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Abstract

This paperexploresthe hypothesighat languagecommunicationn its
very first stageis bootstrappedh a sociallearningprocessunderthe strong
influenceof culture. A concretdframeavork for sociallearninghasbeende-
velopedbasedon the notion of alanguagegame. Autonomousobotshave
beenprogrammedo behae accordingto this framevork. We show ex-
perimentsthat demonstratevhy therehasto be a causalrole of language
on categyory acquisition; partly by showing that it leadseffectively to the
bootstrappingf communicatiorand partly by shaving thatotherforms of
learningdo not generateatgoriesusablein communicatioror makeinfor-
mationassumptionsvhich cannotbe satisfied.

1 Intr oduction

How childrenacquirethemeaningof wordsis afascinatingstill unresolhedprob-
lem but a key towardsunderstandingnow human-leel languagecommunication
could ever have developed. This paperaddressesno basicpuzzlesconcerning
this process:

1. Howdoesthebootstappinginto communicatiortakeplace?Whatarenec-
essanprerequisiteso enablehemagicmomentwhenthechild learnshow
to mean’[Halliday, 1987?



2. Howis meaningacquired? Themeaningsisedby aspeakecannotdirectly
be obsered by the listener so how cana listenerwho doesnot know the
meaningof wordsever learnthem?

Therearetwo mainlinesof thinking onthesequestionsindividualisticlearn-
ing andsociallearning.In thecaseof individualisticlearning thechild is assumed
to receve asinput a large numberof examplecasesvherespeechis pairedwith
specificsituations.Sheis eitheralreadymasteringhe necessargonceptor able
to extractthroughaninductive learningprocessvhatis essentiabndrecurrentof
thesesituations,in otherwordslearnthe appropriatecateoriesunderlyinglan-
guage,andthenassociatehesecategyorieswith words. This is known ascross-
situationallearning[Fischeretal., 1994]. Othershave proposeda form of con-
trastive learningon the samesort of data,driven by the hypothesighat different
wordshave differentmeaninggClark, 1987. Thistypeof individualisticlearning
assumes ratherpassve role of thelanguagdearnerandlittle feedbaclgivenby
thespeakerlt assumeso causainfluenceof languageon conceptformation.We
call it the labelling theory becausehe languagdearneris assumedo associate
labelswith existing categyories. The labelling theory is remarkablywidespread
amongresearcherstudyingthe acquisitionof communicatiorandrecentlyvari-
ousattemptshave beenmadeto modelit with neuralnetworksor symboliclearn-
ing algorithms[BroederandMurre, 200q. It is known thatinduction by itself
is aweaklearningmethod,in the sensethatit doesnot give identicalresultson
thesamedataandmayyield irrelevantclusteringcomparedo humancateyories.
This will indeedbe demonstratedo be the caselaterin this paper To counter
this argumentit is usuallyproposedhatinnateconstraintshelp thelearnerzoom
in on the importantaspectof the ervironment[Bloom, 2000], [Smith,2001],
[Markman,1994].

In the caseof sociallearning,interactionwith otherhumanbeingsis consid-
eredcrucial ([Tomasello200q, [Steels,2001d). Learningis notonly grounded
in reality througha sensori-motoapparatusut also socially groundedthrough
interactionswith others. The learningeventinvolves an interactionbetweenat
leasttwo individualsin a sharedervironment. They will further be called the
learnerandthe mediator The mediatorcould be a parentandthelearnera child,
but children(or adults)cananddo teacheachotherjustaswell. Giventhecrucial
role of the mediator we call sociallearningalsomediatedearning. The goal of
the interactionis not really teaching,which is why we usethe term mediatoras
opposedeacherThegoalis rathersomethingoracticalin theworld, for example,



to identify an objector anaction. The mediatorhelpsto achieve the goalandis
oftentheonewho wantsto seethe goalachiesed.

Themediatorthasvariousroles: Shesetsconstraintonthesituationto makeit
moremanageabléscafolding), givesencouragemerdn the way, providesfeed-
back,andactsuponthe consequencesf the learners actions. The feedbackis
not directly aboutlanguageandcertainlynot aboutthe conceptaunderlyinglan-
guage.Thelatter arenever visible. The learnercannotinspecttelepathicallythe
internal statesof the speakerandthe mediatorcannotknow which conceptsare
alreadyknown by thelearner Insteadfeedbackis pragmaticthatmeansn terms
of whetherthe goalhasbeenrealisedor not. Considera situationwherethe me-
diatorsays:"Give methatpen”, andthelearnerpicks up a pieceof paperinstead
of the pen. The mediatormight say: "No, not the paper the pen”, and point to
thepen. Thisis anexampleof pragmaticfeedback.lt is not only relevantto suc-
ceedsubsequentlyn the task but suppliesthe learnerwith informationrelevant
for acquiringnew knowledge.Thelearnercangraspthereferentfrom the context
andsituation,hypothesise classificatiorof the referent,andstoreanassociation
betweerthe classificationandthe word for future use. While doing all this, the
learneractiely tries to guessthe intentionsof the mediator The intentionsare
of two sorts. The learnermustguesswhatthe goalis thatthe mediatorwantsto
seerealised(like 'pick up the penon the table’) andthe learnermustguessthe
way thatthe mediatorhasconstruedhe world [Langackey1991]. Typically the
learnerusesherselfasa model of how the mediatorwould makea decisionand
adaptghis modelwhenadiscrepang arises.

Sociallearningenablesactive learning. The learnercaninitiate a kind of ex-
perimentto testknowledgethat is uncertainor to fill in missingwholes. The
mediatoris availableto give directconcretefeedbackior the specificexperiment
doneby thelearner This obviously speedsip thelearning,comparedo a passve
learningsituationwherethe learnersimply hasto wait until examplesarisethat
would pushthelearningforward.

The debatebetweenindividualistic versussocial learningis relatedto the
equally hotly debatedquestionwhetherthereis a causalrole for languagein
cateyory acquisitionor not. From the viewpoint of the labelling theory the ac-
quisition of conceptsoccursindependentlyoff and prior to languageacquisi-
tion [Harnad,1990. Sothereis no causalrole of language.Conceptualisation
and verbalisationare viewed as operatingin independentnoduleswhich have
no influenceon eachother[Fodor, 1983. The acquisitionof languageis seen
asa problemof learninglabelsfor alreadyexisting concepts.Concerningthen
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the issuehow the conceptsthemseles are acquired,two opposingschoolsare
found: natvism and empiricism. Nativists like Fodor [Fodor, 1999 claim that
concepts particularly basic perceptuallygroundedconcepts,are innate and so
thereis no learningprocessecessaryThey basetheir agumentson the poverty
of thestimulus[Chomsky, 1975],thefundamentalveaknes®f inductive learning
[Popper 1969, andthelackof clearcateyorial or linguistic feedback Empiricists
claimthatconceptsre learnedfor exampleby statisticalearningmethodsmple-
mentedasneuralnetworks[Ellman, 1993]. Thusa large numberof situationsin
which aredobjectappearsreseenby thelearnerandclusterednto 'natural cat-
egories’. Thesenaturalcategoriesthenform the basisfor learningword-meaning.
The alternatve line of thinking, which is often adoptedoy proponentf so-
cial learning,claimsthatthereis a causalrole for culturein conceptacquisition
andthis role is particularly (but not exclusively) playedthroughlanguage.This
hasbeenarguedboth by linguists and philosophers.In linguistics, the position
is known asthe SapirWhorf thesis. It is basedon evidencethat differentlan-
guagesn theworld notonly usedifferentword formsandsyntacticconstructions
but that the conceptualisationanderlyinglanguageare profoundly differentas
well [Talmy, 2000]. Languageacquisitionthereforegoeshandin handwith con-
ceptacquisitionBowerman 200]. Language-specificonceptualisationshange
overtimein aculturalevolution processwhichin turn causegrammaticakvolu-
tion thatmay againinduceconceptuathanggHeine,1997]. Note thata causal
influenceof languageacquisitionon conceptformation doesnot imply that all
conceptaundego this influenceor that thereare no conceptsprior to the begin-
ning of languageacquisition.In fact, thereareprobablymillions of conceptaused
in sensori-motoicontrol, social interaction,emotion,etc. which are never lexi-
calised.The main point of the paperis thatfor thoseconceptaunderlyingnatural
languagecommunicatiorthis causainfluencenot only existsbut is necessary
Ludwig Wittgenstein[Wittgenstein, 1953 is the bestknown philosophical
proponentof a causalinfluenceof languageon meaning. His positionis in a
senseeven moreradicalthanthe SapirWhorf thesis. He hasarguedthat mean-
ingsareanintegratedpartof the situatedcontext of use.Thustheword "ball” not
only includesa particularconceptualisatioof reality in orderto referto a certain
type of objectbut is alsoa move in alanguagegame,indicatingthatthe speaker
wantsto geta particularactionbe carriedout. Moreover the meaningof "ball” is
not abstractat all, i.e. somethingof the sort’sphericalshapedhysicalobjectof
a uniform colour’, but is very context-dependentparticularlyin thefirst stages.
This point hasalsobeenmadeby Quine[Quine, 1960 who hasarguedthatbasic
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notionssuchasobject-hoodonly graduallyarise. Childrendo not startwith the
pre-gvencleanabstractatayoriesthatadultsappeato employ

1.1 Robotsasmodels

Thispaperexamineghehypothesishatcommunications bootstrappeh asocial
learningprocessunderthestronginfluenceof languagendthatinitially meanings
are situatedand contet-dependent. It arguesthat individualistic obsenrational
learningandthe labelingtheory cannotexplain the very difficult first stepsinto
language-likecommunication.Many concreteandeven formal modelsexist for
individualistic learning[BroederandMurre, 200Q but similar modelsfor social
learningare lacking. In the absenceof suchmodelsit is difficult to seriously
comparethe differentpositionsin the debatewithout sliding into rhethoric. The
first goal of our work hasthereforebeento develop a concretemodelfor social
learningandcomparets behaior toindividualisticlearning.Thesecondyoalis to
shaw thatculturalinfluenceandcontext-dependenineaningsareindeedthe most
plausibleandeffective way for anindividual to bootstrapherselfinto alanguage
culture.

The methodwe useto validateour claimsis perhapsunusualfrom a social
scienceperspectie. First of all we completelyoperationaliseandformalisethe
stepsnecessaryn languageacquisition.Validationof this formal modelby hand
is however completelyexcludedgiventhe enormousompleity of the cognitive
processingequiredfor groundedanguageevenfor handlingsinglewords. Soit
is atleastnecessaryo do computersimulations.Herewe go onestepfurtherand
do experimentswith autonomousnobilerobots,in line of similar work reported
in ([SteelsandVogt, 1997],[Billard etal., 1999, [Vogt,2000]).

Roboticexperimentsaaremotivatedasfollows:

1. They force us to makeevery claim or hypothesisaboutassumednternal
structuresandprocessesery concreteandsoit is clearhow thetheoretical
assumptionfiave beenoperationalised.

2. We canusereal-worldsituations,.e. physicalobjects,humaninteractions,
etc. to getrealistic presuppositiongndrealistic sourcesof input. Thisis
particularlyimportantwhenstudyingsociallearning,which reliesheavily
ontheinterventionof the mediator groundedn reality.



3. We canextract dataaboutinternal statesof the learningprocesswhich is
not possiblewith humanbeings.Internalstatesof childrengoingthrougha
developmentabr learningprocessannotbe obsenedatall.

4. We caneasilyexaminealternatve hypothesesFor example,we cancom-
parewhatanindividualisticinductive learningprocessvould achiere with
thesamedataasa sociallearningprocess.

But thereareobviously alsoimportantlimits to this methodology:

1. Wedonotpretendatall thatroboticexperimentamodelin ary realisticway
childrennortheervironmentsan whichthey typically operate Ourgoalhere
is to examinespecificassumptionsboutthe emegenceof communication
by building artificial systemssorealismis notatissue[Steels,2001b].

2. It isanextraordinarychallengeo build andmaintainphysicalrobotsof the
requiredcompleity. For practicalreasonglimitationsof cameraesolution,
memoryand processingoower available on board)we cannotalwaysuse
the bestknown algorithmavailabletoday This putslimits on whatcanbe
technicallyachieved today andso experimentsneedto be designedwithin
thesdimits.

By usingrealworld autonomousobots,our experimentdiffer from othercompu-
tationalexperimentsn wordlearning(suchas[Siskind, 1995])in which situation-
word pairs are preparedn adwanceby the humanexperimenterand even more
from moretraditional connectionistwvord learningexperimentswheremeanings
areexplicitly given by a human[Regier, 1996]. Here we approachmuch more
closelythe conditionsof a oneyearold child who is moving aroundfreely with
no preconceptiorof whatmight be the meaningof a word. In fact, we makethe
situationevenmoredifficult thanthatof a child which presumablyhasalreadyac-
guiredmary moreconceptghatcouldpotentiallybe usedor adaptedor language
communication.

For the experimentseportedn this paper we useanenhancedersionof the
Sory AIBO"Mrobot (seefigure 1) further calledtherobot. Therobotis fully au-
tonomousandmobile with morethana thousandoehaiors, coordinated¢hrough
a comple behaior-basedmotivationalsystem[Fujita andKitano, 1998]. It fea-
tures4-leggedlocomotion,a camerafor visual input, two microphonesa wide
varietyof bodysensorsaswell ason boardbatteriesandthenecessargomputing



power. We have choserthis platformbecauseahe AIBO is oneof the mostcom-
plex autonomousobotscurrently in existencebut neverthelesseliable enough
for systematiexperimentsdueto theindustrialstandardsvith which it hasbeen
designecandbuilt. Moreoverthe AIBO is designedo enticeinteractionwith hu-
mans,which is whatwe needfor experimentsn socialhuman-robotnteraction.
It comeswith a very wide rangeof capabilitieswhich arenecessaryo establish
the conditionsfor socialinteraction,suchasthe ability to look at the objectasa
way to draw attentionof the speaketo the object.

ANTENNA

CAMERA

CAMERA VIEW

Figurel: Ourrobotis anenhancedersionof commerciallyavailable AIBOs. It
is linked to anadditionalcomputerthrougharadioconnection

The experimentsdiscussedurther in this paperwork on an enhancedrer-
sion of the AIBO becausehereis not enoughcomputingpower on boardto do
them. We have decidedto keepthe original autonomousehaior of the robot
andbuild additionalfunctionalityontop of it. Our systenmthusactsasa cognitive
layerwhich interfereswith the currentautonomou®ehaior, without controlling
it completely A secondcomputerimplementspeechrecognitionfacilities which
enablegnteractionsusingspokenwords. In orderto avoid recognitionproblems
linked with noise,the mediatorusesan external microphoneto interactwith the
robot. The computeralsoimplementsa protocolfor sendingandreceving data
betweerthe computerandtherobotthrougharadiolink. The mediatormusttake
into accountheglobal’mood” of therobotasgeneratedby theautonomousnoti-
vationalsystem For example,it is possiblehatasessiobecomeweryineffective



becauseherobotis in a”lethargical” mood.

Eventhoughthe robotis extraordinarilycomple, it doesnot necessarilyuse
stateof the art algorithmsfor every aspectbecausethat would require vastly
more computationakesources.For example, 3d depthrecognitionis now fea-
sible[BeymerandKonolige,1999]but would requiremorehardwareon therobot
(suchastwo camerasnsteadof one)andmuchmore processing.Thesetechno-
logical constraintdimit necessarilythe potentiallevels of intelligence. We feel
howeverthatin the presentontet theseweaknessearenotadravback,because
we wantto focusontheveryfirst words. This shouldnotrequirea comple struc-
tural analysisof visualscenesnor very sophisticateavorld models,nor complec
grammaticaktonstructionsor intricatedialogs.

1.2 Overview

We have donethreetypesof experimentsall focusingon namingthreeobjects
in its environment: a red ball, a yellow puppetcalled "Smiley”, and a small
AIBO imitation called Poo-chi™. In the first experimentthe robot hasbeen
programmedo be capableof someform of sociallearning. The learningtakes
placethroughintenseinteractionwith a humanmediator(figure 2a).

Figure2: Threetypesof experimentswith differentdegreesof socialinteraction:
stronginteraction(a), obsenationallearningwith supervision(b), unsupervised
learning(c)

In the secondexperimentthe role of the mediatoris stronglyreducedo cre-
atealearningsituationcomparabléo supervisedbsenationallearning(figure 2
b). The robot getsexamplespairing a word with a view of one of the objects.
The humanmediatorsuppliesthe words but thereis not the intenseinteraction
characteristiof sociallearning.



In thethird experimentwe examineunsupervisedbsenationallearning(fig-
ure 2 ¢). Therobot getsa seriesof imagesand usesunsuperviseclustering
methodsto detectthe naturalcateyoriespresentin the data. The questionhere
is whetherthesenaturalcategyorieshave ary relationto the categoriesthatunderly
thewordsnormallyusedin Englishfor referringto the objects.

The rest of the papercontainstwo main parts. The first partis aboutthe
functionalitiesthat needto be in placefor establishingforms of interactionin
which early languagecould sproutthroughsocial learning. We will arguethat
the notion of a languagegame[Steels,2001a]is an appropriateframework for
settingup suchinteractionsandintroducethe exampleof a classificationgame.
Thesecondpartof the paperfocusesontheissueof meaningandparticularlyon
the debatebetweerobsenationalvs. sociallearning. We concludethatthereare
strongreasongo insiston sociallearningto explain how verbalcommunication
mightbootstrap.

2 LanguageGames

In previouswork we have foundthatthe notionof alanguagegameis a very ef-
fectivewayto framesocialandculturallearning[Steels,20014. A gameis arou-
tinisedsequenc®f interactionsbetweenwo agentsnvolving a sharedsituation
in theworld. The playershave differentroles. Therearetypically variousobjects
involvedandparticipantseedto maintainthe relevantrepresentationduringthe
game,e.g. whathasbeenmentionedor implied earliet The possiblestepsin a
gamearecalledmoves.Eachmoveis appropriaten circumstancedeterminedy
motivationsandlong term objectvesandthe opportunitiesn the concretesitua-
tion, just like a move in a gameof chess.Gamesare muchmore encompassing
thanbehaiors in the senseof behaior-basedrobots[SteelsandBrooks,1994].
They mayrunfor severalminutesandinvokemary behaiors andcognitive activ-
itiesontheway. They maybeinterruptedto beresumedater.

Hereis anexampleof a gameplayedwith a child while shaving picturesof
animals:

Fat her: Wat does the cow say? [points to cow] Mooooh.
Child: [just observes]

Fat her: Wat does the dog say? [points to dog] Waf.
Chil d: [observes]



Fat her: Wat does the cow say?

[ points to cow again and then waits ... ]
Chil d: Moh
Fat her: Yeah!

The learnerlearnsto reproduceandrecognisehe soundsof the variousanimals
andto associat@ certainsoundwith a particularimageanda particularword. The
exampleis very typical, in thesensehat (1) it involvesmary sensorymodalities
andabilities (sound,image,language)(2) it containsa routinisedsetof interac-
tions which is well entrenchedhfter a while sothatit is clearwhatis expected,
(3) thelearnerplaysalongandguessesvhatthe mediatorwantsandthe mediator
setsup the context, constrainghe difficulties, and givesfeedbackon succesor
failure. (4) The meaningof wordslike 'cow’ and’dog’ or 'moooh’ and’'waf’ in-
volvesbothaconceptuabdspec{classificatiorof theanimalsandimitationsof the
soundthey make)anda gameaspectmovesat the right moment). Every parent
playsthousand®f suchgameswith their childrenand,equallyimportant,aftera
while childrenplay suchgamesamongthemseles,particularlysymbolicgames.

Gamedike the oneabove aretypical for childrenaroundthe agebetween?
and3. This examplefocusesexclusively on languagdearning. Normally games
try to achieve aspecificcooperatre goalthroughcommunicatiorwherelanguage
playsanauxiliary role, suchas:

¢ Getthelistenerto performaphysicalaction,for examplemove anobject.

¢ Draw attentionof the listenerto an elementin the context, for example,an
objectthatshewantsto seemoved.

¢ Restrictthe contet, whichis helpful for draving attentionto anelemenitn
it.

¢ Transmitinformationaboutone’s internal state,for exampleto signalthe
degreeof willingnessto cooperate.

¢ Transmitinformationaboutthe stateof the world, for exampleasrelevant
for futureaction.

For all thesegamegheremustbe a numberof prerequisite$or socialinteraction
like thefollowing:
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1. Becomeawarethatthereis a personn theervironment,by recognisinghat
thereis ahumanvoice or ahumanbodily shape.

2. Recognise¢he personby facerecognitionor speakerdentification.

3. Try to figure out what objectthe speakeis focusingattentionto, indepen-
dently of languageby gazefollowing andeye tracking.

4. Usethepresensituationto restrictthecontext, predictpossibleactions,and
predictpossiblegoalsof the speaker

5. Give feedbackat all timeson which objectyou arefocusing,for example
by touchingthe objector looking atit intently.

6. Indicatethatyou areattendingo the speakerby looking up to thespeaker

Thesevariousactiitiesareoftenassociateavith having a‘theory of mind’ [Baron-Cohen1997].
It is clearthattheseprerequisitesiswell asthe onesspecificallyrequiredfor the
languagespect®f agamerequiremary cognitive capabilitiesvision, gesturing,
patternrecognition,speechanalysisand synthesisconceptualisationverbalisa-
tion, interpretationpehaioral recognition action,etc. This papemwill notgointo
ary technicaldetail how thesecapabilitieshave beenachieved for the robot (in
mostcase$y adoptingstateof theart Al techniqueshor how they areintegrated.
It sufficesto know that we have a large library of componentsand a scripting
languageCOALA thathandleghe integrationandschedulingn real-timeof be-
haviors to implementinteractve dialogs. The agents scriptsfor playinga game
shouldnot only invoke the necessargomponents$o achiase successn thegame
but alsotrigger the learningalgorithmsthat can help to fill in missingconcepts
or learnthe meaningof new stretchesof naturallanguage. We do not pretend
thatary of thesecomponentachiezeshumanlevel performancefar from it. But
they areenoughto do experimentsaddressindghe issuesaisedin this paperand
obsenersareusuallystunnedaboutthelevel of performancealreadyachieved.

2.1 The ClassificationGame

In earlier work, we have beenexperimentingwith variouskinds of language
games,most notably a guessinggame[SteelsandKaplan,1998], in which the
listenermustguessan objectin a particularcontext througha verbaldescription
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that expresses propertyof the objectwhich is not true for any of the otherob-
jectsin the context. Therobotsin theseexperimentswere static: pan-tilt units
mountedon a fixedtripod. Theseexperimentshave demonstratetbeyond doubt
thatthe languagegameapproachs effective, given appropriatescripts,not only
for sustaininga dialog but alsofor acquiringthe necessargonceptsandwords.
The emegenceandevolution of alexiconin a populationof agentshasbeenex-
perimentallyshavn to arise[Steelsetal., 2002].

In thepresenpapemwe will usea classificatiorgyame.Theclassificatiorgame
is similar to the guessinggame,exceptthat thereis only a single objectto be
classified Becauseherobot's cameradoesnothave averywide view angle,only
one objectis generallyin view, and so the classificationgameis more natural
for this robotthanthe guessinggame. It is similar to the interactionsstudiedin
[Roy, 1999 and[Fujita etal.,2001]andsoit makescomparisorwith otherwork
easier Theplayful objectsto beclassifiedncludeaball, asmallpuppethatlooks
like a Smiley, a small AIBO imitation marketedas poo-chi. Englishwordslike
"ball”, "smiley”, or’poo-chi” areusedby thehumanmediatorin interactionswith
therobot. The maingoalfor the robotis to acquirethe properuseof thewordin
relationto visualimages.

Figure3: Differentviews of aredball ascapturedoy therobot's camera.

Figure3 givesanideaof the difficultiesinvolved. All theseimageshave been
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capturedwith therobot’s camera Differentambientlight conditionsmay change
completelythe colour reflection of an object. An objectis almostnever seen
in its entirety It canhave a comple structureso that differentsidesaretotally
different (for exampleback andfront of poo-chi). Consequentlysegmentation
andsubsequentlassifications extremelydifficult. For example theredball may
sometimedave a light patchwhich looks like a secondobjector fuse so much
with the backgroundhatit is hardly recognisable We feel thatit is of extreme
importancdo startfrom realisticimagegakenduringarealworld interactiorwith
therobotanda human. By taking artificial images(for examplepre-sgmented
imagesunderidentical light conditions)mary of the real world problemsthat
must be solved bootstrappingcommunicatiorwould disappeardiminishingthe
strengthof the conclusionghatcanbedrawvn.

2.2 Script

Therobothasascript,implementedasa collectionof looselyconnectedgchemas,
for playingthe classificationgame.Hereis atypical dialog basedon this script,
startingwhentherobotsitsdown.

1. Human: Stand.
2. Human: Stand up.

Therobothasalreadyacquirechamesf actions(asexplainedin [Kaplanetal., 2001]).
It remainsundertheinfluenceof its autonomou$ehaior controller Forcingthe
robotto standup is away to makeit concentrat®n the languagegame.Because
speectsignalshave beenheardthe robotknows thatthereis someonen theen-
vironmenttalking to it. The humannow shows the ball to the robot (figure 4

a).

3. Hunman: Look

Theword ”look” helpsto focusattentionandsignalsthe begining of a language
game.Therobotnow concentratesntheball, startstrackingit, andsignalsfocus

by looking at the ball (figure 4 a) andtrying to touchit (figure 4 b). It further

signalsattentionby looking first at the speakel(figure 4 c) andthenbackat the

ball (figure 4 d). In fact, theseareall emegentbehaiors of the objecttracker

The otherautonomoupehaiors interactwith the schemasteeringthe language
game.
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4. Human: ball

The robotdoesnot know a word yet for this object,so a learningactvity starts.
Therobotasksfirst for feedbackof theword to makesurethatthe word hasbeen
heardcorrectly

5. Aibo: Ball?
6. Human: Yes

Ball is thecorrectword andit is associateavith aview of the objectseen.

Notethatseveralthingsmight have gonewrongin this episodeandcorrection
from the humanmediatorwould have beenrequired. For example, the wrong
word might have beenhearddueto problemswith speechrecognition,the robot
might not have beenpayingattentionto the ball but, becauseof its autonomous
behaiors, might have startedto look elsavhere,etc. By maintaininga tightly
coupledinteraction,the mediatorcanhelp the learnerandthis is the essencef
sociallearning:constrainingcontext, scafolding (thehumansays’ball” not”this
is the ball” which would be muchmoredifficult), andpragmaticfeedbackon the
way.

The dialog scriptsimplementecn the robotaresufficiently flexible to allow
mary variantsof theclassificatiorgame andspecificallyenablethelearnerto test
outknowledge.Herearesomeotherexampledialogs:

1. Human: What is it?
2. Ai bo: Ball
3. Hunman: Good.

1. Human: What is it?

2. Albo: Sml ey

3. Human: No; listen; Ball.
4. Aibo: Ball?

5. Hunman: Yes.

1. Human: Is it .. Smley?
2. Aibo: No; ball

3. Human: Good.

In eachcasetherobotcateyorisesandnamesheobjectandgetsfeedbackvhether
thenamingwascorrectfrom a pragmaticviewpoint.
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Figure4: Differentstepsduringanlanguagegame
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We have implementedall the necessarycomponentdo have the robot play
classificationgamesof the sort shavn in theseexamplesand experimentedfor
severalmonthsin human-robointeractions.Theseexperimentshave shavn that
the framework of languagegamess effective to enablethe learningof the 'first
words’andtheclassificatoryconceptshatgowith it. Beforediscussindheresults
of theseexperiments,the next sectionsprovide somemore detail on the most
importantpartsof the classificatiorscript.

2.3 Classification

The classificationgamerelieson the ability to classifyobjects. Thereare mary

possiblewaysto classifyobjectsandmary techniquesareknown to acquireeach
type of classification We have tried to useasmuchaspossiblewell known, state
of the art methods.Thefirst importantdecisionwasnot to segmentobjects.Ob-

ject sggmentations notoriouslydifficult andgenerallybelievedto beimpossible,
unlessthereis a cleartemplateof the objectavailable. Edgedetection,3-d sey-

mentation,colour sggmentation,sggmentationbasedon changefrom oneimage
to the next, etc. all yield possiblesegmentsbut noneis failproof. Sothelearner
is confrontedwith a chickenand egg problem. Thereis no way to know what
countsasan objectbut without this knowledgeit is virtually impossibleto per

form sggmentation By notrelying on prior sggmentatiorwe resol\e this paradox.
It implies however thatthe initial conceptdor objectsarealwayshighly context-

sensitve. This situated,contect-sensitve natureof objectknowledgeis in line

with Wittgensteins point of view andhasalsobeenarguedon empiricalgrounds
[Clancey, 1997.

The seconddecisionwasto usean instance-basedethodof classification
([Mel, 1997], [Witten andEibe,2000]). Many different’views’ are storedof an
objectin contet and classificationtakesplaceby a nearesineighboralgorithm.
Views arenot storedin termsof full RGB bitmapswhichwould requiretoo much
storageandwould requirevery computation-intensie methodsfor comparison.
Insteadtheimageis first normalisedn orderto remove too muchdependengon
brightnesdFinlaysonetal., 1999, R(ed)G(reen)B(luejlataarenormalisedwith
respecto R+G+Bandonly two dimensiongG andB) arekeptsinceR + G + B
= 1.0, sothethird dimensionis no longerinformative. Thena 16 x 16 2D color
histogramis constructef the normalisedmageandevery imageis represented
by 256values.Thesearethedimension®of theconceptuaspaceusedto represent
objectsin memory Figure5 shawvs an objectandits correspondindhistogram.
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Notethatwe cannnoteally saythatthe memory’represents’bbjectsbecausehe
robothasno notionyet of whatanobjectis. The color histogranreflectsboththe
perceptiorof the objectandits background.

Figure5: Exampleof animageandtheassociatedhistogram

To comparehe perceved histogramwith the onespreviously storedin mem-
ory, we usea y?-divergencemeasuralefinedin thefollowing way:

(a; — bi)*

(A B) =
YA, B) =) Py

7

(1)

wherea; andb; arethe valueof two histograms4 and B indexed by :. The view
with theshortestlistancan pairwisecomparisorio theinputimageis considered
to be the’'winning’ view. Several other methodsfor matchinghistogramshave
beencomparedvith thismeasuréy SchieleandCrowley [SchieleandCrowley, 1996]
andit appearedo bethebestone.lt is usedalsoby Roy[Roy, 1999].

Instance-basel@arningwasusedfor two reasons(1) It supportancremental
learning.Thereis no strict separatioetweeralearningphaseanda usagegphase
which would be very unrealisticwith respectto humanlanguageearning. (2)
It exhibits very quick acquisition(oneinstanceearning)which is alsoobsened
in children. Acquisition canof coursebe followed by performancedegradation
whennew situationsarisethatrequirethe storageof new views. Oncetheseviews
have beenseen,performancequickly goesup again. This type of behaior is
very differentfrom that of inductive learningalgorithms(suchasthe clustering
algorithmdiscussedater) which shav randomperformancedor a long time until
theright classe$ave beenfound.
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2.4 Word learning

The presentexperimentdoesnot focus on the recognition,synthesisand acqui-
sition of speechtself. We usea state-of-the-arspeechsystemfor this purpose.
It is capableof speakeindependantecognition,with no needfor training once
thewordformsareknown. We have suppliedthe systemwith alargelist of words
that might occurin the dialog. Although the recognitionrateis high, it is not
perfectandso provisionsmustbe madein thelanguagegamescriptto overcome
the problemof recognitionerror. The speectsynthesisystemis a stateof theart
text-to-speectsynthesisersimilar to the onedescribedn [Dutoit, 1997].

An associatie memorystoresrelationsbetweerobjectviews andwords. The
differentviews of an objectform animplicit categyory [Kaplan,1998], basedon
thefactthatthey arenamedhesameway. Word learningtakesplaceby reinforce-
mentlearning[SuttonandBarto,1998]. Whenthe classificationconformsto the
oneexpectedby the humanmediator thereis positive feedback”’good”). When
thereis a nggative outcomeof the game,asin the secondexampleaborve, there
is negative feedback(’no”). If thereis a correctionfrom the mediatorasin the
secondcexample(’listen; Smiley”), theagentstoresanew associatiorbetweerthe
view andthe correctingword (i.e. betweernthe view and Smiley) but only if the
associatiordid not exist already

2.5 Performancedata

We have doneexperimentswvith thesemechanismentherecognitionandnaming
of the threeobjectsmentionedearlier For only one object,namelythe red ball,
a focusof attentionmechanisnwasavailable (using dedicatedhardwareon the
robotsothatit is fastenough).This mechanisnis designedo recognisejuickly
patche®f redin animage to controltheheadsothatthis patchgetsinto thecenter
of thevisualfield, andto keeptrackingthe patchwheneitherthe objectmovesor
theheadmoves.During eachsessiorthemediatomplaysa numberof classification
gamewwith eachof theseobjects.Eachgameincludesamovefor sharingattention
(e.g. by holdingthe objectin front of therobot),a questionlike "what is it”, and
approval or correctiondependingon the answerof the robot. In the caseof a
badclassification the right namewasutteredby the mediator The experiments
wereperformedon successie days,undervery differentlighting conditions,and
againsdifferentbackgroundsoasto getrealisticdata.

Figure 6 presentghe evolution of the averagesuccessor four training ses-
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Figure6: Evolution of theclassificatiorsuccess$or four differenttrainingsessions

sions,eachstartingfrom zeroknowledge. The succes®f a gameis recordedoy
the mediatorbasedon the answerof the robot. We seethatfor all the runsthe
succes<limbs regularly to successfutommunication. It is interestingto note
thatfrom the very first gameghe classificationperformancas very high. It only
takesa few examplesto be ableto discriminatesuccessfullythe threeobjectsin
a given ervironment. But asthe ernvironmentchangesconfusionmay ariseand
new learningtakesplace,pushingup performanceagain.Thisis a propertyof the
instance-basekarningalgorithm.

Expl| Exp2 | Exp3 | Exp4
Averagesuccess 0.81 | 0.85| 0.81 | 0.80

Tablel: Averagesuccessluringthetraining sessions

If we averagethe classificationsuccesover the whole training sessionwe
obtaineanaverageperformancdetweer0.80and0.85(tablel), whichmeanghat
onaveragetherobotusesanappropriatename8 timesoutof 10. Thisincludesthe
periodof training,sothelearningis extraordinarilyfast. A closerlook attheerrors
that the robot makes(table 2), showvs that the robot makesfewer classification
errorsfor the red ball than for the othertwo objects. This is due to the focus
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of attentionmechanisnavailablefor trackingred objects.It easeshe procesof

sharingattentiononthetopic of thegameandasa consequencprovidestherobot
with dataof betterquality. The lack of this capabilityfor the otherobjectsdoes
not causea failure to learnthemhowever.

word/meaning Poo-chi| RedBall | Smiley | Classificatiorsuccess
Poo-chi 34 8 9 0.66
RedBall 0 52 4 0.92
Smiley 6 2 49 0.86

Table2: Thistableshavs theword/meaninguccessatefor oneof the sessions.

2.6 Complexity and realism

It is obviously possibleto makethe perceptionand catgorisationin theseex-
perimentsmorecomplex. It is probablybetterto usepsychologicallymorereal-
istic sensorydimensionssuchasthe Hue SaturationValue spaceor the L*a*b
spacewhich abstractghe Lightnessdimensionand usesthe opponentchannels
(red-green;yellow-blue) [WyszeckiandStiles,1982]. The L*a*b spacemore-
over mapsbetteron the humanexperienceof colour distance. Thereare mary
more sophisticatedvaysto useinstance-basedlassificationaswell, for exam-
ple by using k-nearesneighbor populationcoding, radial basisfunctions, etc.
[Witten andEibe,2000]. A moresophisticatednodelof word learningcould be
usedbasedon maintaininga scorebetweenword-meaningassociationghat re-
flectsthesuccessn usingaword [Steels,1994.

Insteadwe have adoptedhe simplestpossiblesolutionsin orderto makethe
experiments whichinvolve real-timeinteractionwith humans possible.If more
complex methodswould have beenadoptedthey would not fit on the available
hardwareandthe dialog would no longerhave a realtime character We usethe
samesolutionsin the other experimentsdescribedshortly, so the differencein
performanceand hencethe conclusionsdravn, do not hinge on which choices
have beenmadefor perceptioncateorisationandnaming.

20



3 Comparisons

In the previous section,we have presented frameawvork thatenableghe acquisi-
tion of a setof first wordsusingthe frameawork of sociallearning. Theframewnork
is effective in the sensehatthe robotis indeedcapableto acquirethe meaning
of a setof first words, without prior knowledgeof the conceptgnvolved nor un-
realistic constraintson its movements. We seea numberof explanationswhy
communicatiorcould successfullyoe bootstrapped:

1. Thelanguagegameconstrainsvhat needsto be learned. In the specific
exampledevelopedhere thisis knowledgefor classifyingobjects.So,ratherthan
assumingprior innateconstrainton the kinds of conceptghatshouldbelearned
or assuminghatunsuperviseadlusteringgenerateaturalcategories’,thesocial
learninghypothesisuggestshatconstraintareprovided by the languagegames
initiated by mediators.

2. The languagegameguarantees certainquality of the dataavailable to
the learner It constrainsthe contet, for example with words like "listen” or
throughpointing gestures.This helpsto focusthe attentionof the learner Ade-
guatedataacquisitionis crucialfor ary learningmethodandthe moremobileand
autonomoushelearnerthelessobviousthis becomes.

3. Thelanguagegameinducesa structurefor pragmaticfeedback.Pragmatic
feedbackis in termsof successn achieving the goal of the interaction,not in
termsof conceptuabr linguistic feedback.

4. Thelanguagegyameallowsthe scafolding of complity. Thegameusedn
this paperusesa singleword like "ball” for identifying thereferent.Oncesingle
wordsarelearnedmorecomplex gamesdecomdeasable.

5. Sociallearningenablesactive learning. The learnerdoesnot needto wait
until a situationpresentstself that providesgood learningdatabut canactively
provoke sucha situation. We usethis particularlyfor the acquisitionof speech.
Therobotfirst asksfor theconfirmationof awordformbeforeincorporatinganew
associationn memory

We have shavn experimentallythatall theseconditionsaresufficient for the
learningof the first word. But the questionis now whetherthey are necessary
This can be examinedby changingthe experimentalconditionsWe will focus
hereon two pointsonly: The claim thatsociallearningis necessaryo constrain
whatneedgo belearned(point 1 above) andto ensurea sufficient quality of the
data(point 2).
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3.1 Constraining what needsto be learned

Languagegamesarerequiredto constrainrvhatneedso belearned.For example,
the classificationgameimplies that thereis a focus on objectseven thoughthe
learnerremainsfree to employthe specificmethodusedfor identifying objects.
In anothergame,the agentmight be solicitedto performa certainactionandso
thiswould pushtowardsthe acquisitionof actionconceptsandconceptualisations
of the roles that objectsplay in the action. Two counteragumentshave been
adwancedagainstthe needfor social constraintson the learningsituation: (1)
Unsupervisedearninghasbeenclaimedto generatanaturalcateyorieswhich can
thensimply belabelledwith thewordsheardwhenthe samesituationoccurs(the
labellingtheory),and(2) Innateconstraint€anguidethelearnerto theacquisition
of theappropriateconcepts.

To examinethe first counteragumentwe have donean experimentusing a
databasef imagesrecordedrom 164 interactionsbetweera humananda robot
dravn from the samedialogsasthoseusedin sociallearning. The experiment
consistedn using one of the bestavailable unsupervisedlusteringmethodin
orderto seewhetherary naturalcategoriesare hiddenin the data. The method
is known asthe EM algorithmanddiscussedn the appendix.We have usedan
implementatiorfrom the publically-available datamining softwarecalled Weka
[WittenandEibe,2000]. The EM algorithm doesnot assumethat the learner
knows in adwancethe numberof cateyoriesthat arehiddenin the data,because
thiswould indeedbe anunrealistichiaswhich the learnercannotknow. Unsuper
visedneuralnetworkssuchasthe Kohonemmap[Kohonen2001]would give the
sameor worseresultsthanthe EM algorithm.

Thetechniqueof crossvalidationhasbeenusedto guarantegjuality of learn-
ing. Thetotal datasetis divided randomlyinto 10 sections. Eachsectioncon-
tainsapproximatvely the samenumberof instancedor eachclass.Thelearning
schemas appliedto 9 sectionsandthentestedon theremainingoneto obtainthe
successate. The learningprocedurds executeda total of tentimes,eachtime
changingthe training andtesting sections. The overall successs estimatedoy
the averageof the ten experiments.In orderto diminish the effect on the initial
division into sectionsthe whole procedurds repeatedentimes,andtheresults
areaveraged.

As resultsin table 3 shaw, the algorithmindeedfinds a setof clustersin the
data,eightto be precise.But the clustersthatarefound areunrelatedo the clas-
sificationneededor learningthe wordsin the language.The objectsareviewed
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in mary differentlight conditionsand backgroundsituationsandthe clustering
reflectsthesedifferentconditionsmorethanthe specificobjectsthemseles.

Clusters| CO| C1| C2|C3| C4[C5] C6| C7
Poochi| 9 | 0| 2 |11] 6 | 20| 0 | 3
RedBall | 6 | 2 13| 6 | 0 | 24| 3 | 2
Smiley | 5| 2| 5] 2 [12|25] 3 | 3

Table3: Objectsandtheir clustersobtainedirom unsupervised¢earning.

If we hadto assigna nameto a singlecluster Poo-Chiwould be assignedo
C3, theredball to C2 and Smiley to C5. With this schemeonly 30% of the in-
stancesrecorrectlyclusteredlf we associateachclusterwith its bestname(as
shawvn in table4), it would notbemuchbetter Only 47%would be correctlyclus-
tered. We suspecthatthe clusteringis moresensitve to contectual dimensions,
suchasthe light conditionsor backgroundof the object ratherthan the object
itself.

Cluster Bestname
Co (Poo-chi) 9
Cl | (RedBall, Smiley) | 2
C2 RedBall 13
C3 Poo-chi 11
C4 (Smiley) 12
C5 Smiley 25
C6 | (RedBall, Smiley) | 3
Cc7 (Poo-chi,Smiley) | 3

Table4: Clustersandnameghatbestcorrespondvith them.

An additionalpointis thatthe EM clusteringmethodsasary otherclustering
method,arrivesat differentclustersdependingon the initial conditions(random
seeds)Thereis notnecessarilyasinglesolutionandthealgorithmmightgetstuck
into a local minimum. This implies that differentagentsall usingunsupervised
learningto acquirecateoriesare unlikely to end up with the samecateyories
which makeghe establishmendf a shareccommunicatiorsystemmpossible.

The conclusionof this experimentis clear Without the causalinfluenceof
languagea learningalgorithm cannotlearnthe conceptghat are requiredto be
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successfuin languageommunicationNotethattheclusteringexperimentmakes
useof very gooddata(becausehey wereacquiredin a socialinteraction).If an
agents presentedvith aseriesof imagesakenwhile it is simply roamingaround
in theworld, a clusteringalgorithmproducesvenmoreirrelevantclassifications.
Whataboutthe secondccounteragumentnamelythatinnateconstraintcould
guidethelearningprocess.The questionhereis whattheseconstraintscould be.
Thereis nothingin the obseredvisual datathat givesary indicationwhatsoger
that we are dealingwith objects. As mentionedearlier the robot is not even
capableo properlysggmenttheimage(whichwouldrequiresomesortof template
andhencealreadyanideawhatthe objectis). It seemanuchmoreplausiblethat
thesocialinteractionhelpsthelearnerzoomin on whatneedgo belearned.

3.2 Constraining data acquisition

Thesecondpointis thatlanguagegamesarenecessaryo setup theright context
for the acquisitionof the sensorydata. If the influenceof the mediatorweakens,
thesedatabecomeessandlessreliableandasa consequenckarningbecomes
lesssuccessful.Many machinelearningandneuralnetwork experimentsdo not
addresghis questionbecausehe datais carefully preparedy the humanexper
imenter For example,light conditionsare kept constantprior sggmentationis
performed,the backgrounceliminated,only good examplesarekeptin the data
set,etc.

To examinethis point, we did anotherexperimentin which the role of the
mediatoris reducedput not entirely otherwisewe would endup in unsupervised
clusteringwhichwasjustshavn to beinadequateTherobotis now freelymoving
aroundn aplacewheretherearethreeobjects:Poo-chi,Ball andSmiley, thesame
asusedin earlierexperiments Whenthemediatorseesherobotlooking atoneof
theseobjects heor shesupplieshecorrespondingname(figure 2b). We takethis
situationto capturethe essencef supervisedbsenationallearning. Dueto the
autonomoudehaior, it is very well possible andoftenthe casethattherobotis
alreadylooking somevhereelsewhentheword hasbeenprocessedMoreoverthe
mediatorcannotalwaysknow preciselywherethe robotis looking andso might
mentionanamefor anobjectwhentheobjectis notin view. For oneof the objects
(ball), therobothasthe capabilityto identify andtrackthe object(moreprecisely
track somethingof a red color). This implementsa sharedattentionmechanism
which wasalsousedin the sociallearningexperiment.This shouldagainmakeit
easierto learnthewordfor ball.
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Thedatasebf 150images(50 for eachobject)resultingfrom this interaction
wasthentestedwith aninstance-baselbarningmethod(the sameasusedin the
first experiment)andthe resultscomparedo whatthe samealgorithmproduces
for thedatasetobtainedhroughmoreintensenteractionwith ahumanmediator
Obsenational supervisedearningreachesan averageof 59% succeshich is
intermediarybetweenthe resultsof unsupervisedalassificationandsociallearn-
ing. A closerlook at the classificiationerrorsthatthe robotsmakes(table5 and
figure 7) shavs thatthe Poo-chiandthe Smiley arevery oftenconfused.For the
RedBall betterresultsareobtained(althoughnot asgoodasin the caseof social
learning),which is explainedby the factthattherobotis spontaneouslgttracted
to redobjectsandthusnaturallyfocusests gazeon them.

word/meaning Poo-chi| RedBall | Smiley | Classificatiorsuccess
Poo-chi 20 13 17 0.4
RedBall 3 42 5 0.84
Smiley 13 10 27 0.54

Table5: Word/meaningsuccessatefor a sessiorwithout socialembedding
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Figure7: Comparisorof classificatiorsucces$or obsenationalandsociallearn-

ing

Two conclusionsanbedravn: (1) Whentherole of the mediatoris reduced,
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the learningdatabecomedessreliable and henceclassificationsuccessleterio-
rates. Insteadof an overall 82 % successrataye have a 59 % successate. The
recognitionof Poo-chihasan averagesuccesgate of 40% and that of Smiley
54%, which contrastswith a success-ratef 66% and86% respectrely basedon
the'better’ learningdata. If therole of the mediatoris reducedstill further (for
exampleif the mediatoris lesscarefulin supplyinga word for an object),these
resultsaggrevatefurther. (2) Whenthereis sharingof attentionresultsarebetter
Thusthe success-ratéor identificationof the ball is consistentlybetterthanthat
of otherobjects(around84%in bothcases).

Theconclusion®f thissecondexperimentarethereforeclear: Whentheinter-
actiity characteristidor sociallearningis reducedthe quality of the dataavail-
ablefor learningis reducedandhencethe effectivenes®f the outcome.

3.3 ScalingUp

We have doneadditionalexperimentsto examinethe effect of scalingup the set
of objectsandconsequentlyhe setof words. Reportingon theseexperimentss
beyondthe scopeof the presenpaper but someconclusionsanbe briefly men-
tioned: (1) Not surprisingly increasinghe setof featureshelps.For example,we
have usedothercolour spacesn additionto the RGB spaceandfound that this
increaseshereliability of objectrecognition.(2) Very soon(with half adozenob-
jects)instance-basel@arningreachedimits which startto degradeperformance.
The problemsaretwofold: (i) As the numberof views storedin memoryreaches
acritical point, thetime neededo recogniseanobjectis too long to sustairfluent
real-timeinteraction. (ii) As all sensorydimensionsare indiscriminatelytaken
into accountthedistancemeasuraisedbecomedessandlesseffective.

We havethereforeexperimentedvith otherconceptearningstratgies- which
canonly beusedoncetheinitial bootstrappin@sreportedn this paperhastaken
effect. Thefirst stratgy is to learnthe mostsignificantvisualdimensionswhich
canbe doneby statisticalmethodsthat examinethe predictve value of eachdi-
mension.Statisticalcorrelationsof eachdimensionwith theobjectclassesandthe
intercorrelation@mongdimensionsanbe computedandthedimensionswith the
highestclasscorrelationandthe lowestintercorrelationsetained.This collapses
the spaceinto a more compactand hencemore efficient and morereliable con-
ceptualspaceandimmediatelyimprovesthe efficacity of instance-basel@arning.
Thesecondstratgyy is to graduallycomplementnstance-base@arningwith rule
inductionor theinductionof decision-treespperatingover the dataobtainedin a
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sociallearningframework.

4 Conclusion

This paperexaminedwhat it would taketo re-enacta situationin which anau-
tonomousphysicalbeingcanbegin to acquire’first words’. We have carriedout
arealisticroboticexperimentin thesensehattherobotis notonly ignorantabout
thewordsin the languageout alsoaboutthe perceptuallygroundedconceptsin-
derlyingthesewords. Moreover therobotis mobile andfully autonomousAs a
consequencee have beenforcedto confronta situationin which the dataavail-
ablefor learningis not givenby the humanexperimentetbut mustbeacquiredoy
therobotasit is interactingwith a humanin acomplex realworld ervironment.

Thepaperarguedin favor of sociallearningasopposedo individualisticlearn-
ing. This conclusiorhasalsobeendefendedy studentsof child languageacqui-
sition [Tomasello2000] and researchergngagedn teachingwordsto animals
[Pepperbay, 1991]. In sociallearning,the mediatorplaysa crucial role to con-
strainthe situation,scafold compleity, andprovide pragmaticfeedback.Social
learningmakesit easierto introducea causalinfluenceof languageon cateyory
formationwhichwasshowvn to be necessaryf catejorieslearnedoy therobotare
to be similar enoughto thosealreadyusedin anexisting humanculture. We have
alsoarguedin favor of a gradualbootstrappingrocess

We now returnto the questionposedin the beginning of the paper:Whatare
the crucial prerequisitedor the acquisitionof 'the first words’. We have argued
theseto includethefollowing:

1. Theability to acquireandengagen structuredsocialinteractionsj.e. in-
teractiongthat follow a routinisedpattern. This requiresabilities like turn
taking,recognitionof others focusof attentionandothercapabilitiesasso-
ciatedwith a’theoryof mind’.

2. The presenceof a mediator The mediatoris alreadypart of a culture
andthereforeinfluencesconceptacquisitionsothatit conformsto whatis
neededor aspecificlanguage.

3. Incrementalearningalgorithmsfor the acquisitionof conceptssuchasthe
instance-basel@arningschemausedin this paper
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4. An associatie memoryfor storingthe relation bbetweenwordsand mean-
ings andreinforcementearningmethodsfor the acquisitionof theseasso-
ciations.

Thispapermasnotaddressethary otherissueghatcanberaisedn thepresent
contet. Thetypesof wordsthatarelearnedarenotuncommorfor thefirst words
alsousedby childrenbut we did not discussthe acquisitionof wordsfor action,
or ary otherconceptuadomain. The issueof grammarhasnot beenaddressed.
In ary case,it arisesin childrenonly after aninitial lexicon is in place. Some
hypothesesandrobotic experimentsof thetransitionto grammarcanbefoundin
[Steels,1998]. We did not addresghe issuehow languagegamegshemselesare
learnedor invented.This is clearlya very difficult problemandwill beaddressed
in otherpapers.Finally, we did not addresscale-up Our additionalexperiments
notreportedn this paperhave alreadyshavn however thatinstance-baselgarn-
ing is adequatdor theinitial phase®f bootstrappindput hasto be complemented
with otherlearningmethodgo scaleup conceptcquisitionandhencewordlearn-
ing.

We believe thatthereis greatvaluein carryingoutrobotic experimentsof the
sortshowvn in this paperbecausehey force usto dealwith realisticassumptions.
Many learningmethodsachiere quite reasonablgerformancen the supervised
learningof wordsandmeaningsbut they sidesteggheproblemwherethelearning
datacomesfrom. Sociallearningdoesaddresghis issueby providing a frame-
work for helpingthe learnerto focuson what needsto be learnedandto gather
high quality datacritical for learning.
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APPENDIXI.

This appendixbriefly describeghe EM clusteringalgorithmusedfor the ex-
perimentsn unsupervisetbarningof classificatiorconcept$Witten andEibe, 200(.
Thealgorithmis basedon a statisticalmodelcalledfinite mixture. A mixtureis a
setof k probability distributions, representindk clusters.In the caseof Gaussian
distributions, eachdistribution D is determinedby two parametersts meanup
andits standarddeviation op. If we know thatz,, z, ...z, belongto the cluster
D, up andop arevery easyto compute.For instancean the simplecasen which
thereis only onenumericattribute x :

1+ ..+ x,
pp = S (2)
xr1 — 2—|—..—|— €T, — 2
U%:( 1 /~LD) n_l( F‘D) (3)

If we know . ando for the differentclusters,it is alsoeasyto computethe
probabilitiesthatagiveninstancecomedrom eachdistribution. Givenaninstance
x, the probabilitythatit belongsto clusterD is:

Prla/D).PrID))  f(aipp,00).Pr(D))

Pr|D = = 4
rib/z] Pr|z] Pr(z] ()
wheref(z; up, op) is thenormaldistribution functionfor clusterD
_ _ 1 —(z —pp)*
f(:l:;,uDao-D) - \/27T—JD6XP 20_2D (5)

The EM algorithm standsfor "expectation-maximization”.Given an initial
setof distributions,thefirst stepis the calculationof the clusterprobabilities(the
"expected’classvalues). The secondstepis the calculationof the distribution
parameterdy the "maximization” of thelikelihood of the distributionsgiventhe
data.Thesetwo stepsareiteratedlike in a k-meansalgorithm.

For theestimationof p andop, aslightadjustmenmustbe madecompared
to equation2 and3 dueto thefact thatonly clusterprobabilities,notthe clusters
themseles,known for eachinstance Theseprobabilitiesactlike weights.

wi.x1 + .. + w,.x,
= 6
HUD Wi+t w, (6)
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w1-(~"‘71 —ND)2‘|'--‘|'wn-($n_:uD)2 7)
wy + .. + w,

wherethe z; arenow all theinstancesandw; is the probability thatinstance
belonggo clusterD.

Theoveralllikelihood of adistributionsetis obtainedoy multiplying theprob-
abilitiesof theindividual instances:

Q =13 po-Prlai/ D] ®)

where Pr[z;/ D] is determinedrom f(z;; up,op). @ is anindicatorof the
quality of the distribution. Q increasesat eachiteration. The algorithm stops
whenthe the increaseof the log-likelihood becomesggligible (e.g. lessthan
10719 increasdor tensuccessie iterations).

The EM algorithmis guaranteedo convergeto a maximumbut not necessary
to the global maximum. The algorithmcould be repeatedseveral times, with a
differentinitial configuration.By varyingthe numberof clustersk, it is possible
to determingheonewhichmaximize@ andthusthe”natural’ numberof clusters.

op =
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