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We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric
networks. The naming game �Baronchelli et al., J. Stat. Mech.: Theory Exp. � 2006� P06014� is a minimal
model, employing local communications that captures the emergence of shared communication schemes �lan-
guages� in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts
on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operat-
ing wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement
process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal
properties of the agreement process, we investigate the cluster-size distribution and the distribution of the
agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of
long-range communication links are added on top of the random geometric graph, resulting in a “small-world”-
like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size
scaling analysis for the agreement times in this case.
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I. INTRODUCTION

Reaching agreement without global coordination is of
fundamental interest in large-scale autonomous multiagent
systems. In the context of social systems, the objective is to
understand and predict the emergence of large-scale
population-level patterns arising from empirically supported
local interaction rules between individuals �e.g., humans�.
Examples for such phenomena driven by social dynamics
include the emergence and the evolution of languages �1–3�
or opinion formation �4–12�.

The creation of shared classification schemes in a system
of artificial and networked autonomous agents can also be
relevant from a system-design viewpoint, e.g., for sensor net-
works �13,14�. Envision a scenario where mobile or static
sensor nodes are deployed in a large spatially extended re-
gion and the environment is unknown, possibly hostile, the
tasks are unforeseeable, and the sensor nodes have no prior
classification scheme or language to communicate regarding
detecting and sensing objects. Since subsequent efficient op-
eration of the sensor network inherently relies on unique ob-
ject identification, the autonomous development of a com-
mon “language” for all nodes is crucial at the exploration
stage after network deployment.

To this end, in this paper we consider and slightly modify
a simple set of rules, referred to as language or naming
games �NG�, originally proposed in the context of semiotic
dynamics �15,16�. Such problems have become of techno-
logical interest to study how artificial agents or robots can
invent common classification or tagging schemes from

scratch without human intervention �15,16�. The original
model �15,17–19� was constructed to account for the emer-
gence of shared vocabularies or conventions in a community
of interacting agents. More recently, a simplified version of
the NG was proposed and studied on various network topolo-
gies by Baronchelli et al. �20–22�, and by Dall’Asta et al.
�23,24�. The advantage of studying a minimal model is that
one can gain a deeper understanding of the spontaneous self-
organization process of networked autonomous agents in the
context of reaching global agreement, and can extract quan-
titative scaling properties for systems with a large number of
agents.

In the context of artificial agents, there are other possible
scenarios when the NG algorithm, in addition to being inter-
esting in its own merit in studying agreement dynamics on
various networks, can also be particularly useful from a
system-design viewpoint. That can be the case when one
does not intend the outcome of the agreement process among
many agents to be easily predictable. The actual process of
electing a “leader” or coordinator among sensor nodes may
actually be such a scenario. The leader must typically be a
trusted node, with possible responsibilities ranging from
routing coordination to key distribution �26�. Standard leader
election �LE� algorithms �27–31� are essentially based on
finding global extremum �e.g., maximum� through local
communications �27–29�. Thus, the elections can be stolen
by placing a node in the network with a sufficiently high ID
�e.g., the largest number allowed by the number representa-
tion scheme of the sensor chips.� Along these lines, a pos-
sible application of the NG algorithm is an autonomous key
creation or selection for encrypted communication in a com-
munity of sensor nodes. Instead of having a centralized or
hierarchial key management system with domain and area
key distributors �26�, a group of sensor nodes can elect a key
distributor or a security key for secure communications be-
tween group members.
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This work is an expanded version of our preliminary re-
sults �32�. In addition to showing more detailed and extended
simulation results, we also study and analyze different as-
pects of the behavior of the model, in particular, the prob-
ability distribution of the agreement times and the cluster-
size distribution in the NG on random geometrical graphs
�RGGs�. Further, we construct and present finite-size scaling
for the agreement times in small-world �33� �SW� -connected
RGGs. The remainder of the paper is organized as follows.
In Sec. II we briefly review recent results on the NG on
various regular and complex networks. In Sec. III we define
and present results on the NG with local broadcast on RGGs,
motivated by communication protocols in sensor networks.
In Sec. IV we present and discuss results on the NG on
SW-connected RGGs. Section V concludes our paper with a
brief summary and outlook.

II. BACKGROUND AND PRIOR RESULTS
ON THE NAMING GAME

In the simplified version of the NG, agents perform pair-
wise games in order to reach agreement on the name to as-
sign to a single object. This version of the NG was investi-
gated on fully connected �FC� �also referred to as mean-field
or homogeneous mixing� �20,21�, on regular �22�, on small-
world �SW� �23,34�, and on scale-free networks �24,25�. In
the FC network, each agent has a chance to meet with all
others and compare their current local vocabularies �list of
“synonyms”� before updating them. On regular networks,
agents have only a limited and fixed number of neighbors on
a one-, two-, etc., dimensional grid with whom they can
interact or communicate. The communication in both cases is
“local,” in that pairs of agents are selected to interact and to
update their vocabularies. The basic algorithmic rules of the
NG are as follows �20,22�. A pair of neighboring nodes �as
defined by the underlying communication topology�, a
“speaker” and a “listener,” are chosen at random �35�. The
speaker will transmit a word from her list of synonyms to the
listener. If the listener has this word, the communication is
termed “successful,” and both players delete all other words,
i.e., collapse their list of synonyms to this one word. If the
listener does not have the word transmitted by the speaker,
she adds it to her list of synonyms without any deletion.

Among the above rules, the restriction to a single object
�20,21� strongly reduces the complexity of the model, com-
pared to a more general case where the naming process of
multiple objects can be performed simultaneously. From a
linguistic viewpoint, this rather strong restriction is equiva-
lent to preventing homonymy, and instead, treating all ob-
jects independently. This strong assumption can be more re-
alistic for a system of artificial agents, where agents assign
random numbers �e.g., chosen from 231 integers� as “words”
to new objects. In this case, the number of potential words
can be far greater than the number of objects, and the prob-
ability that two players invent the same word for different
objects �hence giving rise to homonymy� is negligible.

It was found that employing the above local rules �pair-
wise interactions�, after some time, the agents vocabularies
converge to a unique vocabulary shared among all agents

�20–23�. The major differences between the NG on FC
graphs and on regular low-dimensional grids arise in the
scaling of the memory needed to develop the common lan-
guage before convergence occurs, and in the scaling of the
time tc needed to reach global agreement. �The memory need
in the present context is the typical value of the largest num-
ber of words an agent may possess throughout the evolution
of the game �20,22�.� In the FC network, the convergence
process to global agreement is fast �tc�O�N1/2� for N
agents�, but large memory �O�N1/2�� is needed per agent
�20�. For a regular two-dimensional network �or grid�, spon-
taneous evolution toward a shared dictionary is slow �tc

�O�N��, but the memory requirement per agent is much less
severe �O�1�� �22�. When the NG is implemented on Watts-
Strogatz �33� SW networks, the agreement dynamics per-
forms optimally in the sense that the memory needed is
small, while the convergence process is much faster than on
the regular networks �tc�O�N0.4�, closer to that of the FC
network� �23�.

Sensor networks, which are motivating our study, are both
spatial and random. As a large number of sensor nodes are
deployed, e.g., from vehicles or aircrafts, they are essentially
scattered randomly across large spatially extended regions.
In the corresponding abstract graph, two nodes are connected
if they mutually fall within each others transmission range,
depending on the emitting power, the attenuation function,
and the required minimum signal-to-noise ratio. Random
geometric graphs �RGGs�, also referred to as spatial Poisson
or Boolean graphs, capturing the above scenario, are a com-
mon and well established starting point to study the struc-
tural properties of sensor network, directly related to cover-
age, connectivity, and interference. Further, most structural
properties of these networks are discussed in the literature in
the context of continuum percolation �36–38�.

The common design challenge of these networks is to find
the optimal connectivity for the nodes: If the connectivity of
the nodes is too low, the coverage is poor and sporadic. If the
node connectivity is too high, interference effects will domi-
nate and result in degraded signal reception �39–43�. From a
topological viewpoint, these networks are, hence, designed
to “live” somewhere above the percolation threshold. This
can be achieved by adjusting the density of sensor nodes and
controlling the emitting power of the nodes; various power-
control schemes have been studied along these lines
�39,42,43�. In this paper we consider RGGs in two dimen-
sions above the percolation threshold, as minimal models for
the underlying network communication topology. Further,
we consider RGGs with an added small density of “random”
long-range links. The resulting structure resembles small-
world �SW� networks �33,44�, also well studied in the con-
text of artificial �45,46� and social systems �44,47�. The fo-
cus of this work is to study the NG algorithm on these
spatially embedded random graphs.

III. NAMING GAMES ON RANDOM
GEOMETRIC NETWORKS

A. Random geometric graphs

As mentioned above in the Introduction, first we consider
random geometric graphs in two dimensions �36–38� as the
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simplest topological structures capturing the essential fea-
tures of ad hoc sensor networks. N nodes are uniformly ran-
dom distributed in an L�L spatial area. For simplicity we
consider identical radio range R for all nodes. Two nodes are
connected if they fall within each other’s range. An impor-
tant parameter in the resulting random geometric graph is the

average degree k̄ �defined as the average number of neigh-

bors per node�, k̄=2K /N, where K is the total number of
links and N is the number of nodes. In random geometrical

networks, there is a critical value of the average degree k̄c,
above which the largest connected component of the network
becomes proportional to the total number of nodes �the emer-
gence of the giant component� �36–38�. For two-dimensional

RGGs k̄c�4.5 �38�. There is a simple relationship between

the average degree k̄, the density of nodes �=N /L2, and the

radio range R of the nodes �36–38�, k̄=��R2, which can be
used to control the connectivity �average degree� of the net-
work.

B. Naming game with local broadcast

We consider the naming game on random geometrical
graphs. In the original context of the NG, agents try to reach
agreement in finding a unique “word” for an object observed
by them. In one of the above proposed potential applications,
agents try to generate a shared unique key for encrypted
communication. For simplicity, we will use the term “word”
for the latter as well when describing the algorithm.

Motivated by communication protocols employed by sen-
sor nodes, we modify the communication rules to make them
applicable for sensor networks. Instead of pairwise commu-
nications, nodes will initiate broadcast �to all neighbors� in a
continuous-time asynchronous fashion. In this paper we con-
sider the initial condition when the “vocabulary” of each
node is empty. At every elementary time step, a node is cho-
sen randomly out of N nodes �mimicking Poisson asyn-
chrony for large N�. This node �the “speaker”� will broadcast
a word from her list of “synonyms”; if her list of synonyms
is empty, the speaker randomly invents a word; if she already
has several synonyms, it randomly chooses one. Her neigh-
bors �the “listeners”� compare their vocabularies with the
word transmitted by the speaker. If a listener has this word,
she considers the communication a success, and she deletes
all other words, collapsing her list of synonyms to this one
word. If a listener does not have the word transmitted by the
speaker, she adds it to her list of synonyms without any
deletion. If at least one listener had the word transmitted, the
speaker considers it �at least a partial� success, and �some-
what optimistically� collapses her list of synonyms to this
one word. At every step, the “success” rate S is defined as the
fraction of listeners who were successful �i.e., those that had
the word transmitted by the speaker�. From the above it is
clear that one of the successful listeners, if any, has to report
the outcome of the “word matching” to the speaker. In order
to achieve that efficiently, in real sensor-network implemen-
tations one can employ the “lecture hall” algorithm �48,49�.
In this paper time t is given in units of one “speaker”-
initiated broadcast per node. The main difference between

the above algorithm and the one in Refs. �20–23� is the
broadcast �instead of pairwise communications� and the un-
derlying network �RGG in this paper� to capture the essential
features of the NG in sensor networks.

When starting from empty vocabularies, agents invent
words randomly. After time of O�1� �on average one speaker-

initiated broadcast per node�, O(N / �k̄+1�) different words
have been created. Following the early-time increase of the
number of different words Nd�t�, through local broadcasts,
agents slowly reconcile their “differences”, and eventually
will all share the same word. First, a large number of small
spatial clusters sharing the same word develop. By virtue of
the slow coalescence of the interfaces separating the clusters,
more and more of the small clusters are being eliminated,
giving rise to the emergence of larger clusters, eventually
leading to one cluster in which all nodes are sharing the same
word. As suggested by Baronchelli et al. �22�, this late-time
process is analogous to coarsening, a well-known phenom-
enon from the theory of domain and phase ordering in physi-
cal and chemical systems �50�. Figure 1 shows snapshots of
vocabularies of the nodes at different times. For later times, a
group of nodes which already share the same word, slowly
coarsen, until eventually only one domain prevails. This be-
havior is also captured by Fig. 2�b�, tracing the number of
different words as a function of time Nd�t�, eventually reach-
ing global agreement, Nd=1.

C. Basic scaling considerations and analogy with coarsening

Before turning to the detailed discussion of our simulation
results, we first sketch the framework of coarsening theory
�50�, applicable to the observed late-time dynamics of the
NG on regular d-dimensional lattices �22�. Coarsening has
also been observed in other models relevant to opinion for-
mation and social dynamics �8,51�. Unlike other minimalist
�typically two-state� models often employed to study opinion
formation �7�, such as the one studied by Sznajd-Weron and
Sznajd �9�, the Voter model �51,52�, or the majority rule
model �8�, in the NG, each agent can be in an unlimited
number of discrete states �corresponding to a chosen word�.
Further, at any instant before reaching global consensus, an
agent can have different possible words for the object. Be-
cause of the potentially unlimited number of discrete states
the agents can assume, the late-stage evolution of the NG
resembles that of infinite-state �Q= � � Potts model �53–66�.

While RGG is a random structure, it is embedded in two
dimensions, and we also attempt to employ elementary scal-
ing arguments from coarsening theory. According to Ref.
�22�, on regular d-dimensional lattices, the typical size of
domains �each with already agreed upon one word� is gov-
erned by a single length scale ��t�� t� with �=1 /2, analo-
gous to that of domain formation in systems with a noncon-
served order parameter �50�. Thus, in d dimensions the
average domain size C�t� follows:

C�t� � �d�t� � td�, �1�

and the total number of different words Nd at time t scales as
the typical number of domains
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Nd�t� �
N

�d�t�
�

N

td� . �2�

Further, the total number of words Nw �Nw /N being the av-
erage memory load per agent�, at this late coarsening stage,
can be written as the number of nodes N plus the number of
nodes with more than one �on average, between one and two�
word, separating the different domains. It is of the order of
the typical number of domains times the typical length of the
interface of one domain, yielding

Nw�t� − N �
N

�d�t�
�d−1�t� �

N

��t�
�

N

t� . �3�

Similarly, the “failure rate” for word matching, 1−S�t�
�where S�t� is the success rate�, scales as the fraction of
nodes at the interfaces separating domains with different
words

1 − S�t� �
1

��t�
�

1

t� . �4�

The main feature of the above power-law decays �up to some
system-size-dependent cutoffs� is that the number of differ-
ent words Nd, the total number of words Nw, and the success
rate S�t� only depend on t through the characteristic length
scale ��t�. Further, for the typical time tc to reach global
agreement or consensus, one has �d�tc��N, i.e.,

tc � N1/�d��. �5�

Unless noted otherwise �as in Secs. III D 1 and III D 2�, our
notation, tc, Nd�t�, Nw�t�, C�t�, and S�t� refer to the ensemble-
averaged values of these relevant observables.

D. Simulation results

Relevant quantities measured in the simulations are the
total number of words in the system Nw�t� �corresponding to
the total memory used by the agents for word allocation at
time t�, the number of different words Nd�t�, and the average
size of domains or clusters C�t�. Figure 2 displays the time
evolution of these three quantities for the RGG, compared to
the fully connected �FC� and to the 2d regular networks.
Here, for comparison, we reproduced the corresponding data
of Refs. �20,22�. The behavior of the NG on RGG is quali-
tatively very similar to that of the NG on 2d regular graphs.

FIG. 1. �Color� Snapshots of the time evolu-
tion of the contents of the agents’ word lists dur-
ing the process of reaching global agreement on
RGG for N=1000 nodes at time �a� t=1; �b� t
=43; �c� t=169; �d� t=291. The average degree is

k̄�12. Initially, the word lists are empty for all
agents. Time, as through the paper, is measured in
units of “speaker”-initiated broadcasts per node.
Different colors correspond to different words,
with black indicating nodes with multiple words.
After the early-time increase in the number of
different words in the systems, small spatial clus-
ters sharing the same word quickly form, then
subsequently “coarsen” until eventually only one
global cluster prevails.

FIG. 2. �Color online� Time evolution of the relevant observ-
ables in the naming game in the fully connected �FC�, two-
dimensional regular �with four nearest neighbors�, and random geo-
metric networks �RGG� for N=1024, averaged over 1000
independent realizations: �a� the total number of words in the sys-
tem Nw�t�; �b� the number of different words Nd�t�; �c� the average

success rate S�t�. The average degree of the underlying RGG is k̄
�12. Data for the FC and 2d regular networks are reproduced by
our simulations, following Refs. �20,22�, for comparison.
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After a time of O�1�, O(N / �k̄+1�) different words have been
invented �Fig. 2�b��. Nw�t� also reaches its maximum in the
time of O�1� �Fig. 2�a��. Focusing on the late-time behavior
of the systems, plotting Nw�t� /N−1, Nd�t� /N, and C�t� vs t
on log-log scales, confirms the power-law decays associated
with the underlying coarsening dynamics, predicted by
Eqs. �3�, �2�, and �1�, respectively �Fig. 3�. From the data for
C�t�, we obtain 2�=0.79�0.01 �Fig. 3�c��, while from the
data for Nd�t� and Nw�t�, we extract 2�=0.74�0.01 and
�=0.36�0.01, respectively �Figs. 3�a� and 3�b��. Based on
our finite-size results, we can only conclude that the coars-
ening exponent is in the range 0.35	�	0.40 for the NG on
two-dimensional RGG. Different exponent values extracted
from different observables for finite systems long hindered
the precise determination of the coarsening exponent in the
closely related large-Q Potts model �56–58�. There, employ-
ing advanced Monte Carlo renormalization �MCRG�
schemes, it was shown that the coarsening exponent �within
error� is 1 /2 �58�. However, finite-size effects and very
strong transients, in part due to “soft domain walls” and
domain-wall intersections �“vertices”� can produce values
significantly smaller than 1 /2 extracted from standard MC
methods �56–58�, such as ours.

Measuring the time to global agreement, averaged over
1000 independent runs �each on a different RGG network
realization�, we also obtained the scaling behavior of the

agreement time, tc�N1.10�0.01 and tc�N1.07�0.02 for k̄�12

and k̄�50, respectively, as shown in Fig. 4. The correspond-
ing scaling exponents both somewhat deviate from the one
predicted by Eq. �5� with the exponent 1 / �2��. This devia-

tion is possibly due to strong finite-size effects, dominating
the very late stage of the agreement dynamics.

For RGGs with many nodes, a relevant control parameter

is the average number of neighbors �or average degree� k̄.
For sensor-network-specific implementations, as noted ear-

lier, k̄ can be adjusted by increasing either the density or the
communication range of the nodes. We performed simula-

tions of the NG for different average neighborhood size k̄, as
shown in Fig. 5. The results indicate that the scaling proper-
ties �in terms of N� of the time evolution of the agreement
process do not change. The typical convergence times, how-

FIG. 3. �Color online� Time evolution of the relevant observ-
ables in the naming game in random geometric networks �RGG� for
three system sizes on log-log scales, averaged over 1000 indepen-

dent realizations. The average degree of the underlying RGGs is k̄
�12. �a� The normalized total number of words in the system
Nw�t� /N−1. �b� The normalized number of different words Nd�t� /N.
�c� The average domain size C�t�. The straight line segments corre-
spond to the best-fit power-law decays Nw�t� /N−1� t−0.36,
Nd�t� /N� t−0.74, C�t�� t0.79 for �a�, �b�, and �c�, respectively.

FIG. 4. �Color online� Average and the standard deviation of the
convergence time tc until global agreement is reached, as a function
of the number of nodes on log-log scales, averaged over 1000 in-
dependent realizations of the NG on RGG. The average degree of

the underlying RGGs is k̄�12 �squares� and k̄�50 �circles�. The
straight lines correspond to the best-fit power laws with exponents
1.10, for both the average �solid squares� and the standard deviation

�open squares� of RGGs with k̄�12, and 1.07 for those of RGGs

with k̄�50, respectively.

FIG. 5. �Color online� Time evolution of the �scaled� number of
different words starting from an “empty” word list initial condition,

for various average degree k̄ on log-log scales. The number of
nodes is N=1000. The straight line segment indicates the
asymptotic power-law decay as determined earlier �Fig. 3�b��, inde-

pendent of the neighborhood size k̄.
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ever, are significantly reduced by increasing the neighbor-
hood size. A closer examination of the convergence time

reveals that, for fixed N, it scales as tc� k̄−2.6, in the sparse-

network limit �k̄
N� in two-dimensional RGGs.

1. Agreement-time distributions

In addition to the average agreement �or convergence�
time �tc� �time until global agreement is reached�, we also
measured the standard deviation �tc �Fig. 4�, and constructed
the probability density �normalized histograms� P�tc ,N� for
N nodes �Fig. 6�. Since in this subsection we analyze the full
probability density of this observable, we use brackets for
denoting the ensemble-averaged value of the convergence
time �tc�, while tc alone denotes the stochastic variable, cor-
responding to a measurement in a single realization of the
NG.

Up to the system sizes we could simulate, the standard
deviation, within error, scales in the same fashion with the

number of nodes as the average itself, �t�N1.10 �k̄�12� and

�tc�N1.07 �k̄�50� �Fig. 4�. �Suppressing large average con-
vergence times and the corresponding large standard devia-
tions �through modifying the network communication topol-
ogy� will be addressed in the next section.�

Further, the shape of the histograms, for sufficiently large
systems, remains invariant �Fig. 6�. Thus, introducing the
scaled convergence time x= tc / �tc�N��, the corresponding
scaled probability densities p�x� for different system sizes
collapse onto the same curve. �Fig. 6�b��. The above findings
indicate that the convergence-time distribution for the NG is

governed by a single scale �tc�, and hence can be written as

P�tc,N� =
1

�tc�N��
p�tc/�tc�N��� . �6�

The distributions exhibit exponential tails for large argu-
ments �Fig. 6�b�, inset�, a characteristic feature of opinion
dynamics governed by coarsening �8,66�.

2. Cluster-size distributions

We also studied the probability distribution of the sizes of
the clusters during the agreement dynamics P�C , t� �the nor-
malized histogram of the sizes of domains with different
words at a given time� �Fig. 7�a��. Similar to the previous
subsection, we analyze the full probability density of this
observable, hence we use brackets for denoting the
ensemble-averaged value of the cluster size in the system at
time t, �C�t��, while C alone denotes the stochastic cluster-
size variable �sampled at an instant t in a single realization of
the NG�.

Since the agreement process is governed by coarsening,
one expects that this distribution exhibits dynamic scaling,
i.e.,

P�C,t� =
1

�C�t��
p�C/�C�t��� . �7�

Thus, p�x�, the distribution of the scaled cluster sizes
x=C / �C�t�� remains invariant for different times. Our simu-
lations confirm this picture, except for very early times
�growth phase with initial domains forming� and for very late
times �where finite-size effects dominate� �Fig. 7�b��. The

FIG. 6. �Color online� �a� Probability densities of the conver-
gence time for three systems sizes. Data are gathered from 100 000
independent realizations of the NG on RGG. The average degree of

the underlying RGGs is k̄�50. �b� Probability densities for the
scaled variable x= tc / �tc�N�� for the same data. The inset shows the
same scaled histograms on log-lin scales.

FIG. 7. �Color online� �a� Probability densities of the cluster size
at different times of the agreement dynamics. Data are collected
through 100 000 independent realizations of the NG on RGG. The
system size of the underlying RGGs is N=1000 and the average

degree is k̄�12. �b� Probability densities for the scaled variable
x=C / �C�t�� for the same data as in �a� on log-lin scales. The solid
curve represents the best-fit exponential-like tail, �exp�−1.24x1.12�.
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cluster-size distribution exhibits exponential-like tails for
large arguments �59–61,67�, as can be seen in Fig. 7�b�.

IV. NAMING GAMES IN SMALL-WORLD-CONNECTED
RANDOM GEOMETRIC NETWORKS

In light of recent results on NG on one-dimensional SW
networks �23�, we now consider accelerating the agreement
process by adding random long-range communication links
between a small fraction of nodes of the RGG. Such net-
works have long been known to speed up the spread of local
information to global scales �33,44,47,68�, with applications
ranging from synchronization problems in distributed com-
puting �45� to alarm-detection schemes in wireless sensor
networks �46�. For sensor networks, this can be implemented
either by adding a small fraction of sensors equipped with
long-range unidirectional antennas �“physical” long-range
connections� or by establishing designated multihop trans-
mission patterns �“logical” long-range connections� between
certain nodes �69�.

We construct the small-world-like RGG �SW RGG� as
follows. We start with the original RGG �embedded in d
dimensions, where d=2 in this paper�. Then we add “long-
range” links �or “shortcuts”� between randomly chosen
nodes in such a way that the total number of long-range links
per node �the density of random links� is p. This SW con-
struction differs slightly from the original Watts-Strogatz one
�33� �also used by Dall’Asta et al. �23��, where random links
are introduced by “rewiring” some of the original connec-
tions. The resulting network, however, has the same univer-
sal properties in the small-p, large-N limit �70�, which is the
center of our interest. Further, it is also motivated by actual
implementations in sensor networks, where long-range
“channels” are established in addition to the existing local
ones.

A. Basic scaling considerations

Before presenting simulation results, using scaling argu-
ments, one can obtain an order of magnitude estimate for the
crossover time t× present in the SW RGG and for the time to
reach global agreement tc �23�. In SW networks, embedded
in d dimensions, the typical �Euclidean� distance between
nodes with shortcuts scales as lSW� p−1/d �70–72�. Starting
from empty initial word lists word, for early times �following

the creation of O(N / �k̄+1�) different words in the system�,
the system will exhibit coarsening, until the typical linear
size of the growing domains ��t�� t� becomes comparable to
lSW. �Here, both length-scale measures are understood in
terms of the underlying Euclidean metric.� After that time,
the agreement process is governed by the presence of ran-
dom long-range connections, yielding mean-field-like behav-
ior. Hence the crossover from d-dimensional coarsening to
mean-field-like dynamics occurs when t�� p−1/d, yielding

t× � p−1/�d��. �8�

In a system of N agents, the above crossover is only dis-
played if the convergence time of the original system with
no random links would exceed the above crossover time

N1/d�
 p−1/d�, which is equivalent to the condition for the
onset of the SW effect N
 p−1 �23,70�. Following the above
system-size independent crossover time, the agreement dy-
namics is of mean-field like, and one can expect to observe a
scaling behavior closer to that of FC networks �20�. In par-
ticular, the time to reach global agreement is expected to
scale as �23�

tc � N1/2, �9�

a significant reduction compared to that of the “pure” RGG
with no long-range links where tc�N1.1.

B. Simulation results

Simulating the NG on SW RGGs qualitatively confirms
the above scaling scenario. Following the very early-time

development of O(N / �k̄+1�) different words, the system of
SW-networked agents, exhibits slow coarsening, with only
small corrections to the behavior of the pure RGG �Fig. 8�.
In fact, this early-time coarsening on SW RGGs is slightly
slower compared to pure RGGs due to the effective pinning
of interfaces near the shortcuts �4,23,73,74�. In the NG on
SW networks, however, the agreement process only slows
down �23�, but is not halted by “frozen” �metastable� disor-
dered configurations �4,73�. After a p-dependent crossover
time �Eq. �8�� �when the typical size of the growing clusters
becomes comparable to the SW length scale�, an exponential
convergence begins to govern the agreement process. This
final-stage fast approach toward consensus sets in earlier for
increasing values of the density of shortcuts p, yielding a
significantly reduced convergence time compared to that of

FIG. 8. �Color online� Time evolution of the �scaled� �a� total
number of words, �b� number of different words, and �c� the aver-
age cluster size for SW RGGs on log-log scales, starting from an
“empty” word list initial condition, for various density of long-
range links p, averaged over 1000 independent realizations of the
NG on RGG. The number of nodes is N=5000 with average degree

k̄�12.
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the NG on the “pure” RGG. The temporal behavior of the
relevant observables for various values of p can be observed
in Fig. 8.

Plotting the convergence time vs the density of long-range
links, as shown in Fig. 9�a�, suggests that �for sufficiently
large but fixed N� the convergence time approaches an
asymptotic power law tc� p−s with s=0.79�0.01 �23�. On
the other hand, for fixed p and increasing N, the convergence
time increases with N, tc�N�SW, with �SW=0.31�0.01 �Fig.
9�b��. The agreement process is much faster than on a
two-dimensional regular grid or RGG and is closer to the
anticipated mean-field-like behavior �Eq. �9�� �23�. Thus, in
the small-world regime �Np
1� the convergence time de-
pends on both the system size and density of random links,
tc�N�SW / ps.

Finite-size scaling for the agreement time on SW-RGGs

In the pure-RGG limit �Np
1�, tc only depends on N,
tc�N�RGG with �RGG�1.10 �Fig. 9�b�� �since, essentially
there are no shortcuts in the system�. On the other hand, as
seen above, in the SW regime �Np
1�, the agreement time
scales as tc�N�SW / ps. One then can construct the full scaling
behavior of tc�p ,N�, capturing the above two finite-size be-
haviors as limiting cases on SW-connected RGGs,

tc�p,N� �
N�SW

ps f�Np� , �10�

where f�x� is a scaling function such that

f�x� � 	xs if x 
 1

const if x 
 1
. �11�

The pure RGG limit �Np
1� is recovered, provided that tc

��N�SW / ps��Np�s�N�SW+s�N�RGG, i.e.,

�RGG = �SW + s . �12�

Our measured “phenomenological” exponents �RGG�1.10,
�SW�0.31, and s�0.79, satisfy the above proposed
asymptotic scaling relation. For analyzing our data, Eq. �10�
can also be rewritten as

tc�p,N� �
�Np��SW

ps+�SW
f�Np� �

1

p�RGG
g�Np� , �13�

where g�x�=x�SWf�x�. Thus, plotting tcp
�RGG vs Np should

yield data collapse, together with the asymptotic small- and
large-argument exponents of g�x� �RGG, and �SW, respec-
tively �Fig. 10�,

g�x� � 	x�RGG if x 
 1

x�SW if x 
 1
. �14�

V. SUMMARY AND OUTLOOK

In this paper, we studied a prototypical agent-based
model, the naming game, on random geometric graphs and
SW-connected RGGs embedded in two dimensions. While
the underlying RGG communication topology is motivated
by large-scale sensor networks, the NG on these networks
captures fundamental features of agreement dynamics of
spatially-embedded networked agent-based systems. We
have found that, qualitatively similar to two-dimensional
regular networks �22�, the NG on RGG can be reasonably
well described by the physical theory of coarsening. In par-
ticular, local clusters of nodes sharing the same word quickly

FIG. 9. �Color online� Average convergence time tc for SW
RGGs: �a� As a function of the density of shortcuts for various
system sizes. The inset shows the same data on log-log scales. The
straight lines correspond to an estimate of the associated
�asymptotic� power-law. �b� As a function of the number of nodes
on log-log scales for various density of long-range links p. The
curves shown are obtained by averaging over 1000 independent
realizations of the NG on RGG. The average degree of the under-

lying RGGs is k̄�12.

FIG. 10. �Color online� Scaled plot of data shown in Fig. 9, as
suggested by the finite-size scaling argument �Eq. �13��. The
straight line segments correspond to the best-fit �asymptotic� power-
law behavior of the scaling function g�x� with exponents 1.10 and
0.31, for small and large arguments, respectively, as described in the
text �Eq. �14��.
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form, followed by slow coarsening of these clusters in the
late stage of the dynamics. The typical length scale grows
as ��t�� t� with the coarsening exponent estimated to be
0.35	�	0.40. Our simulation results also indicate that the
average time to reach global agreement is of O�N1.08�0.03�
�for fixed average degree�. The above results imply that, at
least for the range of finite system sizes studied here �up to
N=5000�, the characteristic length scale in two-dimensional
RGGs grows slower than 1 /2. This deviation, in part, may
very well be attributed to the effectively small system sizes
that we could study. Similarly strong transients and finite-
size corrections, due to the presence of “soft domain walls”
and “vertices” �domain-wall intersections�, also made the
precise determination of the asymptotic coarsening exponent
difficult in the two-dimensional large-Q �effectively Q=��
Potts models �53–58�. On the other hand, based on our
Monte Carlo studies, we cannot rule out the possibility that
the deviation from the �=1 /2 coarsening exponent is the
result of the inherent local random structure of RGGs �in
contrast to regular two-dimensional grids �22��.

While in this paper we did not address the message com-
plexity of the NG explicitly, one can make an order of mag-
nitude estimate for the typical number of messages needed to
reach global agreement on RGGs for an efficient implemen-
tation. �In sensor networks, this quantity is also relevant
since it corresponds to the global energy consumption.� Once
the coarsening process begins, nodes inside the clusters have
reached agreement with all their neighbors, of which they are
readily aware, hence, they no longer have to initiate broad-
casts any longer. Thus, only these “active” nodes, found at
the interfaces between these clusters �which have at least one

neighbor with different words�, will initiate broadcast for
word matching. Using that the number of nodes at the inter-
faces scales as N / t� �Eq. �3��, and integrating this expression
up to tc�N1.08�0.03, one finds that the total number of mes-
sages needed to be exchanged until global agreement is
reached is of O�N1.68�0.05�.

In an attempt to accelerate the agreement process by
changing the communication topology between agents, we
also studied the SW-connected version of the two-
dimensional RGG. By adding a small density of shortcuts
“on top” of the RGG, resulting in a SW-like network, the
convergence time is strongly reduced and becomes of
O�N0.31�, similar to the behavior of NG on the Watts-Strogatz
SW network �23�.

In future works we will investigate the NG on more real-
istic communication topologies, motivated by and relevant to
wireless sensor networks, in particular, random spatial net-
works with heterogeneous range distribution, minimum-
node-degree networks �75�, and also networks with dynami-
cally changing connectivities.
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