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Abstract
This paperexploresthe hypothesisthat languagecommunicationin its

very first stageis bootstrappedin a sociallearningprocessunderthestrong
influenceof culture.A concreteframework for sociallearninghasbeende-
velopedbasedon thenotionof a languagegame.Autonomousrobotshave
beenprogrammedto behave accordingto this framework. We show ex-
perimentsthat demonstratewhy therehasto be a causalrole of language
on category acquisition;partly by showing that it leadseffectively to the
bootstrappingof communicationandpartly by showing thatotherformsof
learningdo notgeneratecategoriesusablein communicationor makeinfor-
mationassumptionswhichcannotbesatisfied.

1 Intr oduction

How childrenacquirethemeaningof wordsis afascinating,still unresolvedprob-
lem but a key towardsunderstandinghow human-level languagecommunication
could ever have developed. This paperaddressestwo basicpuzzlesconcerning
thisprocess:

1. Howdoesthebootstrappinginto communicationtakeplace?Whatarenec-
essaryprerequisitesto enablethemagicmomentwhenthechild learns‘how
to mean’[Halliday, 1987]?
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2. Howis meaningacquired?Themeaningsusedby aspeakercannotdirectly
be observed by the listener, so how cana listenerwho doesnot know the
meaningof wordsever learnthem?

Therearetwo mainlinesof thinkingon thesequestions:individualisticlearn-
ing andsociallearning.In thecaseof individualisticlearning,thechild is assumed
to receive asinput a largenumberof examplecaseswherespeechis pairedwith
specificsituations.Sheis eitheralreadymasteringthenecessaryconceptsor able
to extract throughaninductive learningprocesswhatis essentialandrecurrentof
thesesituations,in otherwordslearn the appropriatecategoriesunderlyinglan-
guage,andthenassociatethesecategorieswith words. This is known ascross-
situationallearning[Fischeretal., 1994]. Othershave proposeda form of con-
trastive learningon thesamesortof data,drivenby thehypothesisthatdifferent
wordshavedifferentmeanings[Clark, 1987]. Thistypeof individualisticlearning
assumesa ratherpassive role of thelanguagelearnerandlittle feedbackgivenby
thespeaker. It assumesnocausalinfluenceof languageonconceptformation.We
call it the labelling theorybecausethe languagelearneris assumedto associate
labelswith existing categories. The labelling theory is remarkablywidespread
amongresearchersstudyingtheacquisitionof communicationandrecentlyvari-
ousattemptshavebeenmadeto modelit with neuralnetworksor symboliclearn-
ing algorithms[BroederandMurre,2000]. It is known that inductionby itself
is a weaklearningmethod,in thesensethat it doesnot give identical resultson
thesamedataandmayyield irrelevantclusteringcomparedto humancategories.
This will indeedbe demonstratedto be the caselater in this paper. To counter
this argumentit is usuallyproposedthat innateconstraintshelp thelearnerzoom
in on the importantaspectsof the environment[Bloom, 2000], [Smith,2001] ,
[Markman,1994].

In thecaseof sociallearning,interactionwith otherhumanbeingsis consid-
eredcrucial ([Tomasello,2000], [Steels,2001c]). Learningis not only grounded
in reality througha sensori-motorapparatusbut alsosocially groundedthrough
interactionswith others. The learningevent involvesan interactionbetweenat
leasttwo individuals in a sharedenvironment. They will further be called the
learnerandthemediator. Themediatorcouldbea parentandthelearnera child,
but children(or adults)cananddo teacheachotherjustaswell. Giventhecrucial
role of themediator, we call sociallearningalsomediatedlearning.Thegoalof
the interactionis not really teaching,which is why we usethe term mediatoras
opposedteacher. Thegoalis rathersomethingpracticalin theworld, for example,
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to identify anobjector anaction. The mediatorhelpsto achieve thegoalandis
oftentheonewho wantsto seethegoalachieved.

Themediatorhasvariousroles:Shesetsconstraintsonthesituationto makeit
moremanageable(scaffolding), givesencouragementon theway, providesfeed-
back,andactsuponthe consequencesof the learner’s actions. The feedbackis
not directly aboutlanguageandcertainlynot abouttheconceptsunderlyinglan-
guage.The latterarenever visible. The learnercannotinspecttelepathicallythe
internalstatesof the speakerandthe mediatorcannotknow which conceptsare
alreadyknown by thelearner. Insteadfeedbackis pragmatic,thatmeansin terms
of whetherthegoalhasbeenrealisedor not. Considera situationwheretheme-
diatorsays:”Give methatpen”,andthelearnerpicksup a pieceof paperinstead
of the pen. The mediatormight say: ”No, not thepaper, the pen”, andpoint to
thepen.This is anexampleof pragmaticfeedback.It is not only relevantto suc-
ceedsubsequentlyin the taskbut suppliesthe learnerwith informationrelevant
for acquiringnew knowledge.Thelearnercangraspthereferentfrom thecontext
andsituation,hypothesisea classificationof thereferent,andstoreanassociation
betweenthe classificationandtheword for futureuse. While doing all this, the
learneractively tries to guessthe intentionsof the mediator. The intentionsare
of two sorts. The learnermustguesswhat thegoal is that themediatorwantsto
seerealised(like ’pick up the penon the table’) andthe learnermustguessthe
way that themediatorhasconstruedtheworld [Langacker, 1991]. Typically the
learnerusesherselfasa modelof how themediatorwould makea decisionand
adaptsthismodelwhena discrepancy arises.

Sociallearningenablesactive learning.The learnercaninitiate a kind of ex-
perimentto test knowledgethat is uncertainor to fill in missingwholes. The
mediatoris availableto give directconcretefeedbackfor thespecificexperiment
doneby thelearner. Thisobviouslyspeedsup thelearning,comparedto apassive
learningsituationwherethe learnersimply hasto wait until examplesarisethat
wouldpushthelearningforward.

The debatebetweenindividualistic versussocial learning is relatedto the
equally hotly debatedquestionwhetherthere is a causalrole for languagein
category acquisitionor not. From the viewpoint of the labelling theory the ac-
quisition of conceptsoccursindependentlyoff and prior to languageacquisi-
tion [Harnad,1990]. So thereis no causalrole of language.Conceptualisation
and verbalisationare viewed as operatingin independentmoduleswhich have
no influenceon eachother [Fodor, 1983]. The acquisitionof languageis seen
asa problemof learninglabelsfor alreadyexisting concepts.Concerningthen
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the issuehow the conceptsthemselves are acquired,two opposingschoolsare
found: nativism andempiricism. Nativists like Fodor [Fodor, 1999] claim that
concepts,particularly basicperceptuallygroundedconcepts,are innateand so
thereis no learningprocessnecessary. They basetheir argumentson thepoverty
of thestimulus[Chomsky, 1975],thefundamentalweaknessof inductive learning
[Popper, 1968], andthelackof clearcategorialor linguistic feedback.Empiricists
claimthatconceptsare learned,for exampleby statisticallearningmethodsimple-
mentedasneuralnetworks[Ellman,1993]. Thusa largenumberof situationsin
whicharedobjectappearsareseenby thelearner, andclusteredinto ’naturalcat-
egories’.Thesenaturalcategoriesthenform thebasisfor learningword-meaning.

Thealternative line of thinking, which is oftenadoptedby proponentsof so-
cial learning,claimsthat thereis a causalrole for culturein conceptacquisition
andthis role is particularly(but not exclusively) playedthroughlanguage.This
hasbeenarguedboth by linguistsandphilosophers.In linguistics, the position
is known as the Sapir-Whorf thesis. It is basedon evidencethat different lan-
guagesin theworld notonly usedifferentword formsandsyntacticconstructions
but that the conceptualisationsunderlyinglanguageare profoundlydifferentas
well [Talmy, 2000]. Languageacquisitionthereforegoeshandin handwith con-
ceptacquisition[Bowerman,2001]. Language-specificconceptualisationschange
over time in aculturalevolution processwhich in turn causesgrammaticalevolu-
tion thatmayagaininduceconceptualchange[Heine,1997]. Note thata causal
influenceof languageacquisitionon conceptformation doesnot imply that all
conceptsundergo this influenceor that thereareno conceptsprior to thebegin-
ningof languageacquisition.In fact,thereareprobablymillions of conceptsused
in sensori-motorcontrol, social interaction,emotion,etc. which arenever lexi-
calised.Themainpoint of thepaperis thatfor thoseconceptsunderlyingnatural
languagecommunicationthiscausalinfluencenotonly existsbut is necessary.

Ludwig Wittgenstein[Wittgenstein,1953] is the best known philosophical
proponentof a causalinfluenceof languageon meaning. His position is in a
senseeven moreradicalthantheSapir-Whorf thesis. He hasarguedthatmean-
ingsareanintegratedpartof thesituatedcontext of use.Thustheword”ball” not
only includesa particularconceptualisationof reality in orderto referto acertain
typeof objectbut is alsoa move in a languagegame,indicatingthat thespeaker
wantsto geta particularactionbecarriedout. Moreover themeaningof ”ball” is
not abstractat all, i.e. somethingof thesort ’sphericalshapedphysicalobjectof
a uniform colour’, but is very context-dependent,particularlyin thefirst stages.
Thispoint hasalsobeenmadeby Quine[Quine,1960] who hasarguedthatbasic
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notionssuchasobject-hoodonly graduallyarise. Childrendo not startwith the
pre-givencleanabstractcategoriesthatadultsappearto employ.

1.1 Robotsasmodels

Thispaperexaminesthehypothesisthatcommunicationisbootstrappedin asocial
learningprocessunderthestronginfluenceof languageandthatinitially meanings
are situatedand context-dependent.It arguesthat individualistic observational
learningandthe labelingtheorycannotexplain the very difficult first stepsinto
language-likecommunication.Many concreteandeven formal modelsexist for
individualistic learning[BroederandMurre,2000] but similar modelsfor social
learningare lacking. In the absenceof suchmodelsit is difficult to seriously
comparethedifferentpositionsin thedebatewithout sliding into rhethoric. The
first goal of our work hasthereforebeento develop a concretemodel for social
learningandcompareits behavior to individualisticlearning.Thesecondgoalis to
show thatcultural influenceandcontext-dependentmeaningsareindeedthemost
plausibleandeffective way for an individual to bootstrapherselfinto a language
culture.

The methodwe useto validateour claims is perhapsunusualfrom a social
scienceperspective. First of all we completelyoperationaliseandformalisethe
stepsnecessaryin languageacquisition.Validationof this formal modelby hand
is however completelyexcludedgiventheenormouscomplexity of thecognitive
processingrequiredfor groundedlanguage,evenfor handlingsinglewords.Soit
is at leastnecessaryto do computersimulations.Herewe goonestepfurtherand
do experimentswith autonomousmobilerobots,in line of similar work reported
in ([SteelsandVogt,1997],[Billard etal., 1998], [Vogt,2000]).

Roboticexperimentsaremotivatedasfollows:

1. They force us to makeevery claim or hypothesisaboutassumedinternal
structuresandprocessesvery concreteandsoit is clearhow thetheoretical
assumptionshavebeenoperationalised.

2. We canusereal-worldsituations,i.e. physicalobjects,humaninteractions,
etc. to get realisticpresuppositionsandrealisticsourcesof input. This is
particularlyimportantwhenstudyingsocial learning,which reliesheavily
on theinterventionof themediator, groundedin reality.
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3. We canextract dataaboutinternalstatesof the learningprocess,which is
notpossiblewith humanbeings.Internalstatesof childrengoingthrougha
developmentalor learningprocesscannotbeobservedat all.

4. We caneasilyexaminealternative hypotheses.For example,we cancom-
parewhatan individualistic inductive learningprocesswould achieve with
thesamedataasa sociallearningprocess.

But thereareobviouslyalsoimportantlimits to thismethodology:

1. Wedonotpretendatall thatroboticexperimentsmodelin any realisticway
childrennortheenvironmentsin whichthey typicallyoperate.Ourgoalhere
is to examinespecificassumptionsabouttheemergenceof communication
by building artificial systems,sorealismis notat issue[Steels,2001b].

2. It is anextraordinarychallengeto build andmaintainphysicalrobotsof the
requiredcomplexity. Forpracticalreasons(limitationsof cameraresolution,
memoryandprocessingpower availableon board)we cannotalwaysuse
thebestknown algorithmavailabletoday. This putslimits on whatcanbe
technicallyachieved todayandsoexperimentsneedto bedesignedwithin
theselimits.

By usingrealworld autonomousrobots,ourexperimentsdiffer from othercompu-
tationalexperimentsin wordlearning(suchas[Siskind,1995])in whichsituation-
word pairsarepreparedin advanceby the humanexperimenter, andeven more
from moretraditionalconnectionistword learningexperimentswheremeanings
areexplicitly given by a human[Regier, 1996]. Herewe approachmuch more
closelytheconditionsof a oneyearold child who is moving aroundfreely with
no preconceptionof whatmight bethemeaningof a word. In fact,we makethe
situationevenmoredifficult thanthatof achild whichpresumablyhasalreadyac-
quiredmany moreconceptsthatcouldpotentiallybeusedor adaptedfor language
communication.

For theexperimentsreportedin thispaper, we useanenhancedversionof the
Sony AIBO

���
robot(seefigure1) furthercalledtherobot. Therobot is fully au-

tonomousandmobilewith morethana thousandbehaviors, coordinatedthrough
a complex behavior-basedmotivationalsystem[Fujita andKitano,1998]. It fea-
tures4-leggedlocomotion,a camerafor visual input, two microphones,a wide
varietyof bodysensors,aswell asonboardbatteriesandthenecessarycomputing
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power. We have chosenthis platformbecausetheAIBO is oneof themostcom-
plex autonomousrobotscurrently in existencebut neverthelessreliableenough
for systematicexperimentsdueto theindustrialstandardswith which it hasbeen
designedandbuilt. Moreover theAIBO is designedto enticeinteractionwith hu-
mans,which is whatwe needfor experimentsin socialhuman-robotinteraction.
It comeswith a very wide rangeof capabilitieswhich arenecessaryto establish
theconditionsfor socialinteraction,suchastheability to look at theobjectasa
way to draw attentionof thespeakerto theobject.

�
	
�
����	��������

�
�������
���
�
���! #"��

Figure1: Our robot is anenhancedversionof commerciallyavailableAIBOs. It
is linkedto anadditionalcomputerthrougharadioconnection

The experimentsdiscussedfurther in this paperwork on an enhancedver-
sion of the AIBO becausethereis not enoughcomputingpower on boardto do
them. We have decidedto keepthe original autonomousbehavior of the robot
andbuild additionalfunctionalityon topof it. Oursystemthusactsasacognitive
layerwhich interfereswith thecurrentautonomousbehavior, without controlling
it completely. A secondcomputerimplementsspeechrecognitionfacilitieswhich
enablesinteractionsusingspokenwords. In orderto avoid recognitionproblems
linked with noise,themediatorusesanexternalmicrophoneto interactwith the
robot. The computeralsoimplementsa protocolfor sendingandreceiving data
betweenthecomputerandtherobotthrougharadiolink. Themediatormusttake
into accounttheglobal”mood” of therobotasgeneratedby theautonomousmoti-
vationalsystem.For example,it is possiblethatasessionbecomesveryineffective

7



becausetherobotis in a ”lethargical” mood.
Even thoughtherobot is extraordinarilycomplex, it doesnot necessarilyuse

stateof the art algorithmsfor every aspectbecausethat would require vastly
more computationalresources.For example,3d depthrecognitionis now fea-
sible[BeymerandKonolige,1999]but wouldrequiremorehardwareontherobot
(suchastwo camerasinsteadof one)andmuchmoreprocessing.Thesetechno-
logical constraintslimit necessarilythe potentiallevels of intelligence. We feel
however thatin thepresentcontext theseweaknessesarenotadrawback,because
wewantto focusontheveryfirst words.Thisshouldnot requireacomplex struc-
tural analysisof visualscenes,nor verysophisticatedworld models,nor complex
grammaticalconstructionsor intricatedialogs.

1.2 Overview

We have donethreetypesof experiments,all focusingon namingthreeobjects
in its environment: a red ball, a yellow puppetcalled ”Smiley”, and a small
AIBO imitation called Poo-chi

�$�
. In the first experimentthe robot hasbeen

programmedto be capableof someform of social learning. The learningtakes
placethroughintenseinteractionwith a humanmediator(figure2a).

%'&)( *,+.- /,021

Figure2: Threetypesof experimentswith differentdegreesof socialinteraction:
stronginteraction(a), observationallearningwith supervision(b), unsupervised
learning(c)

In thesecondexperimentthe role of themediatoris stronglyreducedto cre-
atea learningsituationcomparableto supervisedobservationallearning(figure2
b). The robot getsexamplespairing a word with a view of oneof the objects.
The humanmediatorsuppliesthe wordsbut thereis not the intenseinteraction
characteristicof sociallearning.
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In thethird experimentwe examineunsupervisedobservationallearning(fig-
ure 2 c). The robot getsa seriesof imagesand usesunsupervisedclustering
methodsto detectthe naturalcategoriespresentin the data. The questionhere
is whetherthesenaturalcategorieshaveany relationto thecategoriesthatunderly
thewordsnormallyusedin Englishfor referringto theobjects.

The rest of the papercontainstwo main parts. The first part is about the
functionalitiesthat needto be in placefor establishingforms of interactionin
which early languagecould sproutthroughsocial learning. We will arguethat
the notion of a languagegame[Steels,2001a]is an appropriateframework for
settingup suchinteractionsandintroducethe exampleof a classificationgame.
Thesecondpartof thepaperfocuseson theissueof meaning,andparticularlyon
thedebatebetweenobservationalvs. sociallearning.We concludethatthereare
strongreasonsto insiston social learningto explain how verbalcommunication
might bootstrap.

2 LanguageGames

In previouswork we have foundthat thenotionof a languagegameis a very ef-
fectivewayto framesocialandculturallearning[Steels,2001a]. A gameis a rou-
tinisedsequenceof interactionsbetweentwo agentsinvolving a sharedsituation
in theworld. Theplayershave differentroles.Therearetypically variousobjects
involvedandparticipantsneedto maintaintherelevantrepresentationsduringthe
game,e.g. whathasbeenmentionedor implied earlier. The possiblestepsin a
gamearecalledmoves.Eachmoveis appropriatein circumstancesdeterminedby
motivationsandlong termobjectivesandtheopportunitiesin theconcretesitua-
tion, just like a move in a gameof chess.Gamesaremuchmoreencompassing
thanbehaviors in the senseof behavior-basedrobots[SteelsandBrooks,1994].
They mayrunfor severalminutesandinvokemany behaviorsandcognitiveactiv-
itieson theway. They maybeinterruptedto beresumedlater.

Hereis anexampleof a gameplayedwith a child while showing picturesof
animals:

Father: What does the cow say? [points to cow] Mooooh.
Child: [just observes]
Father: What does the dog say? [points to dog] Waf.
Child: [observes]
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Father: What does the cow say?
[points to cow again and then waits ... ]

Child: Mooh
Father: Yeah!

The learnerlearnsto reproduceandrecognisethesoundsof thevariousanimals
andto associateacertainsoundwith aparticularimageandaparticularword. The
exampleis very typical, in thesensethat (1) it involvesmany sensorymodalities
andabilities (sound,image,language),(2) it containsa routinisedsetof interac-
tions which is well entrenchedafter a while so that it is clearwhat is expected,
(3) thelearnerplaysalongandguesseswhatthemediatorwantsandthemediator
setsup the context, constrainsthe difficulties,andgivesfeedbackon successor
failure. (4) Themeaningof wordslike ’cow’ and’dog’ or ’moooh’ and’waf ’ in-
volvesbothaconceptualaspect(classificationof theanimalsandimitationsof the
soundthey make)anda gameaspect(movesat theright moment).Every parent
playsthousandsof suchgameswith their childrenand,equallyimportant,aftera
while childrenplaysuchgamesamongthemselves,particularlysymbolicgames.

Gameslike the oneabove aretypical for childrenaroundthe agebetween2
and3. This examplefocusesexclusively on languagelearning.Normally games
try to achieveaspecificcooperativegoalthroughcommunicationwherelanguage
playsanauxiliary role,suchas:

3 Getthelistenerto performaphysicalaction,for examplemove anobject.

3 Draw attentionof the listenerto anelementin thecontext, for example,an
objectthatshewantsto seemoved.

3 Restrictthecontext, which is helpful for drawing attentionto anelementin
it.

3 Transmitinformationaboutone’s internalstate,for exampleto signal the
degreeof willingnessto cooperate.

3 Transmitinformationaboutthestateof theworld, for exampleasrelevant
for futureaction.

For all thesegamestheremustbea numberof prerequisitesfor socialinteraction
like thefollowing:
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1. Becomeawarethatthereis apersonin theenvironment,by recognisingthat
thereis ahumanvoiceor ahumanbodily shape.

2. Recognisethepersonby facerecognitionor speakeridentification.

3. Try to figureout whatobjectthespeakeris focusingattentionto, indepen-
dentlyof language,by gazefollowing andeye tracking.

4. Usethepresentsituationto restrictthecontext, predictpossibleactions,and
predictpossiblegoalsof thespeaker.

5. Give feedbackat all timeson which objectyou arefocusing,for example
by touchingtheobjector looking at it intently.

6. Indicatethatyouareattendingto thespeaker, by lookingup to thespeaker.

Thesevariousactivitiesareoftenassociatedwith havinga‘theoryof mind’ [Baron-Cohen,1997].
It is clearthat theseprerequisitesaswell astheonesspecificallyrequiredfor the
languageaspectsof agamerequiremany cognitivecapabilities:vision,gesturing,
patternrecognition,speechanalysisandsynthesis,conceptualisation,verbalisa-
tion, interpretation,behavioral recognition,action,etc.Thispaperwill notgo into
any technicaldetail how thesecapabilitieshave beenachieved for the robot (in
mostcasesby adoptingstateof theartAI techniques)norhow they areintegrated.
It suffices to know that we have a large library of componentsand a scripting
languageCOALA thathandlesthe integrationandschedulingin real-timeof be-
haviors to implementinteractive dialogs. Theagent’s scriptsfor playinga game
shouldnot only invokethenecessarycomponentsto achieve successin thegame
but alsotrigger the learningalgorithmsthat canhelp to fill in missingconcepts
or learn the meaningof new stretchesof natural language.We do not pretend
thatany of thesecomponentsachieveshumanlevel performance,far from it. But
they areenoughto do experimentsaddressingthe issuesraisedin this paperand
observersareusuallystunnedaboutthelevel of performancealreadyachieved.

2.1 The ClassificationGame

In earlier work, we have beenexperimentingwith various kinds of language
games,most notably a guessinggame[SteelsandKaplan,1998], in which the
listenermustguessanobjectin a particularcontext througha verbaldescription
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thatexpressesa propertyof theobjectwhich is not true for any of theotherob-
jects in the context. The robotsin theseexperimentswerestatic: pan-tilt units
mountedon a fixed tripod. Theseexperimentshave demonstratedbeyond doubt
that the languagegameapproachis effective, givenappropriatescripts,not only
for sustaininga dialog but alsofor acquiringthenecessaryconceptsandwords.
Theemergenceandevolution of a lexicon in a populationof agentshasbeenex-
perimentallyshown to arise[Steelset al., 2002].

In thepresentpaperwewill useaclassificationgame.Theclassificationgame
is similar to the guessinggame,except that thereis only a singleobject to be
classified.Becausetherobot’scameradoesnothaveaverywideview angle,only
one object is generallyin view, and so the classificationgameis more natural
for this robot thantheguessinggame. It is similar to the interactionsstudiedin
[Roy, 1999] and[Fujita et al., 2001]andsoit makescomparisonwith otherwork
easier. Theplayful objectsto beclassifiedincludeaball, asmallpuppetthatlooks
like a Smiley, a small AIBO imitation marketedaspoo-chi. Englishwordslike
”ball”, ”smiley”, or ”poo-chi” areusedby thehumanmediatorin interactionswith
therobot. Themaingoalfor therobot is to acquiretheproperuseof theword in
relationto visualimages.

Figure3: Dif ferentviewsof a redball ascapturedby therobot’scamera.

Figure3 givesanideaof thedifficultiesinvolved.All theseimageshave been
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capturedwith therobot’s camera.Dif ferentambientlight conditionsmaychange
completelythe colour reflectionof an object. An object is almostnever seen
in its entirety. It canhave a complex structureso that differentsidesaretotally
different (for exampleback and front of poo-chi). Consequentlysegmentation
andsubsequentclassificationis extremelydifficult. For example,theredball may
sometimeshave a light patchwhich looks like a secondobjector fuseso much
with the backgroundthat it is hardly recognisable.We feel that it is of extreme
importanceto startfrom realisticimagestakenduringarealworld interactionwith
the robot anda human. By taking artificial images(for examplepre-segmented
imagesunder identical light conditions)many of the real world problemsthat
mustbe solved bootstrappingcommunicationwould disappear, diminishingthe
strengthof theconclusionsthatcanbedrawn.

2.2 Script

Therobothasascript,implementedasacollectionof looselyconnectedschemas,
for playing theclassificationgame.Hereis a typical dialogbasedon this script,
startingwhentherobotsitsdown.

1. Human: Stand.
2. Human: Stand up.

Therobothasalreadyacquirednamesof actions(asexplainedin [Kaplanetal., 2001]).
It remainsundertheinfluenceof its autonomousbehavior controller. Forcingthe
robotto standup is a way to makeit concentrateon thelanguagegame.Because
speechsignalshave beenheard,therobotknows thatthereis someonein theen-
vironmenttalking to it. The humannow shows the ball to the robot (figure 4
a).

3. Human: Look

Theword ”look” helpsto focusattentionandsignalsthebegining of a language
game.Therobotnow concentrateson theball, startstrackingit, andsignalsfocus
by looking at the ball (figure 4 a) andtrying to touch it (figure 4 b). It further
signalsattentionby looking first at the speaker(figure4 c) andthenbackat the
ball (figure 4 d). In fact, theseareall emergentbehaviors of the object tracker.
Theotherautonomousbehaviors interactwith theschemassteeringthelanguage
game.
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4. Human: ball

The robotdoesnot know a word yet for this object,soa learningactivity starts.
Therobotasksfirst for feedbackof theword to makesurethattheword hasbeen
heardcorrectly.

5. Aibo: Ball?
6. Human: Yes

Ball is thecorrectword andit is associatedwith aview of theobjectseen.
Notethatseveralthingsmighthavegonewrongin thisepisodeandcorrection

from the humanmediatorwould have beenrequired. For example, the wrong
word might have beenhearddueto problemswith speechrecognition,the robot
might not have beenpayingattentionto the ball but, becauseof its autonomous
behaviors, might have startedto look elsewhere,etc. By maintaininga tightly
coupledinteraction,the mediatorcanhelp the learnerandthis is the essenceof
sociallearning:constrainingcontext, scaffolding (thehumansays”ball” not ”this
is theball” which would bemuchmoredifficult), andpragmaticfeedbackon the
way.

Thedialogscriptsimplementedon therobotaresufficiently flexible to allow
many variantsof theclassificationgame,andspecificallyenablethelearnerto test
out knowledge.Herearesomeotherexampledialogs:

1. Human: What is it?
2. Aibo: Ball
3. Human: Good.

1. Human: What is it?
2. Aibo: Smiley
3. Human: No; listen; Ball.
4. Aibo: Ball?
5. Human: Yes.

1. Human: Is it .. Smiley?
2. Aibo: No; ball
3. Human: Good.

In eachcase,therobotcategorisesandnamestheobjectandgetsfeedbackwhether
thenamingwascorrectfrom apragmaticviewpoint.
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We have implementedall the necessarycomponentsto have the robot play
classificationgamesof the sort shown in theseexamplesandexperimentedfor
severalmonthsin human-robotinteractions.Theseexperimentshave shown that
the framework of languagegamesis effective to enablethe learningof the ’first
words’andtheclassificatoryconceptsthatgowith it. Beforediscussingtheresults
of theseexperiments,the next sectionsprovide somemore detail on the most
importantpartsof theclassificationscript.

2.3 Classification

The classificationgamerelieson theability to classifyobjects. Therearemany
possiblewaysto classifyobjectsandmany techniquesareknown to acquireeach
typeof classification.We have tried to useasmuchaspossiblewell known, state
of theart methods.Thefirst importantdecisionwasnot to segmentobjects.Ob-
ject segmentationis notoriouslydifficult andgenerallybelievedto beimpossible,
unlessthereis a cleartemplateof theobjectavailable. Edgedetection,3-d seg-
mentation,colour segmentation,segmentationbasedon changefrom oneimage
to thenext, etc. all yield possiblesegmentsbut noneis failproof. So the learner
is confrontedwith a chickenandegg problem. Thereis no way to know what
countsasan objectbut without this knowledgeit is virtually impossibleto per-
form segmentation.By not relyingonprior segmentationweresolvethisparadox.
It implieshowever thatthe initial conceptsfor objectsarealwayshighly context-
sensitive. This situated,context-sensitive natureof object knowledgeis in line
with Wittgenstein’s point of view andhasalsobeenarguedon empiricalgrounds
[Clancey, 1997].

The seconddecisionwas to usean instance-basedmethodof classification
([Mel, 1997], [WittenandEibe,2000]). Many different’views’ arestoredof an
object in context andclassificationtakesplaceby a nearestneighboralgorithm.
Viewsarenotstoredin termsof full RGBbitmaps,whichwouldrequiretoomuch
storageandwould requirevery computation-intensive methodsfor comparison.
Insteadtheimageis first normalisedin orderto remove toomuchdependency on
brightness[Finlaysonetal., 1998], R(ed)G(reen)B(lue)dataarenormalisedwith
respectto R+G+Bandonly two dimensions(G andB) arekeptsinceR + G + B
= 1.0, so thethird dimensionis no longerinformative. Thena 16 x 16 2D color
histogramis constructedof thenormalisedimageandevery imageis represented
by 256values.Thesearethedimensionsof theconceptualspaceusedto represent
objectsin memory. Figure5 shows an objectand its correspondinghistogram.
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Notethatwecannnotreally saythatthememory”represents”objectsbecausethe
robothasnonotionyetof whatanobjectis. Thecolorhistogramreflectsboththe
perceptionof theobjectandits background.
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Figure5: Exampleof animageandtheassociatedhistogram

To comparetheperceivedhistogramwith theonespreviouslystoredin mem-
ory, we usea CED -divergencemeasuredefinedin thefollowing way:

C D'F6G
H'IKJELNMPO F6Q OSRUTVO J DQ OXW T O (1)

where Q O and
T O

arethevalueof two histogramsG and I indexedby Y . Theview
with theshortestdistancein pair-wisecomparisonto theinput imageis considered
to be the ’winning’ view. Several othermethodsfor matchinghistogramshave
beencomparedwith thismeasureby SchieleandCrowley [SchieleandCrowley, 1996]
andit appearedto bethebestone.It is usedalsoby Roy [Roy, 1999].

Instance-basedlearningwasusedfor two reasons:(1) It supportsincremental
learning.Thereis nostrictseparationbetweenalearningphaseandausagephase
which would be very unrealisticwith respectto humanlanguagelearning. (2)
It exhibits very quick acquisition(oneinstancelearning)which is alsoobserved
in children. Acquisition canof coursebe followedby performancedegradation
whennew situationsarisethatrequirethestorageof new views. Oncetheseviews
have beenseen,performancequickly goesup again. This type of behavior is
very differentfrom that of inductive learningalgorithms(suchasthe clustering
algorithmdiscussedlater)which show randomperformancefor a long time until
theright classeshavebeenfound.
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2.4 Word learning

The presentexperimentdoesnot focuson the recognition,synthesisandacqui-
sition of speechitself. We usea state-of-the-artspeechsystemfor this purpose.
It is capableof speakerindependantrecognition,with no needfor training once
thewordformsareknown. We havesuppliedthesystemwith a largelist of words
that might occur in the dialog. Although the recognitionrate is high, it is not
perfectandsoprovisionsmustbemadein thelanguagegamescript to overcome
theproblemof recognitionerror. Thespeechsynthesissystemis a stateof theart
text-to-speechsynthesiser, similar to theonedescribedin [Dutoit, 1997].

An associative memorystoresrelationsbetweenobjectviews andwords.The
differentviews of an objectform an implicit category [Kaplan,1998], basedon
thefactthatthey arenamedthesameway. Wordlearningtakesplaceby reinforce-
mentlearning[SuttonandBarto,1998]. Whentheclassificationconformsto the
oneexpectedby thehumanmediator, thereis positive feedback(”good”). When
thereis a negative outcomeof the game,asin the secondexampleabove, there
is negative feedback(”no”). If thereis a correctionfrom the mediatorasin the
secondexample(”listen; Smiley”), theagentstoresanew associationbetweenthe
view andthecorrectingword (i.e. betweentheview andSmiley) but only if the
associationdid notexist already.

2.5 Performancedata

Wehavedoneexperimentswith thesemechanismsontherecognitionandnaming
of the threeobjectsmentionedearlier. For only oneobject,namelythe red ball,
a focusof attentionmechanismwasavailable(usingdedicatedhardwareon the
robotsothat it is fastenough).This mechanismis designedto recognisequickly
patchesof redin animage,to controltheheadsothatthispatchgetsinto thecenter
of thevisualfield, andto keeptrackingthepatchwheneithertheobjectmovesor
theheadmoves.Duringeachsessionthemediatorplaysanumberof classification
gameswith eachof theseobjects.Eachgameincludesamovefor sharingattention
(e.g. by holdingtheobjectin front of therobot),a questionlike ”what is it”, and
approval or correctiondependingon the answerof the robot. In the caseof a
badclassification,the right namewasutteredby themediator. The experiments
wereperformedon successive days,undervery differentlighting conditions,and
againstdifferentbackgroundssoasto getrealisticdata.

Figure6 presentsthe evolution of the averagesuccessfor four training ses-
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Figure6: Evolutionof theclassificationsuccessfor four differenttrainingsessions

sions,eachstartingfrom zeroknowledge.Thesuccessof a gameis recordedby
the mediatorbasedon the answerof the robot. We seethat for all the runsthe
successclimbs regularly to successfulcommunication. It is interestingto note
thatfrom thevery first gamestheclassificationperformanceis very high. It only
takesa few examplesto beableto discriminatesuccessfullythe threeobjectsin
a givenenvironment. But asthe environmentchanges,confusionmayariseand
new learningtakesplace,pushingupperformanceagain.This is a propertyof the
instance-basedlearningalgorithm.

Exp1 Exp2 Exp3 Exp4
Averagesuccess 0.81 0.85 0.81 0.80

Table1: Averagesuccessduringthetrainingsessions

If we averagethe classificationsuccessover the whole training session,we
obtaineanaverageperformancebetween0.80and0.85(table1),whichmeansthat
onaveragetherobotusesanappropriatename8 timesoutof 10. Thisincludesthe
periodof training,sothelearningis extraordinarilyfast.A closerlook attheerrors
that the robot makes(table2), shows that the robot makesfewer classification
errorsfor the red ball than for the other two objects. This is due to the focus
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of attentionmechanismavailablefor trackingredobjects.It easestheprocessof
sharingattentiononthetopicof thegameandasaconsequenceprovidestherobot
with dataof betterquality. The lack of this capabilityfor theotherobjectsdoes
notcausea failure to learnthemhowever.

word/meaning Poo-chi RedBall Smiley Classificationsuccess
Poo-chi 34 8 9 0.66
RedBall 0 52 4 0.92
Smiley 6 2 49 0.86

Table2: This tableshows theword/meaningsuccessratefor oneof thesessions.

2.6 Complexity and realism

It is obviously possibleto makethe perceptionandcategorisationin theseex-
perimentsmorecomplex. It is probablybetterto usepsychologicallymorereal-
istic sensorydimensions,suchas the Hue SaturationValuespaceor the L*a*b
space,which abstractsthe Lightnessdimensionandusestheopponentchannels
(red-green;yellow-blue) [WyszeckiandStiles,1982]. The L*a*b spacemore-
over mapsbetteron the humanexperienceof colour distance.Therearemany
moresophisticatedwaysto useinstance-basedclassificationaswell, for exam-
ple by using k-nearestneighbor, populationcoding, radial basisfunctions,etc.
[WittenandEibe,2000]. A moresophisticatedmodelof word learningcouldbe
usedbasedon maintaininga scorebetweenword-meaningassociationsthat re-
flectsthesuccessin usinga word [Steels,1996].

Insteadwe have adoptedthesimplestpossiblesolutionsin orderto makethe
experiments- which involvereal-timeinteractionwith humans- possible.If more
complex methodswould have beenadoptedthey would not fit on the available
hardwareandthedialogwould no longerhave a real time character. We usethe
samesolutionsin the other experimentsdescribedshortly, so the differencein
performance,andhencethe conclusionsdrawn, do not hingeon which choices
have beenmadefor perception,categorisationandnaming.
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3 Comparisons

In theprevioussection,we have presenteda framework thatenablestheacquisi-
tion of asetof first wordsusingtheframework of sociallearning.Theframework
is effective in the sensethat the robot is indeedcapableto acquirethe meaning
of a setof first words,without prior knowledgeof theconceptsinvolvednor un-
realistic constraintson its movements. We seea numberof explanationswhy
communicationcouldsuccessfullybebootstrapped:

1. The languagegameconstrainswhat needsto be learned. In the specific
exampledevelopedhere,this is knowledgefor classifyingobjects.So,ratherthan
assumingprior innateconstraintson thekindsof conceptsthatshouldbelearned
or assumingthatunsupervisedclusteringgenerates’naturalcategories’,thesocial
learninghypothesissuggeststhatconstraintsareprovidedby thelanguagegames
initiatedby mediators.

2. The languagegameguaranteesa certainquality of the dataavailable to
the learner. It constrainsthe context, for examplewith words like ”listen” or
throughpointinggestures.This helpsto focustheattentionof the learner. Ade-
quatedataacquisitionis crucialfor any learningmethodandthemoremobileand
autonomousthelearner, thelessobviousthis becomes.

3. Thelanguagegameinducesa structurefor pragmaticfeedback.Pragmatic
feedbackis in termsof successin achieving the goal of the interaction,not in
termsof conceptualor linguistic feedback.

4. Thelanguagegameallowsthescaffolding of complexity. Thegameusedin
this paperusesa singleword like ”ball” for identifying thereferent.Oncesingle
wordsarelearnedmorecomplex gamesbecomefeasable.

5. Social learningenablesactive learning.The learnerdoesnot needto wait
until a situationpresentsitself that providesgoodlearningdatabut canactively
provokesucha situation. We usethis particularlyfor the acquisitionof speech.
Therobotfirst asksfor theconfirmationof awordformbeforeincorporatinganew
associationin memory.

We have shown experimentallythatall theseconditionsaresufficient for the
learningof the first word. But the questionis now whetherthey arenecessary.
This can be examinedby changingthe experimentalconditionsWe will focus
hereon two pointsonly: Theclaim thatsociallearningis necessaryto constrain
whatneedsto belearned(point 1 above) andto ensurea sufficient quality of the
data(point 2).
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3.1 Constraining what needsto be learned

Languagegamesarerequiredto constrainwhatneedsto belearned.For example,
the classificationgameimplies that thereis a focuson objectseven thoughthe
learnerremainsfree to employthe specificmethodusedfor identifying objects.
In anothergame,theagentmight besolicitedto performa certainactionandso
thiswouldpushtowardstheacquisitionof actionconceptsandconceptualisations
of the roles that objectsplay in the action. Two counterargumentshave been
advancedagainstthe needfor social constraintson the learningsituation: (1)
Unsupervisedlearninghasbeenclaimedto generatenaturalcategorieswhich can
thensimplybelabelledwith thewordsheardwhenthesamesituationoccurs(the
labellingtheory),and(2) Innateconstraintscanguidethelearnerto theacquisition
of theappropriateconcepts.

To examinethe first counterargumentwe have donean experimentusing a
databaseof imagesrecordedfrom 164interactionsbetweena humananda robot
drawn from the samedialogsas thoseusedin social learning. The experiment
consistedin using oneof the bestavailable unsupervisedclusteringmethodin
orderto seewhetherany naturalcategoriesarehiddenin the data. The method
is known astheEM algorithmanddiscussedin the appendix.We have usedan
implementationfrom the publically-availabledatamining softwarecalledWeka
[WittenandEibe,2000]. The EM algorithm doesnot assumethat the learner
knows in advancethe numberof categoriesthat arehiddenin the data,because
thiswould indeedbeanunrealisticbiaswhich thelearnercannotknow. Unsuper-
visedneuralnetworkssuchastheKohonenmap[Kohonen,2001]wouldgive the
sameor worseresultsthantheEM algorithm.

Thetechniqueof crossvalidationhasbeenusedto guaranteequality of learn-
ing. The total dataset is divided randomlyinto 10 sections.Eachsectioncon-
tainsapproximatively thesamenumberof instancesfor eachclass.The learning
schemeis appliedto 9 sectionsandthentestedon theremainingoneto obtainthe
successrate. The learningprocedureis executeda total of ten times,eachtime
changingthe training andtestingsections.The overall successis estimatedby
theaverageof the tenexperiments.In orderto diminish theeffect on the initial
division into sections,thewholeprocedureis repeatedten times,andthe results
areaveraged.

As resultsin table3 show, the algorithmindeedfindsa setof clustersin the
data,eightto beprecise.But theclustersthatarefoundareunrelatedto theclas-
sificationneededfor learningthewordsin the language.Theobjectsareviewed
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in many different light conditionsandbackgroundsituationsandthe clustering
reflectsthesedifferentconditionsmorethanthespecificobjectsthemselves.

Clusters C0 C1 C2 C3 C4 C5 C6 C7
Poo-chi 9 0 2 11 6 20 0 3
RedBall 6 2 13 6 0 24 3 2
Smiley 5 2 5 2 12 25 3 3

Table3: Objectsandtheir clusters,obtainedfrom unsupervisedlearning.

If we hadto assigna nameto a singlecluster, Poo-Chiwould beassignedto
C3, the red ball to C2 andSmiley to C5. With this schemeonly 30% of the in-
stancesarecorrectlyclustered.If we associateeachclusterwith its bestname(as
shown in table4), it wouldnotbemuchbetter. Only 47%wouldbecorrectlyclus-
tered.We suspectthat theclusteringis moresensitive to contextual dimensions,
suchas the light conditionsor backgroundof the object ratherthan the object
itself.

Cluster Bestname
C0 (Poo-chi) 9
C1 (RedBall, Smiley) 2
C2 RedBall 13
C3 Poo-chi 11
C4 (Smiley) 12
C5 Smiley 25
C6 (RedBall, Smiley) 3
C7 (Poo-chi,Smiley) 3

Table4: Clustersandnamesthatbestcorrespondwith them.

An additionalpoint is thattheEM clusteringmethods,asany otherclustering
method,arrivesat differentclustersdependingon the initial conditions(random
seeds).Thereis notnecessarilyasinglesolutionandthealgorithmmightgetstuck
into a local minimum. This implies that differentagentsall usingunsupervised
learningto acquirecategoriesare unlikely to end up with the samecategories
whichmakestheestablishmentof a sharedcommunicationsystemimpossible.

The conclusionof this experimentis clear. Without the causalinfluenceof
language,a learningalgorithmcannotlearntheconceptsthatarerequiredto be
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successfulin languagecommunication.Notethattheclusteringexperimentmakes
useof very gooddata(becausethey wereacquiredin a socialinteraction).If an
agentis presentedwith aseriesof imagestakenwhile it is simply roamingaround
in theworld, a clusteringalgorithmproducesevenmoreirrelevantclassifications.

Whataboutthesecondcounterargument,namelythatinnateconstraintscould
guidethe learningprocess.Thequestionhereis what theseconstraintscouldbe.
Thereis nothingin theobservedvisualdatathatgivesany indicationwhatsoever
that we are dealingwith objects. As mentionedearlier, the robot is not even
capabletoproperlysegmenttheimage(whichwouldrequiresomesortof template
andhencealreadyanideawhattheobjectis). It seemsmuchmoreplausiblethat
thesocialinteractionhelpsthelearnerzoomin on whatneedsto belearned.

3.2 Constraining data acquisition

Thesecondpoint is that languagegamesarenecessaryto setup theright context
for theacquisitionof thesensorydata. If the influenceof themediatorweakens,
thesedatabecomelessandlessreliableandasa consequencelearningbecomes
lesssuccessful.Many machinelearningandneuralnetworkexperimentsdo not
addressthis questionbecausethedatais carefullypreparedby thehumanexper-
imenter. For example,light conditionsarekept constant,prior segmentationis
performed,thebackgroundeliminated,only goodexamplesarekept in the data
set,etc.

To examinethis point, we did anotherexperimentin which the role of the
mediatoris reduced,but not entirelyotherwisewe wouldendup in unsupervised
clusteringwhichwasjustshown to beinadequate.Therobotis now freelymoving
aroundin aplacewheretherearethreeobjects:Poo-chi,Ball andSmiley, thesame
asusedin earlierexperiments.Whenthemediatorseestherobotlookingatoneof
theseobjects,heor shesuppliesthecorrespondingname(figure2b). Wetakethis
situationto capturetheessenceof supervisedobservationallearning.Due to the
autonomousbehavior, it is verywell possible,andoftenthecase,thattherobotis
alreadylookingsomewhereelsewhenthewordhasbeenprocessed.Moreover the
mediatorcannotalwaysknow preciselywheretherobot is looking andsomight
mentionanamefor anobjectwhentheobjectis not in view. For oneof theobjects
(ball), therobothasthecapabilityto identify andtracktheobject(moreprecisely,
track somethingof a red color). This implementsa sharedattentionmechanism
whichwasalsousedin thesociallearningexperiment.Thisshouldagainmakeit
easierto learntheword for ball.
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Thedatasetof 150images(50 for eachobject)resultingfrom this interaction
wasthentestedwith aninstance-basedlearningmethod(thesameasusedin the
first experiment)andthe resultscomparedto what thesamealgorithmproduces
for thedatasetobtainedthroughmoreintenseinteractionwith ahumanmediator.
Observationalsupervisedlearningreachesan averageof 59% successwhich is
intermediarybetweenthe resultsof unsupervisedclassificationandsocial learn-
ing. A closerlook at theclassificiationerrorsthat the robotsmakes(table5 and
figure7) shows that thePoo-chiandtheSmiley arevery oftenconfused.For the
RedBall betterresultsareobtained(althoughnot asgoodasin thecaseof social
learning),which is explainedby thefact that therobot is spontaneouslyattracted
to redobjectsandthusnaturallyfocusesits gazeon them.

word/meaning Poo-chi RedBall Smiley Classificationsuccess
Poo-chi 20 13 17 0.4
RedBall 3 42 5 0.84
Smiley 13 10 27 0.54

Table5: Word/meaningsuccessratefor a sessionwithout socialembedding
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Figure7: Comparisonof classificationsuccessfor observationalandsociallearn-
ing

Two conclusionscanbedrawn: (1) Whentherole of themediatoris reduced,
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the learningdatabecomeslessreliableandhenceclassificationsuccessdeterio-
rates.Insteadof anoverall 82 % successrate,we have a 59 % successrate. The
recognitionof Poo-chihasan averagesuccessrate of 40% and that of Smiley
54%,which contrastswith a success-rateof 66%and86%respectively basedon
the ’better’ learningdata. If the role of themediatoris reducedstill further (for
exampleif themediatoris lesscareful in supplyinga word for anobject), these
resultsaggrevatefurther. (2) Whenthereis sharingof attentionresultsarebetter.
Thusthesuccess-ratefor identificationof theball is consistentlybetterthanthat
of otherobjects(around84%in bothcases).

Theconclusionsof thissecondexperimentarethereforeclear:Whentheinter-
activity characteristicfor sociallearningis reduced,thequality of thedataavail-
ablefor learningis reducedandhencetheeffectivenessof theoutcome.

3.3 ScalingUp

We have doneadditionalexperimentsto examinetheeffect of scalingup theset
of objectsandconsequentlythesetof words. Reportingon theseexperimentsis
beyondthescopeof thepresentpaper, but someconclusionscanbebriefly men-
tioned:(1) Not surprisingly, increasingthesetof featureshelps.For example,we
have usedothercolour spacesin additionto the RGB spaceandfound that this
increasesthereliability of objectrecognition.(2) Verysoon(with half adozenob-
jects)instance-basedlearningreacheslimits which startto degradeperformance.
Theproblemsaretwofold: (i) As thenumberof views storedin memoryreaches
acritical point, thetimeneededto recogniseanobjectis too longto sustainfluent
real-timeinteraction. (ii) As all sensorydimensionsare indiscriminatelytaken
into account,thedistancemeasureusedbecomeslessandlesseffective.

Wehavethereforeexperimentedwith otherconceptlearningstrategies- which
canonly beusedoncetheinitial bootstrappingasreportedin thispaperhastaken
effect. Thefirst strategy is to learnthemostsignificantvisualdimensions,which
canbedoneby statisticalmethodsthatexaminethepredictive valueof eachdi-
mension.Statisticalcorrelationsof eachdimensionwith theobjectclassesandthe
intercorrelationsamongdimensionscanbecomputedandthedimensionswith the
highestclasscorrelationandthelowestintercorrelationsretained.This collapses
the spaceinto a morecompactandhencemoreefficient andmorereliablecon-
ceptualspaceandimmediatelyimprovestheefficacityof instance-basedlearning.
Thesecondstrategy is to graduallycomplementinstance-basedlearningwith rule
inductionor theinductionof decision-trees,operatingover thedataobtainedin a
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sociallearningframework.

4 Conclusion

This paperexaminedwhat it would taketo re-enacta situationin which an au-
tonomousphysicalbeingcanbegin to acquire’first words’. We have carriedout
a realisticroboticexperimentin thesensethattherobotis notonly ignorantabout
thewordsin the languagebut alsoabouttheperceptuallygroundedconceptsun-
derlyingthesewords. Moreover therobot is mobileandfully autonomous.As a
consequencewe have beenforcedto confronta situationin which thedataavail-
ablefor learningis notgivenby thehumanexperimenterbut mustbeacquiredby
therobotasit is interactingwith a humanin a complex realworld environment.

Thepaperarguedin favorof sociallearningasopposedto individualisticlearn-
ing. This conclusionhasalsobeendefendedby studentsof child languageacqui-
sition [Tomasello,2000] and researchersengagedin teachingwords to animals
[Pepperberg,1991]. In social learning,the mediatorplaysa crucial role to con-
strainthesituation,scaffold complexity, andprovide pragmaticfeedback.Social
learningmakesit easierto introducea causalinfluenceof languageon category
formationwhichwasshown to benecessaryif categorieslearnedby therobotare
to besimilar enoughto thosealreadyusedin anexisting humanculture.We have
alsoarguedin favor of a gradualbootstrappingprocess

We now returnto thequestionposedin thebeginningof thepaper:Whatare
thecrucial prerequisitesfor theacquisitionof ’ thefirst words’. We have argued
theseto includethefollowing:

1. The ability to acquireandengagein structuredsocialinteractions,i.e. in-
teractionsthat follow a routinisedpattern. This requiresabilities like turn
taking,recognitionof others,focusof attention,andothercapabilitiesasso-
ciatedwith a ’ theoryof mind’.

2. The presenceof a mediator. The mediatoris alreadypart of a culture
andthereforeinfluencesconceptacquisitionso that it conformsto what is
neededfor a specificlanguage.

3. Incrementallearningalgorithmsfor theacquisitionof concepts,suchasthe
instance-basedlearningschemausedin this paper.

27



4. An associative memoryfor storingthe relationbetweenwordsandmean-
ingsandreinforcementlearningmethodsfor theacquisitionof theseasso-
ciations.

Thispaperhasnotaddressedmany otherissuesthatcanberaisedin thepresent
context. Thetypesof wordsthatarelearnedarenotuncommonfor thefirst words
alsousedby childrenbut we did not discusstheacquisitionof wordsfor action,
or any otherconceptualdomain. The issueof grammarhasnot beenaddressed.
In any case,it arisesin childrenonly after an initial lexicon is in place. Some
hypothesesandroboticexperimentsof thetransitionto grammarcanbefoundin
[Steels,1998]. We did not addressthe issuehow languagegamesthemselvesare
learnedor invented.This is clearlya very difficult problemandwill beaddressed
in otherpapers.Finally, we did not addressscale-up.Our additionalexperiments
not reportedin this paperhave alreadyshown however that instance-basedlearn-
ing is adequatefor theinitial phasesof bootstrappingbut hasto becomplemented
with otherlearningmethodsto scaleupconceptacquisitionandhencewordlearn-
ing.

We believe thatthereis greatvaluein carryingout roboticexperimentsof the
sortshown in this paperbecausethey forceusto dealwith realisticassumptions.
Many learningmethodsachieve quite reasonableperformancein the supervised
learningof wordsandmeanings,but they sidesteptheproblemwherethelearning
datacomesfrom. Social learningdoesaddressthis issueby providing a frame-
work for helpingthe learnerto focuson what needsto be learnedandto gather
highquality datacritical for learning.
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APPENDIX I.

This appendixbriefly describestheEM clusteringalgorithmusedfor theex-
perimentsin unsupervisedlearningof classificationconcepts[WittenandEibe,2000].
Thealgorithmis basedona statisticalmodelcalledfinite mixture.A mixtureis a
setof k probabilitydistributions,representingk clusters.In thecaseof Gaussian
distributions,eachdistribution Z is determinedby two parametersits mean []\
andits standarddeviation ^X\ . If we know that _a` H _ Dcb8bdb _Xe belongto theclusterZ , [a\ and ^X\ areveryeasyto compute.For instancein thesimplecasein which
thereis only onenumericattribute _ :

[]\ L _a` W bfb W _Xeg (2)

^ D\ L F _a` R [a\ J D W bfb W F _Xe R []\ J Dg Rih (3)

If we know [ and ^ for the differentclusters,it is alsoeasyto computethe
probabilitiesthatagiveninstancecomesfrom eachdistribution. Givenaninstance_ , theprobabilitythatit belongsto clusterD is :

j�k$l ZnmP_Xo L jpk$l _qmrZ
o b j�k$l Zso Jj�k$l _Xo Lut F _cvw[a\ H ^X\ J b jpk$l Z
o Jj�k$l _Xo (4)

wheret F _cvw[]\ H ^X\ J is thenormaldistribution functionfor clusterD

t F _cvw[]\ H ^x\ J�L
h

y z|{ ^X\!}8~$�
R F _ R [ \ J Dz b ^ D\ (5)

The EM algorithm standsfor ”expectation-maximization”.Given an initial
setof distributions,thefirst stepis thecalculationof theclusterprobabilities(the
”expected”classvalues). The secondstepis the calculationof the distribution
parametersby the”maximization” of thelikelihood of thedistributionsgiventhe
data.Thesetwo stepsareiteratedlike in a k-meansalgorithm.

For theestimationof [a\ and ^X\ , a slightadjustmentmustbemadecompared
to equations2 and3 dueto thefact thatonly clusterprobabilities,not theclusters
themselves,known for eachinstance.Theseprobabilitiesactlike weights.

[]\ Lu� ` b _ `
W bfb W � e b _ e� `
W bfb W � e (6)
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^ D\ L � ` b F _ `
R [ \ J D W b�b W � e b F _ e

R [ \ J D
� `

W bfb W � e (7)

wherethe _ O arenow all theinstancesand �
O
is theprobabilitythat instancei

belongsto clusterD.
Theoverall likelihoodof adistributionsetis obtainedby multiplying theprob-

abilitiesof theindividual instancesi:

� Li��O M \N� \ b
j�k$l _ O mrZ
o (8)

where
j�k$l _ O mrZ
o is determinedfrom t F _

O vw[ \ H ^ \ J . �
is an indicatorof the

quality of the distribution. Q increasesat eachiteration. The algorithm stops
when the the increaseof the log-likelihood becomesnegligible (e.g. lessthanhd��� `�� increasefor tensuccessive iterations).

TheEM algorithmis guaranteedto convergeto amaximumbut notnecessary
to the global maximum. The algorithmcould be repeatedseveral times,with a
differentinitial configuration.By varyingthenumberof clustersk, it is possible
to determinetheonewhichmaximize

�
andthusthe”natural” numberof clusters.
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