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Abstract. This paper addresses the problem of the acquisition of the
syntax of propositional logic. An approach based on general purpose
cognitive capacities such as invention, adoption, parsing, generation and
induction is proposed. Self-organisation principles are used to show how
a shared set of preferred lexical entries and grammatical constructions,
i.e., a language, can emerge in a population of autonomous agents which
do not have any initial linguistic knowledge.

Experiments in which a population of autonomous agents constructs
a language that allows communicating the formulas of a propositional
language are presented. This language although simple has interesting
properties found in natural languages, such as compositionality and re-
cursion.

1 Introduction

Recent work in linguistics and artificial intelligence [1,2,3,4,5,6,7,8] has described
interesting experiments showing the emergence of compositional and recursive
syntax in populations of agents without initial linguistic knowledge. This paper
combines general purpose cognitive capacities (e.g., invention, adoption, parsing,
generation and induction) and self-organisation principles in order to address the
problem of the acquisition of the syntax of propositional logic.

The important role of logic in knowledge representation and reasoning [9] is
well known in artificial intelligence. Much of the knowledge used by artificial
intelligent agents today is represented in logic, and linguists use it as well for
representing the meanings of words and sentences. This paper differs from pre-
vious approaches in using the syntax of logic as the subject of learning. Some
could argue that it is not necessary to learn such a syntax, because it is built in
the internal knowledge representation formalism used by the agents. We’d argue
on the contrary that logical connectives and logical constructions are a funda-
mental part of natural language, and that it is necessary to understand how an
agent can both conceptualise and communicate them to other agents.

The research presented in this paper assumes previous work on the conceptu-
alisation of logical connectives [10,11]. In [12] a grounded approach to the acqui-
sition of logical categories (connectives) based on the discrimination of a ”subset
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of objects” from the rest of the objects in a given context is described. The ”sub-
set of objects” is characterized by a logical formula constructed from perceptually
grounded categories. This formula is satisfied by the objects in the subset and not
satisfied by the rest of the objects in the context. In this paper we only focus on
the problem of the acquisition of the syntax of propositional logic, because it is a
necessary step to solve the complete problem of the acquisition of a grounded log-
ical language (encompassing the acquisition of both the syntax and the semantics
of propositional logic) and to our knowledge it has not been addressed before.

The emergence of recursive communication systems in populations of au-
tonomous agents has been studied by other authors1. The research presented
in [6] differs from the work described in the present paper by focusing on learn-
ing exemplars rather than grammar rules. These exemplars have costs, as our
grammar rules do, and their costs are reinforced and discouraged using self-
organization principles as well. The main challenge for the agents in the experi-
ments described in [6] is to construct a communication system that is capable of
naming atomic formulas and, more importantly, marking the identity relations
among the arguments of the different atomic formulas that constitute the mean-
ing of a given string of characters. This task is quite different from the learning
task proposed in the present paper which focusses on categorizing propositional
sentences and connectives, and marking the scope of each connective using the
order of the constituents of a string of characters.

The most important difference between our work and that presented in [7] is
that the latter one focusses on language transmission over generations. Rather
than studying the emergence of recursive communication systems in a single pop-
ulation of agents, as we do, it shows that the bottleneck established by language
transmission over several generations favors the propagation of compositional
and recursive rules because of their compactness and generality. In the experi-
ments described in [7] the population consists of a single agent of a generation
that acts as a teacher and another agent of the following generation that acts as
a learner. There is no negotiation process involved, because the learned never has
the opportunity to act as a speaker in a single iteration. We consider however
populations of three agents which can act both as speakers and hearers dur-
ing the simulations. Having more than two agents ensures that the interaction
histories of the agents are different from each other, in such a way that they
have to negotiate in order to reach agreements on how to name and order the
constituents of a sentence.

The induction mechanisms used in the present paper are based on the rules
for chunking and simplification in [7], although we extend them so that they can
be applied to grammar rules which have costs and usage counters attached to
them. In particular we use the approach proposed in [8] for adding costs to the
grammar rules, and computing the costs of sentences and meanings from the
costs of the rules used for generating such sentences or meanings.

Finally the meaning space used in [7] (a restricted form of atomic formulas of
second order logic) is different as well from the meaning space considered in the

1 We review the work of the authors mentioned in this introduction in section 5.
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present paper (arbitrary formulas from a propositional logic language), although
both of them require the use of recursion.

The rest of the paper is organised as follows. First we present the formalism
used for representing the grammars constructed by the agents. Then we describe
in some detail the language games played by the agents, focusing on the main
cognitive processes they use for constructing a shared lexicon and grammar:
invention, adoption, induction and self-organisation. Next we report the results
of some experiments in which a population of autonomous agents constructs a
shared language that allows communicating propositional logic formulas. Finally
we summarize some related work and the contributions of the paper.

2 Grammatical Formalism

We use a restricted form of definite-clause grammar in which non-terminals have
three arguments attached to them. The first argument conveys semantic infor-
mation. The second is a score in the interval [0, 1] that estimates the usefulness
of that association in previous communication. The third argument is a counter
that records the number of times the association has been used in previous lan-
guage games.

Many grammars can be used to express the same meaning. The following
holistic grammar can be used to express the propositional formula right∧ light2.

s([and, right, light]), 0.01) → andrightlight (1)

This grammar consists of a single rule which states that ’andrightlight’ is a valid
sentence meaning right ∧ light.

The same formula can be expressed using the following compositional, recursive
grammar: s is the start symbol, c1 and c2 are the names of two syntactic categories
associated with unary and binary connectives, respectively. Like in Prolog, vari-
ables start with a capital letter and constants with a lower case letter.

s(light, 0.70) → light (2)

s(right, 0.25) → right (3)

s(up, 0.60) → up (4)

c1(not, 0.80) → not (5)

s([P, Q], S) → c1(P, S1), s(Q,S2), {S is S1∗S2∗0.10} (6)

c2(or, 0.30) → or (7)

c2(and, 0.50) → and (8)

c2(if, 0.90) → if (9)

c2(iff, 0.60) → iff (10)

s([P, Q, R], S) → c2(P, S1), s(Q,S2), s(R,S3), {S is S1 ∗ S2 ∗ S3 ∗ 0.01} (11)

2 Notice that we use Prolog grammar rules for describing the grammars. The semantic
argument of the rules uses Lisp like (prefix) notation for representing propositional
formulas (e.g., the Prolog list [and, [not, right], light] is equivalent to ¬right∧ light).
The third argument (the use counter) of non-terminals is not shown in the examples.
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This grammar breaks down the sentence ’andrightlight’ into subparts with in-
dependent meanings. The whole sentence is constructed concatenating these
subparts. The meaning of the sentence is composed combining the meanings of
the subparts using the variables P, Q and R.

The score of a lexical rule is the value of the second argument of the left hand
side of the rule (e.g., the score of rule 8 is 0.50). The score of a grammatical
rule is the last number of the arithmetic expression that appears on the right
hand side of the rule3(e.g., the score of rule 11 is 0.01). The score of a sentence
generated using a grammatical rule is computed using the arithmetic expression
on the right hand side of that rule (e.g., the score of sentence andrightlight is
0.50*0.25*0.70*0.01=0.00875).

3 Language Games

Syntax acquisition is seen as a collective process by which a population of au-
tonomous agents constructs a grammar that allows them to communicate some
set of meanings. In order to reach such an agreement the agents interact with
each other playing language games. In the experiments described in this paper
a particular type of language game called the guessing game [13,14] is played by
two agents, a speaker and a hearer:

1. The speaker chooses a formula from a given propositional language, generates
a sentence that expresses it and communicates that sentence to the hearer.

2. The hearer tries to interpret the sentence generated by the speaker. If it
can parse the sentence using its lexicon and grammar, it extracts a meaning
which can be equal or not to the formula intended by the speaker.

3. The speaker communicates the meaning it had in mind to the hearer and
both agents adjust their grammars in order to become successful in future
language games.

In a typical experiment hundreds of language games are played by pairs of
agents randomly chosen from a population. The goal of the experiment is to
observe the evolution of: (1) the communicative success4; (2) the internal gram-
mars constructed by the individual agents; and (3) the external language used
by the population.

3.1 Invention

In the first step of a language game the speaker tries to generate a sentence that
expresses a propositional logic formula.

3 The Prolog operator ”is” allows evaluating the arithmetic expression at its right
hand side.

4 The communicative success is the average of successful language games in the last
ten language games played by the agents. A language game is successful if the hearer
can parse the sentence generated by the speaker, and the meaning interpreted by
hearer is equal to the meaning intended by the speaker.
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The agents in the population start with an empty lexicon and grammar. It
is not surprising thus that they cannot generate sentences for some meanings
at the early stages of a simulation run. In order to allow language to get off
the ground, the agents are allowed to invent new words for those meanings they
cannot express using their lexicons and grammars5.

The invention algorithm is a recursive procedure that invents a sentence E for
a meaning M. If M is atomic (not a list), it generates a new word E. If M is a list
of elements (i.e., a unary or binary connective followed by one or two formulas,
respectively), it tries to generate an expression for each of the elements in M
using the agent’s grammar. If it cannot generate an expression for an element of
M using the agent’s grammar, it invents an expression for that element calling
itself recursively on that element. Once it has generated an expression for each
element in M, it concatenates these expressions randomly in order to construct
a sentence E for the whole meaning M.

As the agents play language games they learn associations between expressions
and meanings, and induce linguistic knowledge from such associations in the form
of grammatical rules and lexical entries. Once the agents can generate sentences
for expressing a particular meaning using their own grammars, they select the
sentence with the highest score out of the set of sentences they can generate
for expressing that meaning, and communicate that sentence to the hearer. The
algorithm used for calculating the score of a sentence from the scores of the
grammatical rules applied in its generation is explained in detail later.

3.2 Adoption

The hearer tries to interpret the sentence generated by the speaker. If it can
parse the sentence using its lexicon and grammar, it extracts a meaning which
can be equal or not to the formula intended by the speaker.

As we have explained earlier the agents start with no linguistic knowledge at
all. Therefore they cannot parse the sentences generated by the speakers at the
early stages of a simulation run. When this happens the speaker communicates
the formula it had in mind to the hearer, and the hearer adopts an association
between that formula and the sentence used by the speaker.

It is also possible that the grammars and lexicons of speaker and hearer are not
consistent, because each agent constructs its own grammar from the linguistic
interactions in which it participates, and it is very unlikely that speaker and
hearer share the same history of linguistic interactions unless the population
consists only of these two agents. When this happens the hearer may be able
to parse the sentence generated by the speaker, but its interpretation of that
sentence may be different from the meaning the speaker had in mind. In this
case, the strategy used to coordinate the grammars of speaker and hearer is to
decrement the score of the rules used by speaker and hearer in the processes of
generation and parsing, respectively, and allow the hearer to adopt an association
between the sentence and the meaning used by the speaker.

5 New words are sequences from 1 to 3 letters randomly chosen from the alphabet.
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The adoption algorithm used in this paper is very simple. Given a sentence
E and a meaning M, the agent checks whether it can parse E and interpret it
as meaning M. This may happen when the hearer can parse the sentence used
by the speaker, but it obtains a different meaning from the one intended by the
speaker. In a language game the hearer always chooses the interpretation with
the highest score out of the set of all the interpretations it that can obtain for a
given sentence. So it is possible that the hearer knows the grammatical rules used
by the speaker, but the scores of these rules are not higher than the scores of the
rules it used for interpretation. If the hearer can interpret sentence E as meaning
M, the hearer does not take any action. Otherwise it adopts the association used
by the speaker by adding a new holistic rule of the form s(M, 0.01) → E to its
grammar. The induction algorithm, used to generalise and simplify the agents’
grammars, compares this rule with other rules already present in the grammar
and replaces it with more general rules whenever it is possible.

3.3 Induction

In addition to invent and adopt associations between sentences and meanings, the
agents use some induction rules [7] to extract generalizations from the grammar
rules they have learnt so far [15]. The induction rules are applied whenever the
agents invent or adopt a new association, to avoid redundancy and increase
generality in their grammars.

Simplification: Let r1 and r2 be a pair of grammar rules such that the left hand
side semantics of r1 contains a subterm m1, r2 is of the form n(m1, S) → e1,
and e1 is a substring of the terminals of r1. Then simplification can be applied to
r1 replacing it with a new rule that is identical to r1 except that m1 is replaced
with a new variable X in the left hand side semantics, and e1 is replaced with
n(X, S) on the right hand side. The second argument of the left hand side of r1
is replaced with a new variable SR. If the score of r1 was a constant value c1,
an expression of the form {SR is S ∗ 0.01} is added to the right hand side of r1.
If the score of r1 was a variable, then the arithmetic expression {SR is S1 ∗ c1}
in the right hand side of r1 is replaced by {SR is S ∗ S1 ∗ 0.01}.

Suppose an agent’s grammar contains rules 2, 3 and 4, which it has invented
or adopted in previous language games. It plays a language game with another
agent, and it invents or adopts the following rule.

s([and, light, right], 0.01) → andlightright. (12)

It could apply simplification to rule 12 (using rule 3) replacing it with rule 13.

s([and, light, R], S) → andlight, s(R, SR), {S is SR ∗ 0.01} (13)

Rule 13 could be simplified again using rule 2, replacing it with 14.

s([and, Q, R], S) → and, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (14)

Suppose the agent plays another language game in which it invents or adopts
a holistic rule for expressing the formula [or, up, light] and applies simplification
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in a similar way. Then the agent’s grammar would contain the following rules
that are compositional and recursive, but which do not use syntactic categories
for unary or binary connectives.

s([and, Q, R], S) → and, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (15)
s([or, Q, R], S) → or, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (16)

Chunk I. Let r1 and r2 be a pair of grammar rules with the same left hand side
category symbol. If the left hand side semantics of the two rules differ in only
one position, and there exist two strings of terminals that, if removed, would
make the right hand sides of the two rules the same, then chunking can be
applied.

Let m1 and m2 be the differences in the left hand side semantics of the two
rules, and e1 and e2 the strings of terminals that, if removed, would make the
right hand sides of the rules the same. A new category n is created and the
following two new rules are added to the grammar.

n(m1, 0.01) → e1 n(m2, 0.01) → e2

Rules r1 and r2 are replaced by a new rule that is identical to r1 (or r2) except
that e1 (or e2) is replaced with n(X, S) on the right hand side, and m1 (or m2)
is replaced with a new variable X in the left hand side semantics. The second
argument of the left hand side of r1 is replaced with a new variable SR. If the
score of r1 was a constant value c1, an expression of the form {SR is S ∗ 0.01}
is added to the right hand side of r1. If the score of r1 was a variable, then the
arithmetic expression {SR is S1 ∗ c1} in the right hand side of r1 is replaced by
{SR is S ∗ S1 ∗ 0.01}.
For example the agent of previous examples, which has rules 15 and 16 for
conjunctive and disjunctive formulas in its grammar, could apply chunking to
these rules and create a new syntactic category for binary connectives as fol-
lows.

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3), {S is S1 ∗ S2 ∗ S3 ∗ 0.01} (17)
c2(and, 0.01) → and (18)

c2(or, 0.01) → or (19)

Rules 15 and 16 would be replaced with rule 17, which generalises them be-
cause it can be applied to arbitrary formulas constructed using binary connec-
tives, and rules 18 and 19, which state that and and or belong to c2 (the syntactic
category of binary connectives), would be added to the grammar.

Chunk II. If the left hand side semantics of two grammar rules r1 and r2 can
be unified applying substitution X/m1 to r1 and there exists a string of terminals
e1 in r2 that corresponds to a nonterminal c(X, S) in r1, then chunking can be
applied to r2 as follows. Rule r2 is deleted from the grammar and a new rule of
the following form c(m1, 0.01) → e1 is added to it.
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Suppose the agent of previous examples adopts or invents the following rule6.

s([iff, up, right], 0.01) → iffupright. (20)

Simplification of rule 20 with rules 4 and 3 leads to replace rule 20 with 21.

s([iff, Q, R], S) → iff, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (21)

Then chunking could be applied to 21 and 17, replacing rule 21 with 22.

c2(iff, 0.01) → iff (22)

3.4 Self-organisation

The agent in the previous examples has been very lucky, but things are not always
that easy. Different agents can invent different words for referring to the same
propositional constants or connectives, and the invention process uses a random
order to concatenate the expressions associated with the components of a given
meaning. This has important consequences, because the simplification rule takes
into account the order in which the expressions associated with the meaning
components appear in the terminals of a rule. Imagine an agent invented/adopted
the following holistic rules for expressing [and,light,right] and [if,light,right].

s([and, light, right], 0.01) → andlightright
s([if, light, right], 0.01) → ifrightlight

The result of simplifying these rules using rules 2 and 3 would be the following
pair of rules which cannot be used for constructing a syntactic category for binary
connectives, because they do not satisfy the preconditions of chunking.

S([and, X, Y ], SC) → and, s(X, SX), s(Y, SY ), {SC is SX ∗ SY ∗ 0.56}
S([if, X, Y ], SC) → if, s(Y, SY ), s(X, SX), {SC is SX ∗ SY ∗ 0.56}

The agents must therefore reach agreements on how to name propositional
constants and connectives, and on how to order the expressions associated with
the different components of non-atomic meanings. Self-organisation principles
help to coordinate the agents’ grammars in such a way that they prefer to use the
rules that are used more often by other agents [16,6,3]. The set of rules preferred
by most agents for naming atomic meanings and for ordering the expressions
associated with the components of non-atomic meanings constitutes the external
language spread over the population.

The goal of the self-organisation process is that the agents in the population
be able to construct a shared external language and that they prefer using the
rules in that language over the rest of the rules in their individual grammars.
6 Notice that the scores of all rules created using invention, adoption or induction are

initialised to 0.01. The use counters (not shown in the examples) are initialised to 0.
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Coordination takes place at the third stage of a language game, when the
speaker communicates the meaning it had in mind to the hearer. Depending
on the outcome of the language game speaker and hearer take different actions.
We have talked about some of them already, such as invention or adoption, but
they can also adjust the scores of the rules in their grammars to become more
successful in future games.

First we consider the case in which the speaker can generate a sentence for
the meaning using the rules in its grammar. If the speaker can generate several
sentences for expressing that meaning, it chooses the sentence with the highest
score, the rest are called competing sentences.

The score of a sentence (or a meaning) is computed at generation (parsing)
multiplying the scores of the rules involved [8]. Consider the generation of a
sentence for expressing the meaning [and, right, light] using the following rules.

s(light, 0.70) → light (23)
s(right, 0.25) → right (24)
c2(and, 0.50) → and (25)

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3), {S is S1·S2·S3·0.01} (26)

The score S of the sentence andrightligth, generated by rule 26, is computed
multiplying the score of that rule (0.01) by the scores of the rules 25, 24 and
23 which generate the substrings of that sentence. The score of a lexical rule is
the value of the second argument of the left hand side of the rule (e.g., the score
of rule 25 is 0.50). The score of a grammatical rule is the last number of the
arithmetic expression that appears on the right hand side of the rule7(e.g., the
score of rule 26 is 0.01). The score of a sentence generated using a grammatical
rule is computed using the arithmetic expression on the right hand side of that
rule (e.g., the score of sentence andrightlight is 0.50*0.25*0.70*0.01=0.00875).

Suppose the hearer can interpret the sentence communicated by the speaker.
If the hearer can obtain several interpretations for that sentence, the meaning
with the highest score is selected, the rest are called competing meanings.

If the meaning interpreted by the hearer is the same as the meaning the speaker
had in mind, the game succeeds and both agents adjust the scores of the rules
in their grammars. The speaker increases the scores of the rules it used for
generating the sentence communicated to the hearer and decreases the scores of
the rules it used for generating competing sentences. The hearer increases the
scores of the rules it used for obtaining the meaning the speaker had in mind
and decreases the scores of the rules it used for obtaining competing meanings.
This way the rules that have been used successfully get reinforced, and the rules
that have been used for generating competing sentences or competing meanings
are inhibited to avoid ambiguity in future language games.

The rules used for updating the scores of grammar rules are the same as
those proposed in [13]. The rule’s original score S is replaced with the result of

7 The Prolog operator ”is” allows evaluating the arithmetic expression at its right
hand side.
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evaluating expression 27 if the score is increased, and with the result of evaluating
expression 28 if the score is decreased. The constant μ is a leaning parameter
which is set to 0.1.

maximum(1, S + μ) (27)
minimum(0, S − μ) (28)

If the meaning interpreted by the hearer it is not equal to the meaning the
speaker had in mind, the game fails, and speaker and hearer decrease the scores
of the rules they used for generating and interpreting the sentence, respectively.
This way the rules that have been used without success are inhibited.

If the speaker can generate a sentence for the meaning it has in mind, but the
hearer cannot interpret that sentence, the hearer adopts a holistic rule associating
the meaning and the sentence used by the speaker. This holistic rule can be
simplified and chunked later using the rest of the rules in the hearer’s grammar.

In order to simplify the agents’s grammars and avoid possible sources of am-
biguity a mechanism for purging rules that have not been useful in past
language games is introduced. Every ten language games the rules which have
been used more than thirty times and have scores lower than 0.01 are removed
from the agents’ grammars.

4 Experiments

We present the results of some experiments in which three agents construct a
shared language that allows communicating the formulas of a logical language
L = {a, b, c, l, r, u} with six propositional constants. The agents build different,
but compatible, compositional, recursive grammars that allow them to commu-
nicate each other the infinite set of meanings that can be represented in L.

First the agents play 600 language games in which they try to communicate
propositional constants. Then they play 1200 language games in which they try
to communicate propositional constants and logical formulas constructed using
unary and binary connectives (i.e., ¬, ∧, ∨, → and ↔).

Tables 1 and 2 describe the individual lexicons and grammars built by the
agents at the end of a particular simulation run. The grammars built by the
agents, although different, are compatible enough to allow total communicative
success. That is, the agents always generate sentences that are understood by
the other agents.

The grammars of all the agents have recursive rules for expressing formulas
constructed using unary and binary connectives. The expression C associated
with the connective is always placed at the start of a sentence by the induction
algorithm. Let 1 and 2 be the expressions associated with the first and second
arguments, respectively, of a formula constructed using a binary connective. The
order in which 1 and 2 are concatenated determines thus the form of the sentence.
We call C12-constructions to those rules that construct a sentence concatenating
C, 1 and 2 in C12 order, and C21-constructions to those rules that concatenate
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Table 1. The lexicons of all the agents are identical, i.e., all the agents prefer the same
words for referring to the propositional constants of the language L = { a, b, c, l, r, u}

Lexicon for Propositional Constants

Lexicon a1 Lexicon a2 Lexicon a3
s(a1,a,1) → e s(a2,a,1) → e s(a3,a,1) → e
s(a1,b,1) → uo s(a2,b,1) → uo s(a3,b,1) → uo
s(a1,c,1) → bt s(a2,c,1) → bt s(a3,c,1) → bt
s(a1,l,1) → u s(a2,l,1) → u s(a3,l,1) → u
s(a1,r,1) → ihg s(a2,r,1) → ihg s(a3,r,1) → ihg
s(a1,u,1) → y s(a2,u,1) → y s(a3,u,1) → y

them in C21 order. All agents prefer C12-constructions (third rules of a1 and a2,
and second rule of a3) for expressing conjunctive and disjunctive formulas, and
they prefer to C21-constructions (sixth rules of a1 and a2, and fifth rule of a3)
for expressing implications and equivalences. Agents a1 and a2 have invented a
syntactic category (c3) for unary connectives, because they probably had several
words for expressing negation which were eliminated afterwards by the purging
mechanism; a3 has a specific rule for formulas constructed using negation, which
uses the word ”ps” preferred by the others.

All agents have created syntactic categories (c2, c1) for binary connectives used
in C12-constructions and they prefer the same words for the connectives and and
or (scores 1). They have created syntactic categories for binary connectives used
in C21-constructions and they prefer the same words for the connectives if and
iff (scores 1). There are no alternative words for any connective. This is probably
due to the fact that the purging mechanism has eliminated such words from the
lexicons of the agents.

Figure 1 shows some preliminary results about the evolution of the commu-
nicative success, averaged over ten simulation runs with different initial random
seeds, for a population of three agents8.

The agents reach a communicative success of 98% in 250 language games
and of 100% in 1000 language games. That is, after each agent has played, on
average, 200 language games about propositional constants, and 333 language
games about propositional constants and formulas constructed using logical
connectives.

5 Related Work

Batali [6] studies the emergence of recursive communication systems as the result
of a process of negotiation among the members of a population. The alternative
explored in this research is that learners simply store all of their analyzed ob-

8 The communicative success is the average of successful language games in the last
ten language games played by the agents.
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Table 2. Grammars constructed by the agents at the end of a simulation run

Grammars for Propositional Logic

Gram a1
s(a1,[X,Y],R) → c3(X,P), s(Y,Q), {R is P*Q*1}
c3(a1,not,1) → ps

s(a1,[X,Y,Z],T) → c2(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c2(a1,and,1) → oyv
c2(a1,or,1) → gs

s(a1,[X,Y,Z],T) → c1(X,P), s(Z,Q), s(Y,R), {T is P*Q*R*1}
c1(a1,if,1) → ogb
c1(a1,iff,1) → qan

Gram a2
s(a2,[X,Y],R) → c3(X,P), s(Y,Q), {R is P*Q*1}
c3(a2,not,1) → ps

s(a2,[X,Y,Z],T) → c1(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c1(a2,and,1) → oyv
c1(a2,or,1) → gs

s(a2,[X,Y,Z],T) → c2(X,P), s(Z,Q), s(Y,R), {T is P*Q*R*1}
c2(a2,if,1) → ogb
c2(a2,iff,1) → qan

Gram a3
s(a3,[not,Y],R) → ps, s(Y,Q), {R is Q*1}

s(a3,[X,Y,Z],T) → c1(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c1(a3,and,1) → oyv
c1(a3,or,1) → gs

s(a3,[X,Y,Z],T) → c2(X,P), s(Z,Q), s(Y,R), {T is P*Q*R*1}
c2(a3,if,1) → ogb
c2(a3,iff,1) → qan

servations as exemplars. No rules or principles are induced from them. Instead
exemplars are used directly to convey meanings and to interpret signals.

The agents acquire their exemplars by recording observations of other agents
expressing meanings. A learner finds the cheapest phrase with the observed string
and meaning that can be created by combining or modifying phrases from its
existing set of exemplars, creating new tokens and phrases if necessary.

As an agent continues to record learning observations, its exemplar set accu-
mulates redundant and contradictory elements. In order to choose which of a
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Fig. 1. Evolution of communicative success in experiments involving 3 agents and
1200 language games about propositional constants and formulas of L = {a, b, c, r, l, u}
constructed using unary and binary connectives (i.e., ¬, ∧, ∨, → or ↔)

set of alternative exemplars, or modified analyses based on them, will be used
in a particular episode the cost of different solution phrases are compared, and
a competition process among exemplars based on reinforcement and discourage-
ment is established. An exemplar is reinforced when it is used in the phrase an
agent constructs to record a learning observation, and it is discouraged when
it is found to be inconsistent with a learning observation. Reinforcement and
discouragement implement therefore a competition among groups of exemplars.

In the computational simulations described in [6] ten agents negotiate com-
munication systems that enable them to accurately convey meanings consisting
of sets of 2 to 7 atomic formulas (constructed from 22 unary and 10 binary pred-
icates) which involve at most 3 different variables, after each agent has made
fewer than 10000 learning observations. Each agent acquires several hundred ex-
emplars, of which a few dozen are singleton tokens identical to those of other
agents in the population.

The agents express meanings by combining their singleton tokens into complex
phrases using the order of phrases, as well as the presence and position of empty
tokens, to indicate configurations of predicate arguments. Empty tokens are also
used to signal the boundaries of constituents, the presence of specific argument
maps, and details of the structure of the phrases containing them.

Kirby [7] studies the emergence of basic structural properties of language,
such as compositionality and recursion, as a result of the influence of learning
on the complex dynamical process of language transmission over generations.

This paper describes computational simulations of language transmission over
generations consisting of only two agents: an adult speaker and a new learner.
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Each generation in a simulation goes through the following steps: 1.- The speaker
is given a set of meanings, and produces a set of utterances for expressing them
either using its knowledge of language or by some random process of invention.
2.- The learner takes this set of the utterance-meaning pairs and uses it as input
for its induction learning algorithm. 3.- Finally a new generation is created where
the old speaker is discarded, the learner becomes the new speaker, and a new
individual is added to become a new learner. At the start of a simulation run
neither the speaker nor the learner have any grammar at all.

The induction algorithm thus proceeds by taking an utterance, incorporating
the simplest possible rule that generates that utterance directly, searching then
through all pairs of rules in the grammar for possible subsumptions until no
further generalisations can be found, and deleting finally any duplicate rules
that are left over. The inducer uses merging and chunking to discover new rules
that subsume pairs of rules that have been learnt through incorporation, and
simplification for generalising some rules using other rules in the grammar.

The meaning space of the second experiment described in [7] consists of for-
mulas constructed using 5 binary predicates, 5 objects and 5 embedding binary
predicates. Reflexive expressions are not allowed (i.e., the arguments of each
predicate must be different). Each speaker tries to produce 50 degree-0 mean-
ings, then 50 degree-1 meanings, and finally 50 degree-2 meanings. The grammar
of generation 115 in one of the simulation runs has syntactic categories for nouns,
verbs, and verbs that have a subordinating function. It also has a grammar rule
that allows expressing degree-0 sentences using VOS (verb, object, subject) or-
der, and another recursive rule that allows expressing meanings of degree greater
than 0. In the ten simulation runs performed the proportion of meanings of de-
grees 0, 1 and 2 expressed without invention in generation 1000 is 100%.

6 Conclusions

This paper has addressed the problem of the acquisition of the syntax of propo-
sitional logic. An approach based on general purpose cognitive capacities such
as invention, adoption, parsing, generation and induction has been proposed.
Self-organisation principles have been used to show how a shared set of pre-
ferred lexical entries and grammatical constructions, i.e., a language, can emerge
in a population of autonomous agents which do not have any initial linguistic
knowledge.

Experiments in which a population of autonomous agents comes up with a
language that allows them to communicate about the formulas of a propositional
language have been presented. This language although simple has interesting
properties found in natural languages, such as compositionality and recursion.
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References

1. Steels, L.: The origins of syntax in visually grounded robotic agents. Artificial
Intelligence 103(1-2) (1998) 133–156

2. Steels, L.: The emergence of grammar in communicating autonomous robotic
agents. In: Proceedings of the European Conference on Artificial Intelligence. IOS
Publishing, Amsterdam. (2000)

3. Steels, L.: Constructivist development of grounded construction grammars. In:
Proc. Annual Meeting of Association for Computational Linguistics. (2004) 9–16

4. Steels, L., Wellens, P.: How grammar emerges to dampen combinatorial search
in parsing. In: Proc. of Third International Symposium on the Emergence and
Evolution of Linguistic Communication. (2006)

5. Hurford, J.: Social transmission favors linguistic generalization. In: The Evolution-
ary Emergence of Language: Social Function and the Origins of Linguistic Form,
Cambridge University Press (2000) 324–352

6. Batali, J.: The negotiation and acquisition of recursive grammars as a result of
competition among exemplars. In: Linguistic Evolution through Language Acqui-
sition: Formal and Computational Models, Cambridge U.P. (2002) 111–172

7. Kirby, S.: Learning, bottlenecks and the evolution of recursive syntax. In: Linguis-
tic Evolution through Language Acquisition: Formal and Computational Models,
Cambridge University Press (2002) 96–109

8. Vogt, P.: The emergence of compositional structures in perceptually grounded
language games. Artificial Intelligence 167(1-2) (2005) 206–242

9. McCarthy, J.: Formalizing Common Sense. Papers by John McCarthy. Ablex.
Edited by Vladimir Lifschitz (1990)
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