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The Basic Reproductive Ratio of a Word, the Maximum Size of a Lexicon
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Language is about words and rules. While there is some discussion to what extent rules are
learned or innate, it is clear that words have to be learned. Here I construct a mathematical
framework for the population dynamics of language evolution with particular emphasis on
how words are propagated over generations. I define the basic reproductive ratio of word, R,
and show that R > 1 is required for words to be maintained in the lexicon of a language.
Assuming that the frequency distribution of words follow Zipf’s law, an upper limit is obtained
for the number of words in a language that relies exclusively on oral transmission.

1. Introduction

Many discussions about language evolution are
of a verbal nature, but evolution is a discipline
well grounded in mathematical theory. Concepts
like fitness, selection or mutation are best de-
scribed by mathematical equations and in many
cases only become clear in the context of specific
mathematical models. Thus, it is essential to con-
struct a mathematical theory for language evolu-
tion. The aim of the paper is to design such
a theory, which describes language propagation
and change in a population over many genera-
tions. In other words, we are aiming to describe
the population dynamics of language evolution.
Contributions to the evolution of language
have come from many different areas including
studies of animal communication and social be-
haviors (Marler, 1970; Smith, 1977; Cheney
& Seyfarth, 1990; Hauser, 1996), diversity and
historical change of existing human languages
(Bickerton, 1990; Cavalli-Sforza & Cavalli-
Sforza, 1995), language development in children
(Hurford, 1991; Bates, 1992), the genetic and ana-
tomic correlates of language competence (Lieber-
man, 1991; Deacon, 1997), and more general
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models of cultural evolution (Cavalli-Sforza
& Feldman, 1981; Boyd & Richerson, 1985;
Niyogi & Berwick, 1997). Chomsky (1965, 1975,
1980) argues that all human languages have the
same underlying universal grammar, which is the
product of a language organ. Since only humans,
but no other animals have universal grammar,
Chomsky suggests that the language organ might
have evolved for other purposes and was later
accidentally taken over for language. Pinker
(1995) notes that language is an enormously com-
plicated trait and as such could only have arisen
gradually and by natural selection, rather than
being the by-product of some other process (see
also Pinker & Bloom, 1990). Maynard Smith
& Szathmary (1995) describe human language as
a major transition in evolution. For a recent
review on approaches to language evolution see
Hurford et al. (1998).

Our own previous work in this area was de-
voted toward constructing a mathematical the-
ory which describes how basic features of human
language can evolve gradually and by natural
selection from simple precursors. Specifically, we
have explored how associations between signals
and objects can evolve, how word formation can
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overcome a linguistic error limit and how simple
grammatical rules emerge as mechanisms to re-
duce mistakes in communication (Nowak
& Krakauer, 1999; Nowak et al., 1990a, b). Other
work explored the spatial dynamics of the evolu-
tionary language game (Grassly et al., 2000).

The size of large English dictionaries has
grown roughly exponentially over the last 400
years. Robert Cawdrey’s “Table Alphabeticall”
published in 1604 listed 2500 words, Samuel Joh-
nson in 1755 conceived definitions for 40000
words, James Murray’s Oxford English Diction-
ary in 1928 had 400000 entries. But many of
these 400000 entries are compounds whose
meanings can be derived. In an attempt to esti-
mate the number of words known by a person,
a recent study by Nagy and Anderson begins
with about 228000 words, but only 89000 of
these are either simple roots, stems or com-
pounds whose meaning cannot be derived. They
showed that the average American high school
graduate knows about 45000 of these words.
This is an underestimate because proper names,
foreign words, acronyms and numbers were ex-
cluded. The actual number maybe closer to
60000. If word learning begins at around 1 year
of age, then a 17-year-old high school graduate
must have learned about 10 new words per day
for 16 years. An average 6-year-old knows about
13000 words. Shakespeare used 15000 words.

A formal definition of the concept “word” is
not easy, and hence counting the number of
words in a language or the number of words
known to a person is not straightforward. When
pressed for a definition, linguists may say that
words are the units of language which are the
products of morphological rules and which are
unsplittable by syntactic rules (see Pinker, 1995;
Miller, 1991). In a word, a word is a syntactic
atom. A very different definition describes a word
as a memorized chunk: a string of linguistic stuff
that is arbitrarily formulated with a particular
meaning (Pinker, 1995). A word is a “listeme”, an
item of the long list called “mental dictionary”. It
is this second concept that we have in mind when
writing this paper.

In particular, we will analyse how words are
being maintained in a population. Each indi-
vidual has an internal lexicon. Children acquire
this internal lexicon by learning words from their
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parents or other individuals. Not every indi-
vidual knows all the words of a language. There
is always a chance that children will miss out on
some rare words. The average waiting time for
a specific rare word to be uttered by the parent
could exceed the duration of the childhood. An
interesting question is, what is required for
a (rare) word to be maintained in the lexicon of
a language that relies on oral transmission? Note
that writing is, of course, a very recent invention,
and, hence, for most of the time language evolu-
tion occurred without the aid of written records.

We will explore various models to answer this
question. The models will differ in the basic as-
sumptions such as whether children learn the
language from one or several individuals and
whether language contributes to biological fit-
ness or the chance to act as a language teacher.
For all such models we find that the basic repro-
ductive ratio of a word is given by

R = BQ,

where B is the average number of language
teachers per child and Q is the probability that
a child will learn the word from any one teacher.
(Because of symmetry, B is also the average num-
ber of children that learn the language from any
one teacher.) For a new word to invade a popula-
tion from a very low initial abundance, we re-
quire R > 1. For a word to be stably maintained
in the lexicon of a population, R > 1 is for all
models a sufficient condition and for some mod-
els also a necessary condition. An immediate con-
sequence is that learning the language from only
one individual, B = 1, can never lead to a basic
reproductive ratio above 1 (since Q < 1). In this
case, words can never invade when rare, but have
to overcome a minimum initial level of abund-
ance (an invasion barrier).

We will then relate the probability, Q, of ac-
quiring a word from a language teacher to the
frequency of occurrence of this word in spoken
language. This will allow us to formulate a condi-
tion for the minimum frequency of occurrence
that is required for a word to be maintained in
a language.

Assuming that word frequency distributions
follow Zipf’s law (Estoup, 1916; Zipf, 1935; Man-
delbrot, 1958), which states that words have a
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frequency inversely proportional to their position
in a frequency ranking, we derive the maximum
number of words, n,,,,, that can be maintained in
a lexicon. We find that n,,,, is implicitly given by
the equation

nmax ln nmax = Ban

where B is the number of teachers, Z is the total
number of words told to the child by one teacher
and ¢ is the probability to memorize a word after
a single encounter.

The core of the paper is in three parts. Section
2 devises models for children learning the lan-
guage of their parents. Section 3 explores lan-
guage learning from several individuals. Section
4 analyses the maximum size of a lexicon. In
Section 2, we will encounter a quasispecies equa-
tion (although with frequency dependent fitness
values). In Section 3, we will define the basic
reproductive ratio of a word and find equations
that are reminiscent of epidemiological theory
and models of cultural evolution.

2. Learning the Language of your Parents

In this section, we will outline the basic model
for the situation where children learn the lan-
guage of their parents. For simplicity, we will
start by assuming the children acquire the lan-
guage of only one parent, later we will extend the
model to two parents. There is a qualitative dif-
ference between these two cases. Learning the
language from only one individual is like asexual
reproduction. Learning from two individuals is
like sexual reproduction. Sexual reproduction
allows recombination. If a child learns the lan-
guage from only one individual then the child can
only build up a lexicon which is a subset of the
lexicon of the teacher (unless the child invents
new words). If a child learns from two or more
individuals, then the lexicon of the child need not
be a subset of the individual lexica of either
teachers: new combinations of words can emerge.

There is also an interesting link to Muller’s
ratchet in genetics. Muller’s ratchet states that in
a small, asexual population genetic information
will disappear over time because genes will accu-
mulate deleterious mutations (Muller, 1964). In
a sexual population, however, recombination can
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work against the accumulation of deleterious
mutations. A similar phenomenon applies to lan-
guage: in a small population, learning words
from only one teacher will lead to a decline in the
total vocabulary over time; learning from several
teachers can in principle maintain a stable num-
ber of words.

In the paper, we will sometimes refer to the
frequency of occurrence of a word and sometimes
to the relative abundance of a word in the popula-
tion. By frequency of occurence we mean how
often the word is used by an individual who
knows the word. By relative abundance of a word
we denote the fraction of people who know the
word.

Throughout the paper we assume that an indi-
vidual either knows a word or does not know it.
There cannot be varying degrees of knowledge.
This is a simplification. One can imagine that
a word can be more or less strongly incorporated
into the mental lexicon of an individual and this
could also affect the frequency at which this indi-
vidual uses the word. Extending our models into
these directions seems a promising task for future
research.

2.1. INTERNAL LEXICA AND PAYOFF

Suppose there are n words. Individuals are
characterized by binary strings, S, which indicate
all the words known to a given individual. Thus,
the binary string, S, describes the internal or
mental lexicon of an individual. There are v = 2"
many internal lexica, which we label
j=0,...,v — 1 (corresponding to the integer rep-
resentation of the binary string). Lexicon j is
defined by the binary string

S; = (s;(1), 5;(2), ...,5;(n)). (1)

Here s;(i)e{0,1}. If lexicon j contains word
i then s;(i) =1, otherwise s;(i) =0. The total
number of words in lexicon j is given by

n; = Z ;). )

The payoff for an individual with lexicon j con-
versing with an individual with lexicon k is given
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by the number of words they have in common,

n

F(Sja Si) = Z Sj(i)Sk(i)- (3)

i=1

The payoff function is based on the simplifying
assumption that each word contributes the same
amount (of 1 point) to the overall payoff. Other
assumptions are possible. Some words will be
used much more frequently than others. Hence,
the payoff for having a common word could be
proportional to its frequency of occurrence, ¢;:

n

F(S; S = Z 8;(0)sk (1) ;. (4)

i=1

Equation (3) and (4) both assume that the interac-
tion between individuals j and k consists of
j talking to k and k talking to j: that is the
interaction is symmetric.

Following the standard assumption of evolu-
tionary game theory, we interpret the payoff re-
ceived in the game as fitness (Maynard Smith, 1982;
Hofbauer & Sigmund, 1998). Thus, individuals that
communicate well produce more offspring.

2.2. A QUASISPECIES EQUATION FOR INTERNAL LEXICA

Children inherit (or learn) the language of their
parents, but they can miss out on certain words.
Denote by Q the probability that a specific word
is transmitted from parent to child. Let us neglect
the possibility that children invent new words
(which is a rare event). Thus, we can define Qj,
the probability that a parent with lexicon S; gives
rise to an offspring with lexicon S, as

Qj=0"(1 —Q) ™ (5)

This equation holds for all lexica S; and S, where
sg(i)) =1 1implies that s;(i)=1. Otherwise,
Qi = 0. This just means that it is possible to lose
words but not to gain words.

Denote by x; the abundance of individuals
with lexicon S;. We have ') x;=1. The
abundance of each lexicon S; changes over time
according to

v—1

.X.:Jz Z Xkﬁ(,ij_dskp .]207 ,V—l. (6)

k=0
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Here, f; denotes the fitness of lexicon S, and is
given by

-1

fk = vz XjF(Sk, SJ) (7)

j=0
The average fitness of the population is given by

y—

®= ) xf; (8)

j=0

Note that eqn (6) implies that each child ac-
quires the language from one parent. We will
extend this framework later. Equation (6) is remi-
niscent of the quasispecies equation devised by
Eigen & Schuster (1978) for describing molecular
evolution and theories for the origin of life. The
main difference, however, is that our model has
fitness values that are frequency dependent, while
the standard quasispecies theory has constant
fitness values. In the context of quasispecies the-
ory, x; denotes the frequency of nucleic acid
i which is given by a sequence of bases of length n.
The matrix Q contains the mutation rates; Qy; is
the probability that replication of sequence k re-
sults in sequence j. In contrast to our language
model, quasispecies theory usually has symmetric
mutation matrices. Standard quasispecies dy-
namics can be seen as an optimization procedure
on a constant fitness landscape, our language
model describes mutation and adaptation on
a changing fitness landscape.

We are interested in calculating any potential
limit on the total number of words that can be
stably transmitted from one generation to the
next in the system described by eqn (5)—(8). The
next section shows a simple way how to do this.

2.3. THE EVOLUTIONARY STABILITY OF WORDS

Suppose all individuals of a population have
n—1 words in common and differ only in
whether they have or have not the n-th word.
Denote by x; the frequency of individuals who
have the n-th word and by x, the frequency of
individuals who do not have the n-th word in
their mental lexicon. We can write

X1 =x1 /10 — x1D,
Xo = x1 f1(1 — Q) + Xo fo — xo®. 9)
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Assuming that each word contributes the same
amount to the payoff, the fitness of x; individuals
is given by fi =f+nx; + (n — 1)xo =fy + X;.
The fitness of x, individuals is given by
fo=f+ n— 1. Here, f is the background fitness
independent of language. Since x; + xo = 1 the
system is described by a differential equation in
one variable:

X1=x1[—x1+x,0—(m—1+/)(1—-0Q)]
(10)

The potential equilibria are given by

=20 T4~ Q@ 27+ n D]
iy

The equilibria exist if

QZ

(12)

We see that the lexicon size, n, is limited. The
system cannot maintain an arbitrarily large num-
ber of words. If condition (12) is fulfilled then eqn
(10) has two equilibria. The smaller equilibrium is
unstable and represents an invasion barrier, the
larger equilibrium is stable and represents
the equilibrium frequency of individuals knowing
the n-th word. The smaller n is compared to
0?/[4(1 — Q)] — f, the smaller the invasion bar-
rier and the larger the stable equilibrium fre-
quency of x;. The invasion barrier implies that
a new word cannot invade a population (cannot
spread in abundance) if only a very small fraction
of the population uses the word. It can only
invade if the fraction of people using the word has
overcome the invasion barrier.

Condition (12) essentially implies that for
maintaining a reasonable number of words in the
population, the probability Q has to be very close
to 1. The reason for having an upper limit for the
number of words in this model is that as the
number of words increases, each word contrib-
utes smaller proportions to the fitness of an indi-
vidual. As n becomes very large, the difference
between f, and f; becomes negligible. In Section
4, we will also derive a limit for the maximum
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number of words in the combined mental lexicon
of a population, but this limit will be independent
of fitness considerations.

Figure 1 shows a computer simulation which is
an application of eqn (6) to finite populations.
The total population size is 100. There are n = 10

10

No. of words
o 3
T

~
T

[ ]
T

Abundance of words

100 200 300 400 500
Time (generations)

FIG 1. Only a limited number of words can be stably
propagated from one generation to the next. In this simula-
tion, children learn the language from one parent. Initially,
all individuals have n =10 words. The probability that
a word is transfered from parent to offspring is Q = 0.95.
The population consists of 100 individuals, described by
binary strings on length 10. The fitness of each individual is
evaluated according to eqn (3). Individuals are chosen for
reproduction proportional to their fitness. Each new off-
spring replaces another, randomly chosen, individual.
Hence, the population size remains constant. The language
independent, background fitness if f= 1. Thus, eqn (12)
suggests that the stable number of words cannot exceed 4.
We find that after 500 generations, only 3 words are left.
Some individuals have fewer words. On average there are
2.53 words per individual (averaged over all individuals
between ¢t = 400 and 500). The small population size cannot
maintain the maximum possible number of words, 4. The
last three words are stable for a long period. (Note, however,
that all words will be lost eventually. This is simply a conse-
quence of the finite population size and the fact that words
once lost do not reappear in this simulation.) (a) Average
number of words per individual over time. (b) Abundances
of individual words in the population. After about 150
generation, seven words have become extinct, the remaining
three fluctuate around abundance levels of about 80%.
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6 M. A. NOWAK

words. Each individual is described by a bit
string of length 10. The fitness of each individual
is determined by summing up the payoffs
obtained in all interactions with all other
individuals. Individuals generate children pro-
portional to their fitness. Each child replaces
a randomly chosen individual; thus the popula-
tion size is constant. Each child learns the words
of its parent. The probability that a given word is
passed on is Q = 0.95. The population shows 500
generations. At the end, three words are stably
propagated in the population. Note that eqn (12)
predicts four words as an upper limit. Presum-
ably, the small population size eliminated the 4th
word in a random fluctuation. Three words are
more stable that four words, because then each
word contributes relatively more to the overall
fitness of an individual.

2.4. ACQUIRING THE LANGUAGE FROM TWO PARENTS

Sofar each individual had a single parent for
the purpose of language learning. We can move
closer to reality by admitting the possibility that
individuals can acquire their language from two
parents. In analogy to eqn (9) we write

X1 =f2xi[1 — (1 — Q)] + 2fof1x0x1Q — Px;.
(13)

Since x, = 1 — x; it is not necessary to write the
equation for xo,. We have fo=f+n—1,
fi=fo+x; and @ =(f, + x{)>. The main
new feature of eqn (13) is that words can spread
from very low abundances in the population.
This was not possible for the models discussed
in Sections 2.2 and 2.3, where there is always
an invasion barrier (a minimum level of abund-
ance) which has to be overcome. In eqn (13), the
x{ individuals increase from very low levels
provided

0> 1/2. (14)

Thus, acquiring the language from two rather
than from one individual adds a qualitatively
new feature: words can invade populations start-
ing from arbitrarily low frequency. This brings us
straight to the next section.
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3. Learning the Language of Others

Let us consider a system where language is not
acquired only from the parents, but from several
different individuals (perhaps including the par-
ents). As in Section 2, we assume that there are
n words and lexica are characterized by bit
strings of length n defining whether or not they
have a certain word. Consider the following sys-
tem of equations:

v—1v—1

Xk =0 — Px + b Z Z (xixjQiji — XkXiQuij)s

i=0 j=0

(15)

Here 6, = @ and 6, = 0 for k > 0. Again the total
population size is scaled to one: Y, x,=1.
The average fitness of the population is given by
@ =Y, fixy, where f; is the fitness of individual
k and is calculated as in Section 2. Each newborn
individual is in the x, class, that is it does
not know any word. Individuals learn by interac-
ting with other individuals. The rate of this inter-
action is b, and Q;j denotes the probability that
an individual with lexicon §; learning from an
individual with lexicon S; will end up with lexi-
con S.

Q. 1s constructed as follows: (1) If lexicon
S; has a certain word then lexicon S, will have it,
too. (It is not possible to lose words.) (ii) If S; does
not have a certain word, but S; has it, then S will
have it with a probability Q. This process de-
scribes the learning of new words. (iii) If neither
S;nor S; have a certain word, then S, will also not
have it.

As before, we are interested in the conditions
for maintaining rare words in the population.
These conditions can be calculated by analysing
a simple model that describes the dynamics of
each word separately.

3.1. THE BASIC REPRODUCTIVE RATIO OF WORDS

In this section, we derive a basic reproductive
ratio for words. Writing eqn (15) for only one
word, we get

XO = 45(1 — XO) — bQXOXI,

)61 = — (le + bQXOX1. (16)
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REPRODUCTIVE RATIO OF A WORD 7

Clearly, this is just a one-dimensional system,
since xo + x; = 1. We have @ = foxo + f1x1,
fo=f+n—1 and f; =fo + x;. We find that
x¢ can increase from low values and converge to
a stable equilibrium provided

(0/fo)Q > 1. (17
The ratio b/f, denotes the number of language
teachers an individual has through its lifetime.
Let us write B = b/f,. Then the condition be-
comes

BO > 1. (18)

No. of words

=
(=

o
%

o
N

o
'S

Abundance of words

e
)

5 10 15 20 25 30
Time (generations)

FI1G 2. If children learn words from more than one indi-
vidual, then the basic reproductive ratio, R, of words can
exceed one. This means that words can increase in abund-
ance from low starting frequencies; there is no invasion
barrier. In this simulation, there are n = 10 words and 100
individuals. Each child learns words from two individuals.
In the notation of Section 3.1, this means B = 2. The prob-
ability of learning word i from any one teacher ranges from
0 =0.25t0 Q10 = 0.75. Words 1-5 have R values below 1,
while words 6-10 have R values above 1. Initially, words
have randomly chosen starting abundances in the popula-
tion of roughly 0.2. This means a given word is known by
linevery 5 individuals. (a) The average number of words per
individual increases over time from 2 to about 4. (b) Words
with R; > 1 remain, while words with R; < 1 become extinct.
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The product, BQ, is the basic reproductive ratio,
R, of a word; it is the product of the number of
language teachers times the probability to ac-
quire the word from one language teacher. There
is, of course, a symmetry between teachers and
students and B can be seen as the total number of
students an individual has. Hence, intuitively and
in complete analogy to epidemiology, the basic
reproductive ratio of a word is the number of
individuals that acquire the word from any one
individual in the limit where almost no one has
the word. Note also that BQ > 1 is in agreement
with Q > % which is the crucial condition in Sec-
tion 2.4, where each individual learns from two
parents.

Figure 2 shows results of a computer simula-
tion for a finite population. There are 100 indi-
viduals. Each new individual replaces a randomly
chosen individual and learns the language from
two other individuals that are chosen according
to their payoff. Hence, B =2. As before, the
payoffs are evaluated by each individual talking
to every other individual. There are n = 10
words; each individual is characterized by a bit
string of length 10. The probability that word i is
transmitted from a teacher, who has word i, to
a student, who does not have word i, is Q;. After
50 generations, the five words with R > 1 remain
in the population whereas the five words with
R < 1 have become extinct.

3.2. THREE OTHER SYSTEMS THAT LEAD TO THE SAME
BASIC REPRODUCTIVE RATIO

Equations (15) and (16) assume that reproduc-
tion is proportional to the payoff achieved in the
language game, but the choosing of teachers is
not. We could assume that individuals who talk
well not only have more children but are also
more likely to be chosen as teachers for language
learning. In analogy to eqn (16) we can write

Xo = @(1 — xo) — bQxox1f1/®,

— &x1 + bOxox1f1/|D. (19)

Xy

Remember that @ = fyx, + fix1. Thus, x; indi-
viduals are chosen as teachers proportional to
their frequency, xq, times their relative payoff,
f1/®. As before, we find that the basic reproduc-
tive ratio of x; individuals is given by R = BQ,
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where B = b/f, is the number of language
teachers per individual.

Alternatively, we could assume that the payoff
of the language game only affects the probability
to be chosen as language teacher and has no
effect on biological reproduction:

Xo =1 — xo — bQxox1f;/®,

— X1 + bOxox1f1/P. (20)

Xy

Again the basic reproductive ratio is given by
R = BQ, but this time B = b denotes the number
of teachers per individual (because here the life
expectation of an individual is 1 rather than 1/f,.)

Finally, we could assume that the payoff of the
language game neither confers biological fitness
nor has an effect on being chosen as language
teachers. In this case we obtain

)?0 =1—x9 — bQOxoxl, (1)
X1 = — X1 + bQx0x;.

This system is equivalent to the basic model of
infection dynamics (see Anderson & May, 1991)
which can also be used for describing the spread
of cultural innovations (Cavalli Sforza & Feld-
man, 1981). For eqn (21), the basic reproductive
ratio of a word is R = BQ with B = b. The equi-
librium is given by xo = 1/R and x; =1 — 1/R.
All models lead to the same basic reproductive
ratio of a word, but will differ in the equilibrium
abundances of the word. The last two models do
not relate the payoff of the language game to
biological reproduction. The last model even
makes no reference to fitness at all; individuals
are language eaters that acquire as many words
as they can. While the simplicity of such a model
is useful for mathematical analysis it is important
to note that somewhere there must be the
(hidden) assumption that language confers biolo-
gical fitness. Otherwise, individuals who do not
care about language would not be selected
against. We can, however, deal with this issue in
a two-step approach. We can first study a model
that shows that everyone has to care about lan-
guage (for such a model, language must relate to
biological fitness), and afterwards we simply
study a model, like eqn (21), where everyone
already has a language acquisition device. The
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next section presents a simple model for the
evolution of a language acquisition device.

3.3. SELECTION OF LANGUAGE ACQUISITION

In this section, we compare two types of indi-
viduals that differ in their readiness to learn lan-
guage. Specifically, they differ in the rate at which
they acquire language teachers. We will observe
that the “faster language eaters” win.

Denote by x; and y; individuals that have,
respectively, 4 =a/® and B =b/® language
teachers. Let a > b. Consider the following sys-
tem:

Xo =foXo + fix1 — aQxo(x1 + y;) — Pxo,
X1 = aQxo(x1 + y1) — Px4, (22)
Yo = foVo + f1y1 — bQyo(x1 + y1) — Pyo,
Y1 ="00yo(x1 + y1) — Dy;.

Here x, and y, denote individuals that do not
have the n-th word, while x; and y; do have the
n-th word. We have @ =f,(xo + yo) +/f1(x1 + 1),
fo=f+n—T1landf =f +x; + y;.

If (a/fo) Q@ > 1 then the system converges to the
boundary where x; >0, xo=1-—x; and
yo = ¥1 = 0. Here the “slower language eaters”
become extinct.

If (a/fo) O < 1 then the system converges to the
boundary where xo + yo =1 and x; = y; =0.
The n-th word becomes extinct. We have to re-
peat the same analysis for the (n — 1)-st word,
denoting by x; and y, individuals who do have
the (n — 1)-st word and by x, and y, individuals
who do not. In this case fo=f+n—2 and
fi=fo +x1+ yi. If we have now (a/fo)Q > 1
then the slow language eaters become extinct. If
instead (a/fo)Q < 1 then the (n — 1)-st word be-
comes extinct and we turn to the (n — 2)-nd word
and so on. Ultimately, there are only two possi-
bilities: either all words become extinct or the
slow language eaters become extinct. If language
persists there is selection for fast language ac-
quisition.

4. The maximum size of a lexicon

In the previous section, we showed that the
basic reproductive ratio being greater than one
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was required for persistence of a word in the
lexicon of a population. The basic reproductive
ratio of a word is given by

R = B, (23)

where B is the number of language teachers
(or students) per individual and Q the probability
that the student will acquire the word provided
the teacher knows it. The probability Q will
certainly depend on the frequency of occurrence,
¢, of the word in the teacher’s language and
on the total number of words, Z, the teacher
says to the student during the student’s who
language learning period. Let us suppose that ¢
is the probability that the student memorizes
the word after a single encounter. We can
write

Q=1—(1-¢g" 24)
This relation assumes that a word once memor-
ized cannot be forgotten. Furthermore, attempts
to memorize the word are independent of each
other. From BQ > 1 we obtain

1 1\ 1
o=l =(-3) oo

The approximation holds for B well above 1.
Hence, we find that for a word to have a basic
reproductive ratio above 1 its frequency of occur-
rence must exceed 1/(BZq). This result is quite
intuitive: BZ is the total number of words the
student hears during his/her language acquisition
period from all teachers. BZgq is the number of all
words that are heard and memorized by the stu-
dent (frequent words will be “memorized” more
than once). For a word to be memorized it must
occur at least once in this set of BZq words.
Hence, its frequency of occurrence must be at
least 1/(BZq).

(25)

4.1. USING ZIPF’S LAW

Let us now consider a language with n words
with frequencies ¢ > ¢, > --- > ¢,. For all
n words to be maintained in the language, we
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require ¢, > 1/(BZq). The least frequent word
must satisfy inequality (25).

An empirical observation is that human lan-
guages have word frequency distributions which
roughly follow Zipf’s law (Zipf, 1935):

bi = C,fi. (26)

The frequency of a word is indirectly propor-
tional to its position in a frequency rank order-
ing. Plotting log(¢;) vs. logi gives a straight line
with a slope very close to — 1. While this obser-
vation is surprising at first sight, it still remains to
be determined whether there is a deeper reason
behind it. Miller & Chomsky (1963) point out
that Zipf’s law is almost like a null hypothesis;
a source that randomly emits letters and spaces
will also generate word frequencies that follow
Zipf’s law. In any case, we will use Zipf’s law for
the distribution of word frequencies.

Since Y!_, ¢; =1 we have C, = 1/¥7_, (1/i).
For reasonable large n we obtain approximately
C,~ 1/(Inn + v), where y =0.5772... is Euler’s
constant. Hence, the frequency of the least fre-
quent word is given by

1

O = n(lnn + y)

(27)

Combining eqn (25) with eqn (27), we obtain that
the maximum number of words that can be main-
tained in a language, n,,,, is implicitly given by

Nax (I 1 + ) = BZg. (28)

Table 1 shows n,,, for various choices of
BZq. For example, for maintaining about 10°
words in the lexicon of a spoken language, we
require BZq to be about 10°. If for example
q = 0.1 (that is the average probability of memor-
izing a word after one occurrence is 0.1) then
BZ = 107. Thus, a child has to hear a total of 107
words. In a childhood lasting 10® s this means
1 word every 10 s.

If we do not use Zipf’s law but instead assume
that all words occur at the same frequency, 1/n,
then n,,, is simply given by BZq, which again
seems intuitively obvious.
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TABLE 1
How many words does a child have to hear for
a population to maintain a certain number of words
in its lexicon?

Mnax BZq BZ (¢ =0.1)
10 29 290
100 520 5200
1000 7500 75000
10000 98 000 980000
100 000 1200000 12000000

According to eqn (24), the frequency of the least frequent
word, ¢,, has to exceed 1/(BZq). Assuming that words follow
a frequency distribution as in Zipf’s law, ¢; = C,/i we find
C,/n > 1/(BZq) where C, =Y [-(1/i). The maximum num-
ber of words that can be maintained, n,,,, is the largest
integer which fulfills this inequality. B is the number of
teacher of each child, Z is the total number of words from
each teachers, and ¢ is the probability that a child remem-
bers a word after one occurrence. In some, sense BZq is the
total number of words that are memorized by the child,
while BZ is the total number of words a child hears from all
its teachers together. For maintaining 10° words in a lan-
guage, we need BZq to be about 10°. If ¢ = 0.1 this implies
BZ = 10". There are about 108s in a childhood.

42. FREQUENCY AND ABUNDANCE

For the simple model given by eqn (29),
the equilibrium abundance of a word in the
population is given by 1 — 1/(BQ). Together with
(), we can study the relation between the fre-
quency of occurrence of a word and its abund-
ance in the population. Recall that “frequency of
occurrence” describes how often the word is used
by a speaker who knows the word, while “abund-
ance” refers to the fraction of individuals who
know (and use) the word. Let us consider the
abundance of a word relative to the abundance of
a word with Q = 1. (This is a renormalization to
ignore the fact that some individuals do not
know the word because they have not had any
language training so far.) Thus, we have for the
relative abundance of word i.

1 —1/(BQ)

NI B @)

where Q; = 1 — (1 — q¢;)*. Figure 3 shows a plot
of x; vs. i. There is a shoulder followed by a linear
decline. The most frequent words are known to
everyone. Then the fraction of people who know
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FIG 3. Abundance and frequency vs. word rank. The
abundance of a word in the population is the fraction of
people who know the word. The frequency of a word is its
probabilty of occurrence in the speech of someone who
knows the word. Words are labeledi = 1, ... ,n according to
decreasing frequency of occurrence, ¢; > --- > ¢,. We as-
sume Zipf’s law: ¢; = C,/i. The rescaled abundance is given
by x; = [1 — 1/(BQ)]/[1 — 1/B] where Q; = 1 — (1 — g¢)".
In this example, we have B =2, g = 0.1 and Z = 10°. Ob-
serve that the most frequent words are known to everyone.
After this initial shoulder there is a linear decline. In
alog-log plot, the frequency is, of course, a straight line with
slope — 1, while the abundance is absolutely flat initially
and then falls off sharply.

the word falls as a linear function of the rank of
the word.

5. Conclusion

In this paper, we have devised models for the
population dynamics of language evolution. For
various models we have calculated the basic re-
productive ratio of a word, R, and shown that
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R > 1 is the crucial condition for words to be
maintained in the lexicon of a population. As-
suming a simple model for memorizing words, we
calculated the minimum frequency of occurrence
of a word, ¢, required for its survival. Specifically,
we find that ¢ has to exceed 1/(BZq), where B is
the number of language teachers per individual,
Z the total number of words from any one
teacher and ¢ the probability of memorizing
a word after a single encounter. Using Zipf’s law
for the distribution of word frequencies we find
that the maximum size of a lexicon is approxim-
ately given by

Npax 1N Nype = BZg.

There are many possibilities to extend this line
of research. Most importantly, more sophisti-
cated models for memorizing words should be
used. In a mental lexicon, words are not indepen-
dent units but will affect each other. Words are
stored in certain classes. Memorizing a word is
not an all or nothing process. Different types of
information have to be stored for each word: its
meaning, its possible positions in a sentence, its
relation to other words. All these factors will
influence how the probability Q is related to the
frequency of occurrence of a word. Furthermore,
internal lexica will then not be described by bit-
strings but by more complicated mathematical
structures. In this regard, the present paper is
only a first step.

Support from the Leon Levy and Shelby White
Initiatives Fund, the Florence Gould Foundation,
the J. Seward Johnson, Sr. Charitable Trusts, the
Ambrose Monell Foundation and the Alfred P. Sloan
Foundation is gratefully acknowledged.

REFERENCES

ANDERSON, R. M. & MAY, R. M. (1991). Infectious Diseases
of Humans. Oxford: Oxford University Press.

BATES, E. (1992). Language development. Curr. Opinion
Neurobiol. 2, 180-185.

BICKERTON, D. (1990). Species and Language. Chicago:
Chicago University Press.

BoyYD, R. & RICHERSON, P. J. (1985). Culture and the Evolu-
tionary Process. Chicago: The University of Chicago Press.

JTB 20001085

CAVALLI-SFORZA, L. L. & FELDMAN, M. W. (1981). Cultural
Transmission and Evolution. Princeton, NJ: Princeton Uni-
versity Press.

CHENEY, D. L. & SEYFARTH, R. M. (1990). How Monkeys
See the World: Inside the Mind of Another Species.
Chicago: Chicago University Press.

CHOMSKY, N. (1965). Aspects of the Theory of Syntax. Cam-
bridge, MA: MIT Press.

CHOMSKY, N. (1975). Reflections on Language. New York:
Pantheon Press.

CHOMSKY, N. (1980). Rules and Representations. New York:
Columbia University Press.

DEACON, T. (1997). The Symbolic Species. Allen Lane: The
Penguin Press.

Estoup, J. B. (1916). Gammes Stenographique, 4th Edn. Paris.

HAUSER, M. (1996). The Evolution of Communication. Cam-
bridge, MA: The MIT Press.

HOFBAUER, J. & SIGMUND, K. (1998). Evolutionary Games
and Population Dynamics. Cambridge: Cambridge Univer-
sity Press.

HURFORD, J. R. (1991). Cognition 40, 159-201.

HURFORD, J. R., STUDDERT-KENNEDY, M. & KNIGHT, C.
(1998). Approaches to the Evolution of Language. Cam-
bridge: Cambridge University Press.

LIEBERMAN, P. (1991). Uniquely Human. Cambridge, MA:
Harvard University Press.

MANDELBROT, B. (1958). Les lois statistique macro-
scopiques du comportment. Psychol. Francaise 3, 237-249.

MARLER, P. (1970). Birdsong and speech development:
could there be parallels? Am. Sci. 58, 669-673.

MAYNARD SMITH, J. (1982). Evolution and the Theory of
Games. Cambridge: Cambridge University Press.

MAYNARD SMITH, J. & SZATHMARY, E. (1995). The Major
Transitions in Evolution. New York: Freeman.

MILLER, G. A. & CHOMSKY, N. (1963). Finitary models of
language users. In: Handbook of M athematical Psychology,
Vol. 2. (Luce, R. D., Bush, R. & Galanter, E., eds), New
York: Wiley.

MILLER, G. A. (1991). The Science of Words. New York:
Scientific American Library.

MULLER, H. J. (1964). The relation of recombination to
mutational advance. Mutat. Res. 1, 2-9.

N1YOGL, P. & BERWICK, R. C. (1997). A dynamical systems
model for language change. Complex Syst. 11, 161-204.
NOWAK, M. A. & KRAKAUER, D. C. (1999). The evolution of

language. Proc. Nat. Acad. Sci. U.S.A. (in press).

NOWAK, M. A., PLOTKIN, J. & KRAKAUER, D. C. (1999a).
The evolutionary language game. J. theor. Biol. (in press).

NOWAK, M. A., KRAKAUER, D. C. & DRESS, A. (1999b). An
error-limit for the evolution of language. Proc. Roy. Soc.
London B (in press).

PINKER, S. (1995). The Language Instinct. Harmondsworth:
Penguin.

PINKER, S. & BLoOM, P. (1990). Natural language and
natural selection. Behav. Brain Sci. 13, 707-784.

SMITH, W. J. (1977). The Behaviour of Communicating. Cam-
bridge, MA: Harvard University Press.

Z1PF, G. K. (1935). The Psychobiology of Language. Boston:
Houghton-Mifflin.

BRR SAVITHA RAVI



12

M. A. NOWAK

Author Queries

1.

2.

Cavalli-Sforza & Cavalli-Sforza 1995 not listed in the Ref. list
Grassly et al. 2000 not listed in Ref. list
Mandelbrot 1958 or 1959?

Eigen & Schuster 1978 not listed

. Estoup 1916, please give publishers name

. Nowak & Krakauer 1999; Nowak et al. 1999a,b, please update

JTB 20001085 BRR SAVITHA RAVI



