.

An analysis of the parameter impact values for a word group containing
words of all lengths and structures revealed the great importance of word
length difference for phonological similarity, confirming the conjecture at the
end of chapter five and consistent with the results of Shillcock et al.'s (2001,

submitted).

The empirically obtained parameter values (for cvcv and cvcecv words)
turned out to correlate significantly in most cases with the random-search

results, supporting my first hypothesis.

The hill-climbing search obtained optimal parameter configurations that
obtained better phon-sem correlations than the empirical values, which

supports my second hypothesis.
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This optimal parameter configuration, which also correlates well with the
empirical parameters, is based on few parameters with very high values,
namely sharing the word-final stressed vowel, and sharing the word

consonant structure.

| proposed that while these parameters reflect the pressure for systematicity
on the lexicon, other important parameters in the empirical configuration,
such as the stressed vowel, reflect the opposed pressure for easy
identification and intelligibility of words that (because of systematicity)

sound similar and have similar cooccurrence patterns in speech.

Finally, the parameter information obtained with the random and the hill-
climbing searches of the cvcv, cvcev and cvevev groups, together with
knowledge of the empirical parameter values of the cvcv and cvcev groups
was used to predict empirical parameter values for cvcvcv words, the

testable prediction | anticipated in my third hypothesis.

In all, this chapter has offered a new approach to the study of the
phonological organisation of the lexicon that transcends phonology and

includes other lexical dimensions such as syntax and semantics.
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Chapter 7. Conclusion

This thesis set out to explore the complex, adaptive nature of the mental
lexicon. Using corpus-based methodologies, it has examined the internal
phonological structure of words (chapter two), relationships of phonological
and cooccurrence-based similarity between words (chapters three and four)
and a higher level of organisation based on systematicity between the
phonological and the cooccurrence-based representations of the lexicon
(chapters five and six). In each case, the lexicon organisation was explained
in terms of adaptations to pressures that can ultimately be related to
language as a tool for human communication, and to the fact that language

has to be easily acquired by successive generations of people.

7.1 The adaptive lexicon

In the past chapters | have quantified relationships both within and between
words, always finding evidence that the lexicon is organised along many
different dimensions. | have focused on patterns of lexical organisation that
only emerge when large subsets of the lexicon are taken into account. The
analysis of the results of chapters two to six of this thesis suggests that the
mental lexicon is an adaptation that responds to the multiple, often
conflicting pressures acting on it. These pressures ultimately relate to human

communication and to the learnability of language by human infants.

In chapter two | examined the degree of phonological information (measured
as entropy) found in the different word segment positions. The resulting
information profile is an emergent property of a system of words. The profile
of the words uttered in speech showed a left-to-right decreasing information
level that may be an adaptation to the need to segment speech - words tend
to begin at points of high phonological information content and finish at

redundant, more predictable points. The information profile of the word
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types, with information evenly spread across the word length, suggested that
it is adapted for optimal storage, to make the most of its representational
space. The information profile of the child-directed lexicon did not show this
adaptation, suggesting that the first words to be learned are not so tightly
packed in terms of information, perhaps configuring a scaffolding upon

which subsequent words are stored.

In chapter three | presented an empirical study measuring the relative impact
of different phonological parameters on perceived word similarity in
Spanish. In agreement with other findings in the literature of lexical
structure, | found, for instance, that two words sharing the initial consonant
are perceived to be more similar than two words sharing a word-internal
consonant. | also found evidence of an interference of morphology in the
judgement of phonological similarity — the stressed final vowels encode
several verb tense and person morphemes, and two words that share the
same stressed final vowel are judged to be more similar than if they share

any other parameter.

In chapter four | measured similarity between words based on the words
they cooccur with in speech. | constructed a lexicon representation using this
measure of similarity and showed the emergence of categories such as parts
of speech, noun-verb, feminine-masculine and semantic categories. Patterns
of cooccurrence with closed-class words defined the word’s syntactic
identity, while patterns of cooccurrence with determiners influenced the
word’s gender, and patterns of cooccurrence with open-class words affected

the word’s semantic classification.

Chapter five tested the existence of a systematic mapping between the
representations of the lexicon obtained in the previous two chapters -
phonological and cooccurrence-based. Systematicity is a manifestation of the
general nervous system tendency for structure-preserving mappings, which
naturally leads to generalisation and inference - it provides useful links

between concepts and words while exploiting the natural tendencies of the
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human nervous system. | measured a small but statistically significant
degree of systematicity between the phonological and the cooccurrence-
based levels of the lexicon. | removed most syntactic information from the
similarity metrics on which the two representations were based in order to
measure the systematicity between word form and word meaning. This had
been found previously for English (Shillcock, Kirby, McDonald & Brew, 2001,
submitted), and the present study extended the effect to Spanish, in support of
the hypothesis that systematicity between levels of representation is a

universal trait of language.

In chapter six | explored the relationships between different parameters of
phonological similarity and the ‘phon-sem’ systematicity. The results
revealed another pressure on the lexicon, opposed to that of systematicity. In
a purely systematic lexicon, words with similar meanings, used in similar
contexts, would tend to sound similar. This poses a problem for
communication: two words that sound the same are usually distinguished by
the context, but if their contexts are also similar, they will be easily confused.
The pressure that works to solve this problem tries to make words with
similar meanings have different forms so they can be easily distinguished
from each other. The methods applied in chapter six revealed that different
parameters of phonological similarity behaved in different ways: words
sharing the same consonant structure tended to be close together in the
semantic space, supporting systematicity; however, words sharing the same
stressed vowel (in the penultimate syllable) tended to be far apart in the
semantic space, opposing systematicity. This suggests that, at least in
Spanish, systematicity is based on the words' consonant space, while the
stressed vowel might be serving the function of distinguishing potentially

ambiguous words.

The explanations in this thesis have emphasized the systematic nature of the
lexicon. It makes no sense to speak of the information contained in one word,

and it is irrelevant to define how the form of one word relates to its meaning
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or how similar two words in an isolated pair are to each other. Information,
systematicity and similarity are properties of a large set of words. | have
focused on the relationships between words, the identity of the words
themselves becoming irrelevant. In the complex adaptive mental lexicon, a
change in the phonology of a single word has effects on the information
structure of all words; its phonological similarity to the rest of the words is
changed, and, because of the pressure for systematicity between
phonological and syntax-semantic relationships, its syntax and semantics

will be under pressure to change too.

In sum, this thesis supports the view that the lexicon has evolved a robust,
complex structure that accommodates an ever-changing balance of pressures.
The next section briefly presents a theoretical framework of the evolution of

the adaptive lexicon.

7.2 An evolutionary theoretical framework for the adaptive

lexicon

Throughout this thesis | have stressed the idea that the lexicon is a complex
adaptive system. One of the characteristics of a CAS is that it evolves over
time by a mechanism of selection, through continuous adaptations to
pressures. The two main pressures | have proposed are that the lexicon has
to allow human communication of concepts, and that it has to be learnable

by human infants.

In this final section | sketch a theoretical framework to study the lexicon as
embodying human language capacity, evolving in an environment that
includes the human brain, human communication interactions, and the

concepts to be communicated.

According to Hull (1988), the essential mechanism of evolution by selection
includes a phase of stable information that evolves over the generations
(there has to be variation in that information); a phase of contingent

instantiations of that information that interact with the environment; and a
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cycle of replication of the information and development of instantiations
whose interaction with the environment determines the differential
replication of information. An example of selection is the natural selection of
living organisms: the information is encoded in the genes, and it codes for
the organism. Organisms interact with their particular environment, with the
result that adaptive gene variants prevail over time while maladaptive ones

die out.

Language selection has been studied from this point of view in the past.
Some authors proposed that the stable information is I-language or internal
language, and pieces of E-language (external language, such as speech or
text) are the contingent instantiations (e.g. Kirby & Hurford’s 2002 Iterated
Learning Model). Others argued the opposite: information is found in
speech, and it develops contingent instantiations in people’s brains, which, in
turn, produce more speech (e.g. Croft, 2000; Mufwene, 2001). | follow the
latter trend and propose that linguistic information (syntax, phonology)
resides in speech. Linguistic information evolves over the generations
through change in the proportions of the information variants (such as sound
variants, syntactic structure variants) in the speech of a linguistic community.
The individual mental lexicons (I-language) are the instantiations of
linguistic information, and they interact with an environment that includes
human brains, the concepts to be communicated and speech coming from

other humans.

In this framework, concepts, the contents of lexical semantics, are not part of
the linguistic information, but rather of the environment where linguistic
information evolves. Concepts are part of a different system with a different
dynamics: semantic information is found in people’s brains, and speech acts

are contingent instantiations of that information. The expressions of concepts
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can be seen as memes' (Dawkins, 1986) that interact with other memes, and

that interaction determines their success to stay in the meme pool.

Since one of the main pressures acting on the lexicon is that it has to help
people communicate, the (linguistic) lexicon needs a way to capture the
(semantic) concepts in its linguistic structure, that is to say, to maintain
symbolic associations. The pressure for systematicity across representations
may have had a role in organising the lexicon’s syntactic and phonological

structure, and the structure of concepts around each other.

| propose the evolutionary relationship between linguistic and semantic

aspects of the lexicon illustrated in Figure 7.1:

Linguistic-Semantic interactions

-E Ling. instantiation

5 / . Sem. info

§ Ling. info Ling. info

21 Sem. instantiation Sem. instantiation
7]

Figure 7.1: Interactions between the evolution of linguistic (black lines) and semantic (red
lines) aspects of the lexicon.

Information encodes the structure of the instantiations, and each
instantiation can only produce more of the same information that encoded it,
or, as illustrated in Figure 7.1, ‘reflect’ the information back. In other words,
for a given person, the linguistic input (the phonology and syntax they hear)
equals the linguistic output (the phonology and input they use when they
speak); for a given piece of speech, the semantic input (the meaning intended

by the speaker) equals the semantic output (the meaning understood by the

' Meme: term coined by Dawkins. Memes are the units of cultural evolution, in the same
sense as genes are the units of biological evolution. Memes include tunes, ideas, values and
skills, and they replicate when they are learned by a new person.
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hearer). At the linguistic level, 1 have been assuming this theoretical
framework throughout the thesis, in that | have analyzed patterns of
information in speech and assumed that they are the trigger for the

development of language in new generations of infants.

Variation in the linguistic pool comes from mutation (errors that ‘catch’) and
contact between languages; variation in the population comes from the fact
that information from different instantiations, containing different variant
combinations, is mixed together to produce a new combination of variants in
each new instantiation. This means that syntactic and phonological variant
combinations from the speech of many speakers contribute to form the
unigue mental lexicon of each new speaker. Social factors such as the
prestige of the variants and the patterns of contact between speakers of a
language affect the differential spread of variants, and hence, language

evolution.

This thesis has shown systematic relationships between phonology on one
hand and cooccurrence-based representations on the other; we have also
seen that cooccurrence encodes for both syntax and semantics. However, the
results presented and reviewed in chapter four suggest that syntax and
semantics are encoded by very different cooccurrence patterns — syntax is
best captured by small windows that take into account the exact position of
words, semantics by much larger windows. Another difference between the
syntactic and the semantic levels is that syntax is encoded mainly by
language-internal relationships, whereas semantics needs to have links with
the realm of concepts. The theoretical framework presented in Figure 7.1
could be tested by a paradigm that considered the evolving interrelations
between linguistic information (i.e. phonology and syntax) on one hand, and

semantic information on the other hand.

This framework offers an explanation to the symbiotic relationship between
humans and language. It also attempts to explain the relationships between

semantics and the other aspects of language, taking into account the pressure

225



for language to capture meaning so that it can help people communicate. In
exchange, humans help language survive and replicate: when people
communicate their ideas, the speech they produce also carries the
information necessary to create new linguistic instantiations in human

infants.
7.3 Contributions and implications of this thesis

7.3.1 Original research

This thesis has offered support for the hypothesis that the lexicon is a
complex structure that responds adaptively to pressures derived from its
relationships with humans. It has presented a collection of approaches to the
study of the mental lexicon that provide new evidence for previously

unexplored aspects of the organisation of the mental lexicon, such as:
» the adaptive nature of the phonological information profile,

» the impact of aspects of phonology on perceived word similarity in

Spanish,
» gender classification in a cooccurrence similarity space.

This thesis also has supported other findings, mainly by presenting evidence

from Spanish, such as
« syntactic categorisation in a cooccurrence similarity space,

» systematic relationships between phonological and cooccurrence-

based similarity between words.

Finally, it has introduced a new paradigm for the study of the phonological
structure of a language that takes into account the systematic relationships

between phonological and cooccurrence-based similarity.
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7.3.2 Theoretical implications

I have applied concepts like adaptation and complexity to the study of
language to focus on systematic properties that only emerge when we

consider large sets of linguistic data.

The corpus-based approach adopted supports the statistical learning
hypothesis by indicating that the lexicon structure is developed, among
others, due to sensitivity to within-word (e.g. entropy) and between-word
(e.g. phonologically-encoded morphology) phonological statistical patterns,
and also to word cooccurrence patterns (e.g. cooccurrence-encoded syntactic
classes). In most of the metrics employed, particularly in the cooccurrence
statistics and in the calculation of the information profile of the word tokens,
every utterance of each word contributed to the lexicon representation. The
similarity-based lexicon model | have adopted means this thesis is best
understood within an analogy-based framework (e.g. Skousen, 1995) where
new word exemplars are processed, stored and retrieved in the form of
phonological, contextual and other information, and this information is then
related to analogous exemplars stored at the same levels of information, and

also across levels, in the rest of the lexicon.

7.3.3 Open-ended research

This thesis was not intended to provide the last word on the mental lexicon,
but rather has presented an overview of how a diverse collection of new
guantitative approaches can contribute novel insights to the study of this

vast subject.

The explorations presented in this thesis can be extended and refined by
using a larger corpus or several corpora of different languages or E-language
modalities (speech, text, emails). Additionally, the results could be improved
by tailoring the metrics of similarity and the phonological and cooccurrence
parameters to the different tasks. For instance, patterns of cooccurrence with

adjacent words seems to return the most accurate syntactic categorisation
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(Mintz, 2003; Monaghan & Christiansen, 2004), whereas patterns of
cooccurrence with the words in the same paragraph or document are best
suited to encode words’ semantic identity (e.g. the LSA approach, Landauer
& Dumais, 1997). Focusing on the words’ stressed vowel seems to bear on
lexical individuation, reflecting lexical contrast; focusing on the consonant
structure seems to reflect how words fit in with other words in the structure

of the lexicon, reflecting lexical integration and systematicity.

The methods presented in the thesis may also be applied to various fields

and open new lines of research:
Phonology

Chapter six explores the relationship between certain aspects of word
phonology (phonological parameters) and the systematicity between a
phonological-similarity and a cooccurrence-similarity representation of the
lexicon. The results presented suggest that while some of these phonological
parameters support phon-sem systematicity, others have been recruited by
the opposite pressure to make words that occur in similar contexts sound
different from each other for more unambiguous recognition. In chapter six I
presented preliminary results for an extended phonological parameter set
applicable to words of all lengths. Different combinations of phonological
parameters can reveal the relationships between the phon-sem systematicity
and various aspects of phonology (from features to word-length or prosody;
using acoustic speech representations, orthography or other representations
of E-language). A cross-linguistic comparison of the results of such studies
might reveal universal properties of the phonological systems with respect to

systematicity (as well as language-specific ones).
Syntax and semantics

Chapter six introduced a method to quantify the impact of parameters of
phonological similarity on the systematicity between the phonological and

the cooccurrence similarity-based spaces, the latter including syntactic and
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semantic information. This added an extra dimension to the description of
the phonology of a language. Similarly, we could better describe the syntax
and the semantics of a language by taking into account the impact of
parameters of cooccurrence-based similarity on the phon-sem correlation.
This could be another test for the hypothesis that certain word classes (such
as proper names, swear-words, or certain syntactic categories) support the
systematicity. Cross-language comparisons of such studies could, again,
reveal universal (as well as language-specific) properties of syntax and

semantics with respect to systematicity.
Language acquisition

Studies similar to the ones presented in the thesis, but based on corpora of
child-directed and child-produced speech may provide clues to the
sequential involvement of different pressures in the development of the
mental lexicon. In chapter two | did compare the information profiles of
words from an adult and a child-directed corpus, and | explained the results
in terms of the differential impact of the pressures on the lexicon during
language development. A psycholinguistic test to quantify the impact of
parameters of phonological similarity carried out with children of different
ages could help study the development of the phonological mental lexicon
structure and of its relationships with morphology, among others. Looking at
the levels of syntactic and semantic categorisation achieved by a
cooccurrence space based on corpora of child-directed speech could reveal
the sequentially incremental syntactic and semantic structure of the
developing mental lexicon. Patterns of phon-sem systematicity found in such
corpora again could show the time-course of pressures for systematicity and
the opposed pressure for phonological differentiation of words occurring in

similar contexts.
Language change

Change in a complex system has far-reaching consequences. The existence of

phon-sem systematicity introduces a new level of complexity in the study of
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the lexicon that implies that change in one domain will have an impact on
the other. This opens the way to explorations of the effects of semantics and
syntax on phonological change, and of phonology on semantic and syntactic

change.
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Glossary

For the purposes of this thesis, these terms are defined as follows, except

when otherwise stated.

Complex adaptive system (CAS): An organized system of agents that
evolves over time in order to maximize some mesure of fitness. CAS
have emergent properties that could not be derived from the sum of
its parts but which arise from their complexity. Organic life is a CAS
evolving to maximize the reproducibility of organisms in a particular
environment; other systems that have been described as CAS include
the global economy, the stock exchange, the immune system, society,

culture, and language.

Content word: Also called open-class words. Defined by opposition to
functors, content words have lexical meaning. Content words include

nouns, verbs, adjectives and adverbs.

Cooccurrence statistics: Corpus-based definition of a word in terms of other
words it occurs close to in speech or text. One word is defined by how
often the defining words (usually, high-frequency words, or function
words) appear inside a window of a given number of words around

(in front, after or both) the target word.

Entropy: Entropy is a measure of the information or the uncertainty that each
segment position in a set of words carries. The probability of each
phoneme and allophone occurring in each segment position of a set of
words are calculated. For probabilities (p,, p,, p...-p,), the entropy (H)
iIssH=-Z(p,logp,).

Functor: Also called function words or closed class words, functors have
very little lexical meaning, but serve to express grammatical

relationships between other (content) words. Functors include

prepositions pronouns, conjunctions, articles and auxiliary verbs.
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Information profile (also information contour): Shape obtained over the
whole word when we plot the entropy level of each word segment

taken in isolation calculated over a set of words.

Lexicon: the set of words in a language, together with the relationships
between them at all levels of description: phonological, syntactic,

semantic etc. It embodies language competence.

Monte-Carlo analysis: Statistical analysis based on a comparison of a
veridical result with many results obtained with random parameter
configurations. The position of the veridical result in the distribution

of all results is a measure of its statistical significance.

Parameters of phonological similarity: Phonological aspects that two words
may share. We may consider segmental parameters (e.g. both words
having the same initial segment, both words containing segment /m/,
both words having the same number of segments), feature-based
parameters (e.g. both words starting by or containing a coronal
consonant) or suprasegmental parameters (e.g. being stressed on the

final syllable; being unstressed; having the same number of syllables).

Redundancy: Redundancy is a measure of the predictability carried by each

segment position in a set of words. Redundancy (R) is:R=1-H.

Slope of the information profile (m): Measure of the steepness of the
information profile linear trendline. In the trendline equation y = mx +

n, the slope is m.
Structure-preserving: See Systematicity.

Systematicity: A structure-preserving relationship between structured
representations. The structure of one representation can be inferred

from the structure of another.

Token: Each of the occurrences of a word type. For instance, in a given

corpus, we can have 245 tokens of the word type ‘of’.
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Type: Each of the different words occurring in a corpus. For instance, ‘of’ is a

type (for which there are 245 tokens in a given corpus).
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APPENDICES

Appendix A

Finite schemes used to calculate the information profiles by feature. Vowels
are taken to be individual elements of the finite scheme.

Manner of articulation

Place of articulation

© 00 N O Ul WN P

e e e N el
N o o~ WNPRER O

plosive — voiced
plosive — voiceless
nasal — voiced
vibrant (tap) — voiced
vibrant (trill) — voiced
fricative — voiced
fricative — voiceless
lateral — voiced
affricate — voiceless
approximant — voiced
approximant — voiceless
glide

vowel a

vowel e

vowel i

vowel o

vowel u

1 bilabial — voiced

2 bilabial — voiceless

3 labiodental — voiced

4 labiodental — voiceless
5 interdental — voiced

6 interdental — voiceless
7 dental — voiced

8 dental — voiceless

9 alveolar — voiceless
10 | alveolar — voiceless
11 | palatal — voiced

12 | palatal — voiceless

13 | velar — voiced

14 | velar — voiceless

15 | vowel a

16 | vowel e

17 | voweli

18 | vowel o

19 | vowelu

251



Appendix B

The two sets of stimulus nonwords used in the empirical study described in

chapter three.

STIMULUS SET 1

15clc2 blnta bisko linko
25 cl c3 kéaste kindo binto
3 5 cl_tcl13 pésta purke purte
4 5 cl tc23 rasli ronte bosle
55 3c cl kérdu kirda késla
65 clvl sarke sonti panti
75 cl v2 minde moérka kérke
8 5 cl tv finto faste kisto
95 ¢cl al kérpa kengu méngu
10 5 cl a2 sulté sande pandé
11 5 cl avl tarbo tinte kante
12 5 cl _av2 kurta kombé sonda
13 5 cl str bésto bugra tinka
14 5 c2 c3 16rdi pérku péndu
15 5 c2_tc13 morfa sérpo mélfo
16 5 c2 tc23 kinte gando ganto
17 5 3c c2 méska musko pusto
18 5 c2 vl linka bentd bistd
19 5 c2 v2 gusmi tésha térbi
20 5 c2_tv posti tésto torti
21 5 c2 al bésta tusgé tllgo
22 5 c2 a2 tuska nésde nordé
23 5 c2_avl molka gélpe gospe
24 5 c2 _av2 pusté leska lenké
25 5 c2_str dakme mokri monsi
26 5 c3 tcl3 maénke diska miska
27 5 c3 tc23 mindé saldé sandé
28 5 3c_c3 galti golte pénte
29 5 c3 vl pérda mésdi mésti
30 5 c3 v2 tarse binso binde
31 5 c3 tv ménto sarti sérmo
325 c3 al lumpe jospa josta
33 5 c3 a2 bundé télde talpé
34 5 c3 avl sunta mélto mulko
35 5 c3 av2 tonké perka perté
36_5 c3_str bisle dablo dango
37 5 tcl3 tc23 lésta 16nti kosti
38 5 3c_tcl3 dinke dadnko dalke
39 5 tc13 vi1 tingu sirka térga
40 5 tc13 v2 résta bénde blste
41 5 tc13 tv bisna bulne tilka
42 5 tc13 al férna falnd péaldo
43 5 tcl3_a2 jenté julta pulka
44 5 tc13 avl béarke bunko ganto
45 5 tc13 av2 renda risdé tisha
46_5_tcl3_str minle maéklo darso
47 5 3c_tc23 basme bdsmo tismo
48 5 tc23 vl ténse lirde tirsa
49 5 tc23 v2 saldi pérbi példo
50 5 tc23 tv tlrke moérka munze
51 5 tc23 al pante lunti lUsdi
52 5 tc23 a2 fustd mésta melga
53 5 tc23 avl méspa bispo bérto
54 5 tc23_av2 pulkd golké gorba
55_5 vl 3c pénda gorti péndi
56 5 3c v2 sinte sonta mérke
57 5 3c_tv tarlo tirle masto
58 5 3c_al punke pinka lisma
59 5 3c a2 dintd dénto pergd
60 5 3c_avl solfi sélfe téske
61 5 3c_av2 kandu kinda pirgu
62 5 vl v2 parti lande 16ndi
63 5 vl tv jélbo sénta sénto
64 5 vl al tilpa kinda kunda
65 5 vl a2 pirbd tinka tenka
66 5 vl av2 sinka misté mesta
67 5 vl str ganti magle mdske
68 5 v2 tv malde térne tarne
69 5 v2 al sérga menda méndi

70 5 v2 a2 bondé talke talki
71 5 v2_avl ténde rdspe réspa
72_5 v2_str mulde kébre kanfo
73 5 tv al gospi toldi talde
74 5 tv_a2 randé targe torgl
75 5 tv_avl birko timpo timpa
76 5 tv_av2 miské dinte danté
77 5 tv_str kénda bétra blste
78 5 al avl pésta ddrko dérko
79 5 al str mésda porti potri
80 5 a2 av2 kusté perka perko
81 5 a2 str tinka purde pugré
82 5 avl_str kéndo mirga mégra
83 5 av2 str fasté turpd tublé
84 4 cl c2 katu kébe réte
85 4 cl vl sipo sane kine
86 4 cl v2 make mito Lite
87 4 cl tc dija déme Déje
88 4 cl tv pina pébo Tiba
89 4 cl al l6ga lasé Mase
90 4 cl a2 pité puro Kuré
91 4 cl avl didka dése Luse
92 4 cl av2 leti lomé Bomi
93 4 c2 vl 16ri péru Péku
94 4 c2 v2 kabu dibe Dipu
95 4 c2_tc tiso késa Teas
96 4 c2_tv béra kire Kéna
97 4 c2 al sire maré Mado
98 4 c2_a2 bagu rigo Risé
99 4 c2 avl ko déke Dire
100_4 _c2_av2 daké poki Pore
101 4 v1 v2 sula mute Mile
102 4 vl tc zUKki puna Zbka
103_4 vl _tv mopi séte Soti
104 4 vl al kéla bedd Bido
105 4 vl a2 tika piré Pore
106_4 vl_av2 maso palé Pulé
107 4 v2 tc blse tare Baso
108_4_v2_tv sika béra Bira
109 4 v2_al taro bulé Bule
110 4 v2 a2 dolu séru Seri
111 4 v2_avl méle rése Rasi
112 4 tc tv kute kato Dlbe
113 4 tc_al kali keld Péjo
114 4 tc_a2 puné péna Koda
115 4 tc_avl sito sate Mile
116_4_tc_av2 mila molé Bota
117 4 tv_al néko tejo Tudja
118 4 tv a2 kasi déri Derd
119 4 tv_avl ména ketd Kéto
120 4 tv_av2 golé mobke Mike
121 4 al avl séli tuka Téka
122 4 a2 av2 siré kani Kané
STIMULUS SET 2
15c2cl larde porti Lénti
25¢c3cl méldo blsda musta
3 5 tc13 cl dénko darku dargu
4 5 tc23 cl faste jisto fllgo
55 3c cl méste masta malka
6 5 vl cl birte milko béalko
75v2cl tasli rénti ténte
8 5 tvcl kélpa tégra kugre
95 alcl Iéngo mastu lastd
10 5 a2 c1 purda kenti pénti
11 5 avl _cl saski tande sunde
12 5 av2 cl rilké fengé rengu
13_5 str_cl mondi pérga mégra
14 5 c3 c2 ménto dalti dansi
15 5 tcl13 c2 kande kuldo munko
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73 5 al tv kande muspo maspé
74 5 a2 tv korbé tanki ténke
75 5 avl tv pélte sansi sansé
76_5_av2_tv parga polta palta
77 5 str tv |6sti géarde gaodri
78 5 avl al bélte sanko sinko
79 5 str al déarko melga mégla
80 5 av2 a2 kansi poldi poldé
81 5 str a2 tubli gétre ganté
82 5 str_avl tibra mokre mirke
83 5 str_av2 muspa kertd ketra
84 4 c2 cl gobe mabi géfi
85 4 vl cl batu lajo béjo
86 4 v2 cl tuka méla téli
87 4 tc_cl tuka téke tépe
88 4 tv cl méso 1ébo miba
89 4 al cl Iémo kubi lubi
90 4 a2 cl kori madu kadu
91 4 avl_cl pabe gari péri
92 4 av2 cl sina deld seld
93 4 vl c2 date sura sita
94 4 v2 c2 labe jone jobi
95 4 tc_c2 bélo béli séli
96 4 tv c2 doke mope muka
97 4 al c2 mine béja bona
98 4 a2 c2 kudi tepd tédo
99 4 avl c2 rdba muto mébo
100 4 _av2 c2 kabi neri nebu
101 4 v2 vl téra muga mégo
102 4 tc vl puka pdke ddle
103 4 tv vl péle kame kamo
104 4 al vl téga nibo nebd
105_4 a2 vl buré koti kati
106_4_av2 vl moga lipd lopé
107 4 tc v2 suti sato gali
108_4 _tv_v2 milo stjo sijo
109 4 al v2 fore naki naké
110 4 a2 v2 pefé dula dulo
111 4 avl v2 sare talu tolé
112 4 tv tc jine kile jano
113 4 _al tc nase pobi nosi
114 4 a2 tc kepu fand kéapo
115 4 avl_tc méja pébo mujo
116_4_av2 tc teli madi tuld
117 4 al tv gépe didsa dosé
118 4 a2 tv padi tojé taji
119 4 avl_tv goté péla polé
120 4 av2 tv betd tésa tésa
121 4 avl al muana tipe tipe
122 4 av2 a2 badé romé romi

16_5 tc23_c2 bélda sélde sélte
17 5 3c _c2 tinde ténda moénga
18_5 vl c2 foste pérgu pasgu
19 5 v2 c2 gulda ponka polke
20 5 tv c2 tinsa murka moénke
21 5 al c2 sérta minke mirké
22 5 a2 c2 tesni golbd gosba
23 5 avl c2 binte dilgo dango
24 5 av2 _c2 gandé sulté sunté
25 5 str_c2 lagdo pusme pugre
26 5 tcl3 c3 pérdo palde kéalde
27_5 tc23_c3 tispe gospo gorpo
28 5 3c_c3 sérgo sarga tdsga
29 5 vl c3 pélsi kérma kérsa
30 5 v2 c3 bangu télku télga
31 5 tvc3 pande tarbe tirdo
325 al c3 milno kérsa kerna
33 5 a2 c3 nordé mastu masdu
34 5 avl c3 jinfe tilso talfo
35 5 av2 c3 bunki tesmi teska
36_5_str_c3 topla gubre gunle
37 5 tc23 tc13 kélta gulte kuste
38 5 3c_tcl3 késla késle kérle
39 5 vl tcl3 rénko téspa rdska
40 5 v2_tcl3 masti néldi molte
41 5 tv_tcl13 birno tisko basne
42 5 al tcl3 talbe gorti torbi
43 5 a2 tcl3 kusté milpa kilta
44 5 avl tcl3 lirte pinko lanto
45 5 av2 tcl3 dunta noska dosté
46 _5 str_tcl3 gabli pukro gunlo
47 5 3c_tc23 nélte nalto pélto
48 5 v1_tc23 lérba kénte kirbe
49 5 v2_tc23 kélde gante galdi
50 5 tv tc23 jando balto bdndi
51 5 al tc23 miska térbo tesko
52 5 a2 tc23 kelpa bint6é bilpo
53 5 avl tc23 dénko pésta punka
54 5 av2_tc23 perbd fistd firba
55 5 vl 3c dasli tampe désle
56_5 v2_3c télga sémpa télgu
57 5 tv_3c bélpe tande bdlpo
58 5 al 3c délko tarse dalké
59 5 a2 3c lispa fontd 16spo
60 5 avl 3c séngo bésta sanga
61 5 av2 3c bolgé tespd bélga
62_5 v2 vl gélke morpe marpi
63 5 tv_vl téspa méspa méspo
64 5 al vl burpo kasde kusdé
65 5 a2 vl gurka lenfi lanfi
66_5_av2_vl parbd jeldé jaldi
67 5 str vl juldo birta batra
68 5 tv v2 16nje bésde basde
69 5 al v2 dalmo pérbi perbé
70 5 a2 v2 tulga rinké rinka
71 5 avl v2 béarte sango singé
72_5 str v2 tasgu l6rte 16tru
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Appendix C

The 31 cvcv words stressed on the last syllable in the 324-word list (74%
verbs, 16% nouns, 6% proper nouns, 3% adverbs) used for comparison in

chapter four.

word ps tense translation
pas6 \% past it happened
llegd % past  hearrived
qued6é v past he stayed, remained
tocéd \% past  he touched
llevo \% past  he carried
llamé v past  hecalled
dejé \% past  he let, left
gané \% past  hewon
cayo \% past  it/he fell
miré \% past  he looked at
saco \% past  he took out
José pn Jose (man’s name)
chalé n chalet

café n coffee

diré \% fut I will say
pasé \% past | passed
llamé v past I called
llegué¢ v past | arrived
quedé v past | stayed, remained
papé n daddy
mama n mummy
quizd adv perhaps
sera \% fut it will be
vera \% fut he will see
dira \% fut he will say
dara \Y fut he will give
cogi % past | took

meti \% past | put into
sali \Y past I went out
mend n menu

Peru pn Peru
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Appendix D

Examples of semantically related words captured in dendrogram clusters.

Hierarchical clustering of vectors based on cooccurrence in the surface-form

corpus using content words only as context words.

rom¥al:
polltika:
un¥in:
espaldla:
oz eddd:

amlga:
tlo:
nlla:
amlr:
bIda:
+0da:
madre:
padre:
marl do:
apin¥0n:
prip¥o:
Fu:
nilmbre :
fams¥0n:
hasa:
IXa:
trabaiao:
mEr:
IXo:
famIl¥a:
plEbla:

bIna:
Agila:

mas:
mlCo:
mEnos:
poklta:
ala:
kil&anto:

primEra:
reglnda:
terzEra:
Vltima:
mEd¥a:
Ora:
kilArto:

Oras:

ab&Xa:
aRIba:

Ombres:
i Ere s

I¥as:
padres:

rog¥al Ista:
populdr:

rocial
politics
uni ty
dpanish

rociety

friend
uncle
girl
lowe
life

all
maother
father
hurband
apinion
QN
hirfherx
Tiame
famcti on
home
daughter
wark
moman, wmife
I an
family
prople

mine

mater

more

much

less
little bit
the e

howa mnach

17 fem.]
i™iiem.]
1% fem. ]
lazt [fem. )
half [fem.]
houar
quarter

heurs
domn
et o

meTn

oo BT

children
parents

rocialist
popular

I

s

Y1)

T ]I sy
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mil:
miLlne 5:
be¥nti slvhe
=YEn :
belnte:
d7Es:
d0me :
AFem¥0Co:
mindtors:
mEtror:
Onze :
setEnta:
nobErta
alEnta:
sivkliEnta :
resEnta:
sYEnta:
re¥r:
slvikeo:
kWarEnta:
trelnta:
sTEte:
OCa:
nllEb e :
katlrse:
dos:

trEs :
Yllat.ra:
Unao:

nllne rac:
plntor:
&Hos :
mEse =
pesEtas:
nobe s¥Ert o
dorsY¥Ertos:

mEra:

000
millions
5

100

n

in

1:

13
mingte s
metres
11

kL]

an

LA

50

BN

100

3

5

40

am

e

I A N ]

rnber
points
years
months
peretas
ann

ion

n

Il

:

e

1
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Appendix E

Lists of ‘person nouns’ referred to in 4.2.3, in the surface-form and the
lemmatised versions of the corpus, with their English translations.

Surface-form

gente
hija
hijos
hombre
madre
mujer
mujeres
nifio
nifios
padre
persona
personas
senor
tio

people
daughter
children
man
mother
woman
women
child
children
father
person
people
sir, man
uncle

Lemmatised

abogado
alcalde
amigo
chico
ciudadano
don
dofia
gente
hermano
hijo
hombre
madre
marido
ministro
mujer
nifio
padre
pareja
persona
presidente
pueblo
rey
santo
sefor
tio

lawyer
mayor
friend
boy
citizen
Mr

Mrs
people
brother
son

man
mother
husband
minister
woman
boy, child
father
couple
person
president
people
king
saint
sir, man
uncle
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Appendix F

Rankings by phon-sem correlation (measured as Fisher divergence FD; low
values indicate high correlations) of the 252 cvcv and the 146 cvcev words
(‘no syntax’ condition). Part of speech information also shown.

CVCV WORDS 42 kOma \ 0.0225
rank word ps FD 43 LegO \Y 0.0226
1 XosE pn 0.0085 44 bEso n 0.0226
2 fAse n 0.0103 45 bOto n 0.0227
3 XOse pn 0.0128 46 tOke \Y 0.0228
4 CalE n 0.0129 47 mAri pn 0.0228
5 ganO \Y 0.0129 48 10bo n 0.023
6 sEde n 0.0133 49 IAdo n 0.0234
7 flla n 0.014 50 nOCe n 0.0234
8 dOze num  0.014 51 dirE \ 0.0234
9 zEro num  0.0144 52 sUya p-pr  0.0234
10 mitA n 0.0157 53 ROka n 0.0236
11 pUta n 0.0158 54 zlne n 0.0237
12 sUbe \Y 0.0165 55 tiro n 0.0239
13 dAme \ 0.0167 56 blbe \ 0.0241
14 sOto pn 0.0167 57 tORe n 0.0241
15 mire \ 0.0167 58 bANo n 0.0242
16 LEge \Y 0.017 59 pAgo \Y 0.0243
17 IUna n 0.0173 60 WEko n 0.0244
18 fECa n 0.0174 61 dAma n 0.0245
19 sERa pn 0.0178 62 bAle 0.0245
20 berA v 0.0186 63 zlta n 0.0246
21 XAbi pn 0.0188 64 plde \Y 0.0247
22 pEpe pn 0.0189 65 mAsa n 0.0247
23 deXO \ 0.0191 66 XEfe n 0.0247
24 tokO \% 0.0192 67 10li pn 0.0251
25 lUCa n 0.0194 68 dANo n 0.0253
26 LamO \Y 0.0197 69 dAto n 0.0254
27 mOQOdo n 0.0199 70 kUlo n 0.0255
28 LEna adj 0.0201 71 niNa n 0.0256
29 kUya p-pr  0.021 72 dime \Y 0.0256
30 plko n 0.021 73 dUra adj 0.0257
31 tira \Y 0.0214 74 kOno 0.0257
32 RAmMa n 0.0217 75 bAse n 0.0257
33 Clna pn 0.022 76 LEbe v 0.0257
34 ROma pn 0.0221 77 mUCa adj 0.0257
35 tUbe v 0.0222 78 kllo n 0.0261
36 kOpa n 0.0222 79 blbo \Y 0.0263
37 liga n 0.0223 80 LEno adj 0.0263
38 kUyo p-pr  0.0224 81 slge \Y 0.0264
39 1UXo n 0.0225 82 bALe n 0.0264
40 kOXa \Y 0.0225 83 kayO \Y 0.0266
41 mAyo pn 0.0225 84 pAse \ 0.0267

85 kAsi adv 0.027
86 pUso v 0.0271
87 Risa n 0.0272
88 LebO \ 0.0272
89 Clka n 0.0273
90 bida n 0.0274
91 fOto n 0.0274
92 YElo n 0.0275
93 menU n 0.0275
94 tipo n 0.0277
95 tUya p-pr _ 0.0279
96 kafE n 0.0279
97 bEte v 0.0282
98 gERa n 0.0283
99 pEso n 0.0283
100 ROLo n 0.0283
101 bEra pn 0.0284
102 bAXo \ 0.0285
103 kAda adj 0.0288
104 kAbo n 0.0288
105 gAto n 0.0289
106 kedO v 0.0289
107 sAka \ 0.0292
108 tEla n 0.0293
109 mEsa n 0.0294
110 papA n 0.0295
111 pEga \ 0.0297
112 mOda n 0.0297
113 tOda i-pr 0.0298
114 kAro adj 0.0298
115 tOno n 0.0299
116 kALe n 0.0299
117 kUra n 0.03
118 LEba \ 0.0302
119 zOna n 0.0302
120 Riko adj 0.0303
121 tApa n 0.0303
122 mUCo adv 0.0304
123 Rlka adj 0.0305
124 dUro adj 0.0306
125 bino v 0.0307
126 sEko adj 0.0309
127 slLa n 0.0309
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128 koXI v 0.031 178 dAba v 0.0361
129 tUbo n 0.031 179 pERoO f 0.0362
130 mamA n 0.0312 180 slda n 0.0362
131 mEte \Y 0.0313 181 pasO \Y 0.0363
132 RAto n 0.0315 182 RAro adj 0.0363
133 niNo n 0.0315 183 dEXo \Y 0.0363
134 kizA adv 0.0316 184 digo \Y 0.0364
135 tEma n 0.0318 185 I0ka adj 0.0364
136 serA \ 0.0318 186 mAta \ 0.0365
137 tEle n 0.0319 187 kEso n 0.0369
138 slgo \Y 0.0319 188 kOla n 0.0371
139 pOne \Y 0.0319 189 sAbe \Y 0.0372
140 diXe \ 0.0324 190 dEXe \ 0.0372
141 tUyo p-pr  0.0324 191 pAko pn 0.0372
142 Clko n 0.0329 192 kAXa n 0.0372
143 LEbo \Y 0.033 193 mAXa adj 0.0373
144 sAko \ 0.0331 194 mOno n 0.0374
145 mOto n 0.0332 195 ROto adj 0.0377
146 pOka adj 0.0332 196 dONa n 0.0378
147 tEre pn 0.0336 197 dUda v 0.0379
148 sAle \Y 0.0339 198 kOXe \Y 0.038
149 sUyo p-pr  0.034 199 kOko n 0.038
150 IECe n 0.0342 200 tOdo i-pr 0.038
151 LEga v 0.0344 201 fALa v 0.0382
152 misa n 0.0344 202 LAma v 0.0383
153 kALa \Y 0.0344 203 sldo \Y 0.0384
154  pAga v 0.0345 204  10ko adj  0.0384
155 plso n 0.0345 205 kOCe n 0.0384
156 dEbo v 0.0347 206 mAno n 0.0386
157 sEpa \ 0.0348 207 sOla adj 0.039
158 bAXa \Y 0.0348 208 kEda \Y 0.039
159 mAlo adj 0.0349 209 bAya \ 0.039
160 ROpa n 0.0349 210 mACo n 0.039
161 diga v 0.0349 211 pOko adv 0.0391
162 dize \Y 0.035 212 kEdo \Y 0.0391
163 kONo n 0.035 213 LAmo \Y 0.0392
164 pAro \ 0.035 214 ROsa adj 0.0394
165 pldo v 0.0352 215 IAta n 0.0395
166 sAla n 0.0353 216 bOda n 0.0396
167 gAna \Y 0.0353 217 dAdo \Y 0.0397
168 kApa n 0.0353 218 kOXo \ 0.0398
169 zEna n 0.0354 219 tOma v 0.04
170 RAfa pn 0.0354 220 mAla adj 0.0401
171 mira v 0.0354 221 pAlo n 0.0401
172 bOka n 0.0355 222 pUro adj 0.0402
173 pEna n 0.0356 223 kOme \ 0.0402
174 diXo v 0.0356 224 ROXa adj 0.0407
175 slga \Y 0.0357 225 ROXo adj 0.0409
176 diCo v 0.036 226 pAso \Y 0.0413
177 dEbe \Y 0.0361 227 mEto \Y 0.0415

228 kAma v 0.0416
229 YERO n 0.0421
230 kAza v 0.0422
231 pAra f 0.0423
232 dEXa v 0.0424
233 pUra adj 0.0426
234 kita \ 0.0427
235 pElo n 0.0429
236 kOsa n 0.043

237 pUdo \ 0.0433
238 kAsa n 0.0438
239 slno f 0.0442
240 kEde v 0.0444
241 nOta n 0.0452
242 LEgo \ 0.0453
243 tOka \ 0.0454
244 fALo n 0.0458
245 nAda i-pr 0.046

246 kAso n 0.0472
247 kAbe \ 0.0474
248 pAsa \ 0.0493
249 pEro n 0.0501
250 sOlo f 0.0517
251 kAra n 0.0522
252 kOmo i-pr 0.0529

CVCCV WORDS

rank word ps FD

117 moskU pn 0.0084
105 REnfe pn 0.0103
24 kinze num  0.0111
93 linze n 0.0112
43 gOlfo n 0.0115
114 XOrdi pn 0.0116
7 zlvko num  0.0118
90 tOrno n 0.0123
72 zlfra n 0.0126
69 slgno n 0.0129
120 bAsko adj 0.0134
143 dUlze adj 0.0135
145 RItmo n 0.0137
36 madrl pn 0.0148
132 karnE n 0.0152
119 pArla pn 0.0152
99 bOlsa n 0.0155
33 slglo n 0.0158
127 REkta n 0.0159
2 dEsde f 0.0164
26 blsta n 0.0164
134 kOnCa pn 0.0168
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30 fOndo n 0.0296
79 kinto adj 0.0308
22 mlisma i-pr 0.0311
82 porkE f 0.0312
17 fAlta v 0.0312
86 sAlbo adv 0.0315
9 mismo i-pr 0.0315
109 tArda \ 0.0316
139 kArga n 0.0317
78 kOrto adj 0.0317
8 XEnte n 0.0321
21 berdA n 0.0321
13 puUnto n 0.0323
46 bEnta n 0.0324
65 IArga adj 0.0325
107 kAlma n 0.0325
28 kAmpo n 0.0326
103 tOnto adj 0.0328
34 bArko n 0.0329
16 nUvka adv 0.0329
101 mAnda_ v 0.033

41 slrbe v 0.0341
66 kUIpa n 0.0345
135 sErlo v 0.0347
27 llbro n 0.0348
58 kArne n 0.0349
48 lista adj 0.0355
98 bAvko n 0.0356
47 tAnta adj 0.0357
87 pinta n 0.0357
39 dAndo \ 0.0357
38 kArta n 0.0363
74 pOvga \ 0.0377
44 XUsto adv 0.0383
1 pOrke f 0.0389
55 mArka n 0.039

124 kAnta v 0.042

137 bAsta v 0.0439
14 blsto v 0.0452
10 tAnto adv 0.0463

68 pAblo pn 0.0172 60 llbre adj 0.0236
128 pensE \Y 0.0175 32 pEdro pn 0.024

144 sUsto n 0.0179 129 XOrXe pn 0.024

131 XEsto n 0.0183 75 plsta n 0.024

123 pOlbo n 0.0187 84 sAnto n 0.0241
95 disko n 0.0192 94 dArse \Y 0.0244
133 sObra n 0.0192 71 bErde adj 0.0244
100 gOrdo adj 0.0193 49 mArta pn 0.0245
4 sObre f 0.0195 54 sAnta n 0.0246
110 kArgo n 0.0195 83 sAlga \Y 0.0251
96 bOmba n 0.0197 142 gOrda adj 0.0251
31 zErka adv 0.0197 52 XUnta n 0.0254
23 pAdre n 0.0198 108 bEnde \ 0.0255
42 kUrso n 0.0203 67 kOrte n 0.0258
6 pArte n 0.0206 112 Clste n 0.0262
113 pUnta n 0.0206 126 pAkto n 0.0263
18 mAdre n 0.0212 76 mArko n 0.0263
115 turno n 0.0214 56 pObre adj 0.0267
122 gustO n 0.0214 12 fOrma n 0.0267
130 pOnte \Y 0.0214 106 sEkso n 0.0268
92 mEnte n 0.0216 121 kAsko n 0.0268
20 tArde n 0.0216 25 tEvga \Y 0.027

63 bErbo n 0.0216 91 pAlma n 0.0272
59 XUnto adj 0.0217 19 gUsta \Y 0.0273
102 flvka n 0.0218 136 listo adj 0.0273
80 kOsta n 0.0219 57 dOble n 0.0273
111 kostO \ 0.022 5 tEvgo \ 0.0276
81 REnta n 0.0222 3 dOnde i-pr 0.0276
37 REsto n 0.0223 51 mEtro n 0.0276
73 bUska \Y 0.0224 141 ROmpe v 0.0276
64 gOlpe n 0.0225 77 bEvgo \Y 0.0277
118 nEgra adj 0.0226 50 gUsto \ 0.028

45 mArCa n 0.0228 140 |IEtra n 0.0281
53 dArle v 0.023 70 zInta n 0.0284
29 IArgo adj 0.023 61 podrA \Y 0.0285
89 bAnda n 0.023 35 pOvgo \ 0.0286
125 bErla \ 0.0232 85 bErlo \ 0.0289
11 mUndo n 0.0232 88 kOrta v 0.0289
15 bEvga \Y 0.0232 138 kinta adj 0.0292
40 nOrte n 0.0232 116 mAndo \Y 0.0295
146 kontO \ 0.0235 62 nEgro adj 0.0295
104 nOrma n 0.0236 97 mAnCa n 0.0296
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Appendix G

A measure of the prediction power of all the regression functions in the cvcv
word-group parameters. Numerical values and plots shown for the 'syntax’
condition (this page) and the 'no syntax' condition (next page).

'‘Syntax' condition:

r cl c2 tc vl v2 tv sl s2 svl sv2
lin 0.713 0.698 0.679 0.809 0.753 0.733 0.706 0.672 0.808 0.689
log 0.74 0.73 0.719 0.787 0.755 0.742 0.736 0.714 0.786 0.731
inv 0.749 0.754 0.777 0.653 0.687 0.697 0.754 0.78 0.657 0.792
qua 0.755 0.754 0.762 0.817 0.756 0.743 0.755 0.759 0.815 0.774
cub 0.758 0.759 0.773 0.82 0.756 0.743 0.76 0.777 0.818 0.79
com 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887
pow 0.878 0.874 0.887 0.842 0.857 0.855 0.875 0.897 0.854 0.891
S 0.843 0.827 0.823 0.899 0.858 0.859 0.831 0.829 0.905 0.822
gro 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887
exp 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887
Igs 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887
09 - . s R R .
X K 9 % ok ok |ec
085 | =) 8 g B B B |(mc2
-2 o X X ovl
o a X
g o514 ¢ & @ R Q ov2
2 A X Aty
= A
07 ﬁ
X é o sl
n
065 | Q As2
o svl
0.6 . T . T T T 1 X SV2
lin log inv qua cub com pow S gro exp Igs
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'No syntax' condition:

r cl c2 tc vl v2 tv
lin 0.698 0.68 0.657 0.795 0.822 0.727
log 0.734 0.728 0.723 0.781 0.779 0.753
inv 0.748 0.772 0.826 0.679 0.636 0.747
qua 0.752 0.76 0.787 0.795 0.848 0.761
cub 0.755 0.771 0.835 0.807 0.85 0.762
com 0.827 0.835 0.878 0.771 0.743 0.814
pow 0.834 0.835 0.861 0.811 0.797 0.832
S 0.785 0.77 0.754 0.842 0.855 0.805
gro 0.827 0.835 0.878 0.771 0.743 0.814
exp 0.827 0.835 0.878 0.771 0.743 0.814
Igs 0.827 0.835 0.878 0.771 0.743 0.814
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Abstract

This paper focuses on the optimum use of
representational space by words in speech and in the
menta lexicon. In order to do this we draw the concept
of entropy from information theory and use it to plot the
information contour of words. We compare different
representations of Spanish speech: a citation vs. a fast-
speech transcription of a speech corpus and a dictionary
lexicon vs. a speech lexicon. We aso compare the
information profiles yielded by the speech corpus vs. that
of the speech lexicon in order to contrast the
representation of words over two representationa spaces:
time and storage space in the brain. Finaly we discuss
the implications for the mental lexicon and interpret the
analyses we present as evidence for a verson of
Butterworth’s (1983) Full Listing Hypothesis.

Introduction

In this paper we focus on the optimum use of
representational space by words over time (the
sequence of sounds in speech) and over space (the
storage site of the mental |exicon in the brain). We draw
the concept of entropy from information theory and
propose that it can be used to study the information
structure of the set of words uttered in speech and of
those stored in the mental lexicon in the face of the
congtraints of communication and of storage,
respectively, in a potentially noisy medium.

We have two representationa spaces for words: time
and dorage space. Further, we will consider the
phonology and morphology of word systems. Our data
sets are phonetic representations of words, and recent
research demondrates that information on the
probabilistic distribution of phonemes in words is used
in language processing (see Frisch, Large & Pisoni,
2000 for review). Morphology is involved in this
research because we will be comparing groups of words
with different inflectional and derivational features. We
will initidly assume the Full Listing Hypothesis

(Butterworth, 1983): every word-form, including
inflected and derived forms, is explicitly listed in the
mental lexicon.

Shillcock, Hicks, Cairns, Chater and Levy (1995)
suggest the general principle of the presentation of
information in the brain that information should be
spread as evenly as possible over time or over the
representational space. Therefore, if the entropy of the
mental lexicon is to be maximized so that the storage
over a limited space is most efficient, then al the
phonemes will tend to occur as evenly as possible in
each segment position of the word. The phonology of
each individual word, because it will have an effect on
the entropy of the system, affects whether it is likely to
become part of the mental |exicon.

Shillcock et al. stated that “the optimum contour
across the phonological information in a spoken word is
flat; fast-speech processes cause the information
contour to become more level”. We generalize this
notion and propose the Levelling Effect of Redlistic
Representations (LERR): processes that make the
representation of words more accurate will flatten the
information profiles.

In order to test this, we will use Spanish word
systems to calculate the dope and overal level of
entropy of a citation (idealized pronunciation of the
word in isolation) transcription and of a fast-speech
(more redistic) transcription and of adictionary lexicon
and the speech lexicon. Our prediction is that the
second system in each comparison should yield flatter
information contours. We also compare a representation
of words over time and ancther one over storage space -
a speech corpus and the speech lexicon.

Entropy

We will use the concept of entropy in the context of
information theory (Shannon, 1948), also employed in
speech recognition studies (e.g. Yannakoudakis &
Hutton, 1992). Entropy H is defined for a finite scheme



(i.e, a set of events such that one and only one must
occur in each instance, together with the probability of
them occurring) as a reasonable measure of the
uncertainty or the information that each ingance
carries. E.g. the finite scheme formed by the possible
outcomes when throwing a dice has maximum entropy:
each side of the dice has 1/6 probability of occurring
and it is very difficult to predict what the outcome will
be. A loaded dice, on the other hand, has an unequal
probability distribution, and the outcome is less
uncertain. In this research, the possible events are the
phonemes and allophones, and for each word only one
of them can occur at each segment position.

For probabilities (py, p2, Ps..-Pn):

H=-%(p -logp)

The reative entropy H,q is the measured entropy
divided by the maximum entropy H.x, Which is the
entropy when the probabilities of each event occurring
are equa and the uncertainty is maximized. Using H,q
allows us to compare entropies from systems with a
different number of events (in this case, a system with
30 phonemes with another one with 50).

Hmax =lOgn
Hra = H/ Hpax

Redundancy R is a measure of the constraints on the
choices. When redundancy is high, the system is highly
organized, and more predictable, i.e. some choices are
more likely than others, as in the case of the loaded
dice.

R=1-Hg

In order to obtain the information profiles of words
(see Figure 1), the entropy was cal culated separately for
each segment position in a set of left-justified words of
equal length, i.e, for the first phoneme in the words, the
second phoneme etc.

1- Corpus . Citation
y=-00256x+0.8941
09 4
08 4
0.7 4
06 4
05 4+ \ N\
1 2 3 4 5 6 7
segment pos ition

Figure 1. Information profile of 7-segment words from
the citation transcription of the speech corpus.

The information profile of the word was measured as
the linear trendline of these individual segment
entropies. The dope (m) (multiplied by (-1)) of these
trendlines and the mean relative entropy for each word
length are shown in the figures below. E.g. In Figure 1,

(-m)=0.0256. The flatness of the dope refers literaly to
how horizontal thetrendlineis.

Transcriptions

We have redricted oursdves to  phonemic
representations of word and will not report data
concerning the distributions of phonemic features. We
have used citation transcription rules (the idealised
pronunciation of the isolated word) and fast-speech
rules (an attempt to represent norma speech more
redistically). Both citation and fast-speech rules were
applied uniformly to the whole data sets. For the
citation transcription we used 29 phonemes including 5
stressed vowels; for the fast-speech transcription we
used 50 phonemes and allophones:

Citation transcription: Vowels: /d, /¢, /il, ldl, Iul, &,
1€/, [il, 18/, 14/ Consonants:. /p/, /bl, It/, [d/, Ik, g/, Imd,
Inl, Ind, Idl, Ixl, 051 el 1, I I, D TAL T

Fast-speech transcription: The above plus semivowel
fil, Iul, voiced approximants /p/, o/, Iyl, voiceless
approximants/p/, 1o/, Iyl, |abiodenta /m/, dental /n/ and
I/, palatalised /n/ and /I/, velarized In/, /z/, dental voiced
/s, dental /9, fricative /:/, voiced /o/ and a silenced

consonant /@/. The transcription was made following
the rules for consonant interactions, such as feature
assimilation, set out by Rios Mestre (1999, chapter 5).
Diphthongs were treated as two separate segments, asis
usual in Spanish. Rules to mark stressed vowels were
applied to al but monosyllabic words without an
orthographic accent. For the corpus, the whole text was
used, including repetitions and false starts of words.
After deleting al the tags, the corpus was divided into
chunks separated by pauses (change of speaker, comma,
full stop, or pause marked in the transcription). The
resulting text was transcribed automaticaly word by
word (orthographic forms being replaced by phonetic
forms) and then word boundary effects were introduced
within the chunks, following the same rules as for the
intra-word transcription.

Data

We used these three sets of data:

The speech corpus. a 707,000 word Spanish speech
corpus, including repetitions and unfinished words.
This corpus was developed by Marcos Marin of the
Universidad Autonoma de Madrid in 1992 and contains
transcribed speech from a wide range of registers and
fields, from everyday conversation to academic taks
and poalitical speeches.

The dictionary lexicon: a 28,000 word Spanish word
lexicon (the Spanish headword list of the Harrap
Compact Spanish Dictionary, excluding abbreviations).
Thislist does not include inflections, but approximately
40% of the words are derived words (we take the
infinitive of verbs and the smple form of the noun as



the basic forms). This word system could represent a
mental lexicon where that only word stems are listed
and where inflected words are assembled during speech
production.

The speech lexicon: the 42,000 word types found in
the corpus. Some 80% of these types were derived and
inflected words. We take this word system to be the
most realistic representation of the mental lexicon,
assuming Butterworth (1983)’s Full Listing Hypothesis,
where al the wordforms are individually represented in
the mental lexicon.

The dictionary lexicon and the speech lexicon share
only ~30% of the words. The remaining ~70% of the
words in the dictionary lexicon are mostly low
frequency words which do not appear in our sample of
speech. The new ~70% in the speech lexicon are verbal
inflections (~35%), plurals and feminine inflections
(~25%), some derived words absent from the dictionary
lexicon (~4%), unfinished or mispronounced words
(~4%) and proper nouns (~2%).

From these data, we used 4, 5, 6 and 7-segment
transcriptions. Words were separated by length in order
to see a clearer picture of the information profiles,
especiadly as far as the word-ending contribution is
concerned. Considering that the information profiles of
Spanish words follows the same pattern as those of
English words as seen in Shillcock et al. (1995), we can
extend research in English to Spanish words. In
English, word recognition typically occurs before the
end of the word is uttered (Marden-Wilson & Tyler,
1980), and information about word-length is typically
available once the nucleus is being processed
(Grogean, 1985). It is, therefore, legitimate to assume
that recognition processes are restricting their activities
to the subset of words in the lexicon that match the
word being uttered both in terms of initial segmentsand
approximate overall length. The particular word lengths
were chosen because the structure of shorter words is
simpler, and the effects are less likely to be obscured by
greater variation in the internal structure of each word-
length group. These word lengths are equidistant from
the modes of the word-length distribution of the three
data sets (Iexicon: mode = 8, speech lexicon: mode = 7
and speech corpus. modes = 2, 4 — the mode of the
normal distribution is 4, but the proportion of 2-
segment words is even higher, accounting for 32% of
all tokens). The sum of these four word lengths
accounts for 41% of the dictionary lexicon, 45% of the
speech |exicon and 37% of the speech corpus.

The effect of the transcription

Shillcock et a. (1995) showed that fast-speech
processes cause the information contour to become
more level for English, German, Welsh, Irish and
Portuguese. Here we compare the dlope of the
information profiles of 4-7 segment words from the

corpus transcribed with citation rules and with fast-
speech rules.

As predicted by the LERR principle, Figure 2
confirms that this is dso the case for Spanish. The
information profile is consigently flatter for the more
reaistic fast-speech transcriptions in all word lengths.
Note that in the figure, a higher value of (—m) indicates

0.07

W Citation
0.06 -

O Fast-speech

0.05 |
T 0.04 1

a 0.03

slo

0.02 -

0.01

4 5 6 7
word length

a steeper profile.
Figure 2: Slopes of the information profiles of the

citation and the fast-speech transcriptions applied to the
corpus, over the four word lengths.
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Figure 3: Mean relative entropy of the citation and fast-
speech transcriptions over the four word lengths.

Figure 3 shows how the overall entropy is lower for
the fast-speech transcription: when we introduce the
allophones and the assimilation rules, the system
becomes more redundant and thus, more predictable.



The Speech Lexicon

Some current models of lexical access propose two
parald word recognition routes, a whole-word route
and a morpheme-based one (eg. Wurm (1997) for
English; Colé, Segui & Taft (1997) for French; Laine,
Vainio & Hyona (1999) for Finnish). Following this
hypothesis, the full forms of words need to be stored in
the mental lexicon (cf. Butterworth, 1983). It is
relevant, then, to study the behaviour of the set of all
word types, including derived and inflected words, that
appear in speech: the speech lexicon.

We have seen that fast-speech transcriptions yield
flatter information contours than citation transcriptions,
so we will use the fast-speech transcriptions of the
speech |exicon, the lexicon and the corpus.

Comparing the slopes of the information profiles of
the speech lexicon on the one hand and the dictionary
lexicon and the corpus on the other hand will help
characterize the active menta lexicon.

Speech lexicon vs. dictionary lexicon

The speech lexicon contains inflected and derived
forms, and does not contain the more obscure words
that can be found in the dictionary. The LERR principle
that data that are closer to real speech should produce
flatter information contours is confirmed in Figure 4,
where we see that the values of the dope of the
information profile of the speech lexicon are lower than
those of the dictionary lexicon.

M Dict. Lex
O Speech Lex
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0.06 -

0.05 -
0.04 -
0.03 -

slope (-m)

0.02 -
0.01

4 5 6 7
word length

Figure 4: Slopes of the information profiles of the
dictionary lexicon and the speech lexicon over the four
word lengths.

Figure 5 shows that the overall entropy level is higher
for the speech lexicon. This means that the speech
lexicon is less redundant than the dictionary lexicon.
The representational space is how a limited amount of
memory storage space in the brain, and for maximal
efficiency redundancy has to be reduced as much as

possible. The results from both the dopes and the
entropy levels support the Full Liging Hypothesis that
all wordforms, particularly inflected forms, are listed in
the mental lexicon — the system that includes all
wordforms (the speech lexicon) could be stored more
efficiently over alimited representationa space.
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Figure 5: Mean relative entropy of the dictionary
lexicon and the speech lexicon over the four word
lengths.

Speech lexicon vs. corpus

The fact that entropy and redundancy statistics obtained
from alexicon are different from those obtained from a
corpus has been noted by Yannakoudakis and
Angdlidakis (1988). Here we are comparing the word
tokens with the word types in a speech corpus. Figures
6 and 7 show that the speech lexicon has consistently
flatter dopes and higher entropy levels than the corpus.

H Corpus
0.07 - O Speech Lex
0.06 -
_0.05
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word length

Figure 6: Slopes of the information profiles of the
corpus and the speech lexicon across the four word
lengths.



We are comparing two representational spaces.
words in the brain are constrained by a limited space
and words uttered over time are constrained by the
efficiency of communication. We saw in the last section
that the flat dopes and high entropy levels of the speech
lexicon information profiles are best suited to enhance
storage efficiency. Slopes in the corpus are relatively
flat, but still steeper than those of the speech lexicon.
This may reflect the fact that there are other factors
affecting the information contour of words in speech,
such the need to encode cues to lexical segmentation
(signas that indicate where words begin and end).
These other factors may be interacting with the
optimization of communication.
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O Speech Lex
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Figure 7: Mean relative entropy of the corpus and the
speech |exicon across the four word lengths.

The corpus presents lower entropy levels than the
speech lexicon. Speech over timeis not constrained by
space limitations, but rather by the need to
communicate efficiently. The higher redundancy means
that this system reduces the uncertainty and is indeed
better for communication.

Discussion
The present study points in the direction of the LERR
principle that the more redigtic data - the fast-speech
transcription and the speech lexicon - produce flatter
information profiles.

The flatter profile of the fast-speech transcription can
be partly explained in terms of the Markedness
Ordering Principle (Shillcock et al., 1995) that when
consonant  interactions  introduce  phonological
ambiguity, the ambiguity introduced is dways in the
direction of a less frequent phoneme. As for the
comparison between lexicons, let us remember that the
70% of words in the speech lexicon that do not appear
in the dictionary lexicon are mostly inflected words,

and the 70% of words in the dictionary lexicon not
present in the speech lexicon are mainly low-frequency
words. The flatter profile of the speech lexicon is due to
the fact that the inflected words (which are derived
from one third of the dictionary lexicon words) yield a
flatter profile than the low-frequency dominated group.
This suggests that inflected words are included in the
mental lexicon, and so it supports the Full Listing
Hypothesis.

Additionaly, the overal level of entropy and
redundancy gives us an insght into the degree of
complexity of a system. Highly organized systems will
show low entropy and high redundancy. Fast-speech
rules make the system more redundant than the citation
rules. This higher predictability helps to dea with the
loss of information produced by noise and thus enhance
communication. The speech lexicon is less redundant
than the dictionary lexicon. Here again, the higher
entropy must be attributable to the fact that the
phonemes in inflected forms ae more evenly
distributed over the phonological space than the more
obscure words present in the dictionary lexicon.

The comparison between the corpus and the speech
lexicon shows the features of the representation that has
evolved to enhance communication and storage,
respectively. Both systems are “redigtic”, and indeed
both show relatively flat information contours, but more
so the speech lexicon, suggesting that communication
has other condtraints that interact with this measure,
such as word-boundary recognition. This is true
particularly for shorter words. The fact that the corpus
is markedly more redundant than the speech lexicon is
only to be expected, since it reflects the added
complexity of different word-frequencies.

In conclusion, we have shown that it is possible to
use psychological theories of the mental lexicon and
spoken word recognition to make testable predictions
concerning distributional information in large samples
of language, and, conversdy, that data from
information digribution may potentialy falsify
particular aspects of those psychological theories. Our
current conclusions from the anal yses of Spanish favour
versions of Butterworth's origind Full Listing
Hypothesis, in which all the wordforms encountered in
speech areindividually stored.
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