
4 From holistic to discrete speech sounds:
the blind snowXake-maker hypothesis

Pierre-Yves Oudeyer

4.1 The speech code

Sound is a medium used by humans to carry information when they speak

to each other. The existence of this kind of medium is a prerequisite for

language. It is organized into a code, called speech, which provides a

repertoire of forms that is shared in each language community and that

allows its users to encode content information. This code is mainly

conventional, and thus intuitively requires coordinated interaction and

communication to be established. How, then, might a speech code be

formed prior to the existence of communication and of language-like

interaction patterns?

Moreover, the human speech code is characterized by several properties

which we have to explain. Here are some of them:

Property 1: Discreteness and systematic re-use. Speech sounds are pho-

nemically coded as opposed to holistically coded. This implies two aspects:

(i) in each language, the continuum of possible sounds is broken into

discrete units; (ii) these units are systematically re-used to build higher-

level structures of sounds, like syllables.

For example, in articulatory phonology (see Studdert-Kennedy and Gold-

stein 2003; Studdert-Kennedy, Chapter 3), a vocalization is viewed as

multiple tracks in which gestures are performed in parallel (the set of

tracks is called the gestural score). A gesture is the combination of several

articulators (e.g. the jaw, the tongue) operating to execute a constriction

somewhere in the mouth. The constriction is deWned by the place of

obstruction of the air as well as the manner. Given a subset of organs,

the space of possible places of constrictions is a continuum (for example,

the vowel continua from low to high, executed by the tongue body),
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though each language uses only a few places to perform gestures. This is

what we call discreteness.1 Furthermore, gestures and their combinations,

which may be called ‘phonemes’, are systematically re-used in the gestural

scores that specify the syllables of each language. Some researchers call this

‘phonemic coding’.

Property 2: Universal tendencies. Reoccurring units of vocalization sys-

tems are characterized by universal tendencies. For example, our vocal

tract makes it possible to produce hundreds of diVerent vowels. However,

each particular vowel system typically uses only three, four, Wve, or

six vowels, and extremely rarely more than twelve (Schwartz et al.

1997a). Moreover, some vowels appear much more often than others.

For example, most languages contain the vowels [a], [i] and [u] (87 per

cent of languages) while other vowels are very rare, such as [y], [œ] and

[�] (5 per cent of languages). Also, there are structural regularities: for

example, if a language contains a front unrounded vowel at a certain

height, for example the /e/ in bet, it will also usually contain the back

rounded vowel at the same height, which would be the /O/ in hawk in this

case.

Property 3: Sharing. The speakers of a particular language use the same

phonemes and they categorize speech sounds in the same manner. How-

ever, they do not necessarily pronounce each of them exactly the same

way.

Property 4: Diversity. At the same time, each language categorizes speech

sounds in its own way, and sometimes does this very diVerently from

other languages. For example, Japanese speakers categorize the <l> of lead

and the <r> of read as identical.

This chapter addresses the question of how a speech code with these

properties might have formed from non-speech prior to the ability to have

linguistic interactions. The mechanism I present is based on a low-level

model of sensory-motor interactions. I show that the integration of

certain very simple and non-language-speciWc neural devices allows a

population of agents to build a speech code that has the properties

1 The fact that the audible speech stream is continuous and produced by a mixture of
articulatory movements is not incompatible with ‘discreteness’: ‘discreteness’ applies to the
command level, which speciWes articulatory targets in time, which are then sequentially
and continuously reached by the articulators under the control of a low-level motor
controller.
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outlined above. The original aspect is that this presupposes neither a

functional pressure for communication, nor the ability to have coordin-

ated social interactions (agents do not play language or imitation games).

It relies on the self-organizing properties of a generic coupling between

perception and production both within agents and in the interactions

between agents.

4.2 Existing approaches

4.2.1 The reductionist approach

One approach is ‘reductionist’: it tries to reduce properties of the speech

system to properties of some of its parts. In other words, this approach

hopes to Wnd a physiological or neural structure, the characteristics of

which are suYcient to deduce the properties of speech.

For example, cognitive innatism (Chomsky and Halle 1968; Pinker and

Bloom 1990) defends the idea that the brain features a neural device

speciWc to language (the Language Acquisition Device) which ‘knows’ at

birth the properties of speech sounds. This ‘knowledge’ is supposed to be

pre-programmed in the genome. A limit of this approach is that its

defenders have remained rather imprecise on what it means for a brain

to know innately the properties of language. In other words, this hypoth-

esis is not naturalized. Also, no precise account of the origins of these

innate devices has ever been provided.

Other researchers focus on the vocal tract physics as well as on the

cochlea electro-mechanics. For example, they claim that the categories

that appear in speech systems reXect the non-linearities of the mapping

from motor commands to percepts. Phonemes would correspond to

articulatory conWgurations for which small changes lead to small changes

in the produced sound. Stevens (1972) defends this idea. There is no

doubt that the morphoperceptual apparatus inXuences the shape of

speech sounds. However, this reductionist approach has straightforward

weaknesses. For example, it does not explain the large diversity of speech

systems in the world’s languages (Maddieson 1984). Also, there are many

experiments which show that the zones of non-linearity of perception in

some languages are not compatible with those of certain other languages

(e.g. Japanese <l> and <r>, as noted above).
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Another example of this approach is that of Studdert-Kennedy and

Goldstein (2003); see also Studdert-Kennedy (Chapter 3) for the origins of

discreteness, or ‘particulate speech’ in his terms. Studdert-Kennedy and

Goldstein remark that the vocal apparatus is physiologically composed of

discrete independent articulators, such as the jaw, the tongue, the lips, the

velum, etc. This implies that there is some discrete re-use in complex

utterances due to the independent articulators that move. I completely

agree with this remark. However, other aspects of discreteness are not

accounted for. Indeed, as Studdert-Kennedy and Goldstein (2003) note,

once you have chosen to use a given set of articulators, there remains the

problems of how the continuous space of possible constrictions or timings

between gestures is discretized. Goldstein (2003) proposes a solution to

this question that I will review later in the chapter (since it is not

reductionist but is a mixture of self-organization and functionalism).

One has to note that this ‘reductionist’ approach proposes answers

concerning the presence of properties (1) and (2) of the speech code,

but addresses neither the diversity of speech sounds nor the fact that they

are shared across communities of agents. This approach also does not

provide answers to the chicken-and-egg problem of the formation of a

code, although this was, of course, not its goal.

4.2.2 The functionalist approach

The functionalist approach attempts to explain the properties of speech

sounds by relating them to their function. Basically, it answers the ‘why’

question by saying ‘the system has property N because it helps to achieve

function F’. It answers the ‘how’ question by saying ‘systems with property

N were formed through Darwinian evolution (genetic or cultural) under

the pressure to achieve function F’. This approach could also be called

‘adaptationist’:2 systems with property N were designed for (‘ad’) their

current utility (‘apt’). Note that typically, functionalist explanations take

into account constraints due to brain structure, perceptual, and vocal

systems.

Typically, in the case of the four properties of speech sounds we are

interested in, this function is ‘communication’. This means that the sounds

2 I use the term adaptationism in its general form: the adaptation may be achieved
through genetic or cultural evolution.
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of a speech code should be perceptually distinct enough so that they are

not confused and communication can take place. The constraints which

are involved typically include a cost of production, which evaluates how

much energy is to be spent to produce the sounds. So, under this view,

speech sounds are a reservoir of forms which are quasi-optimal in terms of

perceptual distinctiveness and economy of energy.

For example, Lindblom (1992) shows that if we search for vowel

systems which are a good compromise between perceptual distinctiveness

and energy cost of articulation, then we Wnd the most frequent vowel

systems in human languages. Lindblom also showed similar results con-

cerning the re-use of units to form syllables.

Operational scenarios describing how Darwinian cultural evolution

formed these systems have also been described. For example, de Boer

(2001a) builds a computer simulation showing how cultural evolution

might have worked, through processes of imitation among agents. In this

simulation, the same mechanism explains both the acquisition of vowels

and its formation; this mechanism is imitation. As a consequence, he also

proposes an answer to the question: ‘How are vowel systems acquired by

speakers?’

Note that de Boer’s model does not deal with questions concerning

discreteness (which is built in) and systematic re-use (indeed, his agents

produce only simple static vowel sounds, and systematic re-use is a

property of complex dynamic sounds). However, this model is very

interesting since it shows a process of formation of a convention, i.e. a

vowel system, within a population of agents. This really adds value to the

work of Lindblom, for example, since it provides a mechanism for (im-

plicit) optimization which Lindblom merely assumed.

However, the imitation game that agents play is quite complex and

requires a lot of assumptions about the capabilities of agents. Each of the

agents maintains a repertoire of prototypes, associations between a motor

program and its acoustic image. In a round of the game, one agent, called

the speaker, chooses an item from its repertoire, and utters it to another

agent, called the hearer. Then the hearer searches its repertoire for the

closest prototype to the speaker’s sound, and produces it (he imitates).

Then the speaker categorizes the utterance of the hearer and checks if the

closest prototype in its repertoire is the one he used to produce the initial

sound. Then he tells the hearer whether it was ‘good’ or ‘bad’. Each item in

the repertoires has a score, used to promote items which lead to successful
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imitations and prune the others. In the case of bad imitations, depending

on the scores of the prototype used by the hearer, either this prototype is

modiWed so as to better match the sound of the speaker, or a new

prototype is created, as close as possible to the sound of the speaker.

So to perform this kind of imitation game, a lot of computational/

cognitive power is needed. First, agents need to be able to play a game,

involving successive turn-taking and asymmetric role-changing. Second,

they must voluntarily attempt to copy the sound production of others,

and evaluate this copy. Finally, when they are speakers, they need to

recognize that they are being imitated intentionally, and give feedback/

reinforcement to the hearer about the (lack of) success. The hearer must

understand the feedback, which says that from the point of view of the

other, he did or did not manage to imitate successfully.

The level of complexity needed to form speech-sound systems in this

model is characteristic of a society of agents which already possesses some

complex ways of interacting socially, including a system of communica-

tion (which allows them for example to know who is the speaker and who

is the hearer, and which signal means ‘good’ and which signal means

‘bad’). The imitation game is itself a system of conventions (the rules of

the game), and agents communicate while playing it. It requires the

transfer of information from one agent to another, and so requires that

this information be carried by shared ‘forms’. So it presupposes that there

is already a shared system of forms. The vowel systems that appear do not

really appear ‘from scratch’. This does not mean that de Boer’s model is

Xawed, but rather that it deals with the subsequent evolution of language

(or more precisely, with the evolution of speech sounds) rather than with

language origins (in other words it deals with the formation of lan-

guages—les langues in French—rather than with the formation of lan-

guage—le langage). Indeed, de Boer presents interesting results about

sound change, provoked by stochasticity and learning by successive gen-

erations of agents. But the model does not address the bootstrapping

question: how did the Wrst shared repertoire of forms appear, in a society

with no communication and language-like interaction patterns? In par-

ticular, the question of why agents imitate each other in the context of de

Boer’s model (this is programmed in) remains open.

Another model in the same spirit was proposed by Browman and

Goldstein (2000) and Goldstein (2003). This model is very interesting

since it is the only one I know of, apart from the work presented in the
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present chapter, which tries to approach the question of the origins of the

discretization of the continuum of gestures (they call this ‘emergence of

discrete gestures’).3 It involves a simulation in which two agents could

produce two gestures, each parametrized by a constriction parameter

taken in a continuous one-dimensional space (this space is typically the

space of possible places of constrictions, or the continuous temporal

interval between two gestures). Agents interacted following the rules of

the ‘attunement game’. In one round of the game, both agents produced

their two gestures, using for each of them a parameter taken in the

continuum with a certain probability. This probability was uniform for

both gestures at the beginning of the simulation: this meant that a whole

continuum of parameters was used. Next, agents recovered the parameter

of the other agent’s Wrst gesture, and compared it to the parameter they

used themselves. If this matched, then two things occurred: the probability

of using this parameter for the Wrst gesture was increased, and the

probability of using the same value for the second gesture is decreased.

This simulated the idea that agents are attempting to produce both of their

gestures diVerently (so that they are contrasted and can be diVerentiated),

and the idea that they try to produce each gesture in a similar fashion to

the corresponding gesture of the other agent (so that a convention is

established). At the end of the simulations, agents converged to a state

in which they used only one value for each gesture, so the space was

discretized, and these pairs of values were the same for the two agents in

the same simulation and diVerent in diVerent simulations. Goldstein

utilized simulations both using and not using non-linearities of the

articulatory to acoustic mapping. Not employing it led to the uniform

use of all parameters across all simulations, while employing it led to

statistical preference for parameters falling in the stable zones of the

mapping.

Like de Boer’s simulation, in this model agents have coordinated inter-

actions: they follow the rules of a game. Indeed, they both need to produce

their gestures together in one round of the game. Secondly, as in the

‘imitation game’, a pressure for diVerentiating sounds is programmed in,

3 There is also the work of Studdert-Kennedy (Chapter 3), but as explained earlier, this
focuses on another kind of discreteness in speech, i.e. that related to the independent and
parallel use of diVerent sets of organs to perform gestures.
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as well as a pressure to copy the parameters of the other agent. This means

that it is again presupposed that agents already live in a community in

which complex communication exists. However, this was certainly not a

concern in that simulation, in the context of research in phonology, whilst

the primary concern in the present chapter is the bootstrapping of lan-

guage. Thus, it remains to be seen how discrete speech, which has been

argued to be crucial for the rise of language (Studdert-Kennedy and

Goldstein 2003), might have come to exist without presupposing that

complex communication had already arisen. More precisely, how might

discrete speech appear without a pressure to contrast sounds? This is one

of the issues we propose to solve later in the present chapter.

Furthermore, in Goldstein’s model, one assumption is that agents

directly exchange the targets that they used to produce gestures (there is

noise, but they are still given targets). However, human vocalizations are

continuous trajectories, Wrst in the acoustic space, and then in the organ

relation space. So what a human gets from another’s gesture is not the

target, but the realization of this target which is a continuous trajectory

from the start position to the target. And because targets are sequenced,

vocalizations do not stop at targets, but continue their ‘road’ towards the

next target. The task of recovering the targets from the continuous trajec-

tory is very diYcult, and has not been solved by human speech engineers.

Maybe the human brain is equipped with an innate ability to detect events

corresponding to targets in the stream, but this is a strong speculation and

so incorporating it in a model is a strong (yet interesting) assumption. In

the present chapter, I do not make this assumption: agents will produce

complex continuous vocalizations speciWed by sequences of targets, but

initially will be unable to retrieve any kind of ‘event’ that may help them

Wnd out where the targets were. Instead, they use a time resolution Wlter

which ensures that each of the points on the continuous trajectory is

considered as a target (while only very few of them actually are targets).

This introduces a huge amount of noise (not white noise, but noise with a

particular structure). However, I show that our society of agents converges

to a state in which agents have broken the continuum of possible targets

into a discrete repertoire which is shared by the population. Using the

structure of the activation of the neural maps of agents, at the end it is

possible to retrieve where the targets were (but this will be a result rather

than an assumption).
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4.3 The ‘blind snowXake-maker’ approach

Functionalist models have their strengths and weaknesses, which we are not

going to detail in this chapter (for a discussion, see Oudeyer 2003). Instead,

I propose another line of research, which I believe is almost unexplored in

the Weld of the origins of language. This is what we might call the blind

snowXake maker approach (by analogy with the ‘blind watchmaker’ of

Dawkins 1986, which illustrates the functionalist approach).

There are, indeed, mechanisms in nature which shape the world, such as

that governing the formation of snowXakes, which are quite diVerent from

Darwinism (Ball 2001). They are characterized by the property of self-

organization, like Darwinism, but do not include any concept of Wtness or

adaptation. Self-organization is here deWned as the following property of a

system: the local properties which characterize the system are qualitatively

diVerent from the global properties of the system.4

The formation of snow crystals is illustrated in Figure 4.1. The local

mechanism at play involves the physical and chemical interactions be-

tween water molecules. If one looks at these physical and chemical prop-

4 Note that this deWnition of self-organization is ‘non-magical’ and diVers from a
deWnition stating that this is a property of systems in which the operations of the higher
level cannot be accounted for solely by the laws governing the lower-order level, i.e. cannot
be predicted from, nor is reducible to, its constituents. I do not include any dimension of
surprise in the concept of self-organization; when I say that the system described in the
chapter self-organizes, this does not mean that its behaviour is surprising or unpredictable
from its components, but that its global behaviour has qualitative properties diVerent from
the properties of its constituents.

Fig. 4.1 The properties of water molecules and the way they interact are quali-

tatively diVerent from the symmetrical large-scale structure of snow crystals: this

is self-organization.
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erties, one never Wnds anything that looks like the structure of snow

crystals. However, if one lets these molecules interact at the right tem-

perature and pressure, marvellous symmetrical structures, with a great

diversity in exact shapes, form (Kobayashi and Kuroda 1987). This is an

example of a mechanism that shows self-organization, and builds very

complex shapes which are not adaptive or functional (it would be hard to

claim that it helps the water to survive). There is no reason why this kind

of ‘free’ formation of structures would not appear in the biological world

too. This idea has been defended by Thompson (1932), Gould and Vrba

(1982), and KauVman (1995).

Thompson (1932) gives the example of the formation of the hexagonal

honeycomb of the honeybee. Honeybees build walls of wax made by

regular hexagonal cells which tile the whole plane. This is remarkable

because (a) there are only three ways to tile the plane with regular shapes

(squares, triangles and hexagons), and (b) hexagons are optimal since it

takes less material to cover the same area with hexagons than with

triangles or squares. There are two possible ways to account for this.

First, one might think that honeycomb was designed as an adaptation

by the honeybees to minimize their metabolic cost: this is the Darwinist

functionalist approach. The honeybees would have tried out many pos-

sible shapes until they stumbled on hexagons, which they would have

found to be less energy-consuming. This would imply that honeybees

would have acquired sophisticated instincts that allow them to build

perfect hexagons without compasses and set-squares. This explanation is

plausible but elaborate, and requires a time-consuming search in the space

of forms by the honeybees.

A second explanation, proposed by Thompson, is much more straight-

forward for the honeybees. Hexagonal forms are the consequence of

purely physical forces: if the wax of the comb is made soft enough by

the body heat of the bees, then it is reasonable to think of the compart-

ments as bubbles surrounded by a sluggish Xuid. And physics makes the

bubbles pack together in just the hexagonal arrangement of the honey-

comb, provided that initially the wax cells are roughly circular and roughly

of the same size; see Figure 4.2. So it might be that initially, honeybees

would just build wax cells which were roughly circular and of roughly the

same size, and by heating them they automatically obtained hexagonal

cells, owing to the self-organizing properties of the physics of packed

cells. Note, this does not entail that modern honeybees lack an innate,
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hard-wired neural structure which allows them to build precisely hex-

agonal shapes; a proposal for such an innate capacity was suggested by von

Frisch (1974). Rather, Thompson’s proposal is that long ago in evolution-

ary history, the honeybees might simply have relied on the self-organiza-

tion of heated packed wax cells, which would have led them to Wnd the

hexagon, but later on in their evolutionary history, they might have

incorporated into their genome schemata for building those hexagons

directly, in a process similar to the Baldwin eVect (Baldwin 1896; see

Briscoe, Chapter 14).

The goal of this chapter is to present an approach to the formation of

speech codes which is very similar in spirit to the approach of D’Arcy

Thompson to the formation of honeycomb. We will propose that the

formation of sound systems with the properties of discreteness, systematic

re-use, universal tendencies, diversity and sharing, may be a result of self-

organization occurring in the interactions of modules which were not

necessarily selected for communication. The mechanism is not based on

the manipulation of the genetic material, but results from the interaction

of agents and from a number of generic neural and physical modules

(which may have a function on their own, not related to speech commu-

nication) during the lifetime of agents. Note that the scenario I propose

explains how sound systems with the four properties above could have

formed before being related to communication, but says nothing about

how it could have been recruited later to be used as an information carrier

in communication. If we take the example of the origins of bird feathers

used by Gould and Vrba (1982), it is like explaining how the feathers came

up with the thermoregulation pressure, but not saying how the feathers

were recruited to Xy.

Fig. 4.2 (a) shows the regular hexagonal tiling of the honeycomb; (b) shows the

same pattern taken by a raft of water bubbles.
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4.4 The mechanism

The model is a generalization of that of Oudeyer (2001a), which was used

to model a particular phenomenon of acoustic illusion, called the percep-

tual magnet eVect. This model was itself a generalization and uniWcation

of the earlier models of Damper and Harnad (2000) and Guenther and

Gjaja (1996).

It is based on the building of an artiWcial system, composed of robots/

agents endowed with working models of the vocal tract, the cochlea, and

some parts of the brain. The complexity and degree of reality of these

models can be varied to investigate which aspects of the results are due to

which aspects of the model. I stress that while some parts of the model are

inspired by knowledge from neuroscience, we are not trying to reproduce

faithfully what is in the human brain. Rather, I attempt to build an

artiWcial world in which we can study the phenomenon described at the

beginning of the chapter (i.e. the speech code). Because we know exactly

what is happening in this artiWcial world, in particular what the assump-

tions are, I hope this will enhance our understanding of speech. The model

does this by allowing us to give suYcient conditions for the appearance of

a speech code, and it can also tell us what is not necessary (e.g. we will

show that imitation or feedback are not necessary). Because the mechan-

isms that formed speech involve the interaction of many components and

complex dynamics, artiWcial systems are a crucial tool for studying them,

and it helps to obtain intuitive understanding of them. Our artiWcial

system aims at proving the self-coherence and logical plausibility of the

concept of the ‘blind snowXake maker’, applied to the origins of discrete

speech sounds. For more details on this methodology of the artiWcial, see

Steels (2001) and Oudeyer (2003).

4.4.1 The architecture of the artiWcial system

Here, I summarize the architecture of the system, and in particular the

architecture of agents. Technical details can be found in Appendix 4.1 at

the end of this chapter. Each agent has one ear which takes measurements

of the vocalizations that it perceives, which are then sent to its brain. It also

has a vocal tract, the shape of which is controllable and which allows it to

produce sounds. The ear and the vocal tract are connected to a brain,
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which is basically a set of interconnected neurons. There are two sets of

neurons. One is called the ‘perceptual map’, which gets input from the

measurements taken by the ear. Then the neurons of the perceptual map

send their output to the second set of neurons, the ‘motor map’ (this

could also be called an ‘articulatory map’). These motor neurons send

signals to a controller which drives the vocal tract. These signals should be

viewed as commands specifying articulatory targets to be reached in time.

The articulatory targets are typically relations between the organs of the

vocal tract (like the distance between the lips or the place of constriction).

They correspond to what is called a ‘gesture’ in the articulatory phonology

literature (Browman and Goldstein 2000; Studdert-Kennedy, Chapter 3).

Figure 4.3 gives an overview of this architecture. In this chapter, the space

of organ relations will be two-dimensional (place and manner of constric-

tion) or three-dimensional (place, manner of articulation, and rounding).

What we here call a neuron is a box which receives several inputs/

measurements, and integrates them to compute its activation, which is

propagated through output connections. Typically, the integration is

made by Wrst weighting each input measurement (i.e. multiplying the

measurement by a weight), then summing these numbers, and applying to

Agent 1 Agent 2

Perceptual
measures

Cochlea model

Perceptual map

Motor map

Motor commands =
articulatory targets

Vocal tract model
+ control system

Fig. 4.3 Overview of the architecture of agents in the artiWcial world
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the sum a function called the ‘tuning function’. The tuning function is

in this case a Gaussian curve, whose width is a parameter of the simula-

tion. A weight is attached to every connection between neurons. In the

model, all weights are initially random.

Also, the neurons in each neural map are all interconnected. This means

that they receive inputs from all other neurons in the map. When a

stimulus is perceived, this prompts an initial activation of all the neurons

in the two maps. Next, the activation of each neuron, after the update of

all the weights, is updated according to the new activation of the neurons

to which it is connected. This is repeated until the activations stabilize.

This is what is called an attractor in dynamical systems language. This

attractor, i.e. a set of neuron activations which is stabilized, is the same for

a number of diVerent stimuli, called its basin of attraction. This models

categorization behaviour. There are as many categories as there are at-

tractors.

The production of a vocalization consists of choosing a set of articula-

tory targets. To choose these targets, one activates neurons in the motor

map of agents sequentially and randomly. This activation is a command

which we take as the deWnition of a gesture in this chapter. A target is

speciWed by the weights of the output connections of the activated motor

neurons. Then there is a control system which executes these commands

by pulling the organs towards the targets continuously and sequentially.5

Here, the control system simply amounts to generating a continuous

trajectory in the organ relation space which passes through the targets.

This is achieved through simple spline interpolation, which is basically a

polynomial interpolation. Because initially the weights of the connections

5 It is important to note that this way of producing complex articulation already
contains some discreteness. I assume that syllables are speciWed as a sequence of targets.
This is in fact in line with the literature on motor control in mammals (Kandel et al. 2001),
which describes it as being organized in two levels: a level of high-level discrete commands
(our targets), and a low level which takes care of the execution of these motor commands.
So this level of discreteness at the level of commands may not be a feature to be explained
in the context of research on the origins of language, since it is already present in the
motor-control architecture of mammals. However, I do not assume that initially these
targets are organized: the set of commands used to deWne targets is taken as a continuum of
possible commands and there is no re-use of targets from one syllable to another;
discreteness and systematic re-use are a result of the simulations. Also, I do not assume
that there is discreteness at the perceptual level: agents are not able to detect ‘events’ in the
acoustic stream. (However, at the end they are able to identify the categories of targets
which were used to produce the sound.)
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are random, agents produce vocalizations with articulatory targets that are

spread uniformly across the space of possible targets. This implies that

their vocalizations are initially holistic as far as the commands are con-

cerned (the whole continuum of physically possible commands is used).

They are not phonemically coded.

Agents produce vocalizations not by a static conWguration of the vocal

tract, but rather by continuous movement of the vocal tract. This implies

that agents receive a continuous trajectory (in the acoustic space) from the

vocalizations of other agents. Next I explain how this trajectory is pro-

cessed, and how it is used to change the weights of the connections

between the neurons.

First of all, agents are not able to detect high-level events in the

continuous trajectory, which would allow them, for example, to Wgure

out which points were the targets that the other agents used to produce

that trajectory. Instead, they segment the trajectory into very small parts,

corresponding to the time resolution of perception (this models the time

resolution of the cochlea). Then all these small parts are integrated, giving

a value in the acoustic space, which is sent to the perceptual neurons. Each

perceptual neuron is then activated.

The weights change each time the neurons to which they are connected

are activated. The input connections of the perceptual neurons are

changed so that the neurons become more sensitive to the stimuli that

activated them, and the change is larger for neurons with a high activation

than for neurons with a low activation (this is sensitization of neurons).

Then the activation of the perceptual neurons is propagated to the motor

neurons. Two possibilities ensue: (i) the motor neurons are already acti-

vated because the vocalization was produced by the agent itself, and the

weights of the connections between the perceptual and the motor neurons

are reinforced if they correspond to a link between two neurons whose

activation is correlated, and weakened if they correspond to a link between

neurons whose activation is not correlated (this is Hebbian learning). This

learning rule allows the agent to learn the mapping between percepts and

motor commands during babbling. (ii) If the motor neurons were not

already activated (the sound comes from the vocalization of another

agent), then the weights of the connections between the two maps are

not changed, but the weights of the connections between the motor

neurons and the control system are changed. The neuron with the highest

activation in the neural map is selected, and its output weights, which
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specify an organ relation, are used as a reference to update the other

weights: they are changed so that the organ relation they specify looks a

little more like that of the reference neuron, and this change is weighted by

the current activation of each motor neuron.

A crucial point is the coupling between the production process and the

perception process. Let us term the weights of the input connections of the

perceptual neurons the preferred vectors of these neurons. This term

comes from the fact that the set of weights of a neuron forms a vector,

and the stimulus that has the same values as the weights will activate the

neuron maximally. We also call the output weights of the motor neurons

their preferred vector. The set-up and the dynamics of the two neural

maps ensure that the distribution of preferred vectors in the motor map

corresponds to the distribution of preferred vectors in the perceptual map:

if one activates all the neurons in the motor map randomly, many times,

to produce sounds, this then gives a distribution of sounds that is the same

as the one coded by the neurons of the perceptual map. The distribution of

the preferred vectors of the neurons in the perceptual map changes when

sounds are perceived, which in turn changes the distribution of preferred

vectors in the motor map, which then implies that if an agent hears certain

sounds more often than others, he will also tend to produce them more

often (here, a ‘sound’ refers to one small subpart of a vocalization,

generated by the time-resolution Wlter described earlier). It is important

to see that this process of attunement is not realized through imitation,

but is a side eVect of an increase in sensitivity of neurons, which is a very

generic, local, low-level neural mechanism (Kandel et al. 2001).

Agents are put together in a world in which they will wander randomly. At

random times, they produce a vocalization, and agents next to them hear

the sound and adapt their neural maps. Each agent also hears its own

sounds, using it to learn the mapping from perception to motor commands.

At the start, every agent produces sounds with targets that are randomly

spread across the continuum: this means that this continuum is not

discretized and there is no systematic re-use of targets. In other words,

agents’ vocalizations are holistic. I will show that their neural maps self-

organize and synchronize so that after a while they produce complex

sounds with targets belonging to a small number of well-deWned clusters:

the continuum is then discretized. Moreover, the number of clusters is

small compared to the number of vocalizations they produce during their

lifetime, which implies a systematic re-use of targets across vocalizations.
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Finally, these clusters are the same for all agents: the code is shared and

speciWc to each agent community, because in each simulation run, the set

of clusters that appears is diVerent (so there is diversity).

I use two kinds of model for mapping from motor conWgurations to

sounds and then perception. The Wrst kind is abstract and trivial: this is a

random linear mapping from one space to the other. This allows us to see

what we can get without any special mapping properties, in particular

without non-linearities. In fact, I show that we get quite far without these,

obtaining discreteness, systematic re-use, sharing, and diversity. The sec-

ond kind is a more realistic model of the mapping, using three motor

parameters: tongue height, tongue front–back position, and lip rounding.

The formants corresponding to any conWgurations are then calculated

using de Boer’s (2001a) model, which is based on human data. This model

allows us to predict the vowel systems that appear in human languages,

thus allowing us to account for some universal tendencies in human vowel

systems.

4.4.2 Non-assumptions

Agents do not play a language game in the sense used in the literature

(Hurford et al. 1998), and in particular do not play the ‘imitation game’

which is, for example, used in de Boer (2001a). Their interactions are not

structured, there are no roles and no coordination. In fact, they have no

social skills at all. They do not distinguish between their own vocalizations

and those of others. They do not communicate. Here, ‘communication’

refers to the emission of a signal by an individual with the intention of

conveying information which will modify the state of at least one other

agent, which does not happen here. Indeed, agents do not even know that

there are other agents around them, so it would be diYcult to say that they

communicate.

4.5 The dynamics

4.5.1 Using the abstract linear articulatory/perceptual mapping

This experiment used a population of twenty agents. I describe Wrst what

was obtained when agents use the linear articulatory synthesizer. In the
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simulations, 500 neurons were used per neural map, and s ¼ 0:05 (width

of their tuning function). The acoustic space and the articulatory space are

both two-dimensional, with values in each dimension between zero and

one. These two dimensions can be thought of as the place and the manner

of articulation.

Initially, as the preferred vectors of neurons are randomly and uni-

formly distributed across the space, the diVerent targets that specify the

productions of the agents are also randomly and uniformly distributed.

Figure 4.4 shows the preferred vectors of the neurons in the perceptual

map of two agents. We see that these cover the whole space uniformly, and

are not organized. Figure 4.5 shows the dynamic process of relaxation

associated with these neural maps, and due to their recurrent connections.

This is a representation of their categorizing behaviour. Each small arrow

represents the overall change of activation pattern after one iteration of

the relaxation (see the Appendix to this chapter). The beginning of an

arrow represents a pattern of activations at time t (generated by presenting

a stimulus whose coordinates correspond to the coordinates of this point;

Fig. 4.4 Acoustic neural maps in the beginning. As with all other Wgures, the

horizontal axis represents the Wrst formant (F1), and the vertical axis represents

the eVective second formant (F2’). The unit is the Bark, and they are oriented

from low values to high values. (The Bank is the standard unit corresponding to

one critical band width of human hearing.)
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this is possible because the population vector is also a decoding scheme

which computes the stimulus which activated a neural map). The end of

the arrow represents the pattern of activations of the neural map after one

iteration of the relaxation. The set of all arrows allows one to visualize

several iterations: start somewhere on the Wgure, and follow the arrows. At

some point, for every initial point, you get to a Wxed point. This corres-

ponds to one attractor of the network dynamic, and the Wxed point to the

category of the stimulus that gave rise to the initial activation. The zones

deWning stimuli that fall into the same category are visible on the Wgure,

and are called basins of attractions. With initial preferred vectors uni-

formly spread across the space, the number of attractors as well as the

boundaries of their basins of attractions are random.

The learning rule of the acoustic map is such that it evolves so as to

approximate the distribution of sounds in the environment (though this is

not due to imitation). All agents produce initially complex sounds com-

posed of uniformly distributed targets. Hence, this situation is in equilib-

rium. However, this equilibrium is unstable, and Xuctuations ensure that

at some point, symmetry breaks: from time to time, some sounds get

produced a little more often than others, and these random Xuctuations

may be ampliWed through positive feedback loops. This leads to a multi-

peaked distribution: agents get into the kind of situation in Figure 4.6 (for

Fig. 4.5 Representation of the two agents’ attractor Weld initially
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the unbiased case) which corresponds to Figure 4.4 after 2000 interactions

in a population of twenty agents. Figure 4.6 shows that the distribution of

preferred vectors is no longer uniform but clustered. However, it is not so

easy to visualize the clusters with the representation in Figure 4.6, since

there are a few neurons which have preferred vectors not belonging to

these clusters. They are not statistically signiWcant, but introduce noise

into the representation. Furthermore, in the clusters, basically all points

have the same value, so that they appear as one point. Figure 4.7 allows us

to visualize the clusters better, by showing the attractor landscape that is

associated with them. We see that there are now three well-deWned

attractors or categories, and that these are the same in the two agents

represented (they are also the same in the eighteen other agents in the

simulation). This means that the targets the agents use now belong to one

of several well-deWned clusters, and moreover can be classiWed automat-

ically as such by the relaxation of the network. The continuum of possible

targets has been broken; sound production is now discrete. Moreover, the

number of clusters that appear is low, which automatically brings it about

that targets are systematically re-used to build the complex sounds that

Fig. 4.6 Neural maps after 2000 interactions, corresponding to the initial state of

Fig. 4.4. The number of points that one can see is fewer than the number of

neurons, since clusters of neurons have the same preferred vectors and this is

represented by only one point.
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agents produce. All the agents share the same speech code in any one

simulation. However, in each simulation, the exact set of modes at the end

is diVerent. The number of modes also varies with exactly the same set

of parameters. This is due to the inherent stochasticity of the process.

I illustrate this later in the chapter.

It is very important to note that this result of crystallization holds for any

number of agents (experimentally), and in particular with only one agent,

which adapts to its own vocalizations. This means that interaction with

other agents—i.e. the social component—is not necessary for discreteness

and systematic re-use to arise. But what is interesting is that when agents do

interact, then they crystallize in the same state, with the same categories. To

summarize, there are, so far, two results: Wrst, discreteness and systematic

re-use arise because of the coupling between perception and production

within agents; second, shared systems of phonemic categories arise because

of the coupling between perception and production across agents.

We also observe that the attractors that appear are relatively well spread

across the space. The prototypes that their centres deWne are thus percep-

Fig. 4.7 Representation of the attractor Welds of two agents after 2000 inter-

actions. The number of attractors is fewer than the number of points in Fig. 4.6.

This is because in the previous Wgures, some points correspond to clusters and

other to single points. The broad width of the tuning function ensures that the

landscape is smoothed out and individual points which are not too far from

clusters do not manage to form their own basin of attraction.
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tually quite distinct. In terms of Lindblom’s framework, the energy of

these systems is high. However, there was no functional pressure to avoid

close prototypes. They are distributed in that way because of the intrinsic

dynamics of the recurrent networks and their rather large tuning func-

tions: indeed, if two neuron clusters get too close, then the summation of

tuning functions in the iterative process of relaxation smooths their

distribution locally and only one attractor appears.

4.5.2 Using the realistic articulatory/acoustic mapping

In the previous subsection, we assumed that the mapping from articula-

tions to perceptions was linear. In other words, constraints from the vocal

apparatus due to non-linearities were not taken into account. This is

interesting because it shows that no initial asymmetry in the system was

necessary to get discreteness (which is very asymmetrical). So there is no

need to have sharp natural discontinuities in the mapping from the

articulations to the acoustic signals and to the perceptions in order to

explain the existence of discreteness in speech sounds (I am not saying

that non-linearities of the mapping do not help, just that they are not

necessary).

However, this mapping has a particular shape that introduces a bias

into the pattern of speech sounds. Indeed, with the human vocal tract,

there are articulatory conWgurations for which a small change eVects a

small change in the produced sound, but there are also articulatory

conWgurations for which a small change eVects a large change in the

produced sound. While the neurons in the motor map have initially

random preferred vectors with a uniform distribution, this distribution

will soon become biased: the consequence of non-linearities will be that

the learning rule will have diVerent consequences in diVerent parts of the

space. For some stimuli, many motor neurons will have their preferred

vectors shifted a lot, and for others, very few neurons will have their

preferred vectors shifted. This will very quickly lead to non-uniformities

in the distribution of preferred vectors in the motor map, with more

neurons in the parts of the space for which small changes result in small

diVerences in the produced sounds, and with fewer neurons in the parts of

the space for which small changes result in large diVerences in the pro-

duced sounds. As a consequence, the distribution of the targets that

compose vocalizations will be biased, and the learning of the neurons in
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the perceptual maps will ensure that the distributions of the preferred

vectors of these neurons will also be biased.

The articulatory synthesizer used is from de Boer (2001a). This models

only the production of vowels. The fact that agents produce only vocal-

izations composed of vowel sounds does not imply that the model does

not hold for consonants. I chose this articulatory synthesizer because it is

the only one both fast enough and realistic enough for my computer

simulations. The articulatory space (or organ relation space) is three-

dimensional here: tongue height (i.e. manner of articulation), tongue

front–back position (i.e. place of articulation), and lip rounding. Each

set of values of these variables is then transformed into the Wrst

four formants, which are the poles of the vocal tract shaped by

the position of the articulators. Then the eVective second formant is

computed, which is a non-linear combination of the second, third, and

fourth formants. The Wrst and eVective second formants are known to be

good models of our perception of vowels (de Boer 2001a). To get an idea

of this, Figure 4.8 shows the state of the acoustic neural maps of one agent

after a few interactions between the agents (200 interactions). This repre-

sents the bias in the distribution of preferred vectors due to the non-

linearities.

Fig. 4.8 Initial neural map and attractor Weld of one agent within a population of

twenty agents. Here the realistic articulatory synthesizer is used.
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A series of 500 simulations was run with the same set of parameters, and

each time the number of vowels as well as the structure of the system was

checked. Each vowel system was classiWed according to the relative pos-

ition of the vowels, as opposed to looking at the precise location of each of

them. This is inspired by the work of Crothers (1978) on universals in

vowel systems, and is identical to the type of classiWcation in de Boer

(2001a). The Wrst result shows that the distribution of vowel inventory

sizes is very similar to that of human vowel systems (Ladefoged and

Maddieson 1996): Figure 4.10 shows the two distributions (the plain

line is the distribution corresponding to the emergent systems of the

experiment; the dotted line is the distribution in human languages), and

in particular the fact that there is a peak at Wve vowels, which is remarkable

since Wve is neither the maximum nor the minimum number of vowels

found in human languages. The prediction made by the model is even

more accurate than that of de Boer (2001a), since his model predicted a

peak at four vowels. Then the structure of the emergent vowel systems was

compared to those in human languages as reported in Schwartz et al.

(1997a). More precisely, the distributions of structures in the 500 emer-

gent systems was compared to the distribution of structure in the 451

languages of the UPSID database (Maddieson 1984). The results are

shown in Figure 4.11. We see that the predictions are fairly accurate,

especially in the prediction of the most frequent system for each size of

vowel system (less than eight). Figure 4.9 shows an instance of the most

frequent system in both emergent and human vowel systems. In spite of

the predictions of one four-vowel system and one Wve-vowel system which

appear frequently (9.1 and 6 per cent of systems) in the simulations and

never appear in UPSID languages, these results compare favourably to

those obtained by de Boer (2001a). In particular, we obtain all this

diversity of systems with the appropriate distributions with the same

parameters, whereas de Boer had to modify the level of noise to increase

the sizes of vowel systems. However, like de Boer, we are not able to predict

systems with many vowels (which are admittedly rare in human lan-

guages, but do exist). This is certainly a limitation of our non-functional

model. Functional pressure to develop eYcient communication systems

might be necessary here. In conclusion, one can say that the model

supports the idea that the particular phonemes which appear in human

languages are under the inXuence of the articulatory/perceptual mapping,

but that their existence, which means the phenomenon of phonemic
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Fig. 4.9 Neural map and attractor Weld of the agent from Fig. 4.8 after 2000

interactions with the other twenty agents. The corresponding Wgures for other

agents are nearly identical, as in Fig. 4.6 and 4.7. The vowel system produced

corresponds to the most frequent Wve-vowel system in human languages.

50

45

40

35

30

25

fr
eq

ue
nc

y

20

15

10

5

0
3 4 5 6

sizes of vowel systems

emergent systems

human systems

7 8 9

Fig. 4.10 Distribution of vowel inventory sizes in emergent and UPSID human
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coding, is not due to this mapping but to the sensory-motor coupling

dynamics.

4.6 Discussion

A crucial assumption of the artiWcial system presented in this chapter is

the fact that there are connections between the motor vocal neural map

and the perceptual acoustic map which allow the agents to learn the

mapping between the two spaces. How might these connections have

appeared?

First, it is possible that they appeared through Darwinian genetic

evolution under a pressure for language. But the simplicity and non-

speciWcity of the neural architecture allows other ways of explaining

Most frequent vowel systems in human languages and emergent systems

3 vowels
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Fig. 4.11 Distribution of vowel inventory structures in emergent and UPSID

human vowel systems. This diagram uses the same notations as Schwartz et al.

(1997). Note that here, the vertical axis is also F2, but oriented from high values

to low values.
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their origins which do not necessitate a pressure for language. These

scenarios truly illustrate the ‘blind snowXake maker’ approach.

One alternative scenario is that these connections evolved for imitation.

Imitation may have appeared for purposes very diVerent from language:

for example, it might have evolved to maintain social cohesion. Copying

of types of behaviour might have been used to mark friendship, for

example, as in some species of birds. Interestingly, this kind of imitation

does not require a system of sounds made of discrete units that can be re-

used to produce inWnite combinations. Also, in this kind of imitation,

agents do try to copy behaviours or sounds, but do not try to discriminate

sounds. This means that there is no pressure to develop a system of sounds

that are diVerent from each other and categorized as such. There is no

need to have a system of categories as a whole if all that is useful is just

evaluating the similarity of the sound you yourself produce to one pro-

duced by another individual at a given moment. But discreteness, re-use,

and a system of diVerences and categories are necessary for speech. The

artiWcial system of this chapter shows precisely that with just a simple

neural system which may very well have evolved for ‘imitation for social

cohesion’ (it would be diYcult to make a simpler system), we obtain

freely, through self-organization, a system of sounds that is shared by a

population and that is discrete, with systematically re-used units and a

system of categorization. In other words, we obtain exactly what speech

needs without the need for speech.

So, even if the neural devices that are assumed in this chapter evolved

for imitation, they produce speech-sound systems without a functional

pressure for speech (as used in the context of language). The simulations

of de Boer and of Browman and Goldstein do assume this pressure for

speech, since their agents do try to produce the sounds of their repertoire

diVerently (and in the case of de Boer, they try to make the repertoire as

big as possible). But the agents here do not try to distinguish sounds. The

fact that they reach a system of categories that allows them to distinguish

sounds is a self-organized result. Furthermore, the notion of repertoire is

not pre-programmed, but appears as a result.

A second alternative scenario for the origins of the neural structure

which allows the learning of the mapping between sounds and articulatory

conWgurations is possible. The system just needs initially random neurons

that are sensitive to sounds, random neurons that are sensitive to motor

commands, and random connections between these two sets of neurons.
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Then it needs the random connections between these two sets of neurons

to adapt by following a very general dynamic: Hebbian learning. Next,

activating the motor neurons randomly and uniformly leads to a move-

ment of the vocal tract which produces sounds, which in turn activates the

perceptual neurons, and then the connections between the two maps self-

organize so that after a while the mapping is eVectively learnt. This is what

we call babbling.

Crucially, this architecture does not require precise pre-wiring during

ontogeny which is pre-programmed by the genes. The neurons in the

perceptual map and in the motor map certainly existed well before speech.

In fact they have existed since ears and mouths have existed. So the

question, of course, is how did they come to be connected? It is quite

possible that these connections are a side-eVect of general architectural

design constraints of the brain; Gould and Vrba (1982) give many ex-

amples of other features of the bodies and brains of animals which

appeared in a similar manner. Indeed, it is obvious that the connections

between certain modalities (for example, vision and the motor control of

arms) are necessary and thus existed very early in mammalian evolution.

It might very well be that the most eYcient strategy to produce these

connections is to connect all modalities rather than just to connect

particular modalities with other particular modalities. This might be

more eYcient because it requires fewer speciWcations for the growth

process, and thus might be more robust, and the advantage of this

robustness might be superior to the cost of having a priori unnecessary

connections. In fact, this method of shaping the brain by initial generation

of many random neural structures, followed by a pruning phase, is

accepted by a large part of the neuroscience community (see Changeux

1983). But then all mammals should have these connections between

neurons that perceive sounds and neurons that control the movements

of the mouth. So, why are we the only mammal to have such a system of

speech sounds? And in particular, why do monkeys or chimps not have

speech sounds like ours? It is probable that they do have at birth the

connections between the neurons that perceive sounds and those that

control the mouth, but that they lose them because the key is somewhere

else. The key might lie in babbling.

In fact, precisely one of the assumptions that I make (and which

monkeys or chimps do not seem to implement) is that the agents activate

spontaneously, often, and randomly, the neurons of their motor map. This
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means that they spontaneously try out many articulatory conWgurations

and repeat these trials. In other words, they practise. Monkeys or chimps

do practise certain speciWc motor activities when they play, but these

are very limited and they do not try to practise all the motor activities

that their bodies allow, while human children do. For example, once

monkeys have thrown a stone towards an objective, they will not try

to do it again repeatedly. And it seems that a major evolutionary event

which gave rise to primitive humans with increased skills as compared

to their ancestors is the ability to practise any new motor activity that

they encounter, in particular vocal babbling. Indeed, a general drive to

explore all motor activities available to the body may have been very

beneWcial for the learning of many skills useful for primitive humans,

who lived in a dynamic, quickly changing environment (for example,

coping with changes in habitat, or living in complex dynamic social

structures). This may have pushed them, in particular, to use their vocal

apparatus for babbling. And then we come to the beginning of the

simulation presented in this chapter, which shows that self-organization

takes place and generates ‘for free’ a system of sounds shared by the agents

who live in the same area and which is phonemically coded/discrete.

Monkeys or chimps may have the connections, but because they do not

practise, the neural structures connecting the two modalities certainly die

(through the pruning process of activity-dependent neural epigenesis;

Changeux 1983). But humans do practise, which not only allows the

neural system to be kept alive, but also allows the generation of a shared

speech code.

4.7 Conclusion

This chapter presents a mechanism providing a possible explanation for

how a discrete speech code may form in a society of agents which does not

already possess the means to communicate and coordinate in a language-

like manner. Contrary to other computational models of the origins of

language (see Cangelosi and Parisi 2002), the agents do not play language

games. They have, in fact, no social skills at all. I believe the mechanism

presented may be the kind of mechanism that could solve the language

bootstrapping problem. I have shown how one crucial prerequisite, i.e.

the existence of an organized medium that can carry information in a
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conventional code shared by a population, may appear without linguistic

features being already there.

Furthermore, this same mechanism allows us to account for properties

of the speech code like discreteness, systematic re-use, universal tenden-

cies, sharing, and diversity. I believe that this account is original because

(a) only one mechanism is used to account for all these properties and (b)

we need neither a pressure for eYcient communication nor innate neural

devices speciWc to speech (the same neural devices used in the chapter can

be used to learn hand-eye coordination, for example).

Models like that of de Boer (2001a) are to be seen as describing

phenomena occurring later in the evolutionary history of language.

More precisely, de Boer’s model, as well as, for example, that of

Oudeyer (2001b) for the formation of syllable systems, deals with the

recruitment of speech codes like those that appear in this chapter, and

studies how they are further shaped and developed under functional

pressure for communication. Indeed, whilst we have shown here that

one can go a long way without such pressure, some properties of speech

can only be accounted for with it. An example is the phenomenon of chain

shifts, in which the prototypes of sounds of a language are all moved

around the space.

However, in de Boer (2001a) and Oudeyer (2001b), the recruitment of

the speech code is pre-programmed. How this could have happened in

the origins of language is a problem which remains to be solved. A

particular instantiation of the problem is: how do agents come to have

the idea of using a speech code to name objects? In fact, the problem of the

recruitment of features not initially designed for a certain linguistic

function is present at all levels of language, ranging from sounds to

grammar. The question of how recruitment comes about is a major

challenge for research on the origins of language. In this chapter, we

have shown one example of recruitment: individual discrete sounds

were systematically re-used in the building of complex vocalizations,

and this was not pre-programmed.
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FURTHER READINGS

For a comprehensive overview of research on the origins of speech sounds,

Lindblom (1992), de Boer (2001), and Studdert-Kennedy and Goldstein (2003)

are key references.

For the role of self-organization in the origins of patterns in the biological

world, and in particular for the relationship between self-organization and neo-

Darwinian natural selection, KauVman (1995) is a good start, presenting the

general arguments in an accessible way, and could be followed up by Ball (2001)

and Thompson (1932), which present a great many biological examples, with

more technical and empirical detail.

Appendix 4.1: Technical Details of the Mechanism

The neurons have a Gaussian tuning function. If we note tunei,t the tuning

function of ni at time t, s one stimulus vector, vi the preferred vector (the weights)

of ni , then the form of the function is:

tunei,t (s) ¼ 1
ffiffiffiffiffiffiffiffiffi
2ps
p � e-1

2
vi � s2=s2

The notation v1 � v2 denotes the scalar product between vector v1 and vector v2.

The parameter s determines the width of the Gaussian, and so if it is large the

neurons are broadly tuned (a value of 0.05 means that a neuron responds

substantially to10 per cent of the input space).

When a neuron in the perceptual map is activated because of an input s, then

its preferred vector is changed. The mathematical formula of the new tuning

function is:

tunei,tþ1(s) ¼ 1
ffiffiffiffiffiffiffiffiffi
2ps
p � evi,tþ1� s2=s2

where s is the input, and vi,tþ1 the preferred vector of ni after the processing of s:

vi,t þ 1 ¼ vi,t þ 0:001 � tunei,t (s) � (s � vi,t )

Also, when a sound is perceived and through propagation activates the motor

neurons, the weights of the output connections of these neurons also change. The

preferred vector of the most active neuron is taken as a reference: the other

preferred vectors are changed so that they get closer to this preferred vector.

The change is made with exactly the same formula as for the neurons in the

perceptual map, except that s is the preferred vector of the most active neuron.

When an agent hears a vocalization produced by itself, the motor neurons are

already activated when the perceived sound activates the neurons in the percep-

tual map. Then, the weights of the connections between the two neural maps
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change. A Hebbian learning rule is used. If i is a neuron of the perceptual map

connected to a neuron j of the motor neural map, then the weight wi,j changes:

dwi,j ¼ c2 � (tunei,si
� < tunei,si

>)(tunej, sj
� <tunej,sj

>)(correlation rule)

where si and sj are the input of neurons i and j, <tunei,si
> the mean activation of

neuron i over a certain time interval, and c2 a small constant. All neurons between

the two maps are connected.

Both the perceptual and the motor neural map are recurrent. Their neurons are

also connected to each other. The weights are symmetric. This gives them the

status of a dynamical system: they have a HopWeld-like dynamics with point

attractors, which are used to model the behaviour of categorization. The weights

are supposed to represent the correlation of activity between neurons, and are

learnt with the same Hebbian learning rule:

dwi,j ¼ c2(tunei,si
� <tunei,si

>)(tunej, sj
� <tunej,sj

>)(correlation rule)

These connections are used to relax each neural map after the activations have

been propagated and used to change the connections weights. The relaxation is

an update of each neuron’s activation according to the formula:

act(i, t þ 1) ¼
P

j act(i,t) � wi,j
P

i act(i,t)

where act(i) is the activation of neuron i. This is the mechanism of competitive

distribution, together with its associated dynamical properties.

To visualize the evolution of the activations of all neurons during relaxation,

we use the ‘population vector’. The activation of all the neurons in a neural map

can be summarized by the ‘population vector’ (see Georgopoulos et al. 1988): it is

the sum of all preferred vectors of the neurons weighted by their activity (nor-

malized as here we are interested in both direction and amplitude of the stimulus

vector):

pop(v) ¼
P

i act(ni) � viP
i act(ni)

The normalizing term is necessary here since we are not only interested in the

direction of vectors.
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