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Abstract. We suggest that the primary motivation for an agent to con-
struct a symbol-meaning mapping is to solve a task. The meaning space
of an agent should be derived from the tasks that it faces during the
course of its lifetime. We outline a process in which agents learn to
solve multiple tasks and extract a store of “cumulative knowledge” that
helps them to solve each new task more quickly and accurately. This
cumulative knowledge then forms the ontology or meaning space of the
agent. We suggest that by grounding symbols to this extracted cumu-
lative knowledge agents can gain a further performance benefit because
they can guide each others’ learning process. In this version of the symbol
grounding problem meanings cannot be directly communicated because
they are internal to the agents, and they will be different for each agent.
Also, the meanings may not correspond directly to objects in the envi-
ronment. The communication process can also allow a symbol meaning
mapping that is dynamic. We posit that these properties make this ver-
sion of the symbol grounding problem realistic and natural. Finally, we
discuss how symbols could be grounded to cumulative knowledge via a
situation where a teacher selects tasks for a student to perform.

1 Introduction

Where do meanings come from? This is one of the most important questions
underlying the study of cognition, language, and artificial intelligence. In the
field of artificial intelligence, the intellectual history of this problem traces back
to the earliest speculations on the nature of intelligence 3. Alan Turing, in the
conclusion to his classic article which introduced the Turing test, suggested that
there might be at least two routes to building intelligent machines: attempting
very abstract activities like playing chess, or outfitting a computer with sensory
devices and then attempting to teach it natural language [1]. In subsequent years
the purely symbolic approach gained dominance, partly due to the comparative
ease of building purely symbolic systems, and partly due to the influence of the

3 It should be pointed out that this question has a much longer history in philosophy.
See, e.g., [2] for a review.



Physical Symbol System Hypothesis of Newell and Simon [3], which says that a
set of symbols, combined with appropriate rules for their manipulation (essen-
tially, a formal system), is sufficient for general intelligent action. The implicit
assumption underlying this view is that intelligent behavior from a machine does
not require that the machine “understand” things in the same way as we do.

In response, Searle argued, using his famous Chinese Room Argument, that
there is a distinction between intelligent behavior and true intelligence [4]. A
person could undertake the Turing test in a language unknown to him (say,
Mandarin), if he possessed an appropriate program. This program would be
a set of rules for manipulating symbols in Mandarin, which he would use to
transform questions into answers, and thereby pass the Turing test (if the rules
are good enough). Since the person does not know Mandarin, the symbols have
no meaning for him, though it would appear so to the observer. Intuitively, it
seems, a machine using this program would not be truly intelligent.

In an attempt to bridge this gap between a symbolic system and a truly
intelligent system, Harnad formulated the symbol grounding problem. In his
words, the problem is thus, “How can the semantic interpretation of a formal
symbol system be made intrinsic to the system, rather than just parasitic on
the meanings in our heads?” [5]. Though this problem arose in the context of
the limitations of purely symbolic systems in cognitive modeling, it was realized
to be of fundamental importance in the study of language evolution and the
design of artificial languages. Symbol grounding, in this context, concerns the
problem of relating the conceptualizations underlying a linguistic utterance to
the external world through an agent’s sensori-motor apparatus [6].

Harnad suggested that the symbol grounding problem could be solved by
building a hybrid symbolic-nonsymbolic system in which symbolic representa-
tions are grounded bottom-up in non-symbolic representations which are ei-
ther iconic or categorical. Iconic representations correspond directly to objects
and events, and categorical representations are based on generalizations from
iconic representations (i.e. concepts such as “animal”, which do not have direct
real-world analogs). This highlights one very important aspect of the symbol-
grounding problem: it is concerned with ontology construction. However it ig-
nores another, equally important, aspect: a symbol is a convention between two
(or more) agents. Thus it makes no sense for a single agent to try to ground
symbols. Further, ontology construction and the construction of a correspond-
ing symbolic system (i.e. lexicon acquisition) are inter-dependent. A new symbol
might be created for a new ontological category. Conversely, a new ontological
category may be created in response to the use of a symbol by another agent.

This interdependence between symbols and meanings has been understood
and incorporated in subsequent work on lexicon acquisition and symbol ground-
ing, most clearly in the well-known series of Talking Heads experiments. See [7]
for a review of these and other experiments based on language games. The main
issue we have with these experiments is that they consider the development of
a shared lexicon to be the primary task in which the agents are engaged. Thus,
in these experiments, meanings are created primarily through the process of the



language game. The argument of this paper, however, is that meanings should
be derived from the tasks that a cognitive agent is faced with in the course of its
lifetime. Otherwise they will have no relevance to the agent. In other words, the
agent will have the means but not the need to communicate. In what follows, we
outline a method for combining the processes of solving multiple problems, and
developing a grounded symbolic communication system to aid problem-solving.

We first discuss the process of ontology construction, and how an ontology
might be extracted from the process of learning to solve multiple related prob-
lems. We call this process cumulative learning, because the knowledge extracted
from the tasks accumulates over time. Since each agent extracts its own cumu-
lative knowledge, these meanings are entirely internal to the agent. We then
discuss how it might be possible to ground symbols to this cumulative knowl-
edge, followed by a discussion of some of the consequences of this process. In
the concluding section, we discuss some of the advantages and limitations of our
approach, and possible future work.

2 Ontology Construction

An ontology determines the domain of discourse, i.e. what a language talks
about. From the point of view of an agent, these are the entities that are relevant
to the problems or tasks with which it is confronted. The ontology of an agent
in a mushroom world, e.g., might contain types of mushrooms, features (such
as color, size, and shape) by which these might be distinguished, etc. It might
also contain more abstract concepts, like “edible”, “poisonous”, etc. [8]. Some
of these ontological entities might be pre-specified, the result of processes like
biological evolution or engineering design. Other entities would be discovered by
the agent as it learns to perform the task of distinguishing edible from poisonous
mushrooms. This is a primary task for the agent, and each agent could try to
solve this task in isolation. However, they clearly stand to gain by developing a
language to communicate about these concepts:

– an agent, Alice, who is proficient in distinguishing edible mushrooms from
inedible ones, might communicate to another agent, Bob, whether a partic-
ular mushroom is edible,

– Alice might be able to teach Bob to distinguish edible mushrooms from
poisonous ones himself, assuming he has the same ontology,

– Alice might be able to help Bob acquire the necessary ontological categories
for distinguishing edible mushrooms from poisonous ones.

The point is that the ontology emerges from the primary task, though its
acquisition might be facilitated by the secondary task of language acquisition.
Thus the meanings in a lexicon must have some functional significance for the
agent. This is an aspect of language evolution that is missing from most previous
work on symbol grounding, with some exceptions [8, 9].

Over its lifetime, an agent is expected to encounter many tasks, which might
be related to each other. Ideally, the agent should not just learn to solve each



task, but should also learn how to learn. In other words, if the tasks are related,
the agent should be able to improve its learning performance, exhibiting quicker
and more robust learning on each new task. This is a subject of much research
in the machine learning community and is known variously as transfer learning,
multi-task learning, lifelong learning, etc. Generally the improvement in learning
performance is achieved by using some learnt information, such as invariants,
priors, etc., to bias the learning of new tasks. Our suggestion here is that this
learnt information, which we call cumulative knowledge, could form the ontology
of the agent. We discuss this in more detail below.

3 Cumulative Learning

We use the term cumulative learning to refer to the case where an agent explicitly
accumulates a store of knowledge that is extracted from solving multiple tasks
and is useful for solving new tasks. The key issue in cumulative learning is that
of recognizing, and exploiting, similarities between tasks. That human language
is efficacious in this process is suggested by studies of analogical thinking in
problem solving [10]. In fact, it has been argued that analogy-making is the core
of cognition [11].

A cumulative learning system consists of two parts: a learning mechanism
and a knowledge extraction mechanism. These two mechanisms could conceiv-
ably use two different representations: effectively a task-dependent, and a task-
independent representation, e.g. the learning mechanism could be a recurrent
neural network, and knowledge could be extracted in the form of finite state au-
tomata [12]. People have also attempted to combine feed-forward neural networks
with symbolic rules [13]. However, the drawback to these approaches is that there
is always the possibility of translation noise. A recurrent neural network, e.g.,
is capable of embedding some context-free and context-sensitive grammars [14],
and therefore attempting to represent the learnt recurrent net as a finite-state
automaton might create errors.

Other approaches attempt to directly transfer parts of the learned neural
network, such as the first layer of weights. The idea is that these might represent
features that are useful for multiple tasks [15, 16]. The limitation of this approach
is that knowledge transfer is only possible within-domain, because if the neural
networks do not have the same dimension, it is not possible to reuse the weights.

To get around these two problems, we have presented a cumulative learning
method that uses graph-structured representations [17]. Learning is done with
a genetic algorithm, and knowledge is extracted by mining frequent subgraphs.
The idea is that these frequent subgraphs can be used as primitives by the ge-
netic algorithm in the construction of candidate solutions for new tasks, thereby
learning faster. Since these networks do not have fixed dimension, we avoid the
inflexibility of neural networks. We tested this idea on a set of Boolean function
domains. The domains are parameterized by their dimension, n, and the tasks
are parameterized by the number of adjacent 1’s, k, that must be present in
the input for a positive example. For example, a task might consist of inputs of



dimension four, where an input is classified as positive if two adjacent 1s appear
in the input vector. We name this task 4inputs-2adj-ones.
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Fig. 1. The left box shows networks learned on the first three tasks (4inputs-2adj-
ones, 8inputs-2adj-ones, and 8inputs-3adj-ones). The middle box shows 4 of the 18
subnetworks, extracted by the graph-mining algorithm CloseGraph [18], which appear
in at least two of the networks on the left. These would constitute the “meanings” for
symbolic communication. The right box shows the network learned for the 12inputs-
2adj-ones task, in which some of the subnetworks are seen to appear several times.

Initially, the agents have a very small set of primitives, consisting of just
single nodes that compute the AND, OR, and NOT functions. During the cu-
mulative learning process, they extract many more primitives which are small
networks that can be combined together to solve many tasks. This is illustrated
in figure 1. The left box in the figure shows the networks learnt on the first
three tasks: 4inputs-2adj-ones, 8inputs-2adj-ones, and 8inputs-3adj-ones. AND
nodes are labeled A, OR nodes are labeled O, NOT nodes are labeled N, and
nodes labeled I are “input” nodes which copy their input unchanged to their
output. A and O nodes are assumed to take two inputs, and N and I nodes are
assumed to take one input. All arrows in the figure point downward. If a node
has fewer inputs shown than it is assumed to require, the remaining inputs are
to be supplied externally (i.e. from the input vector).

The middle box in the figure shows some of the sub-networks extracted by the
CloseGraph algorithm [18]. These sub-networks are used by the genetic algorithm
as primitives when learning to solve the next task: 12inputs-2adj-ones. The right
box shows the network learned for this task. Some of the sub-networks are seen
to appear in this new network, either whole or in part (where they have been
incorporated and then further mutated).

Though this is a very artificial set of tasks, the same kind of representation
and cumulative learning method could be used in a more realistic setting, such



Fig. 2. An example behavior network. Reproduced from [19].

as motion planning with robots. The idea of primitives carries over easily to this
domain, and “behavior networks” (see fig. 2) have been used to represent motion
plans [19].

Figure 3 shows a typical comparison of learning curves with and without
transfer of knowledge from previously learnt similar tasks. Knowledge transfer
results in both faster learning and reduced variance in error (i.e. more robust
learning). If another agent, who already knows how to solve the given problem,
is able to tell the agent which primitives to use to solve the task, learning would
converge even faster.

A natural follow-up to the idea of cumulative learning, therefore, is that the
extracted cumulative knowledge might constitute the ontology or meaning space
of the agent. To use a somewhat provocative term, an agent understands a new
task in terms of its cumulative knowledge. The challenge, then, is to develop a
symbol system which maps onto the agents’ cumulative knowledge and enables
communication that helps in learning. We posit that this is a very natural and
realistic version of the symbol grounding problem for the following reasons:

– In this setup, meanings are internal to the agents and are not (indeed cannot
be) directly communicated. Direct meaning communication is a problem with
a lot of the previous work on symbol grounding, as various researchers have
begun to point out [20], and work around [21, 22].

– Different agents may (and probably will) have somewhat different sets of
internal meanings, depending on the sets of problems they have encountered.
This is both a problem to be surmounted, and a realistic feature of our
setup. We address this further in the next section. Previous work on language
evolution has often assumed that all the agents have the same fixed set of
meanings. There have been a few notable exceptions, such as [20, 23].

– Meanings may not necessarily correspond to objects in the environment.
The common example is, what is the meaning of the symbol “chair”? It
seems that “chair” corresponds to some prototypical chair which only exists
in our minds, and not necessarily in the environment. In the same way, the



extracted cumulative knowledge may not necessarily correspond to objects
in the environment, though if the same objects are encountered sufficiently
often, they might be represented in the cumulative knowledge.

– Another advantage of our setup is that the agents could acquire symbols not
just for objects (i.e. nouns and adjectives), but also for actions (i.e. verbs),
or perhaps more abstract concepts.

– Last, but not least, in this setup the symbol-meaning mapping does not have
to be static. This is because the context imposes equivalences on items of
cumulative knowledge and allows a symbol that normally refers to one item
to be interpreted as referring to another item. We address this point in more
detail in the next section also.
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Fig. 3. A typical comparison of learning performance with and without transfer of
knowledge. Transfer of knowledge from similar tasks results in faster and more robust
learning.

4 Learning to Ground Symbols to Cumulative Knowledge

We now address the question: what might be a learning procedure that leads to
the development of a communication system based on cumulative knowledge?



The underlying goal is to create a language that is useful in learning new
tasks. Thus the development of the communication system should be guided by
learning performance. Suppose Alice knows how to solve a task, i.e. she knows
which of her internal primitives she can compose to create a solution to a par-
ticular task. If she could communicate this information to Bob (and assuming
he has the same internal primitives), Bob could learn to solve that particular
task essentially in one step.

There are at least two major hurdles to grounding symbols to cumulative
knowledge. The first is that cumulative knowledge is entirely internal to the
agent. There is nothing the agents can point to, nor can we use the cross-
situational learning strategy of [20, 22]. The second problem is deeper: since
meanings depend on the tasks that have been encountered by the agent and
the solutions that the agent has discovered, there is a danger that the meanings
may be too different to allow successful communication. In other words, we need
some mechanism to keep the ontologies aligned.

To surmount these two problems, we suggest a parent-child (or teacher-
student) scenario. This is not an unrealistic assumption, and has been made
before, e.g. in the Iterated Learning Model [24]. The parent selects tasks for the
child to perform. This gives the parent some measure of control over the ontol-
ogy that the child is likely to develop. Let us suppose, for simplicity, that the
agents are learning Boolean functions. The parent selects a task for the child
by creating a training set of labeled examples, which the child must now learn
to classify. The child initially has a small set of primitives. Let us assume that
the child knows how to compute the AND, OR, and NOT functions. The parent
and child, however, do not have a shared symbol system corresponding to these
primitives. The parent can easily establish a set of symbols for these functions
by selecting extremely simple tasks for the child to perform. For example, if the
first task is to perform the AND operation on two inputs, the parent presents
the child with the training set: {{(0, 0), 0}, {(0, 1), 0}, {(1, 0), 0}, {(1, 1), 1}},
and the symbol AND. The symbol is meant to indicate which primitive the child
should use to solve the task. The child does not know to which of its primitives
the symbol AND corresponds, but attempting to solve the task quickly tells it
that there is only one primitive which works. It is, of course, possible that the
child happens to generate a more complicated network that computes the AND
function, so we might need to assume an in-built bias towards smaller networks
in the learning algorithm (similar to Ockham’s razor).

In a similar way, the parent and child could develop symbols for the OR
and NOT functions also. This small shared lexicon provides a foothold for the
development of a more complex ontology and a corresponding symbol system. As
the parent selects more complex tasks for the child to perform, they will need to
develop a convention for communicating about combinations of primitives. This
could be something simple, such as generating a sentence by ordering primitives
by the number of times they are used in the task, e.g. “AND OR” would indicate
that the AND function is to be used more than the OR function in the new task.



As the child learns more complex tasks, its ontology will grow (by mining
frequent subgraphs). The parent will not know exactly what the subgraphs that
the child has discovered are, but by judicious selection of tasks, it should be
possible to guide the emergence of the child’s ontology, and to maintain a shared
lexicon.

4.1 The Importance of Starting Small

Note that it is very important to start small. The parent and child could not
develop a shared lexicon if the initial tasks don’t serve to bootstrap the com-
munication system. This is rather reminiscent of Elman’s work on learning and
development with neural networks [25]. He has talked about a rather interesting
phenomenon about the learning of natural language: that it is much easier to
train neural networks to process natural language sentences if we use a develop-
mental paradigm where initially the networks are severely restricted with respect
to their working memory. This essentially focuses the attention of the network
on precisely those linguistic structures which help it to subsequently learn the
more complex structures (see also [26]). Our symbol grounding procedure sug-
gests that ontology alignment might be a reason why natural languages exhibit
this surprising property.

There is a deeper reason for starting small as well. The process of cumulative
learning itself benefits greatly from starting small. In other words, even if an
isolated agent were learning to solve multiple related problems, it would benefit
from starting with small problems. The reason is that for any given problem
there are multiple networks that will perform well on it. Not all of them are
good from the point of view of knowledge transfer however. One of the problems
in cumulative learning, then, is how to find the networks which have subgraphs
that can be reused for solving other problems? One solution is to start with
small problems, which have very few easy to find solutions. Once the agent
starts building up its cumulative knowledge, there is reinforcing effect. Using
the cumulative knowledge to find solutions to new problems ensures that more
cumulative knowledge will be found. This is a kind of cumulative advantage [27].

4.2 Dynamic Symbol Grounding

In real life, symbol grounding has a dynamic or contextual aspect to it. Heidegger
refers to this as the “as-ness” of language [28]. In other words, language enables
us to see the world (or the context) in a new way. Suppose Alice says to Bob,
“I need a hammer.” Bob, seeing no hammers around, hands her a rock. This
is clearly a successful case of communication, even though the word “hammer”
was grounded to a rock by Bob. In fact, Alice’s request enabled Bob to see
his surroundings in a different way (to see rocks as hammers). This is the “as-
ness” that Heidegger is talking about. Our setup also permits dynamic symbol
grounding. The task imposes equivalences on the items of cumulative knowledge.
This is easy to see with the Boolean function domain. An training set which does
not include all possible examples means that there are several Boolean functions



which would classify the examples correctly. Further, more complex scenarios
might contain situations where not every item in the cumulative knowledge of
the agent can be applied, e.g. in fig. 2, some of the preconditions might not
be satisfied. The parent might not know which of the child’s primitives are
inapplicable in a given context, since the primitives of the parent and child will
not be identical. Therefore it is easy to imagine situations where the parent
suggests using a primitive which the child cannot apply. In such a situation,
the child will be forced to interpret the symbol differently, and will apply a
perhaps contextually equivalent primitive. The interpretation process can be
put in probabilistic terms: the task imposes a prior distribution on which items
of cumulative knowledge can be applied, and the child computes a posterior
distribution by combining this prior with the suggestion supplied by the parent
(which corresponds to a conditional).

5 Conclusion

We have presented our speculations on how a symbolic communication system
could be grounded in cumulative knowledge. The advantages of this particular
method of meaning construction are several:

– The agents are engaged in multiple tasks over a lifetime, and communication
helps in improving performance on these tasks.

– All the agents are not assumed to have the same fixed set of meanings.
– Meanings are internal to the agents, and there is no need for direct meaning

communication.
– Symbols and meanings arise in an interdependent manner.
– Symbols can be interpreted in context, i.e. symbol grounding is done dy-

namically.

There are, however, some limitations to this account as well. One of the main
problems is that of ontological structure. Cumulative knowledge, as described
here, consists of a set of frequent subgraphs that are useful for multiple tasks. It
has no further structure. Ontologies are generally assumed to be hierarchically
organized. In this sense, the use of cumulative knowledge as the meaning space
of the agent is somewhat unrealistic. On the other hand, it is not clear what
could be gained by attempting to give the cumulative knowledge some structural
organization. It could be done, however. E.g. if a particular item of cumulative
knowledge is a subgraph of another, that implies a PartOf relation between
them.

Another potential challenge is that of preventing divergence in the mean-
ing space of the agents. The constructive approach we have suggested seems
promising in that regard, but it would be sensitive to the “curriculum” chosen
by the parent. This bears further investigation. It might also help in answering
the question, when does language not evolve?

It might also be argued that not all meanings are cumulative knowledge. We
often have names for very specific things, such as “Eiffel tower”. This suggests



that our account of lexicon development should be combined with other accounts
in order to develop a more complete communication system.

Despite these limitations, we believe that there are important connections
between cumulative learning and language evolution, and our purpose here is
to identify some of these and bring them to the attention of our audience. We
believe this can be an area of much fruitful research.
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