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Abstract 

 

The mental lexicon is a complex structure organised in terms of phonology, 
semantics and syntax, among other levels. In this thesis I propose that this 
structure can be explained in terms of the pressures acting on it: every aspect 
of the organisation of the lexicon is an adaptation ultimately related to the 
function of language as a tool for human communication, or to the fact that 
language has to be learned by subsequent generations of people. A collection 
of methods, most of which are applied to a Spanish speech corpus, reveal 
structure at different levels of the lexicon.  

• The patterns of intra-word distribution of phonological information 
may be a consequence of pressures for optimal representation of the 
lexicon in the brain, and of the pressure to facilitate speech 
segmentation.  

• An analysis of perceived phonological similarity between words 
shows that the sharing of different aspects of phonological similarity 
is related to different functions. Phonological similarity perception 
sometimes relates to morphology (the stressed final vowel determines 
verb tense and person) and at other times shows processing biases 
(similarity in the word initial and final segments is more readily 
perceived than in word-internal segments).  

• Another similarity analysis focuses on cooccurrence in speech to 
create a representation of the lexicon where the position of a word is 
determined by the words that tend to occur in its close vicinity. 
Variations of context-based lexical space naturally categorise words 
syntactically and semantically. 

• A higher level of lexicon structure is revealed by examining the 
relationships between the phonological and the cooccurrence 
similarity spaces. A study in Spanish supports the universality of the 
small but significant correlation between these two spaces found in 
English by Shillcock, Kirby, McDonald and Brew (2001). This 
systematicity across levels of representation adds an extra layer of 
structure that may help lexical acquisition and recognition. I apply it 
to a new paradigm to determine the function of parameters of 
phonological similarity based on their relationships with the syntactic-
semantic level. I find that while some aspects of a language's 
phonology maintain systematicity, others work against it, perhaps 
responding to the opposed pressure for word identification. 

This thesis is an exploratory approach to the study of the mental lexicon 
structure that uses existing and new methodology to deepen our 
understanding of the relationships between language use and language 
structure.  
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Chapter 1. Introduction 

 

The mental lexicon is a complex structure where words are organised in 

terms of their phonology, syntax, semantics as well as other non-linguistic 

aspects. In this thesis I take the mental lexicon to embody the human 

language capacity, a robust system adapted ultimately to the pressures 

imposed by communication and by learnability. I assume that linguistic 

aspects of the mental lexicon are reflected in the structure of speech, and, 

conversely, that the linguistic information contained in speech contributes to 

the development of new mental lexicons in human children and to the 

subsequent adjustments to the existing lexicons in adulthood. I use mainly 

corpus-based methods to analyze patterns of information in speech - which 

reflect the structure of the mental lexicon - and explain them as adaptations 

to the pressures that may have brought them about.  

This chapter justifies and expands on these assumptions. It first defines and 

characterizes the object of study - the mental lexicon. It reviews recent 

literature on language structure, complexity and adaptiveness to motivate 

the adoption of a complex, adaptive mental lexicon model. Then it reviews 

the literature on statistical learning, the link between the patterns found in 

speech and the mental lexicon structure inferred from them. Finally, it 

sketches the different methodologies employed and it provides an overview 

of the contents of chapters two to six, stating their aims, motivating the 

research they present and explaining how they relate to each other in the 

general organisation of the thesis. 
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1.1 Defining the mental lexicon 

Throughout this thesis I assume that organisation of the lexicon is based on 

relationships between words. I emphasize that the adaptive structure of the 

lexicon is a consequence of the pressures acting on it. From this standpoint, 

for instance, syntax can be viewed as an emergent property, a consequence of 

the way the lexicon is structured.  

The mental lexicon is accessed in every act of linguistic communication. We 

need to find the word that denotes the meaning we want to express, or the 

meaning of a word we hear or read. These basic tasks are bound to be greatly 

facilitated if the mental lexicon is organised in some way. Priming studies 

show that words are linked to each other along many dimensions. Some 

dimensions are studied by linguistic disciplines (phonological, semantic, 

syntactic) and others, by other disciplines (emotional, social, context-

interactional). When a word is activated, other words of similar form 

(Goldinger, Luce & Pisoni, 1989; Luce, Pisoni & Goldinger, 1990), meaning 

(Meyer & Schevaneldt, 1971; see Neely 1991 for review), syntax (Sereno, 

1991), orthography (Segui & Grainger, 1990), emotional content (Wurm, 

Vakoch, Aycock, & Childers, 2003) etc are also activated, suggesting that the 

mental lexicon is complex and highly interconnected. Words are defined to a 

large extent in terms of their fluid relationships of similarity to the rest of the 

words. At a given point in time we can ask: Are two words pronounced in a 

similar way? Do they point to similar concepts? Do they tend to occur close 

to the same words in speech? Are they used in similar social situations? Do 

they have similar affective connotations? In this thesis I present a model of 

the mental lexicon based on the relationships between words at different 

levels.  
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We can define the mental lexicon as the collection of words one speaker 

knows and the relationships between them, and the lexicon of a language as 

the collection of words in a language and the relationships between them. 

The individual mental lexicons - in Chomskyan terminology, I-language, or 

internal language (Chomsky, 1986) - are more or less complete instantiations 

of the lexicon of the language. The lexicon is also manifested as the words in 

the speech stream during communication, and as writing - Chomsky’s E-

language, or external language. This definition practically equates the lexicon 

with the language capacity. Indeed, throughout this thesis I assume a mental 

lexicon that incorporates at least the major elements of language - phonology, 

syntax and semantics - and can be used interchangeably with the term 

‘language’.  

Language has been characterized by some authors as a complex adaptive 

system (CAS), and language change, as the evolution of a CAS (Gell-Mann, 

1994; Kirby, 1999). A CAS is essentially a system that adapts through a 

process of self-organisation and selection. Dooley (1997) gives a nominal 

definition of CAS1: ‘(It) behaves/evolves according to three key principles: 

order is emergent as opposed to predetermined, the system's history is 

irreversible, and the system's future is often unpredictable. The basic 

building blocks of the CAS are agents, semi-autonomous units that seek to 

maximize some measure of goodness, or fitness, by evolving over time...’ 

Mufwene (2001) also supports the view that languages are complex adaptive 

systems, and goes as far as defining them as having life. Being an adaptive 

system necessarily implies that the mental lexicon constantly evolves. In this 

                                                 

1 Complex adaptive system: definition in Dooley (1997), based on the works of Gell-Mann 
(1994), Holland (1995), Jantsch (1980), Maturna and Varela (1992), and Prigogine and 
Stengers (1984). 
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thesis I look at a synchronic sample of Spanish speech. The main source of 

data is a corpus of transcribed speech recorded in Spain in the early 1990’s 

(Marcos Marin, 1992). However, the explanations of the traits of the lexicon 

always take into account that the mental lexicon is a system evolving under 

the effect of a set of often conflicting, probably interacting and potentially 

changing pressures.  

1.1.1 Pressures on the structure of the lexicon  

The lexicon is under many pressures: words have to be able to be 

pronounced, transmitted, processed and decoded, and they have to be 

acquired by new speakers; the representations of the lexicon have to be 

stored in the brain in such a way that there are connections between the 

different aspects of a single word as well as over whole categories of words; 

words and the relationships between them need to allow people to 

communicate concepts and their relationships. This indicates that the lexicon 

is content-addressable at every level, allowing us to access words in terms of 

syntactic category, phonological characteristics and meaning among others. 

Therefore, factors such as the nature of the human neural substrate 

underlying language processing, the characteristics of our articulatory and 

auditory systems, principles of efficiency of information storage and 

information transmission, the nature of concept representations, and human 

parental and social relationships, among others, constrain the structure of the 

mental lexicon. Some of these factors are universal and some are not. All 

normal human newborns are capable of learning any human language, so 

factors originating in the processor (any elements of human hardware related 

to speech perception, processing and production) must be universal. Other 

factors such as social and interactional pressures and language-external 

influences (such as the concepts that speakers can talk about), vary across 
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societies, and therefore are not universal. Cross language analyses of the 

information in speech can help determine the universality of the pressures. 

The mental lexicon must adapt to optimise language processing, and this has 

to happen efficiently over the brain substrate supporting the lexicon, which 

has its own properties and limitations.  

1.1.1.1 Homeostasis 

The structure of the lexicon must be flexible enough to adapt to all the 

pressures that act on it. On the other hand it must be robust enough to 

maintain its identity. The pressures mentioned above can be viewed as 

dimensions in an adaptive landscape. The lexicon is constantly adapting to 

changes in these pressures in order to find an optimal state in the landscape 

at each moment. The mechanism by which the lexicon, as a complex system, 

is able to juggle all those often contrary pressures is called homeostasis, 

defined in the Merriam Webster Online Dictionary as ‘a relatively stable state 

of equilibrium or a tendency toward such a state between the different but 

interdependent elements or groups of elements of an organism, population, 

or group’.  

De Rosnay (1997) states that homeostasis is the essential condition for the 

stability and survival of complex systems. It helps the system withstand the 

multitude of pressures that act on it. Homeostasis’ main effect is a resistance 

to change, but it accommodates necessary alterations. The system reacts to 

every change in the environment in order to maintain the internal balances. 

Aitchison (2001) emphasizes ‘the extraordinarily strong tendency of 

language to maintain and neaten its patterns’. As happens in the ‘butterfly 

effect’ in another complex system, the weather, the reactions are 

unpredictable or even counterintuitive (Forrester, 1975). When one expects 
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an effect as the result of a precise action, an unexpected and often contrary 

action occurs instead. This is so because of the complexity of the system and 

of the relationships between its elements. In pharmacology, a new drug that 

treats one problem usually has many unforeseen collateral effects. This 

happens because of the intricate interrelations within physiological systems. 

In the context of trying to establish a plausible origin of language, Keller 

(1994) offers a generalisation of Mandeville’s paradox2 that highlights the fact 

that individual actions - prompted by individual selfish (‘bad’) motives - can 

have emergent effects that are positive for the society as a whole. Aitchison 

(2001) provides some examples of attempts by language to restore a structure 

equilibrium which have ‘lead to quite massive, unforeseen disruptive 

changes, which trigger one another off in a long sequence’. The disruption 

has always been kept in check by homeostatic pressures, which is proven by 

the facts that language has never ceased to be learned by humans nor 

stopped serving its purpose as a system of human communication. In a 

complex system such as the lexicon, the consequences of one change to one 

aspect of the representation of one element can potentially reach the whole 

system, as illustrated by examples of sound shifts such as Grimm’s Law 

(Bammesberger, 1992, cited in Aitchison, 2001). Grimm’s Law describes how 

in the Germanic branch of Proto-Indo-European [bh][dh][gh] became 

[b][d][g]; [b][d][g] became [p][t][k] and [p][t][k]became [f][th][h]. Another 

example is the American Northern cities vowel shift, which is still taking 

place (Labov, 1994, cited in Aitchison, 2001).  

                                                 

2 Mandeville published in 1705 a poem entitled 'The fable of the bees', whose leitmotiv was 
that every single individual vice made a beneficial contribution to the well-being of society 
(Keller 1994). 
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These long-range effects are also present in distributed connectionist models 

of the mental lexicon, where the processing of each word is affected by the 

whole lexicon. In a distributed representation, each node in the network 

participates in the representation of all the words. Examples of this are 

Seidenberg and McClelland’s (1989) feedforward network model of reading; 

Plaut, McClelland, Seidenberg and Patterson’s (1986) attractor network 

model of reading; Hinton and Shallice’s (1991) model of dyslexia based on a 

lesioned attractor network; and Gaskell and Marslen-Wilson’s (2002) study of 

the effects of the competition between phonological and semantic aspects of 

word representations.  

A homeostatic lexicon is a delicately balanced system where a change in one 

of the levels of representation of one element may affect the structure of the 

whole system. A change in a word’s meaning or in its syntactic use, or a 

growing trend to pronounce a vowel differently will have consequences for 

all the words in the lexicon. Other factors such as the pressure for being a 

useful communication tool for humans, or the pressure for being easy to 

learn by human infants keep the possible changes in check.  

1.1.1.2 The principal pressures: communication and learnability 

Among the pressures operating on the lexicon described above I emphasize 

the preservation of (or the quest for) structural characteristics of the lexicon 

that allow humans to communicate. The main such characteristic is a 

correspondence between the conceptual and the linguistic domains through 

symbolic reference, the uniquely human system of reference (Deacon, 1997). 

Peirce (1897, 1903) proposed three levels of reference: iconic, indexical and 

symbolic. Icons are signs that resemble the objects they stand for, such as a 

photograph of a dog representing a dog. Indexes indicate or provide clues; as 

to what their references are, for instance the symptoms of a disease or a 
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thermometer for the temperature. In symbols, the relationship between sign 

and meaning is arbitrary; examples of symbols include words (where the 

form does not resemble neither does it indicate the meaning), colour codes, 

and in general any form of conventional language.  

Other traits of the lexicon that allow humans to communicate efficiently are 

adaptations to the pressures imposed by language production, perception 

and processing capacities. The phonological inventory, speech rate, prosody 

and other traits of speech are adapted to characteristics of the organs of 

speech and of the auditory system, which constrain the sounds we can 

produce and perceive. The temporal nature of speech and the potential noise 

in the environment affect the structure of the phonological information 

transmitted in utterances (this theme is developed in chapter two). Memory 

capacity affects, for example, the amount of information that can be stored in 

the short-term memory in order to process aspects of language. For instance, 

Baddeley, Thomson and Buchanan (1974) described the word length effect 

whereby lists of short words are easier to recall than lists of long words. It 

also affects how many items we can store in the short-term memory in order 

to process the syntactic relationships between them (see Caplan & Waters, 

1999 for recent review).  

Some authors have emphasized the role of learnability in shaping language. 

Kirby and Hurford (2002) propose that universal language characteristics are 

ultimately adaptations to the successful transmission of language from 

individual to individual and from generation to generation, as is well 

exemplified in their iterated learning model (ILM), where the key pressure 

behind the emergence of a linguistic trait (e.g. compositionality) is the 

cultural transmission bottleneck. A key conclusion of the ILM for 

compositionality emergence is that if the training set is too small, it does not 
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allow for generalisation, and if it is too large, the pressure to generalize 

diminishes and holistic (non-compositional) languages are equally adaptive. 

Compositionality is an adaptation of language whose function is to make 

language learnable given the ‘poverty of the stimulus’ – the fact that children 

are exposed to limited, imperfect linguistic data, and that they receive 

practically no feedback on their performance. Here the environmental 

constraint is the nature of the human relations that lead to the poverty of the 

stimulus, the adaptation that language has evolved to match it is 

compositionality. Kirby, Smith and Brighton (2004) also emphasize 

learnability as the main pressure acting on language. Deacon (1997) writes: 

‘The structure of language is under intense selection pressure because in its 

reproduction from generation to generation it must pass through a narrow 

bottleneck: children’s minds. (...) So, languages should change through 

history in ways that tend to conform to children’s expectations; those that 

employ a more kid-friendly logic should come to outnumber and replace 

those that don’t’.  

The pressures acting on language (or the lexicon) can be explained at two 

different levels of adaptation: the phylogenetic and the cultural levels. 

Phylogenetic explanations focus on the emergence of language within the 

evolution of the Homo species since its appearance between 107 and 106 years 

ago. During this time, parts of the anatomy of humans evolved in such a way 

that language became possible. Language is an adaptation with a function in 

human societies that make humans fitter. Language is a human phenotypic 

trait with a genetic basis which is the object of natural selection (Deacon, 

1997; Hurford, 1989; Komarova & Nowak, 2003; Nowak & Komarova, 2001; 

Pinker & Bloom, 1990; see also Wagner, Reggia, Uriagereka, & Wilkinson, 

2003 for an exhaustive review of computational simulations of language 
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emergence). If the evolutionary advantage that language conferred on 

humans is that of communication, then the neuroanatomical traits that allow 

language to serve as a communication tool are under great pressure to be 

preserved. During hominid evolution, language adapted to being easily 

learned, and/or the brain adapted to learn it easily. From the point of view of 

the structure of language, the traits that make it easily learnable are also 

under great pressure to be preserved. 

Cultural evolution explanations focus on the evolution of language since the 

appearance of Homo sapiens sapiens between 105 and 104 years ago. In this 

evolutionarily short time, human anatomy has remained essentially 

unchanged. Lexicon traits are adaptations whose function ultimately leads to 

the better transmission of language and to the better communication of 

concepts. Lexicon traits are coded in a transmissible replicable medium – 

speech - and are the object of lexicon selection. Croft’s (2000) ‘linguemes’, 

Kirby's (1999) 'variants', Mufwene’s (2001) ‘linguistic features’, Nettle's (1999) 

'linguistic items' or Worden’s (2000) ‘word feature structures’ are pieces of 

linguistic information that are selected for or against in the framework of 

linguistic evolution. In these studies, human fitness is only one 

environmental factor, and not the driver of evolution. The drivers of 

evolution are the reproducibility of language itself, that is, its ability to be 

replicated in successive generations of humans; in other words, its 

adaptation to be learned by human infants. 

These two explanations complement each other by focusing on different 

timescales and levels at which language evolution takes place. In the 

phylogenetic approach, the emergence of language in humans, there is also a 

place for a cultural evolution approach. A joint approach sheds light on the 

co-evolution of language and humans. In the phylogenetic timescale, an 
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evolving processor precipitated language evolution. In the cultural timescale, 

languages are stable with respect to their developmental environment, the 

processor, because this environment is stable, and other pressures come to 

the foreground to guide the cultural evolution of language.  

This thesis relates to cultural explanations of language evolution, presenting 

the ever-changing lexicon as the result of juggling the multiple pressures that 

act on it. What is crucial in my arguments is that the pressures leave their 

mark in the structure of the lexicon. My main assumption is that an analysis 

of the different pressures can help characterize the structure of the lexicon, 

and conversely, the structure of the lexicon can be explained in terms of the 

pressures that operate on it. I assume that the lexicon is a complex system 

with emergent properties that cannot be attributed to any one of its elements, 

but are only apparent when the system is taken as a whole. I look for those 

properties at different levels of representation, such as the phonological and 

the syntactic-semantic level. I also look for emergent properties involving 

both of those levels simultaneously, and propose that one of the pressures 

acting on the structure of the mental lexicon is the tendency towards 

systematicity, or structure-preserving mappings across different levels of 

representation.  

1.1.1.3 Summary 

This section has defined the mental lexicon as a complex entity embodying at 

least the principal elements of language, which is able to change its structure 

adaptively to accommodate external pressures while preserving a structure 

that allows it to serve as a communication system between humans and to be 

learned easily by infants. The following chapters of the thesis will offer 

explanations of the structure of the mental lexicon that take into account the 

pressures that operate on it. Summing up,  
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•  The mental lexicon is an embodiment of language where linguistic 

information is encoded in the complex relationships between words at 

many levels.  

•  The lexicon is a complex adaptive structure that constantly responds 

to the many pressures that operate on it. 

•  This thesis attempts to explain characteristics of the structure of the 

lexicon as adaptations to those pressures. 

1.1.2 Statistical learning 

The methods I employ in the thesis use speech data to infer the structure of 

the mental lexicon. I am therefore assuming that the brain is able to perform 

complex calculations on the input it receives from speech in order to develop 

and subsequently adjust the mental lexicon. This is only possible if it is 

sensitive to statistical patterns of information in speech, and this sensitivity is 

explained by the statistical learning literature. 

Throughout this thesis I assume that most of the support for language 

acquisition is not in the human brain but in the structure of language itself 

(Deacon, 1997). This is an application to language of the more general 

principle proposed by Anderson (1991) that ‘the mind has the structure it has 

because the world has the structure it has’. The methods described below 

help reveal the complex patterns of information and of organisation 

embedded in the structure of the lexicon. The patterns are probabilistic or 

statistical, such as the calculation of information as entropy or the definition 

of the position of a word in the semantic space as a pattern of cooccurrences 

with other words.  

During language acquisition these patterns are extracted by infants from the 

linguistic environment, and assimilated to gradually configure the lexicon 
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structure of their language. This presupposes that human infants are 

sensitive to statistical patterns in the input speech. This section reviews 

studies that show mechanisms for the statistical learning of various aspects 

of language. 

Plunkett (1997) offers a review of multidisciplinary approaches to early 

speech perception, word recognition, word learning and the acquisition of 

grammatical inflections which, he suggests, demonstrate ‘how linguistic 

development can be driven by the interaction of general learning 

mechanisms, highly sensitive to particular statistical regularities in the input, 

with a richly structured environment which provides the necessary 

ingredients for the emergence of linguistic representations that support 

mature language processing’. Redington and Chater (1997) review successful 

computational probabilistic and distributional approaches to speech 

segmentation and the acquisition of inflectional morphology, syntactic 

category and lexical semantics and end their review with an optimistic note 

that a combination of different sources of information might one day attain 

close to human performance. The volume edited by Bod, Jay and Jannedy 

(2003) contains probabilistic approaches not only to phonology, morphology, 

syntax and semantics, but also to sociolinguistics and language change. The 

following sections briefly review the literature of statistical learning of 

phonology, syntax and semantics.  

1.1.2.1 Phonology 

Probabilistic cues in speech help infants to acquire the phonological system 

of their language. Maye, Werker and Gerken (2002) showed that 

phonological categories are inferred from statistical modes in use of the 

phonetic space: they determined that infants are sensitive to patterns in input 

speech to track the distribution of speech sounds in their mother tongue. 
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They familiarized 6 and 8 month old infants to unimodal and bimodal 

distributions of instances of use of a continuum of speech sounds based on a 

phonetic contrast, and then tested the infants’ categorisation of the sounds. 

The unimodal distribution should indicate that the contrast is linguistically 

irrelevant and, as predicted, children exposed to it acquired a one-category 

representation of the sounds. The bimodal distribution should indicate that 

the contrast is linguistically important, and children exposed to it acquired a 

two-category representation. Pierrehumbert (2003a) argues that infants learn 

from superficial statistical properties of speech, but later on, when the lexicon 

is well developed, the phonological system is refined by internal feedback 

from type statistics over the lexicon (phonotactic information). This later 

refinement exploits the confluences across levels of representation that make 

bootstrapping and generalisation possible.  

Peperkamp and Dupoux (2002) studied how infants who still do not have a 

semantic lexicon might infer the underlying word forms that appear in 

speech as different phonological variants. They examined word phonological 

variants containing phonemes and allophones in different languages and 

proposed a learning mechanism based on an examination of the distribution 

of either surface segments3 or surface word forms. They conclude that 

semantic knowledge is unnecessary to retrieve word forms from a structured 

set of variant instances of the word in speech.  

Maye, Werker and Gerken (2002) suggest that ‘in addition to its probable role 

in speech perception, this sensitivity [to probabilistic patterns in speech] 

contributes to word segmentation (Saffran, 2001; Saffran, Aslin & Newport, 

                                                 

3 The word ‘segment’ is used synonymously with ‘phoneme’ as a more theory-neutral term. 

 



 15

1996; Saffran, Newport & Aslin, 1996; Christiansen, Allen & Seideberg, 1998) 

and the acquisition of constraints on speech sound sequences (Jusczyk, Luce 

and Charles-Luce, 1994 & Zamuner, 2001) and grammatical structure 

(Gómez & Gerken, 1999; and Saffran, 2001)’. 

For recent reviews on statistical phonological learning, see Peperkamp (2003) 

and Pierrehumbert (2003b).  

1.1.2.2 Syntax  

Redington and Chater (1997) differentiate between language external and 

language internal approaches to learning syntactic categories. Semantic 

bootstrapping (Pinker, 1984) is a language external approach that exploits the 

correlation between word categories (especially noun and verb) and objects 

and actions in the environment. Language internal approaches can make use 

of regularities between phonology and syntactic categories (Kelly, 1992), 

regularities between intonation and syntactic structure (Morgan & Newport, 

1981) and distributional analysis. Cooccurrence statistics is a type of 

distributional information that can be extracted with computational or 

connectionist methods. It creates word representations that capture the 

cooccurrences of target and context words in a corpus within a small 

window (typically between 2 and 10 words), which reflect syntactic category. 

Mintz (2003) introduces the idea of ‘frames’, or frequent combinations of two 

words with one intervening word, and argues its validity to predict syntactic 

category. Connectionist models use a form of Hebbian learning to capture 

the cooccurrence statistics of the corpus in the weights of the network 

(Rumelhart & McClelland, 1986).  

Manning (2003) reviews the trend that linguistic units are continuous and 

quantitative in contrast with generative grammar’s discrete and qualitative 
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units. He motivates a probabilistic approach to syntax acquisition with 

arguments from language acquisition, language change, and typological and 

social variation, and exemplifies it with an exploration of verb 

subcategorizaton. 

1.1.2.3 Semantics 

Some recent statistical approaches to semantic learning focus particularly on 

learning symbolic association, the relationship between an object and its 

name. Smith and Vogt’s (2004) cross-situational statistical learning model 

suggests that learning word form-meaning pairings is achieved through 

inference over multiple contexts; the form that more consistently co-occurs 

with one aspect of the context will be assigned to that aspect. Symbolic links 

are under the pressure of biases such as ‘mutual exclusivity’ - the tendency 

towards a one-to-one mapping between forms and meanings (Marksman, 

1989; Merriman & Bowman, 1989; see also Smith, 2004) or the ‘whole object 

bias’ – the fact that when children learn a new word, they prefer to associate 

it with an object rather than with a feature of an object or an action 

(McNamara, 1982). Unpublished research by Houston-Price (2004) supports 

a distributional mechanism for the acquisition of the mapping between a 

label and an object. She showed 15 and 18 month infants two visual stimuli. 

The infants then heard a label, and a few seconds later the target stimulus 

would move (salience condition) or the image of a face would turn towards 

it, and the infants heard the label again. The infants never learned the 

association of the label and the correct stimulus, but did learn the association 

of the label to the incorrect stimulus in the salience condition. This means that 

they associated the label with the stimulus that was more consistent during 

the two presentations of the label, namely the stationary image. This supports 

the view that acquisition of naming is mediated by probabilistic distributions 
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of features of the stimuli together with probabilistic distributions of 

occurrences of the labels. 

Word cooccurrence statistics, apart from capturing syntactic category, are 

also widely used to construct semantic representations (Lund & Burgess, 

1996; Schultz, 1993; Landauer & Dumais, 1997; and McDonald, 2000; see also 

Curran, 2004, for review). Cooccurrence statistics capturing semantics will be 

further reviewed and developed in chapter four.  

Having seen a definition of a complex, adaptive mental lexicon; the corpus-

based methodologies employed in the thesis; and a review of statistical 

learning that psycholinguistically grounds the corpus-based methodologies, I 

now present an overview of chapters two to six of the thesis. 

1.2 Thesis overview 

1.2.1 Methods 

Underlying the whole thesis is the assumption that the information necessary 

to configure the mental lexicon in a human brain is found in speech (and 

text). Language acquisition is possible thanks to the human brain's sensitivity 

to the linguistic information in speech – humans raised in the absence of 

linguistic input do not develop language. The lexicon configuration and 

associations between words at all levels change over a speakers’ lifetime 

owing to exposure to more and more speech (and text). The main point is 

that relevant analyses of speech should reveal the patterns of information 

that shape the mental lexicon. 

Most of the research reported in this thesis is corpus-based. The main corpus 

used is the ‘Corpus oral de referencia del Español’ (Marcos Marin, 1992), a 

one million word Spanish transcribed speech corpus compiled in Spain in the 

early 1990’s. I also use parts of a Spanish transcribed speech corpus of 
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interactions between a young child and her close relatives, the ‘Maria’ corpus 

(Lopez Ornat, 1994). Both corpora include Spanish spoken in Spain only, 

mainly the standard Castilian variety, which is important for consistency. 

Corpora are assumed to be representative samples of a language. In the case 

of Spanish only a one million word corpus of transcribed speech was 

available for research purposes, although larger news text corpora were 

available. A corpus of transcribed speech, with all its grammatical and 

speech errors, repetitions etc, is a more accurate representation of the 

external manifestation of language than a corpus of written text. 

Consequently, I chose to work with the speech corpus and relied on 

statistical analyses to reduce the impact of the size of the corpus.  

One consequence of using two contemporary corpora is that it offers a 

synchronic snapshot of Spanish. I have not presented any diachronic 

analyses, although some of the conclusions reached in the thesis have 

implications for language change. In the conclusion chapter I briefly sketch a 

theoretical framework for the evolution of the adaptive lexicon that takes 

into account the findings of the thesis. 

The one non corpus-based study is the empirical exploration of the 

phonological space presented in chapter three. Here I used a 

psycholinguistic-inspired forced-choice paradigm to collect participants’ 

impressions on phonological similarity between words. The data collection 

was done on the Internet in order to reach Spanish speakers living in Spain. 

The results are then used in chapter five to construct a quantitative 

representation of the phonological level of the lexicon based on word 

similarity, and also in chapter six to ground corpus-based findings about 

phonological similarity. 
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The corpus data has been subject to several very different analyses, in many 

cases based only on the words of two consonant-vowel structures: cvcv, such 

as mesa, pelo, mira, and cvccv, such as banco, tengo or marca. In chapter two I 

use a method drawn from Information theory first developed to improve 

encryption techniques. I extract all the words of structure e.g. cvcv and 

consider the entropy - an elaboration of the probability distributions - of each 

phone for each segment position. The result quantifies the distribution of 

phonological information over words of that structure. 

Chapter four exploits a very different type of information contained in the 

corpus. It focuses on word distributional information, which quantifies the 

degree to which words tend to occur near each other in speech. This is 

assumed in the literature to capture syntactic and semantic information, and 

I use two versions of the corpus (the surface forms and the lemmatised 

forms) and two measures of cooccurrence (one including content and 

function words in the calculations, and other including content words only) 

to establish the effect of those parameters in the kind of information captured 

by the cooccurrence representation of speech.  

Chapters five and six bring together the phonological information obtained 

in chapter three and the semantic and syntactic information extracted in 

chapter four and tests the existence of systematicity between them. These 

two chapters are based on the calculation of Fisher divergence, extensively 

described in chapter five, developed to calculate the correlation between 

similarity matrices, and a Monte-Carlo analysis to measure the significance 

of such a correlation.  

Chapter six uses methods from Artificial Intelligence to explore the effects of 

the parameters of phonological similarity between words on the correlation 

found in chapter five. A random search of the parameter space returns 
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information on the behaviour of the phonological parameters with respect to 

the phonology-semantics systematicity. A hill-climbing search finds the 

parameter configuration that yields the optimal phonology-semantics 

systematicity. The novelty in this methodology lies in the use of phonology-

semantics systematicity to characterize the function of different aspects of the 

phonological lexicon. 

Having briefly presented the methodologies employed in the thesis, I now 

outline the structure of the thesis. 

1.2.2 Thesis organisation  

The lexicon is shaped, among others, by communication pressures. Words 

need to be stored in the representational space; transmitted over a potentially 

noisy channel, and decoded by the listener, and all of this has to happen in 

an efficient way. In chapter two I employ Information theory tools to 

measure the efficiency of lexical information storage, transmission and 

decoding. Comparing the within-word information and redundancy 

distributions of different representations of a set of words can help 

determine how well adapted each representation is to the requirements of its 

representational space.   

I propose a lexicon architecture where words are represented over different 

levels - phonological, syntactic, semantic. The lexicon is defined by 

relationships of similarity between words at each level. The position of each 

word in such a structure is given by its similarity to every other word at each 

level. Chapters three and four are devoted to quantitatively define the 

phonological and the syntax-semantic lexicon levels, respectively.  

Chapter three presents an empirical exploration of the phonological 

similarity space: a psycholinguistic paradigm obtains relative values for 



 21

several parameters of phonological similarity between two words such as 

‘sharing the first consonant’ or ‘having the same stressed vowel in final 

position’. These results fill a gap in the literature on phonological similarity 

in general, and of Spanish in particular. I offer explanations of the resulting 

parameter values, linking them to the psycholinguistic literature. These 

phonological similarity parameter values, derived from human judgements, 

are used later in the thesis (chapter five) to calculate the phonological 

similarity between words in two subsets of the lexicon. The pairwise 

similarity measures obtained are a quantitative expression of the 

configuration of the phonological level of the lexicon.  

Chapter four deals with the semantic level of the lexicon, also configured as 

the set of all pairwise similarity values between words. In this case the 

similarity between two words is based on whether they tend to occur close to 

the same words in speech. I review cooccurrence-based similarity metrics 

and then construct a syntactic-semantic lexicon similarity representation. I 

explore what types of information we can extract from cooccurrence-based 

word representations of the Spanish lexicon, such as information on syntactic 

category, gender, and meaning. Since syntactic gender is not present in 

English, the analysis of gender classification is a novel application of 

cooccurrence-based word representations.  

The structure of the lexicon is constrained by the nature of its neural 

substrate, so characterizing the organisation of aspects of language can help 

infer aspects of the nature of the underlying brain substrate, and this 

knowledge can help design language processing computer architectures 

capable of similar functions. Conversely, the existing knowledge in 

neuroanatomy and neurophysiology can help narrow the choice of the 

possible brain architectures that would support our lexicon. In this respect, 
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when the brain needs to deal with complex inputs, it tends to use 

representations that preserve the structure of stimuli over different parts of 

the brain. The best studied brain systems that are closest to language in 

anatomical and functional terms - visual, auditory, somatosensory and motor 

- use structure-preserving (systematic) representations at their various 

processing stages, so I propose that they are a good candidate to be the ones 

used in language processing.  

With this in mind, I assume that structure-preserving systematicity is a 

general property of the neural substrate, and that the relationships between 

the conceptual and the linguistic levels are crucial in the structure of the 

lexicon. Therefore, we should see traces of that systematicity between the 

semantic level and other linguistic levels such as phonology and syntax. This 

brings us to the main hypothesis in chapter five, namely that there is a 

pressure towards a structure-preserving mapping between the phonological 

and the syntax-semantic lexical representations. This hypothesis has been 

tested for English. Shillcock, Kirby, McDonald and Brew (2001, submitted) 

showed that words that occur in similar contexts are more phonologically 

similar than expected by chance. In chapter five I replicate their study with a 

slightly different methodology to test whether the same is true for Spanish, 

which would support the universality of systematicity between word 

phonology and syntax-semantics. If this correlation is universal, then it 

would have to be explained in terms of the evolution of the lexicon against 

the background of universal pressures. Chapter five continues with an 

attempt to remove syntactic information from the data and the methods in 

order to establish the influence of a correlation between the form and the 

meaning levels of the lexicon. Finally, I replicate Shillcock et al.’s (2001) 

methodology again to test whether, as they found in English, the correlation 
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is driven by 'communicatively salient' words. The results obtained with my 

limited data suggest that this is also the case in Spanish. 

The phonology-semantics correlation is not without problems. It seems to 

challenge the Saussurean principle of arbitrariness of the sign, which states 

that the form of a word is arbitrary and independent of its meaning; 

according to Saussure, a dog could equally be called ‘caterpillar’, but a 

structure-preserving mapping between the space of form representations and 

context representations would not allow this. I address this philosophical 

issue and suggest that a dog could indeed suddenly be called ‘caterpillar’, 

but then the rest of word forms in the lexicon would also need to change to 

accommodate this change. While for any one word the form is independent 

of the meaning, the relationships between forms are not independent from 

the relationships between meanings. 

The correlation found in chapter five is the basis of further explorations in 

chapter six, where the measure of systematicity is used to quantify and 

characterize the phonological lexicon. I use the correlation between 

phonology and semantics to build a quantitative phonological space for 

Spanish. This methodology reveals the effects of robust pressures working 

not only towards but also against systematicity between phonology and 

syntax-semantics.   

To sum up,  

•  This thesis explores the structure of language embodied in the mental 

lexicon, a complex system of words organized along many 

dimensions and defined in terms of relationships of similarity 

between each other. 
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•  The exploratory methods in this thesis seek to define the structure of 

different levels of the mental lexicon by quantifying relationships 

within and between words. I explain these levels of organisation in 

terms of the pressures acting on the lexicon at the phonological and 

syntax-semantic levels, and also of a pressure for systematicity across 

those different levels of representation. 

•  The novel applications of the methods are intended to explore new 

ways to tackle the structure of the mental lexicon and to pave the way 

for further research with larger corpora and different languages as 

well as with experimental paradigms that can offer new insights into 

the forces that shape language.  
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Chapter 2. The distribution of phonological 

information within Spanish words  

 

This chapter1 describes the information profile, a measure of the distribution 

of phonological information across segments in a word set. It calculates the 

information profiles of a representation of the mental lexicon and of the 

words uttered in speech. Assuming that the lexicon structure is the result of 

the pressures that act on it, I propose that the intra-word distribution of 

phonological information can be explained in terms of the pressures acting 

on the mental lexicon representation in the brain and on the phonological 

representation of speech.  

2.1 Introduction 

In this chapter I measure the distribution of phonological information in 

Spanish words, and try to explain it as adaptations to aspects of the two main 

pressures we saw in chapter one: serving as a tool for human communication 

and being easy to learn by humans.  

A word has to meet several phonological requirements in order to be part of 

a language. It has to be distinguishable from the other words, and it has to 

use the segments2 and conform to the phonotactics of the language. In this 

chapter I suggest it also tends to fit in with the rest of the words in terms of 

its phonological information structure. I assume the principle behind the 

rational analysis proposed by Anderson (1991) that the output of cognitive 

processes is an optimal response to the information-processing demands of 

the environment, and hypothesize that the information structure of the 

                                                 

1 Parts of this chapter were contained in Tamariz and Shillcock (2001); a copy of this paper is 

included as Appendix H. 
2 The word ‘segmen’t is used synonymously with ‘phoneme’ as a more theory-neutral term. 
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mental lexicon reflects the processing demands of the lexicon substrate in the 

brain. Additionally, I assume that the information structure of words as 

sequences of sounds in speech reflects the information processing and 

communication demands of the potentially noisy medium over which they 

are transmitted -words are produced in a way that minimizes the loss of 

information due to the noise in the communication channel and to potential 

misperception by the listener. 

In view of these assumptions I propose that the distribution of phonological 

information of word representations at different levels of abstraction can 

help reveal the optimal processing solutions arrived at by the brain. I 

examine the information structure of the lexicon (the collection of word types 

we use when we speak) and of the words used in speech (word tokens) 

expecting to see adaptations to the demands of the different representational 

spaces in which the two word systems occur. In addition to this, I analyze the 

information structure of words from a corpus of child-directed speech, 

assuming the demands of the small, growing lexicon of a young child are 

different from those of a larger, more stable adult lexicon, and that adults 

have evolved a way of speaking to children that optimally meets those 

demands (see Elliot, 1981 on child-directed speech). 

I use the concepts of entropy and redundancy from communication theory 

introduced by Shannon (1948) to construct the information profile of word 

systems. These profiles reflect the distribution of information across the 

segment positions of words, and I argue that they can be used to measure 

how suitably and efficiently each word representation (the lexicon and 

speech) is adapted to the demands of its representational space.  

In 1975, Grice formulated the ‘cooperation principle’ in a series of maxims or 

rules stating what a good conversation contribution should be like, but that 

are applicable to all forms of human communication:  

•  Maxim of quantity (make your contribution as informative as is 

required, but not more informative than is required).  
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•  Maxim of quality (try to make a contribution that is true). 

•  Maxim of relevance (be relevant).  

•  Maxim of manner (be perspicuous: avoid obscurity and ambiguity; be 

brief and orderly).  

The maxims of quantity and manner are particularly relevant to this chapter. 

The phonological lexicon should contain enough information to allow clear 

and unambiguous communication, but at the same time it has to be stored in 

the limited representational space in the brain. Speech should be economical 

without compromising clarity. 

In this corpus-based study, I assume the set of word types in the corpus 

represent the phonological forms of words in the mental lexicon, subject 

mainly to the pressure to optimize the usage of the available representational 

space. If this was the only pressure acting on the phonological lexicon, all 

segments would be as likely to occur in all positions, in fact all the possible 

segment combinations would exist as words. However, in reality other 

pressures interact with optimal storage – phonotactics limit the possible 

segment combinations, the pressure for prompt lexical recognition 

concentrates the information towards the beginning of words, and efficient 

processing constraints press for a monotonic structure where information is 

incremental and where later information does not invalidate or contradict 

earlier information.  

The child-directed types correspond to the developing mental lexicon. We 

should expect to see an evolution towards the mature mental lexicon 

structure in samples of speech directed to an increasingly older child. The 

developing mental lexicon is laying out the scaffolding of its structure, and 

can be expected to prioritize clarity over optimisation of storage. The main 

pressures here are to adapt to the processor sensitivities, reflected in 

phonological and lexical acquisition. 
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Secondly, I assume that the word tokens, including frequency information, 

represent the phonological form of speech. Speech is subjected to the 

pressures of communication. The main pressure on communication is that of 

efficient transmission of the acoustic signal from the speaker to the hearer in 

the face of potential noise. Pressures to overcome potential noise should be 

the same in adults as in children, so in the child-directed token set, as in the 

case of adult tokens, we can expect that an important constraint in terms of 

information content should be efficient transmission. The phonological form 

of speech is also subject to other processing constraints. One of the crucial 

problems facing speech recognition is the segmentation of the speech stream 

into words. I expect to find an information profile of the word phonology 

that facilitates segmentation, both in child-directed and in normal speech. 

I first look at the corpora from which the data are extracted and explain how 

to build the information profiles using the concept of entropy. Then I look at 

the information profiles of the different word systems to see how they reflect 

the efficiency of the representations in the face of the demands of their 

respective representational spaces.  

2.2 Data 

Our main source of data is the ‘Corpus oral de referencia del español’ an 

orthographical Spanish speech corpus (Marcos Marín, 1992) containing one 

million words (with a vocabulary of 41,000 word types). This corpus is made 

up of transcribed recordings ranging from everyday conversations to radio 

broadcasts and technical and scientific addresses. In the second part of the 

study I also use a corpus of Spanish speech addressed to a child extracted 

from the 83,000 word corpus “Maria” (Lopez Ornat, 1994), described in more 

detail in § 2.6.1 below.  

Note that this study includes unfinished words, mistakes and, crucially, all 

derived and inflected words, assuming in principle the Full Listing 

hypothesis (Jackendoff, 1975; Butterworth, 1983) whereby all word forms are 
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stored in the mental lexicon and productive morphological rules are only 

used to produce or understand novel words. 

2.2.1 Transcription 

Both corpora, ‘Corpus oral de referencia del español’ and ‘Maria’, are 

orthographically transcribed. In the absence of a large speech corpus 

phonetically transcribed by experts, these are the best large speech data sets 

available for Spanish. The corpora were automatically transcribed using 50 

phonemes and allophones: vowels: /a/, /e/, /i/, /o/, /u/, /á/, /é/, /í/, 

/ó/, /ú/. Consonants: /p/, /b/, /t/, /d/, /k/, /g/, /m/, /n/, /≠/, /\/, 

/r/, /f/, /Q/, /s/, /Ô/, /X/, /l/, /¥/, /tS/; semivowels: /i/, /u/; 

semiconsonant /j/, voiced approximants /B/, /D/, /V/, voiceless 

approximants /B/, /D/, /V/, labiodental /m/, dental /n/ and /l/, 

palatalised /n/ and /l/, velarized /n/, /z/, dental voiced /s/, dental /s/, 

fricative /\/, voiced /Q/ and a silenced consonant /Ø/. The transcription 

included phoneme interactions such as assimilation, following the rules set 

out in Rios Mestre (1999). Diphthongs were treated as two separate 

segments, as is usual in Spanish phonological research. The corpora were 

divided into chunks separated by pauses - change of speaker, punctuation 

mark and pause marked in the corpus. The resulting text was automatically 

transcribed word by word and then phoneme interactions were introduced 

at word boundaries within the chunks, following the same rules as for the 

intra-word transcription.  

2.2.2 Word sets 

For a clearer picture of the profiles, particularly towards the end of the word, 

I work with four sets of equal length words: all the 4, 5, 6 and 7 segment long 

words from the corpus. Word recognition typically occurs before the end of 

the word is uttered (Marslen-Wilson & Tyler, 1980), and information about 

word-length is usually available once the nucleus is being processed 

(Grosjean, 1985), so I assume an idealised processing where recognition 



 30 

processes are restricting their activities to the subset of words in the lexicon 

that match the word being uttered in terms of approximate overall length. 

The particular word lengths were chosen because the structure of shorter 

words is simpler - although I did not use the 1, 2 and 3 segment long words 

because they do not allow for so much incremental interpretation, meaning 

that for the set of same length words, the first segment carries most of the 

information of the word. Also, working with equal-length word groups 

means less variation in the internal structure of each word-length group, 

which could potentially obscure the word-internal information distribution. 

Additionally, the selected word lengths are equidistant from the modes of 

the word-length distributions of the types and the tokens (see Figure 2.1). 

The sum of these four word lengths accounts for 37% of the tokens and 45% 

of the types. So any conclusions of this study are restricted to words of 

intermediate length (4-7 segments). 
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Figure 2.1. Word-length distribution in the 42,000 tokens and one million types from the 
speech corpus. 

2.3 Methodology 

2.3.1 Entropy  

Goldsmith (2000) suggests that information theory concepts such as 

probability and entropy are the natural quantitative measures of many of the 

concepts used by linguists in general and by phonologists in particular.  
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I will use entropy as introduced by Shannon (1948), and further developed as 

a tool to estimate the efficiency of communication and information (Shannon, 

1951). Recent developments in new information technologies have 

highlighted the need for an efficient way to store and transmit information, 

and entropy has been used extensively in encryption studies (e.g. Cachin, 

1997; Van Droogenbroek & Delvaux, 2002), and also in speech recognition 

studies (e.g. Yannakoudakis & Hutton, 1992; Shen, Hung & Lee, 1998), 

speech production studies (Van Son & Pols, 2003) and in natural language 

processing (e.g. Berger, Della Pietra & Della Pietra, 1996). 

Entropy (H) is defined for a finite scheme (i.e., a set of events such that one 

and only one must occur in each instance, together with the probability of 

them occurring) as a reasonable measure of the uncertainty or the 

information that each instance carries. For example, the finite scheme formed 

by the possible outcomes when throwing a dice has maximum entropy: each 

of the six sides of the dice has 1/6 probability of occurring and it is very 

difficult to predict what the outcome will be (high entropy). A loaded dice, 

on the other hand, has an unequal probability distribution, and the outcome 

is less uncertain (low entropy), with, say, number three having a ½ 

probability of occurring. Entropy is a statistical measure of irregularity and it 

has been defined as the amount of surprise experienced when encountering a 

new element. 

For probabilities (p1, p2, p3...pn): 

H = - Σ (pi · log pi) 

(Note that I use base 2 logarithms throughout this chapter.) 

The relative entropy (Hrel) is the measured entropy divided by the maximum 

entropy Hmax, which is the entropy when the probabilities of each event 

occurring are equal and the uncertainty is maximized. Using the relative 

entropy allows us to compare entropies from systems with a different 

number of events.  



 32 

Hmax = log n 

(where n is the number of possible outcomes); 

Hrel = H / Hmax 

Redundancy is a measure of the constraints on the choices. When 

redundancy is high, the system is highly organized, and more predictable, 

i.e. some choices are more likely than others, as in the case of the loaded dice. 

If entropy reflects irregularity, redundancy measures regularity in a system. 

Redundancy is defined as: 

R = 1 - Hrel  

2. 3. 2 Calculation of the Information Profile 

The entropy and redundancy of letters in a text has been used in corpus 

studies before, for instance in the calculation of the entropy of letters in a 

dictionary of over 93 thousand words (Yannakoudakis & Angelidakis, 1988). 

This study examines the variation of entropy within words. I use the 

information profile of a set of words as calculated by Shillcock, Hicks, Cairns, 

Chater and Levy (1995) and Tamariz and Shillcock (2001) - a plot of the 

relative entropy of each segment position of a set of words.  

The information profile is a plot of the entropy calculated for each segment 

position of a set of words of equal length, using the set of Spanish segments 

as the finite scheme - for each position, the possible ‘outcomes’ are the 

Spanish segments (/a/, /b/, /d/, /e/, /f/ etc). 

The calculation of the entropy for each position is as follows. First, count the 

occurrences of each segment in the position. The probability of each segment 

is the number of actual occurrences divided by the total number of all 

segments in that position. The entropy for that position is given by the sum 

of the products of the probability of each segment multiplied by its 

logarithm. This entropy divided by the maximum entropy for that position 

equals the relative entropy.  
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Figure 2.2. Information profile of words of length 7. The linear trend line equation is shown 
above with a slope (m) value of -0.0251. The mean relative entropy (Hrel) value and the 
variance are also shown.  

The plot of the relative entropy for all word positions is the information 

profile (e.g. the one shown in Figure 2.2). The shape of the information 

profile can be represented by the slope3 of the linear trend line of the entropy 

values. Equation (1) gives the linear trend line: 

(1) y = mx + n 

In equation (1), (m) is the slope, and it indicates the overall shape of the 

information profile, particularly the difference in entropy levels at the 

beginning and the end of the word. We have to take into account that for 

equally shaped information profiles, the slope gets flatter as word-length 

increases. Figure 2.2 shows a typical information profile, with entropy rising 

after the first two positions and dropping sharply in the final position. The 

slope (m) shows a negative value, indicating that the linear trend line drops 

towards the end of the words. A positive value would indicate a line rising 

from left to right, and a zero, a perfectly horizontal trend line. Because all the 

slope values obtained are negative, the figures below will show (-m) for 

                                                 
3 Another possible representation of the information profile is the variance of segmental 
entropy values. The slope retains information about overall shape of the profile, but it is not 
normalised for word length. The variance normalizes for word-length, but it loses the 
information about the overall shape of the profile. The results of the comparisons presented 
in this chapter are the same whether we use the variance or the slope of the linear trend line, 
with higher variances correlated with steeper slopes.   
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clarity. I will also examine the mean relative entropy across the profile, 

simply the average of the segmental relative entropy values.  

The information profile as defined above means that, as we perceive the 

sequence of speech segments, we have information about how predictable or 

unpredictable each segment is.  

I now report some applications of the information profile and then go on to 

compare the information profile of words in speech and in the mental 

lexicon. 

2.4 Applications of the information profile 

2.4.1 The levelling effect of accurate word representations 

Noting that in the absence of other constraints, the phonological information 

profile of words would tend to be flat, with information distributed evenly 

across word segments, Tamariz and Shillcock (2001) proposed the principle 

that processes that make the representation of words more robust yield 

flatter information profiles, and compared the slopes of information profiles 

generated by the same speech corpus used in the present chapter. 

2.4.1.1 Fast-speech 

Tamariz and Shillcock (2001) compared two transcriptions of the words in a 

corpus of Spanish transcribed speech (Marcos Marin, 1992) - a citation 

transcription (the idealised pronunciation found, for example, in dictionary 

entries) and a transcription including fast speech processes (described in § 

2.2.1 above, including assimilation, which occurs when the articulation of 

one consonant affects the way an adjacent consonant is pronounced, e.g. the 

fact that a n is pronounced as ng when it comes before a velar consonant such 

as k or g). The fast speech transcription consistently yielded flatter 

information profiles in four samples of a corpus of Spanish speech (the 

words of length 4, 5, 6 and 7). Additionally, the fast speech transcription 

generated lower entropy levels (higher redundancy). Speech communication 
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is under pressure to overcome environmental noise. The higher predictability 

introduced by consonant assimilation in the transcription may be a response 

to that pressure. It could help deal with the loss of information produced by 

random noise and thus enhance communication.  

Fast-speech processes are an adaptation to the ‘least effort’ pressure. This 

pressure is in conflict with that of intelligibility. The production mechanisms 

attempt to alter the pronunciation in order to do as little work as possible, 

but the pressure of intelligibility only allows those changes that do not 

hinder comprehension. The whole system has evolved under the two 

pressures and seems to have reached a state where ‘lazy’ actions are also 

good for communication. 

2.4.1.2 Inflection and derivation 

Some current models of lexical access propose two parallel word recognition 

routes, a whole-word route and a morpheme-based one (e.g. Wurm, 1997, for 

English; Colé, Segui & Taft, 1997, for French). Following this hypothesis, the 

full forms of words need to be stored in the mental lexicon, as proposed by 

Jackendoff (1975) and Butterworth (1983). It is relevant, then, to study the 

behaviour of the set of all word types, including derived and inflected 

words, that appear in speech. I compared the information profiles of the 

speech types with those of matching words (4, 5, 6 and 7-segment words) 

from a dictionary wordlist (the 28,000 headwords from the Harrap Compact 

Spanish Dictionary, 1999). The dictionary profiles yield steeper slopes (one-

tailed paired t-test, t=3.86, df=3, p<0.05), and lower levels of entropy (one-

tailed paired t-test, t=3.85, df=3, p<0.05) than the speech lexicon. The 

dictionary lexicon contains almost no inflected or derived words. It has 

steeper information profiles, indicating that inflections and derivations alone 

are not responsible for lower entropy towards the end of words, and its 

entropy levels are lower, indicating it is a less complex system. 

The comparisons of fast-speech versus citation transcription and of the 

speech lexicon versus a dictionary lexicon support the hypothesis that the 
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information profile slope steepness is a good predictor of quality of 

representation.  

2.4.2 Other word segmentations 

Single segments are not the only possible units to calculate entropy. I tested 

the effect of using the finite scheme of bigrams4 instead of that of segments in 

the comparison of citation and assimilation transcriptions, and found similar 

results to those with the segment finite scheme. For the speech tokens, 

assimilation transcription profiles are significantly flatter than the citation 

profiles (one-tailed paired t-test, t=5.01, df=3, p<0.01). The average relative 

entropy of bigram profiles is lower than that of the segment profiles, but it 

reacts similarly to transcription, with lower entropy for assimilation 

transcription (one-tailed paired t-test, t=14.65, df=3, p<0.001).  

These results indicate that the distribution of information over the full word 

length can be measured equally well using bigrams or segments. The 

flattening effect of the assimilation transcription also holds when measured 

with bigrams. One of the principles of this study is to use the least 

computationally expensive methodology that is sensitive to the information 

required, so the similar results obtained with the large bigram finite scheme 

endorse the use of the smaller segment finite scheme in the calculation of the 

information profiles.  

2.5 Word representations in speech and in the mental lexicon 

By adopting a vision of language as embodied in the mental lexicon, this 

thesis is focusing on words as the basic units of language. I now examine the 

intra-word distribution of phonological information in two sets of words 

extracted from the same speech corpus, namely the list of the unique words 

used by the speakers (types) and the collection of all the word tokens uttered.  

                                                 
4 Bigrams can be equated to the transitions between one segment and the next (e.g. in the 
word admitir we find the bigrams ad, dm, mi, it, ti, ir). 
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This section examines these two aspects of the same corpus to see how well 

they are adapted to the different pressures acting on them.  

2.5.1 The mental lexicon 

I take the set of all word types in the corpus to be a representation of a full-

listing mental lexicon (Butterworth, 1983). I assume that phonology plays an 

important role in the organization of the mental lexicon.  

I now appeal to a pressure towards an optimal processing strategy for the 

storage of the mental lexicon to explain aspects of the information profile of 

the word types. Shillcock et al. (1995) propose the general principle of 

maximum storage efficiency, whereby information should be spread as 

evenly as possible over the representational space in the brain. Entropy is a 

measure of information content. If the demands of efficient storage were the 

only factor at play, all segments in the lexicon would have the same 

probability of occurring anywhere in the word, and then the relative entropy 

would equal one (maximum uncertainty). However, in reality, constraints 

such as morphological rules, phonotactic limitations and even sound 

symbolism (the observation that certain sounds appear to convey certain 

hues of meaning– see, e.g. Hinton, Nichols & Ohala, 1994) introduce 

redundancy in the system, preventing storage from being maximally 

efficient. An analysis of the information profile or word types can reveal the 

effect of those constraints on the within-word information structure of the 

mental lexicon. 

2.5.2 Speech transmission and speech segmentation 

As outlined in the introduction, I assume that the tokens from the corpus 

represent speech. Word tokens are the word types plus information about 

their frequency in speech.  

This assumption with all its consequences (that analyses of the tokens will 

reveal the pressures acting on speech) is a testable one. I assume that if we 
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assigned random or scrambled frequencies to the word types, the resulting 

information profiles would be different from those obtained with the real 

frequencies, and crucially, they would be different for different word groups.  

Speech occurs over a noisy channel. Noise, in the information theory sense, is 

a random disturbance of the channel that introduces uncertainty in the 

correspondence between the produced and the received signal. In a noisy 

channel, a more redundant (lower entropy) message will be more likely to be 

reconstructed without errors by the receiver. High frequency, on the other 

hand, reduces uncertainty. In the calculation of the entropy of word tokens, 

all token occurrences are taken into account, meaning that more frequent 

words contribute more to the information profile. This means that because 

high-frequency words are uttered many times, it is very likely that they are 

partially obscured by a random noise occurrence. But because high-

frequency words are taken into account many times and therefore contribute 

more to the information profile (a general property of the lexicon, tacitly 

known by speakers of a language), they are easier to reconstruct without 

error.  

The process of speech perception includes the segmentation of the 

continuous sound stream into words. Segmentation is, therefore, a critical 

issue for speech representation (tokens), but not for the representation of 

words in the mental lexicon (types). Different approaches emphasize 

different factors that help achieve speech segmentation. In English, metrical 

structure seems to be a good predictor of word boundaries, which tend to be 

found immediately before strong syllables (Cutler 1990, Cutler & Butterfield, 

1992). Cutler and Carter (1987) found that over 90% of all English content 

words begin with a strong syllable, but this is not the case in Spanish, so the 

equivalent of metrical structure (stress) might not be so relevant to 

segmentation in that language. Norris, McQueen, Cutler and Butterfield 

(1997) suggested that a Possible Word Constraint (PWC) could ease word 

recognition by limiting the number of lexical candidates activated by a given 
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input. This constraint requires that, whenever possible, the input should be 

segmented into a string of feasible words. Any segmentation resulting in 

impossible words (e.g. a single consonant) is not allowed. Norris et al. 1997 

used a word spotting task to demonstrate that adults find words such as 

apple more easily in vuffapple than in fapple, because vuff is a possible word, 

whereas f is not. The PWC approach requires previous knowledge of the 

possible lexical units, which infants do not possess during the initial stages of 

language acquisition (although Johnson, Jusczyk, Cutler and Norris’s 2003 

results indicate that 12-month-old infants already use the possible word 

constraint in segmentation of fluent speech). McQueen (1998) adds to the 

PWC the phonotactics and other statistical regularities that constrain what 

can be a possible word and where words can start and end. Saffran, Newport 

and Aslin (1996) suggest that distributional cues are crucial in the initial 

lexical segmentation of (adult) language learners. They found that the 

transitional probabilities between syllables in a language were enough for 

learners of an artificial language to hypothesize word boundaries (even 

though prosodic cues would enhance performance). Cairns, Shillcock, Chater 

and Levy (1997) used neural networks and conventional statistics to 

demonstrate that segmental distributional information in English is an 

important cue to segmentation and it could allow infants to bootstrap into 

increasingly complex strategies to end with an adult segmentation 

competence.  

Most of the variation between information profiles in the present study is 

found at the beginning and, particularly, at the end of words, where word 

boundary transitions occur. This is also relevant to the principle that 

phonological reduction usually takes place at the end of the word or the 

syllable, occasionally leading to material being dropped, together with a 

compacting of the beginning of the word. The information profile of words 

thus reflects these differential probabilities that help speech segmentation by 

showing increased redundancy at the end of words – during word 
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processing, the appearance of redundant segments (e.g. one of the reduced 

set of segments that usually occur at the end of words) provides a cue to the 

word ending. 

In summary, phonological statistical regularities such as distributional cues 

seem to play an important role in speech stream segmentation. This should 

be reflected in a more marked drop of entropy in the final position of the 

information profiles of the tokens as compared to the types. 

2.5.3 Comparison of the information profiles 

A comparison of the information profiles generated by the types and the 

tokens, in the light of the pressures acting on the mental lexicon and on the 

communication channel that is speech, indicates how well adapted each 

word set is to the constraints of its representational substrate. I expect the 

information profile of the types to be flatter and to have higher levels of 

entropy, reflecting a pressure for a more efficient use of the representational 

space; on the other hand, I expect the profiles of the tokens to be more 

redundant, reflecting the complexity introduced by the different word 

frequencies, and steeper, reflecting the pressure to facilitate the segmentation 

of speech into words.  
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Figure 2.3. Slopes of the information profiles 
of the corpus (tokens) and the lexicon (types) 
across the four word lengths. 

Figure 2.4. Mean relative entropy of the 
information profiles of the corpus (tokens) 
and the lexicon (types) across the four word 
lengths. 
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Figure 2.3 shows that the word types generate mostly flatter information 

profiles, although the results are only marginally significant (one-tailed 

paired t-test, t=2.57, df=3, p=0.08). As we saw in Figure 2.2, the main 

contributor to the descending slope of information profiles is the last 

segment. If we compute the effect of this segment alone by subtracting the 

slope of all-but-the-last-segment from the slope of all the segments, we 

obtain significant differences between the tokens and the types (one-tailed 

paired t-test, t=5.28, df=3, p<0.01). Similarly, if we measure the effect of the 

last segment using the level of relative entropy of the last segment as a 

percentage of the mean relative entropy of the other segments, the 

comparison between tokens and types is significant across the four word 

lengths (one-tailed paired t-test, t=6.74, df=3, p<0.01). 

We see in Figure 2.4 that, as predicted, the mean relative entropy values are 

significantly higher for the types (one-tailed paired t-test, t=3.66, df=3, 

p<0.05).  

Slopes are flatter in the types, indicating a more even distribution of entropy 

across all word segments. Given the phonotactic constraints of the language, 

which must account for at least some of the redundancy and differential 

entropy across segments, it seems that segments are very evenly spread in 

the lexicon, particularly in shorter words, allowing (or caused by the need of) 

an efficient representation. Word-final segments, particularly, are 

significantly more evenly spread in the types than in the tokens. 

The tokens present steeper slopes, reflecting lower entropy levels in the last 

word segments, as predicted. Given the flatter profiles found in the types, 

this trend must be due to the fact that more frequent words show a more 

marked low entropy final segment, or more predictable (redundant) word-

end patterns. 
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Figure 2.5. Slopes of the information profiles of the 100 most frequent word types and of 100 
types of frequency=4 across three word lengths. 

Figure 2.5 shows the slopes of the information profiles of the most frequent 

100 types in the corpus (frequency range [50,000-877]) and 100 types of 

frequency 4 from word length groups 4, 5 and 6 (there were not enough 

words of length 7 in the corpus to include them in this comparison). The 

slope values indicate that the high-frequency words, particularly shorter 

ones, generate steeper profiles (one-tailed paired t-test=4.48, df-2, p<0.05). 

Shorter words tend to have higher frequencies than longer ones (see Figure 

2.1 above), suggesting that high-frequency words make better use of the 

statistical regularities of the lexicon to become more easily recognizable as 

independent units. The results shown in Figure 2.5 also suggest that frequent 

words have more informative beginnings and more redundant endings. This 

could help understand the progressive phonological reduction and eventual 

dropping of the endings of high-frequency words, and also the higher 

communicative effectiveness of frequent words – the information 

concentrated at the beginning of the word allows early recognition. 

Relative entropy values are higher in the types than in the tokens (Figure 

2.4), reflecting the higher complexity introduced by the frequencies (most 

words being considered more than once). 
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However, it is also apparent that while the high level of relative entropy is 

constant in the lexicon (types), in the corpus (tokens), it is lower for shorter 

words. This can be due partly to the fact that shorter words are more 

frequent – and the frequency distribution of longer words is closer to the 

distribution of types (frequency = 1 for all of them). Additionally, the high 

level of entropy in the lexicon (even distribution of phoneme frequencies 

across the word) in the short words suggests that many of the possible 

phoneme combinations do exist as words. However, the lower level in the 

corpus reflects the fact that some of these words are being used much more 

frequently than others. 

The information profiles of the lexicon reflects that it is adapted to an 

efficient storage solution, and that of word tokens reflects that they are well 

adapted to being segmented from the speech stream. However, a child’s 

lexicon and ability to segment speech may have different requirements, 

which should be reflected in the information profile. 

2.6 Child-directed speech 

I assume that speech addressed to a child is adapted to help develop an 

optimal strategy for lexical acquisition. Because children need to be able to 

identify and process new words, the structure of their smaller, ever-

expanding mental lexicon should reflect a greater emphasis on lexical 

acquisition demands and less on lexical efficient storage demands than the 

adult mental lexicon. On the other hand, the potential environmental noise in 

the channel transmitting the message and thus the constraint for producing 

intelligible speech is the same for adults and for children, therefore the sets of 

adult and child-directed tokens should show the same adaptation to 

intelligibility constraints. 

Young children are acquiring basic phonologically-encoded features of the 

language, such as word segmentation, so it can be expected that they need 

word boundaries to be more marked. The child’s main language input comes 
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from their caregivers, who seem to adapt their speech to their young 

audience in different respects. Speech addressed to children is characterized 

by special prosody (Kemler Nelson, Hirsh-Pasek, Jusczyk & Wright-Cassidy, 

1989), high pitch and other distinctive acoustic measures (Fernald & Kuhl, 

1987; Slaney & McRoberts, 2003), short Mean Utterance Length and simple 

syntactic structure (Tse, Kwong, Chang & Li, 2002), clearer phonological 

segmental information (Kuhl, Andruski, Chistovich et al. 1997), the inclusion 

of special vocabulary and special grammatical uses (‘mummy is here’ instead 

of ‘I am here’), and a higher neighbourhood density, which implies that 

children first learn words with more frequent sounds and sound 

combinations (Coady & Aslin, 2003). I argue that child-directed speech also 

tends to be different from normal adult speech in the informational contour 

of the words used, and child-directed speech contours should emphasize 

word boundaries. Many studies suggest that children are sensitive to the 

phonological statistical information in a language from an early age, and 

they seem to use it in the segmentation of continuous speech into words. 

Christophe, Dupoux, Bertoncini and Mehler’s (1994) experiments carried out 

with three-day-old infants in French suggest that they can discriminate 

between items that contain a word boundary and items that do not. This 

result indicates that newborns could be sensitive to cues that correlate with 

word boundaries, and that they could use these cues during lexical 

acquisition. Mattys and Jusczyk (2001) report that 6-12 month old infants are 

already sensitive to the probabilistic phonotactics of the language that is 

spoken around them. Jusczyk, Luce and Charles-Luce (1994) report that 9-

months infants prefer to listen to lists of monosyllables containing phoneme 

sequences that are frequent in their language than to lists containing 

infrequent (although legal) sequences. There are other reports of sensitivity 

of 10 month old children to cues to word boundaries such as statistical 

regularities (Jusczyk, 1999), and of the sensitivity of 9 month olds to how 

phonotactic sequences typically align with word boundaries (Mattys, 

Jusczyk, Luce & Morgan, 1999). Nine-month olds also prefer legal over illegal 



 45 

word boundary clusters (clusters of sounds which are allowed or not 

allowed to occur at the beginning of a word in a specified language) within 

their own language (Friederici & Wessels, 1993). These pieces of research 

were carried out using English and French, but I assume that the same 

strategy is employed in Spanish, which is, like French, a syllable-timed 

language. Also, the fact that these effects are observed as such early ages 

suggests that they are not language-specific. Cairns, Shillcock, Chater and 

Levy (1997) demonstrated that the distribution of phonetic segments in 

English is an important cue to segmentation. Statistical information is also 

the basis of word segmentation by a connectionist network trained with 

child-directed speech (Christiansen, Allen & Seidenberg, 1998).  

In summary, very young infants are sensitive to statistical cues to 

segmentation in the spoken language they hear. These cues could also help 

lexical acquisition. More predictable word-endings in the lexicon could help 

the child segment words from speech and recognize them as lexical units. 

This should be reflected as a drop in entropy at the end of the word type 

information profile. 

2.6.1 Data 

The data in this section come from “Maria” corpus (Lopez Ornat, 1994), an 

83,000 word corpus of speech interaction between an only child (between the 

ages of 1.25 and 4) and her parents and, to a much lesser extent, other 

relatives. For the present study only the speech addressed to the child was 

taken into account. After removing the child’s utterances and all corpus 

annotations 41,138 word tokens were left. The lexicon used in the corpus of 

child-directed speech has 3,895 word types, which represents a rather 

restricted vocabulary compared with the numbers of word types found in 

similar size samples from the adult speech corpus and from the text corpus. 

The average type:token ratio per 10,000 is 0.21 (range 0.20, 0.22) for 5 samples 

of the adult corpus and 0.16 (range 0.14, 0.17) for 4 samples of the child 

corpus. Incidentally, the four chronologically ordered 10,000-word samples 



 46 

from the child corpus produced increasingly higher type:token ratio values, 

reflecting the increasingly varied vocabulary employed when addressing a 

growing child. Another difference between the two corpora was the word 

length distribution. Child-directed speech was made up of shorter words, on 

average: the mode for the normal (adult) speech corpus was 7 segments 

compared with 5 for the child-directed speech corpus, and there were fewer 

long words in the child-directed speech (Figure 2.6). 
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Figure 2.6. Distribution of word-lengths in the 3,895 types and the 41,000 tokens from the 
corpus of child-directed speech (Cf. Figure 2.1 for the same distribution of adult types and 
tokens). 

The word frequency distribution of the child-directed corpus also has a 

significantly different standard deviation from that of the adult corpus. I 

tested this with a Monte-Carlo test: the SD of the 41,138-word child-directed 

frequency distribution is 73.4. I then calculated the SD of 100 random 

samples of the same size extracted from the adult corpus, and found that the 

child-directed SD was significantly higher than any of them, being an outlier 

(p<0.01) of the distribution of adult-corpus sample SD’s (thus the observed 

SD could not have occurred by chance). This is explained by the fact that the 

child-directed speech contains significantly less very low frequency words 

than the samples of the adult corpus. 

Another feature of this corpus of child-directed speech is the higher presence 

of nouns and adjectives with diminutive suffixes -ito, -ita, -itos and -itas. 

Diminutives are typical of positive affect speech in Spanish, including 

interaction with children (see Melzi & King, 2003, for a recent review of the 



 47 

use of diminutives in general and in Spanish in particular). Kempe and 

Brooks (2001) experiments in Russian – where diminutives are also a 

pervasive feature of child-directed speech – suggest that the function of 

diminutives is to help acquire grammatical gender. There are almost five 

times more diminutive types and eight times more diminutive tokens in the 

child-directed than in the adult speech corpus (1.37% of word types vs. 0.17% 

in the adult speech, and 5.65% of the word tokens vs. 1.17% in the adult 

speech).  

I assume that the phonological structure of child-directed speech triggers and 

directs the progressive organisation of a new mental lexicon structure in the 

child’s brain. I argue below that the characteristics of child-directed speech 

reflect the pressures acting on the developing mental lexicon, which are 

different and occasionally opposed to those acting on the adult mental 

lexicon. A comparison of the information profile obtained with the types and 

tokens from a child-directed and an adult corpus may reflect the effects of 

those different pressures.  

I expect that, unlike adult types, the child-directed types do not yield 

‘optimally efficient’ flat profiles, since children have a lot of representational 

space available. The child-directed tokens, represented speech, will behave 

like the adult tokens, since the pressures of communication over a noisy 

channel are the same for both adults and children. 

2.6.2 Comparison of the information profiles 

Figures 2.7 and 2.8 show the slopes and level of relative entropy of the 

information profiles of the tokens and types of the child-directed speech (Cf. 

Figures 2.3 and 2.4 for the same comparisons on the adult corpus).  
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Figure 2.7. Slopes of the information profiles 
of the tokens and types from the corpus of 
child-directed speech across the four word 
lengths.  

Figure 2.8. Mean relative entropy of the 
information profiles of the tokens and types 
from the corpus of child-directed speech 
across the four word lengths. 

Figure 2.7 shows the very similar slopes generated by the tokens and types of 

child-directed speech. The relative entropy levels (Figure 2.8), however, are 

significantly different (one-tailed paired t-test, t=4.99, df=3, p= 0.01) 

Figures 2.9 and 2.10 compare the slopes and mean relative entropy values of 

the child-directed information profiles with those of the adult corpus (data 

presented in § 2.5.3) , averaged over the four word lengths.  
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Figure 2.9. Average of the slopes of the 
information profiles of the tokens ant types 
of adult speech and child-directed speech 
across the four word lengths. 

Figure 2.10. Average of the mean relative 
entropy values of the information profiles of 
the types and tokens of adult speech and 
child-directed speech across the four word 
lengths. 
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Figure 2.9 shows a summary of the slopes and the relative entropy values for 

the adult and the child-directed tokens and types (Figures 2.3, 2.4, 2.7 and 

2.8). There is no significant difference between the slopes generated by the 

adult and child-directed corpora. The difference in the slopes of the types, 

however, is significant across the four word lengths (one-tailed paired t-test, 

t=4.23, df=3, p<0.05). Figure 2.10 shows significantly higher relative entropy 

in the adult data (one-tailed paired t-test, t=4.133, df=3, p<0.05 for the tokens 

and t=12.7, df=3, p<0.01 for the types). 

As expected, the slopes are similar in child-directed and adult tokens in the 

face of similar environmental noise levels and segmentation requirements.  

The fact that the child-directed types do not show the flatter slopes found in 

the adult types is due to the different slopes generated by frequent and 

infrequent types in both corpora. I calculated the information profiles of the 

50 most frequent types (frequency range [1,800-164]) and 50 types of 

frequency 2 in the 4, 5 and 6-segment words from the corpus of child-

directed speech (Figure 2.11).  
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Figure 2.11. Slopes of the information profiles of the 50 most frequent types and of 50 types 
of frequency=2 across 3 word lengths from the corpus of child-directed speech. (Cf. Figure 
2.5 for the similar data from the adult corpus). 
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The slopes of the high and low-frequency words are significantly different 

(one-tailed paired t-test, t=4.36, df=2, p<0.05). This result can be compared to 

the calculations done on the adult corpus shown in Figure 2.5 above, even 

though the number of words and the frequencies are lower for the child-

directed corpus, given the fewer types and tokens in this corpus.  

A comparison of Figures 2.11 (for child-directed types) and 2.5 (for adult 

speech types) reveals that the high-frequency types generate similar slopes in 

both the adult and the child-directed corpora (between 0.030 and 0.049). 

However, infrequent types are flatter in the adult (between 0.008 and 0.017) 

and steeper in the child-directed speech corpus (between 0.066 and 0.035). 

The type profiles are calculated using one count of every word, as opposed 

to the tokens, where each word is counted as many times as it appears in the 

corpus. Therefore, infrequent words have a bigger impact on the types than 

on the tokens, and this is reflected in the slopes. Additionally, the child-

directed corpus contains relatively fewer high-frequency words than the 

adult corpus - the frequency distribution of the tokens is flatter in the speech-

directed corpus (SD = 73.4) than in the adult-directed corpus (SD= 49.5 - 

average of the SD’s of the 100 random samples from the adult corpus of the 

same size as the child corpus used in the Monte-Carlo test in § 2.6.1). The 

higher number of low-frequency types in the child-directed corpus explains 

the steeper slope of the child-directed types.  

These steeper profiles of the child-directed types are due to the lower 

entropy level in the last segment. The more redundant, predictable word-

endings relative to normal adult speech may be reflecting the caregivers’ 

speech helping children identify word boundaries. This outcome is achieved 

at least partly through the higher presence of nouns and adjectives with a 

diminutive suffix, a strong characteristic of Spanish child-directed speech. 

I argued earlier that the flatter slope of low-frequency tokens in adult speech 

reflected the fact that these words have unusual word endings. I propose that 

the steeper slope of low-frequency types in child-directed speech reflects the 
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fact that word endings are very predictable. This would help segmentation 

and thus recognition and acquisition of novel words by children who have 

never heard them before. Note that most low-frequency words in child-

directed speech will be high-frequency in the adult speech, and adult low-

frequency words will probably not be present at all in the child-directed 

speech. Adults will use previous knowledge of a low-frequency word in 

order to segment it in speech, whereas children need strong clues to the 

word boundaries of words that are new to them. 

The results in Figure 2.10 also confirm the prediction that the level of relative 

entropy should be lower (higher redundancy) in the child-directed than in 

the adult types. This difference in relative entropy in the child-directed and 

adult types is also reflected in the tokens. In line with normal speech, the 

frequencies in the tokens introduce redundancy and lower the relative 

entropy of the types. 

Summary of sections 2.5 and 2.6. In these two sections I have 

calculated and compared the information profiles generated by 

words from an adult-speech and from a child-directed speech 

corpus. 

•  For the types – representing the mental lexicon – we have 

seen that, while adult speech profiles were very flat, child-

directed speech profiles are not, suggesting that the 

efficiency of storage pressure is less strong in the smaller 

infant mental lexicon than in the adult mental lexicon.  

•  As for the tokens – representing words in speech - both 

adult speech and child-directed speech information profiles 

were steep, suggesting that the pressures for efficient 

communication in a potentially noisy medium and for 

speech segmentation are similar for both children and 

adults.  
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•  Additionally, we have seen that the even distribution of 

phonological information in the types (flat profiles for 

types) is driven by low frequency words in the adult 

corpus, while frequent words show steep profiles that can 

be more easily exploited in speech segmentation. In the 

child corpus, the low-frequency words present very steep 

profiles, perhaps to help segment new words as they are 

introduced in the child’s vocabulary. 

2.7 The role of features: manner and place of articulation 

This section tests a different way of calculating the information profiles. For 

the calculation of entropy, instead of using the finite set of segments, I now 

use features such as manner and place of articulation.  

Manner of articulation speech features are best transmitted by the auditory 

channel, whereas place of articulation are best transmitted by the visual 

channel (Robert-Ribes, Schwartz, Lallouache & Escudier, 1998): in a noisy 

environment, seeing the speaker's face improves message intelligibility 

(Girin, Schwartz & Feng, 2001). Conflicting information from the two 

channels generate fused responses reflected, for instance, in the McGurk 

effect (McGurk & MacDonald, 1976): when presented simultaneously with 

the sound ‘ba’ and an image of a face pronouncing ‘ga’, people perceive ‘da’.  

I compare the results of the last two sections with similar information 

profiles calculated with the finite sets of 17 ‘manner of articulation (plus 

vowel)’ and 19 ‘place of articulation (plus vowel)’ features (see Appendix A 

for full lists of features).  
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Fig 2.12. Information profiles of 6-segment tokens from the speech corpus, calculated using 
the finite scheme of phonemes, of manner of articulation features and of place of articulation 
features. 

Manner and place of articulation information are distributed differently in 

the word. Figure 2.12 shows the profiles by phoneme and by manner and 

place of articulation of 6-segment long words from the corpus. Place of 

articulation is most informative in the word-initial position, where manner of 

articulation is relatively redundant in that position. The highest redundancy 

in the last segment is best captured by the phoneme analysis.   

Figures 2.13 and 2.14 present a comparison of the information profile slopes 

and mean relative entropy generated by the segment finite set (the results 

already presented in § 2.5 and § 2.6) and by the manner and place of 

articulation finite sets.  
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Figure 2.13. Values of the slopes (left) and of the mean Hrel (right) averaged over the four 
word lengths of the analysis by phoneme, by manner of articulation and by place of 
articulation using the assimilation transcriptions of the speech (adult) corpus and the child-
directed corpus. 
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Figure 2.13 shows that manner of articulation yields the flattest contours, 

particularly for the tokens, both in the adult and the child-directed corpora. 

In terms of average relative entropy, both manner and place of articulation 

behave similarly, with higher values than the phonemes, except in the adult 

types (lexicon), where the most efficient encoding seems to be attained with 

phonemes.  

Manner of articulation information is more evenly spread across words than 

place of articulation, and in speech (tokens) this suggests that it is more 

immune to noise and could have an important role in auditory speech 

production and recognition. This means that manner of articulation encodes 

speech robustly in the absence of visual contact. In the lexicon (types), the 

even spread of manner of articulation information suggests that it produces a 

more efficient encoding and thus could have an enhanced role in the 

organization of the phonological mental lexicon. This is also supported by 

the fact that manner of articulation slopes are steeper in the types than in the 

tokens – manner of articulation might be encoding internal word structure in 

the types, but not in the tokens.  

Place of articulation, providing visual information, shows much steeper 

slopes than manner of articulation, even steeper than phoneme slopes. This 

suggests that place of articulation is not an efficient dimension to organise 

the mental lexicon storage; however, the sharp difference of entropy between 

word-beginnings and endings is a good clue to speech segmentation (see 

Figure 2.12).  

Summing up, while manner of articulation seems to encode auditory 

information more robustly, place of articulation encoding may be responding 

to the pressure to facilitate speech segmentation. 
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2.8 Conclusion 

This chapter has examined the information profiles of words found in 

spoken language, a measure of how well different word systems are adapted 

to the informational requirements of their representational spaces. The 

information profile is calculated with a computationally inexpensive 

methodology that still finds reflections of the pressures acting on the 

distribution of phonological information within Spanish words. The 

consistency of the profiles’ behaviour over four independent word groups 

(words of length 4, 5, 6 and 7) supports the robustness of this method. The 

information profile calculated with different finite sets (segments and 

features) show comparable results, each reflecting different aspects of the 

phonological information structure of words. 

The profile found in the adult lexicon supports the claim that it reflects 

phonological distributional features that allow an optimal strategy of storage 

in the brain. However, the features of the lexicon of child-directed speech do 

not respond in the same way. Caregivers’ speech is adapted to meet other 

critical demands that interfere with an efficient storage strategy at this early 

age. 

The profiles of two different token sets (adult-directed and child-directed 

speech) show that they are equally well adapted to good communication 

over a potentially noisy medium. 

The vocabulary employed with children has a more marked drop in entropy 

levels at the end of words, which could enhance word-boundary recognition 

and help with lexical acquisition. In adults, segmentation cues are clearer in 

the corpus, helping with speech stream segmentation, one of the crucial 

problems of language recognition. 

Calculation of the information profiles generated by manner and place of 

articulation features suggests that while manner encodes a robust auditory 

representation of speech, place may serve as a cue for speech segmentation. 
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In conclusion, I have shown that information profiles of spoken words and of 

the lexicon are a useful tool to measure distributional aspects of large 

samples of language, and can be used to test and potentially falsify particular 

aspects of psycholinguistic theories about speech production and 

recognition, the mental lexicon, and lexical acquisition. 
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Chapter 3. The structure of the phonological mental 

lexicon   

 

This chapter describes a mental lexicon geometry defined by quantifiable 

relationships at several levels between words. It concentrates on the 

phonological level of the mental lexicon, particularly on representations 

based on similarity. It presents a psycholinguistic empirical exploration of a 

phonological parameter space that can be used as a tool to define the 

phonological lexicon structure. 

3.1 Similarity-based mental lexicon structure 

The last two chapters have emphasized the complexity of the mental lexicon. 

Chapter one described the mental lexicon structure as the result of juggling 

the many different pressures acting on it. Chapter two described emergent 

characteristics of the intra-word phonological level, and how this level 

responded to pressures such as intelligibility, storage and processing 

constraints. This section reviews approaches to the lexicon based on 

relationships between words, where each word's phonology, syntax and 

semantics is defined in terms of its similarity to the rest of the words in the 

lexicon.  

Chapter two considered the phonological lexicon as a set of words that 

responds as a system to communication and acquisition constraints. It 

examined the distribution of entropy, a measure of the information content, 

in the phonological representation of words. Entropy is defined in terms of 

probabilities in a set of elements. It makes no sense to talk about the entropy 

of one word, but in the statistical framework of linguistic communication, 

each word occurs in speech with a certain probability. An unconstrained 

system evolves towards a state of maximum entropy, where all elements 

occur with the same probability. Deviations from this state of maximum 
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entropy are a reflection of the pressures that operate on the system. In 

chapter two I found traces of the effect of communication, segmentation and 

acquisition needs on the phonological lexicon structure.   

This chapter focuses again on the lexicon as a system, but at the word level 

instead of the segment level. I look at explanations of lexicon organisation 

where each word is defined by its relationships with the rest of the words, 

for instance the word 'cat' is defined phonologically by its similarity to other 

words like 'mat' and 'cab', and by its differences from words like 'lease' or 

'friendliness'; syntactically, it is defined by its similarity to other nouns like 

'chair' and 'glove' and by its difference from words from other categories 

such as 'the' and 'go'; semantically, it is defined by its similarity to 'dog' and 

'purr' and its differences from 'cloud' and 'write'. These examples illustrate 

the emergence of categories in a lexicon structure based on similarity: words 

belonging to the same category will be close together along the dimension 

measuring that category. 

The aim of this chapter and the next is to obtain two similarity-based 

representations of the lexicon: one at the word-form level and another at the 

cooccurrence-based level. These will be brought together in chapter five, 

where I test the existence of systematic relationships between them. In the 

present chapter I review studies suggesting that the lexicon is structured in 

terms of similarity between words at many levels, and then concentrate on 

metrics of phonological similarity. Finally I present a psycholinguistic study 

that measures the relative impact of phonological parameters such as 

'sharing the initial consonant' or 'sharing the stress on the final syllable' on 

perceived word similarity. The resulting parameter values will be used in 

chapter five's metric of phonological similarity to produce quantitative 

representations of samples of the Spanish phonological lexicon. 
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3.1.1 Lexicon levels 

Many studies have shown evidence suggesting that similarity plays a role 

the structure of the mental lexicon. Words can be categorised in terms of 

their phonology, semantics and syntax, among other levels. One widely used 

paradigm that reveals these similarity relationships between words is 

priming. In priming experiments, participants are exposed to a prime word 

for a short time, and are subsequently shown a target word. Prime and target 

are related semantically, phonologically or at another level, according to 

what lexical level the experiment addresses. An analysis of the effect of 

exposure to the prime on processing of the target reveals aspects of the 

lexicon organisation and representation at the relevant level. Primes can have 

facilitatory or inhibitory effects on target processing. Facilitation usually 

occurs with rapid presentation and it does not rely heavily on attention or 

processing effort. Inhibition occurs later during lexical processing and may 

involve more attention or strategic processing (Faust & Gernsbacher, 1996; 

Neely, 1991). Facilitatory priming reveals a more direct reflection of the 

mental lexicon structure, since it is not affected by conscious or controlled 

processing.  

The priming effect can be explained by a process of spreading activation 

(Collins & Loftus, 1975): when a word representation is activated, the 

activation spreads to word representations that are closely related to it. For 

example, hearing the word 'cat' activates semantically related words such as 

'purr' and 'dog'. When one of these related words is subsequently presented, 

the participant reacts to it sooner because it was already partially activated. 

This assumes that the representations of related words are more closely 

connected to each other than to unrelated words. Priming is proportional to 

relatedness, so the strength of the priming effect between a target and its 

prime is a measure of how closely related they are. The relatedness between 

two words can be defined as the similarity between them at the relevant 

level.  
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A whole body of literature on semantic priming suggests a lexicon organised 

in terms of semantic similarity relationships between words (Meyer & 

Schevaneldt, 1971; see Neely 1991 for review). The lexical decision task has 

been used extensively to demonstrate semantic priming: participants have to 

decide whither a string of characters is a real word or not. The typical effect 

is that when participants are shown for instance the word ‘cat’, the time they 

take to recognize it as a word is shorter if they were shown the prime ‘purr’ 

than if the prime was ‘puff’. Manipulation of the semantic relationships 

between primes and target words has helped study the structure of the 

semantic mental lexicon. 

Other studies focus on phonological similarity: Frisch, Pierrehumbert and 

Broe (2004) studied the interactions of different phonotactic constraints in 

Arabic and found that the more similar two homorganic (same place of 

articulation) consonants are, the less they tend to cooccur within the same 

root. They propose a model of the phonological lexicon where constraints are 

graded rather than absolute, and interact with each other in complex ways. 

Saffran (2003) and Pierrehumbert, (2001b, 2003b) emphasize statistical 

learning of phonology, suggesting that the organisation of the phonological 

lexicon is learned from the statistical properties of the linguistic input.  

Morphosyntactic priming results are reported in several papers: Sereno 

(1991) found that prime words facilitated targets from the same syntactic 

class in a lexical decision task (but not in a naming task). Sanchez-Casas, Igoa 

and Garcia-Albea's (2003) priming and lexical decision experiments in 

Spanish also suggest that morphology is represented in the mental lexicon 

and it may play a central role in word identification and recognition. Other 

paradigms also reveal the morphological organisation of the lexicon: 

Bozsahin (2002) proposes a Combinatory Categorial Grammar-based 

interface between inflectional morphology, syntax and semantics that 

exploits systematic relationships between the three lexical levels, and Saffran 
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(2003) suggests that morphology is also learned from statistical patterns in 

speech.  

The lexicon also seems to be organised in terms of the orthographic form of 

words. Segui and Grainger (1990) used a priming paradigm to reveal that 

words were activated by primes with similar orthography, and the number 

and frequency of the neighbours affected the degree of this activation. 

Andrews (1997) notes some differences between orthographic priming effects 

in English and in other languages with more transparent orthography such 

as Spanish and English, such as less influence of high-frequency 

orthographic neighbours on lexical retrieval.  

Similarity of nonlinguistic lexical aspects also has been found to influence 

processing and to affect the lexicon structure. Kjellmer (2000) found that 

foreign words are more likely to enter the lexicon of a language if there was 

no native equivalent, but also due to social aspects such as fashion and 

prompting by the media. Type of social interactions has been shown to 

influence the evolution of the lexicon (Baldwin, 2000; Vogt & Coumans, 

2003). Finally, the lexicon also seems to be organised in terms of similarity of 

words' emotional connotation. Wurm, Vakoch, Aycock and Childers (2003) 

isolated the effect of very specific emotional lexical connotations such as 

'danger' and 'usefulness' on word naming times, and in a perceptual 

matching and classification task, Mullennix, Bihon, Bricklemyer, Gaston and 

Keener (2002) showed the effect of emotional tone of voice.  

Having seen how words are organised in the mental lexicon in terms of their 

semantics, phonology, syntax, orthography and some non-linguistic aspects, 

the next section briefly reviews theories of category construction  

3.1.2 Categories within lexicon levels 

The organisation of the mental lexicon is reflected in the existence of word 

categories at different levels of linguistic description. Category construction 

has been dealt with by different theories throughout history, as Murphy 
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(2002) explains: according to the classical theory of concepts (Frege, 1862-

1960), concepts are represented in the mind as definitions or lists of necessary 

conditions to belong to that category. Classic categories in cognitive 

psychology such as the syntactic category 'noun' or the phonological 

category 'bilabial' were defined a priori by rules. Later, Rosch’s (1978) 

typicality effect studies showed that people agree about whether an example 

is a good member of a category to a surprisingly large extent. This prompted 

two opposing theories, both involving similarity comparisons: in prototype 

theory, concepts are represented in long-term memory as the best or most 

prototypical instance, and categorization is achieved by comparing the 

observed item to stored prototypes and matching it with the prototype it is 

most similar to. In exemplar theory, many or all instances (exemplars) of a 

category are stored, and categorization is achieved by comparing the 

observed item to all the stored exemplars and determining the number of 

exemplars it is similar to and the extent of this similarity. The exemplar 

theory of categorisation has been applied to speech perception and 

production by Jonhson (1997), Lacerda (1995) and Pierrehumbert (2001), and 

to phonological acquisition by Maye, Werker and Gerken (2000), who 

propose that the acquisition of linguistic categories such as phonemes is 

brought about by the memory traces of perception of many exemplars of the 

categories in speech.  

The next section reviews similarity-based models of the mental lexicon. 

3.1.3 Similarity-based mental lexicon models 

In this section I briefly review models where the structure of the mental 

lexicon is determined by relationships between words.  

Guthrie, Pustejovsky, Wilks and Slator (1996) review analyses performed on 

machine readable dictionaries that, apart from extracting explicit information 

such as definitions, exploit implicitly available phonological, semantic and 

syntactic information. They focus on cooccurrence approaches that extract 
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part of speech (Byrd et al., 1987), form noun and verb taxonomies (Amsler & 

White, 1979), create semantic networks (Alshawi, 1989), create semantic 

lexical hierarchies (Beckwith, Fellbaum, Gross, & Miller, 1991), reflect the 

acquisition of semantic features (Guthrie, Slator, Wilks, & Bruce, 1990; 

Pustejovsky, 1991) and construct semantically coherent word-sense clusters 

(Slator, 1991; Wilks et al., 1993). All these kinds of information can be 

included in an analogue of the mental lexicon, a ‘lexical database’ (e.g. 

Nakamura & Nagao, 1988), that can be used in natural language processing 

tasks such as sense disambiguation.  

Connectionist models of the lexicon include those of Miikkulainen (1997) and 

Philips (1999). The former presents an unsupervised connectionist model 

called DISLEX, consisting of orthographic, phonological and semantic 

feature maps. The geometry of each map and the interconnections between 

maps are configured by Hebbian learning and self-organization based on the 

cooccurrence of the lexical symbols and their meanings. Philips (1999) 

proposes a connectionist mental lexicon that, apart from lexical semantics, 

includes information about grammatical category, frequency and phonology. 

The Analogical Model of Language (AML) (Skousen, 1995) was proposed as 

an alternative to connectionist language models. AML attempts to reflect 

how speakers determine linguistic behaviours. When speakers need to 

perform an operation on an unfamiliar word such as derive it or place stress 

on it, they access their mental lexicon and search for words that are similar to 

the word in question. Then they apply the derivation or stress pattern of the 

similar words to the target word. AML has been used to predict stress 

placement in Spanish (Barkanyi, 2000; Eddington, 2000), the choice of linking 

elements in Dutch noun-noun compounds (Krott, Schreuder & Baayen, 2002), 

and Spanish diminutive formation (Eddington, 2002). 

Having reviewed similarity-based approaches to the mental lexicon, the next 

section outlines the similarity-based mental lexicon model adopted in the rest 

of this thesis. 
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3.1.4 A similarity-based model of the mental lexicon  

I assume a mental lexicon configuration consisting of different levels of 

organisation, each of which is defined by relationships of similarity between 

each word and every other word with respect to that level. In such a 

configuration, categories emerge as groups of words that are close together 

in that level of description (see Figure 3.1). 

 

Figure 3.1. One level of description of the words in the lexicon. The black dots are the words; 
the lines between them represent relationships of similarity: the shorter the line, the more 
similar the two words it joins. The overall configuration of the lexicon is defined by the 
similarity relationships between words. Categories emerge from the resulting geometry (the 
clusters in the grey ovals). Note that in reality the lexicon would not be representable in a 
two-dimension plane. 

For example, the phonological level of the mental lexicon is defined by the 

phonological similarity between each word and every other word. In such a 

structure, the identity of the words themselves becomes unimportant. Each 

word's position is defined by its similarity values to every other word (this 

could be visualised by rotating the whole structure represented in Figure 3.1; 

the actual positions of the words is irrelevant, what counts is their relative 

position to each other). Categories can be identified at different levels (e.g. 

phonological, semantic) and along different dimensions within levels (e.g. 

words stressed on the final syllable). I assume that those groupings can be 

explained in terms of pressures acting on the lexicon structure. 

I assume that speech contains the information patterns necessary to organize 

categories at the different linguistic levels of the lexicon (phonological, 

semantic, syntactic). This is linked to the important role of statistical learning 
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in using the information in speech during the development of the lexicon in 

language acquisition: the stochastic patterns in speech incrementally define 

the relationships between words. I therefore assume that relevant analyses of 

speech should reveal the patterns of information that shape the mental 

lexicon.  

Using a corpus as an approximation to speech, this chapter and the next 

explore the information revealed by the analysis of two types of speech 

information patterns - phonological and cooccurrence-based (including 

syntactic and semantic information), respectively.  

This section has looked at models of a structured mental lexicon organised in 

terms of similarity between words at different levels. The next section 

focuses on the phonological level of the lexicon, reviewing metrics of 

phonological similarity and finally presenting an empirical study to measure 

the impact of different parameters on perceived phonological similarity 

between words.  

3.2 Phonological similarity  

The phonological level of the lexicon is composed of discrete units: the 

segments of the language. Words are temporal combinations of those 

segments. The similarity between two words in the phonological space 

depends on the configuration of the space in that language - two words may 

be perceived as phonologically similar for example if they share the initial 

segment; if they rhyme; if they both contain segments with the same place or 

manner of articulation; if they are stressed on the same syllable.  

The function of detecting phonological similarities (or differences) between 

words is to classify and distinguish lexical items. Some phonological features 

of a word may contribute more than others to lexical classification. The 

aspects of words where similarity is more easily detected in a particular 

language must correspond to the more salient parameters of the 

phonological word representation in the mental lexicon. Or, in other words, 
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phonological aspects of the mental lexicon organization that contribute more 

to classification will be the aspects that are easier to detect by the processor. 

Finding which parameters of word form have a greater impact on similarity, 

and how they relate to each other can help us understand the functions of 

those parameters in the organization of the mental lexicon of a language. 

Such an analysis can contribute to understand the processor's biases to pay 

attention to specific lexical aspects, and the adaptations of the lexicon to 

those biases. 

This section reviews metrics of phonological similarity and presents an 

empirical approach to measure the relative importance of word-form 

parameters for the detection of word-form similarity in Spanish words. This 

study examines two sets of bisyllabic word structures (cvcv and cvccv) and 

attempts to establish the impact of the different segments, of stress and of 

syllabic structure on perceived word-form similarity.  

3.2.1 Metrics of phonological similarity 

Different lines of research have devised metrics of phonological similarity, 

from purely psycholinguistic studies to language engineering.  

Many methods to measure phonological similarity consider the segmental 

level. Focusing on speech production, speech error analyses such as slip-of-

the-tongue studies provide information on the importance of different 

segments for overall word-form similarity. By comparing which phonemes 

are replaced by which in speech errors, Stemberger (1991) composed a 

confusion matrix that quantifies the degree of confusability between each 

phoneme pair. The more confusable two phonemes are, the more similar 

they are assumed to be in a language's phonological representation map. 

Stemberger's confusion matrix has been used to test the accuracy and 

psychological plausibility of other similarity metrics. For instance, Frisch 

(1996) used it to support his choice of a phoneme similarity metric based on 
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phoneme representations derived from Broe's (1993) structured specification 

theory.  

The priming paradigm has been used in psycholinguistics to study word 

recognition (see an overview in Zwitserlood, 1996). A target word is 

preceded by a prime word that shares one parameter with the target. If the 

prime affects the processing of the target, then the parameter they share must 

be involved in lexical access. In priming studies of phonological similarity, 

when the prime and target shared the initial segments the results are 

conflicting (see review in Radeau, Morais & Seguí, 1995), but sharing the 

final segments, particularly if they rhyme, has been shown to facilitate target 

processing (see Dumay et al., 2001, for review).  

Phonological similarity has also been measured in relation to the 

phonological similarity effect described by Conrad and Hull (1964), who 

found that when people are asked to recall a list of words, they perform 

worse if the words sound similar to each other. (Although Lian & Karslen, 

2004, recently found that the effect depends on the type of phonological 

similarity considered, as reviewed in § 6.2.3.3 in chapter six). This effect is 

also found when words are read instead of heard, which is best explained by 

Baddeley and Hitch (1974) model of working memory that includes a 

component that recodes visual (orthographic) information into a 

phonological representation. In order to study the phonological similarity 

effect, researchers needed sets of phonologically similar and dissimilar 

stimuli. One method used to quantify phonological dissimilarity is Psimetrica 

(Phonological SImilarity METRIC Analysis), developed by Mueller, 

Seymour, Krawitz, Kieras and Meyer (2003) to test models of verbal working 

memory – yielding results in support of Baddeley’s model. For each word 

pair, Psimetrica returns a multi-dimensional vector that includes information 

about dissimilarity along a number of parameters such as rhyme, stress 

pattern or syllable onset match. This technique first defines each word in 

terms of a number of parameters or dimensions, it then aligns the two words 
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and quantifies the level of matching for each dimension and finally, the 

results are averaged over all the word pairs to yield the mean phonological 

dissimilarity profile of the word set.  

Several methods for measuring word similarity across languages were 

developed with the purpose of automatic cognate identification. Cognates 

are words from different languages that share the same etymological origin, 

such as 'pronounce' in English and 'pronunciar' in Spanish, both derived 

from the Latin verb ‘pronuntiare’. These methods look for orthographically 

or phonetically similar words across different languages. This task involves 

searching and matching, including finding the word alignment that yields 

the best possible similarity score. Some of these methods measure the 

similarity of orthographic forms, such as the Longest Common Subsequence 

Ratio or LCSR (Melamed, 1999), which divides the length of the common 

subsequence (common characters in the same order) by the length of the 

longest of the two strings; and Dice’s coefficient, used by Brew and McKelvie 

(1996) which equals the number of shared bigrams multiplied by two 

divided by the sum of bigrams from the two strings. Other methods measure 

the similarity of phonological forms, such as ALINE (Kondrak, 2000), that uses 

a list of parameters based on phonological features ranked by salience and 

then finds the optimal alignment of strings. The best parameter values for 

finding cognates are found by a hill-climbing search that optimises the 

values for the task at hand (in this case, cognate matching).  

McMahon and McMahon (2003) propose that quantitative methods drawn 

from the field of genetics should be applied to language classification into 

families. They used measures of phonological similarity between cognates to 

generate an unrooted phylogeny tree for Indo-European languages. Another 

quantitative approach is that of Kirby and Ellison (in preparation), who 

carried out a study of language phylogeny based on similarity within and 

between languages. They created vector representations of the phonological 

lexicons of 95 different languages (using edit-distances to compare words 
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within each language – and not cognates across languages). They then 

compared the 95 languages using the divergence of their distributions of 

confusion probabilities. Finally, using a neighbour joining algorithm, they 

constructed a language phylogenetic tree that reflected a plausible evolution 

of the Indo-European language family.  

Phonological similarity is also used in a spoken document retrieval method 

(Crestani, 2003) that combined phonological and semantic similarity of the 

term used in a search with the terms contained in the documents to be 

searched. Crestani used a metric of phonological similarity between two 

words devised by Ng (1999) that uses the values in a phone confusion matrix 

(how liable is each phoneme to be misperceived or used instead of another 

one).  

The last few paragraphs present many studies that have measured 

phonological similarity, some focusing on individual segments and some on 

whole words, for a variety of purposes, briefly summarised in Table 3.1.  

Parameters Paradigm Results 

Shared phonemes Speech errors Phoneme confusion matrix 

Shared segmental positions Priming Determines impact of 
parameters on lexical 
processing 

Various at different levels 
(rhyme, stress, shared 
sequences) 

Quantitative 
methods  

Quantifies impact of parameters 
on phonological similarity 

Table 3.1. Summary of metrics of phonological similarity. 

The next section presents a metric of similarity between whole word-forms 

based on identity at the segmental level that measures the relative 

importance of the position, the stress pattern and the syllabic structure. This 

metric is different from the ones described above in several respects. First, 

unlike the phoneme similarity studies, I measure whole word similarity 

rather than single segments. Second, using a psycholinguistic methodology 

means that, as in the case of priming studies, I am not measuring pure 

phonological similarity, but rather word-form similarity, since other factors 
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such as morphology may affect the results. Third, unlike cognate 

identification and document matching, this empirical metric is not looking 

for certain types of similarity with a specific purpose in mind. Rather, I offer 

parameter combinations in a forced choice task and analyze people’s 

responses. Finally, this method does not take into account the identity of the 

phonemes compared, as spoken document retrieval systems do. Instead, I 

consider the positions in the words together with information on whether 

they are consonants or vowels and whether they are stressed or not. I then 

measure the impact of these parameters on the estimation of the overall 

perceived similarity between word-forms.  

The next section describes the study and discusses the results in the light of 

current psycholinguistic theories.  

3.2.2 Word-form similarity perception in Spanish: an empirical 

approach 

The focus of this thesis is the structure of the mental lexicon, assuming a 

lexicon organised in terms of relationships of similarity between words at 

different levels. This section concentrates on building up a quantitative 

model of the phonological mental lexicon; chapter four presents a 

quantitative approach to the syntax-semantic lexicon. Chapter five brings the 

two together and looks for systematic relationships between the two levels.  

This section presents an empirical metric of phonological similarity aimed at 

determining the relative impact of different parameters on the perception of 

phonological word similarity. Using a forced-choice paradigm on pseudo-

words, this Internet-based study tested the impact of sharing single and 

multiple segments (e.g. sharing the initial consonant; sharing all the vowels) 

and stress on two word structures: cvcv and cvccv. The resulting parameter 

values are used later to configure the quantitative model of the phonological 

lexicon.  
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3.2.2.1 Participants 

All participants had Spanish as their mother tongue and lived in Spain. 55 

participants (30 male, 25 female) between their teens and their sixties, from 

ten Spanish regions participated in this on-line study (See Table 3.2 for full 

demographic data). They were recruited through an e-mail message sent to a 

linguistics web forum, to friends and also to university students requesting 

them to take part in an experiment and forward the message on to their 

acquaintances. Participants were directed to a web form containing the 

instructions and the materials. At the end of the form there was a small 

questionnaire where they were asked about their region of origin, age group, 

sex and about the main strategy they had followed while doing the test 

(simply looking at the words, reading them in their heads or reading them 

out loud).  

Origin Age Strategy 

Madrid  13  < 20 1  Look 2 

Galicia  12  21-30 15  Loud 30 

Andalusia  12  31-40 23  Silent 23 

Murcia  4  41-50 10    

Asturias 4  51-60 5    

Castille  4  > 60  1    

Aragon 2       

Basque C.  2       

Catalonia 1       

Valencia  1       

Table 3.2. Participant age, origin and strategy. 

3.2.2.2 Materials 

The participants were presented with orthographic stimuli on a computer 

screen. In a study concentrating on phonological aspects of the word-form, 

stimuli could have been acoustic, but this posed difficulties in an Internet-

based study. The unreliability of the quality of sound data over the Internet 

and of the sound playing equipment in remote terminals shifted the balance 
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in favour of orthographic stimuli. I assume that Baddeley and Hitch’s (1974) 

orthography-to-phonology recoding system mentioned above is at work; 

besides, the instructions to the participants emphasized that they should 

focus on the sound of the stimulus nonwords. This means that participants 

are accessing their idealised phonological representations, which should be 

conventionally equivalent for all speakers of the same language.  

Participants were presented with nonword triads like the one shown in Table 

3.3, containing one nonword on the left and two on the right such that the 

two on the right were similar to each other, and different to the one on the 

left, except that each of them shared one parameter with it. Since every word 

must be stressed on one syllable, when stress was not an issue all three 

words in a triad would be stressed on the first syllable (most common, 

unmarked stress in Spanish). All the possible parameter combinations for 

cvcv and cvccv words were presented. Parameter combinations that cannot 

occur simultaneously such as ‘sharing the stress on the first syllable vs. 

sharing the stress on the second syllable’ were excluded (see Appendix B for 

complete stimulus list). 

ο mélto 
súnta 

ο múlko 

Table 3.3. An example nonword triad. In this case the top word on the right shares the third 
consonant (t) with the word on the left and the bottom word shares the stressed vowel in the 
first syllable (ú). These are the two parameters that we are comparing here.  

I prepared two stimulus lists, each consisting of 83 cvccv and 39 cvcv triads 

(a total of 122). Each triad represented one parameter combination. The 

parameters are features that two words can have in common. Table 3.4 

shows the parameters used in this study for the two word groups. To avoid 

any order effects, the two words on the right of the triad would appear in 

each possible order about half of the time. In order to keep the test time low 

and encourage participation and completion, each informant only saw a set 

of 45 triads that were randomly selected from one set of 122, presented in a 



 73 

random order. A random ordering was automatically generated each time 

the experiment was run, so it was different for each participant. 

 cvcv cvccv 

c1 Same initial consonant c1 Same initial consonant 

  c2 Same 2nd consonant 

c2 Same 2nd consonant c3 Same 3rd consonant 

v1 Same 1st vowel v1 Same 1st vowel 

 
Single 
segment 

v2 Same 2nd vowel v2 Same 2nd vowel 

  tc13 Same consonants 1 and 3  

  tc23 Same consonants 2 and 3 

tc Same two consonants 3c Same three consonants 

 
Multiple 
segment 

tv Same two vowels tv Same two vowels 

Syllable 
structure 

  str Same syllabic structure (cvc-cv or 
cv-ccv) 

s1 Same stress (on 1st syllable) s1 Same stress (on 1st syllable) 

s2 Same stress (on 2nd syllable) s2 Same stress (on 2nd syllable) 

sv2 Same stressed vowel in the 1st 
syll 

sv1 Same stressed vowel in the 1st 
syllable 

 
Stress 

sv2 Same stressed vowel in the 2nd 
syll 

sv2 Same stressed vowel in the 2nd 
syllable 

Table 3.4. Parameters used in the study for cvcv and cvccv nonwords.  

Note that not all these parameters are independent of each other. (The only 

truly independent parameters are the single segment parameters c1, c2, c3, 

v1 and v2). When two words share the parameter ‘two vowels’, they 

necessarily share ‘vowel 1’ and ‘vowel 2’ as well. As we see in the example in 

Table 3.5 below, all three words share the first vowel, so when people decide 

which of the words on the right is more similar to mópi, the result is 

measuring the influence of parameter ‘sharing the second vowel (when they 

already share the first one)’.  

ο sóte 
mópi 

ο sóti 

Table 3.5. Example triad comparing non-independent parameters ‘vowel 1’ and ‘two 
vowels’. 

Stimulus nonwords were written using only letters with a transparent 

orthography-phonetics relationship, also avoiding the use of Spanish 

graphemes ñ, ch and ll. In order to make the nonword stimuli natural to the 
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Spanish ear, their phonotactic probabilities were matched to words of the 

same structure extracted from a corpus (Marcos Marín, 1992). The 

frequencies of the consonants in the stimulus nonwords mirrored those of 

words of the same structures from a speech corpus. For cvcv words, the 

similarity between the distribution of the consonants was significantly 

correlated with their corpus counterparts (first consonant: Pearson’s r = 0.82; 

df = 12; p<0.001; second consonant: Pearson’s r = 0.69; df = 11; p<0.01). For 

cvccv words, consonant cluster frequencies were significantly correlated with 

those in the corpus (Pearson’s r = 0.70; df = 49; p<0.001), but the similarity of 

first consonants was not (Pearson’s r = 0.46; df = 11; p<0.09). Note that given 

the small set of frequent consonant clusters in Spanish, it is difficult to find 

combinations of cluster and first consonant that are not real words for the 

cvccv set.  

Another measure of wordlikeness (the extent to which a sound string is 

typical of a language) is the lexical neighbourhood density. Neighbourhood 

density is calculated by counting the number of words in a corpus (Marcos 

Marín, 1992) that sound similar to a target: (a) words of the same length that 

differed from the stimuli by a 1-phoneme substitution (measure used by e.g. 

Ziegler, Muneaux & Grainger, 2003); (b) words up to 6 phonemes (for 4-

phoneme stimuli) and up to 8 phonemes (for 5-phoneme stimuli) that 

contained the stimulus - similar to Stoianov’s (2001) approach, who consider 

syllables that share at least two segments as contributing towards similarity, 

and neighbourhood; and (c) longer words that rhymed with the stimulus – 

the neighbourhood density metric used by De Cara and Goswami’s (2003) 

includes rhyme, and indeed they suggest that rhyme has a special role in the 

development of phonological awareness. As expected, the neighbourhood 

densities of the stimulus nonwords are lower than those of similar real 

words. 
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Figure 3.2. Neighbourhood density (average number of phonological neighbours) of 
stimulus nonwords and similar words from the corpus. 

Figure 3.2 compares the neighbourhoods of cvcv and cvccv nonwords with 

those of all the words of the same structure found in the corpus. The 

phonological space of a language is to a large extent used up by the real 

words. Phonologically adaptive forms are used again and again, that is why 

nonwords cannot be expected to have as many neighbours as real words, but 

there are similarly shaped distributions of neighbours for cvcv and cvccv.  

Even though place and manner of articulation features in the stimuli were 

not controlled for, in most cases the consonants used in one stimulus set are 

different from the consonants used in the other stimulus set for the same 

comparison.  

3.2.2.3 Method 

Participants were directed to an Internet link to the experiment web page, 

where they first saw the instructions. Below these were 45 stimulus triads 

randomly selected from the 122 from one set. Participants were asked to read 

the nonword triads and determine which of the two words on the right 

sounded more similar to the word on the left. Participants were directed to 

pay attention to stress, which was marked in all stimuli as an acute on the 

corresponding vowel (the usual orthographic stress mark in Spanish). 

Additionally, participants were instructed not to think too much, and to 

select their first spontaneous choice. The results, together with the 

demographic data, were automatically emailed back to the experimenter for 

analysis.  
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This design was intended to reveal which parts or aspects of the word people 

focus on more when they read the stimuli, particularly what is more salient 

when they look for phonological similarity. Sound similarity is mentioned in 

the instructions, so we were recording meditated choices, rather than 

automatic responses as in priming paradigms. Also, participants could take 

their time and read the stimuli several times, which allows for other factors 

to play a role in the choice. When asked which of the two stimuli on the right 

sounds more like the target, people activate and match the representations of 

the three stimuli. I used nonwords so that direct semantic representations 

were not available, although the semantics of the stimuli’s phonological 

neighbours could influence the choice. In order to minimise that problem, I 

used two different nonword triads for each parameter comparison. 

3.2.2.4 Results 

I obtained an average of 20 responses (minimum: 10, maximum: 31) for each 

pairwise parameter comparison. The results for cvcv and cvccv stimuli were 

analyzed separately. For each pairwise comparison of parameters, I counted 

the proportions of respondents that favoured each option to obtain the 

‘winner’ of that comparison. For example, in the triad comparing parameter 

‘c1’ and ‘c2’ for cvccv words, 14 out of 21 respondents selected ‘c1’ and 7 

selected ‘c2’, so the winner is ‘c1’. I then calculated a weight between zero 

and one that expressed the confidence of the result that the winner is ‘b’, 

such that if everybody prefers the same parameter the weight for the winner 

is 1; if the responses were fifty-fifty, the weight is 0, and there is no winner. I 

calculate that by dividing the difference between the number of people who 

chose ‘c1’ (14) minus the number of people who chose ‘c2’ (7) divided by the 

total of responses (21). In our example, (14-7)/21=0.33, meaning that 0.33 

more people preferred ‘c1’ than ‘c2’, so for this comparison we would have a 

weight of 0.33. Tables 3.6 and 3.7 below show matrices containing the 

weights obtained for all the pairwise parameter comparisons for cvcv and 

cvccv stimuli. 
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cvcv c1 c2 v1 v2 tc tv s1 s2 sv1 sv2 

c1  -0.57 -0.48 -0.38 1 0.64 0.42 0.21 -0.09 0.5 

c2 0.57  -0.07 0.58 0.56 0.8 0.65 0.48 -0.07 0.73 

v1 0.48 0.07  -0.17 1 0.86 0.43 -0.22 n.a. 0.81 

v2 0.38 -0.58 0.17  0.58 0.17 0.58 0.26 0.26 n.a. 

tc -1 -0.56 -1 -0.58  0.22 0.04 -0.16 -0.71 0.07 

tv -0.64 -0.8 -0.86 -0.17 -0.22  -0.4 -0.24 -0.45 -0.08 

s1 -0.42 -0.65 -0.43 -0.58 -0.04 0.4  n.a. 0.74 n.a. 

s2 -0.21 -0.48 0.22 -0.26 0.16 0.24 n.a.  n.a. 0.86 

sv1 0.09 0.07 n.a. -0.26 0.71 0.45 -0.74 n.a.  n.a. 

sv2 -0.5 -0.73 -0.81 n.a. -0.07 0.08 n.a. -0.86 n.a.  

           

All param. -1.25 -4.21 -3.26 -1.82 3.68 3.85 0.97 -0.52 -0.32 2.88 

All segm. -0.20 -2.43 -2.24 -0.72 2.92 2.68     

Single seg. 1.43 -1.07 -0.38 0.02       

 
cvccv c1 c2 c3 tc13 tc23 3c v1 v2 tv s1 s2 sv1 sv2 str 

c1  -0.33 -0.5 0.4 0.05 0.88 -0.5 -0.28 0.83 0.58 0.57 -0.1 0.74 -0.33 

c2 0.33  -0.57 0.41 1 1 0.36 0.6 0.55 0.79 0.3 -0.11 1 -0.62 

c3 0.5 0.57  1 0.69 1 0.83 0.26 1 0.65 0.6 0.08 0.83 -0.68 

tc13 -0.4 -0.41 -1  0.06 0.83 -0.17 -0.13 0.43 0.33 -0.14 -0.55 0.67 -0.58 

tc23 -0.05 -1 -0.69 -0.06  0.69 0.42 -0.08 0.13 0.39 0.69 -0.88 0.68 n.a. 

3c -0.88 -1 -1 -0.83 -0.69  -0.86 -0.83 -0.33 -0.09 -0.33 -0.8 -0.25 n.a. 

v1 0.5 -0.36 -0.83 0.17 -0.42 0.86  -0.04 1 0.29 0.57 n.a. 0.67 -0.44 

v2 0.28 -0.6 -0.26 0.13 0.08 0.83 0.04  1 -0.08 -0.27 -0.05 n.a. -0.76 

tv -0.83 -0.55 -1 -0.43 -0.13 0.33 -1 -1  0.17 -0.55 -0.45 0 -0.64 

s1 -0.58 -0.79 -0.65 -0.33 -0.39 0.09 -0.29 0.08 -0.17  n.a. -0.74 n.a. 0 

s2 -0.57 -0.3 -0.6 0.14 -0.69 0.33 -0.57 0.27 0.55 n.a.  n.a. 1 -0.14 

sv1 0.1 0.11 -0.08 0.55 0.88 0.8 n.a. 0.05 0.45 -0.74 n.a. n.a. n.a. 0.6 

sv2 -0.74 -1 -0.83 -0.67 -0.68 0.25 -0.67 n.a. 0 n.a. -1   -1 

str 0.33 0.62 0.68 0.58 n.a. n.a. 0.44 0.76 0.64 0 0.14 -0.6 1  

               

All par. -1.99 -5.04 -7.33 1.05 -0.25 7.90 -1.96 -0.38 6.07 2.30 0.57 -4.20 6.34 -4.60 

All segm. -0.21 -3.06 -5.17 1.37 0.64 6.42 -0.43 -0.74 5.23      

Sing. sg. 1.61 -0.73 -2.16    0.73 0.54       

Tables 3.6 and 3.7. Results of all parameter comparisons for cvcv and cvccv words. A 
positive value means that the parameter on the top row is the winner and a negative value 
means the parameter on the left column is the winner. The top right halves of the matrices 
are completed with the corresponding values (multiplied by (-1)). Missing values 
correspond to parameter combinations that were impossible to combine in a stimulus triad. 
The three bottom rows of each table show the parameter values considering all parameters 
(obtained by adding the values on each column), considering all but the stress and structure 
related parameters (obtained by adding the values on the cells corresponding to the 
segment-related parameters), and considering the single segments only (obtained by adding 
the values on the cells corresponding to the individual segments only). C1, c2, c3 = 
consonants 1, 2 and 3; v1, v2 = vowels 1 and 2; tc = two consonants; tv = two vowels; 3c = 
three consonants; s1, s2 = same stress on the 1st and 2nd syllable; sv1, sv2 = same stressed 
vowel on the 1st and 2nd syllable. 
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In order to obtain a single value for each parameter, I sum the weights for 

that parameter with respect to all the other parameters (add each column of 

Tables 3.6 and 3.7). A positive value indicates that the parameter is a net 

winner, that is to say it wins over more parameters than it loses against, 

and/or it scores higher relative to other parameters. A negative value 

indicates it is a net loser – it loses against more parameters than it wins over 

and/or it scores lower relative to other parameters. Figures 3.3 and 3.4 

illustrate the parameter values obtained when we take all parameters into 

account for cvcv and cvccv stimuli (the general parameter values). These 

values are unitless, and, because they have been calculated on a square 

matrix, they add up to zero (for each word group). 
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Figures 3.3 and 3.4: Parameter values for cvcv and cvccv words.  

The results show a high consistency between the two independent word 

groups cvcv and cvccv: the values of counterpart parameters in cvcv and 

cvccv are significantly correlated when we take all parameters into account 

(R2=0.83, df =11, p<0.01) and when we take all the single and multiple 

segment parameters into account (R2=0.88, df =7, p<0.02). They are not 

significantly correlated for single segment parameters only (R2=0.71, df =2, 

n.s.) but this is only due to the low number of data points compared (four, 

which gives 2 degrees of freedom for the calculation of the significance).  

This between-group consistency indicates that participants made similar 

choices for the two independent word groups. This adds internal consistency 

and robustness to the study, and validity to the methodology employed. 
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The results for each parameter in the three different measurements (taking 

into account all parameters, multiple segments and single segments) are well 

correlated, as can be seen in Figures 3.3 and 3.4. The only visible discrepancy 

is the relative values of the first and second vowels (v1 and v2) in cvccv 

words. This is due to the fact that it was impossible to construct a stimulus 

triad for the comparison v2 against sv2 (same stressed vowel in the same 

syllable). The high value of sv2 in this word group lowered the values of the 

parameters that were compared against it, but not of v2.  

The high number of regions of origin involved for 55 participants does not 

allow for accurate measurements of region of origin effects. The strategy 

followed by participants (reading the stimuli out loud or silent - imagining 

the sound of it in their heads) did not have an effect on the parameter values 

(the correlation between the results generated with loud and silent strategies 

is R2= 0.76 for both cvcv and cvccv). 

3.2.2.5 Discussion 

Segment positions 

The values of the individual comparisons and the general parameter values 

reveal different aspects of word form similarity processing. For instance, we 

can compare the relative importance of the different segment positions in the 

assessment of word similarity either by examining how each segment fares 

against each of the other word segments (see Figures 3.5 and 3.6) or by 

comparing the general values of the segmental units; the first method focuses 

on relationships at the segment level, and the second takes into account the 

more complex and subtle relationships of each segment with all segmental 

and nonsegmental parameters that characterize its general value.  

 

 

 



 80 

 

 C1 V1 C2 V2 
.48    
.57   
.38  
.07    
.17   
.58    

 

 C1 V1 C2 C3 V2 
.50     
.33    
.50   
.28  
.36     
.83    
.04   
.50     
.60    
.26     

Figures 3.5 and 3.6. Relationships between the pairs of segmental parameters for cvcv and 
cvccv words. The arrows depart from the winner and arrive at the loser. The left-hand 
column shows the weights.  
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Figures 3.7 and 3.8. Parameter values of the segment positions of cvcv and cvccv words, 
measured considering all parameters, all segmental parameters and single segment 
parameters, and the single segment parameters only. 

Figures 3.7 and 3.8 show the results obtained using single segment 

information (grey triangles), using all segment-related information (white 

circles), and using all parameters, including information about stress and 

syllabic structure (black squares) (see calculation of the values in Tables 3.7 

and 3.7 above). The single segmental measurements only take into account 

the information shown in Figures 3.5 and 3.6 above, and miss the fact that all 

segments are net losers (negative parameter values) with respect to the 
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whole parameter set. We see that similarity at word initial and final segments 

is perceived more readily than in the middle of the word, another expression 

of the ‘bathtub effect’ found by Brown and McNeil (1966) in their tip-of-the-

tongue studies. (The name of this effect comes from the image of the word 

represented as in figures 3.7 and 3.8, as someone lying in a bathtub with only 

their head and feet above the surface of the water.) Brown and McNeil (1966) 

read to participants the definitions of relatively obscure target words and 

then recorded the (wrong) words they produced when they claimed to have 

the target ‘in the tip of their tongue’. Some of the words recorded sounded 

like the targets and other had similar meanings. They counted the matches 

between the few initial and final segments of the targets and the words 

recorded and found a bathtub effect, with matches at the beginning and end 

of the word up to 50% of the times and much less matching in the middle. 

Studies of malapropisms (wrongly selected similar-sounding words recorded 

from natural speech) show even higher matches or near-matches between 

errors and targets at the word initial (80%) and word final (70%) sounds, 

with much lower agreement levels in the middles (Aitchison & Straf, 1982; 

see also Fay & Cutler, 1977 and Hurford, 1981). This effect is most salient for 

the initial and final segment, rapidly decaying already for the second and 

last-but-one segments (Browman, 1978). The present results support the 

claim that word initial and final segments are prominent in lexical 

representation. 

Vowels and consonants 

Figures 3.9-3.12 show the relative importance of vowels and consonants 

using all the segment-related parameters in cvcv and cvccv words (see 

calculation of the values in Tables 3.7 and 3.8 above). 
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Figures 3.9, 3.10, 3.11 and 3.12. Parameter values for single and multiple consonants and 
vowels cvcv and cvccv words. 

The most salient feature in Figures 3.9-3.12 is, unsurprisingly, that the more 

consonants or vowels two words share, the more similar they are perceived 

to be. Additionally, the consonant structure (sharing all consonants) and the 

vowel structure (sharing all vowels) have an equivalent weight in 

determining similarity in both word groups (after allowing for the fact that 

cvccv word consonant structure has three elements whereas cvcv has only 

two). Some studies have suggested that vowels and consonants are 

processed by distinct neural mechanisms at the cortical level. Caramazza, 

Chialant, Capazzo and Miceli (2000) described the case of two aphasics with 

impaired processing of vowels and consonants, respectively. Boatman, Hall, 

Goldstein, Lesser and Gordon’s (1997) experiments with patients with 

implanted subdural electrodes showed that electrical interference at different 

brain sites could impair consonant discrimination or vowel and tone 

discrimination. These studies suggest not only that consonant and vowel 

processing are distinct but also that the vowel structure, being processed 
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together with tone, could be a kind of supra-segmental level exploited in 

speech perception. (Differences between consonant and vowel processing are 

further explored in chapter six of this thesis.) 

In cvccv words, sharing the two syllable-initial consonants c1 and c3 

(equivalent to the two consonants in cvcv words) has a higher value than 

sharing consonants c2 and c3. In the great majority of stimulus nonwords, 

consonants c2 and c3 are in different syllables (e.g. bún-ta, kás-te). Again, the 

limited stimulus cv structures precludes a full analysis, but this result 

indicates that syllable-initial consonants form the skeleton of the word 

consonant structure. Clements (1991) proposed the Sonority Dispersion 

Principle that the sharper the rise in sonority between the beginning of the 

syllable and the nucleus, the better the syllable. The paradigm of ‘good‘ 

syllable would, therefore, be ‘cv’. If we assume a bias to process syllables as 

‘cv’ as a default, it makes sense for syllable-initial consonants to form the 

word consonant skeleton and to be more salient in processing than for 

instance cluster consonants or syllable-final consonants.  

As far as the individual segments are concerned, the word-initial consonant 

in both word groups is most salient for similarity perception, followed by the 

vowels; other consonants obtain the lowest values in any measurement (see 

Figures 3.3 and 3.4 above). The final vowels (and, in cvcv words, also the first 

vowel) have values close to the initial consonant. The study only included 

stimuli starting with a consonant and ending with a vowel, so these results 

cannot rule out that vowels are more salient than consonants, but given that 

the initial segment position (in our two word-groups) is very salient, 

consonants appear to be more salient than they really would be in a more 

heterogeneous stimulus set. If we had had stimuli starting with a vowel or 

ending with a consonant, we might have found that the vowel structure is 

more salient than the consonant structure. As for the end of words, whereas 

single consonant values are lower towards the end of the word, the final 

vowel, usually a site for a gender or a verbal morpheme, shows a relatively 
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high value. This supports the idea that there is a bias for attention to be 

focused on the parts of the word in Spanish where morphological 

information concentrates. This hypothesis could be further tested with a 

cross-language study involving languages with different sites for 

morphology. 

Stress 

The design of this study included four parameters related to stress, namely 

sharing the stress on the first syllable, on the second syllable, sharing the 

same stressed vowel on the first syllable and on the second syllable. Figures 

3.13 and 3.14 show the general values for these parameters (calculated taking 

into account comparisons with all parameters). 
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Figures 3.13 and 3.14. General values of the stress parameters in the two word groups. s1 = 
stress on 1st syllable; s2 = stress on 2nd syllable; sv1 = same stressed vowel on 1st syllable; sv2 
= same stressed vowel on 2nd syllable. 

Sharing the stressed vowel in final position (sv2) obtains the highest values 

for both word groups, as well as third and second positions in the general 

parameter rankings for cvcv and cvccv words, respectively, as seen in 

Figures 3.3 and 3.4. This could reflect the fact that the most common Spanish 

verb tenses (present, simple past and future) and persons (first and third 

singular) are encoded by contrasts in the identity and stress of the final 

vowel (Table 3.8). See Appendix D for a full list of the 31 words stressed on 

the last syllable out of the 324 cvcv words of frequency greater or equal to 

100 in a Spanish speech corpus (Marcos Marin, 1992). 
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 -ar  -er, -ir 

 pres past fut  pres past fut 

1st -o -é -ré  -o -í -ré 

3rd -a -ó -rá  -e -ió -rá 

Table 3.8: Regular verb morphemes for first and third persons (singular) in the three most 
common tenses in Spanish (present, simple past and future) for verbs ending in –ar, -er and –
ir.  

The stimuli were nonwords, but we cannot claim that the use of nonwords 

precludes the perception of word-final phonemes as morphemes. E.g. the 

nonword bunkí could be perceived as the first person singular of the past 

tense of non-verb ‘bunker’ or ‘bunkir’. If morphology perception interferes 

with phonology perception, in the triad [bunkí (teská or tesmí)], tesmí could be 

found more similar to bunkí because it could be perceived to be sharing the 

same tense and person.  

In order to explore this issue, I included stimuli ending in ú, which is not a 

verbal morpheme. However, in such triads participants still found words 

sharing the stressed ú more similar than those sharing any other parameter, 

including sharing the three consonants. All participants responding to the 

triad [kandú (kindá or pirgú)] found pirgú was more similar to the base word 

than kindá. Morphology, then, cannot be directly responsible for the high 

score of the parameter ‘same stressed vowel on the second syllable’. 

However, important information such as verb morphology occurs at the 

word final position when it is occupied by a stressed vowel. It could be 

adaptive to focus attention on any phonological variation in that segment 

position when it is stressed. Stressed final vowels, then, seem to be very 

salient in terms of perceived form similarity in Spanish.  

Sharing the stress on the first syllable generated high general values and 

ranking position (fourth for both cvcv and cvccv, see Figures 3.3 and 3.4). In 

Spanish, most words are stressed on the penultimate syllable: see e.g. the 

stress distribution of the results in Barkanyi (2002) for common word 

structures, or the small proportion (10%) of words stressed on the last 
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syllable in the 324 cvcv words of frequency greater or equal to 100 in a 

Spanish speech corpus (Marcos Marin, 1992). This means that, even though 

many words share the stress on the first syllable, this parameter is salient in 

the perception of phonological similarity.  

Syllabic structure 

This parameter only applies to cvccv words, and compares two possible 

syllable structures: cv-ccv and cvc-cv (e.g. da-blo vs. dan-go) within the same 

consonant-vowel structure (cvccv). This parameter loses to every other 

parameter, which suggests it is of little importance for the perception of 

word-form similarity in cvccv words. Rouibah and Taft (2001) examined the 

processing units involved in the reading of French polysyllabic words and 

concluded that ‘the syllabic structure that is so clearly manifested in the 

spoken form of French is not involved in visual word recognition’. Perhaps, 

then, visual presentation of the stimuli is obscuring the effect of this 

parameter on perceived word-form similarity, and auditory presentation 

would have resulted in a higher parameter value. 

3.2.2.6 Comparison with the information profiles   

Figures 3.7 and 3.8 above (single segments) can be compared with the 

information profiles in chapter two. The profiles resulting from the results 

above represent prominence in aspects of lexical access related to word-form 

similarity. The segmental entropy used in chapter two reflects the joint effect 

of all the pressures on intra-word phonological form. Van Son and Pols 

(2003) proposed that greater speaking effort is concentrated on more 

information-laden parts of the word, whereas predictable items are 

phonologically reduced. Mirroring this reasoning for perception, I assume 

that more attention is paid to the parts of the word where information tends 

to be concentrated. Figures 3.15 and 3.16 show the information prominence 

of cvcv and cvccv words (the redundancy values of the segments, 

redundancy being 1 – entropy, from chapter two) and the attention 

prominence of cvcv and cvccv word segments (the segmental parameter 
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values: the black squares in Figures 3.7 and 3.8 above), which I interpret to be 

reflecting the amount of attention the corresponding segments attract (or 

how much people focus on the segments) when judging word-form 

similarity.  
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Figures 3.15 and 3.16. Similarity and information (redundancy) profiles of cvcv and cvccv 
words (lines drawn to show the profile shape). X-axis indicates parameters. 

The correlations between these two measures are R2 = 0.21 for cvcv words 

and R2 = 0.46 for cvccv words. The relationship between these two profiles is 

that similarity should be easily detected in perceptually salient word 

segments, and redundancy, a measure of complexity and organization, 

should be higher in positions that encode aspects of the lexicon structure. 

Similarity and redundancy should be correlated in places where it is 

important to detect variability among a small number of possible segments 

that encode e.g. a morpheme. The closest parallels between the two profiles 

are the high values at the last segment preceded by the lowest values in the 

last-but-one segment. The main difference is the relatively high similarity 

and low redundancy in the first segment. The first segment in Spanish is not 

a usual site for morphological information, therefore it shows low 

redundancy, but it is important for word recognition, so it shows high 

similarity prominence (it is the focus of attention). The last segment, on the 

other hand, is the site of morphology (gender, number and verb inflections) 

in such short words, and shows, as expected, high redundancy values. It also 
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shows high similarity, meaning that a lot of attention is focused on the 

identity of this segment.  

3.2.2.7 Conclusions and future work 

Different approaches to the study of phonological lexical structure and the 

relationships between them help to understand the functions of word-form 

parameters. This section has reviewed metrics of phonological similarity and 

has presented an empirical metric to analyse phonological similarity at the 

word level in Spanish that fills a gap in the literature. The empirical metric 

was based on a two-way forced choice between nonwords sharing different 

word-form parameters with a third nonword. These parameters were the 

same segment in the same position for individual and combinations of all 

word segment positions, the same stress pattern or stressed vowel and the 

same syllabic structure (in cvccv only).  

In agreement with the findings of tip-of-the-tongue, speech error and 

malapropism studies, I observe that word initial and final segments are more 

salient than the middle ones in this similarity-judgement task. Word-initial 

salience and vowel and consonant structure salience could be related to 

phonological word representation (with implications for word production 

and recognition). Salience of the identity of a stressed vowel in word-final 

position could be explained as an enhanced attention to the usual site of 

morphology. Correlations between the information profile and the salience 

of single segments further stress the intertwined roles of morphology and 

lexical phonology in the perception of form similarity. 

The paradigm presented may be used to establish a hierarchy of parameters 

of phonological similarity in other languages. A similar study applied to 

several languages could help establish if the relative salience of the 

parameters is universal or language-specific and help classify languages by 

the parameters configuring their phonological mental lexicon. Also, the 

application of the metrics reviewed at the beginning of the chapter to 
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Spanish could support (or otherwise) and potentially qualify the results 

found here by analysing other levels of phonological description of Spanish. 

The quantitative parameter values obtained with the psycholinguistic study 

presented in this chapter will be used in chapter five to calculate word-pair 

similarity values in order to configure a phonological similarity lexicon 

structure. First, chapter four reviews and applies methods to calculate 

cooccurrence-based similarity between words. 
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Chapter 4. The structure of the mental lexicon as 

defined by patterns of word cooccurrence 

 

The aim of this chapter is to obtain a representation of the syntactic-semantic 

level of the lexicon based on similarity between words. The chapter focuses 

on word-cooccurrence methods to define the position of words in the 

syntactic-semantic space and reviews ways of measuring similarity between 

them. It presents an application of one such metric to a subset of the Spanish 

lexicon and explores how this statistical approach to the representation of the 

mental lexicon performs in semantic and syntactic tasks. 

4.1 A similarity-based semantic space 

In the conceptual approach of semantics (Jackendoff, 1983) meaning is 

equated to conceptualizations, which are determined largely by the 

environment. I take the view that language itself is part of the environment 

that determines conceptualizations. Words and the way they are used in 

speech play a part in building the mental representations of concepts. The 

semantic space is configured by the structure of the world, but also by the 

structure of language. This interplay of mental representations and language 

is expressed as the grammatical constraint that Jackendoff (1983) puts on a 

theory of semantics: that a semantic theory must support systematicity in the 

relationship between syntax and semantics.  

There are many approaches in the literature to configuring the semantic 

space (including semantics or meaning, syntax and possibly other kinds of 

information). Smith, Shoben and Rips (1974) proposed a feature-based 

semantic space where the defining dimensions are features such ‘red’, 

‘living’ etc. Concepts are defined by sets of defining features, e.g. ‘pigeon’ 

could be defined as ‘living’, ‘flying’, ‘grey’, ‘with feathers’ etc. This model 

explained priming, naming delays, typicality effects and semantic deficits 
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found in brain damaged patients, but it was criticised as being a descriptive 

framework that did not reflect the real underlying structure of the semantic 

lexicon. (See review of feature-based approaches to semantics in McNamara 

& Miller, 1989).  

Connectionist approaches to modelling feature-based semantic 

(dis)similarity include Rodd, Gaskell and Marslen-Wilson's (2004) model of 

the effects of semantics in word recognition. They used a feedforward 

network architecture where words with multiple meanings had distributed 

representations in a high-dimensional semantic feature space; during the 

learning phase, each meaning formed one stable attractor basin.  

Others have configured the semantic space using the structure of thesauri 

such as Roget’s thesaurus or WordNet. A thesaurus-based semantic space is 

defined by the distance between pairs of words in the thesaurus, and the 

basic metric is the number of links between nodes. For instance, already in 

the fifties Osgood, Suci, and Tannenbaum (1957) used Roget's Thesaurus to 

help construct bipolar scales based on semantic opposites, such as "good-

bad" or "fast-slow" to measure the results of psychological experiments. 

Jarmasz (2003) reviews recent uses of Roget's thesaurus in natural language 

processing.  

Budanitsky and Hirst (2001) assess the performance of methods based on 

WordNet in a spell-checking task. Thesaurus-based semantic spaces have 

been criticised because of the limited and inconsistent coverage provided by 

the available thesauri (Curran, 2004), and Budanitsky and Hirst (2001) point 

out that lexical semantic relatedness is often constructed in context and 

cannot be determined exclusively by resources such as WordNet. 

One way to overcome these shortcomings is to substitute feature-sets and 

thesauri with word distributional statistics extracted from real language 

samples such as a large corpus. One such approach is Landauer and Dumais’ 

(1997) Latent Semantic Analysis (LSA). They counted occurrences of target 

words in whole articles of a children’s encyclopaedia, and constructed a 
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matrix of rows representing word types by columns representing the articles 

in which the types appear. Each value corresponds to the number of times 

the word type occurs in the article. They reduced the dimensionality of the 

word-by-article matrix using a technique called singular value 

decomposition. The resulting 500-dimension matrix represents a semantic 

space where the similarity between word types or between articles can be 

calculated. The LSA semantic space contains no information about word-

order and hence syntax. The LSA approach has been used to explain 

semantic similarity (Kintsch, 2001) and to perform complex tasks such as 

metaphor interpretation (Kintsch & Bowles, 2002), complex problem solving 

(Quesada, Kintsch & Gomez, 2001), automatic essay grading (Foltz, Laham & 

Landauer, 1999) and automatic tutoring (Wiemer-Hastings, Wiemer-

Hastings & Graesser, 1999; Kintsch, Steinhart, Stahl, Matthews & Lamb, 

2000). 

The rest of this chapter will focus on context window methods that locate 

words by considering what words they occur close to in text or speech. This 

is based on the idea that the meaning of a word is determined by the 

linguistic contexts in which it occurs. In context space models (also called 

hyperspace models because the resulting representations are 

multidimensional spaces) each target word is located by a vector whose 

components are counts of occurrences of context words in the vicinity of the 

target. The ‘vicinity’ is defined by the size and shape of a window, for 

instance, five words before or after the target word, or the preceding word 

only. 

Figure 4.1 illustrates the process of calculating the vectors that represent the 

position of words in a cooccurrence-based hyperspace (see caption for 

explanation). 
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Although we are born with pretty much all the brain cells we will 
ever have, I believe it is the growth of the connections between 
these cells that accounts for the growth of the brain after birth. 
And what is amazing about the brain is that it is constantly 
evolving every moment we are alive, so that although born into a 
booming, buzzing confusion,(…) 

 

Cooccurrence matrix:       :  

Rows = target words.       .     

Columns = context words. 

 the we of is that are 

cells 3 1 1 0 1 0 

brain 4 1 1 4 1 0 

growth 4 0 0 1 1 0 

born 1 1 0 0 1 2 

Figure 4.1. Calculation of the cooccurrence vectors in a text. The counts are based on the 
piece of text at the top of the Figure. In this example the target words are four high-
frequency content-words, and the context-words are six high-frequency function words. I 
consider a context window of five words before and after the target word in the text (e.g., for 
the first occurrence of the word ‘cell’, the window comprises the words in grey around it). 
The value in each cell in the cooccurrence matrix is the total number of times that the target 
and the context word appear within five words of each other in the text.  

McDonald (2000) points out two properties of this kind of distributional 

statistics that make them appropriate for psycholinguistic modelling - 

objectivity and language independence. Distributional statistics are objective 

because they make minimal assumptions when exploiting the statistical 

patterns present in speech. As for language independence, results obtained 

using French, German and Mandarin corpora (Redington, Chater, Huang, 

Chang, Finch & Chen, 1995) mirror those obtained for English. The results of 

Curran (2004) also indicate that context window approaches to measuring 

semantic similarity yield reasonable results while being computationally 

cheap and orders of magnitude computationally faster than shallow parsers 

such as CASS, Sextant of Minipar (6-7 minutes as opposed to hours or even 

days to extract information from the same corpus) - see Curran (2004) for 

review. 

Context space models have been used to categorise words syntactically 

(Finch & Chater, 1992; Redington, Chater & Finch, 1998; Daelemans, 1999; 
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Christiansen & Monaghan, in press), categorise words semantically (Levy & 

Bullinaria, 1998; McDonald, 2000; Curran, 2004) and model semantic and 

associative priming (Lund, Burgess & Atchley, 1995; Lund, Burgess & Audet, 

1996; McDonald & Lowe, 1998; McDonald, 2000). 

The calculation of a semantic vector space (which can be represented visually 

as Figure 3.1 in chapter three), requires the following elements: 

•  A corpus of text where the cooccurrences between targets and context-

words will be counted, 

•  a set of target words, 

•  a set of context words, which provide the dimensions of the space, 

•  a context window around the target words, where the occurrences of 

context words are counted,  

•  a method to calculate the vectors, 

•  a method to calculate the distance between vectors.  

The next section looks at these parameters in detail. 

4.1.1 Elements and parameters of the semantic hyperspace 

4.1.1.1 The corpus  

The size of the corpus affects the robustness of the cooccurrence-based 

representations. Large corpora produce vector representations that are more 

immune to noise due to restricted corpus-size. Patel, Bullinaria and Levy 

(1998) and Curran (2004) found that an increase in the size of the corpus 

improved their results, even for very large corpora (Curran used a two 

billion word corpus). Several hyperspace studies in English use (subsets of) 

large corpora such as the British National Corpus (BNC, around 90 million 

written and 10 million transcribed spoken words) or USENET (a corpus of 

around 170 million word corpus of newsgroup text).  



 95 

On the subject of spoken versus text corpora, McDonald (2000) gives three 

reasons why speech is better than text. First, speech is the primary 

environment for language acquisition. (I would add that speech is the 

primary source of human communication.) Second, the smaller type:token 

ratio of speech provides a more reliable source of contextual information and 

thus the construction of denser vectors. Third, the results he obtained with 

the spoken subset of the BNC (around 10 million words) fitted isolated word 

recognition data better than similar size text BNC subsets. 

The chosen corpus may be lemmatised or otherwise prepared before 

counting the cooccurrences (e.g. McDonald, 2000). Lemmatisation removes 

all morphology and leaves only word stems, affecting the information 

carried by the vectors. This eliminates possible morphology-based clusters in 

the hyperspace. Annotated corpora can be used to disambiguate between 

homophones in the counts, refining the quality of the vectors, for example 

McDonald (2000) and Monaghan and Christiansen (2004) both took 

information about the syntactic category of words from the CELEX database; 

Curran (2004) marked up the corpus including sentence splitting, 

tokenization and part of speech tagging. 

4.1.1.2 The context 

Context window methods count occurrences of a number of context words 

within a window of a number of words before and/or after the target word. 

The target words are the nodes in the semantic space. More target words 

mean a more complete space.  

The main variables in the context are the window size (how many words 

around the target word are considered) and shape (are the context-words to 

be counted to the left, to the right of the target, or both) and the number and 

choice of context words that are included in the calculation of the vector 

components.  
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The window extends over a number of words or characters to the left and/or 

to the right of the target word. Some studies employ large windows of 

around 500 words (Yarowsky, 1992; Beeferman, 1998), but this makes the 

calculations computationally expensive. Others use small windows both for 

syntactic and semantic categorisation tasks: Finch and Chater (1996), two 

words to either side; Lowe and McDonald (2000), 5 words to either side; 

McDonald (2000), up to 10-20 words to either side; Curran (2004), 

combinations of 1-3 words to either side (finding the best results for one 

word to each side and with two words to the left). Patel, Bullinaria and Levy 

(1998) searched the parameter space in an attempt to optimize the window 

size and shape against two evaluation criteria: the ratio of mean Euclidean 

distances between semantically related and unrelated words, and a measure 

of syntactic categorisation. They found that the best results were obtained by 

counting the left and right contexts separately (as two components of the 

vector), using window sizes between two and 16 words. However, Levy, 

Bullinaria and Patel (1998), using different criteria for the optimisation of the 

parameter space - semantic and syntactic categorisation and synonym choice 

- found that the best results were obtained by averaging the contents of the 

left and right windows with window sizes between one and seven words. 

Monaghan, Chater and Christiansen (in press) used a window of one word to 

the left (the preceding word only) for a noun-verb discrimination task 

(carried out using both distributional and phonological clues). Mintz (2003) 

developed a different form of window called ‘frame’ consisting of a pair of 

words that occur separated by one intervening word, e.g. ‘a _ of’. He showed 

that frequently occurring frames accurately predicted the syntactic category 

of the intervening word. Monaghan and Christiansen (2004) compared 

Mintz’s method with Monaghan, Chater and Christiansen’s (in press) 

preceding word window and found that while the frames had a higher 

accuracy for noun-verb classification, the preceding word window classified 

a much higher proportion of words. 
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The number of context words determines the dimensionality of the space. It 

is usually a few hundred: Finch and Chater (1992) used 150 context words; 

Lund and Burgess (1996) used 200, and claimed that adding more context 

words did not alter the results; Lowe and McDonald (2000) used 536 context 

words; McDonald (2000) used 446 context words.. 

The choice of context words defines the type of information that the space 

captures. Some studies simply select the most common words in the corpus 

(Finch and Chater, 1992; Redington, Chater and Finch, 1998), while others 

remove from that set a series of very frequent uninformative words such as 

prepositions, conjunctions, determiners, pronouns etc, which they claim are 

so ubiquitous that they do not help judging semantic similarity (Lowe and 

McDonald, 2000; McDonald, 2000; Jarmasz, 2003). Yet other studies add extra 

constraints to the context word set, for example McDonald (2000) and Lowe 

and McDonald (2000) chose the most reliable context words – those that 

produced the most consistent cooccurrence patterns across a number of sub-

corpora. However, Levy and Bullinaria (2001) found that adding the most 

frequent words in the corpus (mostly functors) to Lowe and McDonald’s 

reliable context words significantly boosted the results in a semantic 

categorisation task. A word context set consisting mainly of function words 

also seems to help categorise words syntactically (Finch & Chater, 1992 and 

Redington, Chater & Finch, 1998).  

To sum up, syntactic categorisation tends to be best achieved with very small 

windows and functors in the context word set, and semantic categorisation, 

with larger windows and content words in the context word set. 

4.1.1.3 Metrics of similarity 

Vector space models of the semantic lexicon assume that semantically similar 

words tend to occur in similar contexts. This section reviews the most 

commonly used methods to measure similarity between word context 

vectors.  
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Among the geometric similarity metrics (illustrated in Figure 4.2) are the 

Euclidean distance, which is the distance between the two points located by 

vectors in a space and the City Block (also called Manhattan and 

Levenshtein) distance, so called because of the way you have to go from A to 

B in a grid-like geometry such as the Manhattan streets and avenues, in 

straight perpendicular lines, and turning at the corners. The City Block and 

Euclidean distance metrics are sensitive to vector length, but this problem 

can be overcome by measuring similarity as the cosine of the angle between 

the two position-vectors. The cosine focuses on the difference between the 

directions of the vectors (see Figure 4.2), and is not sensitive to vector length, 

which makes it appropriate to compare words of similar frequency, but it is 

sensitive to vector sparseness, so it should be used to compare vectors of 

similar sparseness. 

 

Figure 4.2. Three geometrical similarity measures between points A and B: the City Block 
distance is CB1 + CB2; the Euclidean distance is D; the cosine distance is the cosine of angle 
α. 

Other metrics commonly used in information retrieval are the Dice metric 

(also used to measure phonological similarity, see § 3.2.1), which is twice the 

ratio between shared attributes and the total number of attributes for each 

target word, and the Jaccard metric, which compares the number of common 

attributes with the number of unique attributes for each pair of targets. 

Similarity coefficients have also been used in Internet search engines (e.g. 

Tudhope & Taylor, 1996). Information-theory metrics include the Kullback-

Leibler divergence (or relative entropy) and Hellinger distance, both of 

which quantify the differences between two probability distributions.  
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Curran (2004) compares the behaviour of most of the metrics explained 

above, plus several variants including weight functions designed to assign a 

higher value to context words that are more indicative of the meaning. He 

found that Dice and Jaccard performed best in a semantic task. Levy, 

Bullinaria and Patel (1998) compare the Euclidean, City Block, Cosine, 

Hellinger and Kullback-Leibler metrics and found that the last two (the 

information theoretic metrics) perform best in semantic tasks.  

In the studies presented in the rest of this thesis I use the cosine to measure 

the similarity between the cooccurrence vectors of two words (following 

McDonald, 2000) as the cosine of the angle they form. The cosine of the angle 

between the vectors locating words x and y is calculated as follows (for 

vectors defined by n components): 
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Following the same logic as the analysis of phonological similarity, the 

aspects of the lexicon where semantic similarity is more easily detected must 

correspond to the more salient structural parameters of the representational 

space of the semantic lexicon. In cooccurrence statistics methods, the 

parameters are distributional cooccurrence patterns of words. Different types 

of words play different parts in defining the semantic space. Section 4.2 

explores a semantic hyperspace representation of the Spanish lexicon 

generated with cooccurrence statistics. In particular it examines the role of 

syntactic category (focusing on nouns and verbs), of semantics proper and of 

gender in the organization of the semantic hyperspace. 

4.2 Exploring the Spanish semantic lexicon  

Having adopted the convention to call the space generated by cooccurrence 

statistics "semantic", and accepted that this space not only contains properly 
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semantic, but also syntactic and possibly other types of information, this 

section goes on to explore the structure of a semantic space calculated on a 

Spanish speech corpus. The focus of this section is to discover what word 

categorisations emerge from the distributional patterns in speech. 

The calculation of the semantic vector space is analogous in some ways to the 

acquisition of the mental lexicon. Both the lexicon acquisition process and the 

vector space calculation count transform and categorise occurrences of items 

in speech and both end up with a structured collection of words. The main 

assumption behind semantic vector spaces is that the resulting hyperspace 

structure organisation is similar to the organisation of the mental lexicon.  

This section will first describe the calculation of the semantic spaces on a 

Spanish speech corpus (with two variables: lemmatisation of the corpus and 

presence of functors in the context-word set); then it explores the role of the 

two variables in syntactic categorisation, in semantic tasks and in gender 

categorisation. The sections below compare directly the performance of 

vectors computed on a lemmatised corpus with vectors computed on a 

surface-form corpus in Spanish, testing the impact of inflections on syntactic 

categorisation and semantic tasks. The full-listing hypothesis proposed by 

Butterworth (1983), saying that all surface forms are individually listed in the 

mental lexicon, would be supported if surface forms are found to perform 

better than lemmas.  

Christiansen and Monaghan (in press) observe that functors occur at phrase 

boundaries, which may reveal syntactic category, so the presence of functors 

in the context-word set should help syntactic categorisation, but not semantic 

tasks. Spanish inflected functors (determiners) in the surface-form corpus 

should help gender classification. Therefore I expect that gender 

classification should do better in the surface-form corpus, since gender 

morphemes are removed during lemmatisation.  
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4.2.1 Configuration of a Spanish semantic space  

This section explains how I constructed the hyperspace representation of the 

Spanish semantic lexicon that is the basis of the analyses of syntactic 

category, gender and semantic clustering described in § 4.2.2 to § 4.2.4. In 

those analyses I manipulate two variables: the presence of morphology in the 

corpus and the presence of function words as context words in the 

calculation of the word vectors. Some of the other parameters are set in order 

to maximize vector quality given the limited size of the corpus available.  

I created vectors for each of a number of target words – all the types above a 

certain frequency, which in practice coincides with the set of content and 

function context words (see Table 4.1 below). Here the corpus size 

constraints the number of frequent words able to generate dense vectors.  

These vectors are created by counting the number of times that each context 

word appears within 5 words of the target word in the corpus. The frequency 

counts are then transformed into probability distributions to normalise for 

word frequency. I measured the similarity between two vectors as the cosine 

of the angle they form, because this metric is not sensitive to vector length, 

and it performs well in semantic tests (Lowe & McDonald, 2000; McDonald, 

2000). The following sections describe the other elements involved in the 

configuration of the semantic hyperspace. 

4.2.1.1 The corpus 

The distributional statistics in this section are based on the same corpus used 

in chapter three, namely ‘Corpus oral de referencia del español’ an 

orthographical Spanish speech corpus (Marcos Marín, 1992). The words are 

transcribed phonetically using the same citation rules as in chapter two of 

this thesis. After removing all tags the corpus has 897,395 word tokens 

(38,847 types). This is much smaller corpus than those used in the studies 

mentioned in § 4.1.1.1 above. The spoken part of the BNC used in other 
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studies mentioned above is about ten times larger1. Even with this important 

limitation, the distributional statistics provide information at the levels 

explored, namely syntactic category, gender and semantics. I assume that 

more refined vectors based on a larger corpus would provide even more 

detailed information including subtler nuances.  

4.2.1.2 Lemmatisation 

One of the variables in this study is whether the corpus contains surface 

forms (all word forms as found in speech, including gender, plural and verb 

inflections) or lemmas only (uninflected words). The corpus is not annotated, 

so instead of lemmatising the whole corpus by hand, I only lemmatised types 

of frequency greater of equal to 100, plus a few other types that added 

together would generate a lemma of frequency greater or equal to 100. The 

lemmatisation process comprised: 

•  Replacing feminine and plural inflections with the masculine singular 

form. 

•  Replacing all verb forms, including all persons and tenses, participles 

and infinitives, with the verb root: the infinitive without the final -r. 

Exceptions include forms of verb ser (be), which were replaced with 

the most common form, 3rd person singular of the present tense, ‘es’; 

forms of verb ir (go) were left as ‘ir’, because the forms resulting from 

the regular substitutions, ‘se’ and ‘i’ are homophonous with the very 

common impersonal pronoun ‘se’ and the conjunction ‘y’ (and), 

respectively. 

•  Removing the ending ‘-mente’ (equivalent to English ‘-ly’) from 

adverbs. 

                                                

1 I could not find a larger corpus of spoken European Spanish available for research, which 
limits the quality of the resulting vectors and therefore of the hyperspace. There are enough 
differences between the varieties of Spanish spoken across Latin America to make it 
desirable to use a single variety. 
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•  Merging very frequent compound forms, e.g. ‘por favor’ (please) 

becomes ‘porfavor’ and ‘sin embargo’ (however) becomes 

‘sinembargo’. 

4.2.1.3 Context words and dimensionality 

This is the second variable manipulated in this study. Although several 

studies assume that semantic information is best captured by contexts 

consisting of content words and syntactic information by function word 

contexts (Lowe & McDonald, 2000; McDonald, 2000; Jarmasz, 2003), Levy 

and Bullinaria (2001) found that adding functors to their context-word set 

significantly boosted the performance of their metric in a semantic test. This 

study examines the performance of two context word sets: 

1) Content and function words: all word types above a certain frequency 

threshold.  

2) Content words only: the words remaining after removing function words 

from set (1).  

In the 'content word' condition I removed determiners, prepositions and 

conjunctions, plus the auxiliary verbs ser, estar (be) and haber (have) from the 

context-word list. Table 4.1 shows the dimensionality of the spaces generated 

by the different context word sets.  

 surface lemma 

content+funct. 394 (≥200) 523 (≥100) 

content only 320 (≥200) 481 (≥100) 

Table 4.1. Number of context words (in brackets, threshold frequency) in the surface-form 
and the lemmatised corpus, when considering all words or content words only. 

In a small corpus, a low number of dimensions will yield denser vectors. In 

order to obtain vectors of similar density with both versions of the corpus, 

the frequency threshold for the surface form version of the corpus is 200, and 

that for the lemmatised version is 100.  
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4.2.1.4 Window size 

The cooccurrence vectors were calculated by transforming the raw 

cooccurrence counts within a window of five words to the left and five to the 

right, all conflated in a single value, into probability distributions. Window 

size is not a variable in this study – its effect has been extensively analyzed 

for English (§ 4.1.1.2). I chose a window size that generated reasonable 

results in most English tests, but that was not too small – again, to prevent 

sparse vectors given the small corpus available. Also, the eleven words 

contained in this window size take approximately 2.5 seconds to pronounce 

in a naturalistic Spanish spontaneous speech rate of 250 words per minute. 

This is close to the 2 seconds proposed by Baddeley, Thomson and Buchanan 

(1975) as the time-span of working memory. This 2.5 second window 

includes the five words that will be relevant for the processing of the target 

word, plus the five words in whose processing the target word is involved. 

4.2.1.5 The vector spaces 

I calculate four vector spaces using the methods and parameters above to be 

used in the studies presented in § 4.2.2 and § 4.2.3 below. I count the 

occurrences of one of two context word sets within a window of five words 

to the left and five to the right of the target words in two different versions of 

the corpus and two context-word sets. This results in four conditions:  

1. Surface-form corpus, content and functors: the targets and the context 

words are the same: the 394 word types of frequency greater or equal to 

200 in the surface-form corpus. 

2. Surface-form corpus, content words only: the target words are the 

same as in condition 1; the context words are the 320 content words left 

after removing functors from the context-word set in condition 1.  

3. Lemmatised corpus, content and functors: the targets and the context 

words are the same: the 523 word types of frequency greater or equal to 

100 in the surface-form corpus. 
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4. Lemmatised corpus, content words only: the target words are the 

same as in condition 3; the context-words are the 481 content words left 

after removing functors from the context-word set in condition 3.  

The rest of this chapter explores the performance of these four vector spaces 

in various syntactic and semantic categorisation tests. 

4.2.2 Exploring syntactic category 

In this section I use the four vector spaces calculated above and explore how 

different parameters contribute to syntactic word categorisation. I review 

approaches to syntactic categorisation using distributional cues and present 

an application to Spanish, focusing on the effect of corpus lemmatisation and 

of the presence of functors in the context word set on the categorization of all 

words, and then more specifically on verb-noun classification.  

4.2.2.1 General syntactic categorisation 

In this section I examine how distributional information can help categorize 

words syntactically. Frequency helps predict some parts of speech, notably 

function words. Figure 4.3 shows the frequency rank of syntactic categories.  

Distribution of syntactic categories in the frequency rank

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

frequency rank

num
pron
excl
name
funct
adv
verb
adj
noun

 

Figure 4.3. Syntactic category of the 394 surface form words of frequency greater or equal to 
200 in the corpus, ranked by frequency. Each dot represents one word, and there is only one 
word per frequency rank position. 
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The most frequent words are to the left, in the higher rank positions, the 

more infrequent to the right of the graph, in the lower rank positions. The 

only obvious categorisation that could be derived from frequency 

information alone is that between functors and content words, since functors 

tend to be significantly more frequent than content words.  

Simple cooccurrence statistics also reflect syntactic category. Figure 4.4 

shows the distribution of words by part of speech ranked according to their 

average cooccurrence-based similarity with other words.  

Distribution of syntactic categories in the average semantic 
similarity rank

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

average semantic similarity rank

num
pron
excl
name
funct
adv
verb
adj
noun

 

Figure 4.4. Syntactic category of the 394 surface form words of frequency greater or equal to 
200 in the corpus (context including content and function words) ranked by average 
similarity value. 

Similarity was calculated for all word pairs as the cosine of the angle formed 

by the two vectors representing the two words in the pair. The distances 

from each word to every other word were averaged, and then all words were 

ranked by average cooccurrence-similarity value. As in the frequency rank, 

function words, being so ubiquitous, cooccur with many words and cluster 

at the top of the similarity rank. But the cooccurrence-statistics based ranking 

offers more information: we also see that numerals are on average far from 

other words (a closer examination reveals that they are very close to each 

other, forming a cluster), and that verbs tend to be more similar on average 
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to other words, while nouns tend to be less similar on average from the rest 

of the words.  

More complex computations should achieve a more accurate syntactic 

categorisation of words. Section 4.2.1.5 outlined the characteristics of the four 

vector spaces that I will use for the tests in this section. I now investigate the 

effect of functors in the context-word set and of inflectional morphemes in 

the target-word sets on the ability of the vector space to predict the part of 

speech of words. 

The ability to predict the part of speech or syntactic category has been tested 

in different ways: Levy, Bullinaria and Patel (1988) used the part-of-speech 

tags in the BNC to construct a syntactic categorization test. They calculated 

the centroid of a large number of vectors of words of each part of speech 

category, and then took the 100 most frequent words of each category and 

checked which centroid they were closest to. This method correctly 

categorised over 90% of the words using a window of one word to the left 

only or to the right and left. Redington, Chater and Finch (1998) calculated 

600-dimension vectors for the 1,000 most frequent words in the corpus. They 

considered a window of two words to the left and right, and the information 

for positions two words to the left, one to the left, one to the right and two to 

the right were stored in separate vector components. The context words were 

the most common 150 words, which included a large proportion of functors. 

Redington, Chater and Finch’s (1998) syntactic categorisation test involved 

hierarchical clustering of the vectors using Spearman’s rank to measure 

vector similarity. Their method offered the possibility to introduce a cut-off 

point of similarity level, which they set at 0.8 to obtain the best 

categorisation. This unsupervised method (the syntactic category 

information was not provided prior to the cluster construction) correctly 

categorised 90% of nouns and 72% of verbs (chance baselines of 25% and 

14%, respectively). 
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I present a supervised syntactic categorisation test also based on hierarchical 

clustering that categorized each word according to the category of the 

majority of its nearest neighbours in the space.  

Method 

The vectors in the four sets in § 4.2.1.5 above were manually tagged for 

syntactic category. Ten categories were used: noun, adjective, verb, adverb, 

functor, proper name, exclamation, personal pronoun, indefinite pronoun 

and numeral. Functors included determiners, prepositions and conjunctions; 

personal pronouns included possessives; indefinite pronouns included the 

Spanish equivalent of wh- pronouns such as qué, quién, cómo (what, who, 

how). I performed a hierarchical cluster analysis in SPSS (vector similarity 

metric: cosine) on each vector space and obtained a dendrogram with 

clusters of part-of-speech labels (See figure 4.5). 

 

Figure 4.5 Part of a dendrogram showing hierarchical clustering (method: cosine) or words 
in a vector space (condition: lemmatised, functors and content. Words and part-of-speech 
labels are shown. 

  

I performed a categorisation task on this dendrogram in the following way: 

given a new word whose position in the space (and therefore in the 

dendrogram) is known, it is categorised as belonging to the predominant 

category in its local cluster. I first consider each terminal-level cluster 
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(marked in red in Figure 4.5); if there is one majority category2 (as in the fist 

and third terminal-level clusters in Figure 4.5), then I count words of the 

majority category in that cluster as correctly categorised. If there is no 

majority in a cluster (as in the second terminal-level cluster in Figure 4.5), I 

consider that words in that cluster cannot be correctly categorised. Words 

clustered at the next level up (the two bottom words in Figure 4.5) count as 

correctly categorised if they belong to the majority category in the higher-

level cluster. In the example in Figure 4.5, pronoun ‘que’ is correctly 

categorised because the majority of the words in the second-level cluster 

including the seven bottom words in the dendrogram are pronouns too. I did 

this only for the first two levels (considering more levels could only improve 

the results).   

Results 

This method categorised high proportions of words correctly. As seen in the 

summarised results in Figure 4.6, the presence of functors in the context-

word set clearly improved the performance both in the surface-form (two-

tailed paired t-test, t=2.23; df=9, p=0.05) and the lemmatised (two-tailed 

paired t-test, t=2.21, df=9, p=0.05) versions of the corpus. Surface-forms were 

marginally better categorised than lemmas (t-tests not significant). 

Correctly categorised
 words 
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2 For 2-element clusters, there is only a majority if both items are the same category. Then, 
the classification algorithm will classify each of them correctly by assigning it the same 
category as the other item in the cluster. For larger clusters, I consider a majority of at least 
two items more than the next most frequent category in the cluster.  
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Figure 4.6. Results of syntactic categorisation task using the four vector spaces. 

Figure 4.7 shows the proportion of correctly categorised words in each 

syntactic category, compared with chance levels. Baseline chance levels are 

proportional to the number of nouns, proper names, numerals etc in the 

target-word set. Some syntactic categories were categorised better than 

others, but all were categorised correctly well above chance levels, as seen in 

Figure 4.7.  
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Figure 4.7. Proportion of words of the ten different syntactic categories that were correctly 
categorised in the two vector spaces that included functors in their context-word set. Chance 
baseline levels also shown. (All result-baseline two-tailed paired t-tests yield significances 
p<0.01). 

The graph shows the proportions of words correctly categorised in the two 

best-performing vector spaces (those including functors in their context-

word sets). This comparison shows the effect of corpus lemmatisation on a 

syntactic categorisation task.  

Discussion 

As we see in Figure 4.7, nouns, numerals, proper names, adjectives and 

indefinite pronouns are better categorised in the lemmatised corpus. Verbs, 

adverbs, personal pronouns and, particularly, functors, however, are better 

categorised in the surface-form corpus. This suggests that conflating all 

noun, adjective and indefinite-pronoun surface forms into their lemmas 
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helps categorise them syntactically. On the other hand, conflating all surface 

forms of a verb into a single lemma hinders verb categorisation. Nouns, 

adjectives and indefinite pronouns can take gender and plural inflections. In 

the second group, only verbs change between versions of the corpus, with 

inflections removed from the lemmatised version. 

Of the word categories which do not change between the surface and the 

lemmatised corpus versions, the largest difference is found in functors, 

which are better categorised in the surface-form corpus. As indicated by the 

results in Figure 4.6, the role of functors is to relate words to one another in 

the sentence, so it could be said that they categorise, but do not need to be 

categorised. Since relationships between words in Spanish are also signalled 

by agreement (in number and gender between nouns and adjectives, in 

number between subjects and verbs) inflected words provide a more fine-

grained, and therefore more accurate, categorisation of functors than lemmas 

do.  

These results support the idea that gender and number inflections on one 

hand and verb inflections on the other have different roles in syntactic 

categorisation. The difference between English noun (number) and verb 

(person and tense) morphology was pointed out by Tyler, Bright, Fletcher, 

and Stamatakis (2004), whose fMRI studies of noun and verb processing 

suggest that while noun and verb stems representations do not differ, verb 

and noun morpho-phonology engage different neural systems. The present 

results suggest that while nouns and adjectives are better categorised in a 

vector space based on the word root (lemma), verb categorisation is helped 

by the variety introduced by verb inflections.  

The next section looks more closely at the classification of nouns and verbs in 

a vector space. 

4.2.2.2. Nouns and verbs 
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Chiarello, Shears and Lund (2000) proposed a measure of noun-verb 

distributional typicality: the degree to which a word appears in similar 

contexts as other words of the same grammatical category. They used 

cooccurrence vectors for the target words (calculated using Lund & Burgess’ 

1996 method) and calculated the distance between all word pairs. For each 

target word, they subtracted the average distance between the target and all 

the nouns from the average distance between the target and all verbs. The 

resulting score, which they called noun-verb distance difference (NVDD), 

was high for nouns occurring in contexts similar to other nouns, and low for 

nouns occurring in atypical noun contexts; this score was low for verbs 

occurring in contexts similar to nouns and high for verbs occurring in 

contexts similar to other verbs. Monaghan, Chater and Christiansen (2003) 

found that a similar calculation of distributional typicality predicts response 

time in a verb/noun decision task. Christiansen and Monaghan (in press) 

argue that phonological and distributional information together can 

accurately discriminate syntactic category. They point out that where 

distributional cues are not reliable, for instance in function words, 

phonological cues are very informative. Their two experiments with a 2-

word frame and a preceding-word window indicate that distributional cues 

classify nouns better than verbs. In the experiment in the last section I found 

the same with a window of five words to the left and five to the right (see 

Figure 4.7). Christiansen and Monaghan suggest that verb classification relies 

more on word-internal cues. In this section I test how good a vector space 

generated with a five-word window to the left and right is for noun-verb 

classification. By using the four vector spaces described in § 4.2.1.5, I explore 

the effect of inflection and of function words in the context in that 

categorization. I have adapted Chiarello, Shears and Lund’s (2000) method in 

order to explore the distributional typicality of Spanish nouns and verbs. The 

main difference between the present study and those reviewed above is the 

size of the window where context-words are counted. As explained above, 

given the reduced size of the Spanish speech corpus available, I need a larger 
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window in order to obtain vectors dense enough for the similarity 

calculations. I explain the major result divergences in terms of this difference. 

Method 

Using only the nouns and verbs (see Table 4.2) from the vector spaces 

described in § 4.2.1.5, the average similarity was calculated between each 

word and every other noun and each word and other every verb. The 

method for calculating similarity was, again, the cosine of the angle between 

the two vectors. Then I calculated the average similarity to verbs minus the 

average similarity to nouns to obtain that word’s distributional typicality.  

 Nouns Verbs 

Surface-forms 101 86 

Lemmas 207 80 

Table 4.2. Number of nouns and verbs in the surface-form and the lemmatised corpus 
versions. 

Results  

Figure 4.8 shows the general results for the classification of nouns and verbs. 

While almost 100% of verbs are classified correctly in all conditions (white 

bars in Figure 4.8), classification of nouns relies heavily on the presence of 

functors in the context-word set.  
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Figure 4.8. Proportions of correctly classified nouns and verbs in the four vector spaces. 
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Figures 4.9, 4.10, 4.11 and 4.12 show distributions of nouns and verbs in the 

polarized noun-verb distributional typicality space. Words with negative 

values are more similar on average to nouns, and words with positive values 

are more similar to verbs. I present the distributions of nouns and verbs in 

separate graphs for each of the four spaces described in § 4.2.1.5 

(combinations of surface-form and lemmatised corpus and content and 

function word or content word only context-word sets). White bars represent 

correctly classified words; black bars, incorrectly classified words. (The green 

bars represent ‘person nouns’ such as ‘man’, ‘woman’, ‘child’, ‘mother’, ‘father’). 
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Figure 4.9. Corpus: surface-form. Context: content and function words. 
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Figure 4.10. Corpus: surface-form. Context: content words only. 
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Figure 4.11. Corpus: lemmatised. Context: content and function words.  
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Figure 4.12. Corpus: lemmatised. Context: content words only. 

In Figure 4.10, the four correctly classified nouns are part of formulaic 

greetings (tardes, noches, gracias – afternoon, night, thanks) or go with 

numbers (minutes - minutes). 

The green bars in the graphs represent the proportion of nouns in the 

adjacent black bars that are ‘person nouns’. These nouns form a clear sub-

population within the nouns showing a distinct behaviour at this level of 

analysis. Person nouns are markedly closer to verbs than the rest of nouns in 

all but the last condition (lemmas, no functors). Person nouns are discussed 

in § 4.2.3.2 below. 

Discussion 

The majority of nouns and verbs are correctly classified when nearby 

functors are taken into account. Interestingly, the modes and shapes of the 
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noun and verb distributions are very distinct in all cases. This indicates that, 

even though nouns are closer to the verb side of the distribution typicality 

spectrum in the spaces calculated without functors, they can still be 

separated from verbs. As we saw above, Christiansen and Monaghan (in 

press) found that a 1 or 2-word window classified nouns better than verbs. 

Their method is closest to our (+functor) conditions, where nouns were most 

accurately classified. These two results put together suggest that noun 

classification relies on the preceding word. In a lexicon representation based 

on cooccurrence, nouns may be very accurately classified by being 

consistently preceded by one of a reduced set of words, namely determiners. 

Christiansen and Monaghan’s results suggest that verbs are the marked 

category. Our results seem to indicate the opposite, with nouns being closer 

to verbs in the absence of cues. This may be due to the small number of 

vector components that reflect the cues for nouns (determiners). The small 

number of components cannot reflect the very high frequency of determiners 

in speech which determines noun acquisition. Christiansen and Monaghan 

show that while phonological cues are more useful for the acquisition of the 

verb category, distributional cues, especially determiners (and language 

external cues, such as cooccurrence with objects in the environment) are 

more useful in the case of nouns. This means that the larger window in the 

present results may have introduced extra information that obscures the 

markedness of the noun, which was evidenced in smaller window studies. 

The fact that nouns are better classified in the lemmatised corpus can be 

explained in terms of token frequencies: the lemmatised corpus contains only 

one lemma for each four surface-form determiners (combinations of 

masculine and feminine, singular and plural), and nouns are classified by the 

fewer but denser vector components corresponding to the conflated forms of 

the determiners. 

The present results, in the context of the literature reviewed above, suggest 

that different parameters of the vector space reveal different speech patterns. 
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It is difficult to characterize them as syntactic or semantic, but the next 

section reviews the literature on distributional cues in semantic tasks. 

4.2.3 Exploring semantics  

We have seen that different levels of cooccurrence analysis, particularly 

different sizes of the context window reveal different aspects of the structure 

of the lexicon. Very small windows accurately categorise words syntactically. 

Very large windows, such as those used in LSA do very well in semantic 

tasks (Landauer and Dumais, 1997): this approach scored 64% correct in the 

synonym part of the TOEFL English test, where the task was to choose the 

closest meaning words to a target words out of four options. Smaller 

windows also capture semantics, as shown by Levy, Bullinaria and Patel's 

(1998) results for the same English test: in a larger corpus (90 million words 

against 4.6 million used by Landauer and Dumais) with information 

theoretic similarity metrics their method obtained up to 76% correct with 

windows of two or three words to left and right.  

In 1995, Stubbs examined the semantic content of cooccurrence-based word 

representations. Corrigan (2004) also used cooccurrence to examine the 

semantic connotations of words, revealed by their statistical usage patterns. 

Corrigan’s case study shows that cooccurernce with reported negative events 

give the verb ‘happen’ negative connotations. 

Other explorations of the semantic structure information contained in 

intermediate-size window cooccurrence vectors include the Hyperspace 

Approach to Language (HAL) (Lund, Burgess & Atchley, 1995; Lund & 

Burgess, 1996; Lund, Burgess & Audet, 1996). HAL predicted that the more 

similar two words were in the space - similarity measured as the Euclidean 

distance between vectors - the more they would facilitate each other in a 

lexical decision task. In a categorisation task of words belonging to semantic 

groups such as body parts, animals, countries etc, they distinguished words 

that cooccurred with each other from words that appeared in similar 
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contexts, and claimed that the former were associated by temporal contiguity 

while the latter were semantically associated. Associative priming would be 

due to semantic association. This prediction was confirmed by Bullinaria and 

Huckle (1997), who found that lexical decision priming correlated with 

distances in a semantic vector space.  

Finch and Chater (1992) found that in the cluster analysis dendrograms that 

represented syntactic categories, some clusters also represented semantic 

groupings. The limitations of dendrograms resulting from cluster analysis as 

a tool for rigorous comparison of semantic content of different cooccurrence 

spaces was pointed out by Huckle (1995).  

Levy, Bullinaria and Patel (1998) used a semantic test based on Battig and 

Montague (1969) semantic category norms, which were collected by asking 

people to name, for example, ‘units of time’ of ‘four-footed animals’. Levy, 

Bullinaria and Patel calculated the centroid of ten members from each 

category. Their classifier computed the distance between the target word and 

each of the centroids, choosing the closest category. They obtained the best 

scores (around 65% of words correctly categorised) with windows of around 

10 words and information theoretic similarity measures.  

McDonald (2000) used a psychologically-grounded criterion - Miller and 

Charles (1991) work on semantic similarity judgements - to assess the 

validity of cooccurrence-based semantic similarity measures. The similarity 

measures obtained in the vector space (with a window size of three words to 

each side and similarity measured as the cosine of the angle formed by two 

vectors) were strongly correlated with the psychologically-based ones.  

4.2.3.1 Cluster analysis 

These studies show that cooccurrence statistics do capture lexical semantic 

structure. There are no standard tests in Spanish such as the English test used 

by Landauer and Dumais (1997) or of semantic similarity norms for Spanish 

words like those of Miller and Charles (1991) that I can use to compare the 
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effect of lemmatisation and of functors in the context word set on semantic 

categorisation in a cooccurrence vector space. Below are a few examples of 

dendrogram clusters that clearly reflect semantics (like those found by Finch 

and Chater, 1992). Appendix D contains some more. 

 

Figure 4.13. Some example semantic clusters obtained in the surface-form corpus using 
content words only as context words. 

4.2.3.2 Person nouns 

Figures 4.9 to 4.12 above show the distinct distributions of person nouns (see 

Appendix E for full lists of person nouns). The distributions of person nouns 

are in most cases significantly different from those both of verbs and of the 

rest of nouns. The average distribution typicalities of the person nouns are, in 

all cases, between those of nouns and verbs. Figure 4.14 shows the mean of 

the noun, verb and person noun distributions in Figures 4.9 to 4.12 above. 
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Figure 4.14. Means of the distributions of verbs, nouns and person nouns in the noun-verb 
polarised spaces, in the four conditions. Asterisks indicate level of significance of difference 
with person nouns distribution (two-tailed t-tests) (* p<0.05; ** p<0.001). 
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This level of cooccurrence analysis reveals the existence of a sub-group, 

person nouns, which behaves in a consistent way, significantly distinct from 

nouns and verbs. They are nouns, but they show an atypical behaviour. 

Person nouns can be considered a syntactic sub-class or a semantic cluster. 

They do behave as a separate syntactic category and additionally they are 

linked to a semantic class of referents in the world (people).  

4.2.4 Exploring gender 

Most of the published work on lexical hyperspaces generated by 

cooccurrence distributions is based on English, which has no grammatical 

gender. This study of a Spanish semantic space provides an opportunity to 

explore whether distributional statistics capture gender, and what they can 

tell us about it. This section first reviews the function of grammatical gender 

and then examines the effect of corpus lemmatisation and of the context 

word set on the categorization of masculine and feminine nouns.  

4.2.4.1 The function of gender 

In Spanish, all nouns are either masculine or feminine, and their determiners 

(with a few phonology-driven exceptions) and adjectives agree with them in 

gender. The function of grammatical gender is not clear. Apart from its role 

in designating male and female for some nouns referring to people and to 

animals such as niño/niña (boy/girl), gato/gata (cat masc./fem.), gender is not 

related to sex. The Real Academia Española (1973) states that the gender 

assigned to Spanish nouns is influenced by formal, semantic, etymological 

and analogical factors. It seems, though, that linguistic information such as 

syntactic and morpho-phonological factors is more important than semantic 

information in the recognition of the gender of nouns (Perez Pereira, 1991). 

The masculine is the unmarked, generic form - the masculine form niño (boy) 

may denote either a boy or a girl; the masculine plural hijos (children) may 

include sons and daughters. The masculine form has more roles, and wider 

semantics than the feminine, and hence is more indeterminate than the 
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feminine form (Real Academia Española, 1973). Alarcos (1994) states that the 

variety of masculine and feminine word forms and the arbitrariness in the 

assignation of gender to word meanings make it difficult to define the 

meaning of gender. He considers gender as a grammatical trait or morpheme 

that classifies nouns into two different combinatorial categories (masculine 

and feminine) not ascribed to semantics. Gender may sometimes indicate sex, 

size (feminine nouns usually indicate larger size) and other semantic 

relationships, such as general concept (feminine) vs. particular instance 

(masculine), but for Alarcos, the main function of gender is to signal 

relationships between words, and thus to make possible a flexible word 

ordering. In example (1) below, the gender of the adjective viejo (old) 

disambiguates whether it refers to candelabro (masculine), as in 1a, or to plata 

(feminine), as in 1b. In example (2), gender agreement allows contorted word 

orderings.  

(1a) el candelabro (m.) de plata (f.) viejo (m.)  (the old [silver candelabra]) 

(1b) el candelabro (m.) de plata (f.) vieja (f.) (the [old silver] candelabra) 

(2) del monte en la ladera por mi mano plantado tengo un huerto 

  (‘of the mountain on the side by my hand planted I have an orchard’) 

  (I have an orchard planted by my own hand on the side of the mountain) 

To sum up, the main function of grammatical gender, and of singular/plural, 

is a syntactic one: to classify and clarify the functions and relationships of 

words within a sentence. This function could have been taken by other 

classifications such as animate/inanimate, as is the case in other languages 

(Hernandez, 2001).  

The next section presents a gender categorisation task based on distributional 

cues, and the effect on it of lemmatisation and of functors in the context-

word set.  

4.2.4.2 Categorisation of nouns by gender 
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This study uses the same categorisation method employed in § 4.2.2.2 above, 

but now to categorise masculine and feminine nouns in the same four vector 

spaces.  

I consider the same two versions of the corpus, the surface-form version 

including masculine and feminine inflections, and the lemmatised version, 

where gender and number inflected forms such as niño, niña, niños and niñas 

are conflated into the unmarked masculine form, niño. The second variable is 

the presence of functors in the context-word set. 

Results 

Figure 4.15 shows the proportions of masculine and feminine nouns that 

were correctly classified in the four conditions. While almost 100% of 

masculine nouns are classified correctly in all conditions (white bars in 

Figure 4.15), classification of feminine nouns is greater in the surface-form 

corpus, and is also helped by the presence of functors in the context-word 

set. Gender classification without functors in the lemmatised corpus was not 

expected to be good, but was tested nevertheless to see to what extent 

cooccurring content words were able to provide clues to the gender of the 

word, as suggested by Boroditsky's (2001) claim that gender influences the 

way people think of objects, and hence the semantics of gendered nouns. No 

evidence of this effect is apparent in the present results. 
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Figure 4.15. Proportions of correctly classified masculine and feminine nouns in the four 
vector spaces. 

Figures 4.16 to 4.19 show the distribution of masculine and feminine nouns 

by difference between similarity to masculine minus similarity to feminine.  
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Figure 4.16. Surface-form corpus; context: content and function words. 
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Figure 4.17. Surface-form corpus; context: content words only. 
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Figure 4.18. Lemmatised corpus; context: content and function words. 
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Figure 4.19. Lemmatised corpus; context: content words only. 

These graphs are similar to those in § 4.2.2.2 with white bars representing 

correctly classified words and black bars representing words that are closer 

to the opposite gender.  

Gender classification is better than chance in the surface-form version of the 

corpus, particularly when functors are included in the context-word set. 

There are eight wrongly classified feminine nouns in Figure 4.16: the 

feminine word agua (water), which takes the masculine article, plus seven 

plural nouns (out of a total of nine plural nouns in the target word set). The 

wrongly classified plurals are: gracias, mujeres, veces, cosas, horas, personas and 

pesetas (thanks, women, times, things, hours, persons and pesetas); of these, 

only ‘women’, ‘things’ and ‘persons’ are preceded in the majority of cases by 

determiner ‘las’. The other words are mainly preceded by numerals or other 

words.  

Discussion 

The results above suggest, as predicted, that noun inflections and 

cooccurrence with functors provide the best cues for gender categorisation. 

The fact that the feminine word agua, which takes masculine determiners, is 

such an outlier indicates that the main cues for gender are determiners, 

agreeing in gender (and number) with the noun they precede in Spanish.  
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Figures 4.16 to 4.19 show that in the absence of the appropriate cues, 

feminine words are more similar to masculine words than to other feminine 

words, reflecting the fact that feminine is the marked gender. 

4.3 Conclusions and future work 

This section has explored the information contained in cooccurrence-based 

vector spaces, and has explained why these seem to be psychologically 

plausible mental representations of speech. I have shown that even a space 

generated with a fixed window using a simple similarity metric contains 

information leading to syntactic and semantic categorisations. 

Using a corpus of Spanish transcribed speech I have tested the effects of 

including functors as dimensions in the vector space and of removing the 

inflections from the corpus. The most reliable cue for syntactic categorisation 

and for the binary classification of nouns and verbs and of gendered words 

appears to be cooccurrence with functors and content words. The effect of 

lemmatisation is mixed: gendered nouns are better categorized in a fully 

inflected corpus; verbs and nouns are better classified in a lemmatised 

corpus; in the task of categorising all words by syntactic category, the results 

for nouns, proper names, numerals and adjectives were better in the 

lemmatised corpus, while the results for verbs, adverbs and functors were 

better in the surface form corpus.  

All these results together support the view that functors have a crucial role in 

the scaffolding of syntactic categorisation, and that, while nouns and 

adjectives are better characterized when cooccurrence with functors is taken 

into account, verbs and adverbs are better characterized by the distributions 

of verb inflections. A possible extension to the tests presented in this chapter 

would be to include a condition where the context-word set is composed of 

function words only. In that condition I would expect to see similar or 

improved results in syntactic tests, but worse results for semantic tests. 
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Designing a quantitative semantic task for Spanish such as synonym-choice 

would allow the comparison of cooccurrence spaces calculated with different 

parameter values. With such a test in place, and ideally a larger corpus, it 

would be possible to explore systematically the parameter space - window 

size, context-word set and similarity metric – in the steps of Levy, Bullinaria 

and Patel (1998). Knowledge about the type of information captured by the 

different parameter configurations could help design tools for the automatic 

extraction of syntactic or semantic information from speech cooccurrence 

patterns. This exploration would also provide theoretical insights into the 

way syntactic and semantic information are encoded in speech, and their 

interactions.  

The previous chapter presented an empirical exploration of Spanish 

phonological similarity parameters that can be used to build a phonological 

similarity space. In this chapter I have studied the information captured in a 

cooccurrence-based syntactic-semantic similarity space. The following 

chapter brings these two similarity spaces together and tests the existence of 

systematic relationships between them. 
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Chapter 5. Cross-level systematicity in the lexicon  

 

This chapter deals with the hypothesis that there is systematicity in the 

lexicon. Introductory chapter one proposed that the lexicon is an adaptive 

system where each word’s phonology, semantics, and syntax is defined in 

terms of its relationships with those of the rest of the words. Chapter three 

examined parameters of phonological similarity; chapter four, a metric of 

semantic similarity. This chapter tests the hypothesis that the two spaces 

configured using phonology and semantics, two independent measures of 

word similarity, are systematically related to each other. Section 5.1 

introduces and motivates the hypothesis and reviews the literature of the 

issues that it touches on. Section 5.2 presents and discusses two experiments 

that test form-meaning systematicity. Section 5.3 examines which types of 

words drive the systematicity, testing Shillcock, Kirby, McDonald and Brew’s 

(2001, submitted) claim that systematicity is driven by certain 

‘communicatively salient words’. Finally, section 5.4 discusses the results of 

the chapter in the light of the literature. 

 

Figure. 5.1. Systematicity between the phonological and the semantic levels of the lexicon: 
words that are close together in the phonological level tend to be close together in the 
semantic space, and vice versa. 

Semantic level 

/star/ 

Phonological level 

    /sun/ 
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5.1 Systematicity in the lexicon  

The previous two chapters looked at methods to measure phonological and 

semantic relationships between words. The resulting lexicon levels, defined 

in terms of similarity between all word pairs, follows structuralism in that 

words are defined not by their inherent qualities, but as elements in a 

system. For Saussure ([1916] 1983), language is organized as “an internal 

system of signs which exist in a system of relationships and differences”. 

Throughout this thesis I have emphasized the lexicon’s different levels of 

representation. Chapter one defined the lexicon as an adaptive system 

finding the optimal solution to the several pressures that act on it. The 

present chapter deals with the assumption that one of those pressures is a 

general bias in the brain for structure-preserving mapping between related 

representations, and proposes that there exists systematicity between the 

levels of the lexicon measured in previous chapters (phonological and 

cooccurrence-based). 

Systematicity is a basic, pervasive property of language. The relationship 

between language and meanings is fundamentally systematic. Anderson’s 

(1991) study of categorisation concludes that the structure of the 

environment determines the structure of concepts. This is also evidenced in 

the relationships between syntactic compositionality and grammatical 

meaning: similar syntactic structures express similar relationships between 

concepts. Systematicity between morpho-phonology and meaning is less 

obvious, but nonetheless present, with morphemes with similar phonology 

denoting similar word syntactic properties – for example, as we saw in 

chapter three, many Spanish tenses and person morphemes are encoded in 

final stressed vowels. It should not come as a surprise, then, that the 

relationships between word forms and word meanings are also systematic. 

In particular, in this chapter I focus on the systematicity between the two 

levels examined in past chapters: phonology and semantics. Among the 

implications of such systematicity is the hypothesis that words with similar 
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phonological representations tend to have similar semantic representations, 

and conversely, words with different phonological representations tend to 

have different semantic representations, already tested for English by 

Shillcock, Kirby, McDonald and Brew (2001, submitted).  

Naturally, this effect is expected to be extremely small, as a multitude of 

other conflicting constraints act on words’ phonology and semantics. Word 

form-meaning systematicity is a logical extension of the pervasive trend for 

language-referent systematicity, and only seems surprising because it is 

masked by the effects of other demands on the structure of the lexicon, not 

least the need to make words within the same semantic group sound 

different from each other so that they can be easily distinguished. I propose 

that a degree of systematicity is useful in language acquisition and 

comprehension, and that though not readily apparent, it is there and its 

effects are measurable if we use the appropriate methods.  

This section first examines the background research on phonology-semantics 

systematicity and then addresses some issues such as what could be the 

function of the systematicity, why it might exist and how it relates to 

Saussure’s arbitrariness of the sign principle.  

5.1.1 Background  

The work presented in this chapter and the following one is based on a study 

by Shillcock, Kirby, McDonald and Brew (2001), further developed in a 

submitted manuscript (Shillcock, Kirby, McDonald & Brew, submitted). 

Shillcock et al. looked at the structure of the English lexicon and found a 

small but significant correlation between the phonological and semantic 

distances1 between words; specifically, they propose that certain 

                                                
1 Note that Shillcock et al. (2001) use distances where I use similarities. They are two ways of 
measuring the same phenomenon. A high similarity is a small distance, and vice versa. Their 
metric of phonological distance increases with the number of mismatches; my measure of 
phonological similarity increases with the number of matches. They measure semantic 
distance as (1 – cosine), while I measure semantic similarity as the cosine. 
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‘communicatively important words’ show a high correlation between their 

phonological and semantic distances to the rest of the words. In this chapter I 

apply a methodology similar to Shillcock et al.’s to two subsets of the 

Spanish lexicon.  

Shillcock et al. considered the 1733 most frequent monosyllabic, 

monomorphemic English words in the British National Corpus and 

calculated the distance between all the possible word-pairs. They first 

produced values for the distance between segments - they assigned penalties 

for mismatches between segment features such as vowel/consonant, vowel 

length, consonant voicing etc. For the calculation of the phonological 

distance between each word-pair, they applied the Wagner-Fisher edit 

distance algorithm - the number of changes, including deletions and 

insertions, necessary to turn one word into the other (Wagner & Fisher, 1974) 

- using the mismatch penalties described above for the changes, and an extra 

penalty for deletions and insertions. For the semantic distance they 

constructed a cooccurrence-based 500-dimension vector space based on the 

100 million-word British National Corpus. (The cooccurrence-based vector 

space method is explained and reviewed at length in § 4.1 in chapter four.) 

They lemmatised the corpus to reduce vector sparseness and measured the 

semantic distance as 1- cosine of the angle between the two word 

cooccurrence vectors. Finally, they obtained a correlation between the 

phonological and the semantic distances of Pearson’s r = 0.061, which a 

Monte-Carlo analysis showed to be significant (p<0.001, one-tailed).  

Having shown a significant systematicity between phonology and semantics 

in the English lexicon, Shillcock et al. (2001) ranked the individual words 

according to their correlation value – they calculated, for each word, the 

correlation between its phonological and semantic distances to every other 

word. They found that 'filler' words such as oh, er and ah were positioned at 

the top of the rank. Shillcock, Kirby, McDonald and Brew (submitted) extend 

that study and find that swear-words, personal pronouns and proper names 
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all are high in the correlation rank. They propose that these are 

communicatively important words that tend to be preserved in individuals 

with a range of language impairments. Shillcock et al. (2001, submitted) point 

out that their phonological and semantic distance metrics were separately 

developed for different projects, and that they are theory-independent, and 

therefore objective methods.  

5.1.2 Preliminary issues 

The notion of a systematic lexicon with high-order relationships across levels 

of representation raises some questions, such as: What benefit could a 

systematic lexicon bring to language processing? Why would it occur in the 

brain? Does it not contradict the Saussurean arbitrariness of the sign 

principle? This section addresses these three fundamental issues.  

5.1.2.1 The function of the phonology-semantics systematicity 

As we saw in chapter one, the structure of the lexicon is subjected to many 

pressures, which are sometimes opposed to each other. Here I concentrate on 

one of those pressures, namely the bias towards structure-preserving 

representations of words over the phonological and the semantic levels. This 

pressure may be an inevitable consequence of the nervous system 

representational principles. I assume that if the systematicity is there and it is 

measurable, it is so for a reason; if it had neutral or adverse effects, other 

pressures on the lexicon would have swamped its effects effectively 

removing it. This section presents some functions that the phonology-

semantics systematicity could be serving.  

In their paper on Latent Semantic Analysis, Landauer and Dumais (1997) say 

that young teenagers learn on average 10-15 new words a day; the authors 

claim that exploiting the weak distributional interrelations between words at 

the right level ‘can greatly amplify learning by a process of inference’. 

Systematicity could further help not only young learners, but also adults 
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confronted with a novel word: the form of a word provides additional clues 

to its possible meaning. 

The Iterated Language Model (Kirby & Hurford, 2002), based on 

computational simulations of language evolution, proposes that the cultural 

transmission of language leads to the evolution of languages that exploit 

structure in both the meaning and the signal spaces.  

Additionally, Shillcock et al. (submitted) argue that the more 

communicatively salient words such as speech editing terms (such as oh, ah, 

er), swear-words, personal pronouns and proper nouns, assert themselves 

within the lexicon by preserving high phonology-semantic correlation 

values. This suggests the existence of a core lexicon including the strongly 

systematic, communicatively important words that form the scaffolding of 

the lexicon and provide some of the clues necessary for the inference of 

meaning from form. The rest of the words, not so constrained for 

systematicity, fill up the lexicon body.  

There is even a commercial application based on the idea of form-meaning 

systematicity. The principle is implicit in the activity of some recently created 

companies specialised in creating company and product names. They invent 

new words aimed at conveying the desired meanings.  

5.1.2.2 Structure-preserving representations 

Gallistel (1990) defined a representation as a precise correspondence (an 

isomorphism) between objects and relations in the environment and 

structure-preserving systems in the brain. As Halliday (1992) explains, 

within each sensory area of the nervous system, objects and their 

relationships are represented several times at different processing stages. For 

example, in the visual system, the retinal image, a highly structure-

preserving two-dimensional representation of the visual field, is transmitted 

to the Lateral Geniculate Nucleus, consisting of six retinotopically mapped 

layers, and from there to the visual cortex, also retinotopically mapped.  
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Figure 5.2. Retinotopic representation of a stimulus (left) on the striate cortex (right) of a 
monkey. From Tootell, Silverman, Switkes and De Valois (1982). 

This means that two points that are close together in the proximal stimulus 

(the first representation in the retina) will be represented by cells that are 

close together at every stage of processing. In Figure 5.2 we see how the 

representation on the striate (visual) cortex maintains the fundamental 

structure of the stimulus. The same happens in hearing, with structure-

preserving tonotopic representations of sounds. Different frequencies are 

perceived by different areas of the cochlea in the inner ear, so that similar 

frequencies in the acoustic stimulus are represented together in the proximal 

stimulus. The structure of the proximal stimulus is maintained in successive 

representations in the primary auditory cortex and in the associative cortex.  

In the somatosensory cortex and in the primary motor cortex, adjacent parts 

of the body end up being represented close together in the cortex (see Figure 

5.3). Additionally, these two maps, which lie along each other in the cortex, 

also map each other. The somatosensory and the motor homunculi (cortex 

representations) are somehow distorted representations of the human 

anatomy. Apart from the tendency towards isomorphism, other constraints 

affect the representation, such as the fact that the homunculus proportions 

are driven by the number of sensory receptors in the skin, or the limitations 

of the projection of the 3D human body surface onto the 2D cortex. However, 

behind these other constraints it is easy to see that general anatomical 

structure is preserved. 
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Figure 5.3. Structure-preserving map of the body surface represented on the somatosensory 
cortex; this map is called the homunculus (‘little man’ in Latin). From Penfield and 
Rasmussen (1950). 

Structure preserving representations are pervasive in the mammalian brain 

and present strong processing advantages (Halliday, 1992). First, they make 

possible analytic processes such as breaking down the stimulus into a 

number of different types of information, such as colour, orientation and 

motion in the visual system, which are also represented in a structure-

preserving way (see Figure 5.4). The visual proximal stimulus is initially 

processed by different retinal neuron systems that transform it into a series 

of jigsaw-like representations, each of them concerned with one aspect of the 

stimulus. These are the three planes in Figure 5.4.  

 

Figure 5.4. Three modality topographical representations of a rotating red oval stimulus. For 
each visual field (each square in the grids), different modalities of information are processed. 

Second, they allow synthetic processes to occur, such as grouping, concerned 

with building large-scale descriptions, and integration of the different 
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modalities of information. Grouping consists of considering all the pieces of 

information about one aspect of the stimulus. Elements that share some 

physical similarity such as colour or orientation are grouped together. For 

example, taking into account the orientation of all the pieces of the visual 

field (centre plane in Figure 5.4) allows inference of the shape of the stimulus 

object. Visual grouping makes descriptions more concise: for example the 

motion plane in Figure 5.4 can be described as a long list of X points each 

moving in a different direction, or, if grouped together, as rotation 

movement. Integration is concerned with putting together information from 

the different aspects of the stimulus (colour, motion etc) allowing, for 

instance, the perception of objects as sets of features: in Figure 5.4, ‘one red 

rotating oval’. These processes make descriptions more manageable by 

focusing on general properties of the objects and allow generalisation and 

inference.  

Factors such as preserving structure and making generalisations define the 

systematicity of representations. In the case of language, a representation is a 

precise correspondence between words and the relationships between them 

and structure-preserving systems in the brain. The lexicon is represented 

over different modalities: phonology, syntax, semantics etc. I assume that the 

faculty of language, like other processing modalities, presents systematicity 

across representations. This chapter deals fundamentally with the 

systematicity between two types of information contained in speech: 

phonological and semantic information. Systematicity implies that language 

processing involves generalizing from and integrating the different types of 

information present in the linguistic stimulus (mainly speech, but also text). 

The requirements for systematicity, then, are structure-preserving 

representations and mechanisms to extract, integrate and generalize over 

different modalities of information contained in the stimulus (the latter have 

been reviewed under statistical learning in chapter one). Summing up, 
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systematicity of mental representations is ubiquitous in the nervous system 

and it provides a tool for generalisation and inference. 

5.1.2.3 Arbitrariness of the sign 

One consequence of the systematicity between word forms and meanings is 

that it presupposes an intralinguistic determinism of word forms and 

meanings - given the meaning of word X (its distributional patterns in use), 

there is a bias for word X to contribute to the overall lexicon systematicity. In 

other words, there is a bias for word X to have a form that contributes to a 

phonological level of the lexicon that systematically relates to the semantic 

level. Therefore its form is not arbitrary. This relates to Saussure’s 

arbitrariness of the sign principle. For Saussure ([1916] 1983) a linguistic sign 

is a sound pattern linked to a concept. He proposes that signs are involved in 

two types of relationships: signification, or the link between the form and the 

concept, and value, determined by the relationships between the signs that 

form part of a system (Figure 5.5). The following words by Saussure point to 

a complex lexicon where relationships between words are crucial: “To think 

of a sign as nothing more than a combination of a sound pattern with a 

concept would be to isolate it from the system to which it belongs, it would 

be to suppose that a start could be made with individual signs, and a system 

constructed by putting them together. On the contrary, the system as a 

united whole is the starting point, from which it becomes possible, by a 

process of analysis, to identify its constituent elements”.  

 

Figure 5.5. Schematic representation of Saussurean relationships of signification (within the 
sign) and of value (between signs). 
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Saussure proposed as the first principle of language the arbitrariness of the 

sign, or the fact that there is no necessary, intrinsic, direct or inevitable 

relationship between the form and the meaning of a sign. The arbitrariness of 

the sign was already noted by Aristotle and by Plato (in the Cratylus 

dialogue). In the present study we are also looking at parameters relating to 

form and concepts: phonological and semantic word representations. 

Arbitrariness, then, refers to the signification.  

The arbitrariness of signification is not without critics. The sound symbolism 

literature assumes that there are universal associations between certain 

sounds and certain meanings. Sound symbolism proposes the opposite to the 

arbitrariness of the sign principle, namely the idea of a correlation between 

the form and the meaning of words; and in particular, the claim that 

phonemes bear information about or are associated with certain meaning 

(e.g. Magnus, 2001). Sapir (1929) observed correlations between back and 

front vowels and the notions of big and small, respectively, and Ultan (1978) 

found that these associations occur cross-linguistically. Kelly, Leben and 

Cohen (2003) found that certain obstruent consonants are perceived as hard 

and masculine while sonorants are perceived as soft and feminine. This kind 

of studies, among others, are carried out and applied today in firms 

specialising in naming new products to characterize the product and to 

appeal to different consumer groups. 

Shillcock et al. (submitted) argue that clusters of similar-meaning words 

containing similar consonant clusters such as street, strip, stream, stripe, strap, 

etc, which could be the most visible examples of phonology-semantic 

systematicity, in fact do not contribute to that systematicity, and tend to 

appear towards the bottom of their systematicity ranking (perhaps because 

they form a cluster of self-sustained systematicity that can afford to do 

without systematicity with respect to the rest of the lexicon). 

Jespersen, a proponent of sound symbolism or phonosemanticism, wrote: ‘Is 

there really much more logic in the opposite extreme which denies any kind 
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of sound symbolism (apart from the small class of evident echoisms and 

‘onomatopoeia’) and sees in our words only a collection of accidental and 

irrational associations of sound and meaning? ...There is no denying that 

there are words which we feel instinctively to be adequate to express the 

ideas they stand for.’ (Jespersen, 1922).  

Jespersen’s last observation can be related to the non arbitrariness of the value 

of the sign. Already Sapir (1929) and Firth (1935) felt that speech sounds 

carried meaning, but suggested their meaning was not inherent to them. 

Rather, this was a result of “phonetic habit”, a tendency to give similar 

meanings to words with similar sounds. Chandler (2001) also points out that 

“the principle of arbitrariness does not mean that the form of a word is 

accidental or random (...). Whilst the sign is not determined 

extralinguistically, it is subject to intralinguistic determination”.  

This is consistent with systematicity, which implies that while any one 

word’s phonology is independent from its semantics, the relationships 

between words’ phonological representations are not independent from the 

relationships between their semantic representations. In the systematic 

lexicon a dog could suddenly be called ‘caterpillar’, or someone could use the 

word ‘tree’ as a verb, but not without consequences: the rest of the lexicon 

would need to modify itself to accommodate the change. In an adaptive 

lexicon always juggling the pressures it is subjected to, such a change could 

bring instability. This would trigger a chain-reaction of events in the general 

direction of increasing the stability of the whole system.  

In section 5.1 I have described the methods and results of the studies of 

Shillcock et al. (2001, submitted), which show that there is a small but 

significant correlation between the structure of the form and of the meaning 

representational spaces of English words. This correlation arguably reflects 

communicatively important words, and could facilitate word perception, 

help the acquisition of new words in childhood and the understanding of 

novel words in adulthood. I have shown that such systematicity across 
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representations is pervasive in the nervous system, and it presents important 

advantages for processing. This model of the lexicon is not in conflict with 

the arbitrariness of the sign principle, since the relationship between each 

form and its meaning remains arbitrary; the systematicity applies between 

the space of word forms and the space of word meanings in a given 

language. The next section applies a methodology similar to Shillcock et al.’s 

to test systematicity in the Spanish lexicon. 

5.2 Testing phonology-semantic systematicity in the Spanish 

lexicon 

In this section I test the hypothesis that there is systematicity between 

phonology and semantics in Spanish. All the principles discussed above are 

universal: the learning requirements, the neural structure and the 

philosophical characteristics of symbols apply to all languages. This section 

tests, among other things, the universality of the phonology-semantic 

systematicity. If it exists in Spanish as well as in English, there are more 

grounds to suppose that it is a universal phenomenon and to expect to find it 

in other languages.  

Systematicity implies that words that are phonologically similar will tend to 

be semantically similar. In order to test this hypothesis, I configure a 

phonological space and a semantic space by calculating the phonological and 

the semantic similarity distances between all the word pairs in two different 

subsets of the lexicon. The hypothesis to be tested is that for a set of word 

pairs, their phonological and semantic similarity values will be significantly 

correlated. Section 5.2.1 describes the methodology employed in this test. 

Section 5.2.2 describes the implementation of the systematicity test using 

those methods, and presents and discusses the results. Section 5.2.3 is an 

attempt to remove particularly syntactic information from the calculation of 

the correlation in order to test the correlation between word form and word 

meaning. 
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5.2.1 Methodology 

In this section I first describe the metrics of phonological and semantic 

similarity employed. Then I describe at length and motivate the use of an 

information-based correlation measure, Fisher divergence, which I use later 

to calculate the correlation between the phonological and the semantic 

spaces. Finally, I describe the test used to determine the significance of the 

correlation: a Monte-Carlo analysis.  

5.2.1.1 Phonological similarity 

For the phonological similarity I use a parameter-based method that applies 

the results of the study in chapter three. In that study participants had to 

select which of two test non-words sounded more similar to a target 

nonword. The test nonwords shared different parameters with the target, for 

example they shared the same initial consonant, same final vowel, same two 

vowels, stress on the same syllable etc. The result was a scale of values that 

reflected the relative impact of each parameter on the participants’ 

perception of phonological similarity. 

cvcv 

c1 -1.25 

c2 -4.21 

v1 -3.73 

v2 -1.83 

tc 3.68 

tv 3.85 

s1 0.97 

s2 -0.52 

sv1 0.14 

sv2 2.88  

cvccv 

c1 -1.99 

c2 -5.04 

c3 -7.33 

v1 -1.96 

v2 -0.34 

tc13 1.05 

tc23 -0.25 

3c 7.90 

tv 6.07 

str -4.60 

s1 2.30 

s2 0.57 

sv1 -4.20 

sv2 6.34  

Table 5.1 Parameter values for cvcv and cvccv words, from chapter three. (See § 3.2.2.4 for 
calculation of the values.) C1, c2, c3 = consonants 1, 2 and 3; v1, v2 = vowels 1 and 2; tc = two 
consonants; tv = two vowels; 3c = three consonants; s1, s2 = same stress on the 1st and 2nd 
syllable; sv1, sv2 = same stressed vowel on the 1st and 2nd syllable. 
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In chapter three’s analysis of the relative importance of these values, the fact 

that some of them were positive and some negative was informative. For the 

metric of phonological similarity we need to make all values positive so that 

sharing a parameter always makes two words more similar, to a degree 

proportional to the parameter value. In order to do that, I recalculate the 

parameter values from the empirical result matrices obtained in chapter three 

(shown in Tables 3.6 and 3.7). For the calculation of a given parameter value, 

I add together the positive values in its column. This way I only take into 

account the parameters it wins over. Because Fisher divergence is sensitive to 

the magnitude of the values, I transform the obtained parameter values into 

a probability distribution, shown in Table 5.2.   

cvcv 

c1 0.085 

c2 0.008 

v1 0.022 

v2 0.032 

tc 0.223 

tv 0.214 

s1 0.117 

s2 0.053 

sv1 0.082 

sv2 0.165  

cvccv 

c1 0.049 

c2 0.031 

c3 0.016 

v1 0.080 

v2 0.065 

tc13 0.188 

tc23 0.050 

3c 0.048 

tv 0.156 

str 0.076 

s1 0.068 

s2 0.002 

sv1 0.157 

sv2 0.014  

Table 5.2 New parameter values for cvcv and cvccv words (transformed into probability 
distributions). 

The similarity metric algorithm used in the present test is illustrated in Table 

5.3 below and works as follows: first the values from the study in chapter 

three are transformed into a probability distribution (so that their sum equals 

1); then, for each word pair, the algorithm checks whether the two words 

share each of the parameters in the study in chapter three. If they do, it adds 

the value for that parameter to the similarity value of the pair (e.g. pair ‘pAra 
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– pEro’ shares consonants one and two, the two consonants at the same time, 

and the accent on the first syllable, so it has marks in the c1, c2, 2c and a1 

cells. The resulting phonological similarity value for each word pair, shown 

on the right-hand column in Table 5.3, is the sum of the values of the 

parameters the two words share. 
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 Param: c1 c2 v1 v2 tc tv s1 s2 sv1 sv2 Phon.Sim. 

pAra pEro x x   x  x    0.232 

kOmo pEro    x   x    0.150 

kOmo pOka   x    x  x  0.221 

Table 5.3. Calculation of phonological similarity of three example word pairs 

5.2.1.2 Semantic similarity 

Semantic similarity is calculated using the same vector space approach used 

in § 4.2.1, in chapter four, applied to the surface-form version of the ‘Corpus 

oral de referencia del español’ (Marcos Marin, 1992). Each word’s position 

vector is calculated by counting the cooccurrences with a set of context-

words. The metric of similarity between two word vectors is the cosine of the 

angle formed by the two word’s position vectors (the cosine as a measure of 

similarity is explained at length in chapter four, § 4.1.1.3).  

5.2.1.3 Correlation between similarity spaces: Fisher divergence 

I need a tool to calculate a correlation between the phonological and the 

semantic spaces, which are defined by the similarity between every word 

pair in a subset of the lexicon (see Figure 5.6). In this section I will work 

through an imaginary example whose starting point are the fictitious 

semantic and phonological spaces in Table 5.4 represented as matrices of 

distances between pairs of the words 0,1,2,3 and 4. (Note that using distances 

and similarities should produce the same results, as long as the same 

measure is used in both the phonological and the semantic spaces.) 
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SEM 0 1 2 3 4 

0 0     

1 0.34 0    

2 0.78 0.98 0   

3 0.86 0.34 0.17 0  

4 0.13 0.79 0.56 0.26 0  

PHON   0 1 2 3 4 

0 0     

1 0.13 0    

2 0.48 0.56 0   

3 0.44 0.62 0.21 0  

4 0.35 0.59 0.66 0.5 0  
Table 5.4. Fictitious semantic and phonological spaces for a lexicon consisting of words 
0,1,2,3 and 4.  

Shillcock et al. (2001, submitted) measure the correlation between the 

phonological and the semantic distances with Pearson’s r. Pearson’s 

correlation assumes data normality and independence. The sets of pairwise 

distance (or similarity) measures are not necessarily normally distributed, 

indeed, on many occasions they are multimodal distributions. The data are 

not independent either. Independence means that one value cannot be 

predicted from observation of other values, but in our phonological and 

semantic architectures, each pairwise similarity value depends on all the 

other similarity values, and if we change one value, the other values will be 

affected.  

 

Figure 5.6. Three points in a 2D space. 

For instance, Figure 5.6 shows three points in a two-dimensional space. If we 

change the distance between A and C, the distance between B and C may 

also change. This seems to imply that Shillcock et al.’s calculations are 

fundamentally flawed. However, some preliminary tests with Pearson’s r on 

the Spanish data showed significant results similar to those obtained for 

English. The statistical significance levels attained imply that it is very 

unlikely that this would have happened by chance, so the possibility remains 

open that correlating the phonological and the semantic spaces with 
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Pearson’s r is measuring some potentially different aspect of systematicity 

between them. 

Measuring the correlation with Spearman rank coefficient misses multimodal 

distributions (which do occur in the phonological space). Given that we will 

be dealing with large data sets, a two-sample z-test would also be 

appropriate, and indeed z-scores are highly correlated to Fisher divergence 

values (R2>0.96).  

I measure the correlation between phonological and semantic similarities 

using Fisher divergence, a symmetric variant of Fisher information used by 

Ellison and Kirby (in preparation) in a similar task, namely measuring the 

divergence of distance matrices between the phonologies of different 

languages. 

The calculation of Fisher divergence involves converting the distance values 

in each space into probability distributions, calculating the geometric mean 

for each word-pair and then computing for each word the difference in 

information in the two spaces (the confusion probability) multiplied by the 

geometric mean. Fisher divergence presents several advantages over other 

correlation metrics: it correlates matrices; it takes unitless probability 

distributions as input and it relates to Information theory. Also, the 

confusion probability for each word-pair can be interpreted as a 

psychometric measurement, namely the probability that one word is 

mistaken for the other.  

The first step in the calculation of Fisher divergence is transforming the sets 

of distances into probability distributions: each pairwise distance between 

two words becomes the probability of confusion of word y with word x in 

each space C(y|x; space). Intuitively, the more distant two items, the lower 

their confusion probability. Note that these are theoretical confusion 

probabilities, different from the actual probability that one word is misheard 

as another one in a conversation, and also different from the values obtained 

in chapter three from the comparison of similar non-word stimuli. For the 
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calculation of the confusion probabilities we need n, a normalising constant 

to make the sum of confusion probabilities for each word x equal to 1 (see 

Table 5.5): 

∑
∀

=
y

espacexn space) y;-K.dist(x,);(  

 y=0  y=1  y=2  y=3  y=4  sum 

SEM            

n(0) 1 + 0.79 + 0.58 + 0.55 + 0.91 = 3.837 

n(1) 0.79 + 1 + 0.51 + 0.79 + 0.58 = 3.665 

n(2) 0.58 + 0.51 + 1 + 0.89 + 0.68 = 3.656 

n(3) 0.55 + 0.79 + 0.89 + 1 + 0.84 = 4.065 

n(4) 0.91 + 0.58 + 0.68 + 0.84 + 1 = 4.006 

            

PHON            

n(0) 1 + 0.91 + 0.72 + 0.74 + 0.78 = 4.153 

n(1) 0.91 + 1 + 0.68 + 0.65 + 0.66 = 3.907 

n(2) 0.72 + 0.68 + 1 + 0.86 + 0.63 = 3.893 

n(3) 0.74 + 0.65 + 0.86 + 1 + 0.71 = 3.959 

n(4) 0.78 + 0.66 + 0.63 + 0.71 + 1 = 3.789 

Table 5.5. Calculation of n for each word. 

Now we can calculate the semantic and phonological confusion probability 

distributions (Table 5.6): 

space)] y;K.[dist(x,-

 n(x)

1
);|( espacexyC =  

C(y|x; 
sem) 

0 1 2 3 4 sum 

0 0.2606 0.2059 0.1518 0.1436 0.2382 1 

1 0.2155 0.2728 0.1383 0.2155 0.1578 1 

2 0.1593 0.1387 0.2735 0.2431 0.1855 1 

3 0.1355 0.1944 0.2187 0.246 0.2054 1 

4 0.2281 0.1444 0.1693 0.2085 0.2497 1 

       

sum --
> 

0.9991 0.9561 0.9516 1.0567 1.0365  
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C(y|x; 
phon) 0 1 2 3 4 sum 

0 0.2408 0.2201 0.1727 0.1775 0.1889 1 

1 0.2339 0.2559 0.1736 0.1665 0.17 1 

2 0.1842 0.1743 0.2569 0.2221 0.1626 1 

3 0.1862 0.1643 0.2183 0.2526 0.1786 1 

4 0.2071 0.1753 0.167 0.1866 0.2639 1 

       

sum --
> 

1.0521 0.9899 0.9885 1.0053 0.9641  

Table 5.6. Confusion probability distributions. 
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Figure 5.7: Confusion probabilities between each word x (top row of x-axis) and word y 
(bottom row of x-axis) in the context space and the phonological space. We have separate C’s 
for each word. 

Let us focus on the confusion probabilities of word 0 in the phonological 

space (the leftmost five black circles in Figure 5.7). Given word 0 (e.g. cat), 

these values are the theoretical probabilities that when a speaker says cat, the 

listener will hear each of the words 0, 1, 2, 3, and 4, given their phonology. 

The sum of all these probabilities (all the possible outcomes) is 1. The first 

value (pair 0, 0: cat, cat) is the probability that the listener will hear cat when 

the speaker says cat, and, as expected, it is the highest of all. The second 

word must sound rather similar to cat, because it has a high confusion 

probability. The third one is the most different, and so on for the rest of word 

0, and for the rest of the words. Note that in this example, for each word, its 

confusion probability with itself (0,0) (1,1) (2,2) (3,3) (4,4) is the highest of all, 
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which is to be expected, and reflects the fact that the distances of every word 

from itself is 0 (Table 5.4). The probability distributions C are in asymmetric 

square matrices since n(x) will not always equal n(y).  

Note that the matrices in Table 5.6 are completely full, showing the confusion 

probabilities between each word and every other word, while the original 

semantic and phonological distance matrices only contained one value for 

every pair. The confusion probability matrices are not symmetrical, as they 

consider each word independently. This fact is unique to the calculation of 

correlations between distance matrices. 

The normalising constant K tells us how ‘clear’ each word is. It affects the 

weight given to the inequalities between the confusion probabilities of each 

pair. If K=0, all C(y|x) =1/(nr of words); this means that when someone says 

cat, the listener is as likely to understand cat as any of the other words (very 

inefficient communication). As K increases, the pair differences that equal 0 

go to 1 and the rest will decrease in value and tend to 0 (see Figure 5.8). This 

means when someone says cat, the listener will have better and better 

chances of hearing cat. In this thesis I have used K = 1 in all calculations. 
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Figure 5.8. Confusion probabilities C(y|x) obtained with different K’s. (Note that not all 
word pair labels appear on the x axes.) 

Fisher divergence tells us how different the two distributions shown in 

Figure 5.7 are. In order to calculate Fisher divergence F for each word, we 

first need to define the geometric mean distribution Q(y|x; sem, phon) of 

C(y|x; sem) and C(y|x; phon). First we calculate the normalising constant k 

for each word (Table 5.7). 
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∑
∀

=
y

phonsemxk  ) phon) x;|C(y sem) x;|C(y (),;(  

k 0 = 0.997029 

k 1 = 0.996984 

k 2 = 0.997787 

k 3 = 0.996874 

k 4 = 0.998588 

Table 5.7. Normalising constants k for each word  

Now I use k in the calculation of the geometric mean distribution Q (Table 

5.8): 

phon) sem, k(x;)/  phon) x;|C(y sem) x;|C(y (),;|( =phonsemxyQ  

Q(y|x; SEM, PHON) 

 0 1 2 3 4 sum 

0 0.2513 0.2135 0.1624 0.1601 0.2128 1 

1 0.2252 0.265 0.1554 0.19 0.1643 1 

2 0.1717 0.1558 0.2656 0.2329 0.1741 1 

3 0.1593 0.1793 0.2192 0.25 0.1921 1 

4 0.2177 0.1593 0.1684 0.1975 0.2571 1 

       

sum --
> 1.0251 0.9729 0.971 1.0306 1.0003 

 

Table 5.8. Geometric mean distribution Q. 
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Figure 5.9: As Figure 5.7, but showing also the Geometric mean Q for each word pair. 

We calculate the Fisher Divergence F for each word (Table 5.9): 

∑
∀

=
y

phonsemxF phon) sem, x;|(y Q sem)) x;|log(C(y-sem) x;|(log(C(y),;( 2  
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For each word (x), for every other word (y) we take the square of the 

difference of logs of the confusion probability for that pair. This is the 

difference in information content (bits) of the pair in the semantic space and 

the phonological space, squared. The Geometric mean Q for that pair tells us 

how much weight we should give to that squared difference. 

F(0) = 0.0496 

F(1) = 0.0503 

F(2) = 0.0369 

F(3) = 0.0521 

F(4) = 0.0235 

Table 5.9. Fisher Divergence for each word. 

The Fisher Divergence is the sum of all word divergences: 

∑
∀

=
y

phonsemF phon) sem, (x;),(  

In the present example, Fisher divergence = 0.212 

A high Fisher divergence value indicates a low correlation, and a low value, 

a high correlation. 

5.2.1.4 Significance of the correlation 

Fisher divergence is a unitless measure of how different (or divergent) the 

phonological and semantic spaces are. One way to determine the significance 

of this unitless measure is a Monte-Carlo analysis, which quantifies the 

probability that the Fisher divergence obtained could have occurred by 

chance. 

The Monte-Carlo analysis to determine the significance of a correlation 

between two variables is carried out like this: first I calculate the veridical 

correlation, and then I calculate the correlation between one of the variables 

and the scrambled values of the other variable a number of times. The idea 

behind a Monte-Carlo analysis is that if the two variables are correlated, 

scrambling one variable tends to worsen the correlation value obtained. On 

the other hand, if the two variables are not really correlated, scrambling is as 
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likely to increase as to decrease the correlation. The significance is 

determined by the position of the veridical correlation value in the 

distribution of random correlations, for example, if the veridical correlation 

falls in the 4th place of a list of 100 random results, its p value is estimated to 

be 4/100 = 0.04. 

There is a type of Monte-Carlo analysis called the Mantel test (Legendre & 

Legendre, 1998) which calculates the significance of the correlation between 

two distance matrices, but it usually employs Pearson’s r or Spearman’s rank 

as correlation measures. I adapt Mantel’s test by using Fisher divergence 

instead, and follow Mantel’s randomisation method. In order to randomize 

the values of one of the matrices (e.g. the phonological similarity matrix), I 

permutate its rows and columns and I calculate the correlation between the 

original semantic similarities and the scrambled phonological similarities. 

Permutating the rows and columns has the same effect as scrambling the 

word pairs before calculating the pairwise phonological similarities. In this 

study I have compared the veridical Fisher divergence values with 1000 

randomisations to obtain robust significances.  

5.2.2 Measuring the phonology-semantic correlation  

I now apply the methods explained above to a two independent subsets of a 

corpus of Spanish transcribed speech, and present and discuss the results. 

5.2.2.1 Materials 

The words to configure the semantic and phonological spaces were extracted 

from the same Spanish transcribed speech corpus used in preceding 

chapters. The surface-form version of the corpus was used, meaning that the 

word-forms contained some morpho-phonological information. The 

semantic word vectors were calculated counting cooccurrences with function 

and content words, as this factor combination had the best performance in 

the experiments presented in chapter four. I consider two separate subsets of 

the phonetically transcribed Spanish lexicon: the 252 words of structure cvcv 
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and the 146 words of structure cvccv of frequency greater or equal to 20 in 

the surface-form corpus.  

5.2.2.2 Procedure 

The correlation between the phonological and the semantic space is tested 

separately for the cvcv and the cvccv word groups. For each group I calculate 

the phonological similarity and the semantic similarity between all the 

possible word-pairs. I calculate the phonological similarity using the method 

described in § 5.2.1.1 above. For the semantic similarity, words are extracted 

from the surface-form corpus, and vectors are calculated on the same corpus, 

counting the cooccurrences with function and high frequency content words 

(see § 5.2.1.2). Table 5.10 shows the empirically obtained values for both 

word groups, transformed into probabilities in such a way that they add up 

to one. 

cvcv  cvccv 

c1 0.070  c1 0.053 

c2 0  c2 0.023 

v1 0.023  c3 0 

v2 0.057  tc13 0.083 

tc 0.187  tc23 0.070 

tv 0.191  3c 0.151 

s1 0.123  v1 0.053 

s2 0.088  v2 0.069 

sv1 0.092  tv 0.132 

sv2 0.169  s1 0.095 

   s2 0.078 

   sv1 0.031 

   sv2 0.135 

   str 0.027 

 Table 5.10. Phonological similarity parameter values used in the calculation of the 
phonological space configuration. 

Having obtained a semantic and a phonological similarity value for all word 

pairs, I calculate the correlation between them using Fisher divergence, and I 

perform a Monte-Carlo analysis to test its significance. 
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5.2.2.3 Results 

Table 5.11 shows the correlation values (Fisher divergence) for the veridical 

(unscrambled) phonological and semantic pairwise similarities for the cvcv 

and the cvccv word groups. It also shows the number of words configuring 

the spaces, and the significance of the correlation, calculated with a Monte-

Carlo analysis with 1000 randomisations. Figure 5.10 shows histograms of 

the Fisher divergence values obtained with random word pairings, 

indicating the position of the Fisher divergence obtained with the veridical 

pairs.  

 Fisher divergence Nr. words Significance  

cvcv 5.03 252 p<0.05 

cvccv 2.18 146 p<0.001 

Table 5.11. Correlation values (Fisher divergence) between phonological and semantic 
similarity for the cvcv and cvccv word groups, and its significance. (The lower the Fisher 
divergence values, the more correlated phonology and semantics are.)  
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Figure 5.10. Histogram plots showing the results of the Monte-Carlo analysis for cvcv and 
cvccv words. The veridical results are in the white bins, also indicated by the arrows. 

5.2.2.4 Discussion 

The results in Table 5.11 and Figure 5.10 show significant correlations 

between phonological and semantic similarity in cvcv and cvccv words 

Spanish. A close analysis of how each similarity space was calculated can 

help understand what drives this correlation. Phonological similarity is 

calculated with the parameter values obtained in the study presented in 
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chapter three. The choice of parameters is debatable, and that study could 

have included more parameters, such as sharing not only the same segment 

in the same position, but also the same phoneme in a different position; or 

include feature-based instead of segment-based parameters, for instance 

sharing the same voicing, manner and place of articulation in the same or in 

a different position. I examine the phonological similarity side of the 

correlation more closely in the next chapter. The main point is that the 

phonological similarity metric is psychologically informed.  

The metric of semantic similarity is based on the condition from chapter four 

where semantic similarity was measured on a surface-form (non-lemmatised) 

corpus, and the cooccurrences with both function and content words were 

computed (surface, functors + content words, see § 4.2.1.5). As we saw in 

chapter four, these two conditions together best capture syntactic aspects 

such as part of speech or gender. Let us examine the relationship of each of 

them to syntax. First, surface forms contain morphemes such as verb endings 

and gender markings. The correlation could be driven by syntactic factors, 

such as the fact that feminine words, plurals and past tenses occur in similar 

contexts. Second, the main role of functors is to organize syntactic 

relationships, to signal which word relates to which other: in the phrase ‘a 

bag of chips’, ‘a’ indicates that ‘bag’ is a noun, and ‘of’ indicates that ‘chips’ is 

connected to ‘bag’. In the calculation of the position vectors, I counted each 

time a word cooccurred with ‘a’, ‘of’ etc, giving us clues to the word’s 

syntactic category.  

All of this indicates that the correlation between phonology and our measure 

of semantics may be driven by syntax, at least to some extent. In the next 

section I attempt to eliminate syntax from the similarity metrics and so 

discern the influence of other factors such as meaning on the correlation.  



 154 

5.2.3 Distilling the correlation between word form and meaning 

The correlation found between the phonological and the semantic distances 

in § 5.2.2 could be driven solely by syntax, reflecting the match between the 

morphosyntactic information contained in word phonology and syntactic 

information captured by words’ cooccurrence with functors. Another 

contributing factor to the correlation could be phonological typicality, the 

fact that different syntactic classes have different phonological 

characteristics: Kelly (1992, 1996) shows phonological differences between 

English nouns and verbs. For example, disyllabic nouns tend to have initial 

stress whereas disyllabic verbs tend to have final stress; on average, nouns 

have more segments, more syllables and longer duration than verbs; and 

nouns tend to have more low vowels and more nasal consonants than verbs. 

(See also Durieux & Gillis, 2000, and Monaghan, Chater & Christiansen, 2003, 

for reviews.)  

Another factor could be phonological priming, the putative tendency to 

produce words containing sounds that are similar to recently uttered or 

heard words. The effect of (short-range) phonological priming could be 

eliminated from the correlation metric by using very large context windows 

such as those of Landauer and Dumais (1997). Phonological priming can be 

considered as a reflection of the similarity-based structure of the 

phonological lexicon on speech. An uttered word activates similar-sounding 

words more than different-sounding words, so the former are more likely 

than the latter to be uttered soon after. 

Among the more tentative contributing factors to the correlation found in § 

5.2.2 is the bias towards systematicity between the phonology and the 

meaning levels of the lexicon discussed above. We saw in chapter four that 

cooccurrence-based semantic similarity spaces do capture meaning, as 

shown by the facts that they model semantic priming and that they perform 

above average in semantic tests (§ 4.2.3). 
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This section aims to test the correlation between word form and word 

meaning by removing the influence of syntax from the semantic similarity 

metric. One way to eliminate the influence of syntax in the correlation would 

be to use the lemmatised corpus and remove the functors from the context 

word sets in the calculation of the vectors. That condition performed worst of 

all in syntactic classification tasks: part of speech (§ 4.2.2.1), nouns and verbs 

(§ 4.2.2.2) and masculine and feminine nouns (§ 4.2.2.4); but it performed 

well in a semantic task such as noun classification of 'person nouns' (§ 

4.2.2.3). However, during lemmatisation, as well as losing their morphemes, 

certain words have their root changed, and this affects their position in the 

phonological similarity space. For instance, feminine inflections are an 

integral part of words and cannot be removed without losing phonological 

information about the word ending, syllabic structure and length. 

Lemmatisation replaces irregular forms of verbs by their (regular) stem. 

Verbs present an additional problem. The canonical verb form, the infinitive, 

has one of three very characteristic endings: stressed -ar, -er or -ir. My 

lemmatisation removes the final -r, but still leaves a syntactically 

conspicuous final stressed -a, -e or -i.  

An alternative way of eliminating the effect of syntax on the correlation is to 

use the surface forms, but to exclude parameters that may pick up on the 

morphology from the phonological similarity metric. I do not remove the 

parameters directly related to the last segment, site of the gender morpheme, 

for several reasons. The last segment is a site of important phonological 

information, as we saw in chapters two and three, and dispensing with it 

altogether leaves an incomplete picture of the word’s phonology. Feminine 

endings are not always inflections of a masculine stem: most feminine words 

are uninflected (in the aggregate cvcv and cvccv words, only 22% are 

inflections of a masculine stem), and the ending is arguably part of their 

phonological identity. Besides, it is not always the case that feminine words 
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end in -a, and masculine in -o, with about 15% of masculine and feminine 

words ending in -e (see Figure 5.11). 

0

0.3

0.6

0.9

a e o u
f inal vow el

pr
op

or
tio

n 
of

 c
as

es masc

fem

 

Figure 5.11. Final segment of the aggregate cvcv and cvccv gendered words.  

(Note that plural inflections are not an issue, since the two word-groups at 

hand both end in a vowel, and are all singular.) As explained in chapter three 

(§ 3.2.2.5.3), the stress-related parameters – sharing the stress on the same 

syllable and sharing the same stressed vowel on the same syllable – reflect 

morphological similarity related to verb tense and person. Therefore, 

removing the stress-related parameters should eliminate most of the 

morphosyntactic information from the phonological similarity metric.  

Summing up, I attempt to remove the effects of syntax by eliminating 

cooccurrences with functors in the semantic space and by eliminating stress-

related parameters from the phonological similarity metric. The next section 

presents a measurement of a correlation with the new, relatively syntax-free 

data. 

5.2.3.1 Materials 

As in § 5.2.2, I use the 252 cvcv and the 146 cvccv phonetically transcribed 

words of frequency greater or equal to 20 in the surface-form corpus. The 

position vectors for the semantic similarity calculations take into account 

cooccurrences with content words, but not with functors.  

5.2.3.2 Procedure 

The procedure is essentially the same as that of the last section, with a few 

crucial differences. For the semantic similarity, the calculation of each word’s 
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position vector considers the cooccurrences of the target word with the 

content words - but not with the functors - of frequency greater or equal to 

200 in the corpus. The phonological similarity metric calculates the 

parameter values in the same way as in § 5.2.2.2, but now excluding the 

parameters related to stress (stress in the same syllable and same stressed 

vowel in the same syllable) and to syllabic structure. See the new parameter 

values in Table 5.12. Note that these values are different and not completely 

correlated with the values in Table 5.10 above, because the removed 

parameters did not intervene in their calculation.  

cvcv  cvccv 

c1 0.178  c1 0.081 

c2 0.009  c2 0.028 

v1 0.021  c3 0 

v2 0.072  tc13 0.105 

tc 0.388  tc23 0.094 

tv 0.332  3c 0.321 

   v1 0.082 

   v2 0.043 

   tv 0.246 

Table 5.12. Phonological similarity parameter values used in the calculation of the 
correlation. 

5.2.3.3 Results 

Table 5.13 shows the correlation values (Fisher divergence) for the cvcv and 

the cvccv word groups, the number of word pairs configuring the spaces, 

and the significance, calculated with a Monte-Carlo analysis of 1000 

randomisations. Table 5.13 and Figure 5.12 show the results of the Monte-

Carlo analysis, indicating the position of the Fisher divergence obtained with 

the veridical pairs.  

 Fisher divergence Nr. words Significance 

cvcv 7.79 252 p<0.05 

cvccv 3.69 146 p=0.09 

Table 5.13. Correlation value (Fisher divergence) and significance for the cvcv and cvccv 
word groups after removing syntactic cues from phonological and semantic similarity 
metrics.  
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Figure 5.12. Histogram plots showing the results of the Monte-Carlo analysis for cvcv and 
cvccv words. The veridical results are in the white bins. 

5.2.3.4 Discussion 

The results obtained after eliminating syntactic information from the data are 

significant for cvcv words, but only marginally significant for cvccv words. 

However, the fact that near significance values are obtained in two 

independent word-groups adds robustness to the results. This indicates that 

word form may be correlated with word meaning, but the results are not 

totally conclusive. Nevertheless, they are encouraging, given the rough 

phonological and semantic similarity metrics employed and the relatively 

small samples of the lexicon tested. It would be interesting to test the 

correlation with a phonological similarity metric including more parameters 

and a more robust semantic similarity based on a larger corpus and perhaps 

using a larger context window. Chapter six will offer some insight in some of 

these directions. 

These results, together with those of section 5.2.2, show that there is a 

measurable significant correlation between the cooccurrence-based and the 

phonological levels of representation of the Spanish lexicon. I have shown 

that part of this correlation can be attributed to syntax, but a small part may 

rely on the meaning of the concepts denoted by words. The next section 

looks at the word classes that drive the phon-sem systematicity. 
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5.3 The systematicity of different word classes 

Shillcock et al. (2001, submitted) obtained a measure of the phon-sem 

systematicity for each word, reflecting how well each word fits in with the 

rest of the lexicon. Shillcock et al. (2001, submitted) found that certain 

communicatively important word classes tended to obtain very good 

correlation values, and they proposed that these words reflect the pressure 

towards systematicity to a greater extent than the rest of the lexicon.  

In this section I calculate the correlation (Fisher divergence) between the 

phonological and semantic similarity of each word with every other word, 

and so can rank them by how well words fit in a phonology-semantics 

systematic lexicon. I examine the effect of syntactic category and of gender 

on word fitness in a systematic lexicon, and also look at some of the 

communicatively important word groups proposed by Shillcock et al. 

5.3.1 Method 

I replicate Shillcock et al.’s methodology to calculate each cvcv and cvccv 

word’s phon-sem correlation, with the difference that I use Fisher 

Divergence (see § 5.2.1.3) as a measure of the phonology-semantics (phon-

sem) correlation, instead of Pearson’s r. As in Also, as in § 5.2., I measure the 

correlation between phonological and semantic similarity (instead of distance). 

In the example explaining the calculation of Fisher divergence in § 5.2.1.3, the 

correlation values for individual target words appear in Table 5.9. I calculate 

the rankings of cvcv and cvccv words by Fisher divergence in the ‘syntax’ 

and the ‘no syntax’ conditions, with the similarity calculations explained in § 

5.2.2 and § 5.2.3, respectively. (The complete rankings of cvcv and cvccv 

words by Fisher divergence in the 'no syntax' condition are shown in 

Appendix F.) 

In order to determine how each class of words behaves in terms of the phon-

sem correlation, I examine the distribution of the word classes in the list of 

words ranked by their correlation value.  
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5.3.2 Results 

5.3.2.1 Syntactic factors: noun-verb and gender 

This section examines the behaviour of syntactic classes with respect to 

phon-sem systematicity, looking at how nouns and verbs on the one hand, 

and masculine and feminine words on the other hand behave in the phon-

sem correlation ranks. I examine both the ‘syntax’ and the ‘no syntax’ 

rankings. 

Monaghan, Chater and Christiansen (2003) proposed that the phonological 

and the collocational typicality of a word with respect to its syntactic 

category enhance word processing. The words at the top of the correlation-

ranked list have, obviously, a stronger match between their phonology and 

their semantics (which includes meaning and syntax), which is another 

expression of typicality. I now test whether nouns and verbs have different 

degrees of phonological typicality by looking for any differences in their 

distributions in the ranked list.  

In line with the tests presented in chapter four, I will also look for an effect of 

gender on word systematicity. Table 5.14 shows the results of two-tailed t-

tests applied to the comparisons between nouns and verbs on one hand, and 

masculine and feminine words on the other hand.  

 'syntax'    ‘no syntax’ 

 N-V gender   N-V Gender 

cvcv  V>N 
t=3.36 
df=90 
p=0.001** 

M>F 
t=3.00 
df=58 
p=0.004** 

  N>V 
t=2.49 
df=90 
p=0.01* 

M=F 
t=0.52 
df=58 
p=0.60 
(n.s.) 

cvccv  V=N 
t=1.18 
df=31 
p=0.5 (n.s.) 

M=F 
t=1.04 
df=39 
p=0.6 (n.s.) 

  N>V 
t=3.88 
df=31 
p<0.001** 

M>F 
t=1.76 
df=39 
p=0.08 
(n.s.) 

Table 5.14. Results of two-tailed t-tests for the distributions of syntactic category (verbs and 
nouns) and gender (masculine and feminine) in the phon-sem correlation word rankings. 
Statistically significant results in bold. Fist line states which word type distribution is higher 
in the rank; t=t-value; df=degrees of freedom; p=significance. 
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Although not all results are statistically significant, some trends are apparent 

in Table 5.14. For the verb-noun distinction, the more heavily inflected verbs 

tend to present higher phon-sem correlation values in the 'syntax' condition. 

In this condition, where the measurements of both phonology and semantics 

in this condition are laden with syntax, the phon-sem correlation is a 

manifestation of phonological typicality of syntactic categories. Therefore, 

these results support the idea that verbs have greater phonological typicality 

than nouns (although at least part of the phonological typicality must be 

based on the similarly-sounding word inflections). 

In the ‘no syntax’ condition where the phonological and semantic similarity 

metrics remove a great deal of the syntax (§ 5.2.3), the phon-sem correlation 

cannot be equated with typicality of syntactic categories. Differences in the 

distributions of nouns and verbs are more likely to be related to word 

meaning as captured by cooccurrence statistics. In this condition, nouns 

present better systematicity than verbs.  

Christiansen and Monaghan’s (in press) studies for English suggest that 

while cooccurrence statistics alone classify nouns better than verbs, 

classification of verbs relies more on word-internal cues. In agreement with 

those suggestions for English, the results presented in Table 5.14 above for 

Spanish also indicate that cooccurrence statistics, combined with 

phonological information, classify nouns better than verbs. Verb 

classification seems to rely on morphology (encoded in word-final 

phonological regularities) and also on patterns of cooccurrence with functors, 

as in the 'syntax' condition. 

As far as gender is concerned, results are less clear, although there is a 

general trend for masculine words to be more systematic than feminine 

words. This suggests that the interaction between gender and systematicity is 

weaker than that of syntactic category and systematicity, and perhaps a 

larger set of data would reveal finer aspects of it. 
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Still on the subject of gender, in the cvcv word group there are six gender-

incongruous words - words that have the typical ending of one gender, while 

grammatically taking the opposite gender, such as mano (hand), which looks 

masculine because it ends in the typical masculine phoneme -o, but it is 

actually feminine: una mano blanca (a white hand). The gender-incongruous 

words are mano (hand), moto (motorbike), foto (photograph), tema (subject), 

cura (priest) and sida (AIDS). This incongruity can be kept only in relatively 

frequent words, and some gender-incongruous words which fell into disuse 

actually changed their grammatical gender to match their form. Differences 

in systematicity between the genders could help explain gender-incongruous 

words. In the 'syntax' condition, because cooccurrence with (gendered) 

determiners and other functors is part of the metric, gender incongruous 

words are expected to group with the words of the same grammatical gender 

(e.g. la mano would group with feminine words). In the 'no syntax' condition, 

if incongruous words are grouped with words of the same grammatical 

gender (la mano grouping with la casa, la mesa etc), then we can infer that their 

'semantic' gender is grammatically encoded by the determiners; if, on the 

other hand, they group with words with the same ending and opposite 

syntactic gender (la mano grouped with el perro, el pato), then we can infer that 

their 'semantic' gender is determined by their form.  

In the 'syntax' condition, the six incongruous words are in the bottom half of 

the ranked word list, with the three masculine-form, grammatically feminine 

words at the very bottom (positions 203, 244 and 248 out of 252). In the 'no 

syntax' condition, while the three feminine-form, grammatically masculine 

words stay in similar rank positions, the masculine-form, grammatically 

feminine words go up in the correlation ranking to group with the more 

systematic, normal masculine words. This is true particularly of the less 

frequent moto (goes up to position 154 from 203) and foto (goes up to position 

91 from 248), while mano is still quite close to the bottom in position 206 out 

of 252. 
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This small effect supports the claim that semantic gender is driven by word 

form. Studies on a larger section of the lexicon in a larger corpus, using the 

gender differences in phon-sem systematicity could help determine what 

drives the gender of words – form or syntax. 

This section has shown that there are differences in the degree of 

systematicity between syntactic classes, and that those differences depend on 

the way systematicity is measured. If we include syntax in the similarity 

metrics, inflected forms are more systematic, as expected. If we remove 

syntax from the similarity metrics, the unmarked syntactic classes show 

higher phon-sem systematicity. 

The next section examines the behaviour with respect to systematicity of 

Shillcock et al's (2001, submitted) proposed communicatively salient words, in 

Spanish. 

5.3.2.2 Communicatively salient words 

Shillcock et al.’s (2001, submitted) studies in English found that what they 

termed communicatively important word classes, namely speech editing 

terms (such as oh, ah, er), swear-words, personal pronouns and proper nouns, 

tended to appear high in correlation ranking. The word groups considered in 

this chapter contain very few words belonging to those classes, but I 

nevertheless attempt to find out whether the communicatively salient classes 

available rank high in Spanish, mirroring the results for English. 

There are no editing terms or personal pronouns in the sets, and only two 

swear-words in the cvcv group. The swear-words are puta and coño, and 

perhaps the less offensive culo could be added to this group, because it is part 

of a few very rude expressions. They rank 31st (puta) 35th (culo) and 247th 

(coño) out of 252, respectively in the 'syntax' condition, and 11th, 70th and 163rd, 

respectively, in the no syntax. There is no indication, then, that swear words 

are particularly systematic in Spanish. 
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There are 15 cvcv proper nouns (nine person's first name, three place names, 

one family name and one month name), and 10 cvccv proper nouns (6 

person's first names and three place names). Figure 5.13 shows the 

distribution of cvcv proper nouns in the 'no syntax' condition as an 

illustration. Table 5.15 shows the results of two-tailed t-tests between the 

distributions of all words and the distributions of proper nouns in the two 

word-groups and the two conditions. 
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in the general ranking (cvcv, no syntax)
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Figure 5.13. Illustrative example of the distribution of proper nouns in the ranking of words 
by phon-sem correlation (Fisher divergence). 

 'syntax'    ‘no syntax’ 

cvcv  t=17.55 
df=14 
p<0.001** 

  t=2.74 
df=14 
p=0.01** 

cvccv  
t=0.81 
df=8 
p=0.44 (n.s.) 

  
t=4.29 
df=8 
p<0.01** 

Table 5.15. Comparisons of the proper noun distributions with the distribution of the rest of 
the words. t=t-value; df= degrees of freedom; p=statistical significance. 

Figure 5.13 shows how proper nouns cluster at the top of the ranking, with 

low Fisher divergence values. Table 5.15 shows that they do so significantly 

in three out or four cases. In the case where they do not cluster at the top it is 

worth noting that the four proper nouns placed at the end of the ranking that 

stop the clustering being significant are the three place names in the set. In 
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the 'syntax' condition, place proper nouns go down in the rank, becoming 

more differentiated from person proper nouns in both cvcv and cvccv words. 

Spanish proper nouns, then, particularly person first names (as opposed to 

place names), are significantly clustered at the top of the ranking, supporting 

the results found by Shillcock et al. for English. 

An examination of the distribution of other word classes in the Spanish word 

phon-sem systematicity ranking revealed that numerals have distinct 

distributions. There are two numerals in each word group: doce (twelve), cero 

(zero) in the cvcv group and quince (fifteen) and cinco (five) in the cvccv 

group. Figure 5.14 shows the position of the words divided by the total 

number of words. 
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Figure 5.14. Significance of the position at the top of the rankings of the two cvcv and the 
two cvccv numerals. Dashed line marks the p=0.05 significance threshold. 

Numerals are found towards the top of the rank in all cases, statistically 

significantly so in the 'no syntax' condition in both word groups.  

It might be argued that these results with these particular numerals is due, 

on the phonological side, to the fact that they sound very similar and, on the 

semantic side, to the fact that numerals are tightly clustered in the 

cooccurrence space, as we saw in chapter four (Figure 4.4). This is not a 

complete explanation, however, since the phonological similarity metric 

employed, based on sharing the same segments in the same position, does not 

pick up much of the phonological similarity between doce and cero, and 
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quince and cinco. Therefore, we cannot rule out that high systematicity is a 

general property of numerals. 

This section has confirmed that it is possible to measure the contribution to 

systematicity of individual words it also has presented results that support 

Shillcock et al.'s claim that certain word classes contribute more than others 

towards systematicity in the lexicon. It has also shown that the similarity 

metrics greatly affect the behaviour of word classes in terms of systematicity. 

The 'syntax' condition can be considered to represent an aggregate syntax-

semantic level of the lexicon, and the 'no syntax' condition, the semantic level 

of the lexicon. The results for syntactic categories and for gender (Table 5.14) 

and for proper nouns (Table 5.15) suggest that the phonology-syntax 

systematicity can lead to different classifications of words than phon-sem 

systematicity, showing once again a complex multilevel multidimensional 

lexicon. 

5.4 General discussion 

The tests reported in § 5.2 show there is a significant correlation between the 

phonological and the cooccurrence-based levels of the Spanish lexicon. When 

syntax is removed from the paradigm (§ 5.3), the correlation is significant for 

one word group, but only marginally significant for the other. In this 

discussion I analyse how my results for Spanish fit in with those of Shillcock 

et al. for English and offer possible explanations as to why their result’s 

statistical significance was better. Table 5.16 summarises the results of my 

two tests and Shillcock et al.’s study, and the similarities and differences 

between them. 
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 Shillcock et al.  Exp 1 (§ 5.2.2) Exp 2 (§ 5.2.3) 

Result 
(significance of the 
correlation) 

p<0.001 p<0.05 ; p=0.001 p<0.05 ; p<0.1 

Nr. of words 1733 252 ; 146 252 ; 146 

Nr. of pairs 1,500,778 31,626 ; 10,585 31,626 ; 10,585 

Phon. similarity 
metric 

Wagner-Fisher edit 
distance with 
psychologically 
motivated penalty 
values 

Psychologically 
motivated 
parameters (incl. 
some reflecting 
morphology) 

Psychologically 
motivated 
parameters, (excl. 
those reflecting 
morphology) 

Lemmatisation of 
the corpus 

Yes No No 

Context words (in 
sem. similarity 
metric) 

Content Content+functors Content 

Word structure Different length and 
syllabic structure 
(monosyllabic only) 

Same length and 
syllabic structure 
(bisyllabic) 

Same length and 
syllabic structure 
(bisyllabic) 

Table 5.16. Comparison of the results and experimental variables of Shillcock et al. (2001, 
submitted) and the two tests presented in this chapter.  

Both Shillcock et al’s English study and Experiment 2 for Spanish made an 

effort to remove syntax, if the approaches were slightly different. Shillcock et 

al.’s results claim to capture meaning but not syntax is based on the 

lemmatisation of the corpus. As I explained in § 5.2.3 above, while 

lemmatisation of English words is relatively straightforward and leaves the 

stem unchanged in the majority of cases, lemmatisation of Spanish words has 

unwanted consequences for word phonology. My approach to removing 

syntax was to exclude the phonological similarity parameters that captured 

verb tense and person, the main morphosyntactic elements in my data. Both 

Shillcock et al. and my ‘no syntax’ condition removed syntax from the 

semantic representations by excluding functors from the context word set in 

the calculation of the vectors.  

Shillcock et al.’s phonological similarity metric, an edit distance algorithm, 

used penalties for mismatches between words based on psychologically 

motivated perceptual differences between phonemes. Crucially, they also 

introduced an unmotivated high penalty for word length mismatch. My data 
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consisted of two word sets of equal length and syllabic structure, so length 

could not play a role in my phonological similarity metric. All my 

phonological similarity parameter values were psychologically plausible: 

they were the direct result of a study of people’s phonological similarity 

judgements (reported in chapter three). However, they were very limited. 

They only compared segments in the same position (first with first, second 

with second etc), ignoring cases where the same segments appeared in a 

different position. This metric does not pick up, for example, the 

phonological similarity between mato and toma. My parameters were based 

on phoneme identity, so unlike Shillcock et al.’s, my metric did not take into 

account feature sharing. 

The size of the corpus and of the lexicon sample studied also makes Shillcock 

et al.’s study more reliable. Their word set was one order of magnitude larger 

than my cvcv and cvccv sets, and their pair set, i.e. the number of pairwise 

phonological and semantic distances, two orders of magnitude larger than 

mine. Shillcock et al.’s semantic vectors were calculated on a 100 million 

word corpus, whereas my corpus was only 1 million words. This means that 

both their phonological and semantic spaces are more fine-grained than the 

ones used in this chapter. 

All this suggests that even though my phonological parameters were more 

psychologically plausible, Shillcock et al.’s were more fine-grained and, 

together with a larger, higher-definition data-set, they may have produced 

more refined spaces. Additionally, it is possible that word length, absent 

from my metric, plays an important role in the phonological space (this last 

possibility is further explored in chapter six).  

On the other hand, Shillcock et al. calculated the correlation between the 

phonological and semantic spaces using Pearson’s r, which, as we have seen, 

is not appropriate in cases like this where measures are not normally 

distributed and, crucially, independent of each other. I used an information-
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theory measure appropriate to measure the correlation of two similarity 

matrices. 

Section 5.3 has shown that, in Spanish, certain word classes support 

phonology-semantics systematicity. These results are consistent with those of 

Shillcock et al.’s (submitted) for English. 

This chapter has combined the methodologies presented in chapters three 

and four to build a method to measure the correlation between the 

phonological and the semantic levels of the lexicon, and has indicated that 

there is a significant correlation between them, at least partly brought about 

by word meaning. We have also seen that certain word classes seem to drive 

this correlation. An in-depth analysis has shown that there is scope for 

refinement in the methods. Taken together, the results for Spanish presented 

here and Shillcock et al.’s (2001, submitted) results for English support the 

universality of the correlation.  

The next chapter introduces a new methodology to explore the phonological 

similarity parameter space, based on the correlation between phonology and 

semantics measured in the present chapter. The results further support the 

existence of a pressure for systematicity in the lexicon, and also reveal traces 

in the phonological lexicon of the opposed pressure for word intelligibility. 
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Chapter 6. The phonological lexicon structure and 

systematicity 

 

Chapter five showed evidence supporting the existence of a systematic 

relationship between the phonological and the semantic levels of the lexicon 

- the latter including word morphosyntax as well as meaning. This 

systematicity is the basis of the new approach to the study of the 

phonological level of the lexicon. I examine the impact of different 

parameters of phonological similarity on systematicity in an attempt to 

reveal the pressures that configure the phonological structure of the mental 

lexicon. I show how while certain parameters seem to contribute to 

systematicity, others seem to respond to opposed pressures that go against 

systematicity, but help word recognition. 

6.1 Introduction 

The phonological structure of the monolingual mental lexicon has been 

studied with different methodologies based on lexical recognition (Cutler, 

Dahan & Van Donselaar, 1997), production (Van Son & Pols, 2003), syntactic 

structure (Kelly 1996, Christiansen & Monaghan, in press) or intra-word 

organisation (chapter two of this thesis). This chapter presents theory-

independent corpus-based methods that aim at discovering aspects of the 

phonological mental lexicon. These methods assume and are based on a 

systematic relationship between the phonological and the syntax-semantic 

levels of the mental lexicon. This means that the semantic lexicon level, 

through its systematic relationship with the phonological level, plays a part 

in the evaluation of the parameters that configure the phonological lexicon. 

In chapter five I presented evidence supporting the existence of a pressure 

for systematicity across levels of representation of the lexicon, particularly of 

the tendency for word phonological similarity to correlate with word 
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semantic similarity. This ‘phon-sem’ correlation may be driven by the 

phonological space, by the semantic space, or by both. It may be the case that 

the phonology of words adapts to match their semantic and syntactic 

relationships, or that the meanings adapt to match the words' phonological 

relationships. In a complex adaptive lexicon it is more likely that both spaces 

have coevolved under the pressure for systematicity that links them. In this 

chapter I concentrate on the phonological side of the correlation and attempt 

to answer questions such as: How well do phonological spaces configured 

with different parameter sets correlate with the semantic space? Is the 

empirical, psychologically plausible set of parameter values particularly 

good for the correlation? Can we use the phon-sem correlation to predict the 

values of parameters of phonological similarity? 

The methodology employed involves evaluating a phonological parameter 

space in terms of its correlation with the semantic space (the phon-sem 

correlation), in two ways: first, a random search of the parameter space 

returns a general measure of how each phonological parameter affects the 

phon-sem correlation; second, a hill-climbing search returns the parameter 

configuration that obtains the best phon-sem correlation. This information is 

contrasted and compared with the empirical parameter values from chapter 

three, and the results are discussed.  

I also describe the application of the above methods to new word groups, for 

which I do not have empirical parameter values. In one of those cases I use 

the methodology to make a testable prediction of what the empirical 

parameter values might be in the new word group. Finally, I discuss the 

combined results of the different methodologies employed in the chapter 

and draw some conclusions. The hypotheses to be tested are: 

•  that the psychologically plausible parameter configuration produces a 

better phon-sem correlation than most randomly generated configurations, 

because I assume a pressure towards phon-sem systematicity in the lexicon;  
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•  that, nevertheless, the parameter values yielding the optimal phon-

sem correlation will be different from the empirical values, and this can be 

explained in terms of pressures on the lexicon structure other than phon-

sem systematicity; 

•  that we can make testable predictions based on the phon-sem 

correlation, for instance, predict what the empirical phonological parameter 

values will be for a word-group.  

6.2 A random search of the phonological lexicon 

A random search provides a general idea of the behaviour of dependent 

variables with respect to an independent variable. In this case, we are 

interested in the behaviour of parameters of phonological similarity with 

respect to phon-sem systematicity. 

I search a phonological parameter space using a random search algorithm: I 

generate a random configuration of values of parameters of phonological 

similarity. The random configuration is used to calculate the phonological 

similarity in all the word pairs in a sample of the lexicon. I correlate these 

pairwise similarity values with the semantic similarity values for the same 

word group. (As in chapters four and five, semantic similarity is based on 

cooccurrence, and the phon-sem correlation is measured with Fisher 

divergence.) I use the phon-sem correlation value obtained to evaluate the 

initial phonological parameters - a high correlation indicates that the random 

parameter values tend to contribute to systematicity, and a low correlation 

indicates that the random parameter values tend to go against systematicity. 

6.2.1 Data 

I perform random searches in three independent phonological spaces: those 

formed by cvcv, cvccv and cvcvcv words. I already used the cvcv and cvccv 

word groups in chapter five: the 252 words of structure cvcv and the 146 

words of structure cvccv of frequency greater than or equal to 20 in the 



 173 

surface-form version of the ‘Corpus oral de referencia del español’ (Marcos 

Marín, 1992). For the third group I extract the 148 cvcvcv words of frequency 

greater than or equal to 20 from the same corpus version. The semantic 

similarity values are calculated exactly in the same way as those of the cvcv 

and cvccv word groups, with the same context words for the ‘syntax’ and ‘no 

syntax’ conditions as in cvcv and cvccv words. As in chapter five, the 'syntax' 

condition includes stress parameters in the calculation of phonological 

similarity and functors and content words in the semantic similarity 

algorithm; the 'no syntax' condition excludes stress parameters from the 

phonological similarity algorithm and functors from the semantic similarity 

algorithm. For the phonological similarity metric of cvcvcv words, I extend 

the parameter set to accommodate the different word structure, and include, 

for instance, 'sharing three vowels', 'sharing the stress on the antepenult 

syllable' (see all parameters in Figure 6.4 below). 

 cvcv cvccv cvcvcv 

words (freq >20) 252 146 148 

nr. param. (syntax) 6 9 14 

nr. param. (no syntax) 10 14 20 

empirical param. values yes yes no 

Table 6.1. Some information on the three independent lexicon subsets tested in this chapter.  

Any similarities between the parameter impact values obtained in these 

three independent spaces would further support the existence of 

systematicity between phonological and semantic lexical relationships.  

6.2.2 Method 

6.2.2.1 The hyperspace  

The general mechanism of this random search consists of measuring the 

correlation between many randomly generated phonological similarity 

spaces and the semantic similarity space. An analysis of the covariance of the 

random phonological similarity parameters with the correlation values will 

reveal which parameters are driving the correlation.  
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c1 c2 v1 v2 tc tv Fisher d. 
0.087517 0.212833 0.055019 0.084772 0.29637 0.263489 7.774749 

0.17769 0.008853 0.021369 0.071753 0.388484 0.331852 7.790784 

0.210902 0.203684 0.071964 0.105185 0.280549 0.127717 7.803025 

0.220101 0.214613 0.037353 0.035377 0.233557 0.258999 7.808966 

0.161624 0.178805 0.078445 0.067063 0.268136 0.245927 7.812247 

0.058123 0.314918 0.019214 0.01777 0.281783 0.308192 7.813697 

0.260471 0.246922 0.101917 0.038547 0.309919 0.042223 7.815148 

0.109106 0.318201 0.087451 0.067963 0.265865 0.151413 7.841004 

0.253304 0.274158 0.073371 0.04138 0.26691 0.090877 7.842624 

0.075941 0.00366 0.130133 0.109758 0.482546 0.197963 7.844313 

0.125452 0.138836 0.099334 0.039778 0.309391 0.287209 7.84574 

Table 6.2. Eleven points, extracted from the top of the systematicity-ranked 2000 random 
points in the 6-dimensional phonological parameter space for cvcv words (no syntax). The 
first six columns show the random parameter values and the last column, the Fisher 
divergence between the phonological space calculated with those parameters and the 
semantic space. In bold, the empirical values and their corresponding Fisher divergence.  

The random search of the parameter space follows the following steps: 

1. I generate a set of random parameter values (like the non-bold lines in 

Table 6.2) and normalise them in such a way that they add up to one1.  

2. I use these parameter values to compute the phonological similarity 

values for all the word pairs in a set. 

3. I calculate the Fisher divergence between those pairwise phonological 

similarity values and the veridical semantic similarities (those 

calculated in chapter four and also used in chapter five) for the same 

word pairs (the phon-sem correlation). 

4. I keep a record of the random parameter values (first six columns in 

Table 6.2) and the phon-sem correlation obtained with them (right-

hand column in Table 6.2). 

5. I repeat steps 1 to 4 2000 times.  

                                                

1 In order to counter Fisher divergence’s sensitivity to the magnitude of the data, all the 
random parameter sets are normalised. This way, the sum of all values is always one, and 
the fluctuation in phonological similarity value magnitude is a function of the relative 
parameter values only.  



 175 

The result of the random search approach is a multidimensional hyperspace, 

the dimensions being the parameters of phonological similarity. Each set of 

random parameter values represents a point in the hyperspace. Each point 

has an associated systematicity value, determined by the phon-sem 

correlation – the correlation between the phonological level of the lexicon 

calculated with the random parameter value set, and the semantic level of 

the lexicon. To help visualize this hyperspace, Figure 6.1 shows just two of 

the many dimensions involved in its configuration (tc and v1). 

 

Figure 6.1: Surface plot of the phon-sem correlation showing two phonological parameters: 
first vowel (v1) and two consonants (tc) (cvcv words, 'syntax' condition). The surface is 
created by 2000 3D points. The horizontal position of each point is given by the values of 
phonological parameters tc and v1. The height is given by the phon-sem correlation (Fisher 
divergence) obtained with the parameter value combination.  

The valleys in the surface correspond to the best phon-sem correlation (low 

Fisher divergence). In the example in Figure 6.1, if we hold all other 

parameters constant, the best correlation (dark green valley) is obtained by 

the lowest values of v1 combined with intermediate tc values. The worst 

correlation is obtained with very low tc and very high v1 values (red corner). 

Note that the phonological similarity parameters are not always independent 

of each other. In the random search, however, parameter values are random 
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and independent in each run of the algorithm described above; for the 

calculation of the linear parameter impact values each parameter was 

compared independently with Fisher divergence. 

6.2.2.2 Extracting parameter impact values from the hyperspace 

The effect of each parameter on systematicity may be assessed with a 

regression analysis, which answers the question: to what extent the values of 

one parameter predict the Fisher divergence values? (In Table 6.2, a 

regression tells us to what extent the values in each of the first six columns 

predict the values in the right-hand column). Regression analysis can be 

used to determine the nature of the effect of each parameter on systematicity 

– is it linear or non-linear? What model fits the effect best? It also returns a 

quantitative measure of the impact of each parameter on systematicity. 

Linear relationships between the parameters and systematicity are revealed 

by the linear covariance of each parameter with the phon-sem Fisher 

divergence. Linear covariance can be measured with a number of tools: the 

regression linear r2, the covariance, and the correlation coefficient Pearson's r. 

These three measures correlate perfectly with each other, and in this study I 

choose to use Pearson's r because it is the only one that indicates whether a 

parameter value is directly or inversely proportional to the phon-sem Fisher 

divergence. For example, in order to measure the effect of the first consonant 

(c1) on the phon-sem correlation I calculate Pearson's r for the first and the 

last columns in Table 6.2.  

In a linear relationship, a low Fisher divergence value indicates a high phon-

sem systematicity, so I use the negative of Pearson’s r as the measure of the 

linear covariance of the parameter with systematicity. A positive covariance 

indicates that high values of the parameter in question improve the 

systematicity measured. Conversely, a negative covariance indicates that low 

value of the parameter improve the systematicity. A covariance near zero 

indicates that the parameter does not greatly affect the systematicity.  
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The linear covariance may be only an approximation, since I do not know 

whether the parameters affect the correlation linearly. I test all the nonlinear 

functions available in SPSS (2003) on each parameter and obtain an r2 value 

for each nonlinear model: 

     SSR = regression sum of squares  

SST = total sum of squares 

This r2 is a measure of how well each model fits the data. I run a curve 

estimation of the following regression models: linear, logarithmic, inverse, 

quadratic, cubic, compound, power, sigmoid, growth, exponential and 

logistic, and examine the r2 obtained by each. Myers (1990) warns of one 

problem of such exploratory use of regression: 'Several models can be fit that 

would be of nearly equal effectiveness. Thus the problem that one deals with 

is the selection of one model from a pool of candidate models'. To deal with 

this problem, Stevens (1992) suggests cross validating the models on 

different data sets. Similar performance of the models across the 

independent word groups cvcv, cvccv and cvcvcv will help identify the most 

reliable regression function.  

6.2.2.3 The empirical parameter values 

The random search and analysis of covariance will return values 

representing the phonological parameter's impact on the phon-sem 

correlation (this will be expanded in § 6.2.3.1); these parameter values may 

be consistent across the independent word-groups, supporting phon-sem 

systematicity. I now describe a method to substantiate the claim that these 

parameters are exploiting phonological similarity, and not some other 

information pattern in the lexicon. The test is based on comparing the 

random-search, corpus-based parameter impact values with the empirical 

parameter values obtained in chapter three. The empirical values measured 

the impact of each parameter on perceived phonological similarity, so a 

correspondence between them and the impact values obtained with the 

SST

SSR
r =2
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random search will support the claim that we are indeed exploring a 

phonological similarity space. 

The psycholinguistic study in chapter three returned empirical values for the 

parameters of phonological word similarity for cvcv and cvccv words. In 

chapter five I calculated the phon-sem correlation based on those parameter 

values and found it to be significant. I will use the data from chapter three to 

ground the random search: I expect to find that the parameter impact values 

obtained with the random search are similar in some ways to the empirical 

ones. This would mean that phonological structure of the lexicon predicted 

by the phon-sem correlation is similar in some ways to the phonological 

structure of the lexicon derived from the empirical data in chapter three, and 

would provide extra evidence in favour of the systematic lexicon.  

Note that in chapter three I only tested cvcv and cvccv words, so I do not 

have empirical parameter values for cvcvcv words. Later in this section I will 

use information from the other word-groups as well as the results of the 

random and the hill-climbing searches to predict empirical parameter values 

for cvcvcv words. 

The empirical values employed here are calculated in a slightly different 

way than the ones shown in chapter three. Here we need a set of positive 

values that can be normalised so that they add up to one (see Footnote 1 in 

pag. 174), so in the matrices in chapter three (§ 3.2.2.4) I only add, for each 

column, the positive values. That means that, for each parameter, I only count 

the values related to the parameters it wins over. 

The empirical parameter values calculated in this way are shown in Figure 

6.2. 
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Figure 6.2. Empirical parameter values obtained from psycholinguistic testing (chapter 
three) for cvcv and cvccv words, calculated taking stress into account ('syntax' condition) 
and not taking it into account ('no syntax' condition). 

These empirical parameter values are very similar to those obtained in 

chapter three with a slightly different calculation, and their main features are 

the same: the more consonants or vowels shared, the more similar two 

words are perceived to be; the initial consonant is the most salient single 

segment; and sharing the stressed final vowel greatly increases perceived 

similarity. They are also the same used in chapter five, but this time they 

have not been transformed into a probability distribution. 

6.2.3 Results for cvcv, cvccv and cvcvcv words 

I calculate 2000 random points for each of the three phonological spaces: 

cvcv, cvccv and cvcvcv, each in two conditions, 'syntax' and 'no syntax'.  
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I calculate first the linear impact parameter values and then examine how 

linear and nonlinear models fit the relationship of each parameter with 

systematicity. 

6.2.3.1 Systematicity-driven linear parameter impact values 

The following Figures show the linear impact values of the phonological 

parameters in the cvcv and the cvccv (Figure 6.3) and the cvcvcv (Figure 6.4) 

word groups, in the ‘syntax’ and ‘no syntax’ conditions. The bars represent 

the covariance of each parameter with the phon-sem systematicity. (Note 

that these bars represent the effect of the joint application of all parameters to 

the phonological space calculation.) 
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Figure 6.3: Linear ‘parameter impact’ values, representing the impact of the phonological 
similarity parameter on the phon-sem correlation. Two conditions, syntax and no syntax 
are shown for the cvcv and cvccv word groups. White bars= consonant-related parameters; 
grey bars=vowel-related parameters; black bars=stress-related parameters; striped 
bar=structure-related parameter. Unless otherwise stated, p<0.01. 
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Figure 6.4: Same as Figure 6.3 above, but for cvcvcv words. Unless otherwise stated, 
p<0.01. 

The parameter impact values show a high level of coherence across the three 

word groups. Comparable parameters across groups are highly correlated, 

as shown in Table 6.3.  

 ‘syntax’   ‘no syntax’ 

 cvcv 
(10) 

cvccv 
(14) 

  cvcv 
(6) 

cvccv 
(10) 

cvccv (14) 0.86    cvccv (10) 0.84  

cvcvcv 
(20) 

0.90 0.94  cvcvcv 
(14) 

0.95 0.90 

Table 6.3. Consistency across word-groups in the ‘syntax’ and ‘no syntax’ conditions: R2 of 
counterpart parameter impact values indicates covariance of the parameters with respect to 
lexicon systematicity in three independent word groups - cvcv, cvccv and cvcvcv. The 
number of parameters in each condition is shown in brackets. All p<0.01. 

These high across-group correlations provide support for the methodology 

employed, indicating that the phonological parameters have the same impact 

on phon-sem systematicity in three independent subsets of the lexicon. In 
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other words, this consistency supports the existence of systematicity between 

the phonology and the semantics of the lexicon - if there was no phon-sem 

systematicity in the lexicon, the phon-sem correlation would not have 

generated the same phonological parameter values in three independent 

word groups.  

One similarity between the three word groups is that sharing all consonants 

or all vowels (tc, 3c, tv, 3v) tends to have greater impact on systematicity 

(higher parameter values) than sharing single consonants or vowels (c1, c2, 

c3, v1, v2, v3). The only exception is sharing the final vowel (v3) in the 

'syntax' condition in cvcvcv words, with a higher impact than sharing any 

combination of vowels. The morphosyntactic information encoded by the 

final vowel may explain its positive impact in the ‘syntax’ condition.  

Figures 6.3 and 6.4 show that most consonant parameters (in white) have 

positive impact on systematicity, while vowel parameters (in grey) have a 

negative impact. The only exceptions are negative c2 (the syllable-final 

consonant) and c3 (the second-syllable initial consonant) in cvccv words. 

Other exceptions are sharing all vowels in cvccv and cvcvcv words, and, as 

mentioned earlier, the last vowel in cvcvcv words. Note that impact value of 

the final vowel is much lower in the 'no syntax' condition than in the 'syntax' 

condition in all three word groups. This may be explained by the fact that 

the final vowel carries in many instances morphosyntactic information: 

when correlated with syntax-laden semantic representations, the 

phonological representations are more influenced by the weight of the last 

vowel.  

Another common feature of the 'syntax' condition across word groups is the 

high impact value of stress parameters in the last and one-but-last syllable. 

In the three word groups, sharing the stress on the same syllable brings two 

words close together in the phonological similarity space. Because the 

parameter impact value is so high, we know that words sharing the stress on 

the same syllable must be close together in the semantic similarity space too. 
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Sharing the same stressed vowel has very different effects depending on the 

syllable. The same stressed vowel on the final syllable makes words very 

phonologically similar. The stressed final vowel, as explained in § 3.2.2.5, 

encodes important verb morphosyntactic information. The fact that the 

present methodology so clearly picks up the importance of parameter sv2 in 

the phonological similarity space when correlated with a syntax-laden 

semantic space both endorses the methodology and confirms the syntax-

phonology space correlation proposed by the phonological typicality 

literature (Durieux & Gillis, 2000; Kelly, 1992, 1996; Monaghan, Chater & 

Christiansen, 2003). Enhancing final stressed vowel distinction at the 

phonological level greatly improves the phon-sem correlation, so this 

parameter must be driven by verb endings, with their highly systematic 

relationships between phonological and cooccurrence-based representations. 

Sharing the stressed vowel on the penultimate syllable has a very negative 

impact on systematicity. Over 80% of Spanish bi- and trisyllablic words are 

stressed on the penultimate syllable, so the negative impact value indicates 

that sharing the same stressed vowel in the penultimate syllable 

(phonologically similar words) makes words semantically dissimilar. This is 

going against the systematicity pressure, but may help an opposed pressure: 

the pressure for words to be easily distinguished from each other, 

particularly words that occur in similar contexts. 

This suggests that while the identity of the final stressed vowel organises the 

systematic lexicon on a morphosyntactic dimension, the identity of the vowel 

in the stressed penultimate syllable may be crucial for word differentiation 

and recognition. 

The linear impact values have given us an idea of the role each phonological 

similarity parameter plays on the phon-sem correlation. The next section 

explores which regression models best predict the behaviour of the 

parameters. 
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6.2.3.2 Regression curve estimation parameter models  

The linear covariance values have provided us with a rough idea of how 

each parameter affects the systematicity between lexical phonology and 

semantics, particularly of whether their impact is positive or negative. This 

section looks at how different regression equations model the relationship 

between the phonological parameters and the phon-sem correlation.  

I run the linear and ten nonlinear standard regression functions (logarithmic, 

inverse, quadratic, cubic, compound, power, sigmoid, growth, exponential 

and logistic) available in SPSS (2003) on the data. Appendix G shows the r2 

for all the functions in the cvcv word-group in the 'syntax' and the 'no 

syntax' conditions. The functions’ fit for the different parameters is highly 

consistent across groups, satisfying Stevens' (1992) test to find the most 

reliable regression function. Figure 6.5 shows an illustration of the r2 for one 

word-group (cvcv) in the 'no syntax' condition. An examination of the r2 

(measuring how well models fit the data) reveals some connections with the 

linear impact parameter values shown in Figures 6.3 and 6.4 above.  
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Figure 6.5: Measure of the fit of three regression models to the cvcv parameters in the 'no 
syntax' condition to the phon-sem systematicity. 

•  The linear function is never the best predictor of the phon-sem 

correlation given the parameter data, but it obtains its best r2 values for 

negative-impact parameters. 
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•  The growth, exponential, logistic and compound functions return very 

similar r2 values. I take one representative from this group: the 

exponential function.  

•  The best single predictor of negative-impact parameters (such as same 

vowel and same stressed vowel in the penultimate syllable) is the 

sigmoid or S-curve function.  

•  The worst single predictor of negative-impact parameters is the inverse 

function. 

•  The best compound predictor of the sign of the parameter impact is the 

sign of exponential r2 minus the S-curve r2. In positive impact 

parameters, exponential r2 > S-curve r2. In negative impact parameters, 

exponential r2 < S-curve r2. 

The combined results from § 6.2.3.1 and § 6.2.3.2 supports the claim that 

there are two classes of parameters with respect to phon-sem systematicity. 

The second hypothesis stated in § 6.1 predicted that the study of the 

parameters of phonological similarity with respect to the phon-sem 

systematicity would reveal pressures in the lexicon different than those 

contributing to systematicity. Here we have two classes of parameters, one 

contributing to and the other working against systematicity. Figure 6.6 

shows one illustrative example of each class. 
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Figure 6.6. Scatter plot of Fisher divergence against individual parameter values. Two 
parameters are shown: (a) two consonants and (b) vowel 2 , in the cvcv word group, 'no 
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syntax' condition. The empirical parameter values are also shown as larger red points. 

The two classes of phonological similarity parameters with respect to the 

organisation of the mental lexicon are: 

1. Class one parameters: Individual and groups of consonants, the 

stressed syllable and the identity of the final stressed vowel have 

positive impact values on phon-sem systematicity and are best 

modelled by an exponential function )(*0 )*1( tbebY = . High 

systematicity (low Fisher divergence values) is brought about by high 

parameter values - see Figure 6.6 (a). This suggests that words sharing 

these phonological traits tend to be closer together in the 

cooccurrence-based semantic space. 

2. Class two parameters. Individual vowels and the identity of the 

penultimate-syllable stressed vowel have negative impact values on 

phon-sem systematicity, possibly playing a role in word 

differentiation and identification. They are best modelled by a 

sigmoid curve function ))(0( 1
t

bb
eY

+= and also reasonably well 

modelled by a linear function Y = b0 + b1t. High systematicity (low 

Fisher divergence values) is brought about by low parameter values 

(see e.g. Figure 6.6 (b)). This suggests that words sharing these 

phonological traits tend to be far apart in the cooccurrence-based 

semantic space. 

6.2.3.3 The function of class one and class two parameters in Spanish 

Class one parameters either are closely linked to narrow niches of syntactic 

function (such as the final stressed vowel encoding verb tense and person) or 

offer many combinatorial possibilities (such as the consonants in a word). 

These two characteristics are desirable in parameters that drive systematicity 

between phonology and word cooccurrence: the links with syntactic function 

obviously so; the high combinatorial power better allowing systematic 
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relationships of phonological space with the multidimensional cooccurrence 

space. 

Class two parameters allow fewer combinatorial possibilities (there are only 

five vowels in Spanish compared with 18 consonants) and may be related to 

word differentiation, the pressure opposed to systematicity in the 

configuration of the lexicon structure. The fact that, in cvccv words, c2 and c3 

are class-two parameters supports the connection with combinatorial power: 

only seven consonants can occupy the syllable-coda position (c2) in Spanish, 

and the following consonant (c3) is constrained by c2 (see Figure 6.7). (One 

way of determining the importance of the differential combinatorial power 

of vowels and consonants would be a cross-linguistic comparison of the 

result of this kind of study in languages with many and with few contrastive 

vowels.) 
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Figure 6.7. Redundancy measures the extent to which c3 can be correctly guessed once c2 is 
known, in cvccv words. Redundancy is 1 – relative entropy (see chapter two for definitions 
of entropy and redundancy). 

In the discussion of the results of chapter three’s study of parameters of 

phonological similarity I mentioned several studies suggesting the 

differential processing of vowels and consonants. I expand that review here 

linking it to systematicity. If consonants and vowels work for and against 

systematicity, respectively, this may indicate that certain neural 

mechanism(s) contribute to systematicity while other(s) work against it, 

perhaps contributing to word recognition.  

Cole, Yan, Mak, Fanty and Bailey (1996) presented participants with English 

speech where either consonants of vowels had been rendered 
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incomprehensible. They found that vowels are clearly more important for 

recognition than obstruent consonants in test sentences where both were 

equally represented. They studied extreme cases where either consonants or 

vowels were not available to the listener; in natural speech, however, they 

claim that there is a mutual interaction of consonants and vowels, and that 

we recognize a word thanks to its vowel structure given its consonant 

structure or vice versa.  

Boatman, Hall, Goldstein, Lesser, and Gordon’s (1997) experiments with 

patients with implanted subdural electrodes showed that electrical 

interference at different brain sites could impair consonant discrimination or 

vowel and tone discrimination. 

A study of two Italian-speaking aphasics with selective impaired processing 

of vowels and consonants, respectively, suggests that vowels and consonants 

are processed by different neural mechanisms (Caramazza, Chialant, 

Capazzo & Miceli, 2000). In that study it was clear that the differences were 

brought about by the vowel-consonant distinction, and not by a distinction 

in the degree of voicing. Monaghan and Shillcock's (2003) connectionist 

model of Caramazza et al.'s effect showed that separable processing of 

vowels and consonants is an emergent effect of a divided processor 

operating on feature-based representations.  

In another study in Spanish, Perea and Lupker (2004) found that nonwords 

created by transposing two consonants of a target word primed the target 

word (e.g. caniso primed casino). However, when two vowels were 

transposing no priming occurred (e.g. anamil did not prime animal). Perea 

and Lupker propose that these differences could arise at the sub-lexical 

phonological level, and mention that the transposition of two consonants 

preserve more of the sound of the original than the transposition of two 

vowels, and mention as supporting facts the appearance of vowels as 

phonological units earlier in life than consonants (Bertoncini, Bijeljac-Babic, 

Jusczyk, Kennedy & Mehler, 1988) and the earlier spelling of vowels than of 
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consonants in Spanish (Ferreiro & Teberosky, 1982). These results suggest 

that, at least in languages like Spanish and Italian, vowels and consonants 

are processed separately and might contribute to the lexicon structure in 

different ways. 

Chapter three mentioned the ‘phonological similarity effect’ (PSE) found by 

Conrad and Hull (1964) - when people are asked to recall a list of words, 

they perform worse if the words sound similar to each other. In a recent 

paper, Lian and Karslen (2004) tested the PSE of consonant-vowel-consonant 

nonwords with Norwegian participants, and analysed the impact on PSE of 

three parameters of phonological similarity - sharing middle vowels (mal, 

sar, tas), sharing the consonant frames (kal, kol, kul) and sharing the rhyme 

(kal, mal, sal) - with two tasks: recall and recognition of the words in the list. 

Their results bear on the differential processing of consonants and vowels. 

They found an absence or reversal of PSE in several conditions. Sharing mid-

vowels did not produce PSE, and sharing the consonants and sharing the 

rhyme actually reversed the PSE, that is to say, lists of words sharing the 

consonant frames and the rhyme were generally recalled and recognised 

better than distinct word lists. What is most relevant to the present discussion 

is the fact that consonant frame lists (kal, kol, kul) were recalled and 

recognised better than rhyme lists (kal, mal, sal), showing an advantage of 

vowel variation over consonant variation in this kind of tasks. Consonant 

frame lists could be easily placed in the systematic consonant-based 

dimension (in the k_l position). It is then easy to memorise which of the few 

possible vowel (Norwegian has 11 vowels) were present; the order can be 

expected to be easily recalled considering that most transposition speech 

errors involve consonant transpositions, and very few vowel transposition 

(e.g. the first 40 phonological substitution errors in Italian returned by the 

online Max Plank speech error database2 comprise 27 consonant 

                                                

2 Max Plank speech error database online at http://www.mpi.nl/world/corpus/sedb/. 
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substitutions, 7 vowel substitutions and 6 other errors; in English, 24 

consonant substitutions, 10 vowel substitutions and 6 other errors), 

indicating that the vowel order is more easily memorised. 

Some papers support the hypothesis that my proposed 'class two' parameters 

may be important in Spanish word recognition. Ikeno et al. (2003) explain 

that when foreigners from different language backgrounds speak English, 

their foreign accent reflects their native language characteristics. For 

instance, Flege, Bohn and Jang (1997) report that Koreans - whose native 

language distinguishes between long and short vowels - exaggerate the long-

short vowel distinction in English. Ikeno et al. (2003) report that Spanish 

speakers tend to use more full vowels and less shwas than native English 

speakers when speaking English, probably because there is no reduction to 

schwa in Spanish.  

A number of studies suggest that stress information is processed 

independently of segmental information. Cutler's (1986) results show that, in 

English, stress distinctions between pairs such as trusty-trustee do not affect 

the outcome of lexical decision tasks; French speakers' judgement about 

nonword similarity is not affected by stress differences (Dupoux, Pallier, 

Sebastian-Galles, & Mehler, 1997). The effect in English is explained by the 

fact that word stress strongly correlates with segmental information – vowel 

quality – with most stressed vowels pronounced fully and most unstressed 

vowels reduced to schwa; therefore, stress information is redundant and 

speakers can rely on segmental information only. In French, all words are 

stressed on the last syllable, so stress does not help differentiate between 

words. French speakers therefore do not pay attention to stress information 

when judging similarity. 

In Spanish, among other languages, stress information cannot be predicted 

from segmental information. In these languages, prosody may help reduce 

the number of competitors in word recognition, i.e. the number of 

candidates activated given an acoustic input (see review in Cutler, Dahan & 
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Van Donselaar, 1997). Pallier, Cutler and Sebastian- Gallés (1997) compared 

the abilities of Spanish and Dutch speakers to separately process segmental 

and stress information with a classification task of cvcv words. Their results 

suggest that in these languages, segmental information cannot be processed 

independently of stress information. In Dutch, stress contrasts are usually 

accompanied by syllable weight contrasts, with stress falling on the strong 

syllable, but in Spanish, stress is independent of weight, with many cvcv 

words made up of two equal weight syllables. As expected, Pallier, Cutler 

and Sebastian-Gallés (1997) found that segmental judgements are more 

affected by stress in Spanish than in Dutch. 

In this section I have reviewed evidence that class one parameters have links 

with syntactic function; that class one parameters have higher combinatorial 

power than class two parameters; that different neural mechanisms may 

underlie processing of consonants (class one) and vowels (class two); and 

finally, that class two parameters vowel identity and stress may be important 

for word recognition in Spanish.  

These studies, together with the results presented in past sections, support 

the division of function between class one parameters (help maintain 

systematicity, which in turns helps generalisation and inference) and class 

two parameters (help word recognition in a systematic lexicon). 

6.2.4 The empirical parameter values against the systematicity-

driven impact parameter values  

In this section I tackle the question of how well adapted the empirical 

parameters are to the pressure for systematicity. As stated above, I expect 

that the empirical parameters will prove to be well, but not perfectly, 

adapted to the systematicity pressure. The linear impact values for each 

parameter obtained in the last section are a measure of the parameter’s 

influence on the systematicity between phonology and semantics. A match 

between this influence and the empirical parameter values grounds the 
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existence of a link between perceived word phonological similarity and 

word semantic similarity.  

I approach this problem by comparing the phon-sem correlation obtained 

with the empirical parameters, and the phon-sem correlations obtained with 

random parameter values. I do this in same the two conditions as in the 

previous section ('syntax' and ‘no syntax’) for the two word groups for which 

I obtained empirical values, cvcv and cvccv. 

I insert the empirical parameter values along with the Fisher divergence 

obtained with them (e.g. the bold line in Table 6.2 above) among the 2,000 

random parameter configurations and corresponding Fisher divergences. I 

calculate the rank of the empirical Fisher divergence in the 2,000 list. In this 

Monte-Carlo analysis the statistical significance of the empirical Fisher 

divergence can be calculated from its position in the ranking. Figure 6.8 

shows those positions in the two conditions for the two word groups, 

together with the empirical Fisher divergence values and their significance. 
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Figure 6.8. Position of the Fisher divergence obtained with the empirical phonological 
parameter values in word groups cvcv, cvccv in the 'syntax' and 'no syntax' conditions. 



 193 

Empirical Fisher divergence value shown; significance: * p<0.05, **p<0.01 

In three out of the four conditions the empirical parameter configuration 

yields significantly high Fisher divergences (measuring the phonology-

semantic correlations). In the syntax condition for cvcv words, the 

correlation is marginally significant (p=0.065). This means that the empirical 

parameter configurations tend to yield a significantly high phon-sem 

systematicity; I explain this in terms of the pressure for systematicity across 

levels of representation in the lexicon. Additionally, the skewed-to-the-left 

graphs in Figure 6.8 illustrate the fact that randomly generated parameter 

configurations are more likely to yield a low systematicity lexicon. The 

empirical parameters yield a highly systematic lexicon, suggesting that the 

phonological lexicon is under a strong pressure for systematicity. 

An illustration of this significance can be seen in Figure 6.6 (a) and (b) above. 

The large red dots in the Figures represent the position of the empirical 

parameter value and the Fisher divergence it helps obtain. In both cases, 

Fisher divergence is low, indicating high systematicity.  

In order to determine the extent of the pressure for systematicity, I measure 

how unlikely it is that the empirical parameters would generate 

systematicity. Class one parameters - such as two consonants, illustrated in 

Figure 6.6 (a) – show the effect of a strong pressure for systematicity: the 

position of the parameter in the random space is highly significant (one-

tailed Monte-Carlo, p<0.01). In the case of class two parameters - such as 

vowel two, illustrated in Figure 6.6 (b) – the empirical parameter value is not 

significant (one-tailed Monte-Carlo, p=0.21 n.s.). This means that, while both 

parameters contribute to systematicity, class one parameters are under 

strong pressure to do so, but class two parameters only support it because it 

is easy for them to do so - because of their low combinatorial power, many 

words will be similar to each other along those parameters. 
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Discrepancies between the empirical values and the systematicity-driven 

impact values can be explained at least in two ways. One, when asked to 

judge phonological similarity, people show evidence of pressures on the 

lexicon other than systematicity, for example, they may be focussing on 

aspects of the word that help differentiate between similar-sounding words. 

Alternatively, the parameter impact values obtained above may be 

overfitting to the data set. The second explanation can be ruled out if there is 

consistency across word groups. Figure 6.9 shows how the empirical values 

covary with the correlation-driven parameters. 
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(a) R2= 0.12; df=8; (n.s.) (b) R2 = 0.34; df=12; p<0.01 
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Figure 6.9. Scatter plot of the parameter impact values obtained in § 6.2.3.1, against the 
empirical parameter values shown in Figure 6.2, based on the study in chapter three. 
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Parameters on the top-left half are more important for phonological similarity in the 
empirical task than in the systematicity-driven metric. Parameters on the bottom-right half 
are more important for phonological similarity in the systematicity driven metric than in 
the empirical task. Correlation between the two axes (R2) is also shown; the triangles 
correspond to the parameters that stop R2 from being significant. 

Most of the correlation-driven values correlate well with the empirical ones. 

In general, the corpus-based methodology yields higher consonant values 

(consonant parameters placed in the bottom-right half of the graphs), while 

the empirical method yields higher values for the vowels (vowel parameters 

in the top-left half of the graphs). This indicates that while the correlation is 

more driven by consonants, people focus more on vowels when asked to tell 

how similar words sound.  

Additionally, in the cvcv group, parameters c2 and s2 do not correlate well, 

with corpus-based values much higher than empirical values. The two 

counterpart parameters in cvccv - c3 (last syllable-onset consonant) and s2 - 

are among the worst correlating parameters, supporting the fact that the 

misalignment is not due to overfitting. The low correlation of these two 

parameters may be due to the onset consonant of the final syllable being 

important for syntax-semantic word categorization, but somehow people not 

consciously noticing it when directed to compare the way words sound.  

These two facts seem to indicate a divergence in the two methodologies 

employed in the test of systematicity between the phonological and the 

semantic levels of the lexicon. Across-group consistency in the correlation-

driven parameter values indicates that the parameters behave in the same 

way in all word groups, supporting the robustness of the methodology. 

Across-group consistency in the empirical parameters (§ 3.2.2.4) supports the 

robustness of the empirical study methodology.  

The fact that the empirical values differ from the correlation-driven ones 

may be due to the nature of the psycholinguistic task presented in chapter 

three. Participants were asked which of two pseudo-words sounded more 

similar to a third pseudo-word. This may have biased the choices. Perhaps if 
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they had been asked which of the two pseudo-words they thought meant 

something more similar to the third pseudo-word, they would have drifted 

away from the concrete word form, and allowed access to a more holistic 

word representation. Such a task would elicit judgements of systematicity 

more effectively, and it might have produced parameter values more similar 

to the systematicity-driven impact values. This poses an empirical question 

that can only be resolved with further tests. 

The analysis of the results of the random search of the phonological 

parameter space with respect to systematicity, together with the empirically 

obtained parameter values returns the conclusions summarised in Table 6.4.  

  Class one parameters  Class two parameters 

parameters  consonants; stress; 
stressed final vowel 

 vowels, stressed 
penultimate-syllable vowel 

impact on systematicity  positive  negative 

best regression model  exponential  sigmoidal 

systematicity-driven vs. 
empirical values 

 systematicity > empirical  empirical > systematicity 

function  maintain systematicity  word identification 

Table 6.4. Two classes of phonological similarity parameters with respect to phon-sem 
systematicity. 

The random search of the phonological parameter space suggests that there 

are two classes of parameters with respect to phon-sem systematicity -

consonant parameters, stress placement and the stressed final vowel all 

contribute to systematicity, while the identity of the stressed vowel in the 

penultimate syllable works against it. These two classes are also best 

modelled by different regression functions, exponential for class one and 

sigmoidal curve for class two. I suggest that the class two parameters are 

crucial in the differentiation of words with similar phonology that tend to 

occur in similar contexts. Contrasting the empirical parameter values 

derived from chapter three with the random-search values obtained above 

supports this different-function hypothesis. While the parameter values 

obtained with the empirical study and the random-search are generally well 

correlated, the systematicity-driven random search accorded higher values 
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to class one parameters, and lower values to class two parameters than 

people did. 

6.2.5 Random search of an extended phonological parameter 

space 

In this section I apply the methodology in § 6.2.1 to search a more fine-

grained phonological similarity parameter space adapted to words of any 

structure and length. This space takes into account word syllable structure 

and includes parameters related to the identity and the features of the 

segments in different syllable positions; to stress; to the rhyme and the word-

onset (the first few segments); to one word being contained in the other; and 

finally to word length, which studies in English (Shillcock et al., 2001, 

submitted) suggest have a strong effect on phonological similarity. 

I suggested at the end of chapter five that word length might play a crucial 

role in the phon-sem correlation in Spanish, but word length effects could 

not be tested with the equal-length sub-sets of the corpus employed (cvcv 

and cvccv words) . In order to test this, and at the same time possibly reveal 

other important parameters of phonological similarity, I explore 

systematicity in an extended sample of the lexicon: the 516 highest-frequency 

words from the same corpus of Spanish transcribed speech used throughout 

this thesis. Unlike the length- and consonant-vowel structure-homogeneous 

cvcv, cvccv and cvcvcv groups, this word set includes short and long words 

of various CV structures.  

The methodology in § 6.2.2.2 is applied to the phonological and semantic 

spaces generated with the 516-word group. The semantic similarity between 

the 132,870 word-pairs is calculated in the same way as in chapters four and 

five, with the same context words for the 'syntax' and ‘no syntax’ conditions. 

The phonological similarity metric required a new parameter set adapted to 

the varying word length and structure, and is explained in detail in the next 

section.  
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6.2.5.1 The phonological similarity metric 

This exploration of a phonologically heterogeneous lexicon includes 

parameters related to the whole word, such as difference in word length, one 

word being contained in the other, or sharing initial segment features; other 

parameters are related to the syllables, such as sharing the syllable onset and 

coda or having the same word CV structure; yet others relate to stress, 

rhyme and vowel features. Such a general approach applied to a varied 

lexicon sample yields a general guide as to what parameters affect the phon-

sem systematicity in the whole lexicon.  

 Segment 

0 onset consonant 

1 cluster consonant 

2 vowel 

3 glide 

4 coda consonant 

Table 6.5. Organisation of the syllable segments. 

For the calculation of the phonological similarity of each word-pair, the two 

words were divided up into syllables and then the segments in each syllable 

were placed into a fixed template (see Table 6.5) so that each element could 

be compared with its counterparts in other syllables. 

The two words to be compared were aligned along the stressed syllable3 (see 

Figure 6.10) and parameters related to syllable-position were compared 

between aligned syllables and their adjacent syllables (e.g. in Figure 6.10, 

syllable mo in the top-centre word is compared with all three syllables in the 

bottom-centre word: the one directly below it, and those to its right and left; 

syllable ni in the top centre word is compared with ri and ta in the bottom-

centre word). 

                                                

3 This is motivated by the fact that in Spanish poetry metrics the stress of the last syllable in 
a line alters the count of the number of syllables. Spanish rhyme needs the end of the lines 
to be stress-aligned.  
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di rek ti ba  ar mo ni ka  ba ul  

  Ro ka  ga ri ta    me sa 

Figure 6.10. The two words to be compared are aligned along their stressed syllable 
(stressed syllables in bold). 

The phonological similarity metric compares pairs of words and computes a 

similarity value based on the following parameters: 

•  same manner of articulation, place of articulation, sonority, voicing (6 

categories, following Burquest & Payne, 1993) in the syllable-onset, 

syllable-coda, and word initial consonants; 

•  same phoneme identity in the syllable-onset, syllable-coda and word 

initial consonants;  

•  same vowel openness (open, medium, closed) and position (anterior, 

central, posterior);  

•  presence of a glide (semivowel or semiconsonant);  

•  presence of the same cluster consonant, i.e. the second consonant in a 2-

consonant cluster;  

•  one word being contained in the other in terms of syllables - e.g. ce-ga-

to (blind) and ga-to (cat), but not glo-bo (balloon) and lo-bo (wolf), 

because in the second pair there is a discrepant syllable boundary. 

•  one word being contained in the other, but not in terms of syllables - 

e.g. glo-bo (balloon) and lo-bo (wolf);  

•  same CV word structure;  

•  same vowel structure (sharing all the vowels in the same order);  

•  sharing the stress on the same syllable (last, penultimate, 

antepenultimate);  

•  similar word onset (number of common segments in the first syllable);  



 200 

•  similar rhyme (number of common segments in the last syllable);  

•  same final-syllable vowel;  

•  different length (this parameter penalises word length discrepancies 

between the two words in the pair, measured in segments).  

6.2.5.2 The linear parameter impact values 

Figure 6.11 shows the linear parameter impact values calculated with 135 

random parameter configurations, following the same method described in § 

6.2.2 and also employed in § 6.2.3.1.  
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Figure 6.11. ‘Parameter impact’ values. Two conditions, ‘syntax’ and ‘no syntax’, are shown 
for the ‘all word’ group. (Note that length difference is a penalisation parameter.) 
Continuous line indicates p=0.05; discontinuous line indicates p=0.01. 

Table 6.6 shows the significant parameter impact values that contribute to 

(class one) and work against (class two) the phon-sem systematicity. 

 Class one parameters Class two parameters 

'syntax'  word length; word initial manner 
and place of articulation; stress in 
the antepenultimate syllable; one 
word containing the other; cluster 
consonant 

syllable onset sonority, manner of 
articulation, voicing, and place of 
articulation; syllable-coda sonority 

'no syntax' word length; word initial voicing 
and sonority; cluster consonant, 
word CV structure; word vowel 
structure 

syllable-onset voicing and place of 
articulation 

Table 6.6. Parameter impact values that reach significance in the 'all word' group.  

The highest positive impact value corresponds to word length difference, 

with an impact value of 0.62 in both conditions. This parameter works as a 
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penalisation in the calculation of word similarity. In the phonological 

similarity metric, the 'length-difference' parameter value (multiplied by the 

length in segments in the longest word minus the length in segments in the 

shortest word in the pair) is subtracted from the pair's phonological 

similarity. In other words, the higher the parameter value, the more length 

difference is penalised in terms of word similarity. This means that, as 

suggested in chapter five, length difference plays a crucial role on the 

phonological similarity side of the phon-sem systematicity, and may be one 

of the reasons why the phon-sem correlation obtained in chapter five (§ 

5.2.3) did not reach statistical significance.  

Word initial consonant features contribute to systematicity, with the 'syntax' 

condition placing more emphasis on manner and place of articulation, and 

the 'no syntax' in voicing and sonority. The initial consonant is, as reviewed 

in chapter three, crucial in lexical representation; its positive impact on the 

phon-sem correlation suggests this parameter contributes to systematicity. 

The cluster consonant also seems to contribute to systematicity in this group 

of words of any CV structure (but not so in cvccv words, where we saw that 

the cluster consonant c3 worked against systematicity). The measurement in 

the two word groups is different in that in cvccv words the cluster consonant 

was always in the same position in the word, whereas here, comparisons 

across different syllables are also taken into account. Further studies would 

be necessary to determine the role of the cluster consonant, for instance, a 

more detailed phonological similarity metric testing the effects on 

systematicity of parameters 'same consonant cluster in the aligned syllable' 

against 'same cluster consonant in a different syllable'. Sharing the stress in 

the last and antepenultimate syllables also contributes to systematicity, 

consistent with the cvcv, cvccv and cvcvcv studies. Containment of one word 

by the other also works in favour of systematicity. In their paper about the 

possible word constraint in word segmentation, Norris, McQueen, Cutler 

and Butterfield's (1997) showed that, in English, it is easier to detect e.g. the 

word apple when embedded in vuffapple (where vuff could be an English 
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word) than when embedded in fapple (where f could not be a word in 

English). In Spanish, the first condition is similar to our parameter 'one word 

contained by the other in terms of syllables', and the second condition can be 

assimilated to our parameter 'one word contained by the other in terms of 

segments, but not syllables' e.g. glo-bo and lo-bo, where g (or any sequence 

containing part of a syllable) cannot be a word. Norris et al. used a word 

spotting task, and in the present case, the two words are being compared in 

terms of their similarity, but the present results suggest that, in Spanish, 

containment is recognized and contributes to the phonological lexicon 

organization in both conditions. 

Class two parameters, working against systematicity, and possibly helping 

word recognition, relate to syllable onset and syllable coda features. These 

parameters affect all syllables in the word, not only in the initial syllable. 

Sharing the stress on the penultimate syllable also negatively impacts 

systematicity. Because the phonological similarity metric compared not only 

aligned syllables in the two words, but also each syllable with the one before 

and after (Figure 6.10), I cannot make assumptions as to the relevance of 

these parameters in different word positions. The results suggest that 

syllable onset and coda consonant features, independent of position in the 

word, help to distinguish otherwise similar sounding words which tend to 

appear in similar contexts. 

These results generally agree with those from the cvcv, cvccv and cvcvcv 

word study. Single vowel impact values do not reach statistical significance, 

but the word vowel structure (sharing all the vowels in the same order) 

does. This parameter is comparable to 'two vowels' in cvcv and cvccv words, 

and 'three vowels' in cvcvcv words, and, like them, has a positive impact on 

systematicity. Stress-related parameter values reflect those obtained in the 

cvcv, cvccv and cvcvcv word groups, namely positive impact value for the 

last and last-but-two syllables, negative for the last-but-one, although only 

the impact of shared stress in the last-but-two syllable reaches significance. 
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One discrepancy is the mentioned difference between the behaviour of the 

cluster consonant in cvccv words against the present group of words of any 

CV structure.  

Among the parameter impact values not reaching significance is sharing the 

full segments in any position - a common theme in the results is the fact that 

consonant features' impact on systematicity is stronger than that of the 

corresponding full segment. The presence of glides and vowel features, most 

syllable-coda consonant features (except sonority in the 'syntax' condition), 

rhyme and sharing initial syllable segments are not significant either.  

This random search included many interdependent phonological variables, 

and this may have affected the results. Additionally, only 135 points of the 

space were calculated (against 2,000 for the cvcv, cvccv and cvcvcv spaces). 

This means that these results are only preliminary, but, together with those 

from the larger random searches, they indicate that this methodology has 

potential to reveal interesting aspects of the structure of the phonological 

lexicon.  

6.2.6 Summary of section 6.2 

The random-search methodology has quantified the impact of individual 

phonological parameters on the systematicity between phonological and 

context-based similarity in three subsets of the lexicon (cvcv, cvccv and 

cvcvcv words). Two classes of parameters were apparent:  

Class one parameters are best modelled by an exponential function; these 

parameters either allow many phonological combinations or are linked to 

morphosyntax. These parameters contribute to systematicity: words that 

tend to occur in similar contexts in speech also tend to share consonants and 

the final stressed vowel.  

Class two parameters are best modelled by a sigmoid function and also by a 

linear function. These parameters have a low combinatorial power. They 
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work against systematicity: words that tend to occur in different contexts in 

speech tend to share vowels and the stressed syllable.  

This suggests that while class one phonological parameters contribute to 

systematicity in the lexicon, class two parameters might be helping the 

identification and recognition of otherwise similar sounding words which 

tend to occur in similar contexts.  

The empirical parameter values obtained from the psycholinguistic study 

reported in chapter three correlated well with the random search parameter 

values, suggesting that some parameters (class one) are under pressure to 

promote systematicity in the lexicon while others (class two) oppose 

systematicity to help word identification. 

An exploration of an extended parameter space showed the strongly positive 

impact of word length similarity on systematicity. 

The high consistency of the parameter values across independent lexicon 

subsets supports that the phonological organisation of the lexicon is the 

consequence of the interaction of the pressure for systematicity and the 

opposed pressure for word intelligibility. 

The next section looks for the parameter configurations that yield the best 

possible phon-sem correlations, and again compares them with the empirical 

parameter values to extract conclusions relevant to the lexicon's phonological 

structure. 

6.3 A hill-climbing search of the phonological lexicon 

In § 6.2 I generated random phonological parameter configurations, 

calculated a phonological similarity space with them and measured how 

well the phonological space correlated with an independently-measured 

semantic space. All these randomisations could be visualised as a surface 

(Figure 6.1) with peaks of low correlation and valleys of high correlation. In 
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this case I use a parameter optimisation technique called hill-climbing4 that 

goes directly to the areas of high correlation. It is an algorithm designed to 

find the phonological parameter configuration that obtain the optimal phon-

sem correlation. 

Comparing the 'optimal' parameter values that obtain the most systematic 

lexicon with the empirical parameter values can help determine what other 

constraints are acting on the mental lexicon and their effect on systematicity. 

For example, if the best phon-sem correlation is obtained by placing a lot of 

emphasis on consonants in the processing of phonological similarity, why 

did people actually place more emphasis on vowels in the study reported in 

chapter three?  

6.3.1 Method 

In order to attempt to find the parameter configuration that returns the best 

phon-sem correlation (the lowest point in the surface in Figure 6.1) I draw a 

method from the field of Artificial Intelligence called hill-climbing search. 

The general principle behind it is that a random parameter configuration is 

evaluated according to some metric; then one random change is made to one 

of the parameters, and the changed parameter configuration is evaluated 

again. If the evaluation is better, the random change is kept, otherwise it is 

discarded. This process is repeated until a stable state is reached, signalled 

by the fact that no change in any of the parameters improves the evaluation 

criterion.  

Figure 6.12 shows a graphic representation of a hill-climbing search in the 

two-parameter space already shown in Figure 6.1. The following explanation 

                                                

4 The standard name ‘hill-climbing search’ seems to indicate that we are looking for the 
highest point in a search space. In the present case, however, the best result is the lowest 
point (low Fisher divergence means high phon-sem correlation). I keep the method name, 
hill-climbing, but ask the reader to bear in mind that in this study we are actually talking 
about ‘valley descending’. 
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of my implementation of the hill-climbing search will use this Figure as an 

illustrative example. 

 

Figure 6.12. The blue line represents the path of the hill-climbing search, from the yellow 
area towards the green area. Note again that the term ‘valley-descending’ would be more 
appropriate in this particular case. 

In the present case, the evaluation metric for the informed search is the 

phon-sem correlation measured with Fisher divergence, and the algorithm 

works like this: 

1. I start off with a randomly generated phonological parameter set (the 

top end of the blue line, defined by the parameter values tc=0.28 and 

v1=0.26). Since Fisher divergence is sensitive to the magnitude of the 

data, this random parameter set is converted into a probability 

distribution (as I did in the random search). 

2. Using these parameter values, I calculate the distances between all the 

word-pairs in the group to produce a phonological similarity space. 

3. I calculate the correlation (using Fisher divergence, or FD) between 

this phonological similarity space and the cooccurrence-based 

semantic similarity space (the same used in section 6.1.2, and in 

chapter five).  
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4. I change one of the parameters: I randomly add or subtract a small 

amount to one of the parameters (0.05 for 200 iterations, 0.02 for a 

further 200 iterations and 0.01 for the rest of the iterations).  

5. I repeat steps 2 and 3 with the new parameter set. If the new FD is 

higher than the old one, I discard the change and make another 

random change. If the new FD is lower than the old one, I keep the 

change and go to step 4.  

These steps are repeated until no random changes return a better FD, that is, 

until the blue line in Figure 6.12 reaches the lowest point of the valley. In 

practice, I repeated the algorithm until no change is detected in FD for 50 

iterations. 

An informed search like this does not tell us about the overall shape of the 

surface; it only shows downhill paths. One problem of this kind of algorithm 

is that the path could end up in a local minimum, a point which is lower 

than its surrounding area, but it is not the overall lowest point in the surface. 

The ever-descending path cannot escape from local minima, and going into 

one prevents us from finding the lowest valley representing the best 

parameter configuration. This potential problem can be ameliorated by 

doing several runs of the algorithm with different initial random 

configurations, the equivalent of starting in different points in the surface in 

Figure 6.12. I ran the search twice for each space and arrived at practically 

the same parameter configurations. The following results show one of them. 

I applied this algorithm to the cvcv, cvccv and cvcvcv words in both the 

'syntax' and the 'no syntax' conditions. The results are shown and discussed 

in the next section. 

6.3.2 Results  

Table 6.7 shows the FD's obtained with the phonological parameter 

configurations for cvcv, cvccv and cvcvcv words with the methodology 
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explained above, in the 'syntax' and the 'no syntax' conditions (the FD's 

obtained with the empirical parameter values are shown for comparison). 

 syntax no syntax 

 FD 
(hill-climb.) 

FD 
(empiric.) 

FD 
(hill-climb.) 

FD 
(empiric.) 

cvcv 3.34 5.03 5.76 7.79 

cvccv 1.64 2.18 2.80 3.69 

cvcvcv 1.94 n.a. 3.21 n.a. 

Table 6.7. Fisher divergence correlation values obtained with the empirical and the hill-
climbing parameter values in the ‘syntax’ and the ‘no syntax’ conditions. 

These FD's are well below those found in the random space searches of past 

sections, because the hill-climbing algorithm actively looks for the best 

possible parameter configuration, and refines it to obtain such optimal 

values that would be very unlikely to occur by chance. 

 To illustrate this improbability, we can place the results from the informed 

search in context, in the systematicity spaces from § 6.2.4.  
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Figure 6.13. Distribution of FD values obtained with 2000 random parameter sets, with the 
empirical parameters (emp, in the white bin; *p<0.05, **p<0.01) and with the parameter 
values from the hill-climbing algorithm (h-c). 
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Figure 6.13 shows the distribution of Fisher divergence values obtained with 

2000 random parameter sets, and the position of the empirical values 

(already shown in Figure 6.8) and of the parameter values resulting from the 

hill-climbing search. It is clear that the hill-climbing search obtains a very 

good phon-sem correlation, far better than any of the 2000 obtained with 

random parameter configurations. 

The parameter value configurations that obtained the lowest Fisher 

divergence for cvcv and cvccv words are shown in Figure 6.14 and for 

cvcvcv in Figure 6.15. 
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Figure 6.14: Parameter values obtained with a directed search of the phonological 
parameter space. These are the parameter configurations that obtained the best phon-sem 
correlation values after 650 iterations of the search algorithm. Two conditions, syntax and 
no syntax are shown for the cvcv and cvccv word groups. White bars= consonant-related 
parameters; grey bars=vowel-related parameters; black bars=stress-related parameters; 
striped bar=structure-related parameter. 
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Figure 6.15 The same as Figure 6.14, but for cvcvcv words. 

The configurations returned by the hill-climbing search and shown in 

Figures 6.14 and 6.15 consistently rely heavily on the same small number of 

parameters - a combination of stressed vowel on the last syllable, stress on 

the last syllable and all consonants in the 'syntax' condition, and simply all 

consonants in the 'no syntax' condition.  

The hill-climbing methodology strongly relies on a parameter (sharing all 

consonants) affecting a minute proportion of the word pairs constituting our 

sample lexicons (0.007% of cvcv words, 0.006% of cvccv words and 0.001% of 

cvcvcv words). The phonological parameters analyzed form a surface like 

that depicted in Figure 6.1, but multidimensional. This hypersurface may be 

such that one parameter has a much steeper gradient than the rest, so that 

the search (blue line in Figure 6.12) goes down in the direction of that 

parameter so fast that the effects of the gradients of other parameters are 

obscured. This may be the case with the parameter 'sharing all consonants'. 
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I ran the search twice for each word group and also examined the across-

group consistency to double-check that the search did not end up in a local 

minimum. Additionally, as seen in Table 6.8, the consistency across word-

groups is remarkably high. 

 'syntax'   ‘no syntax’ 

 cvcv (10) cvccv (14)   cvcv (6) cvccv (10) 

cvccv (14) 0.78   cvccv (10) 0.99  

cvcvcv (20) 0.87 0.94  cvcvcv (14) 0.99 0.95 

Table 6.8. Consistency across word-groups in the 'syntax' and ‘no syntax’ conditions: R2 of 
counterpart parameter values. The number of parameters is shown in brackets. All p<0.01. 

These R2 values show a high degree of convergence between the three 

parameter configurations, indicating that the hill-climbing algorithm finds 

similar phonological organisation with respect to systematicity in three 

independent subsets of the lexicon. This convergence supports the reliability 

of the methodology. Let us now examine how the parameter values obtained 

with the hill-climbing method correlate with the parameter impact values 

and with the empirical values (Table 6.9).  

R2 Impact  Empirical  

cvcv 0.43 (df=8)* 0.25 (df=8) 

cvccv 0.35 (df=12)* 0.32 (df=12)* 

 
'syntax' 

cvcvcv 0.15 (df=18)* n.a. 

cvcv 0.36 (df=4) 0.50 (df=4)* 

cvccv 0.35 (df=8)* 0.61 (df=8)** 

 
'no 
syntax' 

cvcvcv 0.30 (df=12)* n.a. 

Table 6.9. Correlations (R2) of the parameter values obtained with the hill-climbing search 
with the parameter linear Impact values, and with the Empirical values. (* p<0.05; **p<0.01.) 

The parameter impact values resulting from the random search and the hill-

climbing values were based on the systematicity between the phonological 

and the semantic levels of the lexicon. The empirical parameters were 

obtained from psycholinguistic tests on word-form data alone. Table 6.9 

shows that eight out of ten correlations are statistically significant, and the 

two that are not have very few degrees of freedom (df=4). In particular, the 

empirical values correlate best with the values returning the best phon-sem 
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correlation in the 'no syntax' condition, where word representations rely 

most on word meaning.  

A scatter plot of the hill-climbing parameter values against the empirical 

parameter values will reveal more about the correlations, as well as the 

discrepancies between the two metrics in a similar way as the scatter plots 

between the linear parameter impact values (Figure 6.3) and the empirical 

values (Figure 6.2). An analysis of the behaviour of the empirical values 

against the correlation-driven values might help reveal pressures other than 

systematicity affecting the structure of the lexicon.  
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Figure 6.16. Scatter plot of the 'optimal' values against the parameter values obtained empirically 
in chapter three. 
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Figure 6.16 and Figure 6.14 above show that the phon-sem systematicity is 

driven to a very high extent by similar last-syllable stressed vowels and 

similar word consonant structures. The empirical measurements presented 

in chapter three suggest that people also rely mainly on the stressed final 

vowel for phonological similarity. However, it also suggests that people 

attach almost as much importance to vowels as to consonants, which is not 

reflected in the hill-climbing results.  

This further supports the distinction between class one and class two 

parameters proposed above, the former (mainly consonants and the stressed 

final vowel) contributing to phon-sem systematicity, and the latter (vowels 

and the stressed syllable), focused on by people, working against 

systematicity. As suggested above, class two parameters could be helping to 

distinguish individual words from others that may be used in similar 

contexts.  

Figures 6.14 and 6.15 show that the hill-climbing phonological space relies 

strongly on a few parameters, almost dismissing the others. The selected 

parameters, not surprisingly, are related to syntax (stress) in the 'syntax' 

condition. In the 'no syntax' condition, systematicity is driven in all word 

groups mainly by 'sharing all consonants'. In the surface-form words in our 

data-sets, only half or less of the word pairs that share all consonants also 

share the same root (45% of cvcv pairs, 37% of cvccv pairs and 50% of cvcvcv 

pairs) (e.g. forms of the same verb, masculine and feminine forms of the 

same noun or adjective). In a lemmatised corpus, words sharing the same 

root would be conflated into the same lemma, and there would be no pairs 

of words sharing the same root. One problem with lemmatisation is that the 

vowel structure would also be altered, affecting the phonological 

representations of words.  

The fact that the systematicity-driven metric relies heavily on sharing all 

consonants might simply be telling us that words sharing the same root have 

similar cooccurrence patterns in speech. But over half of the pairs sharing the 
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three consonants have different roots, indicating that sharing the consonant 

structure is the main contributor to systematicity between phonology and 

semantics in the lexicon.  

As suggested above, the reliance on few parameters can be an artefact of the 

hill-climbing algorithm, favouring the parameter with the steepest gradient. 

Removing the ‘winning’ parameter should reveal the next best parameter. 

Indeed, this seems to have happened in the two conditions. In the ‘syntax’ 

condition, sv2 is the clear winner, obscuring the contribution of other 

parameters towards the correlation. In the ‘no syntax’ condition, when stress 

is removed, the important role of the consonant structure is revealed.  

6.3.3 Summary of section 6.3.  

The hill-climbing search optimised the parameter configuration to obtain the 

best phon-sem systematicity in the lexicon. In the 'syntax' condition, 

systematicity is driven by stress parameters. In the 'no syntax' condition, by 

sharing all consonants. 

The random and the hill-climbing searches of the phonological parameter 

space have returned different quantitative information about the parameters. 

The next section integrates all this information to make a testable prediction 

about the empirical values for cvcvcv words. 

6.4 Predicting empirical parameter values for CVCVCV words 

We now know how the phonological parameters behave with respect to the 

phon-sem correlation (impact values, § 6.2.3.1) and which parameter 

configurations obtain the optimal phon-sem correlation (hill-climbing 

values, § 6.3.2 ), for cvcv, cvccv and cvcvcv words. I also have empirical 

parameter values for cvcv and cvccv words. I can now integrate all this 

information and use it to predict the empirical values of some of the 

phonological parameters for cvcvcv words.  
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Table 6.10 shows the parameters that can be considered as counterparts in 

the three word-groups. (Note that syllables are counted from the end of the 

word.) 

cvcv cvccv cvcvcv  

c1 c1 c1 word-initial consonant 

c2 c2 c3 2nd syllable-initial consonant 

tc 3c 3c all consonants in the word 

v1 v1 v2 last-but-one syllable vowel 

v2 v2 v3 last syllable vowel 

tv tv 3v all vowels in the word 

s1 s1 s2 stress on last-but-one syllable  

s2 s2 s3 stress on last syllable 

sv1 sv1 sv2 stressed vowel on last-but-one syllable 

sv2 sv2 sv3 stressed vowel on last syllable 

Table 6.10. Counterpart parameters for the cvcv, cvccv and cvcvcv word-groups. 

For each parameter, I have eight values. For instance, for the word-initial 

consonant c1, one value for each measure in each word group (Table 6.11). 

c1 cvcv cvccv cvcvcv 

hill-climbing 0.0080 -0.002 0.0027 

parameter impact 0.1593 0.212 0.1228 

empirical value 0.1776 0.098 x 

Table 6.11. Known values of phonological value c1 obtained with different methodologies. 

I can combine these known values to predict the empirical values for cvcvcv 

parameters. This can be done 'manually' by looking at the values for the 

same parameter in different word groups and across methods, and 

extrapolate a value for x. The advantage of a manual method is that I can 

take into account factors such as the fact that cvcvcv words' syllabic structure 

is more similar to that of cvcv words. This method returns the predicted 

'empirical' parameter values for cvcvcv words shown in Figure 6.17.  
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Figure 6.17. Predicted empirical parameter values for the cvcvcv word group. 

 These are theory-driven testable values which, if confirmed by an empirical 

study of cvcvcv words similar to that described in chapter three, would 

further support the pressure for systematicity between the phonological and 

the semantic levels of the lexicon.  

6.5 Conclusions  

The present chapter is based on the hypothesis, tested in chapter five, that 

there are systematic relationships between the phonological and the syntax-

semantic levels of representation of the lexicon. It has explored the measure 

of such systematicity as a tool to study and predict the organization of the 

phonological level of the lexicon. This exploratory analysis had some 

limitations, for instance, the corpus size limits the accuracy of the 

cooccurrence-based word representations. It must also be noted that the 

parameters included in the metrics of the phonological (segment-based 

against, for example, feature-based) and the cooccurrence-based (window-

size, similarity metric etc) spaces were not ad-hoc, but were used in 

independent previous studies; using parameters specifically selected for 

finding, say, systematicity might have yielded clearer results. However, in 

an exploratory study such as this, the impact of the different parameters is 

only discovered a posteriori. In this exploration of a new paradigm the high 

levels of convergence between the results obtained with three independent 
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subsets of the lexicon support their reliability and the robustness of the 

methods. 

I set out to test the hypotheses that the pressure for systematicity between 

the phonological and the semantic levels of the lexicon would make 

empirical phonological parameter values return a significant phon-sem 

correlation; that the phon-sem correlation obtained with the empirical 

parameters would not be the best possible, because pressures other than 

systematicity affect the phonological structure of the lexicon; and finally, that 

the phon-sem correlation could be used to make testable predictions about 

the phonological space. 

The random search method returned parameter impact values, a measure of 

how each parameter influences the phon-sem correlation, for four different 

lexicon subsets: cvcv, cvccv and cvcvcv words, and all words. The results are 

significantly consistent across the first three word groups, indicating that the 

phon-sem correlation (a measure of the systematicity in the lexicon) is based 

on the same types of phonological characteristics, such as stress and 

consonant identity and position, for different word groups.  

An analysis of the parameter impact values for a word group containing 

words of all lengths and structures revealed the great importance of word 

length difference for phonological similarity, confirming the conjecture at the 

end of chapter five and consistent with the results of Shillcock et al.'s (2001, 

submitted).   

The empirically obtained parameter values (for cvcv and cvccv words) 

turned out to correlate significantly in most cases with the random-search 

results, supporting my first hypothesis. 

The hill-climbing search obtained optimal parameter configurations that 

obtained better phon-sem correlations than the empirical values, which 

supports my second hypothesis. 
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This optimal parameter configuration, which also correlates well with the 

empirical parameters, is based on few parameters with very high values, 

namely sharing the word-final stressed vowel, and sharing the word 

consonant structure.  

I proposed that while these parameters reflect the pressure for systematicity 

on the lexicon, other important parameters in the empirical configuration, 

such as the stressed vowel, reflect the opposed pressure for easy 

identification and intelligibility of words that (because of systematicity) 

sound similar and have similar cooccurrence patterns in speech.  

Finally, the parameter information obtained with the random and the hill-

climbing searches of the cvcv, cvccv and cvcvcv groups, together with 

knowledge of the empirical parameter values of the cvcv and cvccv groups 

was used to predict empirical parameter values for cvcvcv words, the 

testable prediction I anticipated in my third hypothesis. 

In all, this chapter has offered a new approach to the study of the 

phonological organisation of the lexicon that transcends phonology and 

includes other lexical dimensions such as syntax and semantics.  
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Chapter 7. Conclusion  

 

This thesis set out to explore the complex, adaptive nature of the mental 

lexicon. Using corpus-based methodologies, it has examined the internal 

phonological structure of words (chapter two), relationships of phonological 

and cooccurrence-based similarity between words (chapters three and four) 

and a higher level of organisation based on systematicity between the 

phonological and the cooccurrence-based representations of the lexicon 

(chapters five and six). In each case, the lexicon organisation was explained 

in terms of adaptations to pressures that can ultimately be related to 

language as a tool for human communication, and to the fact that language 

has to be easily acquired by successive generations of people.  

7.1 The adaptive lexicon  

In the past chapters I have quantified relationships both within and between 

words, always finding evidence that the lexicon is organised along many 

different dimensions. I have focused on patterns of lexical organisation that 

only emerge when large subsets of the lexicon are taken into account. The 

analysis of the results of chapters two to six of this thesis suggests that the 

mental lexicon is an adaptation that responds to the multiple, often 

conflicting pressures acting on it. These pressures ultimately relate to human 

communication and to the learnability of language by human infants.  

In chapter two I examined the degree of phonological information (measured 

as entropy) found in the different word segment positions. The resulting 

information profile is an emergent property of a system of words. The profile 

of the words uttered in speech showed a left-to-right decreasing information 

level that may be an adaptation to the need to segment speech - words tend 

to begin at points of high phonological information content and finish at 

redundant, more predictable points. The information profile of the word 
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types, with information evenly spread across the word length, suggested that 

it is adapted for optimal storage, to make the most of its representational 

space. The information profile of the child-directed lexicon did not show this 

adaptation, suggesting that the first words to be learned are not so tightly 

packed in terms of information, perhaps configuring a scaffolding upon 

which subsequent words are stored.  

In chapter three I presented an empirical study measuring the relative impact 

of different phonological parameters on perceived word similarity in 

Spanish. In agreement with other findings in the literature of lexical 

structure, I found, for instance, that two words sharing the initial consonant 

are perceived to be more similar than two words sharing a word-internal 

consonant. I also found evidence of an interference of morphology in the 

judgement of phonological similarity – the stressed final vowels encode 

several verb tense and person morphemes, and two words that share the 

same stressed final vowel are judged to be more similar than if they share 

any other parameter.  

In chapter four I measured similarity between words based on the words 

they cooccur with in speech. I constructed a lexicon representation using this 

measure of similarity and showed the emergence of categories such as parts 

of speech, noun-verb, feminine-masculine and semantic categories. Patterns 

of cooccurrence with closed-class words defined the word’s syntactic 

identity, while patterns of cooccurrence with determiners influenced the 

word’s gender, and patterns of cooccurrence with open-class words affected 

the word’s semantic classification. 

Chapter five tested the existence of a systematic mapping between the 

representations of the lexicon obtained in the previous two chapters - 

phonological and cooccurrence-based. Systematicity is a manifestation of the 

general nervous system tendency for structure-preserving mappings, which 

naturally leads to generalisation and inference - it provides useful links 

between concepts and words while exploiting the natural tendencies of the 
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human nervous system. I measured a small but statistically significant 

degree of systematicity between the phonological and the cooccurrence-

based levels of the lexicon. I removed most syntactic information from the 

similarity metrics on which the two representations were based in order to 

measure the systematicity between word form and word meaning. This had 

been found previously for English (Shillcock, Kirby, McDonald & Brew, 2001, 

submitted), and the present study extended the effect to Spanish, in support of 

the hypothesis that systematicity between levels of representation is a 

universal trait of language.  

In chapter six I explored the relationships between different parameters of 

phonological similarity and the ‘phon-sem’ systematicity. The results 

revealed another pressure on the lexicon, opposed to that of systematicity. In 

a purely systematic lexicon, words with similar meanings, used in similar 

contexts, would tend to sound similar. This poses a problem for 

communication: two words that sound the same are usually distinguished by 

the context, but if their contexts are also similar, they will be easily confused. 

The pressure that works to solve this problem tries to make words with 

similar meanings have different forms so they can be easily distinguished 

from each other. The methods applied in chapter six revealed that different 

parameters of phonological similarity behaved in different ways: words 

sharing the same consonant structure tended to be close together in the 

semantic space, supporting systematicity; however, words sharing the same 

stressed vowel (in the penultimate syllable) tended to be far apart in the 

semantic space, opposing systematicity. This suggests that, at least in 

Spanish, systematicity is based on the words' consonant space, while the 

stressed vowel might be serving the function of distinguishing potentially 

ambiguous words.  

The explanations in this thesis have emphasized the systematic nature of the 

lexicon. It makes no sense to speak of the information contained in one word, 

and it is irrelevant to define how the form of one word relates to its meaning 
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or how similar two words in an isolated pair are to each other. Information, 

systematicity and similarity are properties of a large set of words. I have 

focused on the relationships between words, the identity of the words 

themselves becoming irrelevant. In the complex adaptive mental lexicon, a 

change in the phonology of a single word has effects on the information 

structure of all words; its phonological similarity to the rest of the words is 

changed, and, because of the pressure for systematicity between 

phonological and syntax-semantic relationships, its syntax and semantics 

will be under pressure to change too.  

In sum, this thesis supports the view that the lexicon has evolved a robust, 

complex structure that accommodates an ever-changing balance of pressures. 

The next section briefly presents a theoretical framework of the evolution of 

the adaptive lexicon.  

7.2 An evolutionary theoretical framework for the adaptive 

lexicon  

Throughout this thesis I have stressed the idea that the lexicon is a complex 

adaptive system. One of the characteristics of a CAS is that it evolves over 

time by a mechanism of selection, through continuous adaptations to 

pressures. The two main pressures I have proposed are that the lexicon has 

to allow human communication of concepts, and that it has to be learnable 

by human infants.  

In this final section I sketch a theoretical framework to study the lexicon as 

embodying human language capacity, evolving in an environment that 

includes the human brain, human communication interactions, and the 

concepts to be communicated. 

According to Hull (1988), the essential mechanism of evolution by selection 

includes a phase of stable information that evolves over the generations 

(there has to be variation in that information); a phase of contingent 

instantiations of that information that interact with the environment; and a 
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cycle of replication of the information and development of instantiations 

whose interaction with the environment determines the differential 

replication of information. An example of selection is the natural selection of 

living organisms: the information is encoded in the genes, and it codes for 

the organism. Organisms interact with their particular environment, with the 

result that adaptive gene variants prevail over time while maladaptive ones 

die out.  

Language selection has been studied from this point of view in the past. 

Some authors proposed that the stable information is I-language or internal 

language, and pieces of E-language (external language, such as speech or 

text) are the contingent instantiations (e.g. Kirby & Hurford’s 2002 Iterated 

Learning Model). Others argued the opposite: information is found in 

speech, and it develops contingent instantiations in people’s brains, which, in 

turn, produce more speech (e.g. Croft, 2000; Mufwene, 2001). I follow the 

latter trend and propose that linguistic information (syntax, phonology) 

resides in speech. Linguistic information evolves over the generations 

through change in the proportions of the information variants (such as sound 

variants, syntactic structure variants) in the speech of a linguistic community. 

The individual mental lexicons (I-language) are the instantiations of 

linguistic information, and they interact with an environment that includes 

human brains, the concepts to be communicated and speech coming from 

other humans. 

In this framework, concepts, the contents of lexical semantics, are not part of 

the linguistic information, but rather of the environment where linguistic 

information evolves. Concepts are part of a different system with a different 

dynamics: semantic information is found in people’s brains, and speech acts 

are contingent instantiations of that information. The expressions of concepts 
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can be seen as memes1 (Dawkins, 1986) that interact with other memes, and 

that interaction determines their success to stay in the meme pool. 

Since one of the main pressures acting on the lexicon is that it has to help 

people communicate, the (linguistic) lexicon needs a way to capture the 

(semantic) concepts in its linguistic structure, that is to say, to maintain 

symbolic associations. The pressure for systematicity across representations 

may have had a role in organising the lexicon’s syntactic and phonological 

structure, and the structure of concepts around each other.  

I propose the evolutionary relationship between linguistic and semantic 

aspects of the lexicon illustrated in Figure 7.1: 
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Figure 7.1: Interactions between the evolution of linguistic (black lines) and semantic (red 
lines) aspects of the lexicon. 

Information encodes the structure of the instantiations, and each 

instantiation can only produce more of the same information that encoded it, 

or, as illustrated in Figure 7.1, ‘reflect’ the information back. In other words, 

for a given person, the linguistic input (the phonology and syntax they hear) 

equals the linguistic output (the phonology and input they use when they 

speak); for a given piece of speech, the semantic input (the meaning intended 

by the speaker) equals the semantic output (the meaning understood by the 

                                                
1 Meme: term coined by Dawkins. Memes are the units of cultural evolution, in the same 
sense as genes are the units of biological evolution. Memes include tunes, ideas, values and 
skills, and they replicate when they are learned by a new person. 
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hearer). At the linguistic level, I have been assuming this theoretical 

framework throughout the thesis, in that I have analyzed patterns of 

information in speech and assumed that they are the trigger for the 

development of language in new generations of infants. 

Variation in the linguistic pool comes from mutation (errors that ‘catch’) and 

contact between languages; variation in the population comes from the fact 

that information from different instantiations, containing different variant 

combinations, is mixed together to produce a new combination of variants in 

each new instantiation. This means that syntactic and phonological variant 

combinations from the speech of many speakers contribute to form the 

unique mental lexicon of each new speaker. Social factors such as the 

prestige of the variants and the patterns of contact between speakers of a 

language affect the differential spread of variants, and hence, language 

evolution.  

This thesis has shown systematic relationships between phonology on one 

hand and cooccurrence-based representations on the other; we have also 

seen that cooccurrence encodes for both syntax and semantics. However, the 

results presented and reviewed in chapter four suggest that syntax and 

semantics are encoded by very different cooccurrence patterns – syntax is 

best captured by small windows that take into account the exact position of 

words, semantics by much larger windows. Another difference between the 

syntactic and the semantic levels is that syntax is encoded mainly by 

language-internal relationships, whereas semantics needs to have links with 

the realm of concepts. The theoretical framework presented in Figure 7.1 

could be tested by a paradigm that considered the evolving interrelations 

between linguistic information (i.e. phonology and syntax) on one hand, and 

semantic information on the other hand. 

This framework offers an explanation to the symbiotic relationship between 

humans and language. It also attempts to explain the relationships between 

semantics and the other aspects of language, taking into account the pressure 
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for language to capture meaning so that it can help people communicate. In 

exchange, humans help language survive and replicate: when people 

communicate their ideas, the speech they produce also carries the 

information necessary to create new linguistic instantiations in human 

infants. 

7.3 Contributions and implications of this thesis 

7.3.1 Original research 

This thesis has offered support for the hypothesis that the lexicon is a 

complex structure that responds adaptively to pressures derived from its 

relationships with humans. It has presented a collection of approaches to the 

study of the mental lexicon that provide new evidence for previously 

unexplored aspects of the organisation of the mental lexicon, such as: 

•  the adaptive nature of the phonological information profile,  

•  the impact of aspects of phonology on perceived word similarity in 

Spanish,  

•  gender classification in a cooccurrence similarity space.  

This thesis also has supported other findings, mainly by presenting evidence 

from Spanish, such as 

•  syntactic categorisation in a cooccurrence similarity space,  

•  systematic relationships between phonological and cooccurrence-

based similarity between words. 

Finally, it has introduced a new paradigm for the study of the phonological 

structure of a language that takes into account the systematic relationships 

between phonological and cooccurrence-based similarity. 



 227 

7.3.2 Theoretical implications  

I have applied concepts like adaptation and complexity to the study of 

language to focus on systematic properties that only emerge when we 

consider large sets of linguistic data.  

The corpus-based approach adopted supports the statistical learning 

hypothesis by indicating that the lexicon structure is developed, among 

others, due to sensitivity to within-word (e.g. entropy) and between-word 

(e.g. phonologically-encoded morphology) phonological statistical patterns, 

and also to word cooccurrence patterns (e.g. cooccurrence-encoded syntactic 

classes). In most of the metrics employed, particularly in the cooccurrence 

statistics and in the calculation of the information profile of the word tokens, 

every utterance of each word contributed to the lexicon representation. The 

similarity-based lexicon model I have adopted means this thesis is best 

understood within an analogy-based framework (e.g. Skousen, 1995) where 

new word exemplars are processed, stored and retrieved in the form of 

phonological, contextual and other information, and this information is then 

related to analogous exemplars stored at the same levels of information, and 

also across levels, in the rest of the lexicon.  

7.3.3 Open-ended research 

This thesis was not intended to provide the last word on the mental lexicon, 

but rather has presented an overview of how a diverse collection of new 

quantitative approaches can contribute novel insights to the study of this 

vast subject.  

The explorations presented in this thesis can be extended and refined by 

using a larger corpus or several corpora of different languages or E-language 

modalities (speech, text, emails). Additionally, the results could be improved 

by tailoring the metrics of similarity and the phonological and cooccurrence 

parameters to the different tasks. For instance, patterns of cooccurrence with 

adjacent words seems to return the most accurate syntactic categorisation 
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(Mintz, 2003; Monaghan & Christiansen, 2004), whereas patterns of 

cooccurrence with the words in the same paragraph or document are best 

suited to encode words’ semantic identity (e.g. the LSA approach, Landauer 

& Dumais, 1997). Focusing on the words’ stressed vowel seems to bear on 

lexical individuation, reflecting lexical contrast; focusing on the consonant 

structure seems to reflect how words fit in with other words in the structure 

of the lexicon, reflecting lexical integration and systematicity. 

The methods presented in the thesis may also be applied to various fields 

and open new lines of research: 

Phonology 

Chapter six explores the relationship between certain aspects of word 

phonology (phonological parameters) and the systematicity between a 

phonological-similarity and a cooccurrence-similarity representation of the 

lexicon. The results presented suggest that while some of these phonological 

parameters support phon-sem systematicity, others have been recruited by 

the opposite pressure to make words that occur in similar contexts sound 

different from each other for more unambiguous recognition. In chapter six I 

presented preliminary results for an extended phonological parameter set 

applicable to words of all lengths. Different combinations of phonological 

parameters can reveal the relationships between the phon-sem systematicity 

and various aspects of phonology (from features to word-length or prosody; 

using acoustic speech representations, orthography or other representations 

of E-language). A cross-linguistic comparison of the results of such studies 

might reveal universal properties of the phonological systems with respect to 

systematicity (as well as language-specific ones).  

Syntax and semantics  

Chapter six introduced a method to quantify the impact of parameters of 

phonological similarity on the systematicity between the phonological and 

the cooccurrence similarity-based spaces, the latter including syntactic and 
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semantic information. This added an extra dimension to the description of 

the phonology of a language. Similarly, we could better describe the syntax 

and the semantics of a language by taking into account the impact of 

parameters of cooccurrence-based similarity on the phon-sem correlation. 

This could be another test for the hypothesis that certain word classes (such 

as proper names, swear-words, or certain syntactic categories) support the 

systematicity. Cross-language comparisons of such studies could, again, 

reveal universal (as well as language-specific) properties of syntax and 

semantics with respect to systematicity.  

Language acquisition  

Studies similar to the ones presented in the thesis, but based on corpora of 

child-directed and child-produced speech may provide clues to the 

sequential involvement of different pressures in the development of the 

mental lexicon. In chapter two I did compare the information profiles of 

words from an adult and a child-directed corpus, and I explained the results 

in terms of the differential impact of the pressures on the lexicon during 

language development. A psycholinguistic test to quantify the impact of 

parameters of phonological similarity carried out with children of different 

ages could help study the development of the phonological mental lexicon 

structure and of its relationships with morphology, among others. Looking at 

the levels of syntactic and semantic categorisation achieved by a 

cooccurrence space based on corpora of child-directed speech could reveal 

the sequentially incremental syntactic and semantic structure of the 

developing mental lexicon. Patterns of phon-sem systematicity found in such 

corpora again could show the time-course of pressures for systematicity and 

the opposed pressure for phonological differentiation of words occurring in 

similar contexts. 

Language change  

Change in a complex system has far-reaching consequences. The existence of 

phon-sem systematicity introduces a new level of complexity in the study of 
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the lexicon that implies that change in one domain will have an impact on 

the other. This opens the way to explorations of the effects of semantics and 

syntax on phonological change, and of phonology on semantic and syntactic 

change.  
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Glossary 

For the purposes of this thesis, these terms are defined as follows, except 

when otherwise stated. 

Complex adaptive system (CAS): An organized system of agents that 

evolves over time in order to maximize some mesure of fitness. CAS 

have emergent properties that could not be derived from the sum of 

its parts but which arise from their complexity. Organic life is a CAS 

evolving to maximize the reproducibility of organisms in a particular 

environment; other systems that have been described as CAS include 

the global economy, the stock exchange, the immune system, society, 

culture, and language.  

Content word: Also called open-class words. Defined by opposition to 

functors, content words have lexical meaning. Content words include 

nouns, verbs, adjectives and adverbs.  

Cooccurrence statistics: Corpus-based definition of a word in terms of other 

words it occurs close to in speech or text. One word is defined by how 

often the defining words (usually, high-frequency words, or function 

words) appear inside a window of a given number of words around 

(in front, after or both) the target word.  

Entropy: Entropy is a measure of the information or the uncertainty that each 

segment position in a set of words carries. The probability of each 

phoneme and allophone occurring in each segment position of a set of 

words are calculated. For probabilities (p1, p2, p3...pn), the entropy (H) 

is: H = - Σ (pi · log pi). 

Functor: Also called function words or closed class words, functors have 

very little lexical meaning, but serve to express grammatical 

relationships between other (content) words. Functors include 

prepositions pronouns, conjunctions, articles and auxiliary verbs. 
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Information profile (also information contour): Shape obtained over the 

whole word when we plot the entropy level of each word segment 

taken in isolation calculated over a set of words. 

Lexicon: the set of words in a language, together with the relationships 

between them at all levels of description: phonological, syntactic, 

semantic etc. It embodies language competence. 

Monte-Carlo analysis: Statistical analysis based on a comparison of a 

veridical result with many results obtained with random parameter 

configurations. The position of the veridical result in the distribution 

of all results is a measure of its statistical significance. 

Parameters of phonological similarity: Phonological aspects that two words 

may share. We may consider segmental parameters (e.g. both words 

having the same initial segment, both words containing segment /m/, 

both words having the same number of segments), feature-based 

parameters (e.g. both words starting by or containing a coronal 

consonant) or suprasegmental parameters (e.g. being stressed on the 

final syllable; being unstressed; having the same number of syllables). 

Redundancy: Redundancy is a measure of the predictability carried by each 

segment position in a set of words. Redundancy (R) is: R = 1 – H. 

Slope of the information profile (m): Measure of the steepness of the 

information profile linear trendline. In the trendline equation y = mx + 

n, the slope is m. 

Structure-preserving: See Systematicity. 

Systematicity: A structure-preserving relationship between structured 

representations. The structure of one representation can be inferred 

from the structure of another.  

Token: Each of the occurrences of a word type. For instance, in a given 

corpus, we can have 245 tokens of the word type ‘of’. 
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Type: Each of the different words occurring in a corpus. For instance, ‘of’ is a 

type (for which there are 245 tokens in a given corpus). 
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APPENDICES 
 

Appendix A 

Finite schemes used to calculate the information profiles by feature. Vowels 
are taken to be individual elements of the finite scheme. 

 

Manner of articulation Place of articulation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

plosive – voiced 

plosive – voiceless 

nasal – voiced 

vibrant (tap) – voiced 

vibrant (trill) – voiced 

fricative – voiced 

fricative – voiceless 

lateral – voiced 

affricate – voiceless 

approximant – voiced 

approximant – voiceless 

glide 

vowel a 

vowel e 

vowel i 

vowel o 

vowel u 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

bilabial – voiced 

bilabial – voiceless  

labiodental – voiced 

labiodental – voiceless 

interdental – voiced 

interdental – voiceless 

dental – voiced 

dental – voiceless 

alveolar – voiceless  

alveolar – voiceless 

palatal – voiced 

palatal – voiceless  

velar – voiced 

velar – voiceless 

vowel a 

vowel e 

vowel i 

vowel o 

vowel u 
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Appendix B  

The two sets of stimulus nonwords used in the empirical study described in 
chapter three. 
 

STIMULUS SET 1 
1_5_c1_c2 búnta bísko línko 
2_5_c1_c3 káste kíndo bínto 
3_5_c1_tc13 pósta púrke púrte 
4_5_c1_tc23 rásli rónte bósle 
5_5_3c_c1 kórdu kírda kósla 
6_5_c1_v1 sárke sónti pánti 
7_5_c1_v2 mínde mórka kórke 
8_5_c1_tv fínto fáste kísto 
9_5_c1_a1 kórpa kengú méngu 
10_5_c1_a2 sultó sánde pandé 
11_5_c1_av1 tárbo túnte kánte 
12_5_c1_av2 kurtá kombé sondá 
13_5_c1_str bésto búgra túnka 
14_5_c2_c3 lórdi pérku péndu 
15_5_c2_tc13 mórfa sérpo mélfo 
16_5_c2_tc23 kínte gándo gánto 
17_5_3c_c2 méska músko pústo 
18_5_c2_v1 linká bentó bistó 
19_5_c2_v2 gúsmi tésba térbi 
20_5_c2_tv pósti tésto tórti 
21_5_c2_a1 bésta tusgó túlgo 
22_5_c2_a2 tuská nósde nordé 
23_5_c2_av1 mólka gálpe góspe 
24_5_c2_av2 pustó leská lenkó 
25_5_c2_str dákme mókri mónsi 
26_5_c3_tc13 mónke díska míska 
27_5_c3_tc23 mindó saldé sandé 
28_5_3c_c3 gálti gólte pónte 
29_5_c3_v1 pórda mésdi mósti 
30_5_c3_v2 társe bínso bínde 
31_5_c3_tv ménto sárti sérmo 
32_5_c3_a1 lúmpe jospá jósta 
33_5_c3_a2 bundó tálde talpé 
34_5_c3_av1 súnta mélto múlko 
35_5_c3_av2 tonké perká perté 
36_5_c3_str bísle dáblo dángo 
37_5_tc13_tc23 lésta lónti kósti 
38_5_3c_tc13 dínke dúnko dúlke 
39_5_tc13_v1 tíngu sírka tórga 
40_5_tc13_v2 rósta bónde búste 
41_5_tc13_tv bísna búlne tílka 
42_5_tc13_a1 férna falnó páldo 
43_5_tc13_a2 jentó júlta pulká 
44_5_tc13_av1 bárke búnko gánto 
45_5_tc13_av2 rendá risdó tisbá 
46_5_tc13_str mínle máklo dárso 
47_5_3c_tc23 básme búsmo túsmo 
48_5_tc23_v1 tónse lúrde túrsa 
49_5_tc23_v2 sáldi pérbi példo 
50_5_tc23_tv túrke mórka múnze 
51_5_tc23_a1 pánte luntí lúsdi 
52_5_tc23_a2 fustó mésta melgá 
53_5_tc23_av1 méspa bíspo bérto 
54_5_tc23_av2 pulká golké gorbá 
55_5_v1_3c pónda górti péndi 
56_5_3c_v2 sínte sónta mórke 
57_5_3c_tv tárlo tírle másto 
58_5_3c_a1 púnke pinká lísma 
59_5_3c_a2 dintá dénto pergó 
60_5_3c_av1 sólfi sálfe tóske 
61_5_3c_av2 kandú kindá pirgú 
62_5_v1_v2 párti lánde lóndi 
63_5_v1_tv jélbo sénta sénto 
64_5_v1_a1 tílpa kindá kúnda 
65_5_v1_a2 pirbó tínka tenká 
66_5_v1_av2 sinká mistó mestá 
67_5_v1_str gánti mágle móske 
68_5_v2_tv málde tórne tárne 
69_5_v2_a1 sórga mendá méndi 

70_5_v2_a2 bondé tálke talkí 
71_5_v2_av1 tónde rúspe róspa 
72_5_v2_str múlde kábre kánfo 
73_5_tv_a1 góspi toldí tálde 
74_5_tv_a2 randé tárge torgú 
75_5_tv_av1 bírko timpó tímpa 
76_5_tv_av2 miské dínte danté 
77_5_tv_str kónda bótra búste 
78_5_a1_av1 pésta dúrko dérko 
79_5_a1_str mésda portí pótri 
80_5_a2_av2 kustó perká perkó 
81_5_a2_str tinká púrde pugré 
82_5_av1_str kéndo mírga mégra 
83_5_av2_str fasté turpó tublé 
84_4_c1_c2 kátu kóbe róte 
85_4_c1_v1 sípo sáne kíne 
86_4_c1_v2 máke míto Líte 
87_4_c1_tc díja dóme Dóje 
88_4_c1_tv pína pébo Tíba 
89_4_c1_a1 lóga lasé Máse 
90_4_c1_a2 pité púro Kuró 
91_4_c1_av1 dúka dóse Lúse 
92_4_c1_av2 letí lomé Bomí 
93_4_c2_v1 lóri péru Póku 
94_4_c2_v2 kábu díbe Dípu 
95_4_c2_tc tíso késa Teas 
96_4_c2_tv bóra kíre Kóna 
97_4_c2_a1 síre maró Mádo 
98_4_c2_a2 bagú rígo Risó 
99_4_c2_av1 lúko dáke Dúre 
100_4_c2_av2 daké pokí Pore 
101_4_v1_v2 súla múte Mile 
102_4_v1_tc zúki púna Zóka 
103_4_v1_tv mópi sóte Sóti 
104_4_v1_a1 kéla bedó Bído 
105_4_v1_a2 tiká piré Pore 
106_4_v1_av2 masó palé Puló 
107_4_v2_tc búse táre Báso 
108_4_v2_tv síka bóra Bíra 
109_4_v2_a1 táro buló Búle 
110_4_v2_a2 dolú séru Serí 
111_4_v2_av1 mále róse Rási 
112_4_tc_tv kúte káto Dúbe 
113_4_tc_a1 káli keló Péjo 
114_4_tc_a2 puné póna Kodá 
115_4_tc_av1 síto sáte Mile 
116_4_tc_av2 milá molé Botá 
117_4_tv_a1 néko tejó Túja 
118_4_tv_a2 kasí dári Deró 
119_4_tv_av1 ména ketá Kéto 
120_4_tv_av2 golé móke Mike 
121_4_a1_av1 séli túka Téka 
122_4_a2_av2 siró kaní Kanó 
    

STIMULUS SET 2 
1_5_c2_c1 lárde pórti Lónti 
2_5_c3_c1 méldo búsda músta 
3_5_tc13_c1 dénko dárku dárgu 
4_5_tc23_c1 fáste jísto fúlgo 
5_5_3c_c1 móste másta málka 
6_5_v1_c1 bírte mílko bálko 
7_5_v2_c1 tásli rónti tónte 
8_5_tv_c1 kólpa tógra kúgre 
9_5_a1_c1 léngo mástu lastú 
10_5_a2_c1 purdá kentí pénti 
11_5_av1_c1 sáski tánde súnde 
12_5_av2_c1 rilkó fengó rengú 
13_5_str_c1 móndi pérga mégra 
14_5_c3_c2 ménto dálti dánsi 
15_5_tc13_c2 kánde kúldo múnko 
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16_5_tc23_c2 bólda sélde sélte 
17_5_3c_c2 tínde tónda mónga 
18_5_v1_c2 fóste pórgu pásgu 
19_5_v2_c2 gúlda pónka pólke 
20_5_tv_c2 túnsa múrka mónke 
21_5_a1_c2 sórta mínke mirké 
22_5_a2_c2 tesní golbá gósba 
23_5_av1_c2 bínte dílgo dángo 
24_5_av2_c2 gandé sulté suntó 
25_5_str_c2 lágdo púsme púgre 
26_5_tc13_c3 pórdo pálde kálde 
27_5_tc23_c3 túspe góspo górpo 
28_5_3c_c3 sérgo sárga tásga 
29_5_v1_c3 pólsi kórma kérsa 
30_5_v2_c3 bángu télku télga 
31_5_tv_c3 pánde tárbe tírdo 
32_5_a1_c3 mílno kérsa kerná 
33_5_a2_c3 nordé mastú másdu 
34_5_av1_c3 jínfe tílso tálfo 
35_5_av2_c3 bunkí tesmí teská 
36_5_str_c3 tópla gúbre gúnle 
37_5_tc23_tc13 kólta gúlte kúste 
38_5_3c_tc13 kásla kósle kórle 
39_5_v1_tc13 rénko téspa rúska 
40_5_v2_tc13 másti nóldi mólte 
41_5_tv_tc13 bírno tísko básne 
42_5_a1_tc13 tálbe górti torbí 
43_5_a2_tc13 kusté milpá kílta 
44_5_av1_tc13 lírte pínko lánto 
45_5_av2_tc13 duntá noská dosté 
46_5_str_tc13 gábli púkro gúnlo 
47_5_3c_tc23 nélte nálto pálto 
48_5_v1_tc23 lórba kónte kírbe 
49_5_v2_tc23 kólde gánte gáldi 
50_5_tv_tc23 jándo bálto búndi 
51_5_a1_tc23 míska térbo teskó 
52_5_a2_tc23 kelpá bintó bílpo 
53_5_av1_tc23 dénko pésta púnka 
54_5_av2_tc23 perbó fistó firbá 
55_5_v1_3c dásli támpe dósle 
56_5_v2_3c tólga sémpa télgu 
57_5_tv_3c bálpe tánde bólpo 
58_5_a1_3c dólko társe dalké 
59_5_a2_3c lispá fontó lóspo 
60_5_av1_3c séngo bésta sangá 
61_5_av2_3c bolgó tespó bélga 
62_5_v2_v1 gálke mórpe márpi 
63_5_tv_v1 téspa méspa méspo 
64_5_a1_v1 búrpo kásde kusdé 
65_5_a2_v1 gurká lenfí lúnfi 
66_5_av2_v1 parbó jeldó jaldí 
67_5_str_v1 júldo bírta bútra 
68_5_tv_v2 lónje bósde básde 
69_5_a1_v2 dálmo pérbi perbó 
70_5_a2_v2 tulgá rinkó rínka 
71_5_av1_v2 bárte sángo singé 
72_5_str_v2 tásgu lórte lótru 

73_5_a1_tv kánde múspo maspé 
74_5_a2_tv korbé tankí tónke 
75_5_av1_tv pálte sánsi sansé 
76_5_av2_tv pargá poltá pálta 
77_5_str_tv lósti gárde gódri 
78_5_av1_a1 bálte sánko sínko 
79_5_str_a1 dárko melgá mégla 
80_5_av2_a2 kansí poldí poldé 
81_5_str_a2 tublí gátre ganté 
82_5_str_av1 tíbra mókre mírke 
83_5_str_av2 muspá kertó ketrá 
84_4_c2_c1 góbe mábi gáfi 
85_4_v1_c1 bátu lájo béjo 
86_4_v2_c1 túka méla téli 
87_4_tc_c1 túka téke tépe 
88_4_tv_c1 méso lébo míba 
89_4_a1_c1 lémo kúbi lubí 
90_4_a2_c1 korí madú kádu 
91_4_av1_c1 pábe gári póri 
92_4_av2_c1 siná delá seló 
93_4_v1_c2 dúte súra síta 
94_4_v2_c2 lábe jóne jóbi 
95_4_tc_c2 bálo béli séli 
96_4_tv_c2 dóke mópe múka 
97_4_a1_c2 míne bója boná 
98_4_a2_c2 kudí tepó tédo 
99_4_av1_c2 rúba múto mébo 
100_4_av2_c2 kabí nerí nebú 
101_4_v2_v1 téra múga mégo 
102_4_tc_v1 púka póke dúle 
103_4_tv_v1 pále káme kámo 
104_4_a1_v1 téga níbo nebó 
105_4_a2_v1 buré kotí kúti 
106_4_av2_v1 mogá lipá lopé 
107_4_tc_v2 súti sáto gáli 
108_4_tv_v2 mílo sújo síjo 
109_4_a1_v2 fóre náki naké 
110_4_a2_v2 pefó dulá dúlo 
111_4_av1_v2 sáre tálu tolé 
112_4_tv_tc jíne kíle jáno 
113_4_a1_tc náse póbi nosí 
114_4_a2_tc kepú fanó kápo 
115_4_av1_tc méja pébo mújo 
116_4_av2_tc telí madí tuló 
117_4_a1_tv gópe dúsa dosé 
118_4_a2_tv padí tojé táji 
119_4_av1_tv goté póla polé 
120_4_av2_tv betá tósa tésa 
121_4_av1_a1 múna túpe típe 
122_4_av2_a2 badé romé romí 
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Appendix C 

The 31 cvcv words stressed on the last syllable in the 324-word list (74% 
verbs, 16% nouns, 6% proper nouns, 3% adverbs) used for comparison in 
chapter four. 

 
word ps tense translation 
pasó v past it happened 
llegó v past he arrived 
quedó v past he stayed, remained 
tocó v past he touched 
llevó v past he carried 
llamó v past he called 
dejó v past he let, left 
ganó v past he won 
cayó v past it/he fell 
miró v past he looked at 
sacó v past he took out 
    
José pn  Jose (man’s name) 
chalé n  chalet 
café n  coffee 
diré v fut I will say 
pasé v past I passed 
llamé v past I called 
llegué v past I arrived 
quedé v past I stayed, remained 
    
papá n  daddy 
mamá n  mummy 
quizá adv  perhaps 
será v fut it will be 
verá v fut he will see 
dirá v fut he will say 
dará v fut he will give 
    
cogí v past I took 
metí v past I put into 
salí v past I went out 
    
menú n  menu 
Perú pn  Peru 
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Appendix D 

Examples of semantically related words captured in dendrogram clusters. 
Hierarchical clustering of vectors based on cooccurrence in the surface-form 
corpus using content words only as context words.  
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Appendix E 

Lists of ‘person nouns’ referred to in 4.2.3, in the surface-form and the 
lemmatised versions of the corpus, with their English translations.

Surface-form 

 
gente people 
hija daughter 
hijos  children 
hombre  man 
madre  mother 
mujer woman 
mujeres women 
niño child 
niños children 
padre father 
persona person 
personas people 
señor sir, man 
tío uncle 
 

 

 

 

 

 

 

 

 

 

Lemmatised 

 
abogado lawyer 
alcalde mayor 
amigo friend 
chico boy 
ciudadano citizen 
don Mr 
doña Mrs 
gente people 
hermano brother 
hijo son 
hombre man 
madre mother 
marido husband 
ministro       minister 
mujer woman 
niño boy, child 
padre father 
pareja couple 
persona person 
presidente president 
pueblo people 
rey king 
santo saint 
señor sir, man 
tío uncle 
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Appendix F 

Rankings by phon-sem correlation (measured as Fisher divergence FD; low 
values indicate high correlations) of the 252 cvcv and the 146 cvccv words 
(‘no syntax’ condition). Part of speech information also shown.

CVCV WORDS 

rank word ps FD 

1 XosE pn 0.0085 

2 fAse n 0.0103 

3 XOse pn 0.0128 

4 CalE n 0.0129 

5 ganO v 0.0129 

6 sEde n 0.0133 

7 fIla n 0.014 

8 dOze num 0.014 

9 zEro num 0.0144 

10 mitA n 0.0157 

11 pUta n 0.0158 

12 sUbe v 0.0165 

13 dAme v 0.0167 

14 sOto pn 0.0167 

15 mIre v 0.0167 

16 LEge v 0.017 

17 lUna n 0.0173 

18 fECa n 0.0174 

19 sERa pn 0.0178 

20 berA v 0.0186 

21 XAbi pn 0.0188 

22 pEpe pn 0.0189 

23 deXO v 0.0191 

24 tokO v 0.0192 

25 lUCa n 0.0194 

26 LamO v 0.0197 

27 mOdo n 0.0199 

28 LEna adj 0.0201 

29 kUya p-pr 0.021 

30 pIko n 0.021 

31 tIra v 0.0214 

32 RAma n 0.0217 

33 CIna pn 0.022 

34 ROma pn 0.0221 

35 tUbe v 0.0222 

36 kOpa n 0.0222 

37 lIga n 0.0223 

38 kUyo p-pr 0.0224 

39 lUXo n 0.0225 

40 kOXa v 0.0225 

41 mAyo pn 0.0225 

42 kOma v 0.0225 

43 LegO v 0.0226 

44 bEso n 0.0226 

45 bOto n 0.0227 

46 tOke v 0.0228 

47 mAri pn 0.0228 

48 lObo n 0.023 

49 lAdo n 0.0234 

50 nOCe n 0.0234 

51 dirE v 0.0234 

52 sUya p-pr 0.0234 

53 ROka n 0.0236 

54 zIne n 0.0237 

55 tIro n 0.0239 

56 bIbe v 0.0241 

57 tORe n 0.0241 

58 bANo n 0.0242 

59 pAgo v 0.0243 

60 WEko n 0.0244 

61 dAma n 0.0245 

62 bAle  0.0245 

63 zIta n 0.0246 

64 pIde v 0.0247 

65 mAsa n 0.0247 

66 XEfe n 0.0247 

67 lOli pn 0.0251 

68 dANo n 0.0253 

69 dAto n 0.0254 

70 kUlo n 0.0255 

71 nINa n 0.0256 

72 dIme v 0.0256 

73 dUra adj 0.0257 

74 kOno  0.0257 

75 bAse n 0.0257 

76 LEbe v 0.0257 

77 mUCa adj 0.0257 

78 kIlo n 0.0261 

79 bIbo v 0.0263 

80 LEno adj 0.0263 

81 sIge v 0.0264 

82 bALe n 0.0264 

83 kayO v 0.0266 

84 pAse v 0.0267 

85 kAsi adv 0.027 

86 pUso v 0.0271 

87 RIsa n 0.0272 

88 LebO v 0.0272 

89 CIka n 0.0273 

90 bIda n 0.0274 

91 fOto n 0.0274 

92 YElo n 0.0275 

93 menU n 0.0275 

94 tIpo n 0.0277 

95 tUya p-pr 0.0279 

96 kafE n 0.0279 

97 bEte v 0.0282 

98 gERa n 0.0283 

99 pEso n 0.0283 

100 ROLo n 0.0283 

101 bEra pn 0.0284 

102 bAXo v 0.0285 

103 kAda adj 0.0288 

104 kAbo n 0.0288 

105 gAto n 0.0289 

106 kedO v 0.0289 

107 sAka v 0.0292 

108 tEla n 0.0293 

109 mEsa n 0.0294 

110 papA n 0.0295 

111 pEga v 0.0297 

112 mOda n 0.0297 

113 tOda i-pr 0.0298 

114 kAro adj 0.0298 

115 tOno n 0.0299 

116 kALe n 0.0299 

117 kUra n 0.03 

118 LEba v 0.0302 

119 zOna n 0.0302 

120 RIko adj 0.0303 

121 tApa n 0.0303 

122 mUCo adv 0.0304 

123 RIka adj 0.0305 

124 dUro adj 0.0306 

125 bIno v 0.0307 

126 sEko adj 0.0309 

127 sILa n 0.0309 
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128 koXI v 0.031 

129 tUbo n 0.031 

130 mamA n 0.0312 

131 mEte v 0.0313 

132 RAto n 0.0315 

133 nINo n 0.0315 

134 kizA adv 0.0316 

135 tEma n 0.0318 

136 serA v 0.0318 

137 tEle n 0.0319 

138 sIgo v 0.0319 

139 pOne v 0.0319 

140 dIXe v 0.0324 

141 tUyo p-pr 0.0324 

142 CIko n 0.0329 

143 LEbo v 0.033 

144 sAko v 0.0331 

145 mOto n 0.0332 

146 pOka adj 0.0332 

147 tEre pn 0.0336 

148 sAle v 0.0339 

149 sUyo p-pr 0.034 

150 lECe n 0.0342 

151 LEga v 0.0344 

152 mIsa n 0.0344 

153 kALa v 0.0344 

154 pAga v 0.0345 

155 pIso n 0.0345 

156 dEbo v 0.0347 

157 sEpa v 0.0348 

158 bAXa v 0.0348 

159 mAlo adj 0.0349 

160 ROpa n 0.0349 

161 dIga v 0.0349 

162 dIze v 0.035 

163 kONo n 0.035 

164 pAro v 0.035 

165 pIdo v 0.0352 

166 sAla n 0.0353 

167 gAna v 0.0353 

168 kApa n 0.0353 

169 zEna n 0.0354 

170 RAfa pn 0.0354 

171 mIra v 0.0354 

172 bOka n 0.0355 

173 pEna n 0.0356 

174 dIXo v 0.0356 

175 sIga v 0.0357 

176 dICo v 0.036 

177 dEbe v 0.0361 

178 dAba v 0.0361 

179 pERo f 0.0362 

180 sIda n 0.0362 

181 pasO v 0.0363 

182 RAro adj 0.0363 

183 dEXo v 0.0363 

184 dIgo v 0.0364 

185 lOka adj 0.0364 

186 mAta v 0.0365 

187 kEso n 0.0369 

188 kOla n 0.0371 

189 sAbe v 0.0372 

190 dEXe v 0.0372 

191 pAko pn 0.0372 

192 kAXa n 0.0372 

193 mAXa adj 0.0373 

194 mOno n 0.0374 

195 ROto adj 0.0377 

196 dONa n 0.0378 

197 dUda v 0.0379 

198 kOXe v 0.038 

199 kOko n 0.038 

200 tOdo i-pr 0.038 

201 fALa v 0.0382 

202 LAma v 0.0383 

203 sIdo v 0.0384 

204 lOko adj 0.0384 

205 kOCe n 0.0384 

206 mAno n 0.0386 

207 sOla adj 0.039 

208 kEda v 0.039 

209 bAya v 0.039 

210 mACo n 0.039 

211 pOko adv 0.0391 

212 kEdo v 0.0391 

213 LAmo v 0.0392 

214 ROsa adj 0.0394 

215 lAta n 0.0395 

216 bOda n 0.0396 

217 dAdo v 0.0397 

218 kOXo v 0.0398 

219 tOma v 0.04 

220 mAla adj 0.0401 

221 pAlo n 0.0401 

222 pUro adj 0.0402 

223 kOme v 0.0402 

224 ROXa adj 0.0407 

225 ROXo adj 0.0409 

226 pAso v 0.0413 

227 mEto v 0.0415 

228 kAma v 0.0416 

229 YERo n 0.0421 

230 kAza v 0.0422 

231 pAra f 0.0423 

232 dEXa v 0.0424 

233 pUra adj 0.0426 

234 kIta v 0.0427 

235 pElo n 0.0429 

236 kOsa n 0.043 

237 pUdo v 0.0433 

238 kAsa n 0.0438 

239 sIno f 0.0442 

240 kEde v 0.0444 

241 nOta n 0.0452 

242 LEgo v 0.0453 

243 tOka v 0.0454 

244 fALo n 0.0458 

245 nAda i-pr 0.046 

246 kAso n 0.0472 

247 kAbe v 0.0474 

248 pAsa v 0.0493 

249 pEro n 0.0501 

250 sOlo f 0.0517 

251 kAra n 0.0522 

252 kOmo i-pr 0.0529 

    

CVCCV WORDS 

rank word ps FD 

117 moskU pn 0.0084 

105 REnfe pn 0.0103 

24 kInze num 0.0111 

93 lInze n 0.0112 

43 gOlfo n 0.0115 

114 XOrdi pn 0.0116 

7 zIvko num 0.0118 

90 tOrno n 0.0123 

72 zIfra n 0.0126 

69 sIgno n 0.0129 

120 bAsko adj 0.0134 

143 dUlze adj 0.0135 

145 RItmo n 0.0137 

36 madrI pn 0.0148 

132 karnE n 0.0152 

119 pArla pn 0.0152 

99 bOlsa n 0.0155 

33 sIglo n 0.0158 

127 REkta n 0.0159 

2 dEsde f 0.0164 

26 bIsta n 0.0164 

134 kOnCa pn 0.0168 
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68 pAblo pn 0.0172 

128 pensE v 0.0175 

144 sUsto n 0.0179 

131 XEsto n 0.0183 

123 pOlbo n 0.0187 

95 dIsko n 0.0192 

133 sObra n 0.0192 

100 gOrdo adj 0.0193 

4 sObre f 0.0195 

110 kArgo n 0.0195 

96 bOmba n 0.0197 

31 zErka adv 0.0197 

23 pAdre n 0.0198 

42 kUrso n 0.0203 

6 pArte n 0.0206 

113 pUnta n 0.0206 

18 mAdre n 0.0212 

115 tUrno n 0.0214 

122 gustO n 0.0214 

130 pOnte v 0.0214 

92 mEnte n 0.0216 

20 tArde n 0.0216 

63 bErbo n 0.0216 

59 XUnto adj 0.0217 

102 fIvka n 0.0218 

80 kOsta n 0.0219 

111 kostO v 0.022 

81 REnta n 0.0222 

37 REsto n 0.0223 

73 bUska v 0.0224 

64 gOlpe n 0.0225 

118 nEgra adj 0.0226 

45 mArCa n 0.0228 

53 dArle v 0.023 

29 lArgo adj 0.023 

89 bAnda n 0.023 

125 bErla v 0.0232 

11 mUndo n 0.0232 

15 bEvga v 0.0232 

40 nOrte n 0.0232 

146 kontO v 0.0235 

104 nOrma n 0.0236 

60 lIbre adj 0.0236 

32 pEdro pn 0.024 

129 XOrXe pn 0.024 

75 pIsta n 0.024 

84 sAnto n 0.0241 

94 dArse v 0.0244 

71 bErde adj 0.0244 

49 mArta pn 0.0245 

54 sAnta n 0.0246 

83 sAlga v 0.0251 

142 gOrda adj 0.0251 

52 XUnta n 0.0254 

108 bEnde v 0.0255 

67 kOrte n 0.0258 

112 CIste n 0.0262 

126 pAkto n 0.0263 

76 mArko n 0.0263 

56 pObre adj 0.0267 

12 fOrma n 0.0267 

106 sEkso n 0.0268 

121 kAsko n 0.0268 

25 tEvga v 0.027 

91 pAlma n 0.0272 

19 gUsta v 0.0273 

136 lIsto adj 0.0273 

57 dOble n 0.0273 

5 tEvgo v 0.0276 

3 dOnde i-pr 0.0276 

51 mEtro n 0.0276 

141 ROmpe v 0.0276 

77 bEvgo v 0.0277 

50 gUsto v 0.028 

140 lEtra n 0.0281 

70 zInta n 0.0284 

61 podrA v 0.0285 

35 pOvgo v 0.0286 

85 bErlo v 0.0289 

88 kOrta v 0.0289 

138 kInta adj 0.0292 

116 mAndo v 0.0295 

62 nEgro adj 0.0295 

97 mAnCa n 0.0296 

30 fOndo n 0.0296 

79 kInto adj 0.0308 

22 mIsma i-pr 0.0311 

82 porkE f 0.0312 

17 fAlta v 0.0312 

86 sAlbo adv 0.0315 

9 mIsmo i-pr 0.0315 

109 tArda v 0.0316 

139 kArga n 0.0317 

78 kOrto adj 0.0317 

8 XEnte n 0.0321 

21 berdA n 0.0321 

13 pUnto n 0.0323 

46 bEnta n 0.0324 

65 lArga adj 0.0325 

107 kAlma n 0.0325 

28 kAmpo n 0.0326 

103 tOnto adj 0.0328 

34 bArko n 0.0329 

16 nUvka adv 0.0329 

101 mAnda v 0.033 

41 sIrbe v 0.0341 

66 kUlpa n 0.0345 

135 sErlo v 0.0347 

27 lIbro n 0.0348 

58 kArne n 0.0349 

48 lIsta adj 0.0355 

98 bAvko n 0.0356 

47 tAnta adj 0.0357 

87 pInta n 0.0357 

39 dAndo v 0.0357 

38 kArta n 0.0363 

74 pOvga v 0.0377 

44 XUsto adv 0.0383 

1 pOrke f 0.0389 

55 mArka n 0.039 

124 kAnta v 0.042 

137 bAsta v 0.0439 

14 bIsto v 0.0452 

10 tAnto adv 0.0463 
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Appendix G 

A measure of the prediction power of all the regression functions in the cvcv 
word-group parameters. Numerical values and plots shown for the 'syntax'  
condition (this page) and the 'no syntax' condition (next page). 

'Syntax' condition: 

 
r2 c1 c2 tc v1 v2 tv s1 s2 sv1 sv2 

lin 0.713 0.698 0.679 0.809 0.753 0.733 0.706 0.672 0.808 0.689 

log 0.74 0.73 0.719 0.787 0.755 0.742 0.736 0.714 0.786 0.731 

inv 0.749 0.754 0.777 0.653 0.687 0.697 0.754 0.78 0.657 0.792 

qua 0.755 0.754 0.762 0.817 0.756 0.743 0.755 0.759 0.815 0.774 

cub 0.758 0.759 0.773 0.82 0.756 0.743 0.76 0.777 0.818 0.79 

com 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887 

pow 0.878 0.874 0.887 0.842 0.857 0.855 0.875 0.897 0.854 0.891 

S 0.843 0.827 0.823 0.899 0.858 0.859 0.831 0.829 0.905 0.822 

gro 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887 

exp 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887 

lgs 0.863 0.864 0.881 0.799 0.831 0.828 0.863 0.892 0.811 0.887 
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'No syntax' condition: 

 
r2 c1 c2 tc v1 v2 tv 

lin 0.698 0.68 0.657 0.795 0.822 0.727 

log 0.734 0.728 0.723 0.781 0.779 0.753 

inv 0.748 0.772 0.826 0.679 0.636 0.747 

qua 0.752 0.76 0.787 0.795 0.848 0.761 

cub 0.755 0.771 0.835 0.807 0.85 0.762 

com 0.827 0.835 0.878 0.771 0.743 0.814 

pow 0.834 0.835 0.861 0.811 0.797 0.832 

S 0.785 0.77 0.754 0.842 0.855 0.805 

gro 0.827 0.835 0.878 0.771 0.743 0.814 

exp 0.827 0.835 0.878 0.771 0.743 0.814 

lgs 0.827 0.835 0.878 0.771 0.743 0.814 
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Abstract

This paper focuses on the optimum use of
representational space by words in speech and in the
mental lexicon. In order to do this we draw the concept
of entropy from information theory and use it to plot the
information contour of words. We compare different
representations of Spanish speech: a citation vs. a fast-
speech transcription of a speech corpus and a dictionary
lexicon vs. a speech lexicon. We also compare the
information profiles yielded by the speech corpus vs. that
of the speech lexicon in order to contrast the
representation of words over two representational spaces:
time and storage space in the brain. Finally we discuss
the implications for the mental lexicon and interpret the
analyses we present as evidence for a version of
Butterworth’s (1983) Full Listing Hypothesis.

Introduction
In this paper we focus on the optimum use of
representational space by words over time (the
sequence of sounds in speech) and over space (the
storage site of the mental lexicon in the brain). We draw
the concept of entropy from information theory and
propose that it can be used to study the information
structure of the set of words uttered in speech and of
those stored in the mental lexicon in the face of the
constraints of communication and of storage,
respectively, in a potentially noisy medium.

We have two representational spaces for words: time
and storage space. Further, we will consider the
phonology and morphology of word systems. Our data
sets are phonetic representations of words, and recent
research demonstrates that information on the
probabilistic distribution of phonemes in words is used
in language processing (see Frisch, Large & Pisoni,
2000 for review).  Morphology is involved in this
research because we will be comparing groups of words
with different inflectional and derivational features. We
will initially assume the Full Listing Hypothesis

(Butterworth, 1983): every word-form, including
inflected and derived forms, is explicitly listed in the
mental lexicon.

Shillcock, Hicks, Cairns, Chater and Levy (1995)
suggest the general principle of the presentation of
information in the brain that information should be
spread as evenly as possible over time or over the
representational space. Therefore, if the entropy of the
mental lexicon is to be maximized so that the storage
over a limited space is most efficient, then all the
phonemes will tend to occur as evenly as possible in
each segment position of the word. The phonology of
each individual word, because it will have an effect on
the entropy of the system, affects whether it is likely to
become part of the mental lexicon.

Shillcock et al. stated that “ the optimum contour
across the phonological information in a spoken word is
flat; fast-speech processes cause the information
contour to become more level” . We generalize this
notion and propose the Levelling Effect of Realistic
Representations (LERR): processes that make the
representation of words more accurate will flatten the
information profiles.

In order to test this, we will use Spanish word
systems to calculate the slope and overall level of
entropy of a citation (idealized pronunciation of the
word in isolation) transcription and of a fast-speech
(more realistic) transcription and of a dictionary lexicon
and the speech lexicon. Our prediction is that the
second system in each comparison should yield flatter
information contours. We also compare a representation
of words over time and another one over storage space -
a speech corpus and the speech lexicon.

Entropy
We will use the concept of entropy in the context of
information theory (Shannon, 1948), also employed in
speech recognition studies (e.g. Yannakoudakis &
Hutton, 1992). Entropy H is defined for a finite scheme



(i.e., a set of events such that one and only one must
occur in each instance, together with the probability of
them occurring) as a reasonable measure of the
uncertainty or the information that each instance
carries. E.g. the finite scheme formed by the possible
outcomes when throwing a dice has maximum entropy:
each side of the dice has 1/6 probability of occurring
and it is very difficult to predict what the outcome will
be. A loaded dice, on the other hand, has an unequal
probability distribution, and the outcome is less
uncertain. In this research, the possible events are the
phonemes and allophones, and for each word only one
of them can occur at each segment position.

For probabilities (p1, p2, p3...pn):
H = - Σ (pi · log pi)

The relative entropy Hrel is the measured entropy
divided by the maximum entropy Hmax, which is the
entropy when the probabilities of each event occurring
are equal and the uncertainty is maximized. Using Hrel

allows us to compare entropies from systems with a
different number of events (in this case, a system with
30 phonemes with another one with 50).

Hmax  = log n
Hrel = H / Hmax

Redundancy R is a measure of the constraints on the
choices. When redundancy is high, the system is highly
organized, and more predictable, i.e. some choices are
more likely than others, as in the case of the loaded
dice.

R = 1 - Hrel

In order to obtain the information profiles of words
(see Figure 1), the entropy was calculated separately for
each segment position in a set of left-justified words of
equal length, i.e., for the first phoneme in the words, the
second phoneme etc.

Figure 1: Information profile of 7-segment words from
the citation transcription of the speech corpus.

The information profile of the word was measured as
the linear trendline of these individual segment
entropies. The slope (m) (multiplied by (-1)) of these
trendlines and the mean relative entropy for each word
length are shown in the figures below. E.g. In Figure 1,

(-m)=0.0256. The flatness of the slope refers literally to
how horizontal the trendline is.

Transcriptions
We have restricted ourselves to phonemic
representations of word and will not report data
concerning the distributions of phonemic features. We
have used citation transcription rules (the idealised
pronunciation of the isolated word) and fast-speech
rules (an attempt to represent normal speech more
realistically). Both citation and fast-speech rules were
applied uniformly to the whole data sets. For the
citation transcription we used 29 phonemes including 5
stressed vowels; for the fast-speech transcription we
used 50 phonemes and allophones:

Citation transcription: Vowels: /a/, /e/, /i/, /o/, /u/, /á/,
/é/, /í/, /ó/, /ú/. Consonants: /p/, /b/, /t/, /d/, /k/, /g/, /m/,
/n/, /� /, / � /, /r/, /f/, / � /, /s/, /� /, / � /, /l/, / � /, / � � /.

Fast-speech transcription: The above plus semivowel
/i/, /u/, voiced approximants /� /, / 	 /, / 
 /, voiceless
approximants /� /, / � /, / 
 /, labiodental /m/, dental /n/ and
/l/, palatalised /n/ and /l/, velarized /n/, /z/, dental voiced
/s/, dental /s/, fricative / � /, voiced / � / and a silenced
consonant / ��� . The transcription was made following
the rules for consonant interactions, such as feature
assimilation, set out by Rios Mestre (1999, chapter 5).
Diphthongs were treated as two separate segments, as is
usual in Spanish. Rules to mark stressed vowels were
applied to all but monosyllabic words without an
orthographic accent. For the corpus, the whole text was
used, including repetitions and false starts of words.
After deleting all the tags, the corpus was divided into
chunks separated by pauses (change of speaker, comma,
full stop, or pause marked in the transcription). The
resulting text was transcribed automatically word by
word (orthographic forms being replaced by phonetic
forms) and then word boundary effects were introduced
within the chunks, following the same rules as for the
intra-word transcription.

Data
We used these three sets of data:

The speech corpus: a 707,000 word Spanish speech
corpus, including repetitions and unfinished words.
This corpus was developed by Marcos Marín of the
Universidad Autonoma de Madrid in 1992 and contains
transcribed speech from a wide range of registers and
fields, from everyday conversation to academic talks
and political speeches.

The dictionary lexicon: a 28,000 word Spanish word
lexicon (the Spanish headword list of the Harrap
Compact Spanish Dictionary, excluding abbreviations).
This list does not include inflections, but approximately
40% of the words are derived words (we take the
infinitive of verbs and the simple form of the noun as

� � � � � � � � � � � � � � �
� �  ! � ! " # $ % & ! � ' ( ) *

! � #
! � $
! � +
! � '
! � (
*

* "-, ) #-$ +� . / 01. � � � � � � � � � �



the basic forms). This word system could represent a
mental lexicon where that only word stems are listed
and where inflected words are assembled during speech
production.

The speech lexicon: the 42,000 word types found in
the corpus. Some 80% of these types were derived and
inflected words. We take this word system to be the
most realistic representation of the mental lexicon,
assuming Butterworth (1983)’s Full Listing Hypothesis,
where all the wordforms are individually represented in
the mental lexicon.

The dictionary lexicon and the speech lexicon share
only ~30% of the words. The remaining ~70% of the
words in the dictionary lexicon are mostly low
frequency words which do not appear in our sample of
speech. The new ~70% in the speech lexicon are verbal
inflections (~35%), plurals and feminine inflections
(~25%), some derived words absent from the dictionary
lexicon (~4%), unfinished or mispronounced words
(~4%) and proper nouns (~2%).

From these data, we used 4, 5, 6 and 7-segment
transcriptions. Words were separated by length in order
to see a clearer picture of the information profiles,
especially as far as the word-ending contribution is
concerned. Considering that the information profiles of
Spanish words follows the same pattern as those of
English words as seen in Shillcock et al. (1995), we can
extend research in English to Spanish words. In
English, word recognition typically occurs before the
end of the word is uttered (Marslen-Wilson & Tyler,
1980), and information about word-length is typically
available once the nucleus is being processed
(Grosjean, 1985). It is, therefore, legitimate to assume
that recognition processes are restricting their activities
to the subset of words in the lexicon that match the
word being uttered both in terms of initial segments and
approximate overall length. The particular word lengths
were chosen because the structure of shorter words is
simpler, and the effects are less likely to be obscured by
greater variation in the internal structure of each word-
length group. These word lengths are equidistant from
the modes of the word-length distribution of the three
data sets (lexicon: mode = 8, speech lexicon: mode = 7
and speech corpus: modes = 2, 4 – the mode of the
normal distribution is 4, but the proportion of 2-
segment words is even higher, accounting for 32% of
all tokens). The sum of these four word lengths
accounts for 41% of the dictionary lexicon, 45% of the
speech lexicon and 37% of the speech corpus.

The effect of the transcription
Shillcock et al. (1995) showed that fast-speech
processes cause the information contour to become
more level for English, German, Welsh, Irish and
Portuguese. Here we compare the slope of the
information profiles of 4-7 segment words from the

corpus transcribed with citation rules and with fast-
speech rules.

As predicted by the LERR principle, Figure 2
confirms that this is also the case for Spanish. The
information profile is consistently flatter for the more
realistic fast-speech transcriptions in all word lengths.
Note that in the figure, a higher value of (–m) indicates

a steeper profile.

Figure 2: Slopes of the information profiles of the
citation and the fast-speech transcriptions applied to the

corpus, over the four word lengths.

Figure 3: Mean relative entropy of the citation and fast-
speech transcriptions over the four word lengths.

Figure 3 shows how the overall entropy is lower for
the fast-speech transcription: when we introduce the
allophones and the assimilation rules, the system
becomes more redundant and thus, more predictable.
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The Speech Lexicon
Some current models of lexical access propose two
parallel word recognition routes, a whole-word route
and a morpheme-based one (e.g. Wurm (1997) for
English; Colé, Segui & Taft (1997) for French; Laine,
Vainio & Hyona (1999) for Finnish). Following this
hypothesis, the full forms of words need to be stored in
the mental lexicon (cf. Butterworth, 1983). It is
relevant, then, to study the behaviour of the set of all
word types, including derived and inflected words, that
appear in speech: the speech lexicon.

We have seen that fast-speech transcriptions yield
flatter information contours than citation transcriptions,
so we will use the fast-speech transcriptions of the
speech lexicon, the lexicon and the corpus.

Comparing the slopes of the information profiles of
the speech lexicon on the one hand and the dictionary
lexicon and the corpus on the other hand will help
characterize the active mental lexicon.

Speech lexicon vs. dictionary lexicon
The speech lexicon contains inflected and derived
forms, and does not contain the more obscure words
that can be found in the dictionary. The LERR principle
that data that are closer to real speech should produce
flatter information contours is confirmed in Figure 4,
where we see that the values of the slope of the
information profile of the speech lexicon are lower than
those of the dictionary lexicon.

Figure 4: Slopes of the information profiles of the
dictionary lexicon and the speech lexicon over the four

word lengths.

Figure 5 shows that the overall entropy level is higher
for the speech lexicon. This means that the speech
lexicon is less redundant than the dictionary lexicon.
The representational space is now a limited amount of
memory storage space in the brain, and for maximal
efficiency redundancy has to be reduced as much as

possible. The results from both the slopes and the
entropy levels support the Full Listing Hypothesis that
all wordforms, particularly inflected forms, are listed in
the mental lexicon – the system that includes all
wordforms (the speech lexicon) could be stored more
efficiently over a limited representational space.

Figure 5: Mean relative entropy of the dictionary
lexicon and the speech lexicon over the four word

lengths.

Speech lexicon vs. corpus
The fact that entropy and redundancy statistics obtained
from a lexicon are different from those obtained from a
corpus has been noted by Yannakoudakis and
Angelidakis (1988). Here we are comparing the word
tokens with the word types in a speech corpus. Figures
6 and 7 show that the speech lexicon has consistently
flatter slopes and higher entropy levels than the corpus.

Figure 6: Slopes of the information profiles of the
corpus and the speech lexicon across the four word

lengths.
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We are comparing two representational spaces:
words in the brain are constrained by a limited space
and words uttered over time are constrained by the
efficiency of communication. We saw in the last section
that the flat slopes and high entropy levels of the speech
lexicon information profiles are best suited to enhance
storage efficiency. Slopes in the corpus are relatively
flat, but still steeper than those of the speech lexicon.
This may reflect the fact that there are other factors
affecting the information contour of words in speech,
such the need to encode cues to lexical segmentation
(signals that indicate where words begin and end).
These other factors may be interacting with the
optimization of communication.

Figure 7: Mean relative entropy of the corpus and the
speech lexicon across the four word lengths.

The corpus presents lower entropy levels than the
speech lexicon. Speech over time is not constrained by
space limitations, but rather by the need to
communicate efficiently. The higher redundancy means
that this system reduces the uncertainty and is indeed
better for communication.

Discussion
The present study points in the direction of the LERR
principle that the more realistic data - the fast-speech
transcription and the speech lexicon - produce flatter
information profiles.

The flatter profile of the fast-speech transcription can
be partly explained in terms of the Markedness
Ordering Principle (Shillcock et al., 1995) that when
consonant interactions introduce phonological
ambiguity, the ambiguity introduced is always in the
direction of a less frequent phoneme. As for the
comparison between lexicons, let us remember that the
70% of words in the speech lexicon that do not appear
in the dictionary lexicon are mostly inflected words,

and the 70% of words in the dictionary lexicon not
present in the speech lexicon are mainly low-frequency
words. The flatter profile of the speech lexicon is due to
the fact that the inflected words (which are derived
from one third of the dictionary lexicon words) yield a
flatter profile than the low-frequency dominated group.
This suggests that inflected words are included in the
mental lexicon, and so it supports the Full Listing
Hypothesis.

Additionally, the overall level of entropy and
redundancy gives us an insight into the degree of
complexity of a system. Highly organized systems will
show low entropy and high redundancy. Fast-speech
rules make the system more redundant than the citation
rules. This higher predictability helps to deal with the
loss of information produced by noise and thus enhance
communication. The speech lexicon is less redundant
than the dictionary lexicon. Here again, the higher
entropy must be attributable to the fact that the
phonemes in inflected forms are more evenly
distributed over the phonological space than the more
obscure words present in the dictionary lexicon.

The comparison between the corpus and the speech
lexicon shows the features of the representation that has
evolved to enhance communication and storage,
respectively.  Both systems are “realistic” , and indeed
both show relatively flat information contours, but more
so the speech lexicon, suggesting that communication
has other constraints that interact with this measure,
such as word-boundary recognition. This is true
particularly for shorter words. The fact that the corpus
is markedly more redundant than the speech lexicon is
only to be expected, since it reflects the added
complexity of different word-frequencies.

In conclusion, we have shown that it is possible to
use psychological theories of the mental lexicon and
spoken word recognition to make testable predictions
concerning distributional information in large samples
of language, and, conversely, that data from
information distribution may potentially falsify
particular aspects of those psychological theories. Our
current conclusions from the analyses of Spanish favour
versions of Butterworth's original Full Listing
Hypothesis, in which all the wordforms encountered in
speech are individually stored.
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