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Abstract. The Human Speechome Project is an effort to observe and
computationally model the longitudinal course of language development
for a single child at an unprecedented scale. We are collecting audio and
video recordings for the first three years of one child’s life, in its near
entirety, as it unfolds in the child’s home. A network of ceiling-mounted
video cameras and microphones are generating approximately 300 giga-
bytes of observational data each day from the home. One of the worlds
largest single-volume disk arrays is under construction to house approxi-
mately 400,000 hours of audio and video recordings that will accumulate
over the three year study. To analyze the massive data set, we are de-
veloping new data mining technologies to help human analysts rapidly
annotate and transcribe recordings using semi-automatic methods, and
to detect and visualize salient patterns of behavior and interaction. To
make sense of large-scale patterns that span across months or even years
of observations, we are developing computational models of language
acquisition that are able to learn from the childs experiential record.
By creating and evaluating machine learning systems that step into the
shoes of the child and sequentially process long stretches of perceptual
experience, we will investigate possible language learning strategies used
by children with an emphasis on early word learning.

1 The Need for Better Observational Data

To date, the primary means of studying language acquisition has been through
observational recordings made in laboratory settings or made at periodic inter-
vals in children’s homes. While laboratory studies provide many useful insights,
it has often been argued that the ideal way to observe early child development
is in the home where the routines and context of everyday life are minimally
disturbed.

Unfortunately, the quality and quantity of home observation data available is
surprisingly poor. Observations made in homes are sparse (typically 1-2 hours
per week), and often introduce strong observer effects due to the physical pres-
ence of researchers in the home. The fine-grained effects of experience on lan-
guage acquisition are poorly understood in large part due to this lack of dense
longitudinal data [1].
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In general, many hypotheses regarding the fine-grained interactions between
what a child observes and what the child learns to say cannot be investigated due
to a lack of data. How are a child’s first words related to the order and frequency
of words that the child heard? How does the specific context (who was present,
where was the language used, what was the child doing at the time, etc.) affect
acquisition dynamics? What specific sequence of grammatical constructions did
a child hear that led her to revise her internal model of verb inflection? These
questions are impossible to answer without far denser data recordings than those
currently available.

2 Pilot Study

The Human Speechome Project (HSP) attempts to address these shortcomings
by creating the most comprehensive record of a single child’s development to
date, coupled with novel data mining and modeling tools to make sense of the
resulting massive corpus. The recent surge in availability of digital sensing and
recording technologies enables ultra-dense observation: the capacity to record
virtually everything a child sees and hears in his/her home, 24 hours per day for
several years of continuous observation. We have designed an ultra-dense obser-
vational system based on a digital network of video cameras, microphones, and
data capture hardware. The system has been carefully designed to respect in-
fant and caregiver privacy and to avoid participant involvement in the recording
process in order to minimize observer effects.

The recording system has been deployed and at the time of this writing (June
2006), the data capture phase is ten months into operation. Two of the authors
(DR, RP) and their first-born child (male, now six months of age, raised with
English as the primary language) are the participants. Their home has been
instrumented with video cameras and microphones.

Our ultimate goal is to build computational models of language acquisition
that can “step into the shoes” of a child and learn directly from the child’s
experience. The design and implementation details of any computational model
will of course differ dramatically from the mental architecture and processes of
a child. Yet, the success of a model in learning from the same input as a child
provides evidence that the child may employ similar learning strategies.

3 Ultra-Dense Observation for Three Years

Eleven omni-directional mega-pixel resolution color digital video cameras have
been embedded in the ceilings of each room of the participants’ house (kitchen,
dining room, living room, playroom, entrance, exercise room, three bedrooms,
hallway, and bathroom). Video is recorded continuously from all cameras since
the child may be in any of the 11 locations at any given time. In post processing,
only the relevant video channel will be analyzed for modeling purposes. Video is
captured at 14 images per second whenever motion is detected, and one image
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per second in the absence of motion. The result is continuous and complete
full-motion video coverage of all activity throughout the house.

Boundary layer microphones (BLM) are used to record the home’s acoustic
environment. These microphones use the extended surface in which they are
embedded as sound pickup surfaces. BLMs produce high quality speech record-
ings in which background noise is greatly attenuated. We have embedded 14
microphones throughout the ceilings of the house placed for optimal coverage
of speech in all rooms. Audio is sampled from all 14 channels at greater than
CD-quality (16-bit, 48KHz). When there is no competing noise source, even
whispered speech is clearly captured.

Concealed wires deliver power and control signals to the cameras and micro-
phones, and transmit analog audio and networked digital video data to a cluster
of 10 computers and audio samplers located in the basement of the house. The
computers perform real-time video compression and generate time-stamped digi-
tal audio and video files on a local 5-terabyte disk array. With video compression,
approximately 300 gigabytes of raw data are accumulated each day. A petabyte
(i.e., 1 million gigabyte) disk array is under construction at MIT to house the
complete three-year data set and derivative metadata. Data is transferred peri-
odically from the house to MIT using tape storage.

Audio and video recordings can be controlled by the participants in the house
using miniature wall-mounted touch displays. Cameras are clustered into eight
visual zones (cameras that view overlapping physical spaces are grouped into
zones). Eight touch displays are installed next to light switches around the house,
each enabling on/off control over video recording in each zone by touching the
camera icon. Audio recording can also be turned on and off by touching the
microphone icon. To provide physical feedback on the status of video recording,
motorized shutters rotate to conceal cameras when they are not recording. The
“oops” button at the bottom of the display (marked with an exclamation mark)
opens a dialog box that allows the user to specify any number of minutes of
audio and/or video to retroactively and permanently delete from the disk array.

4 Data Management

The network of cameras and microphones are generating an immense flow of
data: an average of 300 gigabytes of data per day representing about 132 hours
of motion-compressed video per day (12 hours x 11 cameras) and 182 hours of
audio (13 hours x 14 microphones). In just the first six months we have collected
approximately 24,000 hours of video and 33,000 hours of audio. At this rate,
the data set is projected to grow to 142,000 hours of video and 196,000 hours of
audio by the end of the three year period. Clearly, new data mining tools must
be designed to aid in analysis of such an extensive corpus.

We are developing a multichannel data visualization and and annotation sys-
tem that will enable human analysts to quickly navigate, search, transcribe
salient regions of data. Our long term plan is to adapt and apply computer vision
techniques to the video corpus in order to detect, identify, and track people and
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salient objects. Since the visual environment is cluttered and undergoes constant
lighting changes (from direct sunlight to dimmed lamps), automatic methods are
inherently unreliable. Thus, similar to our approach with speech transcription,
we plan to design semi-automatic tools with which humans can efficiently per-
form error correction on automatically generated meta-data. The combination
of automatic motion tracking with human-generated identity labels will yield
complete spatiotemporal trajectories of each person over the entire three year
observation period. The relative locations, orientations, and movements of people
provide a basis for analyzing the social dynamics of caregiver-child interactions.

5 Modeling In Vivo Word Learning

In previous related work, we developed a model of early word learning called
CELL (Cross-Channel Early Lexical Learning) which learned to segment and
associate spoken words with acquired visual shape categories based on untran-
scribed speech and video input [2]. CELL was evaluated on speech recordings of
six mothers as they played with their pre-verbal infants using toys. This model
demonstrated that a single mechanism could be used to resolve three problems
of word learning: spoken unit discovery, visual category formation, and cross-
situational mappings from speech units to visual categories. The model oper-
ated under cognitively plausible constraints on working memory, and provided
a means for analyzing regularities in infant-directed observational recordings.

Three simplifications made in CELL may be contrasted with our new model-
ing effort using the HSP corpus. First, CELL was evaluated on a relatively small
set of observations. Caregiver-infant pairs were only observed for two one-hour
play sessions, held about a week apart. The data was thus a snapshot in time
and could not be used to study developmental trajectories. Second, observations
were conducted in an infant lab leading to behaviors that may not be represen-
tative of natural caregiver-infant interactions in the home. It is unclear whether
CELL’s learning strategy would work with a more realistic distribution of input.
Third, visual input was oversimplified and social context was ignored. The only
context available to CELL was video of single objects placed against controlled
backdrops. As a consequence, the model of conceptual grounding in CELL was
limited to visual categories of shapes and colors underlying words such as ball
and red. It could not learn verbs (since it did not model actions), nor could it
learn social terms such as hi and thank you.

The HSP corpus overcomes the limitations inherent in collecting small corpora
within laboratory settings as was done with CELL. To move beyond the simple
speech-to-image semantics of CELL, we will apply new semantic representations
including sensory-motor grounded “semiotic schemas” [3] and “perceived affor-
dances” [4,5]. In the latter, stochastic grammars are used to model the hierar-
chical and ambiguous nature of intentional actions. In [5], sequences of observed
movements are parsed by behavior grammars yielding lattices of inferred higher
level intentions. Verb and noun learning is modeled as acquiring cross-situational
mappings from constituents of utterances to constituents of intention lattices. We
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plan to use a similar approach with the HSP data, but with a semi-automatic
procedure for learning behavior grammars from video data. Words related to
routines (baths, meals, etc.) and names of locations (crib, highchair, etc.) might
be modeled on this basis.

6 Conclusions

The Human Speechome Project provides a natural, contextually rich, longitudi-
nal corpus that serves as a basis for studying language acquisition. An embedded
sensor network and data capture system have been designed, implemented, and
deployed to gather an ultra-dense corpus of a child’s audio-visual experiences
from birth to age three. We have described preliminary stages of data mining
and modeling tools that have been developed to make sense of 400,000 hours
of observations. These efforts make significant progress towards the ultimate
goal of modeling and evaluating computationally precise learning strategies that
children may use to acquire language.
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