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Abstract 
The emergence and evolution of human language has been the focus of increasing 
amounts of research activity in recent years. This increasing interest has been 
coincident with the increased use of computer simulation, particularly using one or 
more of the methods and techniques of ‘Artificial Life’, to investigate a wide range of 
evolutionary problems and questions. There is now a significant body of work that 
uses such computer simulations to investigate the evolution of language. 
In this thesis a broad review of work on the evolution of language is presented, 
showing that language evolution occurs as two distinct evolutionary processes. The 
ability to use language is clearly the result of biological evolution. But the changes 
that occur over time to all spoken languages can also be viewed as being part of a 
process of cultural evolution. In this thesis, work using artificial life models to 
investigate each of these processes is reviewed. A review of the methods and 
techniques used in artificial life is also presented early in the work. 
A novel model is developed which is used to explore the conditions necessary for the 
evolution of language. Interesting results from initial tests of the model highlight the 
role of redundancy in language. From these initial tests, the model is further 
developed to explore the biological evolution of the human capacity for language. 
One significant outcome of this work is to highlight the limitations of the model for 
developing, and especially for ‘proving’, particular theories on how or why Homo 
sapiens alone evolved language. This is tied to a brief review showing that this 
weakness is not one specific to this particular model, but may be one that is 
possessed by all artificial life models that try to explain the origins of language. 
With further minor modifications to the model, the focus is shifted to the evolution of 
languages and language diversity. In comparison with some of the earlier 
conclusions, this work emphasises the positive contribution to ongoing scientific 
debate that is possible using computer simulations. In this case, experiments using 
the model focus on whether social and/or linguistic benefits are required in 
explanations of language change. A review and debate is then presented on work that 
contradicts our findings. Further corroboration of our conclusions is then gained by 
conducting a similar experiment using a different computer model. 
The key contributions of this interdisciplinary work are: first, in detailing some of the 
unique problems and issues inherent in using computer models specifically for 
modelling the evolution of language; second, in emphasising the importance of 
redundancy in language evolution; and finally, in adding to the current debate on 
whether the evolution of languages can be viewed as a form of adaptively neutral 
evolution. 
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Chapter 1    Introduction 

1.1   Outline 

In this work I apply computational modelling methods to study some questions on the 

evolution of language. The computational approach taken is an ‘Artificial Life’ one, 

and just what this entails is necessarily reviewed early in this work, in Chapter 3, and 

is also outlined in brief below. 

It is also necessary to review some of the vast array of work aimed at answering the 

questions, big and small, that exist about the evolution of language: why did the 

ability of humans to use language evolve, and why only for Homo sapiens and how 

did the capacity for language evolve? Other, subtler and more fundamental, questions 

emerge: what is language? what is actually innate, and biologically evolved, in the 

human capacity for language and what is simply the result of cultural learning 

processes over many generations? 

Thus, two distinct forms of language evolution become apparent – the biological 

evolution of some innate linguistic ability, and the cultural evolution of specific 

languages and language families. After the terminology of Hurford (1999), who 

distinguishes these as the evolution of language and the evolution of languages, these 

two forms are here termed the Evolution of Language (EoL) and the evolution of 

languages (eol) respectively. (By convention, in the remainder of this thesis these two 

types of evolution of language will be referred to by their abbreviated forms. The 

long hand phrase ‘evolution of language’ will be used when referring to the evolution 

more generally.) A broad picture of current thought on these two forms of linguistic 

evolution is given in the literature review (Chapter 2). 

In Chapter 4, I describe the basic details of the computational model I will use in my 

own investigations. Some tests are carried out on the model to demonstrate its 

workings. Then, in Chapter 5, the model is used to demonstrate the continuous 

evolution of linguistic ability within a population of language users. I will argue that 

this demonstration is relevant to the continuity-discontinuity debate that exists on the 

EoL, and emphasises some of the conditions necessary for the EoL. 

In contrast, in Chapter 6, the model is adapted to investigate the eol. Additionally, a 

model of emergent phonology is used to support the results gained from the existing 

computational model. As with EoL, there is current debate in studies of the eol on 
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how computational models may aid in the formulation of arguments and in the 

provision of additional evidence. The results of the experiments are analysed and 

exactly what they say about the evolution of language explored in the final chapter of 

the thesis. 

An important goal of this research is to explore the suitability of Artificial Life 

techniques for study of the evolution of language and languages, and accordingly a 

critical eye is cast over the work, with this in mind, in the conclusion. While the 

number of investigators now using Artificial Life methods to investigate the 

evolution of language seems to indicate that Artificial Life is a useful approach, some 

shortcomings in my own work and a few in the other works will be highlighted. 

As indicated above, a quick introduction to Artificial Life is in order. This is given 

below, and will be reviewed in more detail in Chapter 3. 

1.2   Artificial Life and Artificial Societies 

Artificial Life, hereafter ALife, is a comparatively recent offshoot of Artificial 

Intelligence, with its roots in the unrelated fields of distributed Artificial Intelligence 

(DAI) and computer simulation, and biology. The term Artificial Life is itself quite 

new, coined by Chris Langton, organiser of the first workshop on Artificial Life 

(Langton, 1989). The workshop was organised to bring some unity to the fragmented 

literature which existed on biological modelling and simulation. Through the 

workshop, Langton reports that some consensus of the “essence” of Artificial Life 

emerged: 

“Artificial Life involves the realization of life-like behaviour on the 

part of man-made systems consisting of populations of semi-

autonomous entities whose local interactions with one another are 

governed by a set of simple rules… high-level dynamics and 

structures observed are emergent properties, which develop over 

time from out of all of the local interactions…” 

   (Langton, 1989, p. xxii, author’s emphasis) 

This states that Artificial Life is simply an advanced modelling technique – one 

where the behaviour of whole populations can be observed, although the rules for 

how the population might behave are not explicitly detailed within the model. 

Instead, the behaviour of individuals within the population are detailed, this hopefully 
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being less reliant on possibly incorrect and simplistic assumptions. Through 

computational processes, individuals interact repeatedly and over time and the results 

at the population level are observed. 

Although seeming new, the computational approach to micro-modelling had in fact 

been explored before by scientists in other communities, with some early ground-

breaking work in social modelling in particular (Schelling, 1978). This idea has been 

remarkably successful, and ALife techniques are now applied to a wide range of 

problems beyond biological and social modelling, and a number of international 

conferences are held annually with ALife as a central topic. 

Societies and journals exist to support researchers using these new computational 

techniques in various fields – the Artificial Life journal, The Journal of Artificial 

Societies and Social Simulation, the International Society of Adaptive Behaviour, and 

more. Also, as evidenced by this thesis, and a number that have gone before it, ALife 

is being increasingly applied to the complex issues surrounding the evolution of 

language (for further examples, also see (Hurford et al., 1998; Dessalles and 

Ghadapkpour, 2000; Cangelosi and Parisi, 2002)).  

1.3   A Note on Previous Publications 

Much of the work presented in this thesis has been previously published in different 

form.  

The material of Chapters 2 and 3 is drawn from the literature review, which was 

presented as part of the transfer report on the 28th of January 1999. Chapter 3 also 

includes much of the article (Livingstone, 1999a), as published in the C.I.S. 

departmental journal at the University of Paisley. This has been substantially altered 

since, with a number of additional sections. 

The description of the model presented in Chapter 4 is drawn from, again with 

additional material, previously published descriptions in (Fyfe and Livingstone, 

1997), (Livingstone and Fyfe, 1998a; Livingstone and Fyfe, 1998b; Livingstone and 

Fyfe, 2000). The experiments of Chapter 5 are based on the same works, but with 

considerably more detail and expansion. 

The bulk of the material of Chapter 6 was previously presented in different forms in 

(Livingstone, 1999b; Livingstone and Fyfe, 1999a; Livingstone and Fyfe, 1999b; 

Livingstone, 2000b) and (Livingstone, 2002), from initial exploratory experiments to 

later developments. As a matter of course, many of these reproduce selected details 
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of the model construction, as presented here in Chapter 4. Some of the material 

detailing work with an alternative phonological model, as presented in Chapter 6, 

was previously presented in (Livingstone, 2000a). 
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Chapter 2    The Evolution of Communication and 

Language 

2.1   Introduction 

The aim of this chapter is to provide a grounding in the domain of study – that of the 

evolution of language. Some definitions of terms that will be used throughout the 

thesis will be given, and some of the many still open questions about the evolution of 

language will be identified. In particular, the problems which this thesis will later 

investigate will be detailed.  

The evolution of language and communication is an inherently inter-disciplinary field 

of research, of interest to researchers in anthropology, archaeology, biology, 

linguistics, psychology, physiology and neuro-physiology (e.g. Bickerton, 1984; 

Pinker, 1994; Dunbar, 1996; Mithen, 1996; Deacon, 1997; Hurford et al., 1998). 

Thus an area of research has been staked out that, while apparently focussed, inhabits 

an incredibly diverse space. In this review, I draw on sources from many different 

fields, looking first in broad terms at language and communication – specifically at 

what differentiates human language from other systems of communication. 

Then I review some theoretical work on the evolution of communication. This 

concentrates on animal communication rather than human language, but provides a 

base for much work on the EoL. Here we see links to another fundamental problem, 

one which has also been the subject of much ALife investigation – the evolution of 

cooperation (Axelrod, 1984). 

I then turn my attention to work on the biological evolution of language. First I 

introduce some of the evidence for a biological basis for language, and some of the 

major theories on innate linguistic abilities. I proceed to review some work 

questioning the precise nature of the innate language ability before looking at some 

attempts to explain why and how language evolved. 

Finally, I move from work on the biological EoL to look at the cultural eol. Here the 

concern is with the historical development of particular languages, how languages 

change over time, rather than how and why humans have gained the ability to use 

language. However, there is some degree of crossover between these questions. As I 

will show when questioning the degree of innateness of language, some recent work 
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on culturally evolving linguistic systems provides a challenge to current ideas about 

the human biologically innate language ability. 

This chapter provides the background knowledge required before meaningful, and 

hopefully useful, ALife experiments can be carried out. 

As a last word in this introduction, note that, in this chapter, I will introduce a 

number of terms with special meaning within linguistics. This is unavoidable – 

linguists use a great deal of jargon, and have created a rich language for discussing 

language itself. I have deliberately kept the use of such jargon to a minimum, 

emphasising only terms of special importance or those which will reappear later in 

this thesis. 

2.2   Language and Communication 

A spectacular variety of means of communication between animals (of the same or 

different species) have evolved, human language being but one, albeit unique in a 

number of respects. Animal signalling can take many forms and signals can use 

sound, vision, touch and even scent or taste as a means of signal 

transmission/reception. Before we can proceed to model the evolution of language, it 

is required that some understanding of the distinction between non-linguistic 

communication and language is gained. Then we can hope that the models which are 

developed are relevant to the evolution of language. This requirement for making a 

distinction is expanded upon in the next chapter. 

In this work I side-step a rather fundamental, and surprisingly intractable, problem 

for theoretical biologists – that of defining what communication actually is. To get 

some idea of this problem consider first a simple view of communication, commonly 

assumed: 

A signal can be said to be communicative where the originator of 

the signal intentionally uses it to transmit information to the 

receiver. 

There are significant problems with such a simple definition. First, if signalling is 

viewed simply as the transfer of (mis)information from one individual to another, 

then signals may be given voluntarily or involuntarily (Krebs and Dawkins, 1984). 

Bullfrogs croak to advertise their quality as mates.  Can we say that any bullfrog 

intends to advertise itself as being of low quality? Instead the attempt of the female to 
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determine which will be a good mate by listening to the croaks is what Krebs and 

Dawkins term ‘mind-reading’. The mind-reading perspective views signals as an 

attempt by a signal receiver to determine some information about some target which 

is emitting the signal – but the sender may not intend for the signal to be observed, or 

for a particular inference to be made from it. 

Any attempt to cite purpose on behalf of the receiver to circumvent this problem is 

similarly limited – a complimentary ‘manipulation’ perspective views signals as an 

attempt to exploit another individual on behalf of the signaller. 

Attempts to define communication in terms of information transfer (e.g. Grice, 1969) 

have problems too. For example, how should deceptive signals be classified? 

Additionally, in a theoretical study, Di Paolo (1999b) notes that communication can 

be useful even where the signals have no informational content. (In linguistics such 

non-informational communication may be termed phatic where the intent of the 

communication is, e.g., to establish a common ‘mood’.). 

Thus neither intent nor informational content can be assumed when attempting to 

define communication. Another approach, again from biology, developed by 

Millikan, is to declare signalling systems to exist only where selection has adapted 

the communicating agents to play their cooperative roles in signalling episodes 

(Bullock, 2000). This solves the problems noted above, but leaves many apparent 

examples of communicative behaviour outside the definition of signalling systems. 

Bullock further notes that in many cases in biology, communication involves 

situations in which the interests of the agents coincide and conflict in parts. Further 

discussion of many of these issues can be found in theses and papers by Bullock and 

Noble (Bullock, 1997; Bullock, 2000; Noble, 2000). 

Yet, however imperfect, limiting the definition of communication to intentional 

signalling which aims to benefit both sender and receiver of a signal – limiting it to 

deliberate, cooperative signalling – can provide a useful start point for studying the 

evolution of communication. That a single, universal, definition of signalling has yet 

to be found that satisfies the whole breadth of studies into communication 

necessitates our selection of a more limited definition. This simplifying definition is 

assumed as a given in my later experiments on the evolution of language. Relating to 

this, however, there is more discussion on the functional benefits of language, and 

other issues, in the remainder of this and in the next chapter. 
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However, my goal here is to distinguish between linguistic and non-linguistic 

communication. Rather than struggle with definitions, one way of doing this is to 

compare the characteristic features of language versus those of other communication 

systems.  

2.2.1   Features of Language 

Charles Hockett (1960) suggested that language evolved gradually over time, 

suggesting a continuity with non-human communication systems. Hockett broke 

language down into thirteen components.  

It is worthwhile listing these features, representing one of the first modern attempts to 

identify precisely what is unique about human language compared with other forms 

of communication. The features are chosen as characteristic of human language – 

exceptions may exist, and some of these will be mentioned. 

The features of language which Hockett identifies are: 

1. Vocal-auditory channel: sounds are used for language transmission. 

2. Broadcast transmission and directional reception: signals can be heard by anyone 

within range, and the signals can be localised. 

3. Rapid-fading: speech is transitory in nature, signals exist for only a brief period 

of time. 

4. Interchangeability: language users can produce any message that they are capable 

of understanding. 

5. Total feedback: speakers can hear and are able to reflect upon everything they 

say. 

6. Specialization: the sound waves’ only function is to signal meaning. 

7. Semanticity: elements of a signal convey meaning through stable signal-meaning 

associations. 

8. Arbitrariness: the signal-meaning associations are arbitrary. 

9. Discreteness: language is based upon the use of a small set of discrete sound 

elements. 

10. Displacement: it is possible to use language to refer to events displaced in both 

time and space from the speaker. 

11. Productivity: it is possible to produce (and understand) an infinite range of 

meanings, using existing elements to produce new sentences. 
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12. Traditional transmission: language is transmitted by a cultural learning process 

rather than genetic transmission of innate calls. 

13. Duality of patterning: the sounds used in language do not convey meaning, but 

combined in different ways to form words they do. 

Of these, the first three features relate to the auditory nature of language. Yet it has 

been observed that communities of deaf children will form their own natural sign-

language (Kegl and Iwata, 1989). This challenges the significance of, at least, the 

first two features. 

While many of these features can be found in various animal communication 

systems, only human language contains all thirteen of these features. Hauser (1996) 

points out that no insight is provided into the functional significance of these 

features, and that they are not weighted at all by their relative importance. So we do 

not know which are the significant features of language simply by scanning this list. 

It was considered that only human language featured traditional transmission or 

duality of patterning, but this is now known not to be the case. However, like 

displacement, which other than human language is only known to exist in the dance 

‘language’ of bees, these features are very rare in natural communication systems. 

And while the thirteen features are characteristic of human language, they are not 

definitive – sign-language being an obvious exception. 

In building an ALife model to help investigate the EoL, it should not be necessary to 

include all of these features, but unless the model is able to include some significant 

features it may not be a useful model for its intended purpose. To emphasise the 

features of greatest significance, it is helpful to compare the previous list with 

another from a more recent source. A textbook listing (from Sternberg, 1996) states 

that the characteristic features of language are that it is: 

• Communicative: language is used to transfer and share information. 

• Arbitrarily symbolic: the sounds and symbols used in language are primarily 

arbitrary, having no set relation to the underlying meanings.  

The signals used in human language for communication bear no relation to the 

concepts being communicated, other than a purely arbitrary pairing of sound and 

concept. This principle of the ‘arbitrariness of the sign’ is expounded in the work 

of Ferdinand de Saussure (1916), and the idea can be traced back to Aristotle and 

beyond. 
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The term ‘Saussurean communication’ refers to communication systems where 

concepts and signs are related to one another by such arbitrary relationships. 

• Regularly structured and structured at multiple levels: words are constructed from 

phonemes, phrases from words and sentences from phrases. Regular structures 

occur at these different levels. 

• Generative and productive: it is possible to use language to express effectively 

infinite numbers of new meanings. Learned language can be used to produce 

original statements. 

Structure exists in language at multiple levels. Morphology looks at the internal 

structure of words, syntax at how words are combined to form phrases and 

sentences. That language has hierarchical structures allows a finite number of 

language elements to be used in the generation of infinite numbers of sentences 

and meanings. 

• Dynamic: language is not fixed, but develops and changes with time. 

Language changes and develops over time – both for individual language users as 

their own language skills develop, and for communities as languages change over 

time. A considerable body of work exists studying the development of language in 

children (e.g. Elliot, 1981).  

More recently, Carstairs-McCarthy (1999) highlights three key features of language. 

Beside the previously noted duality of patterning, two features are proposed which 

are not normally considered characteristic features of language. The first of these is 

the number of words with distinct meanings that may exist in any language. Here 

there is a significant difference between human language and animal communication 

systems. The other feature proposed is the distinction between particular syntactic 

categories, introducing different types of meanings – this last feature seemingly 

peculiar to the author’s theory of the evolution of language. 

2.3   The Evolution of Communication 

Amongst the vast array of animal communication systems are such diverse systems 

as bee dances to convey information about the location of pollen-rich flowers; ant 

pheromone communication to lead other ants from the same colony to food and back 

to the nest; and vervet monkey alarm calls used to warn other vervets of the presence 

of specific types of predators – eagle, leopard or snake. 

Biologists have been concerned for some time with how such systems could evolve. 
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Lorenz (1966) and Tinbergen (1976) claim that many signals may have evolved from 

incidental movements or responses of actors which happen to pass information to 

reactors. What was once an accidental pairing of some action with a response is 

repeated and reinforced over time until it becomes a conventionalised communicative 

signal and response – a process termed ritualization. This can succeed as selection 

favours those able to interpret such signals, e.g. to anticipate (and avoid) attack, and 

those who produce the signals, e.g. to scare off others with threat of attack and hence 

use less energy than in an actual attack. How a signal is ritualised may vary with the 

purpose of the signal and the rewards for actor and reactor. Ritualization may also 

occur to reduce ambiguity in signal reception, increasing the distinctiveness of the 

signalling movement.  

In some cases communication serves a clearly co-operative purpose – vervets 

warning each other of predators, or bees indicating where pollen may be found – and 

studies in the evolution of communication often focus on communication that is co-

operative in nature (Hauser and Marler, 1999). Assuming that communication is 

cooperative leads naturally on to another problem – that of the evolution of 

cooperation. If communication is cooperative, then it might be expected to emerge in 

similar circumstances to those that can support the evolution of cooperation.  

The fundamental problem for the evolution of cooperation is that in many cases 

cooperation does not appear to be an evolutionary stable strategy. If cooperation 

emerges in a population, any defectors that exist will be able to exploit the 

cooperation without rewarding those they exploit. Thus defection rather than 

cooperation will succeed in the population. 

A number of mechanisms have been proposed to overcome this problem. Kin 

selection (Hamilton, 1964) is one – where cooperation occurs between kin, 

individuals within groups of kin which have evolved to cooperate will be fitter than 

those which live in non-cooperating family groups. Over time this can lead to a 

population where cooperative behaviour is the norm. 

Zahavi (1979) proposed a handicap principle for honest signalling in sexual selection. 

This presumes that reactors will try to avoid manipulation by attending to honest 

indicators of qualities of size, strength, desire to fight, etc., ignoring other signals 

which then fall into disuse. Thus, surviving signals will be honest and costly to 

produce (thus only those individuals of higher quality will be able to produce higher 

quality signals). There should also be a direct link between signal design and quality 
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being signalled. For example the pitch calls of frogs, used to attract mates, are linked 

to body size. 

Other mechanisms that can support the evolution of cooperation include spatial 

selection and the ability of individuals to remember which of the others is 

cooperative, and to act differentially based on past experience. These can both play a 

significant role in the iterated prisoner’s dilemma (IPD) (Axelrod, 1984) where the 

individuals play not just once, but many times. Axelrod formalised a successful 

strategy for cooperative behaviour in the IPD – ‘tit-for-tat’ – where initially 

cooperative individuals either cooperate or defect depending on whether their partner 

previously cooperated or defected. 

Spatial selection works as an alternative to memory, and can similarly favour the 

evolution of cooperation. Working with the assumption that individuals are limited in 

the amount of mobility they have, models have been built in which agents are placed 

in some spatial arrangement and where they are limited to interacting only with other 

agents nearby. In such circumstances, cooperation can succeed (Kirchkamp, 1996). 

Because of the spatial constraint, agents tend to repeatedly interact with the same few 

agents and this allows clusters of cooperation to form. 

Some researchers are investigating how the evolution of non-cooperative 

communication (such as predator-prey signalling) can be understood and explained 

(e.g. Bullock, 2000). The concern here is that not all animal signalling is cooperative, 

and this is certainly something which can extend to human language. 

A thorough and comprehensive review of the evolution of animal communication 

(including some material on the evolution of human language) can be found in 

Hauser (1996). Many other relevant topics are reviewed, including such aspects as 

how different environmental conditions shape the particular form of communication 

used – such as how the different acoustic properties of jungles versus those of open 

savannahs will affect the type and use of acoustic signals for communication. 

This section has presented a brief review of two large topics of study – the evolution 

of communication and the evolution of cooperation. It is, I hope, enough to give the 

required base for the remainder of this thesis. 
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2.4   The Biological Evolution of Language 

2.4.1   Evidence for the Innateness of Language 

It is an unavoidable fact that language is in some way an innate, and hence 

biologically determined, human trait as emphasised by the following evidence. 

Language is confined to only one species, amongst whom it is a universal trait, 

shared by all with only extraordinary cases providing exceptions. No monkey or ape, 

however well trained, is capable of acquiring language as well as a human child of 

around five years of age (although the precise capacity that apes do have for language 

is a current topic of debate (Savage-Rumbaugh, 2000)). 

While the idea that primitive or ‘savage’ societies had equally primitive or savage 

languages was accepted in previous centuries (e.g. Rousseau, 1755; Burnett, 1787), 

this has proved to be a fallacy. Of all human societies and communities throughout 

the world, there is no culture lacking language, or possessing only a limited language 

that can truly be considered ‘primitive’ in its linguistic development (Pinker, 1994). 

Perhaps the closest examples to ‘primitive languages’ to be found are pidgin 

languages. 

Pidgin contact languages are formed by migration of peoples with different languages 

into single communities, and a wide range of these have been studied including sign-

language pidgins (Kegl and Iwata, 1989). Pidgins are grammatically weak, missing 

many aspects of grammar found in every other language. Yet within a small number 

of generations – at times only one – pidgins develop into Creoles (Bickerton, 1981). 

A creole is a descendant language of a pidgin, but one that is rich in grammar. This 

rapid development of grammar where there was none is a rich source of evidence on 

the innateness of grammar abilities in humans. 

But what is the biological basis for language, and in what ways does it determine the 

shape and form of human languages? 

The ability of children to quickly learn complex languages from fragmentary and 

incomplete evidence led Chomsky to argue that children are innately equipped with 

rules common to all languages - a Universal Grammar. While different languages 

have different grammars, the existence of some kind of Universal Grammar, UG, 

(Chomsky, 1972) is now widely accepted (e.g. Slobin, 1979; Pinker, 1994). The UG 

is believed to contain a number of rules and meta-rules for grammar. For example, 

phrase head and role-player ordering (e.g. verb-object, preposition-noun phrase, 
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adjective-complement) differs between languages, but remains constant in any single 

language. Thus, the UG contains a rule used in phrase construction, which allows 

either order but the same order throughout any language. As well as the UG, 

Chomsky proposed that there was an innate device for learning language. 

2.4.2   Evolution of Linguistic Ability 

The innate device for language learning was termed by Chomsky the Language 

Acquisition Device, LAD. The LAD has been the focus for much research, and 

despite the fact that a LAD would surely be an evolved solution for language 

learning, the evolution of the LAD and language itself is the subject of much debate 

in linguistics. 

Chomsky himself rarely considers the problem of how the LAD may have evolved, 

and does not see the study of its evolution as being of value: 

“it seems rather pointless… to speculate about the evolution of 

human language from simpler systems…” 

     Noam Chomsky, 1972, page 70 

At times he appears to discount the idea that it evolved at all – rather he claims that it 

came about by chance, and only once it appeared fully formed did it become used for 

language. 

Another view is offered by Bickerton (1990) who proposes that at some point in 

human evolution a basic form of language existed – one which he calls 

‘protolanguage’. This protolanguage would have been lacking in a number of the 

features that characterise modern human language – principally it would have 

possessed a very limited grammar, consisting perhaps of only one or two-word 

utterances and incapable of complex sentence structure, or something akin to modern 

pidgins. A single ‘macro-mutation’ was then responsible for the evolution of fully 

developed language ability and the emergence of language. 

Chomsky and Bickerton both present views of a sudden and discontinuous EoL. A 

number of other authors (e.g. Pinker and Bloom, 1992) argue instead that the EoL 

must have been gradual, and taken place over a longer time period, occurring in 

smaller steps. This is a continuous view of language evolution, and generally more in 

keeping with modern evolutionary theory. 

Yet the idea that somehow language did not ‘evolve’ but it suddenly appeared fully-

formed persists. Such arguments are often based on the principle of exaptation. 
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In evolutionary theory, adaptation is the process whereby organisms improve their 

fitness by gradual modification to better fit their environment. In contrast to this, 

Gould and Vrba (1982) coined the term exaptation to refer to the process of utilising 

some structure for some purpose other than that for which it originally evolved to 

serve. A good example of this might be penguins’ use of wings for swimming. 

Arguments against the idea that language is the end result of some sudden exaptation, 

rely on the number of costly adaptations that have occurred to support language. The 

larger brain necessary to enable speech costs more energy to maintain and requires a 

longer infancy to allow brain growth to complete (see, for example, Dunbar, 1996). 

The dropped larynx allows greater clarity and distinctiveness in speech, but may 

increase the risk of choking and was taken to be clear evidence of the evolution of 

human physiology to support language (Lieberman, 1992) (although there are now 

arguments that the larynx dropped as a consequence of a move to a bipedal stance 

and that perhaps this was an additional factor enabling the evolution of spoken 

language, a useful exaptation (Aiello, 1996)). At the same time it has been questioned 

whether the risk of choking is evolutionary significant (Aiello, 2002), other work has 

pointed to different evolutionary changes that may have been selected for their 

improvements to the ability to speak clearly (Sanders, 2002). 

Additional indirect costs of language are the additional investments that parents must 

place in children to rear them. In many mammal species, infants have reasonable 

amounts of autonomy from birth. Not so with human infants who are totally 

dependent for a considerable period of time after birth, largely due to the need to 

complete mental development. In order to support the extra energy cost of large 

brains, a reduction in energy costs elsewhere was necessary and the gut size was 

reduced necessitating a move to a more nutritious diet (Dunbar, 1996). 

Two common fallacies that support the idea of language occurring by accident are the 

ideas that the brain is a general-purpose mechanism or that brains vary greatly in 

design between species. These fallacies are refuted by Deacon (1992) who presents 

evidence that the brain is modular and that no major new structures have occurred to 

differentiate human and primate brains, despite fairly significant development and 

larger relative brain size in humans. Changes in brain organisation are similarly 

limited, but the changes to the brain are not simply a matter of additional 

development – different areas of the human brain have been relatively more or less 

well developed than other areas, when compared to other species (Clark et al., 2001). 
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Lieberman (1992) and Deacon (1992) describe many of the adaptations in brain and 

body physiology for speech and language.  

Evidence from archaeological studies on the evolution of the human brain relating to 

particular language adaptations is somewhat contentious with alternative 

explanations or interpretations existing for much of the evidence (Buckley and 

Steele, 2002). Despite this, the many adaptations and changes required effectively 

rule out the possibility that human language somehow developed by a single 

surreptitious accident. 

Thus, the argument goes, language could not be the result of some exaptation of a 

fully formed language organ, as the cost to individuals of some partially formed 

language ability would be too great to support were it not immediately useful. The 

number of changes required, including the dietary ones, could not conceivably have 

occurred unless over some considerable length of time.  

Further arguments against the gradual and continuous evolution of language are 

based on claims that it is not possible to have ‘half-a-grammar’, and that language 

evolution (perhaps from some proto-language) had to occur in an all-or-nothing 

discrete, single step (Bickerton, 1984) (an argument now modified to take in two or 

three such steps (Calvin and Bickerton, 2000)). Burling (2000) contests this and 

points to different stages of child language to demonstrate that partial grammars can 

– and do – exist. Despite their limitations compared to full human language, such 

partial grammars (partial only in being less capable and powerful than modern 

grammars) are still useful, and would confer an adaptive benefit to their users. 

2.4.3   Questioning the Innate Linguistic Ability 

While disagreement exists over how innate language ability came about, it is 

generally agreed that there is some innate ability. Which leads us to the next 

question: what exactly is it that is innate? 

Chomsky’s theory states that language is innate in that a number of language 

principles exist in the minds of children before they begin to learn language – and it 

is due to these that children are able to learn language and that a UG exists across all 

human languages.  

An extreme innatist view is that the LAD/UG is itself innate, and every rule in the 

UG is somehow ‘hard-wired’ in the brain. Constraints covering aspects of grammar 

such as branching order, subjacency, etc., are all hard-wired and each evolved to 
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serve its particular linguistic purpose. This appears to be roughly what is proposed by 

Pinker (1994, Chapter 10). 

Some evidence to support the idea that specific rules are biologically determined 

comes from the discovery of hereditary language disorders (Gopnik and Crago, 

1991). 

However, this ‘strong’ view of an innate UG is under attack. The evidence of 

hereditary specific language impairment has been questioned (Bates and Goodman, 

1999), as has the degree to which language is determined by mechanisms internal to 

the brain. For example, (Deacon, 1992) argues that language universals are shaped 

not only by the structure of the brain and its limitations, but also by pragmatic 

limitations and peculiarities of the medium used. Such considerations are also 

mentioned by Dunbar (1996) when he studies size of informal conversation groups, 

and other factors in human social behaviour. Thus language and its use depends on a 

host of limitations, including many imposed by the processes of speech production 

and perception as well as internal physiology and external environment. So not all 

features of the LAD can be said to have ‘evolved’, and not all are necessarily innate, 

and coded in the human brain. 

Additionally, cultural processes may have significant influence. Kirby (1998) 

suggests that some language universals may be the result of historical evolution of 

language in the cultural domain rather than the result of evolution acting on genes. As 

language is passed from one generation to the next, the ease with which heard 

utterances can be parsed, and the ease of generating such utterances, may lead to 

some innately possible grammars not appearing in any human language. In other 

words, all human languages exist within the space of innately possible languages, but 

they do not necessarily fill the space. This view is expanded upon in Kirby (1999). 

So, evolution in language form may be responsible for some features otherwise 

assumed to be innate in the Chomskyan LAD. Care must be taken in assuming that 

any feature of language is due to genetic or phylogenic rather than glossogenic 

(cultural) evolution. 

The innateness of language is also questioned by Elman (1999), who argues that the 

idea of what it means for something to be innate is itself under-specified. In being 

‘innate’, language is somehow constrained by the brain. Representational innateness, 

where the precise pattern of neural connectivity is pre-specified, is ruled out as the 

genome is incapable of encoding sufficient information to do this. Elman concludes 
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that language is innate but emphasises that grammar is not encoded in genomes. 

Rather, the innate grammar is a consequence of many interactions of genetic 

expression – in e.g.  determining general properties of neurons, local connectivity 

rules and brain structure – and of ontological development – most importantly in 

neural development and learning.  These last arguments do not rule out strongly-

innate language; instead they question how language may be innate. This subtle 

rethinking, from a biologically and genetically innate LAD to an emergent LAD is 

the unifying theme of the papers in the book in which Elman’s paper appears 

(MacWhinney, 1999). 

2.4.4   Why and How? Just So Stories and Grand Theories 

Perhaps the most controversial aspect of studies in the evolution of language is the 

attempt to explain the reason for the evolution of language in Homo sapiens. 

Such attempts are generally contentious and hard, if not impossible, to prove or 

disprove. A common criticism of work which attempts to explain in detail the process 

of exactly how language evolved in humans is that the resulting theories are “just so 

stories” – stories which ultimately cannot be proven because of a lack of evidence, 

language leaving no direct physical trace in the fossil records. However, by studying 

the evidence that is there, it is possible to suggest what the evolutionary pressures 

were that lead to language and, since Chomsky’s exposition of an innate LAD, 

attempts to explain the origin of language have again become popular. 

While not particularly concerned with the question of the functional origins of 

language, Lieberman (1992) claims the function of language is obvious: 

 “The contribution to biological fitness is obvious. The close 

relatives of the hominids who could rapidly communicate Look out 

there are two lions behind the rock! were more likely to survive, as 

were hominids who could convey the principles of the core and 

flake toolmaking technique in comprehensible sentences” 

(Lieberman, 1992, p23) 

However, this argument is flawed. Vervet monkeys can make do with simple 

warning vocalisations to identify and warn of a variety of predators, why not 

hominids? To convey the principles of a simple tool making technique, a lesson in 

the form of a demonstration only would be more effective than one that was given by 

speech alone. There must be more to the fitness benefits derived from language. 
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(Armstrong et al., 1994) presents an argument that syntax evolved from signed 

language in early hominids. One of the main claims for this is that primates are more 

able to learn to communicate with humans through signing than through vocalisations 

- that primates have more wilful control over signing than over vocalisation. 

However, there is a lack of clear evidence that such signing is natural to primates and 

there is some evidence that it is not (Pinker, 1994, p338-342). Further, apes and 

chimps do have some physical ability for varied sound production, and are 

presumably only lacking in mental structures to finely control speech production and, 

more importantly, the capacity for language be it some form of LAD or whatever 

(Pinker’s ‘Language Instinct’ perhaps). 

The other main claim is that manual signing, by its very nature, includes some 

elements of syntax - miming an action includes both action and object elements. Such 

signing is not necessarily at all complex, however, and there is no argument 

presented claiming that primates naturally use strings or combinations of signs in a 

way that indicates some elementary grammar. 

Other theories, generally not currently favoured, include ones that propose language 

emerged from singing (for example, Skoyles (2000), and recent evidence linking one 

of the key regions of the brain for grammar and language with a role in music 

appreciation (Maess et al., 2001)). 

Such theories, positing a particular ‘original purpose’ or ‘original method’, are 

contentious and generally limited in evidence. One alternative theory that is popular 

is that language evolved out of its usefulness as a social tool (c.f. Dunbar, 1996; 

Deacon, 1997). This theory is quite broad, and it avoids picking a single, highly 

specialised ‘original function’ of language, instead suggesting a range of language 

functions. As Deacon puts it, “Looking for the adaptive benefits of language is like 

picking only one dessert in your favorite bakery: there are too many compelling 

options to choose from” (Deacon, 1997, p377). 

Dunbar (1996) suggests that language evolved primarily to allow the formation, and 

maintain the cohesion, of larger groups than is possible with physical grooming 

(although clear evidence of early hominid group size is lacking (Buckley and Steele, 

2002)). Language can also perform a variety of other useful functions within such 

populations. Language may be used for grooming and gossip, with many benefits. 

Some of the benefits of language suggested include: 
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• Grooming: maintaining relationships between individuals. Physical grooming is 

generally limited to two participants. Verbal grooming could be used to maintain 

a relationship between one speaker and around three listeners. This allows 

individuals to maintain relationships with a greater number of other group 

members, and ultimately allows the formation of larger groups. Larger groups 

benefit from mutual support against other groups and predators. 

• Gossip: gossip is useful for social cohesion, and transfer of information about 

others in a social group - which is possibly the most important information that 

can be known in such a group. Gossip allows an individual to learn about the 

strength, honesty and reliability of potential rivals and allies without the need for 

direct observation. This also reduces the time required to form new relationships. 

• Second hand information: more generally, a large variety of information about 

the world can be learned without the need for direct experience and repeated trial 

and error by every group (Pinker and Bloom, 1992). This knowledge can be 

complex, extensive and detailed even across generations. Children can learn what 

is dangerous and what is nutritious without having to taste every mushroom or 

walk up to every animal. (Also see Cangelosi and Harnad, 2000; Cangelosi et al., 

2002) 

• Mate selection: language can also be used to help advertise quality, in the search 

for mates. The need to keep a mate entertained could drive a mental arms-race 

between males of a species in the quest for females. Those who succeed will have 

more offspring driving the evolution forward.  

• Kin selection: the development of different languages and accents allows easy 

identification of members of different groups. 

• Cheats: members of a group can gain at the expense of others if they can secure 

the co-operation of others, without contributing themselves. This can be thought 

of as a form of the Prisoner’s Dilemma. Language gives defectors the ability to 

convince others, and gains co-operators the ability to look for evidence that 

another individual might not be reliable. This could also lead to an evolutionary 

arms race, as evolutionary pressure exists to be better able to convince others as 

well to be able to detect attempts at manipulation (Pinker and Bloom, 1992). 

Worden (1998) goes further. Not only did language evolve to serve a variety of social 

functions but, he argues, it piggy-backed on brain adaptations for dealing with social 
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situations, an argument similar to (Deacon, 1997). He claims that language ability is 

based on similar mental structures used for social reasoning. Social situations are 

structured, complex and open ended, discrete-valued, extended in space and time and 

dependent on sense data of all modes. This list compares well with the lists provided 

above for the characteristic features of language. By citing the ‘speed limit’ on 

evolutionary change, it is argued that it was not possible for speech to emerge in 

humans given the time since evolutionary divergence from our common ancestor 

with chimpanzees, unless language was based such on pre-existing structures. 

2.5   The Cultural Evolution of Languages 

Having surveyed work on the evolution of communication and cooperation and the 

EoL, one important topic has so far only been mentioned as an aside – that of the eol. 

People have been long aware that languages change over time, and there is no 

shortage of quotes from literature about the benefit to be gained by stopping language 

change, or diatribes on the degeneration of language. For example: 

“… nothing would be of greater Use towards the Improvement of 

Knowledge and Politeness, than some effectual Method for 

Correcting, Enlarging, and Ascertaining, our Language;” 

(Swift, 1712) 

Or: 

 “Standard English is the language of English culture at its highest 

levels as it has developed over the last centuries… This does not 

mean that speakers of non-standard English cannot be verbally 

agile within certain areas of discourse, nor that topics traditionally 

discussed in the standard language are entirely barred to them.” 

(Marenbon, 1987) 

Away from such reactionary views, language change has been the subject of serious 

study for many years. In this section we provide an overview of some of this work, 

from a number of different approaches. 

2.5.1   Language Change 

Change in language is studied at many different levels, the individual, social and 

historical. Typically studies concentrate on how language change operates at only 
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one of these levels, and this has led to the emergence of a number of complementary 

(and potentially contradictory) linguistic disciplines. 

Psycholinguistics is concerned with how language works at the individual level. Here 

language change may be viewed as the result of different functional pressures on 

language as speakers try to communicate with listeners (e.g. Slobin, 1979). 

At the social and group level, studies of language change take place in the fields of 

socio-linguistics and dialectology. Studies in dialectology show how changes may be 

spread through populations – or may simply ‘map’ the different language forms that 

are in use in different population groups. Such studies are generally synchronic, 

attempting to describe the structure of language at a fixed point in time. As a 

consequence of studying the differences in dialect between different geographical 

and social groups, it became clear that each individual in a linguistic community uses 

a unique variant of their dialect. The term idiolect was coined to refer to the unique 

variant of language possessed by any individual in a population. 

Sociolinguistics concentrates instead on how individuals actually use and change 

their use of language according to social situation, and on providing explanations for 

use of particular linguistic variations according to social factors (class, sex, grouping, 

etc.). See, for example, (Tannen, 1994; Chambers, 1995; Trudgill, 1995) or for a 

classic study, Labov (1972). 

In historical linguistics, much work is done to reconstruct languages no longer 

spoken, or to trace and explain the changes that may have occurred in the history of a 

particular language or family of languages (e.g. Trask, 1996). In contrast to 

sociolinguistics, work in historical linguistics is by its very nature diachronic, 

considering as it does changes in language over periods in time. 

While these different approaches are to some degree isolated from one another, they 

are all interested in language change, how it happens and why. Yet, their different 

interests and perspectives can lead to very different opinions on what is actually 

important when describing language differences. For example, in socio-linguistics, 

which concerns itself with language in society, an individual’s idiosyncratic 

variations in language use are not considered important (as opposed to systematic 

variations in language use observed amongst some group of language users): 
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“Discovering how various “personality factors” interact to make 

idiolects would probably not repay the effort because they carry 

almost no social significance” 

(Chambers, 1995page 85) 

While language change is a phenomenon which occurs at many levels – internal and 

external to speakers, and over many generations of speakers – the explanations given 

for language change are almost invariably given at the same level at which it is 

studied. 

2.5.2   Explanations of Language Change 

Aware that the type of study affects the conclusions, what explanations of language 

change exist in the different fields that study it? In attempting to characterise each of 

a number of distinct fields in only a few sentences condemns me to provide grossly 

simplistic views – but representative ones, I hope. Sociolinguistics, psycholinguistics 

and historical linguistics all concern themselves, to a greater or lesser extent, with 

language change. The diverse methods used and distinct focus of these fields has led 

to different approaches to explaining language change. 

Sociolinguistic studies of language change typically observe differences in language 

use by different social groups within a geographical area. The spread of change is 

observed as it moves both across and within different social groups. Additionally, 

studies also note how language use is modified according to social situation, and the 

social benefits of having the appropriate dialect in any social interaction (Chambers, 

1995).  

A consequence of this is that sociolinguists may view language change as only 

occurring because of these socially functional factors. Why adopt a novel form, if it 

won’t provide some benefit? Regarding sound changes, James Milroy has this to say: 

“It must be the case that human beings attach great importance to 

changes like this: if they did not, then there would be no reason 

why they should implement them at all” 

(Milroy, 1993, page 215) 

This view, that language changes and differences have some reason, some functional 

motivation, is shared by others (Nettle and Dunbar, 1997; Nettle, 1999a). All agree 

that it is the ability of language differences between individuals to act as a social 

marker that motivates language change and linguistic diversity. Such a marker would 
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serve as a badge of group membership, and help prevent outsiders taking advantage 

of the natural co-operativeness of others (Dunbar, 1996, p169). These arguments will 

be revisited later. 

In contrast, quite different explanations of language change exist in 

psycholinguistics. Here the emphasis is on functions internal to the speaker or 

listener, rather than on the social factors surrounding their interactions. For example, 

Slobin (1979) states four competing functions of language. This competition both 

fuels and maintains the continued evolution of language. Because of these competing 

functions, changes gradually occur in languages to optimise one function or another, 

the competition maintaining language in a dynamic equilibrium. The language 

functions identified are that language signals should: 

• Be clear 

• Be processible 

• Be quick and easy 

• Be expressive 

The constant dynamic attempt to maintain equilibrium balances language 

simplification versus language elaboration. Pressures on language arise because in a 

conversational exchange the speaker and listener have different goals: 

• The speaker wishes language to express meaning clearly, efficiently, effectively 

and ‘reasonably’ quickly. (Clear, quick and easy, expressive) 

• The listener wishes language to allow them to quickly and efficiently retrieve a 

clear and informative message from speech. (Clear, easy to process) 

The competition, and the change it produces, is internal to each speaker and listener, 

and over some population will cause historical language change. 

Historical linguistics, generally being more interested in changes which happen over 

long periods of time – say, from the English of Chaucer to the English of 

Shakespeare and on – looks more closely at language itself than at individuals who 

speak it. What is studied here is generally language as a system. How might a change 

to one part of the system affect the rest of the system? 

This view of language as a system gained prominence with the publication of what 

became known as ‘Grimm’s Law’. In his Deutsche Grammatik, Jakob Grimm (1822) 

explained that correspondences in consonant use across a number of languages were 

the result of systematic changes from older languages (Latin, Greek and Sanskrit) 
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(Baugh and Cable, 1978). For example, the ‘p’ sound of Latin or Greek could change 

to the ‘f’’ sound of modern Germanic languages. A change in the opposite direction – 

from an ‘f’ to a ‘p’ would not be possible, however. 

Over time this has led to the development of many Sound laws which describe ways 

in which systems of sounds may change over time. Despite the name, these are not 

laws but more general rules of sound change, for which exceptions often exist 

(Adamska-Sałaciak, 1997). 

These ideas of the sounds of language as a system – and of directional changes in 

phonology – led to the development of chain-shift theories of sound change. Consider 

the sounds of language as existing in some auditory space. They may not be evenly 

distributed through the space. One sound may gradually shift its position in this 

space, leaving behind a ‘gap’. As the first sound moves away, a second may be 

‘pulled’ into this gap, and over the course of time a ‘chain’ of such sound moves 

forms (King, 1969).  Further, explanations that view language as a system are not 

limited to phonology, but can be extended to other aspects of language (Anderson, 

1973). 

A limitation of the historical approach is that it often does not explain why languages 

change at all – rather it provides a framework for studying the histories of changes in 

languages, and for describing which changes are likely or indeed possible. Viewing 

language as a system which is itself subject to change loses sight of the mechanisms 

by which change occurs. Although historical linguistics is well suited to documenting 

and detailing changes in language use, some of its methods are limited in their ability 

to explain why language changes occur, as the rules and explanations put forward are 

those that apply to languages as a system – and not to the speakers of the languages 

(Milroy, 1993). 

Recently, however, a number of authors – linguists and others – have made serious 

attempts to use evolutionary theory to explain language change, and some of these 

are reviewed next. 

2.5.3   Language Change and Evolutionary Theory 

The re-application of biological evolutionary theory to explaining (or describing) 

how languages evolve has a history that can be traced at least as far back as Darwin: 
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“The formation of different languages and of distinct species, and 

the proofs that both have been developed through a gradual process, 

are curiously parallel.” 

Darwin, C.R. 1874 

However, (neo-)Darwinian theory of evolution is based on many mechanisms that 

simply do not apply to eol. Languages ‘reproduce’ by transmission from speakers to 

learners and other speakers. Learners do not apply ‘re-combination’ and ‘mutation’ 

operators to utterances they hear to form their own language. So how can 

evolutionary theory be applied to something like language? 

2.5.4   Cultural Evolution 

This question was asked by Cavalli-Sforza and Feldman (1978), in their attempt to 

develop a general theory of cultural evolution. Rather than obtaining genetic material 

from two parents, cultural ‘material’ is received from the community around an 

individual. The amount of influence held by members of the community is unequally 

distributed. Community members may have from very strong to negligible influence 

on another individual. The socially acquired characteristics will be determined by a 

summation of the influences exerted on the individual. This is expressed 

mathematically as: 

∑
=

+ +=
N

j
itjijti XwX

1
,1, ε  (2-1) 

This equation is used to determine the traits, Xi, at time t+1, of the ith individual in a 

population of N individuals – based on the trait values of the population at the 

previous time step. The proportion of Xj,t contributed to Xi,t+1 is determined by wij, 

indicative of the amount of influence or contact between the two, with 10 ≤≤ ijw  

and 11 =∑ =

N

j ijw . Finally, iε is a random error term. 

The equation given is more than strikingly similar to description of a social network 

used by (Milroy, 1980). A social network is, quite simply, a network describing an 

individual’s contacts and bonds with others. A portion of a hypothetical network for 

an individual called ‘Ted’ might look like the network shown in Figure 2.1 
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Bob 
Bill 
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Jo 

Tom 

 
Figure 2.1. A partial social network for an individual called ‘Ted’. 
Excepting links between members of Ted’s social network, the social 
networks for the other individuals are not shown. 

Each individual is linked to many others in the community around them – through 

family, friends and work. In some instances an individual might be a member of a 

close-knit community, with a relatively small number of strong bonds. Other 

individuals might have more diffuse networks, with many weak bonds. Thus, the 

social bonds linking individuals vary in their strength. To describe these bonds 

mathematically we can use Equation 2-1, above: every individual in the community 

has links with every other individual, varying in strength from zero (no contact) up to 

one. 

While Milroy was not attempting to formulate an evolutionary theory of language 

change, it is interesting to note that social networks map very naturally onto a 

separately derived theory of cultural evolution. 

Cavalli-Sforza and Feldman (1981) present a reworked mathematical model and 

Niyogi (2002) compares his own computational model of language change with this 

later model. We will look at these in more detail in Chapter 6 where we study cultural 

evolution in more depth. 

2.5.5   Language Ecology and Species 

Two biologically inspired theories of language evolution with much in common are 

language as species and language ecology. 

In biology, ecology is concerned with the interrelationships between an organism and 

its environment – which includes other organisms. Language ecology (Haugen, 1971; 

Mühlhäusler, 1996; Mufwene, 1997) considers human populations as environments 

within which languages exist. As with its biological counterpart, language ecology 

considers the initial conditions of an ecology – the starting language and population 

distribution – and stochastic events to be of importance in the ensuing evolution and 
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development. Mufwene argues that variations in population sizes and limits on 

interactions between people (social structure) strongly influence the process of 

creolisation. Examples demonstrate how these influences can lead to radically 

divergent eol in situations with what might be considered similar starting conditions. 

It is postulated that similar processes are at work in the normal eol: each new 

generation learns language from scratch based on the existing language around – 

whether that language is pidgin or an established language. 

Within the ecology, Mufwene regards language to be a species; the language of an 

individual speaker – which will vary at least slightly from all others in the population 

– is considered to be an organism.  

Like animals of the one species, variation is always present, even in stable 

populations. Sometimes a particular variant may propagate through the population, 

changing it. At other times a population may remain stable over long periods. 

Mufwene considers that “the question for historical linguistics is to determine under 

what ecological conditions… small actions of speakers amount to… change in the 

communal system” (Mufwene, 1997, p328). 

Lass develops a similar view, but – borrowing from the population biology of viruses 

– promotes the notion of language as a ‘quasi-species’ (Lass, 1997, p375). A quasi-

species is a highly variable yet self-stabilising population. Again, the individual 

within a language quasi-species is a single idiolect. A model of evolution, neutral to 

what is being evolved, is presented with arguments to show that it applies equally 

well to language as it does to virus quasi-species. This view makes explicit some 

aspects often overlooked in objections to language evolution theories that limit the 

roles of function or intent in eol. I will briefly describe below some of the main 

points specifically as they apply to language. 

The average language of some population may be considered the norm – but this may 

not be represented by any existing idiolect. The norm is a weighted average of the 

population, which may be more densely clustered round some point than elsewhere 

but which may have many outliers on the periphery. Over time the precise shape of 

the “cloud” of idiolect will change and the position of the norm will shift. Clusters 

may form away from the norm and these may be favoured and become a new 

selection-gradient for the language quasi-species. A new norm would be formed 

inside the, formerly peripheral, cluster. Using traditional linguistic terminology, we 

could simply say that the language had changed. 
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Lass coincidentally concludes his argument with the same point as Mufwene: 

“What remains then… is to differentiate the ecological conditions 

under which selection gradients arise” 

(Lass, 1997, page 380) 

2.5.6   Neutral Evolution 

With his work on neutral evolution, Kimura, (1983), showed that it was possible for 

evolution to occur without any apparent selective forces at work. The possibility that 

language evolution could be evolutionarily neutral is discussed by Lass as well as by 

Nettle (1999a), who both refer to Kimura. However, they have very different views 

on why the neutral evolution of language should, or should not, be sufficient to cause 

change and diversity in human languages. 

Lass’ proposal (Lass, 1997, p. 354) is based on the observation that languages are 

imperfectly replicating systems, within which elements of linguistic ‘junk’ and other 

‘marginal’ features exist. This provides ample room for variation, and allows changes 

to occur without disrupting the success of communication. That replication is not, 

and can not be, perfect means that languages will change, regardless of functional 

benefits. 

Nettle (1999a) argues against the neutral evolution of linguistic systems on three 

points: 

1. Random changes would be non-directional and could be expected to cancel each 

other out, due to an averaging effect. 

2. With a neutral model it is difficult to account for diversification without 

geographical isolation. 

3. Structural correlations in many of the world’s languages represents parallel 

evolution, showing that the path of linguistic diversification is not random. 

Thus, Nettle proposes that in order for linguistic evolution to occur without 

geographical isolation, additional mechanisms are required. As previously 

mentioned, Nettle argues that the social functions of language are required for the 

emergence of linguistic diversity (section 2.5.2). 

However, Nettle’s first and second points both rely on the equal distribution of 

individuals, with a uniform likelihood of any one individual interacting with any 

other. As in the theory of cultural evolution (section 2.5.4), in any group the amount 

of influence exerted on any one individual by any one of the others will vary 
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according to a number of factors. This reduces the effect of averaging, and increases 

the potential for sub-populations to vary from the mean. The different social 

networks within groups reduces the need for geographical isolation to produce 

linguistic diversity. 

We will revisit the concept of neutral evolution, and arguments for or against it, with 

regard to language change, in Chapter 7. 

2.5.7   Co-evolution of Languages and Man 

Coevolution is a term which usually applies to the processes by which two species 

may evolve, with the evolution of each species influencing or inducing evolutionary 

change in the other (Stearns and Hoekstra, 2000); it is typically used when referring 

to the coevolution of predators and prey, or parasites and carriers. A more generalised 

view of coevolution is that it refers to any two interacting, evolving, systems that 

influence each other’s evolution – say, the different organs of animals of the one 

species. Like many other evolutionary ideas, coevolution can be invoked to try to 

improve understanding in areas apart from biology, including the evolution of 

language. As the ability to use language has evolved, so have the languages that are 

used (this cultural evolution of languages is discussed further in Chapter 7). As 

successful use of language became important for survival, this would have in turn put 

pressure on the evolution of the LAD. 

Viewing the LAD (in whatever form it takes) as the biological language organ, the 

languages used are obviously constrained by the LAD.  The LAD shapes the 

evolution of languages. If it is a coevolutionary system, it is possible that the LAD 

has in turn evolved in response to the languages that it allows to exist. 

2.6   Summary 

In this chapter I have provided a short review of a great many topics in linguistic and 

evolutionary research. In the next chapter I look at computational approaches to 

evolutionary modelling, and review some of the methodological ground rules that 

have been developed for conducting such work. These have given rise to ground 

rules that I have tried to follow in conducting my own work, described in the later 

chapters. 
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Chapter 3    Artificial Life: Computational Modelling and a 

Methodological Approach 

Over the course of the last chapter, a broad introduction to language evolution and 

related problem domains was given. It is the aim of this chapter to provide some 

detail of the investigative approach used. 

3.1   The Artificial Life Approach 

The quote from Langton, reproduced in Chapter 1 identifies the essence of much of 

ALife as the construction of systems in which local interactions of many entities, or 

agents, give rise to an emergent and life-like behaviour. 

As well as forming a definition of ALife, Langton’s statement reveals that ALife was 

even then a diverse field, where the work of different researchers had seemingly little 

in common. A review of the proceedings from a more recent ALife conference will 

similarly reveal a diverse range of work. 

However, other than the “essence” described by Langton, there is a commonality that 

can be found in much ALife work. Much of the research tries to improve 

understanding of phenomena in the real world - whether it is the emergence of life 

itself, the evolution of co-operation, signalling or language or the dynamics of price-

wars in a free market (see, for example, Adami et al., 1998). So despite Langton’s 

assertion that ALife represents  “life-as-it-could-be” (Langton, 1991), it can be seen 

that a major use is as a scientific tool for investigation of the real world. 

3.1.1   Agents 

The basic element in most ALife models is the agent. In this context, an agent is a 

single individual in some simulated population. The agents may be very simple and 

abstract, interacting with one another and/or with a simulated environment. Rules 

govern the behaviour of agents during interactions and also when, and which, agents 

interact. The agents themselves may be as simple as simulated ‘billiard balls’ to more 

complex organisms that adapt and learn (Holland, 1998). 

In theoretical biology, such an approach has been termed individual-based-modelling 

(Grafen, 1991), and a similar approach is also used in work in social science micro-

simulation (Gilbert and Troitzsch, 1999). 
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The simulated populations may consist of handfuls of agents, or many thousands of 

agents, interacting according to simple rules. This is in contrast to traditional 

mathematical approaches where entire populations may be modelled by means of a 

system of complex mathematical equations (such as in traditional dynamical systems, 

see Hofbauer and Sigmund (1988)).  

It should be noted that, for some, the term agent has a different, and more strictly 

defined, meaning than is used here. Some definitions require that an agent is 

embodied in an environment with which it is able to interact and/or that an agent 

must possess its own (however modelled) beliefs, desires and intents (Wooldridge 

and Jennings, 1995). 

3.1.2   Emergence 

Where a phenomenon at one level arises as the result of processes that occur at 

another lower level, the phenomenon can be described as an emergent one. In 

physics, a classic example is temperature. Individual atoms and molecules do not 

possess temperature – it emerges from the interactions of many different atoms and 

molecules. 

In ALife, the classic example is ‘Boids’ (Reynolds, 1987), a model of flocking birds. 

In this model, individual boids follow simple rules to avoid collisions, to try to match 

velocity with other boids and to try to stay near the centre of the flock. From the 

interactions of many boids following these rules an emergent, and life-like, flocking 

behaviour emerges. 

The emergent phenomena itself may be subject to “macro-laws” – laws which 

describe the emergent behaviour at a higher level than that of the interactions which 

give rise to it (Holland, 1998, p 224) – temperature again providing a good example. 

3.1.3   Life-Like 

The purpose of ALife modelling is usually either to allow future events to be 

predicted or to provide better understanding of existing phenomena. In this thesis I 

will generally adopt the latter, as ALife models – due to their nature, where initial 

conditions and the stochastic events can radically affect quantitative results – are not 

always well suited to making predictions other than in the most general terms. 

Whatever the purpose, the method of obtaining results is the same. Having initialised 

a population of agents and their environment, set parameter values, and iterated the 
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simulation for some period, the results of the simulation must then be compared to 

observations of the real world. 

While it is possible that numerical and statistical analysis of real and simulated data 

will allow a direct comparison, it may be the case that some amount of interpretation 

is required. In such a case, apparent or qualitative similarities between model and 

world are identified – as in the flocking patterns of Reynold’s boids. 

With comparable results between the simulation and the real world, it can be 

postulated that the processes which produced the phenomenon of interest in the 

model are essentially the same as those at work to produce the comparable real-world 

phenomenon. In many cases it is hoped that this provides some degree of explanation 

for the phenomenon. Note, however, that a similar end result does not necessarily 

mean that the same processes are at work, as we shall later see.  

3.2   Methodologies for Applying Artificial Life  

Reviewing ALife research which aims to model the real world, it is apparent that 

there has been a lack of discipline and rigor, and this has been noted by a number of 

authors – some of whose suggestions for improvement are reviewed in this chapter. 

Indeed, to some prominent researchers in the field of Evolutionary Computation, 

which focuses on the scientific applications and understanding of evolutionary 

algorithms, the related field of ALife is seen as an area characterised by poor quality 

research, where researchers simply play around with models and in which an 

“anything goes” attitude is prevalent (Muehlenbein 1998, personal comments). 

This compares poorly to established sciences, where higher standards of rigour and 

use of appropriate scientific methods are expected. In the social, physical, and life 

sciences criticism of the methods by which a finding has been reached will 

substantially undermine confidence in the findings. The requirement that suitable 

methods are applied to research before the research can be accepted generates interest 

in, and awareness of, methodology and many volumes have been published on 

suitable methodologies for research and experimentation. For example, a search of 

the University of Paisley library (a rather small university library) catalogue for texts 

with the words “method” or “methodology” in the title lists over 700 separate titles.  

In contrast, a small, but growing, number of papers have been published providing 

guiding principles and heuristics to apply when conducting ALife research.  
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Before using ALife methods to investigate the evolution of language in the following 

chapters, in this chapter I will review current ideas on ALife methodology and good 

practice. In the remainder of this thesis I will endeavour to satisfy these standards. 

3.2.1   Science without method? 

In the first issue of the Artificial Life journal, the paper “Artificial Life as a Tool for 

Biological Inquiry” (Taylor and Jefferson, 1994) was published. The potential of 

ALife for scientific inquiry in the biological sciences is discussed and some problems 

in biology where ALife may be usefully applied are presented. However, there is no 

mention of methodology or recommendations on how to conduct such research. 

The proceedings of the early Artificial Life workshops produced a lot of important 

work establishing the field, but very little groundwork on methodological issues. 

Instead the emphasis was on showing that ALife could be applied to a varied range of 

problems, helping to find answers to complex problems. The advantages of ALife 

models over traditional mathematical modelling techniques was emphasised at the 

expense of cautionary notes on the limitations (e.g. Taylor and Jefferson, 1994). 

Part of the problem is that ALife is often seen as being a method in its own right, or 

as a completely new science to which established scientific practice need not apply. 

Noble (1997) questions such views, asking if ALife is a science, and, if it is, then 

what does it study and what standards should be applied to its practice. His 

conclusion is that ALife is more a method than a science, i.e. a scientific approach 

that can be applied to a target discipline rather than a standalone discipline itself 

(although, ultimately such distinctions are problematic – consider the case of 

statistics as a parallel). As we shall see, a key problem is that, as a new method for 

conducting scientific inquiry, ALife has been lacking in developed methodologies to 

guide its application. 

Where traditional mathematical models need to make more general assumptions 

about the activity of individuals within populations to make the maths tractable, 

ALife models can leverage modern computational power to allow models to be built 

which make fewer assumptions and simplifications. Yet, other problems are 

introduced by the use of computational models.   

An example of the problems that can occur is presented in Noble and Cliff (1996), 

itself a critique of an earlier work on the evolution of communication, (MacLennan 
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and Burghardt, 1994). In the critique, Noble and Cliff are compelled to present some 

warnings regarding the use of ALife simulation. These are: 

• to beware of counter-intuitive results due to the conditions used in the experiment 

• that simulations with unnecessary complexity may show nothing 

• and that if an arbitrary decision about the simulation implementation or design 

influences the results, then there will be problems relating the results to the real 

world. 

Di Paolo (1999b, chapter 4) identifies the core problem with the use of computational 

models in research as being ensuring that the conclusions drawn from 

experimentation with a synthetic model are realistic, apply to the real world and truly 

answer the questions asked of them. 

These types of problems are noted by Gilbert and Troitzsch (1999) who discuss the 

use of simulation as a method in social science. The problem of determining whether 

results could be due to initial conditions or even some programming error in building 

the model is one of verification; that of ensuring that comparisons with the real-world 

hold true, validation. 

In the next section we review one of the first papers to address this problem, before 

proceeding to look in more detail at the ALife research life-cycle and the impact of 

the verification and validation problems on experimental design, implementation and 

explanation. 

3.3   Improved Methodologies and Practices 

3.3.1   A Methodology Emerges 

Perhaps the first attempt to review and criticise the scientific methods employed, or 

not employed, in ALife research is presented by Miller (1995). Miller takes a critical 

look at the use of ALife as a tool for theoretical biology, noting many pitfalls and 

hazards for the unwary.  

Miller first reviews some failings of computer science in general when it attempts 

‘real science’ (sciences based on pre-existing natural phenomena). Miller claims that 

whenever computer scientists develop a new field claiming to be real science the 

same problems recur: poor scholarship, with interdisciplinary blindness; poor 

research methods, with a lack of rigorous hypothesis testing, controlled 

experimentation and statistical analysis; poor analysis of results, refusing to recognise 
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failures and wildly over-generalising successes; and finally, poor follow through, 

leaping from research fad to fad, failing to replicate results and extend findings 

towards a conceptually integrated discipline. 

As redress, Miller suggests six methodological heuristics for successful ALife, and 

these are listed below. 

 

Miller’s Six Heuristics 

1) Identify a known and unsolved problem that can be addressed using simulation. 

Miller notes that this may be more difficult than it sounds. Biology is a mature 

and successful science, and most problems a casual reader may encounter have 

large bodies of work behind them, or just about to be presented. 

2) Collaborate with real biologists who have already worked on the problem. ALife 

work may not present much gain to biologists, and may present some risk. 

Sufficient biological knowledge is required to earn their support and confidence. 

3) Do a thorough scholarly review of the current biology literature relevant to the 

problem. This can avoid effort being expended on solved problems. 

4) Develop a well-targeted simulation that extends current biological models and 

yields directly comparable results. For example, mathematical models in biology 

may make strong and unrealistic assumptions to make the maths tractable. Such 

models are weak at coping with phenomena like complex phenotypes, flexible 

behaviour, and co-evolution. Taking such models and relaxing the assumptions 

one at a time is a powerful technique and the results can then be directly 

compared to those of the formal model. 

5) Explore cause and effect in the simulation by running comparisons across 

different conditions. Rather than constantly moving on to new and better 

simulations, perform strong and thorough analysis of the results from simulations 

under numerous conditions. Vary independent variables and observe effects on 

dependent variables. 

6) Publish the results in biology journals, subject to peer review by real biologists. If 

the work is unacceptable, then it is likely flawed. Miller views journals within 

ALife as playgrounds in which ideas and methods can grow before venturing 

outside. Miller suggests an ideal ALife project lifecycle in which work is iterated 

over several years with publications moving from conferences to the dedicated 

journals and finally to mid and then high level journals within biology. 
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Miller concludes that ALife research will only be as good as ALife research methods, 

though the prospects are exciting. The comments presented in this paper are a 

sobering reminder that ALife work purporting to illuminate some aspect of evolution 

must be presented within the context of the other work that already exists. In 

particular, Miller warns ALife researchers not to believe that they can enter a well-

established field of science and solve all of the open problems with a few simple 

simulations - or to act as if they believe it. 

Overall, these heuristics are helpful, focussing on the particular failure of much of 

ALife research to properly apply itself to its supposed target problem and domain. 

The advice here is to select a particular problem, and to ensure that the model does 

indeed address the problem. While acceptance by peers from the target domain is a 

worthwhile objective, there can be resistance to accepting for publication work based 

on computer modelling rather than the more traditional methods used in a particular 

academic field  (for a particular example, see Axelrod, 1997a, chapter 7), and in 

some cases this may make Miller’s final heuristic a difficult one to successfully 

follow. 

3.3.2   Not Just Biology 

While many of Miller’s points are well observed, the heuristics for guiding research 

have themselves been reviewed with some criticisms. Some of these are reviewed 

here, together with other works which provide suggestions for good practice in ALife 

research. 

One obvious point is to ask why should ALife be limited to just research in 

Theoretical Biology? That ALife has much to offer researchers in other fields of 

science is noted by both Noble (1997) and Di Paolo (1996), this view easily 

supported by the large body of work using ALife techniques in subject areas other 

than biology. 

Yet many of Miller’s statements could apply equally to those using ALife for 

linguistics or social sciences, etc., simply by substituting the name of the appropriate 

science where “biology” appears in Miller’s heuristics. This should allow the 

heuristics to be generalised to apply to a broader range of ALife work. 

3.3.3   ALife for Novel Models and Theories 

Miller’s fourth heuristic comes in for heavier criticism, however. In an unrelated 

paper Hurford (1996) states that the act of building a computational model can help 
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find gaps or hidden assumptions in theories, and the running of such models can help 

improve the detail and check for internal consistency. This view is similar to Miller’s 

point 4, but only requires that a theory exist, not that a formal mathematical model 

already exists to support the theory. This is an important observation as in social 

sciences and humanities theories are much less likely to have formal mathematical 

expressions than they are in the physical and mathematical sciences. 

Di Paolo (1996) finds the heuristics more limiting than necessary, and criticises the 

fourth in particular. He accepts that work following this rule may enrich current 

models, providing new answers that are too hard, or even impossible, to obtain using 

traditional analytical methods. However, he questions whether this heuristic may 

present its own range of problems. 

The principal problem identified is that of inheriting implicit assumptions. An ALife 

model that extends an existing model will have many of the methodological and 

philosophical assumptions of the existing model. These may be implicit points 

simply accepted without question in the original domain. Given that in biology there 

exist a number of unresolved controversies and debates, an ALife model developed 

from an existing biological model may depend on factors that are not generally 

agreed upon. In contrast, work that is not developed directly from an existing model 

may have the potential to help resolve open debates. As we noted above, however, 

developing a new model can cause problems with the model’s ultimate acceptance. 

Computer explorations where no prior formal model exists requires first building 

such a model, a step avoided when using Miller’s guidelines. Di Paolo points to 

physicists who believe that some phenomena can be better modelled computationally 

than they can mathematically, supporting the principle that direct modelling can be 

good practice. 

Further, verbal arguments are often used where systems involve complex processes 

that are hard to formalise mathematically.  Computer models can be built to represent 

verbal models, and simulations used to help defend or attack such models. This 

makes the point that existing non-mathematical models may also be used as the basis 

for ALife experimentation. 

Further, restricting ALife researchers from developing new models and theories 

simply hands this work over to other researchers, without a good reason for 

preventing ALife researchers from participating in this work (Noble, 1997). There is, 

however, no point in advancing a novel ALife-inspired theory to explain some 
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phenomenon when a better theory already exists – a reminder of the importance of 

properly researching the problem domain (Miller’s point 3). 

Di Paolo (1999b, chapter 4) promotes the development of a number of different 

formal models (such as mathematical and computational) of some phenomenon, and 

then comparing the results of the different models to improve understanding. This 

can help highlight which conclusions depend on particular models and which 

assumptions and features cause differences in the results. This helps to question and 

assess the assumptions themselves, providing greater insight into the problem than 

otherwise possible. 

These arguments all hold that ALife presents a valid approach for both  

(re-)evaluating existing theories and for developing new theories, with the 

computational models themselves providing demonstrations of the new ideas. There 

is no compelling argument binding the ALife researcher to working with models 

derived from existing formal models – although such models are useful for 

comparison. 

3.4   ALife in Practice 

Accepting the development of ALife models as an alternative to statistical or 

mathematical modelling, are there significant differences in how research should be 

conducted? Or given the apparent gulf between the approaches, are there any 

significant similarities? 

3.4.1   ALife Research vs ‘Real’ Research 

Gilbert and Troitzsch (1999) shows that the general approach when using simulation 

as a research method is the same as when using traditional modelling methods. 

Traditional modelling proceeds in a number of stages. Observations are made and 

some data collected. A theory is proposed and a mathematical model developed. For 

a number of initial states and parameter settings the model is used to derive future 

states. Comparisons between predicted and collected data can be used to support the 

validity of the model. The same stages exist when developing a computational model. 

Instead of comparing predictions derived from a statistical model to collected data, 

some similarity is searched for between the data and the results of simulation runs. 

Differences will exist in the details of each stage, but the overall process is essentially 

unchanged. 
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Di Paolo (1999b, chapter 4) also considers how research should be conducted using 

computer models. He describes a possible way to integrate simulations into a 

scientific project, to help assure scientific integrity without limiting the potential of 

the simulations. Three distinct phases of research are identified, two for working with 

a simulation, after the initial model has been constructed, and the third for relating 

the results to the real world: 

1) An Exploratory Phase. During this stage, different cases of interest are run, 

observables defined and patterns explored. Reformulation is performed as 

required (by unexpected results). 

2) Experimental Phase. Hypotheses are generated, and further simulations run to test 

the hypotheses. 

3) Explanatory Phase. The observations must be related to the theories and 

hypotheses about the natural phenomena in question. 

Di Paolo also notes that this methodology has been used before, and is not unique to 

ALife. He also makes clear that this is only one possible way of attempting to use 

ALife models according to scientific principles. 

As theories can follow on after the model has been constructed, it is also important to 

consider guidelines on how a model should be constructed. 

3.4.2   Principles of ALife Model Building 

A couple of principles for ALife model building are agreed upon by almost all of the 

authors cited in this chapter, and others beyond. These are the need for minimal 

models and the need to make any assumptions captured in a model explicit. 

“Models should be as simple as possible but no simpler!” 

(Doran, 1996, p382) 

A minimal model is one which models all of the mechanisms required by the theory 

and no more (or as little extra as possible). There are a number of reasons for 

preferring minimal models. 

First, given two explanations for some phenomenon the simpler explanation, 

requiring less assumptions, is often the more likely (the principle commonly known 

as Occam’s Razor). Second, attempts to capture more detail than strictly necessary, 

perhaps to increase ‘realism’ in the model, may detract from the simulation. It may 

make it harder to observe what is happening in the simulation or to determine which 

of the increased number of factors modelled are the key factors in giving rise to a 
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certain result. If that is not a problem, there might still be an increased difficulty in 

verifying results. Additionally, one undesirable result of using a non-minimal model 

might be an increased computational load – resulting in simulations taking longer to 

run. 

Noble (1997) describes a minimal model as being one that captures all and only the 

intended assumptions. This highlights another point, that there is a need to ensure that 

any assumptions built into the model are made explicit. Such assumptions have to be 

included in the theory, or otherwise accounted for in any explanation of the model. 

The subsequent discovery of hidden, unacknowledged or unknown, assumptions 

requires additional effort in verifying and validating models (see 3.5 and 3.6). 

3.4.3   Adapting Methods 

Taylor (1998) discusses specific issues that relate to using ALife to model the 

evolution and origin of life itself. It is observed that in this specific field of ALife 

endeavour many existing models are lacking in explicit statements of what exactly is 

being modelled, that some definition of life is required, and that explicit lists of 

assumptions are often also missing. Taylor has identified particular problems in using 

ALife to tackle a particular problem, and has suggested some particular solutions. 

This itself is an application of a more general methodological rule, which could be 

stated as: 

• Appropriate methodology for using ALife to investigate some real-world 

phenomena will, to some degree, depend on the phenomena under investigation 

and the scientific discipline which studies it. 

This conflicts with all of the attempts described above at deriving general principles 

for conducting ALife research, but does not strictly contradict them. Rather, it points 

out that the general guidelines are insufficient for any individual research program. 

An important step will always be to adapt the general methodologies for ALife based 

research to the particular problem domain as a single prescriptive methodology will 

not be applicable to all areas to which an ALife approach may be applied. 

While it would be ideal for any researcher to have a fully developed methodology at 

the beginning of any program of research, this is perhaps an unrealistic expectation. 

More likely, particularly in the case of doctoral research, a methodology may co-

evolve with the research itself. 
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3.4.4   Implementing an ALife model 

The discussion on methodology presented so far has ignored the details surrounding 

the actual implementation of an ALife model, which is now briefly considered. Both 

ALife and traditional formal models require some amount of abstraction. To build a 

mathematical model requires the researcher to abstract the interactions and processes 

that occur in a given population into a single set of equations. Values may be 

ascribed to different variables and the result is expressed again in mathematical 

terms. 

In sharp contrast, the ALife modeller has to write a computer program, which 

contains within it a simulated population. This is a particular weakness of ALife – it 

depends ultimately on writing a computer program, and programming is a often 

considered less of a science and more of an art (leading Donald Knuth to title his 

seminal work ‘The Art of Computer Programming’ (Knuth, 1969)). Many volumes 

are dedicated to methods that should be employed in order to produce computer 

programs that do what they are intended to do, and do so without error. Attempts 

have also been made to formalize the creation of computer programs, but with little 

success outside of safety-critical systems (Storey, 1996). 

And yet there are almost no guidelines – a few are to be found in an appendix of 

(Epstein and Axtell, 1996) – on this aspect of ALife research, perhaps because the 

programming exercise is not seen as part of the research itself, rather than as a 

tiresome task to be done before the research begins. 

The first task of the modeller should be to develop a description of the model that 

they will implement – the agents or actors that comprise the population and the rules 

which govern their interaction. In ‘normal’ software development, such a description 

and the methods by which it is developed are of paramount importance, with detailed 

algorithms and/or system diagrams being required before programming begins. 

The software design and implementation paradigms, most suited to ALife modelling, 

are Object-Oriented Design and Programming, hereafter OOD and OOP. In an OOD, 

the design is based around identifying the objects that exist in the system, their 

properties, known as attributes, and the activities which they can perform, or methods 

(e.g. Bennet et al., 2001). With OOD and OOP the process of designing and building 

an ALife model is based around providing a clear description of what the agents and 

any other objects in the model are, what their properties are, and what actions they 

can take to interact with other objects or agents. While many ALife models, including 
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the ones described in this thesis, are developed using OOP, further work is required 

on the possible benefits OOD can bring to those wishing to implement ALife models. 

3.5   Experimentation 

Once a model has been built, the visible part of ALife research begins – running 

simulations under different conditions and observing what happens within the model 

as a result. Unsurprisingly there are a number of problems particular to ALife 

experimentation and a number of useful methodological rules to help. Here we 

concentrate on the considerations of whether a model and its results are valid and on 

some of the problems facing attempts to verify the results of ALife work. We briefly 

review some arguments over the place of, and responses to, surprise results in ALife. 

3.5.1   Validation 

For any abstract model of reality, an important question is whether it is a valid model. 

Are the principles on which the model is founded sound, and are the abstractions that 

have been made reasonable? Validation of a model is the key step of certifying that 

the model and results together provide a legitimate demonstration of corresponding 

processes and outcomes that occur in the real world. 

The principles and assumptions the model is based on must be correct for the model 

to be valid. So, for example, consider Reynolds’ boids (Reynolds, 1987). While the 

flocking behaviours produced are very life-like, the rules themselves are less so – 

requiring that each boid is able to compute the position of the centre of the flock at 

any time (Noble, 1997). It is extremely unlikely that birds are capable of performing 

such calculations. Without ruling out the possibility that birds do something similar, 

perhaps based on a gross estimation, it is clear that the rules that govern the 

behaviour of individual boids and those that govern birds flying in flocks are not the 

same. The results of the model are convincing, but the model is based on an invalid 

representation of how birds act. 

Ensuring that a model is valid is, like many of the guidelines in this chapter not a 

problem only for ALife research (for example, the validity of the assumption of 

rational behaviour underpinning a great deal of research in economics has been 

questioned (Ormerod, 1994)). What makes ensuring that a model is valid more of a 

concern in ALife is that each model may be introducing its own sets of assumptions 

and abstractions, as each model may have its own unique agent design and 
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implementation. These will then be less subject to thorough peer review than shared 

assumptions developed over time and used collectively by different researchers 

working in, say, a statistical or traditional game theoretic framework. 

However ensuring that an ALife model is based on sound principles does not ensure 

a correctly working model – that the model actually implements the theory, and that 

individual agents do what the experimenter believes they do has to be verified. 

3.5.2   Verification 

There are a number of sources of error that can affect any simulation work, and the 

results gained from working with a simulation. At best, they act to reduce confidence 

that the results gained are the correct ones and are not due to the errors present. At 

worst these might significantly alter the results gained from the simulation. 

One obvious source of possible error in a simulation is the presence of a 

programming error, or bug. With iterative simulations it is difficult to ensure the 

eradication of bugs, which may not affect the results in an obvious way, such as 

causing a program to crash, but may rather lead to results which would otherwise not 

arise. Heralded results may not be a consequence of the intended model, but of an 

error in its implementation. 

The intermediate design stage, linking the expounded theory and abstract model to 

the implemented model can also introduce errors – or where the design stage is 

absent, in the direct coding of the abstract model. During this work practical details 

of the implementation have to be finalised and implemented. Some decisions here 

will be, in effect, additional, hidden, assumptions.  Such arbitrary implementation 

features of a simulation model can easily affect the results (Noble and Cliff, 1996). 

Results observed again may not be a consequence of the supposed theory underlying 

the model, but of unintended effects of some feature of the implementation. 

One way to address this problem is through the replication of experiments (Noble, 

1997). An implementation by some third-party of a model based only on a published 

description is unlikely to replicate the same bugs, arbitrary design decisions or hidden 

assumptions. A replicated result then increases confidence in the published model. 

Unfortunately, within a single programme of research, such as a thesis like this, 

replication cannot be relied upon as one author, or group, is performing the 

replication. An alternative is to compare the model against other related models, in a 

search for results that are supportive. This may be possible where different aspects of 
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the same phenomenon are studied by different researchers. Models will vary, but will 

have a number of common features. These may be enough to allow comparisons to 

be made between different models. An example of this will be seen later in this 

thesis, where two quite different models are used, and their results compared 

qualitatively (Chapters 6 and 7). 

A simpler problem to deal with is the one caused by simulation artefacts that can 

result from particular combinations of parameter values. Selected values for different 

parameters can interact in an unexpected manner, perhaps leading to unusual or 

exceptional results. Some parameters used in a model may be derived from existing 

observations, and some from theory and many may be arbitrary experimental 

parameters used in the running of the model. The results of the experiment should 

reflect the theory not the arbitrary design decisions, and the influence of parameter 

settings should be minimised. With simulation models it is easily possible to repeat 

an experiment with different parameter settings, however with a potentially infinite 

range of parameter values, exhaustive testing is not possible. The solution here is not 

to test that the same qualitative result occurs for all possible parameter values, but 

that the result gained is robust – i.e. the result is not a chance product of a particular 

combination of parameter values, but is seen over a reasonable range of parameter 

values. 

ALife models generally aim to show how stochastic processes can lead to predictable 

results, and implementations of this will rely on having the computer provide the 

simulation with streams of random numbers. Unfortunately, the nature of random 

number generation in computer programs can be considered problematic. In short, the 

random number generators are only pseudo-random, aiming to give the appearance 

of randomness (Gilbert and Troitzsch, 1999, Appendix C). The sequences are in fact 

pre-determined. Using a particular ‘seed’ value, the exact same sequence of ‘random’ 

numbers can be generated over and over again. To compensate for this each 

simulation should be run several times with different seed values for every parameter 

combination used. 

Verification problems do exist in other scientific disciplines wherever measurements 

are made (e.g. Frankfort-Nachmias and Nachmias, 1992), but the additional problems 

of working with simulations are quite significant. The key solution to this is that 

wherever possible researchers should seek some form of additional confirmation for 

existing results. Additional models created by the same researcher may also carry the 
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same hidden assumptions that exist in the researcher’s previous models, and so this 

should ideally come from the work of other researchers, possibly from attempts to 

reproduce the same model. 

3.5.3   The (Un-)Importance of Surprise 

Note has to be made at this point on the appropriate role and response to surprise 

results in ALife. Some authors place particular value on surprise results in emergent 

systems (for an example, see Epstein and Axtell, 1996). Some go so far as to include 

a requirement for a result to be surprising in their definition of emergence – and state 

that where a result is no longer surprising (after a model has been studied, and 

understanding gained of how particular results come about) the phenomenon is no 

longer truly emergent (Ronald et al., 1999). Such a ‘moving’ definition of what is, 

and what is not, emergent is controversial and unsatisfactory. Indeed, it would rule 

that classical examples of emergence, such as temperature (Section 3.1.2), be no 

longer considered emergent at all. 

Bullock (1997) argues that without a prior hypothesis of the system and emergent 

results, surprise results are of little interest – some prior idea of what the results 

should be is required. Getting the results we expect will, far from being useless, 

confirm our theory. Obtaining unexpected results, where some parallel between the 

artificial and the real results can be noted, remains useful and requires further 

investigation to turn an incidental observation into a scientific one (Di Paolo, 1999b). 

This might require reformulation of the underlying theory and additional work 

refining or redeveloping models. 

Thus for researchers, progressing through Di Paolo’s three phases of research, a 

surprise result during the experimentation phase may signal a return to exploratory 

work. While the research can be split into three phases the research effort may not 

necessarily proceed automatically from one stage to the next, Figure 3.1. 

Exploration 

Explanation 

Experimentation

 
Figure 3.1 In practice progress through the three stages of research 
identified by Di Paolo may not be straight forward. 
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3.6   Explanation 

In ALife research the importance of explaining results is sometimes overshadowed 

by the experimentation. Models can be described, detailed and dissected with little 

reference to the external phenomenon that they are supposed to represent. That it is 

necessary to detail the model and results in sufficient depth to allow replication can 

increase pressure on researchers to concentrate on this aspect of research to the 

detriment of the explanation which is as important. 

In explaining the results, the goal is to provide convincing arguments that the model, 

the results and, most importantly, the theory are all relevant to the target 

phenomenon. The explanation is required to tie the artificial model and the results 

obtained with it, whether precise numerical values or general patterns, back to the 

real world. If the results do not feed back to the real world then the experiments have 

not been ‘science’, and can have no bearing on evaluating the proposed theory 

(Noble, 1997), and with poorly explained results an ALife model is meaningless even 

where care has been taken to verify the results and to replicate the model. 

This is somewhat in opposition to Langton’s frequently quoted assertion that ALife 

represents “Life-as-it-could-be” – we are limiting ourselves to models that help us 

explain life-as-it-is instead. While this has been a topic of some debate, it is generally 

the case that ALife research is more devoted to understanding, or at least replicating, 

real world phenomena than it is to more speculative work. The future of ALife might 

see greater differentiation, and possible redefinition, but acknowledgement must yet 

be made of current efforts in using ALife methods in more creative and artistic 

endeavours (Dautenhahn and Nehaniv, 1999). However, for the purpose of this 

thesis, we side with those who attempt to use ALife as a scientific tool for 

understanding the real world. Results of simulations will therefore require 

comparison with other scientific observations. 

(Additionally, note that the field of Evolutionary Computation (Mitchell, 1999) is one 

in which similar methods to ALife are used but without any attempt to tie models to 

natural systems. Instead, it is the ability of artificial evolution to act as a means of 

optimisation or the general underlying theories of evolutionary systems that are of 

interest.) 
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For those working in the ‘Scientific ALife’ mould, as described above, there are a 

number of recommendations to be made about how to explain results, and how to 

evaluate the success of the model and theory. 

3.6.1   Model and Theory 

In ALife then, the results of simulation should not be viewed as significant research 

results in and of themselves, but as a means to evaluating the theory which the model 

has been built to demonstrate. 

Statistical analysis of results may reveal many aspects of the model as a system. If 

the model has been built to demonstrate a theory, such analysis is likely to be useful, 

but should not take precedence over explaining the relevance of the model. As noted 

by Noble (1997) the use of appropriate experimental method and of statistics to 

provide analysis of results are recommended, but using these does not automatically 

make an ALife experiment ‘science’. The use of statistics to describe the model 

should be directed by the goals analysis, which may be one or more of the following: 

• To describe the model output in sufficient detail for replication. 

• To provide a rigorous description of the system under all possible conditions, 

including key parameter values causing qualitative changes in system output. 

• To detail the output as required for a follow on argument that the results are valid 

and correlated with those observed in the target and so support the proposed 

theory. 

In most ALife work, the first and third goals will be important, the second goal being 

important for more theoretical work on complex systems. So, being confident that the 

simulation model is an accurate implementation of the theoretical model, the results 

obtained are now the measure by which the theory can be tested. 

3.6.2   Validation of Results 

Armed with a plausible theory and model, related to the natural process under 

investigation, it is also necessary to show that results obtained from an ALife model 

are valid, based on some comparison of the results from the model against what is 

observed in the real world. 

In many cases it will be patterns that emerge in the model which are compared 

against patterns that occur in real life. The emergence of clusters of agents under 

differing conditions is a good example of this (e.g. Epstein and Axtell, 1996). Such 

comparisons are qualitative measures – similar types of results are observed in both 
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systems. While unable to provide precise numerical answers, qualitatively similar 

results may provide evidence that the types of processes that occur in the model are 

not inaccurate representations of the real world processes.  

Comparing patterns is a subjective measure – the researcher is a subjective observer, 

interpreting the results and deciding when similarity is close enough to support the 

theory. Due to this, there is an important need for explanatory argument in detailing 

the outcome of research. Indeed, any explanation of results will rely on some 

argument that the results of the computational model actually relate to the real world, 

and that the abstracted agents in the model interact and behave in a manner that 

represents the phenomenon being investigated. 

In some cases it may be that numerical or statistical measures may allow a direct 

comparison of the model to data taken from the real world. Quantitative results will 

often be obtained where the model is intended not so much for explanation but for 

prediction, in the tradition of dynamic models like Forrester’s world population 

dynamics model (Forrester, 1971). From a set of quantitative results it should be 

possible to check predictions against real data as part of validation. But are 

quantitative results possible, and how good are they as indicators of the soundness of 

the underlying theory? This is one of the aspects to be considered when thinking of 

the potential limitations of ALife. 

3.7   Limitations Of Artificial Life 

This chapter has largely concerned itself with how ALife might be applied to 

scientific investigation, and the appropriate methods for this. Some limitations of the 

ALife method also have to be recognised. 

3.7.1   ALife vs. Mathematical Models 

Di Paolo (1999b, Ch. 4) points out that mathematical models have some strengths 

that are not shared by computational models. Primarily, mathematics is both a means 

to explore a model and a means of communicating the details of the model. 

Mathematics is a language shared the world over, and a mathematical model can be 

read by anyone with the appropriate mathematical skills.  

Conversely, the inner workings of computational models are generally hidden, the 

code unpublished. This deficit is clearly one that has to be considered when building 

software models, and effort must be spent to make the implementation as transparent 
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as possible. Detailed algorithms should be published and Di Paolo argues that the 

code that implements a model should be publicly available, presumably at least on 

request. Even with publicly available code, the separation between the description of 

a model and its implementation is unfortunate, but unavoidable. Further, the 

complexity of many programming languages can make source code nearly 

impenetrable to understand. The importance of verifying models has been previously 

mentioned, but without a guarantee of accurate translation from theoretical to 

simulated model this problem will always remain. 

Another weakness of a simulation is that it is not necessarily clear what is happening 

in any given simulation to produce different results (Di Paolo, 1999b, p.68). By 

means of systematic relaxation of assumptions (Miller's fifth heuristic) it is possible 

to make strong guesses, but some uncertainty may remain. 

3.7.2   ALife Models as Proof 

Now consider some limitations of ALife regarding its ability to prove theories. Were 

this thesis, or its author, of a more philosophical bent then the issues here could 

certainly have been given a much more thorough treatment – instead the goal here is 

simply to illustrate some shortcomings of the ALife approach. 

Karl Popper’s principle of falsifiability (summarised in Thornton, 1997) holds that a 

theory can never be proven – but that theories may be disproven. Without an infinity 

of observations how can it be known that B is true for all cases of A? According to a 

Popperian view, the fact that it has not yet been possible to disprove something is as 

close to proof as it is possible to get, and this principle is applied in much of 

contemporary scientific practise. How does ALife fit into this, and can ALife models 

be used as a form of ‘proof’? Obviously it would need to be shown that the model is 

valid, as already discussed, before the model could even be considered for its role in 

disproving a theory.  

Muller (1996) uses the principle of falsifiability in his arguments for proof by 

parameter optimisation. If it can be shown that even for the worst possible parameters 

in some simulation that the predicted result is still obtained then this is some way 

towards showing that the theory cannot be disproven. This may entail performing the 

simulation a great number of times for many different parameter combinations – 

‘good’ ones as well as ‘very bad’. 
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Practically, this method may not work. For stochastic simulations, any set of results 

are due to random processes and hence only one set of observations out of an infinity, 

so introduces the question of how many simulations have to be run before an attempt 

at falsifying a theory is considered satisfactory. This could tie up infeasible amounts 

of time with possibly little gain. It has already been observed in the notes on 

obtaining quantitative results (Section 3.6.3) that ranges of parameters may give 

significantly different results. Hence, the worst possible parameters may well lead to 

results that do not support the theory at all. 

In some cases we may be justified in expecting reasonable values of parameters, as 

extreme parameters can actually represent quite different conditions and rules. For 

example, a parameter might represent the likelihood of some interaction occurring. 

Extreme values of such a parameter would clearly represent quite different 

conditions, and would lead to very different outcomes. Rather than test for the worst 

possible parameter values we should, in many cases, test across ranges of parameters 

to ensure that a particular result is robust. Attention should still be paid to results for 

extreme cases, but it may be obvious that the extreme case is one that is not possible 

for the real world agents and system. 

Rather than ‘proof’, what is seen most often in ALife work are demonstrations that 

under certain conditions a certain result is observed.  In some cases this may be 

useful in disproving theories: where a theory claims that some rule is required for a 

particular result, a model that obtains the same result but without the rule 

demonstrates that the rule is not required. Even in this case it does not prove that the 

agents in the real world don’t follow the rule – just that it is not required. However, it 

still may be that an ALife model is better as a test-bed for falsification rather than 

proof. Again, the experiments detailed in Chapter 6 attempt to disprove existing 

theories. 

3.7.3   ALife Models as Evidence 

Alternatively, the results of ALife models may be considered not as proof but as 

contributory evidence in the construction of a scientific argument (Toulmin, 1958). 

Rather than present the results of a simulation with a flourish and claim that it 

conclusively proves a theory, the results may be used in conjunction with evidence 

and observations of the real world phenomena in building a convincing argument to 

support a theory. 
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The known difficulties in validating and verifying ALife work are less problematic 

when the ALife models are no longer the sole support for some theory – a particular 

model is just one of many pieces of evidence. To use this approach successfully 

further emphasises Miller’s demands for thoroughly researching the target domain 

and/or for working with researchers in that domain. 

This approach is particularly suitable where there are existing theories that are being 

explored with the ALife models. Arguments will have already been formed, with 

supporting evidence, for the different theories. The outcome of the ALife research 

will ideally be further evidence to support one theory as well as evidence to weaken 

the support for other theories (this also, obviously, relates to the use of ALife in 

disproving theories). 

3.7.4   ALife and Quantitative Results 

As noted above, in many cases the results of simulation models are compared 

qualitatively to real world observations. The researcher is asking if, for a particular 

set of rules and parameters, the same sort of results are observed in the simulation as 

in the real world. A different view is put forward by Muller (1996), who argues that 

quantitative results are necessary for computer simulation to be considered useful in 

theory construction – that the simulations must give concrete figures which can be 

compared against direct observations. This appears to claim that if concrete 

predictions cannot be made from it, then the simulation is not of much value. 

This is hard to accept, and in many cases there are strong reasons for looking only for 

qualitative results. It must be recognised that models are abstractions of reality, with 

limited richness in possible interactions and accuracy. Further, most models will rely 

on single numerical parameters in place of factors which are not easy to accurately 

quantify – emotional state or the chance that someone might misinterpret some signal 

(see, e.g., Doran, 1996; Steels and Kaplan, 1998). 

Most ALife also, at least implicitly, subsumes many ideas from work on complex 

systems – and accepting complex systems theory places limits on the predictability of 

such systems (e.g. Gleick, 1987). Complex systems often recognise that for different 

values of parameters, different classes of behaviour may exist. Thus qualitative 

predictions can be made where precise quantitative predictions may not be possible. 

The qualitative outcome may be predictable in many cases where it is not possible to 

put precise figures on the predictions. 
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So, quantitative results may not be feasible in many cases. Yet, where they can be 

obtained, they can certainly be compared more readily with collected data. Thorough 

statistical comparisons may be performed and the model tested against reality. 

Strongly correlated results increase confidence in the correctness of the model and 

theory; poorly correlated results might indicate that the theory is simply wrong. 

3.8   ALife and the Evolution of Language 

We previously highlighted the assertion of Taylor (1998) that the methodology used 

in any program of ALife research should be adapted according to the particular 

problem domain under investigation. Having reviewed methods and guidelines for 

the general application of ALife, it is now appropriate to add any special 

considerations required for using ALife in research into the evolution of language. 

Naturally, this depends on some understanding of the special problems, questions and 

methods that apply to the evolution of language. 

Perhaps the single most important factor, as noted in Chapter 2, is that the evolution 

of language refers to two different processes: one biological and one cultural. Any 

ALife model should be aware of this, and clear in which elements of these different 

processes relate to the particular theories being explored. Work may focus on the 

biological evolution of linguistic ability in Homo sapiens or on the historical 

evolution of languages, or may involve both. As a result, we similarly divide this 

section on methodological considerations for computer modelling of the evolution of 

language, starting with concerns relating to the EoL. 

3.8.1   ALife and the Biological Evolution of Language 

Hurford (1992) presents six principles for evolutionary explanations of language. The 

application of these is not limited to computational modelling of the evolution of 

language, but could apply more generally to mathematical or other attempts at 

developing explanations for the evolution of language. These rules do, however, 

apply strictly to the biological EoL – thinking of language as an organ, with 

innovation by biological mutation and selection. In attempting to give an 

evolutionary explanation for the existence of any feature of language, Hurford argues 

that an investigator should consider the following factors: 

1. Universality. The linguistic feature being investigated should be common to 

language in general. 
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2. Innateness. The feature should be innate, and evidence provided of this. 

3. Contingency. A range of hypothetical alternatives should be presented and tested. 

In some cases only one or two alternatives may be envisaged. The more 

alternatives, the more impressive if the feature chosen is the only one that 

emerges. 

4. Genetic Expression. Some relation of language feature to genes has to be made, 

and this should be stated. 

5. Adaptive Value. The possibility space of alternatives should be related to fitness 

and or reproduction. 

6. Demonstration. An argument should be presented that given language-gene 

mappings (4) and language-advantage mappings (5), the feature will either 

necessarily or probably emerge as the only survivor out of the possible alternatives 

(3). This can be presented as argument or simulation. 

While these form useful guidelines, they are not without problems. The first point is 

clear and without problem – if the feature of language is not truly universal then it is 

unlikely to be innate (unless of course there is some evidence that possessing or 

lacking the feature is determined by heredity). But, as discussed in the previous 

chapter, determining the ‘innateness’ of a particular feature can be more difficult than 

establishing its universality. Further, the relation of an innate feature to genetic 

expression may be very hard to satisfactorily prove. 

Depending on the features under investigation, the final principle may also prove 

difficult, where there are several possible outcomes. Given that chance has had a role 

to play in the EoL, it is possible that many features of language may not have been 

the features most likely to survive, but rather the ones that simply happened to 

survive (a point which Hurford acknowledges). 

Despite these problems the principles are generally worthwhile, and emphasise the 

need to put effort in particular into showing that the feature under investigation is 

actually one that is a biological feature of language – an important prerequisite if we 

are to attempt to provide an evolutionary explanation for its presence. This is 

especially required to avoid proposing a biological solution to some culturally 

emergent aspect of language. 

We also distinguished the evolution of language from the evolution of 

communication, and this is another distinction that we must ensure is embodied in 

ALife models of the EoL. Recognising that there are important differences between 
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language and other forms of communication, and that many special considerations 

apply to the evolution of language separate from more general questions on the 

evolution of communication, these must influence the design of ALife models. 

A rhetorical example is in order here to illustrate this requirement. An attempt is 

made to demonstrate that language evolved due to a need to be able to warn others 

about possible attacks. A model is constructed, and results gathered which seem to 

support the hypothesis. However, such communication systems are also used by 

many species of animal (Hauser, 1996). Without additional work, or significant 

changes, there is no valid reason to assume that the results of the model are 

particularly relevant to the EoL. 

One solution to help avoid this problem is to refer to the characteristic features of 

language (Section 2.2.1). Incorporating selected features, present in human language 

but absent in animal communication systems, can enforce the relevance of the model 

to the EoL. In doing so, it is not necessary to attempt to include all features. The fact 

that the majority of the features exist in some form, even if not all together, in a 

variety of animal communication systems should not prevent this approach from 

being useful. Instead, sets of features may be selected which together are only rarely, 

if at all, found together in non-linguistic forms of communication 

Perhaps, in the previous rhetorical example, the author might seek to model a 

signalling system in which the repertoire of warnings is not fixed, but learned. 

Additionally the repertoire may not be of a fixed size, but may change. 

Also extending the model, perhaps other ways of using signals could be incorporated, 

since deciding on a particular function that is served by language in the model is 

itself problematic. While language is known to serve many functions in human 

society, the problem may be caused not by ignoring other uses of language, but 

because of the problems in interpreting the effect of the single use modelled. Another 

example may be helpful. 

A model is built in which successfully using language allows agents to somehow 

cooperate with one another. Such cooperation is rewarded by the model. A 

simulation is run and results gathered which show how language may evolve to 

support cooperation. With one explicit use of language built into the model, it may be 

that the space of evolutionary possibilities is quite small. Sooner or later, some agents 

will evolve the ‘linguistic ability’, and will start to cooperate. This is rewarded, and 

language evolution succeeds. With such a constrained evolutionary space and 
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rewards built in for the single anticipated and possible use of language, the model is 

simply showing the successful evolution of cooperation, not the evolution of 

language. It may actually be better to not include any explicit use of language at all. 

This problem is revisited later, in Section 5.7.4. 

Some questions on how the evolution of the biological LAD might be modelled are 

discussed shortly, after turning our attention briefly from biological evolution 

altogether. 

3.8.2   ALife and the Cultural Evolution of Languages 

A different set of guidelines will apply to attempts to model the historical eol. 

Hurford’s six principles will explicitly be irrelevant. What should also be 

inapplicable are the problems of confusing the evolution of language with the 

evolution of communication or cooperation – but this may not be the case. 

Some ALife models, possibly using the ‘meme’ paradigm (Dawkins, 1976), may use 

hereditary signalling systems to represent language. Where the means of transmission 

incorporates learning from other agents there is no real objection to the use of 

memetic concepts. Where the translation from a genetic to a memetic model takes 

place without acknowledging the differences in methods of transmission, questions 

arise about whether cultural evolution is indeed being modelled.  

The model developed in Arita and Koyama (1998), although not a memetic model, 

uses a hereditary signalling system although it has been developed to investigate the 

evolution of dialects in language. Unsurprisingly, the findings correspond more 

closely to the results that would be expected in investigations of the evolution of 

cooperation than the eol: common dialects allowing cooperation exist where 

resources are plentiful; non-compatible dialects (or even a complete lack of 

signalling) preventing cooperation exist where resources are scarce. Such findings 

obviously show how different environmental conditions can affect the evolution of 

cooperation in species – but the model fails to allow for non-cooperation between 

agents that share a common dialect. And evidence from studies of language diversity 

show the opposite trend from that described by Arita – scarce resources lead to lower, 

not greater, linguistic diversity (Nettle, 1999a). 

So, an ALife model of the historical evolution of languages should avoid the genetic 

transmission of languages, and instead incorporate more realistic means of cultural 

transmission. An explicit learning mechanism is a better alternative – agents can 
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learn language from a selection of other agents instead of inheriting it from two 

parents. ALife models of the evolution of language should differ according to the 

particular aspects of language that are to be investigated, whether biological or 

cultural. But what of including both in the one model? While it is recommended that 

ALife models should be minimal, are there cases in which a single model should use 

both forms of evolution? 

3.8.3   Coevolution of Language Ability and Languages 

In the previous chapter the idea of coevolution was introduced, and any attempt to 

investigate this using an ALife model will require that the signalling schemes used in 

the model can evolve, as well as the innate linguistic ability. An example of this is 

found in (Briscoe, 2000b), which considers the coevolution of language and the 

LAD. Such models are quite complex, as many different interactions that affect the 

outcome are taking place. As well as the interactions between different agents as one 

part of the model evolves, there are the interactions between the coevolving elements 

of the model. 

Additional complexity also introduces additional uncertainty into the results and the 

understanding of how they arise. To compensate for this, it is recommended in such 

models to test individual elements in isolation to verify their behaviour. The idea of 

unit testing an ALife model was mentioned earlier, in Section 3.4.4, but is extended 

here. As well as the testing of individual agents, the testing should also verify the 

outcome when evolution is only possible in one of the two coevolutionary systems. 

For example, in a model like that described above, a test should be carried out on the 

learning of signalling schemes learned with a fixed, non-evolving, LAD. 

3.9   Summary 

There are a number of problems facing ALife researchers. The review given here 

highlights many of the problems, and gives a variety of solutions. While it is not 

possible to prescribe a single methodology for all ALife work, a high level of 

awareness of the problems facing ALife research is clearly desirable. Guidelines 

offer an easy way to promote awareness, and to suggest possible solutions. 

Undoubtedly, the sooner into a research project that a suitable method is adopted, the 

better. While the current state of methodological awareness in the ALife community 

is quite poor, interest in and awareness of methodological issues is growing. Some 
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problem areas still remain poorly covered in the literature – the academic pursuit of 

knowledge appears to be uncomfortable with software engineering. Problems 

theoretical and philosophical are more academically attractive than the mundane 

problems of ensuring code is correct. 

In the descriptions of experiments and models that follow, details are given of some 

of the steps taken in verifying and validating the models and the principles outlined 

in this chapter are generally followed. There are, however, no rigorous software 

engineering development documents. No software quality process has been followed. 

In future years as models grow larger and more detailed there may be increased need 

for more rigorous approaches to software development in ALife. But for now 

precedence is rightly given to attempting to develop an emerging ALife scientific 

method, and to trying to show how a collection of ones and zeroes can be relevant to 

processes taking place outside the computer. 

In the next chapter, the base model, round which the work of this thesis is developed, 

is presented and documented – according to many of the steps and methods 

prescribed in this chapter. 
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Chapter 4     
An Artificial Life Model for Investigating the Evolution of 
Language 

4.1   Introduction 
In this chapter I develop the model that will be used in my computational 

investigations on the evolution of language. I describe the model, detail how it works 

and justify the decisions taken in implementing it. Some preliminary experiments are 

also detailed. The model as detailed here provides a base for further experiments on 

modelling the biological and cultural evolution of language, described in the 

following chapters. 

4.2   Computational Models of Language Learning Populations 

A number of recent computational models demonstrate the evolution of innate 

communication schemes (for example, Oliphant, 1996; Di Paolo, 1997a; Cangelosi 

and Parisi, 1998). Other models demonstrate the self-organisation of lexicons, 

grammars and sound systems in populations of language agents without evolution 

acting on the language agents themselves (e.g.Steels, 1996a; Batali, 1998; de Boer, 

2000; Kirby, 2000). These models typically demonstrate the self-organisation of 

language features through a process of repeated interaction and learning. 

Cangelosi et al (2002) describe a related model in which agents learn lexical terms 

for distinct visual inputs – square, ellipse, etc. This differs from the other models 

described here in that the lexicon is predetermined rather than emergent. This is a 

consequence of the model being used to examine the phenomenon of symbolic 

grounding (Harnad, 1990), not linguistic self-organisation. 

Batali (1994) combines evolution and learning in an artificial neural-network, ANN, 

model in which recurrent neural networks attempt to learn context-free grammars in 

an investigation of innate language biases and critical periods. The language agents 

have a fixed structure, and a predetermined number of inputs and outputs. Evolution 

determines initial weight values for the networks, selecting appropriate values for the 

class of languages on which the population is trained. This model demonstrates how 

evolution can tune innate learning mechanisms towards certain grammars, once the 

mechanisms for language have developed. 
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A second model using ANN agents learning to produce and interpret signals, with 

observational rather than reinforcement based learning, is presented in (Oliphant, 

1997). In Oliphant’s model, ANN agents relate meanings to signals and vice-versa 

with winner-take-all competition on the produced vector, with meanings and signals 

represented by binary vectors with only one active value. Using a form of Hebbian 

learning (learning which increases the strength of a weight when the neurons which 

are connected by it both fire simultaneously), Oliphant shows successful negotiation 

to a common optimal language, with a different signal being used for each meaning. 

Another model where a community of ANNs negotiate a shared lexicon is presented 

by Hutchins and Hazelhurst (1995). The agents within this model are similar to the 

ones presented in this thesis, although their agents are more complicated with an 

additional layer (used only in learning). The authors limit their investigation to the 

development of a shared lexicon. 

Similar, but not ANN-based, work has been presented, with a number of variations 

and enhancements by ( Steels, 1996a; Steels, 1996b; Steels, 1996c; Steels and Vogt, 

1997; Steels, 1998; Steels and Kaplan, 1998). In these works, agents attempt to learn 

symbol-meaning pairs through a negotiation process termed the ‘naming game’ – in 

which it is assumed that extra-linguistic means, such as pointing, enables agents to 

know the correct meaning of an utterance. While this does not capture the structural 

or generative nature of human language, these works have shown the emergence of 

shared lexicons in a number of distinct implementations. 

Building a model where agents use simple grammars is certainly possible – (e.g. 

Elman, 1993) – but would introduce additional problems to be overcome. The first 

problem is simply that recurrent ANN, used for ANN grammar learning, have longer 

training periods than simple ANN. Using populations of ANN, this would have a 

significant overhead, and experiments would take significantly longer to perform.  

Using a simple signal-meaning mapping also allows for much simpler modelling of 

the evolution of language ability. 

With a recurrent network, there is not a simple relationship between the number of 

nodes, or the connections between nodes, and the ability to learn a grammar. The 

networks themselves may consist of many layers and hundreds of nodes. How can 

the EoL be modelled with such networks? Batali (1994) achieves this, but in part 

only. By using a fixed ANN structure, initial weight values are evolved to find those 

best suited for language learning. However, given suitable training there is no reason 
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in principle why agents in the first generation should not be able to learn the 

languages eventually learned by those agents which have benefited from many 

generations of evolution. There is no evolution in the structure of the agents’ ANN, 

only a tuning of their initial parameter settings. 

In ignoring grammar, an important feature of language is lost but the details of the 

model are kept to a minimum and focussed only on properties and processes that are 

necessary for a minimal form of language. 

An interesting approach would be one in which the ANN structure – the number of 

nodes and their interconnections – evolved. A number of approaches have been 

developed for evolving ANN of some complexity (for example, see Miller et al., 

1989; Kitano, 1990;  or Belew et al., 1991). These approaches all evolve ANN, train 

them to solve a certain task to determine fitness before producing a new generation of 

networks and beginning again. A difficulty in trying to use such models in 

investigations of the EoL is that, rather than evolving ANN to solve a single problem, 

the ANN need to co-evolve to solve a problem that itself varies according to the 

current population makeup. The nature of this problem is itself more complex. 

4.2.1   Evolution of Language Ability 

What the models described above do not show is the evolution of linguistic ability 

over time. The agents in later generations are not intrinsically 'more able' to learn 

language than those in the first. A slight exception is the work of Batali, but here it is 

simply the initial weights which are modified - the network structure, the capacity for 

language learning, is not. 

In contrast, in Fyfe and Livingstone (1997) a population was modelled in which the 

capacity for language learning does evolve, with evolving network structure. In this 

work, the individuals first learn to identify stochastic sources in an environment and 

then learn a common language to communicate about the sources present in any 

given environment.  

In this model, the language agents consist of three layers of nodes with two layers of 

interconnecting weights. The different layers of nodes store vectors representing the 

external environment, the signal generated in response and in the middle an internal 

representational state. This allows agents to use different internal representations 

from each other for the same meanings, without preventing them from reaching 

consensus on signals to represent particular environments. 
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Agents with fewer neurons in the hidden layer might be unable to accurately 

represent the different sources existing in the environment internally. Thus, they 

would be structurally less able to communicate effectively about their environment as 

would agents with larger hidden layers. 

Experiments were performed with communities of agents with differing 

representational capabilities. Communicative success was seen to improve in 

populations with a common representational capability, and evolution towards 

homogenous representation capability was observed – but not necessarily towards 

better representation. 

A weakness of this model is that the production of signals was compared to assess the 

success of communication, but the ability of agents to interpret signals was not tested. 

Thus, by producing the same word for the same environment two agents are assumed 

to be successfully communicating. No pressure to produce different signals for 

different environments, or to be able to decode signals, existed. While this was 

presented as a positive result, showing the emergence of synonyms, it is a 

consequence of the lack of pressure on agents to be able to interpret the signals and 

could be considered an artefact particular to this implementation. 

The original aim of my research was to develop a new model in which the language 

ability could evolve over time, to allow investigation of factors surrounding the EoL, 

yet which overcame the problems of Fyfe and Livingstone (1997). In such a model, 

as the language ability of agents changed, so would the languages that they used. 

Thus, the model was to be one of language-physiology co-evolution. 

4.3   Modelling Human Language 

The model should capture some of the characteristic features of language (Section 

2.2.1) if we are to claim that the results of running the computational model are 

relevant to an investigation of the evolution of language. 

Ideally the model would include all relevant features of human language. Such a 

complicated model might, however, be very difficult to build and even more difficult 

to understand. As we saw in Chapter 3, models are abstractions of real world systems 

and the power they have in allowing us to improve our understanding of such 

systems comes from the ability to simplify, to remove complicated and possibly 

extraneous features, and to focus on selected aspects of a system. This applies equally 

to mathematical and to ALife models. 
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Thus, starting with a list of relevant features, we can select the minimum set that we 

feel will enable us to model the EoL. We saw in Section 2.2.1 that six key, text-book, 

features of human language are that language is: 

• Communicative 

• Arbitrarily symbolic 

• Regularly structured and structured at multiple levels 

• Generative and productive 

• Dynamic 

• Transmitted by learning rather than hereditary means  

Of these features the first, that the signals need to be communicative, is clearly 

important. From an Information Theory perspective (Shannon and Weaver, 1949), a 

signal is communicative if it reduces uncertainty about the environment or some 

signified event. Thus, except where the same signal is produced for all possible 

sources, or where there is no causal relationship between source and signal, any 

system that generates signals from inputs will be communicative. However, an ideal 

communicative system removes all uncertainty. If the agents in our model are able to 

correctly interpret the majority of signals received then we will have established that 

the signals are highly communicative. (Although, see Di Paolo (1997b) for an 

account of the role of communication for coordination where there is no hidden 

information.) 

Additionally, the agents in our model should acquire their arbitrary meaning-signal 

pairs through a learning process, ensuring that the signal scheme is arbitrarily 

symbolic and features ‘traditional transmission’. Such a system is extremely rare in 

natural communication systems other than human language. Few animals use 

signalling systems with discrete meanings and signals, and those that do appear to 

have innate rather than learned mappings (Hauser, 1996). Without at least these 

properties, a model may be more truly one of innate communication systems rather 

than of human language. 

While it is possible to develop computer based models in which agents learn signals 

which are regularly structured (e.g. Batali, 1994), such models are more complex. As 

we will be attempting to develop a model in which the linguistic ability of agents 

evolves, such extra complexity could cause difficulties, and so the decision was made 

to focus on the already identified core features. As mentioned above, these features 
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are rarely found together outside of human language. Accordingly, they provide a 

reasonable set of features for building a valid model of the EoL. 

Due to the abstractions and limitations inherent in any computer program, developing 

a model in which the language is generative and productive, allowing original and 

infinite use signals and combinations of signals is much more difficult. Within the 

bounds of a model in which populations of signallers exist, developing the models of 

the individual agents in order to allow the production and interpretation of a near-

infinite set of signals is clearly not practicable. 

The only remaining characteristic feature of language is that it is dynamic, changing 

over time. We investigate the dynamic nature of the signals used in our model in 

Chapter 6. 

Finally, we will use the established ‘naming game’ (Steels, 1996a) interactions 

between agents for the purposes of language learning and testing. 

4.4   An Artificial Neural-Network Based Language Agent 

The individual language agents are implemented as simple ANN. The principal 

advantage of an ANN implementation is that it is relatively easy to generate 

individuals with differing network structures, representing differing innate linguistic 

abilities. A suitable learning rule will allow the development of language by 

individuals. As will be later seen, the model also features evolution in the 

communication schemes being used, akin to historical language change over many 

generations (Chapter 6). 

It is easy for an ANN to learn uni-directional mappings, e.g. from some nominal 

‘meaning’ to produce a ‘signal’. A learning rule was chosen which would allow 

‘signals’ to be fed backwards to produce meanings, in a way similar to a Bi-

directional Associative Memory (see Haykin, 1998). The fact that there is no pressure 

or, indeed, ability to make the signals model the meanings captures the arbitrary 

symbolic nature of language.  

For the purpose of investigating the EoL, the previous three-layer model is not 

required; a simpler two-layer (internal state and signal) model can be used instead. 

While the agents no longer have differing internal representations, the function 

performed by the weights is the same – learning a mapping to generate common 

signals for common input states. Explicitly, in Fyfe and Livingstone (1997) the 

agents map an environment, e, to an internal state, i, to a signal, s:  
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Simplifying this, it is possible to use a single layer of weights to perform a similar 

learning task. In Section 3.4.2 we saw that minimal models are to be preferred over 

more complex ones. The extra layer in the Fyfe and Livingstone (1997) model is 

more a distraction than an essential element of the model. In the following we assume 

that the function mapping from external environment to internal state is a given, and 

that agents have a common representation for different meanings – although as has 

been shown (Fyfe and Livingstone, 1997; Steels and Vogt, 1997), this is not required 

for ANN to negotiate a shared signalling scheme. 

Having decided on the type of communication to be modelled in the simulated 

system, the next question is how can the success (or otherwise) of the evolution and 

emergence of ‘language’ be measured and evaluated. 

4.5   Evaluating Communication in Artificial Populations 

In the model I will develop, communication allows an agent possessing some internal 

state, or meaning, to send a signal to another agent. The receiver then maps the signal 

into an interpreted meaning. If the interpreted meaning is the same as the initial 

meaning, then communication can be said to have been successful.  

One obvious measure of communicative success is to measure over a number of 

communicative episodes what proportion of signals sent are correctly interpreted. If 

all signals are correctly interpreted, then communication can be said to be perfect. 

(Oliphant, 1997) defines three requirements which must be fulfilled for optimal 

communication, where every signal sent is correctly received. These are: 

• Coordination. An individual’s meaning-to-signal generation must be coordinated 

with the inverse signal-to-meaning mapping. 

• Distinctiveness. The signals used by an individual to represent each meaning 

must be distinct from one another. 

• Consensus. All individuals in the population must have the same communication 

system. A caveat to this requirement is the assumption, made explicit by 

Oliphant, of equal numbers of signals and meanings.  

The degree to which these requirements are met can be measured to evaluate the 

optimality of the communication system. Alternatively the simpler measure, 
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mentioned above, of success of interpretation can be used. To do this all that is 

required is to form pairs of agents where one generates a signal and the other 

interprets it. The percentage success can be measured over many pairings. 

Information theory (Shannon and Weaver, 1949) provides further means for 

mathematical analysis of the communication schemes. The usefulness of the signals 

for transferring information between two agents is evaluated on the basis of mutual 

information in the meanings held by the two agents after signalling. Information 

theory also provides means to measure the information bearing capacity of the 

channel, as well as its quality (In Chapter 6 information theory is also used as a 

measure of linguistic consensus and diversity). 

4.6   Modelling Language-Physiology Coevolution 

In the model, agents will learn to map messages that are sent by other agents to 

internal states or ‘meanings’. By learning from each other a co-ordinated 

communication system is developed by a community of agents. The same ANN is 

used for the production of messages from each arbitrary meaning as for the reverse 

mapping.  

In the next chapter I will add to the model by making the expressive capability of the 

language dependent on hereditary genes. The genes determine the number of 

language nodes possessed by agents, which determines the range of signals that can 

be produced. We can think of this as being a model of the coevolving languages used 

by agents, and the neural physiology that must exist to support the languages in use. 

This will form the basis for investigating the evolution of language ability using the 

model. In the remainder of this chapter I will detail the basic model, without 

evolution, and present a number of experimental tests. 

4.7   A Language Agent 

With a requirement only that agents are able to learn signal-meaning mappings, a 

simple two-layer ANN architecture and learning algorithm is sufficient. If a standard 

linear ANN training algorithm (Haykin, 1998) were used for training individual 

agents, meaning-to-signal mappings could be successfully negotiated. But with no 

pressure on an agent being able to interpret the correct meaning of a presented signal 

the language could use a single word for more than one meaning. It would even be 

possible for a language to be negotiated that used only one word for all meanings (see 
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for example Fyfe and Livingstone (1997), a similar problem is also noted in Noble 

and Cliff (1996)). Using the criteria set out above, such a system would be far from 

optimal, fulfilling only the consensus criterion. 

A learning algorithm which ensures the emergence of an optimal communication 

scheme - with a different signal shared by the whole population for each meaning 

state - is desired. The results of Oliphant suggest that optimal learning is performed 

by an algorithm using the transmission behaviour of the population to train language 

reception and the reception behaviour to train language production. Thus some kind 

of inverted learning algorithm is required. An inverse learning approach is presented 

in a number of generative models for ANN learning by Hinton and Ghahramani 

(1997). In these models, networks possess feedback generative weights and 

feedforward recognition weights, and the problem of recognition is posed as which 

hidden, or output, units could be responsible for generating the input pattern.  

Using this approach, the learning algorithm should try to adapt the weights such that, 

for any given meaning-signal pair, the signal should produce the correct meaning 

when fed back through the ANN. We apply this principle to ANN with only a single 

set of weights, using the same weights for both the recognition and generative tasks. 

The operation of the learning algorithm is then as follows. A learner is presented with 

a meaning-signal pair. The signal is presented at the output layer of the learner and 

fed back to produce a generated meaning. This is compared to the original meaning, 

and any error is used to update the current weight values of the network (Figure 4.1). 

M eaning Layer

Language Layer

Signal
G eneration

Signal
Interpretation

 
Figure 4.1. A language agent neural network. Recognition weights 
map language layer patterns to meanings, generative weights map 
meanings to patterns at the language layer. 

The following sections present the equations for signal production and interpretation 

and for the learning algorithm. 
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4.7.1   Signal Production 

An individual agent within the population is a single two-layer fully connected ANN 

with layers containing M and N nodes, respectively. ‘Meaning’ is modelled as a 

bipolar (±1) vector of length M, which is presented at the inputs of a language agent, 

representing the agent’s internal state. Signals are similarly represented at the 

language layer as arbitrary bipolar vectors of length N. 

A meaning vector can be fed forward through the ANN to determine an agent’s 

signal for that meaning, each output being thresholded to a bipolar value (±1), as 

given below 

∑
=

=
M

i
ijij wxy

1
   (4-1) 

then 1' =jy  if  0>jy ,  1' −=jy  if  y j < 0, ]1,1[' −= rndy j  if 0=jy  

where the vector y , Nyy ′′...1 , is the word generated for meaning vector x . In all cases 

described, a sparse coding of the meaning is used with only one bit in the vector 

having the value +1, all others being –1 (However, the signal may be any arbitrary bi-

polar vector of length N). 

4.7.2   Signal Interpretation 

To interpret a signal vector, the signal can be fed back to generate a meaning vector. 

Competition can then be applied to set one, and only one, bit of the vector to +1, the 

remaining bits to -1. 

Thus, for N language neurons, there are 2N possible signals or words in the language, 

and for M meaning neurons there are M possible meanings. Competition exists 

between neurons in the meaning layer, such that any signal fed back from the 

language layer only has one corresponding meaning. When a signal is fed-back 

during interpretation, it is likely that several meaning neurons will fire at different 

strengths, the competition allowing a single meaning to be chosen unambiguously. 

For each neuron of the meaning (input) layer, equation 4-2 is applied to determine its 

activation value. Due to competition, the single neuron with the greatest activation 

value is set to +1, the remainder to –1. 
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(4-2) 

4.7.3   Learning 

During learning, an agent will be presented with a meaning-signal pair. The signal 

will be presented at the output layer and fed-back to produce a generated meaning 

vector as described above. The error between the actual meaning, x, and the 

generated meaning, x’, is used for learning by the receiver agent, (4-3). This error is 

multiplied by a learning rate, α, to determine the correction to be applied to the 

weights, w, connecting the layers. 

( ) jiiij yxxw ′−=∆ α   (4-3) 

This learning algorithm only updates weights when a word is misclassified. When a 

word is correctly classified the receiving agent performs no learning, as the error 

vector is composed of zeroes.  

In the initial conditions, all weights have a zero value. Accordingly, signals will 

initially be random bipolar vectors as each output bit will be set to a random value 

(Equation 4-1). 

4.7.4   A Note on Terminology 

It is typical in ANN literature to describe an NN by the number of layers of weights it 

contains. Thus, a network with inputs fed through a layer of weights to neurons, then 

a second layer of weights to output neurons would be a 2-layer network. In this work, 

the ‘inputs’ can be applied to either side of the network, and are fed through a single 

layer of weights to neurons at the other side. Although there is only one layer of 

weights, we consider the network to have two layers of neurons, the two layers being 

the ‘meaning’ and ‘signal’ layers of neurons. 

4.7.5   Representational Capacity 

As noted, meaning vectors are sparse. So an ANN with M nodes in the meaning layer 

can learn M possible distinct ‘meanings’. Signal vectors are arbitrary, and for N 

signal layer nodes, 2N possible signals can be learnt. 
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So a network should be able to learn eight meaning-signal pairs if it has eight 

meaning-layer nodes and just three language-layer nodes. This is not possible, 

however, as an additional bias node is required in the output layer, to be used in 

interpreting signals, as detailed below. 

4.7.6   A Bias for Language Learning 

This requirement for a bias bit can be explained. To simplify the explanation, 

consider an ANN with four input (meaning) and two output (signal) neurons. Such a 

network should be capable of learning four meaning-signal pairs. 

For this case there are four possible two-bit signals, and these can be mapped onto 

two dimensions (Figure 4.2). 

 
Figure 4.2. The dashed line through the origin fails to separate out one 
point from the other three. The solid line discriminates the top right 
point. 

After feeding back any signal, one and only one bit of the meaning vector should be 

set to +1, the remaining three bits to –1. Two weights – the number of weights which 

feed back to each signal neuron – can code for a discrimination line of equation 

ax+by = 0. Such a line, through the origin, would be unable to separate off any one 

signal uniquely. By adding a bias bit to the signal, a discrimination line of equation 

ax+by+c = 0 can be derived. Such a line can discriminate one signal (Figure 4.2). 

The above explanation can be extended to three dimensions to explain why three bits 

plus one bias bit are required in the output, signal, layer to allow the agents to learn 

eight pairs of meaning-signal mappings. 

In summary, for M meaning nodes, the minimum number of signal neurons, N, 

including any bias, to be able to learn the bi-directional mapping is  

( ) 1log2 +≥ MN   (4-4) 
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where M, N  are integer values. 

4.7.7   The Individual Language Agent – 1  

The need for a bias bit can be confirmed by training an individual language agent on 

an arbitrary communication scheme. This is shown below in table 4.1. Each meaning 

vector has a –1 in all but one position, and it is the index of this position that is listed 

in the meaning column of the table. The signals have been arbitrarily selected as the 

binary numbers 0 through to 7. 

Meaning 1 2 3 4 5 6 7 8 

Signal - - - - - + - + - - + + + - - + - + + + - + + +

Table 4.1. An arbitrary communication scheme. Each of eight possible 
internal states is mapped to a different three-bit signal vector. (The 
bipolar values are represented as + and -). 

The language agent is trained for four hundred rounds. In each round a randomly 

selected meaning-signal pair is presented once, and the error signal used to update the 

weights. The learning rate used is α = 0.2, decreasing over the learning period by dα 

= 0.0005 after each learning example. 

Over a large number of runs, the agent continually fails to learn the mapping. Typical 

results are shown in Table 4.2. 

Meaning 
Learned 
Scheme 

1 2 3 4 5 6 7 8 

1 - - - - - - - + - - + - + - - + - - + + - + + -

2 - - - - - - - + - - - - + - - + - - + + - + + -

3 + - - + - + + + - + + + + - - + - + + + - + + +

4 + - - + - + + - - + - + + - - + - + + + - + + +

Table 4.2. Results of four attempts to learn the communication scheme 
of Table 4.1. All attempts to learn the scheme fail. 

4.7.8   The Individual Language Agent – 2 

By adding a bias unit to the language layer, active during signal interpretation, it is 

possible for a language agent to learn any arbitrary mapping. The above experiment 

was repeated with the same parameter values, but with the addition of a bias node. 

Over a large number of runs, the language agent repeatedly learned the signal-

meaning mapping, with no failures. 
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4.8   Experiment 1: Language Negotiation 

The first proper test of the model is to determine whether homogenous populations of 

agents can successfully negotiate a communication scheme which they can use to 

share information about their internal states. To do so, an array is created and 

populated with language agents. Weights are initialised randomly. Over a number of 

rounds pairs of agents are selected, and communication and learning takes place. The 

algorithm is shown in Figure 4.3. 

1. For t  training rounds 
2. pick random meaning 
3. for each agent (picked in random order) 
4.  pick another agent to be signaller 
5.  generate training signal from signaller 
6.  train both agents on signal 

Figure 4.3. Population training algorithm 

As detailed previously, with 8 possible meanings, a minimum of 3 language neurons, 

plus a bias, are required for a language to be able to convey all possible meanings. 

4.8.1   Emergence of a Language Bias 

Without setting a bias, it is still possible for populations to negotiate a language 

which allows the successful communication of all meanings – but only where the 

number of neurons in the language layer satisfies equation (4-4). E.g., for three 

possible signals three nodes are required at the signal layer. 

Thus, successful language learning is possible for a system with eight possible 

meanings where the agents’ language layers have no bias but at least 4 neurons. 

However, in all successful experiments with 4 language neurons, one of the signal 

bits becomes set to the same value (+ or - 1) in all signals. In effect, although there is 

no explicit bias, one emerges from the interactions of the agents as they attempt to 

learn to communicate with one another. This is shown in the negotiated languages of 

Table 4.3. 

In Table 4.3(a), the signalling scheme shown is for one agent in a population of 

agents which all use the second bit of their signals as a bias – in all signals, after 

negotiation, this bit is set to –1. A similar result occurred in the population from 

which the signalling scheme in Table 4.3(b) is drawn, only this time the fourth signal 

bit is always set to +1. 
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a)  Word 1: 1 –1 –1 –1
Word 2:-1 –1 –1 –1
Word 3: 1 –1 1 –1
Word 4: 1 –1 –1 1
Word 5:-1 –1 1 –1
Word 6:-1 –1 1 1
Word 7:-1 –1 –1 1

 Word 8: 1 –1 1 1

b) Word 1:-1 1 –1 1
Word 2: 1 -1 –1 1
Word 3:-1 1 1 1
Word 4: 1 1 –1 1
Word 5: 1 -1 1 1
Word 6:-1 -1 -1 1
Word 7:-1 -1 1 1
Word 8: 1 1 1 1 

Table 4.3. Two negotiated languages. In (a) the second bit is 
uniformly set to -1, in (b) the final bit is set to 1. 

Further evidence of the emergent bias comes from examining the internal weights of 

a language agent drawn from a population in which an optimal communication 

scheme has been learnt. The weights corresponding to the bias bit are large, on the 

order of three times the size of other weights. All other weights are the same order of 

magnitude as each other. The set of converged weights for one language agent are 

presented in Table 4.4. 

 
Meaning, 

M Wi1 Wi2 Wi3 Wi4 
1 0.233852 0.749355 -0.25996 -0.24527 
2 -0.23764 0.787846 -0.27316 -0.2321 
3 0.299894 0.740592 0.269213 -0.23706 
4 0.241851 0.717312 -0.2254 0.250896 
5 -0.2961 0.722206 0.263901 -0.28557 
6 -0.22819 0.744461 0.25074 0.291194 
7 -0.23806 0.745487 -0.24148 0.226476 
8 0.224402 0.792741 0.216147 0.231434 

Table 4.4. The weights for a NN in a population which has negotiated that 
the second language bit act as a bias, with value -1. The language of this 
particular agent can be seen in Table 4.3(a)

4.8.2   Success of Language Negotiation 

To evaluate language negotiation, populations were initialised and test runs 

completed for varying values of N and varying numbers of training rounds. All other 

parameters were kept constant – except for dα, which is derived from the values of α 

and t, such that α decrements to zero over the training period. The experimental 

parameters are shown below in Table 4.5. Additionally, all agent weights are initially 

set to zero. Accordingly, the initial set of signals produced will be random. The 

populations of agents are then given either 100 or 250 rounds of language negotiation 

to form signalling schemes. 
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Fixed Parameters Variable Parameters 
Learning Rate, α 0.2 N 0 to 6 
Population 120 Training rounds, t 100 or 250 
M 7 dα (α / t ) 0.0005 or 0.0002 

Table 4.5. Experimental parameters 

For each parameter set, 10 runs were performed. Within each run success was 

measured as the percentage of signals correctly interpreted by the agents. Testing was 

performed, after training had completed, using the algorithm presented in Figure 4.4. 

During this testing no learning is performed by the agents. 

1. For each agent, A, in population; %success = 0 
2. For test = 1 to 100 
3.         Select random agent B, such that A <> B 
3.  Pick random meaning, M 
4.  Present M to B to produce signal, S 
5.  Present S to A to produce generated meaning, MG 

6.  If MG = M, %success = %success + 1 
7.     Next test 
8. Average success scores of all agents 

Figure 4.4. Algorithm for evaluating language negotiation success 

The percentage successes for different combinations of parameters are shown in 

Figure 4.5. The results show the standard deviations across the ten simulation runs, as 

well as the means, for each parameter set. The result obtained for success of 

communication for populations where the agents have no units in the language layer 

reflects the chance of a randomly guessing the meaning. 
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Figure 4.5. Success of language negotiation, with variable numbers of 
units in the language layer. Average success (with standard deviation) 
in interpretation shown. Left: 100 rounds of language negotiation. 
Right: 250 rounds. 
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4.8.3   Interpreting the Results 

With no language neurons, the performance of the agents is at chance level - on 

average agents guess the correct meaning one in seven times. As language capability 

increases, so does fitness showing that agents are successfully sharing information 

about their internal state. With more neurons, average success increases and with two 

or more language neurons increased training time increases fitness. If training time is 

extended sufficiently, populations with four or more neurons will consistently 

negotiate a language capable of allowing information to be shared, with a very high 

communicative success rate. 

The results show that using our learning algorithm homogenous populations are able 

to negotiate a useful language, even where the capability for an optimal language 

does not exist. As the language capability increases, the success rate of 

communication increases. With four or more language units, the expressive power of 

the language exceeds the communication requirements of the environment. This has 

the potential for allowing synonymy, where multiple signals for one meaning may be 

recognised correctly. 

Without at least as many language nodes as required by equation (4-4), four nodes in 

the experimental setup described above, no population was able to negotiate an 

perfect signalling scheme. Given the finite number of training rounds, not all 

populations in which the agents satisfied equation (4-4) negotiated optimal 

communication schemes. But success at interpreting signals from other agents in the 

population is seen to improve as the number of neurons in the language layer 

increases. 

External confirmation that the agents and learning rule used in this model are able to 

negotiate an optimal communication system is made in a recent work, which 

categorises the different possible learning rules (Smith, 2002). According to this, the 

learning rule used here has biases for allowing agents to learn and maintain existing 

optimal communication systems, and to create such systems where they do not 

already exist. 

4.9   Experiment 2: Spatially Arranged Populations 

In Chapter 2, it was noted that the EoL and the evolution of communication are 

related to the evolution of co-operation itself and this is explored more in the 
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following chapter, where we investigate the possible effect of spatial selection on the 

EoL. Rather than add spatial selection and enable evolution of agents simultaneously, 

it is worthwhile repeating the previous experiment to see if spatial constraints on 

agent communication have any impact on the results we obtain. 

In the previous experiment, when two agents were to be selected to communicate for 

learning or testing, any two agents could be selected. In any and every pairing, every 

agent had a uniform chance of selection. Here the same experiment is repeated, but 

with a spatial organisation imposed on the population of agents. This will allow us to 

observe any differences before making any further changes to the model. All 

parameters have the same values as previously, and the language is still negotiated 

over a number of training rounds in a single homogenous population. 

A simple spatial arrangement is created by organizing the agents in a ring, and 

limiting all communication to within a neighbourhood of the currently chosen agent. 

So, for example, a teacher will be picked randomly according to the location of the 

current learner. The area of the neighbourhood is defined by a normal distribution 

centred on the learner. In all experiments described the standard deviation used is 0.6, 

placing a strong preference on immediate and very close neighbours. A ring 

arrangement is not necessary – a linear arrangement could be used instead – but 

means that all agents have the same number of neighbours and have the same chance 

of selection. 

 
Figure 4.6. A normal distribution curve determines the likelihood of a 
neighbour being selected as a partner in for learning or evaluating 
communicative success. An individual cannot learn or otherwise 
communicate with itself, and so the centre of the curve is ‘zeroed’. 
The standard deviation used is 0.6, effectively limiting communication 
to close neighbours. 

With neighbourhood limited communication the results in Figure 4.7 were produced 

for 100 and 250 training rounds for populations of 120 agents, again each result 

averaged over 10 runs. Success is measured as detailed in Figure 4.4. The same 
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neighbourhoods used in language negotiation are used for communication during 

fitness evaluation. 
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Figure 4.7. Average success of signal interpretation, and standard 
deviation, with homogenous populations of 0-6 language neurons 
measured over ten experiment runs each case. With 100 (left) and 250 
(right) negotiation rounds. 

Comparing both sets of results, there appear to be a few small differences, which 

warrant some further investigation. Using spatial constraints on agent interaction 

appears to increase the variance in the success of language negotiation – the standard 

deviations shown in Figure 4.7 appear to be consistently larger than those in Figure 

4.5. Additionally, the average success rates show some improvement when spatial 

constraints are present, particularly where the number of training rounds is low. 

Why should the variance in success be greater, and why should the success rate of 

communication have improved? If the communication is limited to nearby agents, it 

may be the case that language negotiation is more successful amongst some agents 

than others in a single population. This could occur if different signalling schemes 

are negotiated amongst different subgroups of a population – a dialect-like effect. 

This could also explain an increase in success, as agents only have to negotiate a 

common signalling scheme with a subset of the population, rather than across the 

whole population. Communication between adjacent agents would have a higher 

success rate than communication between more distant agents. This could cause both 

the higher success rate, and the increased variance. Below we describe a further run 

with spatial limits enabled, and explore the signalling schemes of individual agents to 

determine if dialects are indeed formed. 

4.9.1   Emergence of Dialects 

It was noted previously that where agents possess a greater number of language layer 

neurons than required, it may be possible for them to interpret more than one signal 
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as having the same meaning. Communication may still be otherwise optimal, 

potentially with complete success in signal interpretation. If, in the last experiment 

with a spatially arranged population, dialects did emerge, this can be put to the test by 

examining the signals used by different agents, and measuring the success of agents 

at interpreting different signals. 

A homogenous language population with four language units, plus bias, is trained for 

5,000 rounds. This allows a very high degree of coordination amongst the agent 

languages but, due to the local communication, does not negotiate a common 

language over the whole population. It is observed that large neighbourhoods 

negotiate a common signal for a given meaning, but distant agents may have 

significant differences in communication schemes used. At the boundaries between 

neighbourhoods, agents may exist which interpret signals from different schemes 

correctly. This is shown in Table 4.6. The three agents included each attained a 

maximal fitness score, interpreting all signals correctly. This demonstrates that a 

degree of ‘bi-lingualism’ or even ‘multi-lingualism’ is possible in the agent 

communication schemes. The additional language layer nodes provide some 

redundancy in the representation capacity of the agents. 

Meaning 0 Meaning 4
Agent 4 -1 1 -1 -1 Agent 4 1 -1 -1 -1
Agent 5 -1 1 -1 1 Agent 5 1 1 -1 -1
Agent 6 -1 1 -1 -1 Agent 6 1 -1 -1 -1

Meaning 1 Meaning 5
Agent 4 1 1 1 1 Agent 4 1 -1 -1 1
Agent 5 1 -1 1 1 Agent 5 1 -1 -1 1
Agent 6 1 -1 1 1 Agent 6 1 -1 -1 1

Meaning 2 Meaning 6
Agent 4 1 1 1 -1 Agent 4 -1 -1 1 1
Agent 5 1 1 1 -1 Agent 5 -1 -1 1 1
Agent 6 1 1 1 -1 Agent 6 -1 -1 1 1

Meaning 3
Agent 4 -1 -1 1 -1
Agent 5 -1 -1 1 -1
Agent 6 -1 -1 1 -1

Table 4.6. The signals used by three adjacent agents for seven 
environmental states. Each meaning is represented by a bipolar (+ and 
– 1 values) signal vector, e.g. to indicate meaning 0, agent 5 would 
send the signal (-1,1,-1,1). All three scored maximum fitness, 
interpreting all signals correctly, despite differing communication 
schemes. Bias signal is not shown. 

4.10   Conclusion 

In this chapter I have developed a basic model for exploring the evolution of 

language and described some preliminary experiments. These have shown that the 
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agents in the model are able to negotiate a shared communication scheme, a simple 

‘language’. This replicates work done on demonstrating self-organising languages 

and signalling schemes, as demonstrated by (MacLennan, 1991; Hutchins and 

Hazelhurst, 1995; Steels, 1996c) amonst others. 

From Figures 4.6 and 4.8, another result is apparent, however. As the language 

capability increases, so does the communicative success rate of the agents. This is to 

be expected. But, as the language capability increases beyond what is required to 

express all of the available meanings, communicative success continues to improve. 

There would appear to be some benefit in having a linguistic ability somewhat 

greater than strictly necessary. To rephrase, a linguistic ability with some degree of 

redundancy has an advantage over one that is merely sufficient. This result, and some 

of its implications are reviewed as part of the next chapter. 

The emergence of dialects, noted in the second experiment, is investigated more 

thoroughly in Chapter 6. 
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Chapter 5    Modelling the Biological Evolution of Language 
 
In the previous chapter, we described the basic model which will be used as the basis of 

our experiments, and saw how the language agents are able to negotiate shared 

communication schemes. 

In this chapter we adapt the model in order to conduct an experiment investigating the 

biological evolution of language ability. Changes to the model presented in the previous 

chapter are detailed, and experiments run and results presented. We conclude the chapter 

by critically reviewing the contribution that the experimental results and analysis has on 

existing debate on the Evolution of Language. 

Before proceeding with the experiment, we begin by highlighting some of the key points 

in the debate, and show that previous work on modelling the emergence and evolution of 

language has not been sufficiently targeted at answering some of these points. 

5.1   The Evolution and Emergence of Language 

Many of the relevant aspects pertaining to the EoL have been reviewed in Section 2.4, and 

Chapter 4 contains brief descriptions of various attempts to build models of the emergence 

and evolution of language. It is worthwhile reiterating several points, to emphasise the 

goals of the following work. 

It is clear that human physiology has been adapted in a number of ways which has enabled 

the learning and use of language, and that there are costs associated with a number of 

these changes. It is this evolution of physiology, which supports language, that we wish to 

model. As has been noted, few of the current models of the evolution of language 

incorporate this, demonstrating instead how languages may evolve in populations of 

capable language learners. Aside from the already noted exception of Batali (1994; 1998), 

those models in which individuals evolve as well as their communication schemes tend to 

demonstrate the evolution of innate, rather than learned, communication schemes. 

Such models commonly relate the evolution of signalling or language to a single specific 

task or adaptive function.  These are more akin to animal communication systems than to 

language. As well as demonstrating a model of the evolution of language, we will use our 

model to investigate some aspects of the evolution of language, particularly the influence 

that spatial constraints on the population have on the evolution of linguistic ability. We 

also see how some design decisions when implementing the model can have a significant 

impact on the observed results. 
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5.2   Modelling the Biological Evolution of Language Ability 

One problem to be explicitly addressed in our model, but not in the other models already 

cited, is that communication and learning of language has to be possible with 

heterogeneous populations. Two agents of differing innate abilities for language learning 

and use must be able to learn to communicate with each other despite their differing 

abilities. This requirement arises as a result of the inevitable heterogeneity which must 

occur in a population as a particular trait evolves. 

Once some mutation occurs to initially provide the trait in a few individuals, many 

generations may pass before it is shared by all. In the case of language, if individuals with 

more developed linguistic abilities are not able to form a common language with their less 

well developed neighbours then their abilities will not confer the expected fitness benefits. 

Without modelling the coevolution of physiology and language, it is not necessary to 

resolve the problems of how to represent evolving language ability, and of how to ensure 

that heterogeneous agents can negotiate communication schemes. Here they must be 

tackled and explicit solutions to these problems are required. 

5.2.1   Heterogeneous Language Abilities 

This can be captured using ANN based agents derived from those presented in the last 

chapter. The simple change required is to make the number of neurons in the language 

layer a hereditary trait, subject to change and evolution. Assuming all agents in the 

population have at least one neuron in the language layer, subsequent generations may 

feature heterogeneous mixes of individuals with one, two or more neurons, Figure 5.1. 

All agents have the same, fixed, number of neurons in their meaning layers. While this 

makes modelling easier, it is acknowledged that this is not necessarily true in the real 

world. For a synthetic example, Steels and Vogt (1997) have also shown that shared 

internal representations are not required for successful communication about external 

objects common to multiple observers. 
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Figure 5.1. Over a number of generations the number of neurons in the 
language layer evolves. Even within a single generation, different agents 
may have different structures, and will have to be able to communicate 
despite the differences. 

The following examples demonstrate how communication is possible between the three 

agents of Figure 5.1, assuming them to be members of a single  population of agents. 

With three nodes in the meaning layer, there are three possible meanings. With one, two 

and three nodes in the language layer they can produce two, four and eight distinct signals, 

respectively (4.7.2). A bias node is present in the language layer in all three cases but is 

not shown. For the three meanings, Table 5.1 shows signals that might be produced by the 

three agents. 

Meaning Signal Produced 
 (A) (B) (C) 

1   ( + - - ) + +  - +  -  - 
2   ( - + - ) + +  + +  +  + 
3   ( - - + ) - -  + -  +  - 

Table 5.1. Signals which could be produced by the three language agents 
shown in Figure 5.1. The bipolar vectors are shown here simply as strings 
of + and -. 

If a signal were sent from agent C to agent A, A would receive only the first bit of the 

three bit signal as it only has one node in the language layer. So, according to table 5.1, the 

communicative episode might unfold as shown in example (5-1), below: 

Meaning 2 randomly selected 
Agent C generates signal vector ( + + + ) 
Agent A receives signal ( + ) 
Signal interpreted as meaning 1 or 2 (depending on activation values) 

(5-1) 

Conversely, if the signal received is of a shorter length than the agent is capable of, then it 

is padded with zeroes. A zero value presented at a language layer node will have no effect 

on signal interpretation when fed back – as can be seen from equation (4-2), a zero bit in 

the signal, y, has no influence on the interpreted meaning, x. Thus, only non-zero (+ or – 
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1) bits in the signal can have an effect on the interpreted meaning. Example (5-2) 

demonstrates this: 

Meaning 2 randomly selected 
Agent A generates signal vector ( + ) 
Agent C receives signal ( + 0 0 ) 
Signal probably interpreted as meaning 1 or 2 (depending on 

activation values) 

(5-2) 

As demonstrated above, using the agent architecture as described allows communication 

in heterogeneous populations. Such communication might not always be successful, but 

could improve the likelihood of successful communication significantly above chance. A 

further modification further improves the chances of successful communication. 

5.2.2   Comprehension Leads Production 

It has been argued (Burling, 1998) that comprehension leads production – that the ability 

to understand or interpret signals leads the ability to produce them. This is seen in the 

ability of many animals to understand commands given to them, in ape language learning 

and in human speech acquisition. Accepting Burling’s argument, it is desirable to also 

capture this feature in the model. This is also done quite simply. 

All agents have identical structures, but hereditarily determined language production 

ability. This is implemented by limiting the number of neurons in the language layer 

which can be active during language production, any inactive neurons producing a zero 

value, Figure 5.2. All neurons are active for signal interpretation. 

 

M eaning Layer

Language Layer

 
Figure 5.2. In the comprehension-leads-production model, all language 
agents have the same structure, but only a limited number of nodes may be 
active for signal production.  

By implementing the changes described above, all agents are potentially able to learn to 

interpret all signals, including those which they are unable to produce. This is 

demonstrated in the following two examples. 
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If a signal were sent from agent C to agent A, A would receive all of the three bit signal as 

all nodes are active for interpretation. This communicative episode might unfold as shown 

in example (5-3): 

Meaning 2 randomly selected 
Agent C generates signal vector ( + + + ) 
Agent A receives signal ( + + +) 
Signal interpreted as meaning 2 

(5-3) 

During production, the signal is padded out with zeroes. Again, zero values presented at a 

language layer node will have no effect on signal interpretation when fed back, and so 

only the bipolar values have an affect the interpreted meaning. Example (5-4) 

demonstrates this: 

Meaning 2 randomly selected 
Agent A generates signal vector ( + 0 0 ) 
Agent C receives signal ( + 0 0 ) 
Signal interpreted as meaning 1 or 2 (depending on activation values) 

(5-4) 

In this case the result is similar to the previous version (example 5-2), but where 

comprehension leads production poor signallers may benefit more from good signals 

produced by others than they would otherwise (comparing examples 5-3 and 5-1). 

The experiments which follow are performed using this full interpretation / limited 

production design. 

5.2.3   Population Generations and Replacement 

The population training algorithm shown in Figure 4.3 will again be used. In these 

evolutionary models, training and fitness evaluation is performed for one generation. A 

‘child’ generation is created, then this replaces the parent population. Training and fitness 

evaluation are again carried out, and a further child generation is performed. This process 

is repeated many times over, during which time the evolution of the language capability of 

the agents can be viewed. 

The next few sections detail the design decisions, and parameter settings relevant to the 

genetic representation and agent selection and reproduction. 

5.2.3.1 Genetic Representation and Reproduction 

The standard genetic algorithm, GA, (Holland, 1975; Mitchell, 1996) is perhaps the most 

common technique used in modelling evolution. We use a GA in this model to allow the 

language capability to evolve over a number of generations. 
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The only hereditary trait to be modelled is the number of language neurons active during 

signal production. In the experiments performed here, the number of meanings is 

arbitrarily set to eight. As an agent with M language neurons, plus bias, can learn unique 

signals for 2M meanings, the representation used should allow for at least zero to three 

language neurons. 

In the standard GA, hereditary traits are represented by binary strings. Using three bit gene 

strings as the chosen representation, agents may have from zero to seven production-active 

language layer nodes. The standard binary representation of these numbers is as shown in 

table 5.2. 

0: 0 0 0 1: 0 0 1 2: 0 1 0 3: 0 1 1 
4: 1 0 0 5:  1 0 1 6: 1 1 0 7: 1 1 1 

Table 5.2. The standard binary representation of the numbers zero to seven. 

During reproduction, two parents’ bit strings are selected from which two child bit strings 

will be produced. The standard operators for producing the child gene strings are 

crossover and mutation. As a result of crossover, each child string is part produced from a 

portion of one parent string and the remainder is taken from the other parent. Mutation 

may cause individual bits of the gene string to ‘flip’, from 0 to 1 or vice-versa. 

The use of the standard binary representation in the GA has been criticised, however. For 

example, it is not always possible for a value to be incremented or decremented by one 

with a single bit-flip. To increment from the value 3 to 4, as shown above, all three binary 

bits must change. Thus, using the standard binary representation in the GA, many genetic 

changes may be required to produce a small change in the phenotypic form. 

One alternative is to use a Gray coded (Gray, 1953) binary representation to store values 

in the genome, and this has been recommended for use with the GA by a number of 

authors (for example, (Belew et al., 1991) and (Caruna and Schaffer, 1988)). The Gray 

codes for the values 0 to 7 are shown below in Table 5.3. 

 
0: 0 0 0 1: 0 0 1 2: 0 1 1 3: 0 1 0 
4: 1 1 0 5:  1 1 1 6: 1 0 1 7: 1 0 0 

Table 5.3. Gray coded binary representation of the numbers zero to seven. 

Using Gray codes, only one bit change is ever required to increment or decrement a value 

by one. With reference to the GA, this confers the possible advantage of having similar 

phenotypic forms possess similar genetic representations. For modelling evolution, as 

opposed to the more general use of GAs in optimisation, are incremental changes 

particularly to be sought after? 
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In nature, relatively minor genetic changes can result in significantly different phenotypic 

forms. In general, however, individuals with similar genes may be expected to have more 

similar phenotypes than those with dissimilar genes. 

If we wish our model to capture this feature of the natural world then a genetic 

representation which captures the adjacency feature provided by Gray codes is to be 

preferred over the standard genetic representation. 

Gray codes may not be the best alternative. Although it possesses the benefit of adjacency, 

it is possible for even more dramatic discontinuities in evolution than are possible with the 

standard representation. Only one mutation is required to jump from the smallest possible 

value to the largest in a Gray coded gene string, from 0 to 7 in this case. Using the 

standard representation, the largest change a single mutation could cause would be an 

increase of 4, for example from 0 to 4 (Table 5.2). 

The best option may be to dispense with a binary representation altogether. For example, 

Mühlenbein and Schlierkamp-Voosen (1993) detail various crossover and mutation 

operators for gene strings composed of real rather than binary values. This use of real 

values, rather than binary bits, in a genetic string has been used for many years in 

attempting to solve numerical optimisation problems under the name Evolution Strategies, 

ESs, an approach developed in the early seventies by Rechenberg (Mitchell, 1999). 

However, our model uses discrete rather than continuous values to determine the evolved 

linguistic ability – with integer numbers representing the number of neurons active in 

signal production. Accordingly we can use integer valued rather than real valued gene 

strings to represent the innate linguistic ability of each of the agents. This will provide the 

adjacency benefit of Gray codes but without the possibility of single mutations causing 

such large changes. 

Thus we have two different possible genetic representations for language ability – the 

standard binary representation, and an integer representation. In our first experiments we 

will see the effect of choosing one of these representations over the other, but first the 

mechanisms of selection, mating and population replacement common to both versions 

will be detailed. 

5.2.3.2 Selection, Mating and Replacement 

Other model details requiring elaboration surround the processes of selection and mating. 

The populations in all experiments described in this chapter are spatially arranged as 

described in Section 4.9, with the standard deviations used noted in each case. The 
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replacement and mating algorithm has been selected such that the spatial relationships 

between agents are maintained not just for learning and fitness evaluation, but also for 

mating and the placement of child agents into the succeeding population. 

The fitness measure used is the percentage communicative success measure described in 

Section 4.8.2. Every agent has a fitness value calculated. Agents are then selected for 

reproduction, with each agent having a chance of selection equal to the agent’s fitness 

score over the total fitness score for the whole population. The mating and replacement 

algorithm is as shown in Table 5.4. 

For population size P, repeat P/2 times: 
Select parent, p1, randomly according to fitness 
Select parent, p2, randomly according to neighbourhood around p1 
Mate p1 and p2, producing children c1 and c2 
Place c1 and c2 in child population 

Replace parent population with child population 

Table 5.4. The mating and population replacement algorithm. 

An agent may be selected as the first partner for mating more than once. The distance 

measure used for selecting a second mating partner is in all cases the same function as 

used for selecting a partner for signal learning or fitness measurement. 

The replacement algorithm, for adding child agents to the new population, works a little 

differently. 

Recalling the linear arrangement, if the first parent is 23rd in the line in its generation, the 

replacement algorithm will attempt to place the children in the 23rd and 24th positions in 

the child population. If either or both of these slots are already occupied, then the 

replacement algorithm iterates incrementally along the line until empty slots are found for 

both children. This replacement algorithm serves to reinforce and maintain the spatial 

relationships within the model. 

Note that there is no other interaction between generations in this model. In particular, the 

language negotiation process starts afresh in each generation, with no input from past 

generations. Over time, it is this ability to negotiate language that is being evolved. 

5.2.3.3 Crossover and Mutation 

Reproduction in GAs utilises two key operations: crossover and mutation. The workings 

of these operators depends on the method of representation, as well as on design decisions 

(for example, see Mühlenbein and Schlierkamp-Voosen, 1993). 
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During crossover, the two parent gene strings are copied, with a portion of the gene string 

of each parent going to each of the offspring. During mutation additional random changes 

to the child strings may occur. 

As the precise details of implementation depend on the chosen genetic representation,  

these are expanded upon later. 

5.3   Modelling Language-Physiology Coevolution, Part I 

The first experiments are to be simple demonstrations of the co-evolution of language and 

physiology, initially using standard binary codes in the GA. The extent to which agents 

are ‘physiologically’ adapted for communication is revealed by the number of active 

language production neurons each possesses, the fitness of a group of agents revealing 

how well the learned communication schemes have been negotiated for the sharing of 

information. 

Over the course of many generations the language capability of the agents will evolve, and 

with it the signal repertoires available to them. The ability to successfully negotiate useful 

communication schemes in each generation being the driving force for the evolution of the 

ANN. 

5.3.1   Crossover and Mutation 

Using the standard binary representation, the gene string of each agent will be just three 

bits long. This is sufficient to store any integer value in the range [0,7], and with 7 

language neurons an agent can potentially learn 27 (128) different signal-meaning pairs. 

Where there will only be 8 possible meanings, as here, this should be quite ample. 

The crossover and mutation operators used are quite standard implementations for use 

with the GA. 

For crossover, assume two parent strings A and B. These will mate to produce two child 

strings C and D. 

 },,{ 321 aaa=A , },,{ 321 bbb=B  (5.5) 
To produce C, crossover is performed such that, for each bit in the child string: 

 }{or  }{ ii bac i=  (5.6) 
Where ai is chosen if i <= N, else bi is chosen. N, the crossover point, is a random integer 

chosen uniformly from the set [1,2,3]. The second child is a complement of the first in 

drawing each bit from the other parent: 

 }{or  }{ ii abd i=  (5.7) 
Where bi is chosen if i <= N, else ai is chosen. 
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Mutation is applied after crossover has generated the two child strings. The  mutation rate 

gives the chance of a mutation occurring at each position in the string. Each mutation that 

occurs inverts the binary value at that position. 

5.3.2   Parameters and Settings 

Table 5.5 lists the parameters and settings for the first coevolution test. 

Parameters for coevolution (using standard binary representation) 
Learning Rate, α 0.2 Mutation rate 0.005 
Population 100 Training rounds, t 200 
M 8 dα (α / t ) 0.001 
Standard Deviation 1.0   

Table 5.5 Parameters and settings 

The initial population of agents all have N = 1 (only one language layer node active for 

signal production). All agents have M = 8 nodes in the meaning layer. The mutation rate 

was selected so as to produce one or two mutations per generation. This might be 

considered a low rate of mutation were the GA being used for some optimisation problem, 

but here we wish to limit the number of significant mutations which occur in each 

generation of what is quite a small population. The standard deviation determines an 

agent’s neighbours, as previously described. This gives chance greater than 80% of 

selecting an immediate neighbour, with over 98% of selections being within a small 

neighbourhood or two neighbours on either side. 

5.3.3   Discontinuous Evolution of Signalling Ability 

With the model as described, a typical run using the parameters shown in Table 5.5 

produced the results shown in Figure 5.3. Displayed in Figure 5.3 are the averages of 

agents’ fitness scores, and of agents’ number of language neurons active in signal 

production. 

The first demonstrates the effect of the second. Although an agent does not need active 

language production neurons to score highly on fitness, fitness being evaluated on the 

basis of how well received signals are understood, it does require that its neighbours have 

them. 

In this figure the gradual evolution of language ability in the population is apparent. In a 

test run, over the course of 150 generations, the average number of active signal 

production neurons rises from 1 to 6, and the average success at interpreting signals from 

20 to 80 percent (Figure 5.3).  
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Figure 5.3 Coevolution of language and physiology. As the communication 
capability increases (number of nodes), so does the success rate (fitness). 

The graph shows a sudden jump in the linguistic ability and in the fitness of agents quite 

early on. This appears to be a significant discontinuity. Rather than a slow gradual 

increase in linguistic ability, it seems that very small number of mutations have led to 

major changes to the fitness of those affected individuals, and/or their partners in language 

negotiations and evaluation. This has resulted in a small number of individuals having 

much higher fitness, allowing the better adapted genes to rapidly take over the population. 

The graph is re-plotted for the first 40 generations only, in Figure 5.4, to allow a closer 

inspection. 

In just ten generations (the 15th to the 25th) the average number of active language layer 

nodes rises from just over one to almost 5. With only one or two mutations to be expected 

per generation, the impression that relatively few mutations have produced rapid and 

major evolutionary development is confirmed. 
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Figure 5.4 Detail from beginning of Figure 5.3 

However this is only the result of one experimental run. The runs themselves are highly 

random with many stochastic elements – which individuals get picked, which meanings 

they attempt to communicate and what signals they initially send before training. 
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Consequently, a large number of tests are required before the results can be considered at 

all robust or typical. Figure 5.5 shows the results of a further nine runs using the same 

experimental setup as in Table 5.5. It is apparent that, despite the individual differences, 

the overall result of significant improvement in communicative ability is consistent. In all 

cases the improvement is relatively sudden, with the average number of language nodes in 

a population increasing from one to five over the course of 30 generations or less.  
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Figure 5.5 A further 9 test runs with same parameters as Figure 5.3 

This consistent sharp increase implies that this model supports the discontinuous view of 

language evolution (see discussion in Chapter 2). However, due to the genetic 

representation used, only one mutation is required to allow a jump from one language 

node to three or five nodes (Table 5.2). Once such a mutation, favoured due to the 

implementation details, has occurred the new gene succeeds quickly in the population. A 

second mutation might increase the number of nodes to seven, allowing for some 

improvement in language negotiation, and some of the results show this distinct stepping 

(Figure 5.5 top right, middle centre and, more clearly, bottom left). After the initial rise in 

the number of nodes, however, there is less significant selective advantage to be gained 

from further increases, and the graphs show some variation. 
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5.4   Modelling Language-Physiology Coevolution, Part II 

The model has demonstrated the coevolution of the agent physiology with the agent 

communication schemes. To prove that the observed discontinuity is indeed a 

consequence of the model’s implementation, the experiment must be repeated. Here 

integers are used directly in the genetic representation, rather than binary numbers. 

As there is only one hereditary trait, the gene string for each agent consists of only a single 

integer. Different implementations are required for the crossover and mutation operators 

than those already presented, and these new operators are described next. 

5.4.1   Crossover and Mutation 

Inheritance works quite differently in the integer evolution strategy used from that in the 

previous model. Given two parents A and B, and two children C and D, each child will 

inherit its single integer gene string from a different parent. 

 BDAC ==  and  
  or 
 ADBC ==  and  

 
(5.8) 

There is a 50% chance of either outcome. Thus, there is no crossover of genetic material at 

all. 

As before, for each integer in a gene string, the mutation rate determines the likelihood of 

a mutation occurring. When a mutation occurs, the integer value is modified in some way, 

either incremented or decremented by 1, with an equal chance of either occurring. Unlike 

the outcome of inverting a bit in a binary representation, this form of mutation is 

potentially open-ended, with very large or even negative values possible. The results of 

mutation can be limited by the operator, which here forces any negative result to 0, and 

any value greater than 7 back to 7. 

5.4.2   Parameters and Settings 
Table 5.6 lists the parameters and settings for the second coevolution test. 

Parameters for coevolution (using integer gene strings) 
Learning Rate, α 0.2 Mutation rate 0.015 
Population 100 Training rounds, t 200 
M 8 dα (α / t ) 0.001 
Standard Deviation 1.0   

Table 5.6 Parameters and settings 

Again, the initial population of agents all have N = 1. The mutation rate is three times the 

previous value, but as the gene strings are now one-third the previous length, the number 

of expected mutations per generation has been kept constant. The nature of the mutations 

has changed, as described above. 
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5.4.3   Continuous Evolution of Signalling Ability 

A typical run using the parameters shown in Table 5.6 produced the results shown in 

Figure 5.6. In this figure, the gradual evolution of language ability in the population is 

apparent. In this test run, over the course of 500 generations, the average number of active 

signal production neurons rises from 1 to 6, and the average success at interpreting signals 

from around 20 to over 80 percent.  
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Figure 5.6 Coevolution of language and physiology. As before, as the 
communication capability increases (number of nodes), so does the success 
rate (fitness). 

A further nine sets of results from runs of 250 generations using the same parameters and 

setup are shown in Figure 5.7. Despite individual differences the overall result of 

significant, yet gradual, improvement in communicative ability is consistent. Where large 

physiological changes are not possible due to single major mutations, it seems that a 

succession of minor adaptations spread through the population. 

The coevolution of language and physiology has now been demonstrated using two 

different versions of the model. The models can be used to support either the 

discontinuous or the continuous EoL, and firm conclusions are hard to draw from these 

results. 

Other settings and parameters can be varied however, to try to give some idea of the 

effects different natural conditions may have had on the evolution of language in nature. 

In particular, we can determine if spatial selection (our chosen approximation to kin 

selection) has a significant effect, by varying the neighbourhood size and repeating the 

experiment. This is done for the following test. 
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Figure 5.7 A further 9 test runs with same parameters as in Figure 5.6 

5.5   The Effect of Neighbourhood Size 

Spatial selection is one mechanism by which the likelihood of the evolution of cooperation 

may be improved. Like kin selection, such a mechanism can be responsible for the 

emergence of cooperative behaviour in situations where individuals may gain more by 

defecting than by cooperating. 

In the model we have described, we can consider those agents which provide good and 

distinct signals (requiring a larger number of language nodes) to be cooperators, and those 

which provide poor signals (requiring fewer or even no language nodes) to be defectors. 

If there is no benefit in defecting but some – even indirect – benefit of cooperation we 

should expect cooperation, as evidenced by success in communication, to succeed, even in 

the absence of spatial selection. Currently, defection does not benefit the agents in any 

way and so, even with a weakened spatial selection, cooperation should succeed in the 

population. 

5.5.1   Parameters and Settings 

This experiment is a repeat of the previous one (with integer representation), with only 

one change. The parameters are as listed in Table 5.6, except for the standard deviation 

which is set to 6.0. 
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5.5.2   The Effect of Large Neighbourhoods 

We display the results of nine runs with large neighbourhoods in Figure 5.8. 
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Figure 5.8: Coevolution with weakened spatial selection strength. 

There is greater variation in these results than previously observed. What appears to 

happen is that the evolution of language is not prevented, but it is slowed down. This will 

be due to a decrease in the selective advantage of being a good signaller. As the model 

only rewards agents directly for successfully interpreting signals, the benefit a good 

signaller might receive is indirect. Such a signaller might improve the fitness of a 

neighbour, and in turn be selected as a mate for that neighbour if the neighbour has been 

selected. That neighbour, being a successful receiver, will have a greater chance of 

selection. 

With larger neighbourhoods, an agent will receive few signals from a lone good-signaller 

within its neighbourhood. The signaller also has a lower chance of being selected as a 

mate by any of the agents it has provided with good signals. 

Thus, the advantages of cooperation are lessened, and the evolution of language inhibited. 

But with no advantage in defection, it is seen that in most cases the communication 

abilities and success rates of the populations do eventually improve and progress towards 

the values seen in the previous two experiments. 

The next step is to see the effect spatial selection has where there is a cost associated with 

being a good signaller. 



Chapter 5 – The Biological Evolution of Language    96  

 

5.6   Coevolution with  a Costly Language Ability 

As reviewed in Chapter two, there are costs associated with the ability to use language. 

Such costs can be added to the model by applying a fitness penalty to each agent 

dependant on the number of active signal production neurons, N, it possesses. Other than 

this simple change, no other modifications are required. 

For the experiments performed here, the fitness penalty, f(N), is: 

 2    )( NNf =  (5.9) 

This penalty has been arbitrarily chosen to penalise agents with larger numbers of active 

signal production neurons, to reflect the supposed adaptive costs of larger brain size. After 

evaluating an agent’s fitness (Figure 4.6), the fitness penalty is applied. The resultant 

fitness score is used when selecting parent agents to form the succeeding generation. 

5.6.1   Parameters and Settings 

This experiment repeats the experiment of Section 5.4, with the addition of a fitness 

penalty as described above. An integer representation is again used in the gene strings. To 

test the effect of spatial selection, the experiment is repeated for the following different 

values of neighbourhood standard deviations: 0.2, 1, 3, 6 and 12. 

5.6.2   Spatial Selection and Costly Language Ability 

Results from using a standard deviation of 1 or 0.2 are shown in Figures 5.9 and 5.10 

respectively. 

These results are clearly poorer than shown in Figures 5.6 and 5.7. The fitness scores 

shown are plotted after the fitness penalty has been applied, and are consequently lower 

than the actual communication success rate achieved. 
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Figure 5.9: Coevolution with a costly language ability, showing average 
fitness and nodes x 10 over 250 generations. Neighbourhood defined by a 
normal distribution of standard deviation 1. 
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Figure 5.10: Coevolution with a costly language ability. Neighbourhood 
defined by a normal distribution of standard deviation 0.2. Showing 
average fitness and nodes x 10 over 250 generations. 

 
A slow and fairly steady improvement is observed in all eighteen sets of results, and there 

is little difference between the results for the two different values of standard deviation. 

The average success rate (not fitness) over all nine runs for each value of standard 
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deviation is shown in Figure 5.11. The minor difference between the results is shown 

more clearly. With the smaller neighbourhood size, the force of spatial selection is 

stronger and the evolution of linguistic ability enhanced slightly. This result may not be 

particularly significant however, as it is taken from just nine runs under each set of 

conditions, and may be influenced unduly by stochastic effects. 
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Figure 5.11: Average success rates for costly communication with 
neighbourhoods of standard deviation 0.2 (top line) and 1.0 (bottom line). 

This seems to show that spatial selection does have an effect. For further evidence, we 

then repeat the experiment with increasing values of standard deviation. Figures 5.12, 5.13 

and 5.14 show the results for standard deviations 3, 6 and 12 respectively. 

 

0

20

40

60

80

100

1 51 101 151 201

 
0

20

40

60

80

100

1 51 101 151 201

 
0

20

40

60

80

100

1 51 101 151 201

 

0

20

40

60

80

100

1 51 101 151 201

 
0

20

40

60

80

100

1 51 101 151 201

 
0

20

40

60

80

100

1 51 101 151 201

 

0

20

40

60

80

100

1 51 101 151 201

 
0

20

40

60

80

100

1 51 101 151 201
0

20

40

60

80

100

1 51 101 151 201

 
Figure 5.12: Coevolution with a costly language ability. Neighbourhood 
defined by a normal distribution of standard deviation 3. Showing average 
fitness and nodes x 10 over 250 generations. 
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Figure 5.13: Coevolution with a costly language ability. Neighbourhood 
defined by a normal distribution of standard deviation 6. Showing average 
fitness and nodes x 10 over 250 generations. 
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Figure 5.14: Coevolution with a costly language ability. Neighbourhood 
defined by a normal distribution of standard deviation 12. Showing average 
fitness and nodes x 10 over 250 generations. 

Reviewing the results presented in Figures 5.9 to 5.14, it can be seen that as the 

neighbourhood size increases the average linguistic ability that evolves get progressively 

poorer. 
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With small neighbourhoods a significant improvement is observed in the number of active 

language neurons and in the average communicative success rate. With very large 

neighbourhoods, Figure 5.14, the population is unable to even maintain the initial level of 

linguistic ability. This is despite a very small fitness penalty for having only one active 

language production neuron – only one point of fitness. Under these conditions the 

average communicative success approaches a pure chance level of success of 1 in 8 or 

12.5%. 

These results show clearly the strong influence that spatial selection could have on the 

evolution of linguistic ability. The cost of such an ability is borne by the individual 

speakers, while the benefits only arise from the interactions of multiple speakers. Spatial 

selection affects the model in a number of ways. 

• During language negotiation, agents within the neighbourhood of good signallers will 

receive better signals, and can learn to interpret them successfully. 

It is also not required that all the agents in the population use the same signals, and 

it appears that during negotiation local clusters of signal dialects emerge. This is 

investigated more thoroughly in the following chapter. 

• During fitness evaluation, signals are received from agents within the neighbourhood 

of the agent under test. Thus the signalling ability or signals used by agents distant 

from the agent being evaluated do not influence the evaluation. 

• During mate selection and mating, once an agent has been selected for reproduction by 

fitness, its partner will be selected randomly from those within the same 

neighbourhood. 

The result of these effects is that the benefits a good signaller provides to its neighbours 

are more likely to be reciprocated – in that the neighbours will be more likely to use a 

compatible communication scheme, and will be more likely to pick the good signaller as a 

mate – where neighbourhoods are smaller. Thus the spatial selection can help overcome 

the fitness penalties suffered by altruistic individuals. 

The simulation runs described in this section all used an integer representation for the 

agent genes (Section 5.4). Using a binary representation (Section 5.3) does not alter the 

outcome in any significant way (other than appearance of discontinuities, discussed further 

below). While not repeated here, the results of simulation runs using the binary 

representation are discussed in (Livingstone and Fyfe, 2000) 
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5.7   Discussion 

5.7.1   Continuous versus Discontinuous Evolution of Language 

The model in Section 5.3 demonstrates the discontinuous evolution of linguistic ability. 

Due to the implementation details of the model, the evolution of linguistic ability proceeds 

more by large jumps than by incremental steps. Making a small change to the model, the 

evolution of linguistic ability proceeds in small incremental steps, Section 5.4. 

As noted in Section 2.4, there has been recent debate over whether the EoL has been the 

result of a single ‘macro-mutation’ or the result of a continuous process of gradual change 

and adaptation. The experiments presented seem to support each of these positions in turn. 

Rather than provide evidence to support one side of the continuity-discontinuity debate, 

the model appears to give some evidence against arguments that either is not possible. 

However, the continuity-discontinuity debate appears to be settling down and largely 

resolved in favour of a position that accepts a large degree of continuity (Aitchison, 1998). 

Even some of the most notable opponents of the continuous EoL have in recent years 

modified their arguments considerably, accepting elements of continuous evolutionary 

theory into their thoughts  (compare (Bickerton, 1984) and (Calvin and Bickerton, 2000)). 

The settling of this debate has also occurred with little regard to input from computational 

modelling based research. Our model demonstrates the successful use of communication 

in populations of heterogeneous language ability, but the scientific value of this alone is 

questionable. Whether the EoL was continuous or not, a time where individuals possessed 

different degrees of linguistic ability may have existed. 

5.7.2   Spatial Selection 

The model is perhaps more successful at demonstrating the need for additional selection 

mechanisms beyond natural selection to account for the EoL. That natural selection alone 

is insufficient in many cases to account for the evolution of altruistic behaviour is well 

known. Many studies have used theoretical or computational models to argue for the 

effectiveness of additional selection mechanisms in enabling the evolution of cooperation 

(several have already been cited, see Chapter 2). 

With the assumptions that language can be costly to the individuals equipped with the 

ability to produce language, as previously argued, it is perhaps to be expected that 

additional selection mechanisms are required. We have demonstrated the EoL with spatial 

selection. It is also possible that other mechanisms influenced the natural EoL, such as kin 
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selection (Hamilton, 1964). See Di Paolo (1999a) for a detailed exploration of the 

application of kin and spatial selection in artificial life models. 

Despite the existence of other models that show how spatial or kin selection can lead to 

the evolution of cooperation (as mentioned in chapter 2), we believe that this is the first 

demonstration of the effect of spatial selection on innate traits which have an acquired 

expression – an innate ability which can lead to cooperation only as the result of a learned 

behaviour. 

5.7.3   Redundancy and Linguistic Ability 

A further observation, which can be made when reviewing the results of the various 

experiments presented in this chapter, is that, in many cases, the populations evolve a 

redundant language capability. That is, the average number of language production 

neurons exceeds the number required to produce a different distinct signal for each of the 

possible meanings. 

The minimum required number of language nodes for successful communication is just 

three. In contrast, in those experiments where language negotiation/evolution succeeds, 

the average number of nodes exceeds this – as shown in Table 5.7. 

Experiment Average number of 
nodes 

Without cost, binary  representation 6.2 
Without cost II, integer representation 6.3 
With cost, sdev = 1 3.8 
With cost, sdev = 0.2 4.2 

Table 5.7 The average number of nodes (over all runs shown) in the 
language layer in agents from the final generation of experiments shown in 
sections 5.3, 5.4 and 5.6. 

That redundancy has an important role to play in language is recognised in linguistics. 

Without redundancy, signals would be very susceptible to disruption from noise in the 

environment, and too easily distorted (e.g. Crystal, 1987 p.146). This appears to be the 

main role of redundancy in existing explanations. Pinker (1994, p181) refers to Quine 

(1987) on this aspect of redundancy, who also argues that it provides a fallback or failsafe 

against disruption. 

There is no noise present in our model however, and for redundant signalling capability to 

emerge repeatedly, even when there is a cost applied to the signalling ability, it would 

appear to be serving some additional purpose. There are in fact two such possible benefits 

of redundancy in the signalling capabilities of the agents.  
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First, redundancy may allow the agents to successfully interpret different signals which 

are used to represent the same meaning by different neighbouring agents. Lass (1997, Ch. 

6) discusses this use of redundancy in language. ‘Linguistic junk’, as Lass terms it, allows 

speakers of differing dialects (or different variants of a common dialect) to communicate 

more successfully than would otherwise be possible as it may provide supplementary 

clues as to what is being said. We look at dialects in more detail in the following chapter, 

where we explore the effect that introducing neighbourhood limited communication has 

on the model. 

The second, related, explanation is that redundancy makes the signalling scheme/language 

learning task easier and more likely to lead to success (evidence of this is found in the 

results in Chapter 4 where it can be seen that the addition of additional – redundant – 

language nodes improves the agents’ success at learning a common signalling scheme).  

That redundancy in representational capability can improve learning is known to 

researchers in ANN (e.g. Barlow, 2001), but does not appear to be widely recognised as an 

important benefit of redundancy in human language learning – and is not mentioned by 

any of the works cited in this section. This perhaps warrants further, future, investigation. 

5.7.4   Investigating The Adaptive Benefits of Language 

Throughout the experiments presented in this chapter we have made the, not insignificant, 

assumption that language is used cooperatively, ignoring the selfish applications of 

language. In doing so we have also abstracted the actual use of language considerably 

away from any specific application, simply assuming that it is beneficial for agents who 

are able to comprehend the signals produced by others. To justify this assumption 

necessitates a further review of some relevant literature. This concentrates on other ALife 

work, in attempting to demonstrate the particular problems that may occur when 

attempting to relax this assumption in agent based simulations. 

First, the assumption is explicitly included by MacLennan (1991) in his innovative work 

on modelling the evolution of communication, where he limits his definition of 

communication to signals produced by individuals where the signal is of benefit (or, 

presumably, intended benefit) either to the signaller or to others of its group. While this is 

not part of the definition of language used in this thesis, the models here use a similar 

assumption, and reward listeners for correctly interpreting the signals they receive. 

This simplification may appear questionable, but relaxing the assumption of cooperative 

communication is problematic, not just for computer modelling but also in more 
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theoretical approaches to the evolution of communication (Bullock, 2000). Including the 

possibility that communication may be used for both deceptive and cooperative purposes 

in a model of the evolution of language will lead to a complicated model, difficult to 

develop and to interpret. Some means of determining the honesty of different agents and 

the degree by which agents trust other agents would be required. This is far from the 

minimal models that we seek to build, and beyond the scope of this thesis. 

In Chapter 2 we reviewed the work of Krebs and Dawkins (1984) that illustrates some 

situations that challenge the assumption the communication is necessarily cooperative in 

nature – such as manipulative signals that benefit the signaller but not the receiver. A 

possible resolution of this is to assume a distinction between cooperating in the 

development of a shared language versus actual cooperative behaviour (Grice, 1975; Lee, 

2000). To be able to communicate at all, to cooperate or to compete, requires the 

cooperation in the distinct process of language negotiation. To some extent, this avoids 

rather than solves the problem that real or simulated agents should be capable of using 

language for non-cooperative ends. Whether agents are cooperating or competing, their 

ability to understand linguistic communication is indicative of their ability to use language 

for their own benefit. 

5.7.5   Embodied Communication 

Alternatively, we might accept that the assumption of cooperative behaviour is required to 

make the construction of our models tractable, but might not wish to reward agents for 

simply being able to understand the signals generated by each other. It may seem more 

realistic, and somehow better, to have models in which the real world benefits of language 

use are represented more explicitly than in the model which has been presented in this 

chapter. 

Rewarding the successful replication of internal states – an abstraction of the ability to 

understand what message has been sent – has to be replaced by somehow rewarding the 

external behaviour of agents, this behaviour being affected by attempted communication. 

This requires ‘embodying’ the agents in some form of artificial environment to some 

extent (some examples follow). Success at tasks within the artificial world – possibly 

finding mates or gathering resources – leads to improved reproductive chances. Where the 

use of communication can lead to more successful behaviours, it should be possible for the 

communication strategies or abilities to evolve. 

This approach has its own limitations as the following examples help illustrate. 
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Werner and Dyer (1991) evolved communication in an artificial ecology in which a 

communication protocol allowed immobile females to emit signals to guide blind males to 

them for mating. Mating and reproduction occurs when the task is successfully solved, 

rather than relying on external measures of fitness. The authors claim that the XGA – a 

genetic algorithm with mating the result of success in the artificial environment – is more 

realistic than arbitrary fitness measures. The lack of realism in the design of the model 

might challenge this idea, however. Additionally, signalling can serve only one purpose in 

this model – and this is predetermined, with tightly constrained sets of possible signals and 

responses.  

The environment is such that matching signal/response pairs will lead to greater success at 

the mating task. There is no room for alternative strategies to evolve which might lead to 

greater success other than to communicate. Poor communication will not necessarily lead 

to failure however as a lucky male might still find a female anyway. But overall, this is the 

same as what is approximated by an external fitness function with roulette wheel selection, 

to the extent that it is not clear that any significant difference would occur by replacing the 

XGA with such a selection scheme. In both, successful communication leads to higher 

chance of reproduction, and in both it is possible for poor communicators to succeed 

nevertheless. 

A work which combines the embodied evolution of communication with a non-embodied 

selection mechanism – in this case one based on elitism – is presented by Cangelosi and 

Parisi (1998), who evolves language in a population of ANN. The ANN based agents 

move round an environment in which there are mushrooms of poisonous and nutritious 

varieties. The task selected for language learning is for agents to be able to inform each 

other whether mushrooms are edible or are poisonous (as the ANN agents consume 

mushrooms they gain fitness rewards or penalties accordingly). Once all have had a period 

of testing in the artificial world some will be selected for reproduction according to their 

fitness. This model successfully demonstrates the evolution of signalling in an embodied 

model. Yet it is unclear what effect on the results, if any, is achieved by having the agents 

move around an environment. The learning task, and the decision to eat or reject 

mushrooms could equally well be undertaken without this extra level of detail, leaving an 

equivalent minimal model. 

Despite the assertion of Werner and Dyer that embodied models are required for 

modelling the evolution of communication, there is a significant limitation, one that is 

present in these models. In these the communication is tied to a particular behaviour, 
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chosen by the experimenter. If we are attempting to explain the evolution of language, 

then this could be as serious a problem as not having any specific adaptive benefit from 

the use of signals. Demonstrating how language might have evolved to serve a particular 

function borders on presenting a ‘just-so story’, proclaiming the original reason for the 

evolution of language, even though this may not be the intent of the author.  

Further, the constraints in such models are such that by providing only one possible 

benefit of successful communication, and by enabling the emergence of language, the 

result is largely pre-determined and predictable: that language/communication can evolve 

to provide the stated benefit. Negative results provide a useful contrast and, as noted by 

Hurford (1992), are required to highlight what the requirements are for positive results, 

but such failures to evolve communication or language are missing from many of these 

models.  

One reason for the lack of negative results is that there is no cost associated with 

communication or cooperation. If communicating is free, and cooperation brings no loss 

of fitness but successful cooperation brings benefits then the evolution of communication 

or language is to be expected – particularly given the constraints placed on the range of 

possible evolutionary changes. 

Accepting the great complexity of arguments over the origin of language ability in humans 

(as reviewed in Chapter 2) and the very many functions it serves, embodying language 

such that it provides a single particular benefit is no better than making the sweeping 

assumption that language is of benefit to those who use it (to transmit or to receive 

information). Such embodied models provide a host of alternative possible explanations 

for the evolution of language with little way of choosing between them. 

The concept of building a model which allows agents to evolve communication to fulfil a 

wide variety of uses, which individually and combined provide adaptive benefits but are 

not predetermined, is not inconceivable. It is, however, considerably more complex than 

any model which has been implemented to date. Attempts to embody communication in 

an environment without a predefined role or purpose have to date had little success (e.g. 

Werner and Dyer, 1993). 

This relates to problems in using ALife as a means to understanding the evolution of self-

replicating systems as noted, at some length, by Taylor (1998). The environment and the 

rules governing interaction and replication provided by the computer program constrains 

the possible evolution that can occur, even where the results surprise the experimenter 
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who built the model. To evolve language in ALife, a model must first be built in which 

language can evolve. 

The lack of clear benefits of embedding models compares poorly with the advantages of 

not embodying the communication, which can be significant in time spent developing and 

running simulations. As argued, a lot of what occurs in some embodied models is simply 

‘window dressing’, which, stripped away, may leave an equivalent, simpler, model 

without embodiment or the attached overheads of such modelling. 

So, while it may be attractive to remove as many assumptions as possible, and to embody 

a simulation of evolution within a ‘realistic’ model that includes an environment modelled 

on reality, doing so does not necessarily improve a model. With the additional 

complications that arise it is quite reasonable to fall back on some common assumptions. 

In modelling the evolution of language it is possible to reward successful use of language 

without holding that all language is cooperative or believing that merely understanding 

language confers a benefit. But such simplifications can be built into models without 

necessarily compromising the models. 

5.7.6   Limitations and Shortcomings 

As should be clear, the successful application of computer models is far from being a 

panacea for the difficult problems surrounding the understanding of the EoL. To be best 

able to use such models constructively it is important to appreciate their limitations. 

As noted above, computer models are good for demonstrations of how different uses of 

language provide benefit – but they are not much good for proving why and how language 

evolved. In the EoL in Homo sapiens, historical accident may have played a large role, 

and many distinct adaptations to different environmental pressures appear to have had 

some role in pre-disposing our hominid ancestors to language (Deacon, 1997). 

Over the course of time a large part has been played by historical accident and serendipity 

– what makes the evolution of language interesting to scholars is that it occurred in the 

evolution of Homo sapiens alone amongst all the species that exist in the world. With such 

a large part played by chance, it is unlikely that a computer model will ever conclusively 

demonstrate the precise conditions that led to the emergence of language. A better 

understanding is more likely to come from the rare finds of fossils of our hominid 

ancestors, from which much of the current knowledge about the evolution of language, 

and the required physiology to support it, is derived. 
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A particular shortcoming with the model used in this chapter for modelling the EoL is that 

only very limited evolution is possible, with a small and closed set of possibilities. A 

consequence of this is that it is easy for language to emerge in this model when the costs 

favour its emergence, but it is much harder in nature where the search space is open ended. 

5.8   Summary 

In this chapter the experimental model described in Chapter 4 was used in a series of 

experiments investigating the co-evolution of language and physiology. The first two 

experiments show populations of agents evolving to be capable of using better signalling 

schemes. As argued, this is the first known demonstration of the evolution of 

communication in populations where the capability to use learned signals evolves, rather 

than simply the signals themselves, or sets of initial weights. Then, comparing the models 

it is clear that depending on the details of implementation, models may be constructed 

which support arguments on both sides of the (now somewhat settled) continuity-

discontinuity debate. This highlights some of the problems discussed in the previous 

chapter, and expanded in this one – of how the implementation of an ALife model can 

impact on the results in undesired ways, and of how different implementations of the same 

model might give quite different results. In this case, different ways of representing genes 

themselves leads to contradictory outcomes. 

More satisfying is the subsequent demonstration of the requirement for some additional 

means of selective force – such as kin or spatial selection – for the successful emergence 

of the ability to use language. It is known that language both incurs many additional costs 

as well as serves many functions – and this work supports theories that see the social 

nature of hominids as being key to subsequent evolution of language. Where a number of 

authors point to the social functions that language serves as being responsible for its 

emergence (Chapter 2), this work dovetails with the complementary notion that without 

suitable social groups existing the fitness costs could easily prevent the emergence of 

language. 

Another observation was that where language evolution was successful, the agents 

evolved such that they had redundant language capabilities. While some authors have 

noted the different roles of redundancy in language, it is generally ignored in most work 

on the EoL. The spontaneous emergence of redundant linguistic capabilities in our model, 

and the effect it has on agent fitness, emphasises the importance of redundancy. This 

significant observation warrants further, future, investigation. 
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Finally, it was also noted that different dialects of signalling schemes emerged in 

populations where neighbourhoods limited the communication interactions. This 

spontaneous emergence of dialects is investigated more thoroughly in the next chapter 

where attention is turned to the cultural evolution of languages.  





Chapter 6 – The Cultural Evolution of Languages    111  

 

Chapter 6    The Cultural Evolution of Language and The 

Emergence and Maintenance of Linguistic Diversity 

6.1   Introduction 

Despite the somewhat negative conclusions from the previous chapter, there is one 

interesting result that can be observed. A listing of the signals produced by the different 

agents in the population shows that not all agents are using the same signals, as shown in 

Table 6.1, which displays some of the signals generated by a sub-section of the population 

from one experimental run. The full table, showing all signals produced by all agents is 

included in Appendix A. 

Agent Nodes Meaning 1 Meaning 2 Meaning 3 Meaning 4 
0 6 + + + + - + + - - - - + - + + + + + - - + + - -

1 6 - + + - - + + - - - - - - + + + + + - - + + - -

2 6 - + + - - + + - - - - – - + + + + + - - + + - -

3 6 - - + - - + + - - - - + - - + - + + - - + + - -

4 5 - - + - - + - - + - - - + - + - - + - -
 

50 6 - - - - - + - - + + + + + + + + - + - - + - - +

51 7 - + – + - + + - - + + + - - + + + + - + + - - + - + + +

52 7 - - – + - + + - + + + + - - + + + + + + - - + + - - - +

53 7 - - – + + - + - + + - + - - + + + + + + - + - + - + - +

54 7 + + – + - + + - + + - - - - - + + + + + - + - + - - + +

Table 6.1: Reviewing the signals from one set of results from one of 
experiments shown in section 5.4 

While adjacent agents use very similar signals, there appear to be greater differences 

between the signals used by non-neighbouring agents. It appears as if signal ‘dialects’ 

have emerged (also see Section 4.9.1). This is contrary to the previously reported results 

of Nettle (1999a) and arguments of Milroy (1993) (see section 2.5.2), which hold that only 

where diversity provides an adaptive benefit will it emerge. There is no benefit for using a 

different signal than a neighbour’s in this model, however. On the contrary, a situation 

where all agents use the exact same signals would intuitively provide the maximal benefit 

to the agents. 

A reformulation of the previous model to allow the evolution of signal diversity to be 

studied in isolation, without any possible influence that the evolution of the network 

structure may exert, is required to examine this more closely. 

This is presented in this chapter, and we find that it supports the conclusions drawn from 

the initial observation, prompting a number of experiments to examine this phenomenon. 
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This provides some evidence for the possibility that much of human linguistic evolution is 

adaptively neutral, and arguments regarding this are also presented and reviewed in more 

detail. 

6.2   An Initial Test 

The first reformulation forms a single homogeneous population of agents, and allows them 

to negotiate a communication scheme over a number of training rounds. Only one 

generation is used, and the training algorithm for language learning is unaltered from the 

previous chapters.  

A homogeneous language population with 4 language units is trained for 5,000 rounds, 

starting from random signals. The long training time allows a very high degree of 

coordination amongst the agents but, due to the local communication, does not necessitate 

a common language over the whole population. It is observed that large neighbourhoods 

negotiate a common signal for a given meaning, but distant agents may have significant 

differences in communication schemes used. At the boundaries between neighbourhoods, 

agents may exist which interpret signals from different schemes correctly. This is shown 

in Table 6.2. The three agents included each attained a maximal fitness score, interpreting 

all signals correctly. 

Meaning 0 Meaning 4
Agent 11 1 -1 1 -1 1 Agent 11 1 1 -1 -1 -1
Agent 12 1 -1 1 -1 1 Agent 12 1 1 1 -1 -1
Agent 13 1 -1 -1 -1 1 Agent 13 1 1 1 -1 -1

Meaning 1 Meaning 5
Agent 11 1 1 -1 1 -1 Agent 11 1 1 -1 -1 1
Agent 12 1 1 -1 1 1 Agent 12 1 1 1 -1 1
Agent 13 1 1 -1 1 1 Agent 13 1 1 1 -1 1

Meaning 2 Meaning 6
Agent 11 1 -1 1 1 -1 Agent 11 1 -1 1 1 1
Agent 12 1 -1 1 1 -1 Agent 12 1 -1 -1 1 1
Agent 13 1 -1 1 1 -1 Agent 13 1 -1 -1 1 1

Meaning 3
Agent 11 1 -1 -1 -1 -1
Agent 12 1 -1 -1 -1 -1
Agent 13 1 -1 -1 1 -1

Table 6.2: The signals (including bias) used by three adjacent agents for 
seven environmental states. All three scored maximum fitness, interpreting 
all signals correctly, despite differing communication schemes. 

This appears to show the emergence of different signal dialects within the population. If 

this can be compared to human dialects, then it is possible that the model can be used to 

make inferences about the causes and formation of human dialect diversity. However there 

are no obvious reasons why dialects should form in this model, and there is no motivating 

factor to encourage the formation of dialects. This contradicts some of the views reviewed 



Chapter 6 – The Cultural Evolution of Languages    113  

 

in section 2.5 and directly challenges the results of Nettle (Nettle and Dunbar, 1997; 

Nettle, 1999a; Nettle, 1999b) that demonstrate the need for a social function for the 

successful emergence of dialect diversity. 

It is possible to draw on these results to refute Nettle’s claims and with further study, a 

stronger case can be made, but the model as applied in the previous chapter is not entirely 

suitable for several reasons. Firstly, it is difficult to visualise the results – large tables of 

data are required to review the dialects formed in one generation, and it would not be 

easily possible to compare the dialects over a number of generations. 

Also, there may be some interference between the evolution of the agents’ linguistic 

ability and languages learned – a few individuals with more limited language layers than 

their neighbours may effectively hamper communication and learning between more 

capable surrounding agents. Linguistic boundaries may be so formed, skewing the 

experimental results. 

Therefore some changes are necessary to remove any possible unwanted effects of having 

structurally non-homogeneous populations and to improve the transparency of the model. 

The core details of the model remain the same, however. 

6.3   Human Linguistic Diversity 

6.3.1   Patterns of Diversity 

Linguistic diversity has already been discussed to some extent in Chapter 2, but a further 

overview is called for before proceeding. Only the briefest of summaries is presented here; 

more extensive descriptions can be found in the literature (e.g. Crystal, 1987; Trudgill, 

1995;  or Chambers and Trudgill, 1998). Many of the issues relating to the EoL do not 

apply, and language diversity is itself a facet of human language that has been studied 

extensively, both with and without relation to the EoL. 

Crystal (1987) presents an overview of some key characteristics of human language 

diversity. One important finding of dialectology is that the boundaries between different 

dialects or languages are not always easy to define. Geographically close dialects may 

have sufficiently similar grammars or lexicons to allow speakers from each dialect to 

understand each other quite well, despite differences in the dialects. Geographically 

distant dialects may not be at all mutually intelligible, despite being at either end of a 

chain of dialects where every dialect is intelligible to speakers of the neighbouring 

dialects, Figure 6.1. Several such dialect continua exist in Europe, blurring the boundaries 
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between the different languages within the Germanic, Scandinavian, Romance and Slavic 

language groups. 

A  B     C      D        E  

Figure 6.1: A schematic dialect continuum from dialect A to dialect E, 
showing some degree of mutual intelligibility between adjacent dialects 
(After Crystal, 1987, p25) 

 
   

 
Figure 6.2: Dialect boundaries (After Crystal, 1987, p28) 

6.3.2   Linguistic Boundaries 

The geographical boundaries between dialects may not be easy to determine, and these 

boundaries themselves influence the future change and diversification of languages. 

Dialects may differ in their lexical, semantic, morphological or phonological features. 

Sampling the language use of individuals in some area results in a map, on which 

boundaries may be drawn to show where language use is distinct on either side according 

to a particular linguistic feature. These boundaries are termed isoglosses. 

It may be expected that these lines will be largely coincident, forming clear dialect 

boundaries. Often, however, the boundaries are not even nearly coincident, as individuals 

near a boundary may use differing mixtures of lexical and grammatical items from the 

surrounding major dialects, Figure 6.2. Only when viewed at a more distant scale is it 

possible to determine distinct dialect areas – with a poorly demarcated boundary between 

them. 

As if this picture were not complicated enough, it is also widely recognized that no two 

individuals use language in the exact same way – in a sense every individual speaks their 

own particular dialect, or idiolect. What is viewed as a dialect is merely some norm 
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derived by sampling many idiolects. This, as we shall see, is highly significant when 

examining or attempting to explain linguistic diversity. 

Sharp linguistic boundaries that do exist often coincide with significant geographical 

boundaries, such as mountain regions, or with strong cultural boundaries (c.f. Chambers 

and Trudgill, 1980, p111). Where such boundaries exist, limiting the interactions of 

individuals across the divide, there may be many coincident isoglosses splitting the sides 

and a resultant lower degree of mutual intelligibility.  

As well as linguistic and other cultural evidence that some cultural or physical barrier 

really does inhibit and limit interactions, genetic evidence can corroborate this. For 

example, studies in Africa have shown that certain genetic markers act as good predictors 

of the language group of a subject’s spoken tongue (Renfrew, 1998). Where the 

boundaries limiting interaction are maintained by linguistic rather than cultural 

distinctiveness, language is itself the boundary working to maintain linguistic differences. 

6.4   Analytical Models of Linguistic Diversity 

While the features and characteristics of language diversity described in the previous 

section are well known, it is the nature of the mechanisms which give rise to them that we 

hope to illuminate and explore with the use of artificial life based models. Before we 

proceed, we will consider the contribution of analytical techniques using mathematical 

models, reviewing a few which have been developed for this purpose. 

Like simulation models, mathematical models require some amount of abstraction and 

simplification (Chapter 3). A mathematical model of the evolution of language diversity in 

a large, spatially distributed, population with a large number of linguistic variables would 

not be tractable, and has not been attempted in any of the models which are reviewed here. 

The models that are possible are more constrained. For example, Pagel (2000) presents 

two models of interest. The first models the growth of linguistic diversity over time. The 

unit of this model is ‘a language’. No notion or representation of linguistic features, 

population size or growth or geography exists in the model. While the model appears to 

describe the growth in the number of languages over time, no information about how or 

why languages evolve may be gained. 

The second part explores the different number of languages that exist within closely 

related language groups. Maths is used to determine whether the difference is statistically 

significant. But for an explanation, Pagel resorts to means outside of mathematics. The 

analytical approach has here been used to describe language evolution, and a 
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demonstration made of how appropriate maths might be used to highlight a particular 

spread of language as being unusual and requiring further, non-mathematical, explanation. 

6.4.1   The Niyogi-Berwick Model 

Perhaps more ambitious is the model developed by Niyogi and Berwick (1995), 

henceforth the NB model, and generalised in Niyogi (2002) – which additionally relates 

the NB model to the Cavalli-Sforza and Feldman (1981) model of cultural evolution – to 

include spatial organisation of the language users.  In order to understand the latter, a 

fairly detailed review of the former is first required. As well as being highly relevant, this 

model has been widely reviewed and accepted (e.g. Lightfoot, 1999, p102), justifying the 

extended treatment it is given here.  

In Niyogi and Berwick (1995) a dynamical systems model of grammatical change is 

presented. In this model, two grammatical variants compete in a population. This model 

works on the basis that children are exposed to sample sentences produced by their 

parents, and that the children then acquire their own language grammars according to the 

sample presented and the learning algorithm used. It is then possible to derive 

mathematically the progress of competition between two grammars. 

The actual competing grammars are taken from human languages, and may vary in 

different factors, such as head-first or head-last or verb position. For each variant, the set 

of possible grammatically correct sentence structures is generated. For example, the set of 

possible sentence types of the -V2 grammar (non-verb second structure of modern 

English, as used as an example in Niyogi (2002)) is shown below. 

L1 = { S V, S V O, S V O1 O2, S Aux V, S Aux V O, S Aux V O1 O2, 
Adv S V, Adv S V O, Adv S V O1 O2, Adv S Aux V, Adv S Aux 
V O, Adv S Aux V O1 O2 } 

Figure 6.3. The –V2 grammar corresponding to modern English as 
represented in the NB model, which uses only degree-0 sentences (without 
recursion or additional sub-clauses). S = subject, V = verb, O1 = direct 
object, O2 = indirect object, Aux = auxiliary, Adv = Adverb 

For any two competing grammars, a number of the sentences may be common to both, 

while others will only be parsable in one or the other. The common sentences are 

considered ambiguous, in that speakers of either grammar may produce them. The Trigger 

Learning Algorithm (Gibson and Wexler, 1994), TLA, is the learning algorithm used. In 

this, individuals start with a randomly selected grammar, which is used unless a sentence 

which cannot be parsed in it is encountered. When this happens, an attempt is made to 
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parse the sentence with a different random grammar, and if this succeeds the new 

grammar is retained. 

In a competition between two grammars L1 and L2, if L1 has a high proportion of 

ambiguous sentences, a, which are also valid L2 sentences, while L2 has few ambiguous 

sentences, b, then L2 will be favoured, and over time the proportion of the population 

using L2 may rise. This relies on the assumption that all sentence types have an equal 

likelihood of occurrence. As the ambiguous sentences are those that are valid in both 

grammars, the proportion of ambiguous sentences only differs where the grammars have 

different sized sets of possible sentence types – and the grammar with the larger set will 

have the smaller proportion of ambiguous sentences. In all cases, the competition evolves 

to a single fixed point, and this is derived for the situation where language learners learn 

from exactly two randomly selected examples, and in which there are an infinite number 

of examples. 

If a = b, over time the competition will reach the fixed point of exactly half of the 

population using each variant. If a < b, the fixed point will be one in which L1 is used by 

over half of the population or used by the entire population where an infinite number of 

learning examples are presented to learners. The NB model is successful in reproducing 

the logistic, s-shaped curve of language change, often observed in linguistics (see 

Aitchison, 1991). 

Niyogi (2002) then generalises the model so as to include spatially distributed populations. 

It is this that is of particular interest here, where we are considering the evolution of 

dialect diversity.  However, to make the basic maths tractable the spatial model assumes 

that all the speakers of L1 are in one grouping adjacent to the L2 grouping, and in every 

generation this separation is enforced. The outcome of the model is similar to that of the 

previous model, with the competition between the two dialects evolving to a stable fixed 

point. Due to the neighbourhood model used, languages are never completely eliminated 

however, as at the extremes there are always children who are not exposed to the other 

competing language. An alternative neighbourhood model, which does not arrange the 

speakers into the two homogeneous neighbouring groups, is postulated but the equations 

for this are not derived. 

6.4.2   Criticism of the Niyogi-Berwick Model 

Some weaknesses of this model are highlighted in Niyogi (2002) itself. In particular the 

unlikely possibility that the more complex and unusual sentences in L1 occur with the 
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same frequency as the simple ones is central to the derivations and progress of competition 

between two grammars in this model. Attempts to apply the model to real instances of 

grammatical change seem problematical if this assumption proves to be inaccurate. 

Further problems are described by Briscoe (2000c), who highlights some of the problems 

of using an analytical macro-model of a population rather than a stochastic, computer 

based micro-model. Using a stochastic simulation model, Briscoe argues that we should 

expect different results from the NB model – at least until the population becomes very 

large. In a micro-model stasis, such as represented by the fixed point end result in the NB 

model, is very improbable. Briscoe argues that, as yet, no clear advantage to macro 

modelling for realistic G (class of grammars), A (learning algorithms) and P (probability 

distributions) is demonstrated by the NB model. The key weakness of the NB model is in 

abstracting away the sampling issues – and is particularly bad for small groups. Additional 

important factors, such as movement, birthrate, proportions of speakers and the resultant 

linguistic mix of population, are either over-simplified or not represented at all in the 

model, and these can be represented more easily in stochastic than in analytical models.  

Additionally, Clark (1996) shows that the logistic curve found in the NB work appears 

only where the selection is between exactly two grammars, a failing noted in Briscoe 

(2000c). Later in the chapter we will review the alternative stochastic models presented in 

Briscoe (2000a).  

That the NB model always evolves to a fixed point, from which no further change or 

innovation will occur is obviously unrealistic. One of the claims in Niyogi and Berwick 

(1995) is that the NB model can be used to evaluate theories of grammatical acquisition 

(such as the TLA). It is unlikely that the NB model can satisfy this claim, requiring as 

many assumptions as it does, being limited to competition between two, and only two, 

distinct grammars, and lacking much of the richness of human interaction. 

The generalised spatial model has some of its own problems. A poor grammar will never 

be eliminated completely – even though almost all of the population has converged on a 

different grammar. Such persistence is unlikely in general in real languages. Equally 

unlikely in real languages, a ‘better’ grammar with one speaker in a population of millions 

will eventually take over the population – leaving the previous common language a tiny 

minority tongue. This emphasises that although the model has been generalised to include 

a spatial dimension it completely fails to represent a language ecology (see Section 2.5.5) 

in any meaningful way. 
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6.4.3   The Cavalli-Sforza and Feldman Models 

As noted in the previous section, Niyogi (2002) relates the NB model to the Cavalli-Sforza 

and Feldman (CS-F) model of 1981. Their analysis shows that both models have directly 

comparable outcomes. Despite minor variations, the results of both are qualitatively the 

same. No further analysis of the model is presented. 

Here we present our own analysis using a simpler, earlier CS-F model, (Cavalli-Sforza 

and Feldman, 1978), to illustrate how the use of analytical models can lead to suspect 

conclusions. In this earlier model, the cultural traits acquired by an individual are 

determined by a weighted sum of the traits existing in the previous parent generation. The 

cultural trait, X, acquired by the ith agent in a population at time t+1 is determined by 

equation (2-1) (Chapter 2). 

So the cultural traits acquired by any member of a population is determined by the cultural 

traits of those around them – weighted according to the amount of contact between 

individuals. Cavalli-Sforza and Feldman (1978) present some further analysis showing the 

qualitative effects of different transmission models and assumptions (one or two parents, 

and varying the amount of influence from other members of the parent generation) on the 

degree of variation that survives in the model. In a one parent model where each child 

learns only from their parent, it is noted that the variance will grow linearly over time and 

that eventually there would be no cultural homogeneity. That influence from other 

members of the population may be the mechanism which prevents this is postulated, but 

not shown analytically (other than for the case of two parents influencing the traits learned 

by children). 

In applying this model to the eol we are interested in the case where the population around 

a learner, not just the learner’s parents, assert influence over the acquisition of cultural 

traits – in this case language. We can say that the grammar acquired by the ith member of 

some population will be: 
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This is analytically intractable if the weights wij vary for every pair of individuals within 

the population. If 10 ≤≤ ijw , then two agents i and j might exert a very strong influence 

on one another or may be entirely disconnected. Arbitrary values of wij could include 
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situations where a single population actually contains two distinct and unconnected 

populations. While this example is somewhat extreme, a random allocation of weights 

would more likely result in some highly connected clusters of agents, and other less well 

connected agents (similar to the social networks presented by Milroy (1980)). 

Simplification is required if these equations are to be solved mathematically. If we assume 

uniform contact amongst the whole population, despite the implausibility of such 

uniformity, we can lose the w term from the equations altogether. This simplifies the 

equation considerably: 
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It should be clear that unless εi is large, the acquired grammars for any two agents could 

be only trivially different. A very strong averaging force is in effect, and as population 

replacement proceeds, variation from the average grammar would be small and would 

only survive at all as a result of the small errors, εi, introduced in learning. 

6.4.4   Summary of Analytical Models 

The analytical models discussed have some important differences, but possess underlying 

similarities in their treatment of the eol. 

In attempting to provide a mathematical model of complex phenomena, many real world 

issues are simplified or removed altogether from the models. Spatial organisation is lost in 

most of the work, treating the populations as inhabiting the one common space. 

The NB model is used to examine what happens when there are two competing grammars, 

and comes to some questionable conclusions (6.4.2). It also shows evolution favouring 

grammars with a grammatically selective advantage. This implies that selectively neutral 

changes cannot ultimately succeed in a population. The model also limits the possible eol 

as the population can only choose between two grammars – the grammars themselves are 

unable to change or evolve. 

The presented CS-F model (6.4.3) presents an equation for how an individual trait 

possessed by a single individual within a population may be determined according to 

cultural influences – where the traits themselves exhibit no selective advantages. This 

allows each member of a population to possess a large number of different traits. In 

simplifying the model such that, for any initial distribution of trait values, it would be 

possible to calculate which particular values succeed in the population we find that this 

results in a model in which the population always converges on the average trait value. 
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This result showing that diversity would be expected to disappear from the population is 

not a necessary consequence of the model itself – but is due to the additional assumptions 

introduced to make the maths tractable. And indeed, the results of the work on the NB 

model may be the result not of the model itself, but consequences of the many additional 

assumptions and simplifications introduced to make the model solvable (Niyogi, 2002). 

6.5   Modifying the Artificial Life Model for Exploring the Emergence of 

Linguistic Diversity 

Having reviewed some of the attempts to mathematically model linguistic change and 

diversity, and highlighted some of the weaknesses of the approach – principally centred 

round the absence of any richness or randomness in the interactions of individuals – we 

proceed to extend the Artificial Life model presented in the last two chapters. Several 

modifications are required to allow an exploration of change and diversity, and these are 

explained next. 

The most important change made is to remove the evolution of linguistic ability from the 

model. This simplifies the model, allowing more focus on the evolution of linguistic 

diversity without any interference from evolving or heterogeneous language abilities. 

These could otherwise distort or confuse the results by providing an additional potential 

source of linguistic diversity. Any linguistic diversity which emerges in the altered model 

can then not be due in any part to the influence of the EoL. This also results in a more 

realistic study of the effects of cultural evolution, as the eol works on a much faster time 

scale than the EoL. 

Removing EoL from the model is achieved simply by fixing the number of active 

language production neurons, N, for all agents to a single arbitrary value. The selection of 

this value can help overcome another problem with using the model as previously 

described. It should be apparent, considering Figure 6.1, that comparison of the different 

signals used by a whole generation of agents will not be simple. Even less simple would 

be an attempt to compare signals used by agents over a great many generations. Some 

means of easy visualisation of results is required. Setting the value of N to 3 can enable 

visualisation. 

Each signal will be exactly three bits long, allowing a repertoire of eight distinct signals in 

total. Using the individual bits, which compose a signal, to set red, green and blue colour 

values, each signal generated by an agent can be represented by a distinct colour. 
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Colour Plate 6.1 lists the colours that represent each of the eight possible signals. To 

obtain these colour values, the bipolar signal vectors are transformed to binary vectors – 

with all –1 values being reset to 0. For the remainder of this chapter, we treat the signal 

vectors as being binary vectors although this is solely for convenience for the consequent 

ease of mapping to colour values. 

Allowing for redundancy in the signal ⇔ meaning mappings, the number of possible 

meanings, M, and signal bits, N, have to be set such that M =< 2N. As previously 

explained, for purposes of visualisation, N = 3, thus we require that M =< 8. M was 

arbitrarily set to 3.  

The model parameters and settings are summarised in Table 6.3. 

 Parameters for coevolution (using standard binary representation) 
 Learning Rate, α 0.2 Training rounds, t See below 
 Population 120 dα (α / t ) 0.2 / t 
 M 3 Standard Deviation 1.5 
 N 3 Mutation Rate 0 

Table 6.3 Parameters and settings 

With no mutation, the population maintains a homogeneous signalling ability, but 

otherwise the implementation of individual agents is unaltered. With no evolution of the 

signalling ability, there is also no selection of individuals for reproduction. Success of 

communication can still be measured, but is no longer used as a fitness measure for 

mating. It is no longer the biological evolution that is of concern, but a cultural one. 

Within the model, child generations are created automatically, but signals are no longer 

learned simply from peers. Communication and learning across generations is required to 

investigate the eol. The cross-generational learning of signals is discussed in more detail in 

the next section. 

6.6   Experiment 1: Emergence and Maintenance of Dialects 

The first experiment is simply to verify the observation previously made – that dialects 

emerge in the model as a result of the learning interactions between the agents. 

6.6.1    Experimental Setup 

Within this and the following experiments, it is required that, during learning, training 

examples are provided by a parent generation to allow the signal repertoires to be learned 

over time. Agents are selected from the parent generation according to spatial distance 

from the learner. An agent occupying the same position as the learner, but in the parent 
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generation is at distance 0. Again, selection is based on a normal distribution centred at 

this point. 

In human society language is learned from peers as well as elders, and this can be included 

in the model, by providing a set number of training examples from the parent generation, 

and a number from the current peer generation. While this makes the model more ‘human’ 

it does not necessarily follow that it will have any significant impact on the results. 

This experiment was run with two model configurations: one with learning from the 

parent generation only, and one with learning from the immediate parent generation and 

the current (peer) generation. Table 6.4 details the number of training rounds applied in 

each case. All signals are initially random before training. 

Additional Parameters 
Parent and peer learning Learning from parents only 

Parent generation training, tp 40 Training rounds, t 40 
Current generation training, tc 20  
Table 6.4 Parameters for parent and peer learning and parent only learning. 

6.6.2   Results 

6.6.2.1 Visualisation 

For each experimental run, three coloured columns are produced. A single row of one 

column shows the signal used (according to the colour scheme shown on Colour Plate 6.1) 

by each agent in one generation to signal a particular meaning. Successive generations are 

shown below each other to form the columns. Thus, column 1 shows the signal used to 

represent ‘meaning’ 1 by each and every agent over some number of generations. Column 

2 shows the signals for meaning 2 and column 3 the signals for meaning 3. 

The position of an agent in the spatial array is the position used to plot the signals 

generated by that agent, as demonstrated in Figure 6.3. With plots such as that shown, the 

existence of local dialects can be observed across the population, the lifetimes of which 

can be viewed down the columns. 
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Figure 6.3. Plotting the signal used by each agent in a generation for one of 
the ‘meanings’ results in a line. Showing successive generations reveals the 
changing use of signals for the meaning over time. This diagram shows the 
plots for each of the three meanings, showing the evolution of the 
communication schemes. Also see Colour Plate 6.2. 

6.6.2.2 Experimental Results 

Experiments were run under both sets of conditions described in section 6.6.1. Exemplar 

resultant plots are shown on Colour Plates 6.2(a) and 6.2(b). The diversity obtained is 

maintained for many thousands of generations – more than can be viewed in a single plot. 

The results shown in Colour Plate 6.2 each show one thousand generations of language 

evolution – but the generations shown in every case are the 99,000th to the 100,000th 

generations. 

For the results shown the neighbourhood size is determined by a normal curve of standard 

deviation 1.5. Other values were used, with similar results – larger standard deviations 

resulting in dialects covering more of the population. The effect of neighbourhood size is 

investigated more closely in a following section. 

The model had been tested a number of times for 1000, 10,000 and then 100,000 

generations without convergence to a single global dialect being observed. Diversity is 

clearly maintained in the system for long periods, but not infinitely. Running ten test cases 

for one million generations each, three resulted in communication schemes which had 

converged across the whole population: for any one of the three meanings, every agent in 

the population used the same signal as every other agent. 

Without any signal mutation, or errors in learning, once the signal schemes have 

converged, they remain converged. While diversity may be maintained in the model for a 

long period, it may not survive over many generations, and cannot re-appear once it has 
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been lost (although later we will look at ways in which signal diversity can emerge in 

populations with converged signal schemes). 

6.6.2.3 Measuring Diversity 

The results appear to show that local dialects emerge within a population that does not 

share a global signalling scheme. This can be investigated using Information Theory. 

An entropy (average uncertainty) value, H, can be calculated for each of the meanings for 

a population. That is, for a given internal state we can determine how much uncertainty 

exists in the range of signals produced by the agents to signal that meaning. If all the 

agents produce the same signal then there is no uncertainty. If the signal production is 

diverse, there is high uncertainty. For a system with eight possible signals the maximum 

possible uncertainty is 3 bits. 

If many local dialects have been formed then the values calculated for H for the signals 

produced by the whole population for a given meaning should approach the maximum 

possible value. The more dialects that have formed, the closer to 3 bits the value of H 

might be expected to be. Taking a localised subgroup of agents from the population, the 

values for H should be significantly smaller. If the subgroup speaks a common  dialect, 

then there might be very low uncertainty. 

Calculating H for each of three internal states, for the final generation, in each of 10 

experimental runs of 100,000 generations gives an average of 2.2153=H bits (with a 

standard deviation of 0.3731). Thus, due to the variation in signal usage over the whole 

population there is a high uncertainty. 

Repeating the calculations, this time for a localised sub-group of the population gives a 

different picture. The calculations here are based on the signal use of a continuous group 

of sixteen agents from the centre of the spatial distribution. This time the average 

uncertainty, H, is 1.1278 bits (with a standard deviation of 0.3744). These sixteen agents 

have been selected in each case without regard to any possible dialect boundaries – so this 

lower uncertainty exists even though there may be differences in signal use within these 

subgroups. 

Uncertainty values can also be used to help determine if the diversity is reduced over time. 

We compare the average value of H after 100,000 generations with that determined after 

one million. If there is a significant change, then it is likely that diversity has increased or 

decreased over time. Statistical t-Tests are performed on the sets of H values found under 

each set of conditions to determine if there is a significant difference between the sets of 
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results. These results are summarised in Table 6.5. In obtaining the results from the results 

after one million generations, we use only the data from runs where convergence has not 

occurred. Including these results shows a significant difference in the level of uncertainty 

in signal use, but without them there is no significant difference apparent in the two sets of 

results. 

100K vs 1M Generations Including Converged 
Data Sets 

Excluding Converged 
Data Sets 

One-tailed t-Test 0.002086 0.343076 
Two-tailed t-Test 0.004172 0.686152 
Paired t-Test 0.002283 0.41212 
Table 6.5. t-Test results determine confidence that two data sets may be 
drawn from the same distribution – whether there is a significant difference 
between the data sets. Excluding converged results, the uncertainty values 
(measuring diversity) after one million generations do not significantly 
deviate from those after 100,000 generations. 

Where convergence has not occurred, it is not possible to determine from the uncertainty 

values whether a data set has been drawn from a population after 100,000 or after one 

million generations. Except in cases where convergence occurs, there is no appreciable 

reduction in the signal diversity over time. 

6.6.3   The Effect of Neighbourhood Size 

The results gathered so far are all for a single neighbourhood size. Intuitively, as the 

neighbourhood size changes so will the pattern of signal distribution. With smaller 

neighbourhood size, communication will be more localised and there may be a greater 

amount of dialect diversity. With larger neighbourhoods, communication will take place 

over larger areas, and diversity may be reduced. 

In the results described so far, diversity is maintained for extended periods of time, and 

tests with smaller neighbourhood sizes do not cause any change to this result. Of more 

interest is what happens with the larger neighbourhoods; we investigate whether the 

population will converge on a single language at a faster rate. 

Extending neighbourhood size to infinity results in a single neighbourhood encompassing 

the entire population, where a uniform random distribution is used to select partners for 

signal learning and testing. A uniform distribution is used here to ensure that partner 

agents are selected without regard to distance. Colour Plate 6.3 shows some typical results 

of signal negotiation under such circumstances (other parameters are unaltered from those 

given above). 
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Under these conditions a single global dialect rapidly emerges, yet one that may have 

some diversity within it. 

Plate 6.3(ii) and (iii) show the typical appearance of the resultant communication schemes. 

The patterns that emerge are similar to patterns of white noise. But for each of the 

meanings only a subset of the eight possible signals is used. For example, in Plate 6.3(ii), 

only green (0,1, 0) and turquoise (0, 1, 1) are used to represent meaning 1. Only white and 

yellow are used to represent meaning 3, and the remaining four colours for meaning 2. 

Due to the redundancy in the signalling capability, this allows the agents to correctly 

interpret the signals that they receive. In effect, a single global dialect has emerged, one 

that is tolerant of minor variations in signal use between different agents. 

Eventually the communication schemes converge, as shown in Plate 6.3(i). This plate 

shows 1000 generations from the 1000th to the 1999th generation of a sample model run. 

Convergence happens more rapidly than previously – 40% converge inside 10,000 

generations, and all test runs converged by 100,000. 

6.6.4   Analysis 

These results show that, given spatial limitations on agent interactions during language 

acquisition, dialects may form. The resultant diversity can be preserved for many 

generations. Without a source of innovation, the diversity may eventually be lost. So 

diversity does not last infinitely, but does survive for a very extended duration. 

6.6.4.1 Maintaining Diversity 

The question to answer is then, how is diversity maintained for so long? 

If we consider language to be a cultural system, then the result can be compared to work 

on cultural diversity, such as (Axelrod, 1997b), who considers how different ‘dialects’ of 

culture may interact. In Axelrod’s model cultures are defined by a number of features, and 

the more features cultures have in common then the more likely they are to interact and 

share their culture – leading to increasing numbers of shared cultural traits. Strong 

differences result in cultural barriers, which prevent the dissemination of culture. This 

allows some cultural diversity to be maintained despite increasing homogenisation, and 

ends in polarization, with few cultures, which share few if any features. However, in our 

model agents attempt to learn from surrounding agents regardless of the degree of 

difference in their signalling schemes. Some other mechanism must be responsible for the 

maintenance of diversity. 



Chapter 6 – The Cultural Evolution of Languages    128  

 

Each learner in the population forms their own idiolect after learning from a surrounding 

mix of idiolects and training examples that is potentially unique for every learner. This 

allows learners to form different signal schemes from those used by their neighbours, and 

is one factor in the evolution of linguistic diversity. Another important factor is the 

interaction of agents who may use similar signals for different meanings – which may 

result in a learned signalling system being different from both of the original systems, as 

the learner attempts to resolve the conflict. 

An example is shown in Figure 6.4 

 
Figure 6.4. Conflicting training signals may result in agents learning 
different meaning-signal pairs than presented. In the highlighted region, a 
signal is learned for a meaning despite not being present in the original 
training set. 

Each agent learns three bi-directional signal-meaning mappings. Redundancy in the signal 

layer allows multiple signals to be mapped to one meaning (but only one reverse 

mapping). There are two ways in which this can cause ‘novel’ forms to appear. First, as 

weights are updated repeatedly as an agent learns, the learning for one mapping may 

perturb the weights that encode another signal-meaning mapping. This might result in a 

learner using a different signal for a particular meaning than used by any of the agents in 

the parent generation. In most cases the conflicts are not solved by one dialect succeeding 

at the expense of the others. 

Alternatively, a learner may only be able to resolve the conflict between two different 

dialects surrounding it, by learning some mappings not present in either. This may occur 

when the dialects use the same signal for different meanings. The different mappings 

mean that each agent has a system of mappings – and changing one value may affect the 

others. 

While the precise workings of this are peculiar to this particular model, this artefact does 

have parallels to real language diversification, where linguistic innovation may introduce 

new language features previously lacking in a language community, or where contact 

between different language communities might have quite unexpected results. 
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Thus, localised learning is able to maintain diversity, even if it alone is not capable of 

producing diversity. We have determined that local dialects do indeed exist with the 

emergent signalling schemes, and that attempting to learn from a mixture of dialects can 

result in continued diversity. This finding is apparent from the many plots produced, and 

was measured by an information theoretic analysis of the data. At this point we can also 

see if the results can be compared more directly to those from linguistic studies in 

dialectology, and this is done in the following section. Following that, we will review how 

diversity may emerge from a converged communication system. 

6.6.4.2 Human linguistic diversity: A comparison 

There exist some qualitative similarities between the spatial organisation of dialects within 

our model and the geographical organisation of human dialects (as described in Section 

6.3). The dialects held by agents within our model form a dialect continuum connecting (at 

the extremes) dialects that are not mutually intelligible. Figure 6.5 shows the results of 

testing the success rate for correct signal interpretation by agents, where another agent 

within the same neighbourhood generates the signal. Almost all agents correctly interpret 

all signals presented to them. 

This is confirmed by comparing the average success of interpreting a local signal, versus 

the success of interpreting signals that may be generated by any other agent – regardless of 

distance. Over ten runs, the average success at interpreting signals that originate in the 

same neighbourhood was found to be high at 98.2%. The average success at interpreting 

signals which may have originated from anywhere in the population (which will include 

some number of signals from the same neighbourhood) was much lower at 38.7% 

(standard deviations of 0.347% and 2.745% respectively). 
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Figure 6.5: The percentage of communicative successes over the spatially 
distributed population. Average success is over 95%. 
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It is also possible to map a correlate of isoglosses, using Hamming distances. The 

Hamming distance between two binary signals is simply the number of bits different 

between them – for example (0, 1, 1) has two bits different from (1, 1, 0) and hence has a 

Hamming distance of two. It is possible to chart the Hamming distances for the signals for 

each of the three meanings. Figure 6.6 charts the maximum Hamming distance across the 

three signal pairs when comparing the signals of pairs of adjacent agents across the 

population – adjacent pairs of agents are selected, and both produce a signal for each of 

the meanings. Also shown is the result of adding the Hamming distance values for the 

three signal pairs. The lines marking the change in use of the items do not generally fall 

together, so boundaries between dialects are generally not distinct. Only at one point does 

the total Hamming distance total reach 4 (out of a maximum possible of 9, if no signal 

pairs had any bits in common). This corresponds to the only measured communication 

success rate score below 90% in Figure 6.5 
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Figure 6.6: The maximum (for any one signal) and total (over three signals) 
Hamming distances between signals used by adjacent agents in a spatially 
distributed population. 

A more direct qualitative comparison is possible by plotting the accumulated Hamming 

distance across the population, Figure 6.7. This graph, which shows both areas of 

linguistic change and regions of dialect stability, is similar in appearance to the schematic 

shown in Figure 6.1. 

These comparisons are useful in showing that the model leads to qualitatively similar 

results to those observed across the globe. If the model is a reasonable approximation of 

linguistic transmission in human society, then the processes at work in the model may 

correlate well with those at work in the evolution of human languages. 
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Figure 6.7: The cumulative Hamming distances between the signals used 
by adjacent agents over the spatially distributed population 

6.7   Experiment 2: Diversity from Homogeneity 

In the previous experiment, once the communication scheme has converged it remains 

fixed. Once diversity is lost it is never regained. This compares poorly with human 

languages, where change and innovation appear to be irrepressible (e.g. Aitchison, 1991; 

Lass, 1997). 

However, there are many potential sources of change and innovation in human language 

that have no counterpart in our model. The different pressures on language users (see 

Section 2.5.2) to modify their language use to maximise comprehension and convenience 

do not exist. Nor does the possibility of errors, which may help drive some language 

changes, exist. For example, Steels & Kaplan, (1998), demonstrate an ALife model in 

which errors in signal production, perception and interpretation can cause change in agent 

lexicons. 

Further, grammars are large systems. It is widely recognised that the evidence available to 

children during grammar acquisition contains contradictions and is insufficiently detailed 

for error-free acquisition. Language can then be viewed as a system with imperfect 

replication – in any attempt to replicate an existing language, a number of changes will 

occur, and the learner will actually acquire a ‘new’ language. 

One way to represent this is to add noise to the signals that are presented to learners during 

training. It is not simple to quantify the incidence of errors and misunderstandings in 

language use, or to quantify the effect of ambiguous evidence. However, using only small 

noise values increases confidence that the amount of noise used is not unreasonably 

inflated. 
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Another potential source of diversity is individual bias in language learning. If different 

language learners have innate biases that influence their language acquisition, there is a 

greater likelihood of learners faced with similar evidence acquiring different languages. 

As well as unique and individual accents, that allow friends to identify one another by 

their speech, there may also be subtle variations in individuals’ grammars and lexicons.  

Individual bias can be modelled by initialising the weights of the language agents to small 

random values. This may influence learning, preventing agents from converging to the 

same signal scheme. 

With either option it is not necessary to show whether this noise is sufficient to prevent 

convergence. Rather, it is simply required to demonstrate that noise and/or innate bias can 

disturb a converged signalling system, returning it to a diverse one. In doing so, it will be 

demonstrated that even under unusual circumstances, should convergence occur it will not 

last. This we attempt to do now. 

6.7.1   Experimental Setup 

The model setup is initially the same as described in Section 6.6.1, with a few differences. 

Learning examples are provided only by the parent generation – there is no learning from 

peers. The effect of this is to help to preserve existing systems slightly, and slow down 

change. We also implement either innate biases or signal noise. 

The populations are started with an initially converged language – the first generation is 

set such that all agents use the same signals. In the results reported here, all agents in the 

first generation use the signal vector (1, 1, 1), or white, for the first meaning, (0, 0, 0), or 

black, for the second and (1, 0, 0), or red, for the third. The experiments detailed below 

were also repeated using populations with initial signal repertoires of red, green and blue 

(where there is an equal Hamming distance between each signal), with the same 

qualitative results. 

6.7.1.1 Noisy Learning 

A variable amount of signal noise is used, set at the beginning of each experimental run. 

This may cause changes in individual signals, and this may in turn affect the learned 

communication schemes of the language agents. The noise rate is the chance per signal bit 

of flipping the bit. For a one percent noise rate each bit of a signal has an independent 

chance of one in a hundred of being flipped. 

Two sets of simulations are performed, both with small noise parameter settings: 0.1% and 

0.01%. 
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6.7.1.2 Innate Bias 

All agent weights are initialised to small random values. With the finite, limited, learning 

period, these weights may prevent the agents from acquiring the same signals with which 

they are provided as training examples. 

Again, two sets of runs are performed. In the first, initial weight values are set to a random 

value in the range 0.05 to –0.05. In the second, the range is from 0.005 to –0.005. In both 

cases, the initial weight value is drawn from a uniform distribution. 

6.7.2   Results 

The results for both sets of conditions can be considered together, and are qualitatively the 

same, and some results are plotted in Colour Plate 6.4. In all cases the innate biases or 

noise is sufficient to cause divergent dialect evolution, and introduce diversity. From Plate 

6.4(c) it is evident that, given sufficient time, the original signal scheme cannot be 

recovered from the current one, although the rate with which diversity is introduced seems 

greater when noise is present than when innate biases cause the emergence of diversity. 

6.7.3   Discussion 

Both innate biases and noisy communication are capable of introducing diversity to the 

signal schemes used by the agents. The imperfect transmission and acquisition of language 

is thus the vehicle by which change occurs and diversity is reintroduced in this model. 

Here, imperfect learning initially leads agents to learn schemes that, while different, are 

not incompatible with those of the agents in the parent generation. Inspecting the various 

graphs plotted on Colour Plate 6.4, the signals first introduced in place of the initial three 

(white, black and red) have only one bit difference, and are introduced without disturbing 

the chance of successful signal interpretation. The redundancy of signals allows these 

changes to take hold, by allowing agents to learn different, but compatible signals. 

While human language is much more complex than any simple signalling scheme, let 

alone one which uses just eight signals to communicate just three meanings, it also 

contains much redundancy. Lass (1997) argues that ‘linguistic junk’, a consequence of 

redundant signalling, is a key feature of human language for language change. Our results 

here agree with Lass. 

6.8   Summary 

We opened this chapter with observations of what appears to be signal diversity in the 

negotiated signal schemes created by agents in the previous chapter. We noted that this 
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spontaneous emergence of diversity seems to contradict some existing arguments on the 

causes of linguistic diversity, and conducted an additional experiment to investigate the 

findings.  

Having done so, and in order that we might further investigate the emergence of linguistic 

diversity, we presented a brief review of patterns of linguistic diversity as seen in human 

society. This was done in order that we might have some basis for comparing the results 

found in our model against those found in the real world. 

We then proceeded to review some work on mathematical models of linguistic diversity. 

We saw how some of this work leads to conclusions at odds with the real-world evidence. 

Drawing our own conclusions from a simple model developed by (Cavalli-Sforza and 

Feldman, 1978), we similarly found an outcome that would be unexpected in the real 

world. 

Then a number of experiments were conducted, under different conditions, to study the 

emergence and cultural evolution of dialect diversity in the artificial life model previously 

developed in this thesis. The structure of the agents was fixed for these experiments. This 

removes from the model those features that attempt to model biological evolution. Instead, 

by allowing agents to learn their signalling schemes from agents in previous generations, 

the cultural evolution of language is modelled. 

It was found that the patterns of signal diversity found in the model had some significant 

similarities to the patterns of linguistic diversity found across human languages. Specific 

results also included observations that the continued existence of diversity could not be 

guaranteed, although under certain conditions diversity will emerge in populations with 

initially homogenous signalling schemes. These conditions (noisy learning, or the 

existence of innate bias) are not unrealistic, and appear to exist in human language 

learning. 

In the next chapter we will present further work that corroborates the conclusions of this 

chapter, and develop a theoretical framework for these conclusions. 
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Chapter 7    Cultural Evolution in an Agent Based Model of 

Emergent Phonology 

In the last chapter, we showed how some minor modifications to our model allow us to 

model the cultural evolution of language, and to obtain results with clear qualitative 

similarities to the real-world cultural evolution of language. 

In this chapter we show that there is a need for additional corroboration, and then develop 

this corroboration by making use of a different, quite distinct, model. We finish by setting 

out the significance of our results, and putting forward an argument for the cultural 

evolution of language without linguistic selection. 

7.1   Artificial Life and Micro-Simulation Models of Linguistic Diversity 

The work described in the previous chapter is not the only work that has been carried out 

using computational models to investigate the evolution of linguistic diversity. Some of 

this other work is worth reviewing, starting with work which disagrees with our own. 

7.1.1   Functional Requirements for Diversity 

In Chapter 2, Sections 2.5.2 and 2.5.6, we reviewed some of Daniel Nettle’s arguments on 

the causes of linguistic diversity. He has also provided backing for his arguments using a 

variety of simulation-based models. 

First, in Nettle and Dunbar (1997), a model is developed which shows how dialects may 

be used to indicate group membership, and how such a marker may be used in the 

evolution of cooperation. By using these markers, groups of cooperative agents are able to 

resist invasion from non-cooperative individuals. This is used as the basis for an argument 

that dialects emerged for this reason. This does not necessarily follow however, and could 

be another example of exaptation (Section 2.4.2) – applying a novel use (group marking) 

to a feature (dialect diversity) which has already emerged in the population. 

Nettle has presented two further models that support his arguments that social status and 

social functions of dialect differences are pre-requisites for the emergence of dialect 

diversity (Nettle, 1999a; Nettle, 1999b). 

The model presented in (Nettle, 1999a) arranges language learners into a series of small 

groups, the language used consisting of a model of a vowel sound system. Learners pass 

through five life-cycle stages, and all language acquisition occurs during the first stage, 

where the new language agents learn from the other agents in the same village. Each group 
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contains four individuals at each of the life-cycle stages (twenty in total at any time). After 

the fifth life stage, the elderly are replaced by a new set of infants. The infants each learn a 

sound system according to the set of sound systems in use by the existing group members, 

plus a small amount of noise. After this, all the individuals are ‘aged’ one stage. No 

learning occurs after the first stage. 

It is shown that, unless the groups are completely isolated from one another, diversity does 

not emerge. Adding in social status changes the findings significantly. Each individual has 

a 25% chance of gaining high social status after the first life stage. Learners only learn 

language from those individuals with high status within the village.  Otherwise, for any 

vowel, the sound learnt is the average formant frequency values used by all of the adults in 

the population for that vowel, plus a slight perturbation due to noise. With social status 

included small differences between groups may become magnified over time and it is 

found that contact between groups no longer eliminates diversity. 

The model presented in (Nettle, 1999b) has many major differences, but retains the same 

agent life-cycle, where agents pass through five life-stages, before being replaced by new 

learners. Again, learning only occurs during the first life stage. Apart from this there are 

few similarities. Inspired by social impact theory (Latané, 1981), there are no sub-groups 

within this model, all agents existing on a single spatial array. Instead of learning vowels, 

agents acquire one of two grammars, p or q. In determining which grammar a learner 

acquires, the impact of all the surrounding grammars is calculated. This uses a sum of all 

the surrounding grammars, weighted by distance. Then, if the result is in favor of one 

grammar, that is the grammar acquired. Several factors may be varied in this model, but 

the general finding is that sustained diversity requires that social status exerts a very large 

influence upon the acquisition of grammar. 

These last two models each have design features which lead directly to these results. In the 

former, vowels are learnt by an explicit averaging of the vowels in use already in the local 

group. In the latter, the impact measurement and forced selection of a grammar from one 

of two distinct grammars – without the possibility of acquisition of elements of different 

grammars – is a form of thresholding. This thresholding forces the grammar learners to 

acquire the more commonly used grammar variant within their neighbourhood, except 

where a social-status weighting is introduced. 

Nettle argues in his work that the effects of averaging and thresholding would work to 

stifle diversity, were it not for the effect of social status, and uses these models as 

demonstrations. He then uses models in which these are enforced by the language 



Chapter 7 – Cultural Evolution of Phonology    137  

 

acquisition rules he has built in. It is not proven that under more realistic learning 

conditions, where language is acquired as the result of many interactions, or where there is 

a possibility of learning grammars that are different but compatible with surrounding 

grammars, that averaging or thresholding will prove to be the barrier to diversity that 

Nettle argues they are. 

7.1.2   Other Models of the Evolution of Linguistic Diversity 

Arita and Taylor (1996) present what is possibly the first attempt to explain the origin of 

linguistic diversity using a micro-simulation model. They hold that it is the spatial 

distribution of individuals that is the key factor in the emergence of dialects. While this is 

a plausible position, it is not strongly supported by their model, which relies on genetic 

mutation for the emergence of linguistic diversity. Language is inherited, with mutation 

producing diversity and learning leading to increased convergence. If the spatial 

distribution of speakers is indeed a factor in the emergence of dialect diversity, then it 

must be able to work when the only means of language transmission is through learning – 

as it is for human language 

Innate language is again used by Arita and Koyama (1998), in their investigation into the 

evolutionary dynamics of vocabulary sharing. Mutation rate is again identified as being an 

important factor in the emergence of diversity in the vocabularies, but without an 

identified linguistic equivalent. The degree of vocabulary sharing is also related to the 

availability of resources. Rather than vocabularies, it is cooperative strategies that are 

being evolved here, as evidenced by cases where the evolved communication strategy is 

not to communicate at all. Accordingly these last two models give few insights into the 

causes of, and influences on, human linguistic diversity. 

7.1.3   Related Models 

In some cases, it may be that models that have been developed to study other systems 

may, in some way, be relevant to the study of linguistic diversity. 

For example, Axelrod (1997b) presents a model to investigate the dissemination of culture 

through a spatially arranged population. In the model, neighbouring sites may interact if 

they have at least one cultural trait in common, and as sites interact they share traits and 

slowly converge. Eventually a stable distribution emerges where a limited number of 

groups survive, within each group all sites having identical sets of traits, and no traits 

being shared with sites belonging to neighbouring groups. Viewing language as a cultural 

trait, this is obviously relevant to the evolution of dialects. The results are at odds with 
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observed phenomenan in human language, however (see Figure 6.2, and related 

discussion). 

In other cases the relevance of the results to the question of the origins of linguistic 

diversity is clearer. For example, the previously mentioned work of Kirby (1998), section 

2.4.3, builds a simulation model to show that Universal Grammar constraints may not be 

innate constraints at all, but merely the outcome of learning over time leading to a reduced 

set of surviving grammars. In this work Kirby shows results indicating the existence of 

geographically distributed dialects of grammars. 

Following on from (Kirby, 2000), which demonstrates the emergence – through cultural 

transmission – of compositional language in a population of language learners, (Brighton 

and Kirby, 2001) present a study of the eol exploring the conditions under which 

compositional languages are maintained. 

Maeda et al. (1997) examine the effect of language contact. The results show language 

reorganization after contact is made between populations using different languages. But 

after the reorganization, dialect diversity is completely absent from the population – again, 

not results that compare well with those observed in the real world.  

Other related work has looked at the process of language change, apart from the question 

of dialect. Steels and Kaplan (1998) demonstrate how various linguistic and extra-

linguistic errors can lead to continued language change. While natural language errors are 

somewhat more systematic than the random errors introduced in this model, the model 

successfully demonstrates the large influence such errors may have on language 

innovation. A similar model, based on artificial neural networks, is presented by Dircks 

and Stoness (1999). In this model, it is found that noise is not required to maintain 

competition between forms. This appears to be due to the networks learning one of two 

similar signals for particular internal meanings – an ability not present in the Steels and 

Kaplan model, where similarities in the lexical forms are ignored by the agents. 

7.2   Dialect in an Agent Based Model of Emergent Phonology 

The preceding review has shown that the work of the previous chapter is not the only work 

using computational models claiming to illustrate the processes which give rise to dialect 

diversity. Some of these models produce results which appear to directly contradict our 

own conclusions. 

Nettle has produced a variety of different models, all of which support his theory that 

social motivation is required to produce and maintain linguistic diversity (Nettle, 1999a; 
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Nettle, 1999b). We have argued that the details of these models are such that they 

explicitly implement the averaging and/or threshold problems. Human language learning 

is not based on assessing what the average signal is, or on calculations to determine what 

signal is used by the majority of people and so explicitly including such rules in a model 

may invalidate the results of the model. 

Yet part of the strength of Nettle’s argument is that he has demonstrated the same 

requirement for social motivation in a number of unrelated models. The model presented 

in the previous chapter does provide contrary evidence to Nettle’s, but additional 

supporting evidence from an unrelated model would provide useful support to our 

argument. 

With such a goal in mind, we re-implemented Bart de Boer’s model of an emergent 

phonology (de Boer, 1997), extending it slightly in order to investigate the emergence of 

dialect diversity. 

7.2.1   de Boer’s Model of Emergent Phonology 

De Boer’s model is one in which populations of agents form an emergent vowel sound 

system, through repeated interactions and learning. An earlier model of emergent vowel 

sound systems has also been presented by (Lindblom, 1998), but this uses more traditional 

techniques to find optimal distributions of vowels within a vowel sound space without 

modelling the language users or their interactions in any way. De Boer’s results compare 

well with these earlier results, with the advantage of more closely modelling the processes 

involved when populations of speakers try to match the sounds that they hear being 

spoken. 

De Boer’s model has been thoroughly documented, enabling an independent re-

implementation to be attempted (de Boer, 1997; de Boer and Vogt, 1999; de Boer, 2000). 

This was done, and testing determined that it performed qualitatively the same as de 

Boer’s own implementation. 

The agents produce and attempt to learn vowel sounds. Vowel production is based on a 

mathematical model of the human articulatory system, where tongue position determines 

the formant frequencies of the generated vowel. Agents use a model auditory system to try 

to perceive the vowel, and can then try to mimic the sound. 

Each agent maintains a list of vowel prototypes. Upon hearing a vowel, a learner agent 

determines which vowel in the list is the most likely one that they may have heard. This 
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sound is then produced. The original signaller listens and determines whether the vowel it 

hears back is sufficiently similar to the original vowel, and with a yes/no feedback signal. 

Based on the feedback, the learner either updates the prototype for an existing vowel, to 

shift it closer to the perceived one, or creates a completely new vowel prototype. These 

interactions are repeated, with learners and tutors randomly selected from the population. 

Over time, vowel prototypes are added and occasionally merged or pruned until each 

agent has a set of vowels. With varying amounts of noise, vowel systems with few or 

many vowels may emerge. 

The results of this emergent system have been compared extensively with human vowel 

systems, and this has confirmed that the vowel systems so produced are realistic and 

highly possible.  

The vowel systems may be viewed by having all of the agents produce the sounds for each 

of their vowel prototypes and charting the vowels. The vowels generated are represented 

by four formant frequencies, F1, F2, F3 and F4, but for purposes of display the last three 

are combined (see de Boer, 2000, p.182, equation 5) into a single value, F2’. Figure 7.1 

shows a typical emergent vowel system, from a simulation with a population of 20 agents, 

and 5000 learning interactions. Added to the chart are approximate positions for some of 

the major vowel sounds of the English language. Such charts of ‘vowel space’, plotting 

vowel sounds according for first and second formant values are commonly used in 

phonetic studies (e.g. Johnson, 1997, p.105). More details of the inner workings of de 

Boer’s model are included in Table 7.1. 
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Figure 7.1. An emergent phonology. Clusters appear in areas of the 
phoneme-space where multiple agents have learned shared vowel sounds. 
The approximate positions of some the major vowels of English have been 
superimposed on the graph. 

Initiator (teacher) Imitator (learner) 
If V = Ø then 

Add random vowel to V 
 

Pick random v from V, 
Increment count of uses of v 
Produce signal A1 from v 

 

 Receive A1 
If V = Ø then 

vnew = Find phoneme(A1) 
V = V ∪ vnew  

Calculate vreceived 
Produce signal A2 from vreceived 

Receive A2 
Calculate vreceived 
If v = vreceived then 

Send non-verbal feedback: success 
Increment count of successful use of v 

Else 
Send non-verbal feedback: failure 

 

Do other updates of V  (see below) Receive non-verbal feedback 
Update V according to feedback signal 
Do other updates of V  (see below) 

Table 7.1. Extract from the basic rules for agent interaction in de Boer’s 
model of emergent phonology (from de Boer, 2000). V is the set of vowels 
possessed by an agent, and v is some vowel. Signals A1 and A2 are the 
articulations of the selected vowels. 
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During the ‘other updates of V’ step of de Boer’s model, bad vowels (which do not 

correspond well to vowels heard) are removed, vowels which are close to one another are 

merged and, with a small probability, new vowels are randomly added to V. 

7.2.2   Experimental Setup 

The model was enhanced to include a larger population of agents, spread across a spatial 

array. 100 agents were arranged in a single, non-toroidal, line. The algorithm for agent 

learning is not altered, other than to enable the neighbourhood-based selection of partners. 

Once an agent has been selected a partner is required for learning. The partner is selected 

from a position along the line on either side of the original, within a limit of ten agents 

distance. Agents near the ends of the line have as a consequence fewer other agents with 

which to communicate. The selection of partners is from a uniform distribution. 

Table 7.2 sets out the parameter settings for the simulation detailed in the following 

results. As before, a number of simulations were performed for a variety of parameter 

settings, some of these are discussed below. 

Parameters 
Population 100 Training rounds 25,000 
Neighbourhood size, d (+/- d) 10   
Noise (%) 15   
Table 7.2. Parameter settings for emergent phonology model 

The large number of training rounds ensures that each and every agent will receive of the 

order of 200 training examples (the number of training rounds being determined by the 

population x 250). Varying the number of training rounds thus allowed tests with larger 

and smaller populations to be performed, the results of these being supportive of the 

assertions following. 

Neighbourhood size was determined by the size of the population divided by ten. This 

figure ensures that there is reasonable distance between the far ends of the population. The 

actual neighbourhood size is double this, as agents can communicate with others on either 

side up to distance d. 

In de Boer’s thesis the effect of varying noise is well documented. Smaller noise values 

allow the emergence of vowels systems with more vowels than occur with larger noise 

values. The value used in these experiments is in the mid-range of values used by de Boer. 

This would lead us to expect vowel systems of around four to six distinct vowels to 

emerge. 
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7.2.3   Results 

Running the model produces the output shown in Figure 7.2. 

 
Figure 7.2. The emergent vowel system of the population. Depending on 
how the vowels are categorized, there appear to be around six distinct 
vowels in use. 

It is not clear in Figure 7.2 how many distinct vowels have emerged – the precise answer 

depending on how the individual sounds are categorized. Possibly the clearest 

categorization would be to count two vowels at the top right of the chart, two at the top 

left, one top centre, and one more at the bottom. This gives a total of six vowels, within 

the expected range. At the bottom of chart, there are some breakaway vowels. A more 

detailed examination reveals what is really happening. 

The diagrams in Figure 7.3 show the same emergent vowel system. The population has 

been split into five arbitrary contiguous groups. The first twenty agents of the population 

form the first group, the next twenty are placed in group two, and so on. 

Some of the individual diagrams remain a little unclear – it is not always obvious whether 

one or other of the clusters represents one or two vowels. Even within a single group, there 

is some spatial distance, and it is possible that different agents within a group have learned 

slightly different sets of vowels. The groups themselves have not been chosen with regard 

to how close the vowel systems of the individuals within the group are – rather, the groups 

are a completely arbitrary division of the population according to spatial position. As such 

it should not be expected that the vowel systems will be extremely close within these 

groups, with distinct differences only occurring between adjacent groups. 
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Figure 7.3. The emergent vowel system of the population. Each diagram 
shows the phonemes used by a different contiguous sub-group of the 
population. Top row shows groups 1-3, bottom row groups 4 and 5. 

However, it would appear that most groups have developed a four or five vowel system, 

which is largely shared amongst the agents within a group. Figure 7.4 emphasises the 

differences that exist across the population. In this figure, the phonemes of the first and the 

last groups are shown together (as white and black dots respectively). 

 
Figure 7.4. Emergent vowel systems of the first and last sub-populations. 

As with the previous work (sections 6.6 and 6.7), a dialect continuum has emerged in the 

population. Minor changes exist within neighbourhoods, allowing successful 

communication therein. Across the population, more major shifts and differences exist. 
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Although the model is entirely unrelated the qualitative result is the same: the negotiation 

of a communication scheme/phonology within a population, where neighbourhoods limit 

interactions, gives rise to emergent dialects without any requirement for any need or 

motivation to create the different dialects. 

The de Boer model has some advantages over our own for studies of language change and 

diversity. There is no fixed number of signals, or of ‘meanings’, leading to systems which 

are more open, more like those found in human language. The differences in vowel use by 

different sub-populations, or over time (de Boer, 2000, p.190-192) generate what appear to 

be chains of changes. The close parallel of the emergent sound systems to those of human 

language makes comparison of results to observed changes in human languages possible. 

As such, there is potential to use this model to further study the development of push/drag 

chains (systems of change where movements in clusters create spaces for other clusters to 

move into, creating a ‘drag’ effect, or where the movement of one sound forces another to 

move apart, a ‘push’ effect’, (King, 1969)) in vowel sound systems. 

7.3   Discussion: Towards a Modified-Neutral Theory of Language 

Change and Diversity 

The experiments in this chapter and the last, both demonstrate a form of cultural evolution 

without any cultural selective pressure. Thus these experiments demonstrate one form of 

neutral evolution of language – the evolution of language without selective pressure on 

adopted forms being exerted by social bonds or factors. 

7.3.1   Neutral Evolution Revisited 

Neutral evolution, and its application to linguistic evolution was discussed previously, in 

section 2.5.6. In light of these most recent results, we look again at neutral evolution, and 

how it may apply to the eol. 

Neutral evolution is evolution in which selective processes do not operate (Kimura, 1983). 

Neutral evolution, also known as genetic drift, can occur anywhere where there is 

variation in a population but where none of the variants has any specific selective 

advantage. By chance, rather than by adaptive selection, one variant may become a new 

norm. The resultant species or languages will be distinguishable from their ancestors. For 

biological entities the definition of ‘neutral’ change is quite clear, as being any genetic 

mutation which does not affect the reproductive success of the creature. In the case of 

language there are a number of possible interpretations. 
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The first is an analogue of the original meaning. A neutral change in language may refer to 

some linguistic change which does not affect the ease, or difficulty, of acquiring that 

language. Christiansen (2000) and Kirby (1999) have looked at how the ease with which a 

particular language variant can be learned can influence its survival, showing that hard to 

learn variants are selected against and may not survive. What is left may then be a large 

number of variations that are all – possibly approximately – as easy to learn as each other. 

Selection amongst these variants may then proceed in the manner of neutral evolution. 

This will henceforth be referred to as linguistically neutral evolution. 

A second interpretation, closer to the original biological meaning, is that an evolutionary 

neutral linguistic change is one which does not affect the reproductive success of the 

language users. There are a number of ways in which language influences evolutionary 

fitness, and determining how speaking a particular language sways the speakers’ 

reproductive chances is not entirely straightforward. There are two distinct ways in which 

the fitness of language users could be affected by changes in their speech, according to 

whether the changes affect the communicative success or effectiveness of dialogues or if 

the changes affect their social standing within their group. Changes that do not affect the 

success of communication could again be considered as being linguistically neutral. 

Changes that do not affect the fitness of language users according to social position will be 

referred to as socially neutral evolution. 

7.3.2   Adaptive, Maladaptive and Neutral Change 

Where changes affect the communicative success, whether the benefits are to be gained by 

communicating ideas, observations or by gossiping (Dunbar, 1996), adaptive changes will 

be those which make communication, both signalling and interpreting, easier. 

In arguing that language change cannot be socially neutral, Milroy (1992) argues that from 

the perspective of communicative fitness, all change is dysfunctional – by not speaking 

precisely the same language as others an increased chance of misinterpretation is 

introduced (also see section 2.5.2). This is used to justify arguments that change must be 

socially adaptive. Such a view is extensively denied by Lass (1997). Lass notes that 

language features a high degree of redundancy and as a result it is possible to make quite 

significant changes before communication is adversely affected, a point also made by 

Pinker (1994). While some changes may affect successful communication, there is much 

room for changes which do not degrade communication. 
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However, the social benefits of speaking the correct dialect are well-documented (see, for 

example, Chambers, 1995), and there have been many numerous studies of how dialect 

markers are used in determining membership of all manner of groups from street gangs to 

business elite. Social marking may also influence reproductive fitness of language users, 

as a consequence of increasing cooperation amongst those with similar dialect (Nettle and 

Dunbar, 1997). 

Nettle (1999a) further claims that, with a neutral model, it is difficult to account for 

diversification without there being complete geographical isolation between groups. Thus, 

Nettle proposes that in order for linguistic evolution to occur without geographical 

isolation additional mechanisms are required. Nettle argues that the social functions of 

language are required for the emergence of linguistic diversity, a view shared by Dunbar: 

“… dialects arose as an attempt to control the depredations of those who 

would exploit peoples’ natural cooperativeness” 

(Dunbar, 1996, p169) 

However, Nettle’s arguments rely on a particular learning model – in which the learners 

sample the speech of the population and learn an ‘average’ of the language around them. 

This further relies on the equal distribution of individuals, with a uniform likelihood of 

any one individual interacting with any other. As recognised by Cavalli-Sforza and 

Feldman (1978), in any group the amount of influence exerted on any one individual by 

any one of the others will vary according to a number of factors. This reduces the effect of 

averaging, and increases the potential for sub-populations to vary from the mean. The 

different social networks within groups reduce the need for geographical isolation to 

produce linguistic diversity.  

Nettle does not consider the effects of sub-groups within communities, which I suggest is 

an important feature in the development of linguistic diversity. Dunbar (1996) puts 

forward 150 members as being a natural group size for human communities, and points to 

“sympathy group” sizes of between 10 and 15 people. Any change which does occur must 

be propogated over a series of interactions between individuals. With the existence of 

groups-within-groups, there is no need for isolation before linguistic diversity can emerge. 

Further, the averaging effect itself is questionable. For example, for random variation in 

the formant frequencies of phonemes it may not be the case that such variation will 

‘cancel out’, or that the average values will be learned. Phonemic and articulatory 

constraints (see Lindblom, 1998; de Boer and Vogt, 1999) may prevent the ‘cancelling 
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out’, and the learned phonemes may be only tolerably close to those heard. Given two 

distinct forms of a linguistic feature, a learner need not choose just one to learn or to learn 

some composite, but may learn both. One form may be preferred, but both may be used in 

varying amounts (such variations in language use often being the focus of studies in 

sociolinguistics). As well as applying to the lexicon, it has been proposed that language 

learners learn multiple grammars, so as to cope with the variation in grammars in use 

around them (Kroch, 1989). 

This objection about averaging is extended to Nettle’s computational model in which 

averaging is explicitly performed. In contrast, the results presented in this and the previous 

chapter successfully show the emergence of dialects as a consequence of localised 

variations and interactions without any social significance or utility of particular dialect 

forms. 

While particular linguistic forms may mark group membership, other linguistic features 

and forms might be free of any information that marks the speaker as belonging to a 

particular group. Where they exist, changes to non-marking features – be they 

phonological, lexical or grammatical – might be possible without any socially adaptive 

consequences for the speakers. Indeed, in Milroy and Milroy (1993) such changes are 

noted amongst the men and women of two Belfast communities, where the authors state, 

 “it is the group for whom the vowel has less significance as a network 

marker which seems to be leading the linguistic change”. 

(Milroy and Milroy, 1993) 

(reprinted in Trudgill and Cheshire, 1998, p192) 

By the arguments of Milroy (1992), change must be socially adaptive to overcome the 

linguistic pressures against change, yet here we have evidence of change without social 

advantage. 

So we have seen that there is evidence and argument to support the existence of both 

socially and linguistically neutral change in language. Naturally, a change which is 

socially neutral may or may not be linguistically neutral, and vice versa. Indeed, it is 

possible that should the benefit in one domain (social or linguistic) of a particular change 

be strong enough, change may occur even though it is somewhat maladaptive in the other 

domain. In the next section we look to other theories in linguistics and assess their impact 

on a neutral theory of language change. 
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7.3.3   Universality and Uniformitarianism 

Two popular ideas about language also lend some support to the idea of language change 

as being the result of neutral evolution – Linguistic Universality and Uniformitarianism. 

7.3.3.1 Universality 

A prevalent belief about language in modern linguistics is that no language is superior to 

any other. All languages are not the same, but they are all broadly equivalent in their 

overall expressive and communicative powers. While particular concepts may be 

somewhat easier or harder to express in one language than in another, on balance it is not 

possible to say that any one language is ‘better’, and many examples which were 

previously held to show such differences have since been reassessed and shown to be no 

more than myth (e.g. Pinker, 1994). 

If this is the case, then it would appear to be the case that language change must be 

linguistically neutral. If it were not then we should expect to be able to find languages that 

are better than others. Linguistic evolution occurs at a significantly faster rate than 

biological evolution, and over the millennia, as different languages evolved at slightly 

different rates, some examples of more primitive languages would be left. But as 

languages round the world have been studied it has been noted that while there are many 

primitive cultures, there are no primitive languages. Universality, however, says nothing 

on whether language change is socially neutral. 

7.3.3.2 Uniformitarianism 

The Uniformitarian Principle as applied to linguistics implies that all languages are subject 

to a common and unchanging set of rules (e.g. Lass, 1997, p. 26-32). Over the millennia in 

which languages have been evolving, the same processes and the same rules have always 

applied, and the same rules and processes apply to all languages in the world. Such a 

principle is seemingly supportive of – or at least, not opposed to – the idea of neutral 

evolution. This does not imply that all language change is socially neutral, but we could 

suppose that were all change socially driven that changes in society would have more 

marked effect on the rules and process of language change. Thus, the uniformitarian 

principle gives some support to the idea of language change being the result of socially 

neutral processes. 
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7.3.4   Relativity and Non-Uniformitarianism 

So, from the above it seems that some of the prevalent views on language change are 

either supportive of, or not opposed to, a theory of language change through neutral 

evolution. However, there are those who continue to argue against, and to present new 

arguments against, linguistic universality and the uniformitarian principle. If our theory of 

neutral evolution is to be robust, then it should be shown how it is not totally incompatible 

with the counter positions to universality and uniformitarianism. In this section we 

highlight some of the possible challenges, and address them in the following. 

7.3.4.1 Linguistic Relativity Hypothesis 

The idea of linguistic universality is often defined in opposition to the notion of linguistic 

relativity. The linguistic relativity hypothesis holds, first, that speakers of particular 

languages have their thoughts shaped by the languages they speak, and second, that 

different languages may be significantly better or worse than others at expressing different 

concepts (Lucy, 1999). This is also commonly known as the Sapir-Whorf hypothesis, after 

the works of Edward Sapir (Sapir, 1949) and Benjamin Whorf (Whorf, 1956), and also as 

Linguistic Determinism. 

While highly debated, and currently out of favour (Pinker, 1994), the case for dismissing 

the linguistic relativity hypothesis is not proven, and it still has some prominent supporters 

(for example, Lucy, 1999; Slobin, 2003). 

We can suppose that where significant differences exist in how two different languages 

represent concepts, one of the languages may be better adapted to a particular 

environment, society or task in general. The principles of the linguistic relativity 

hypothesis would therefore hold that some of the changes that have occurred in language 

histories have been linguistically adaptive, bestowing adaptive benefits on the speakers of 

the new variants. 

If languages can be adapted to particular cultures, then must the uniformitarian principle 

also be reassessed? This is discussed in the following paragraphs. 

7.3.4.2 Non-Uniformitarianism 

While uniformitarian principles are held by many in linguistics, at least broadly so, 

(Newmeyer, 2000) reminds us that this uniformitarian assumption is not a safe one. 

Newmeyer argues for two possible types of non-uniformitarianism, ‘non-U’. Strong-non-

U supposes that there are functional forces acting on language that are somehow culturally 
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determined. There is evidence that some languages are adapted towards the functional 

needs of particular societies, and so this is possible. 

Weak-non-U supposes that there are constant functional forces acting on language, 

resulting in particular direction to linguistic evolution, such as a general tendency to 

change from OV order grammars to VO grammars. Thus, in Weak-non-U, the rules and 

processes are constant but they effect continued directed change on languages over time. 

Other arguments that the evolution of languages is in fact directed, and not neutral, have 

been presented in (Bichakjian, 1999). 

In both cases it is implied that over time a selective pressure is being applied to languages, 

and hence change is the result of adaptive and not neutral change. In the strong case, the 

pressures applied to languages are themselves the product of the societies using them, 

leading to “non-accidental correlation between ‘purely’ grammatical features and aspects 

of culture, climate, and so on.” (Newmeyer, 2000, p.166). 

7.3.4.3 Directed Change in Sound Systems 

The discovery of directed changes in language evolution is not new. As noted in Chapter 

2, much of historical linguistics takes a structuralist view where language is considered a 

system, and where changes in part of that system may lead to changes in another part. 

Grimm’s and other sound laws are based on observations of such change (Adamska-

Sałaciak, 1997). These sound laws represent other examples of directed change – 

examples which are replicated in different languages across the world. 

This is the basis for one of the arguments against neutral change proposed by  (Nettle, 

1999a), who argues that a neutral model should result in a random pattern of linguistic 

diversification, whereas observed patterns of change have structural correlations, 

representing parallel evolution. Again it would appear that directed change in sound 

systems must be linguistically adaptive. 

7.3.5   Neutral Change in a Relativistic, Non-Uniformitarian World 

Linguistic relativity and non-uniformitarian ideas, as well as directed change in sound 

systems, appear to present strong challenges to the idea that language change may be an 

evolutionarily neutral process. They are, however, challenges that can be answered. 

7.3.5.1 Neutral Change In Sound Systems 

There is currently no evidence, and few arguments, that particular sound changes have 

benefited particular languages. Based on current knowledge, it in not possible to say that 
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the English language was in any way better after the Great Vowel Shift (Baugh and Cable, 

1978) than it was before – despite the many changes to the vowel sound system that 

occurred. 

If the result of many individual changes is a sound system with no obvious linguistic 

benefits over the sound system that existed before the changes, then the result of the 

sequence of changes must be adaptively neutral. In a sense it is the individual sounds 

which are co-evolving over time, causing changes to the sound systems they form. The 

directed changes that appear are a consequence of pressures on each sound in a system 

from the others. While the changes are adaptive from the point of view of the survival and 

evolution of individual sounds, they are not adaptive changes for the speakers. 

Accordingly, we see that directed changes can still be evolutionarily neutral. This thought 

experiment shows an adaptive change in one domain (sound) as being neutral in another 

(human survival). But beyond this, could language change – directed or direction-free – be 

an example of neutral evolution in its own domain? 

The pressure on language users to use vowels which are distinctive enough to be readily 

distinguishable limits the space of possible changes, selecting against ‘bad’ changes. If a 

change occurs selecting an adaptively equivalent variant, that change is adaptively neutral. 

In any sound system, there may only be a small number of such possible changes. If all 

selections were between adaptively neutral variants then, over time, it would most likely 

be noted that from similar start points, similar changes would occur in different sound 

systems. 

This notion that there may be a set of variants within which selection can occur without 

adaptive benefit is known in biology as a neutral network. 

7.3.5.2 Neutral Networks in Language Evolution 

A neutral network (Huynen, 1995) is the term given to a set of variants of a form which 

are of equal fitness. The idea of neutral networks can be applied to linguistics at the 

phonemic, lexical and grammatical levels. In each case, there may be a set of possible 

changes which do not affect the linguistic ‘fitness’. Selection can occur freely within these 

limited sets. By having a constrained choice of selectively neutral changes, neutral does 

not equate to a purely random process. The existence of many other forms that are selected 

against does not mean that the selection that does occur is not evolutionary neutral. 
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7.3.5.3 Neutral and Adaptive Evolution 

Our final argument contends that it does not even matter if it is shown that many examples 

of language change are adaptive. There is still good reason to believe that neutral change 

occurs, and is a significant process in the eol. To comprehensively deny neutral evolution, 

it must be shown that all changes are functional. For neutral evolution to be considered a 

factor in linguistic evolution it only has to be shown that some changes are not functional, 

a point also appreciated by Lass (1997, page 354). 

As noted above, the concept of neutral evolution comes from biology where there is 

certainly no lack of examples of adaptive change. It has even been claimed that the 

majority of mutations are selectively neutral (Nimwegen et al., 1999). Neutral evolution 

encompasses all of the changes that do not affect fitness. With a high degree of 

redundancy present in language, there is a great deal of room for such changes. 

7.4   A Modified-Neutral Theory of Linguistic Evolution 

To summarise, we have argued that no functional or adaptive benefits are required to 

create linguistic diversity and that diversity should arise naturally from the imperfect 

transmission of language from users to learners. This represents a neutral theory of 

linguistic evolution and we have shown that this could well be responsible for diversity in 

language dialects. 

We have reviewed some of the objections to a neutral theory and shown them to be 

unconvincing. Accordingly, social or linguistic functions are seen to be unnecessary for 

the emergence of diversity. What then is the role of social and personal motivation in 

language change? To say that adaptive benefits are not required for the evolution of 

diversity is not to say that such benefits do not exist, or that they do not influence the 

evolution of languages. Indeed, classic studies such as that of language change in Martha’s 

Vineyard (Labov, 1972) show that social factors do exert a strong influence. 

Accepting that language changes are influenced by social pressures on language users, we 

can question why language users adapt their language according to such pressures. Is there 

something remarkable in the human ability to determine significant social information 

simply from accent and dialect, without regard to the content of the speech? 

Rather than claim that it is the usefulness of dialect as a social marker that led to the 

evolution of linguistic diversity, we would argue that the reverse is more likely – that the 
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unavoidable linguistic diversity has led to increased awareness, and utilisation, of such 

differences.  

We conclude that the neutral evolution of languages is unavoidable, but that it is not the 

only cause of change – hence, our use of the term a modified-neutral theory of linguistic 

evolution. While neither social nor linguistic function are required to create linguistic 

diversity – geographical spread and imperfect transmission alone are sufficient – both 

remain as important factors in the evolution of languages. 

7.5   Conclusions 

In this chapter we performed a further, short, literature review – this time of work 

detailing the results of, and conclusions from, a variety of computational models of 

linguistic diversity or related systems. Seeing that there was some need for additional 

corroboration of our previous results, such corroboration was provided by performing 

additional experiments using the emergent phonology model of de Boer. This model 

generated results which are qualitatively comparable to observations of human language 

diversity, as did the results of our previous model (Chapter 6).  

From the results of this work, and from our reading of relevant literature, we derived our 

modified-neutral theory of linguistic evolution. This theory holds that particular language 

changes could not only be socially adaptive or mal-adaptive for speakers, or linguistically 

adaptive or mal-adaptive, but that they can be adaptively neutral. Language change and 

dialect diversity can emerge without any adaptive benefit: such change and diversity being 

a consequence of the repeated learning of language by different individuals distributed by 

spatial or social constraints. 

In the final chapter, we review the importance of this work – and of the other work 

detailed in this thesis – and point to ways in which this work could be extended in the 

future. 
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Chapter 8    Conclusions 

 

In this thesis, we have reviewed some of the growing body of work which uses 

artificial life methods to investigate the evolution of language and languages, and 

presented some of our own artificial life based investigations. In this, we have 

encountered some limitations of the artificial life method for building explanations of 

the EoL, but have also found results which we believe should be of interest to the 

wider community interested in the evolution of language. 

8.1   Artificial Life and the Evolution of Language 

In this thesis we have seen how computational models can illustrate and illuminate 

processes that are otherwise hard or impossible to observe, and how they can be 

useful in improving our understanding of such processes.  Thus artificial models can 

be useful where it is not possible to make direct observations of the phenomenon of 

interest, such as is the case with the evolution of language. 

Despite this, we have argued that such models have limitations in their power in 

adding to the considerable base of knowledge that exists on the evolution of human 

language ability. The principal theories that already exist have been developed 

without the use of models, and to date computational models have had limited worth 

in advancing any one theory of the origin of language over any other. 

There is one key reason for this limitation. The problem domain is very open ended 

while the models that have been developed have, of necessity, been much more 

limited. The problem is similar to that discussed by Tim Taylor (Taylor, 1999) on the 

use of models of self-replicating systems to investigate the emergence and evolution 

of life and the development of species and organisms of increasing complexity. For 

the models to work very significant constraints are imposed on the representation of 

individuals or on the environmental and reproductive processes. By providing set 

rules and mechanisms for reproduction, or by providing a grossly limited set of 

possible interactions with the environment, the model will in effect have greatly 

limited the search space and set of possible outcomes. 

This is most evident in some artificial life work on the EoL where the investigator sets 

out to determine if some application of language might provide sufficient adaptive 

benefit to explain the emergence of language. A model is then built in which agents 
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are able to evolve and interact. Typically, however, both the evolutionary changes 

available and the interactions possible are tightly bound, and very limited. Ideally 

agents should not possess the appropriate mental structures and/or rules for language 

use, as early hominids presumably did not, but these should evolve. Instead, the rules 

for language use, and the representational capacity for language use are usually 

explicitly present from the beginning. 

With only one application of language possible, and suitable fitness rewards for 

agents that are able to use the model language, the experimenter then runs the 

simulation and waits for random mutation to find the correct solution. This has led to 

a range of works that each support one of a variety of uses of language as being the 

prime reason for its emergence (see reviews in Chapters 2, 3 and 5). From an open-

ended problem domain, limited models are built that can only support a single theory. 

Against this background of numerous positive results is the knowledge that, in nature, 

only one species has evolved language, and only a very few species have naturally 

acquired learned systems of communication at all. If each of the many posited reasons 

for language’s genesis was, by itself, sufficient cause, then we might expect it to be 

somewhat more common than it is. 

As methods and models improve it may be possible to relax these constraints. But it is 

clear that the complexity of the EoL is such that it will be some time before 

simulation models of the evolution of language will be able to significantly add to our 

knowledge of why and how language evolved. The best we can currently achieve with 

such models is to illustrate particular points or ideas. 

8.2   Methodological Approaches 

However, using some of the reviewed methodological principles for conducting 

artificial life experimentation (reviewed in Chapter 3) can help researchers in finding 

productive topics to pursue. In particular, work that tries to resolve current questions 

by building models, where competing theories can be tested against one another, can 

provide useful insight and useful additional evidence for resolving debate. An 

example of this approach is in the more detailed findings and arguments that have 

been drawn from the work of Chapters 6 and 7 compared to that of Chapter 5. Further 

examples are provided in some of the other work that has been cited in this thesis. 

In contrast to work that attempts to explain the origins of language, modelling the 

cultural evolution of languages appears to suffer less from the problems mentioned 
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above. The evolution of languages occurs in a system with a predetermined biological 

substrate. The structure of individual agents, and the basic rules that they follow, do 

not vary over time, but are predetermined. This is an important difference, and one 

that bypasses the problems noted by Taylor (1999) about the use of artificial life for 

modelling evolution. 

In our own work, we have tried as much as possible to follow the principles of good 

practice discussed in Chapter 3. The model developed in Chapter 4 and used in 

experiments in the following two chapters was a simplified version of an earlier 

model. In simplifying the earlier model, we were attempting to build a minimal model 

that was as simple as possible, yet not so simple that it was no longer relevant to the 

problem being modelled. 

We have presented arguments validating the design decisions taking in building the 

models – such as when deciding what characteristic features of language should be 

implemented in our minimal model (Chapter 4), or when choosing to build a model of 

the EoL in which all agents are equally well able to learn how to interpret signals, but 

not how to produce them (Chapter 5). 

We have been equally attentive to the task of verification. In our work on the EoL, in 

Chapter 5, this verification resulted in our conclusion that our model was unable to 

provide evidence to favour either the continuous or the discontinuous EoL over the 

other, and forced us to consider the limitations of the model. 

In Chapter 6 we were able to verify the results of our model of the cultural evolution 

of language by a direct comparison of the qualitative results obtained against 

observations of human linguistic diversity. In the following chapter, we took this a 

step further by conducting a further experiment to verify our findings, using a 

different model that had already been extensively documented. 

That we are able to reproduce our some of our key results in a second, quite different, 

model gives us significantly more confidence in our findings. These findings are now 

summarised in the next two sections. 

8.3   Redundancy in Language Evolution 

Perhaps the first notable finding of this work, in Chapters 4 and 5, was that a 

redundant language capacity (i.e. one capable of using more signals, or representing 

more meanings than strictly required) improved the fitness of agents possessing it. 
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The benefit of a redundant language capacity could also overcome moderate fitness 

penalties awarded according to capacity. 

This was interesting because the benefit occurred despite the absence of noise – the 

most commonly cited benefit of linguistic redundancy. We concluded that, in this 

case, the benefit was in allowing greater flexibility for agents attempting to learn 

conflicting lexicons. It was noted that along a language continuum, agents were able 

to understand neighbouring agents with a high degree of success despite large 

differences in dialect along the continuum. While a similar idea has been previously 

presented (Lass (1997) pointed to redundancy as allowing changes to occur in 

language without affecting the success of communication), this work has brought into 

focus the likelihood that redundancy itself provides a significant benefit to language 

learners, improving their ability to learn language from conflicting and contradictory 

evidence provided by different speakers. 

However, the role and importance of redundancy requires further investigation, and is 

left as work for the future. 

8.4   Language Change and Neutral Evolution 

What is probably the most significant contribution of this thesis however, has been the 

investigation of the evolution of linguistic diversity, and subsequent discussion. This 

is a topic of current and ongoing debate. One view holds that language diversity 

and/or change must be adaptive, or otherwise it would not occur for a variety of 

reasons. Countering this is the view that change and diversity are unavoidable, and 

entirely to be expected due to the way language is learned. In this debate, our 

experiments and debate supported this latter case. With regard to simulation work, we 

argued that improbable assumptions coded into models supporting the former position 

gave rise to their results. To counter those results, we presented results from two 

distinct models supporting the latter argument. 

Previous work on language change as a form of neutral evolution was presented by 

Lass (1997) and Nettle (1999a), who presented arguments for and against, 

respectively. We further added to this existing work, and briefly outlined further 

arguments forwarding language change as being adaptively neutral. In doing this we 

also took time to look at possible challenges introduced by related ongoing debates in 

linguistics, on linguistic relativity and non-uniformitarianism. 
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As yet, this debate is not thoroughly resolved, and the work presented can be greatly 

extended. For example, linguistic ecology (Section 2.5.5) would appear to be an area 

where computational models could be productively applied – investigating more 

closely the social structures supportive of language stability, of creole genesis, or 

takeover by one of a number of competing languages. 

8.5   Future Directions 

As noted at the beginning, this thesis is the product of interdisciplinary research. Such 

work is often troubled, as has been noted by Bullock (1997) in the conclusions of his 

PhD thesis. In looking at the evolution of languages, however, some of the greatest 

conceptual and intellectual struggles have not been in attempting to bridge the gap 

between computer and linguistic sciences, but between different branches of 

linguistics itself – where principles and ideas in fields such as historical linguistics 

and sociolinguistics seem at times to be in opposition. It is to be hoped that, over time, 

work on the evolution of language might help to draw some of these distinct 

approaches together, providing a bigger picture that frames the sometimes opposing 

views that currently exist in, say, socio-linguistics and historical linguistics. 

Regarding the work of this thesis, there are a variety of ways in which future research 

might expand upon it. As noted above, both the role of redundancy in language 

evolution and the effect of different linguistic ecologies present further questions. 

Other interesting, and related, directions for future research include examining how 

the evolution of languages differs for different aspects of language (e.g. grammar 

versus phonology), or for examining the role played by different mechanisms of 

language change. For example Labov (1994, Chapter 18) examines the role played by 

two different mechanisms of language change, and proposes that both have some part 

to play. ALife work may be able to explore the workings of such mechanisms more 

closely, allowing insight not possible from currently available linguistic evidence. 
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Appendix A – Table of Signals Learned 
The table below lists the full set of signals learned by a population in one of the 

experiments detailed in Section 5.4. This shows that considerable diversity exists, 

with neighbours tending to use the same – or similar signals. This demonstrates the 

spontaneous emergence of dialects. 

 
Agent 
No. 

Lang. 
Nodes

Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 

0 6  + + + + - +  + - - - - +  - + + + + +  - - + + - -  + - + - + -  - - + + - -  + + + - + -  + - + - - + 

1 6  - + + - - +  + - - - - -  - + + + + +  - - + + - -  + + + - - -  - - - + - -  + - + + + +  + + + - - + 

2 6  - + + - - +  + - - - - -  - + + + + +  - - + + - -  + + + - - -  - - - + - -  + - + + + +  - + - - - + 

3 6  - - + - - +  + - - - - +  - - + - + +  - - + + - -  + + - - - -  - - - + - -  + - - + - +  - + - - - + 

4 5  - - + - -  + - - + -  - - + - +  - - + - -  + + - - -  - - - - +  + - - + -  - + - + - 

5 7  - - + - - + +  + - - + - + -  - - + - + + -  - - - + + - -  + + - - - + -  - - - - + - -  + - - - - - +  - + - - - + + 

6 6  - - + + - -  + - - + - +  - - - - + +  - - - + + -  + + - - - +  + - - - + -  - - - + - -  - + - + + + 

7 6  - - + + - -  + - - + - +  - - - - + +  + + - + + -  + + - - - +  + - - - + -  - - - - - -  - + - + - + 

8 5  - - - + -  + - - + -  - + - - +  + + - + -  + + - - -  + - - - -  - - + - -  - + + - - 

9 6  - - - + - -  + - - + - +  - + - + + -  + + + + - +  + + - - - +  + - - - + -  - - + - + -  - + + - - - 

10 6  - + - + + -  - - - + - +  - + + - + +  + + + + - +  + + - - + +  + - - - + +  - - + - + +  - + + - - - 

11 5  - - - + +  - - - + -  - + - - +  + + + + -  + + - - -  + - + - +  + - + + +  - + + + - 

12 6  + - - + + -  - - - + - +  - + + - - -  + + + + - -  + + - - - +  - - - - + -  - - + + + +  - + + + + + 

13 6  - - - + + +  - - - + - -  - - + - - -  + + + + - -  + + - - - +  + - - - + -  - - + + + +  - + + + + + 

14 5  - + - + +  - - - + -  - - + + -  + - + + -  + + - - -  + - + - +  - - + - +  + + - + + 

15 6  - + - + + +  - - - - - -  + - + + - -  + - + + - +  + - - + - +  + - + - + +  - - + - + -  + + - + + - 

16 6  - + - + + +  + - - - - -  + - + + - -  - - + + + +  + - - + + -  + + + - + +  - - - - + +  + - - + + - 

17 6  - - - + - +  + - - - - +  + - + + - -  - - + + + -  + - - + + -  + - + - + +  - - - - - +  + - - + + - 

18 6  - - + + - +  + - - - - -  - - + + - -  - - + + + +  + - - + - -  - - - - + -  - - - + - +  - - - + + - 

19 5  - - + + -  + - + - -  - - + - -  + - + + +  + - - + -  + - - - +  - - - + -  + - - + + 

20 6  - - + - - -  + - + + - +  + - + - - -  - - + + + -  + - - + - +  + - + - + -  - + - + - -  + - - + + - 

21 5  - - + + -  + - + + -  + - - + -  - - + + +  - - - - -  + - + - +  - + - + -  + - - + + 

22 7  - - + + + - -  + + + - - - -  + + + + - - +  + - + + + - -  - - - - - + +  + + + - + + +  - + - + - + +  - - - - + + - 

23 6  - + + + + -  + - + - - -  + + - + - -  + + - + + -  - - + - - +  + + + - + +  + - - + - +  + - - - + + 

24 6  - + + + - -  + - + - - -  + + - + - -  + + - + + -  - - + + - +  + + + + + +  + - - + - +  - - - - + + 

25 5  - + + + +  + - + - -  + + - + -  - + - + -  - - + + -  + + + + +  + - - + -  - - - - + 

26 6  - + + + + -  + - + - - +  + + - + - +  + + - + - -  - - - + - -  + + + + + +  + - - + - -  - - - + + + 

27 6  + + + + + -  + - + + - +  + + + + - +  + + - + - +  - - - + + -  - + - + + +  - - + + - -  + - - + + + 

28 7  + - + + + - -  + - + + - + +  - + + + + + +  + - - + - + -  - - - + + - +  - + - + + + -  - - + + - + -  + - - + + + - 

29 5  + - + + +  + + + + -  + + + + +  + - - - +  - + - + +  - + - + +  - - + + -  + - - + + 

30 6  + - + + - -  + + + + - -  - + + + + +  + - - - + +  - + - + + -  - + - + + +  - - + - - +  + - - + + - 

31 6  - - - + - -  + + + - - +  + + - + + +  + + + - + +  - + + - + -  - + - + - +  - - + - - -  + - - + - - 

32 6  - - - - - -  + + + - - +  - + - + + +  + + + - + -  - + + - + -  - - - + - +  - - + + + -  + - - + + - 

33 7  - + - + - - -  + + - - + + -  + + - + + + +  + + + - + - +  - + + - - - +  - - - + + + +  - - + + + - -  + - - + - + - 

34 6  - + - + - -  + - - - + +  + + - + + -  + + + - + +  - + + - - +  - - - + + +  - - + + + +  + - + + - + 

35 5  - + - + -  + - - - +  + + - + +  + + + - +  - + + - -  - - - - +  + - + + +  + + - + - 

36 6  - + - + - +  + - - - - +  + + - - + -  - + - - - +  - + - - - -  - - - - + -  + - + + - +  + + - + - + 

37 6  - + - + - -  + - - - - +  + + - + + -  - + - - - +  - - - - - -  - - - - + -  + - - + - +  + + - - + + 

38 6  + + - + - -  - - - - - +  + + - + + -  - + - - - +  - - - + + -  + - - - + -  + - - + - +  + + - - + + 

39 7  + - - + - - -  - + - - - + -  - + - + + - +  - + - - - - -  - - - + + - +  + - - - - - +  + + - + - + +  + - - - + + - 

40 6  - - - + - -  - + - - - +  - + - - + -  - - - - - -  - - - + + +  + - - - - -  + + - + - +  + - - - + + 

41 6  - - - + - +  - + - - - +  - - - - + -  - - - - - +  - - - + + +  + - - - - +  + + - + + +  + - - - + + 

42 7  - - - + - - -  - + - - - - -  - + - - + - +  - - - - - - +  - - - + + + +  + - - - + + -  - + + + + + +  + + - - + + - 
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Agent 
No. 

Lang. 
Nodes

Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 

43 6  + - - + - -  - + - + - -  - + - - + -  - - - - - -  - - - + + +  + - + - + +  - - + + + +  + + - - - + 

44 6  + - - + - -  + + - + + -  - + - - + -  - - - - - -  - - - + + +  + - + - + +  - - + - + -  + - - - - + 

45 7  + - + + - - -  + + - + + - -  + + + - - - +  - - + - - - -  - - + + + + -  + - + - + + +  - - + - + - -  + - - + - + - 

46 5  + - + + -  + - - + +  + + + - -  - - - - -  - - - + +  + - + - +  - - - - +  + - - + - 

47 5  - - + + -  + - - + +  + - + - -  - - - - -  - - + + +  + - + - +  - - - - -  + - - + - 

48 6  - - + + - +  + - - + + +  - - + - - +  + - - - - +  - - + + + +  + - + - + -  - - + - - -  + - - + - - 

49 6  - - + + - +  + - + + + +  + - + - - +  + - - - - +  - - - + + -  + - + - + +  + - + + - -  + - - + - + 

50 6  - - - - - +  - - + + + +  + + + + - +  - - + - - +  - - - + + +  + - + - + -  - - + + - -  + - - + - + 

51 7  - + - + - + +  - - + + + - -  + + + + - + +  - - + - + + +  - - - - + - -  + - + - + - -  - - - + - - -  + - - + - + - 

52 7  - - - + - + +  - + + + + - -  + + + + + + -  - + + - - - +  - - - - + - -  + - + - + - -  + - - + - - -  - - + + - + - 

53 7  - - - + + - +  - + + - + - -  + + + + + + -  + - + - + - +  - - - - - + -  + - + - + - -  + + - - - - -  + - + + - + - 

54 7  + + - + - + +  - + + - - - -  - + + + + + -  + - + - - + +  - - - + - - -  + - + - - - -  - + - - - - -  + + + + - + - 

55 6  + + - + - -  - + + - - -  - + + + - +  + - + - - -  - - + + + -  + - + + - -  - + - - - -  - + + + - + 

56 7  + + - + - - -  - + + - - - +  - + + + - - -  + + + - - - +  - - + + - - -  + - + + - - -  - + - - - - -  + - + + - - + 

57 7  + + - + - - -  - - + - - - +  - + + + + - -  + + + - - - +  - - + + + - -  + - + + + - +  - + - - + - -  - - - + - - + 

58 6  - + - + - -  - - + - - -  - + + + + -  + + + - - -  + - + + + -  + - + + + -  - + - - + -  + - - + - - 

59 7  - + - + - - +  - - + - - - -  + + + + + - +  + + + - - - -  + - + + + - -  - - + + + + +  - - - - + - +  + - - + - - - 

60 7  - + - - - - +  - + + - - - -  + + + - + - +  + + + - + - -  + + - + + - -  - - + - + - +  - - - - + - -  + - - - - - - 

61 7  - + - - - - +  - + + - - - -  + + + + + - +  + - + - + - -  - + - + + - -  - - + - + - +  - - - - + + -  + - - - - - + 

62 6  - + - - - -  - + + - - -  + + + - + -  + - - - + -  - + - + + -  - - + - + -  - - - - + +  + + - - - - 

63 5  - + - - -  + + + - -  + + + - +  + - + - +  - + - + +  - + + - +  - - + - +  + + - - - 

64 7  - + - - - + -  - + + - - + +  + + - - + - -  + - + - - - +  - + - - + - +  - + + - - - +  - - - - + + +  + + - - - + - 

65 6  - + - - - +  - + + - - +  + + - - + -  + - + - - +  - + - - - -  - + - - - -  - - + - + -  + - - - - + 

66 7  - + - - + + -  + + + - + + +  + + - - + + +  + - + - + + +  - + - - - + +  - - - - - - +  - - + - + + -  + - - - - + - 

67 6  - + - - + +  + + + - + +  + + - - - -  + - + - + +  - + + - - +  - - - - - -  - - + - + -  + - - - + + 

68 7  - - - - + + -  + + + - + + +  + - - - - + +  + - + - + + -  - + + - - + +  - - - - - - +  + - + - - - -  + - - - + - - 

69 7  - - - - + + - + + + + + + +  + + - - - + +  + + - - + + -  - + + - - - +  - - - - - - +  + - + - - - -  + - - - + - - 

70 6  - - - - + +  + + - + - +  - + - - - +  + + - + + +  - + + - - -  - - - + + -  + - + - - -  + - - - + - 

71 5  - - - - +  + + - + -  - + - - -  + + + + +  - + + - +  - - - + +  + - - - -  + - + - + 

72 6  - - - - + +  + + + + - +  - + - - - -  + + + + + +  - + - - + -  - - + + + -  + - - - - +  + + + - + - 

73 7  - - + - + + +  + + + + - - -  - + - - - - -  - + + - - + -  + + - - - - -  - - + + + - -  + - - + - + +  + + + - + - + 

74 7  - + + + + + +  + - + + - - -  - + - + - - -  - + + - - + -  + - - - - - -  + - + + + - -  + - - + + + +  + + + - + - + 

75 6  - + + + + +  + - + - - -  - + - + + -  - + + + - +  + + - + - -  + - + + + -  - - - + + +  + + - - + - 

76 6  - + + + + -  + - + - - -  - + - + + -  - - + - - +  + + - + - -  + - + + + -  - - - + + -  + + - - + - 

77 5  - + + + +  + - + - +  - + - - +  + - + - +  + + - + -  + - - + +  - - - + +  + + - + + 

78 6  - + + - + +  + + + - + +  + + - - + -  + - + - + -  + + - - + -  + - - + + +  - - - + + -  + + - + + + 

79 7  - - + - + + + + + + + + + +  + + - - + - -  + - + - + - -  - + - - + - +  - - - - + + -  + - + + + - +  - + - + + + - 

80 7  - - + - + + +  + + + + + + -  + + - - + - +  - - + - + - -  + + + - + + +  - - - - + + -  + - + + + - +  - + - + + + - 

81 5  - + + - +  + - + + +  + + - - +  + - - - +  + + + + +  - - - - +  + - + + +  - + - + + 

82 6  - + + - + +  + + + + - +  + + - + + +  + - - - + +  + + + - + -  - - - + + +  + - + + + -  + + - - + + 

83 7  - + + - + + -  + + + + - + -  + + - + + + +  + - + - + + -  + - + + + - -  - - - + + + +  - + + + + - +  + + + - + + + 

84 5  - + + - +  + - + - -  + + + + -  + - + - +  + - + + +  - - + + +  - + + + +  + - + - + 

85 6  - - + - + +  + - + - - +  + + + + - +  + - + + - -  + - + + + +  - - + + - -  - + + + + +  + - + - + + 

86 6  - - + - - +  + - + - - +  + + + + - +  + + + - - -  + + + + + +  - - + + - -  - + + + + -  - - + - + + 

87 6  - - + - - +  + + - - - +  + + + - + +  + + + - - -  - + + + + +  - - + + - +  - + - - + -  + - - - + + 

88 5  - - + - +  - + - - -  + + + - +  + + + + +  - + + + +  - + + + -  - - - - +  + + - - + 

89 5  - - + + +  - + - - +  + - + - +  + + + + +  - - + + +  - + + + +  - - - - +  + + + - + 

90 6  - - + + + -  - - + - + +  + - + - + +  + + + + + -  - - + + + +  - + + + + +  - - - - + -  - + + - + - 

91 5  - - + + +  + - + - +  + + + - +  + + + + +  - - + + +  - + + + +  - + - - +  - + - - + 

92 6  + - - + + -  + - - - + +  + + + + + -  + + + + + -  + - - + + +  - + + + + +  + + - - + -  - + - - + + 

93 6  - - - + + -  + + + - + +  + + + - + -  + + + + + -  + - + + + +  - + + + + +  - + - - + -  - + - + + + 

94 6  + - - + - -  + + - - + +  + + + - + -  + - + + + -  + - - + + +  - + + + + +  - + + - + -  + + - + + + 

95 6  + + + + - -  + + - - - +  + + + - + -  + - + + + -  + - + + + +  - + + + + -  - - + - + -  + + - + - + 

96 7  + + + + - - +  + - - - - - -  + + + - + - +  + - + + + - +  + - + - + - -  - + + + - - -  - - + - + - +  + + - + - + + 
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Agent 
No. 

Lang. 
Nodes

Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 

97 6  + + + + - -  + + - - - -  + + + - + +  + - + + + +  + - + - + -  - + + + + -  - + + - + +  + - + - - + 

98 5  + + + + -  - - - - -  + + + - +  + - + + +  + - + - +  - - + + +  - + + - +  + - + - - 

99 7  + + + - - + -  + - - - - + -  - + + - + + +  + - + + - - -  + - + - + - +  - - + + + + -  - + + - + - -  + - + - - + + 

Table A.1: This table shows the full set of the signals from one set of 
results from one of experiments shown in section 5.4 
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Colour Plate 6.1 Signals and colour values 
 

 
 
 
Colour Plate 6.2 Evolution of Communication Schemes 
 
(a).i-ix Set of results after agents learn only from agents in the parent generation. 
Shown in each are the last 1000 generations of 100,000. See section 6.6.2 for more 
detail on interpreting the results. 
i) 

 

ii) 

 

iii) 
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iv) 

 

v) 

 

vi) 

 
vii) 

 

viii) 

 

ix) 
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(b).i-ix Set of results after agents learn from other agents in their own generation as 
well as from agents in the parent generation. Shown in each are the last 1000 
generations of 100,000.  
 
i) 

 

ii) 

 

iii) 

 
iv) 

 

v) 

 

vi) 
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vii) 

 

viii) 

 

ix) 

 
 
Colour Plate 6.3 Emergence of global dialects 
i) Convergence ii) and iii) Global dialects, with internal variation. 

i) 

 

ii) 

 

iii) 
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Colour Plate 6.4 Diversity from Homogeneity 
(a) From homogenous signalling schemes to diversity, three examples of the effect of 
noisy signals at 0.1% noise (i-iii) and three with 0.01% noise (iv-vi). Shown in each 
are the first 1000 generations of a run. 

i) 

 

ii) 

 

iii) 

 
iv) 

 

v) 

 

vi) 
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(b) Six examples of the effect of bias from initial weights on signal evolution. Initial 
weight values range from –0.05 to 0.05 (i-iii) or from –0.005 to 0.005 (iv-vi). Shown 
in each are the first 1000 generations of a run. 

i) 

 

ii) 

 

iii) 

 
iv) 

 

v) 

 

vi) 
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(c) A further example of the effect of innate bias. i – From homogeneity to diversity, 
the first thousand generations. ii – No evidence of original homogeneity, from the 
9000th to the 10,000th generation. 
 

i) 

 

ii) 
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