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In this study, optimization models using Genetic Algorithms are proposed to study the

con�guration of vowels and tone systems. Similar to previous explanatory models that

have been used to study vowel systems, certain criteria, which are assumed to be the

principles governing the structure of sound systems, are used to predict optimal vowels

and tone systems. In most of the earlier studies only one criterion has been considered.

When two criteria are considered, they are often combined into one scalar function.

The GA model proposed for the study of tone systems uses a Pareto-ranking method

which is highly applicable for dealing with optimization problems having multiple criteria.

For optimization of tone systems, perceptual contrast and markedness complexity are

considered simultaneously. Although the consistency between the predicted systems and

the observed systems is not as signi�cant as those obtained for vowel systems, further

investigation along this line is promising.

1 Introduction

Studies of the universal characteristics of sound systems in human languages can be

pursued from two di�erent approaches, inductive and deductive. The inductive approach

is to analyze the database built from a survey of a large number of languages to arrive at

a list of �universal� features which can be widely observed in the database. The deductive

approach hypothesizes a number of principles related to speech production and perception

processes, and predicts possible systems using these principles. These two approaches,

however, are often interwoven. The principles hypothesized by the deductive approach
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are modi�ed or falsi�ed by comparing the predictions with the results from the inductive

analysis of real language systems. At the same time, the ultimate aim for inductive

analysis is to seek intrinsic mechanisms and principles of human speech to explain the

universals found in real systems.

For the inductive approach in phonological studies, there are two large scale databases

available. One is the Stanford Phonology Archiving (SPA) Project (Vihman, 1977), which

initially included 196 languages and was extended to 209 languages in 1978. The other

is the UCLA Phonological Segment Inventory Database (UPSID) (Maddieson, 1984),

which initially included 371 languages and was later extended to 451 languages (Mad-

dieson and Precoda, 1990; Ladefoged and Maddieson, 1996). Many typological studies

have been carried out based on these two databases. For example, in studying vowel

systems, Crothers (1978) reported an analysis using the SPA database. Ladefoged and

Maddieson (1990) and Schwartz et al. (1997b) reported comprehensive analyses for the

vowels systems in UPSID.

Along with typological studies of the languages in these databases, explanatory mod-

els, which attempt to explore the intrinsic reasons for structures and universals, have

also been proposed. In the study of vowel systems, the principle of maximal perceptual

contrast has a long tradition in linguistics (Jakobson, 1941; Wang, 1968). The princi-

ple suggests that the vowel system tends to achieve a maximum contrast among the

vowels in the system. A number of numerical studies adopting this principle have been

proposed (Liljencrants and Lindblom, 1972; Crothers, 1978; Lindblom, 1986). Lindblom

(1986) proposed the su�cient perceptual contrast principle under which more systems

are predicted to be consistent with natural systems than those predicted by the max-

imal perceptual contrast principle. Boë, Schwartz, and Vallée (1994) and Schwartz et

al. (1997a) added a new consideration called the focalization principle which is based

on the observation that vowels with strong formant convergence would be perceptually
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preferred. More recently, de Boer (1997; 2000; 2001) proposed a synthesized model in

which agents interact with each other through iterative imitation games. With explicit

optimization, agents can develop coherent vowel systems which are close to real systems.

The works cited above are all concerned with vowel systems. Other components of

a sound system, including consonants, tones (in tone languages), and pitch accent (in

non-tone languages), have far fewer studies reported than those on vowels. Lindblom

and Maddieson (1988) reported a study on phonetic universals in consonant systems us-

ing data from UPSID. They proposed that the structure of consonant systems does not

arise from a single principle such as the maximization of perceptual contrast. Instead,

articulatory factors interact with perceptual factors. According to their proposal, con-

sonant inventories tend to evolve so as to achieve maximal perceptual distinctiveness at

minimum articulatory cost.

There are some inductive studies on the universals of tone systems as well. For

example, Maddieson (1978) reviewed the phonological universals of tones by analyzing

data from SPA. Also, Cheng (1973) reported a detailed analysis of the tone systems in

Chinese dialects. However, we have not found any explanatory models using a deductive

approach for tone systems as those performed for vowel systems.

More recently, Redford, Chen, and Miikkulainen (2001) reported their studies on

the universal and variations of syllable structures, i.e. the combinations of vowels and

consonants. They developed a computational model, which is based on a version of the

Genetic Algorithm (GA) (Holland, 1975), to simulate the emergence of syllable systems.

A set of functional constraints related to perceptual distinctiveness and articulatory ease

are taken into account as optimization objectives.

In this study, we report some optimization models using Genetic Algorithms to study

optimal vowel and tone systems. In these models, the optimal systems are derived from

the models based on various explicit optimization criteria, and compared with observed
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systems. In the study of vowel systems, we compare two sets of criteria, one considering

only the principle of maximal perceptual contrast (Liljencrants and Lindblom, 1972), and

the other considering both inter-vowel's perceptual distance and intra-vowel's spectral

salience, that is, the dispersion-focalization principle proposed by Schwartz et al. (1997a).

In the second set, the two objectives are combined into a scalar function. Comparing our

results with earlier studies, the GA models demonstrate the e�ectiveness of the GA

method in identifying the optimal systems based on the above criteria.

Secondly we apply the GA method to study tone systems. Two objectives, i.e. max-

imum perceptual contrast and minimum markedness complexity, are taken into account

to predict the �optimal� tone systems. Instead of combining the two objectives into one

�tness function, we use a Multi-Objective Genetic Algorithm model in which a Pareto-

ranking method is applied for the �tness function. In order to make a comparison, we also

try a simple GA model which uses perceptual distance only as the optimization criterion.

The predicted systems are compared with the real systems for the two sets of criteria.

In the following parts of the paper, Section 2 gives a brief introduction to a simple

Genetic Algorithm and a Multi-Objective GA. Section 3 reports the simulation for vowel

systems and comparisons with previous reports. Section 4 introduces the models for tone

systems, together with a new analysis of an available tone systems database. Conclusions

and discussion are given in Section 5.

2 Introduction to Genetic Algorithms

2.1 Simple Genetic Algorithm

Genetic Algorithms (GAs) were �rst proposed by John Holland in the 1960s (Holland,

1975) and have become widely used in various disciplines. The original goal of Holland's

GAs was to formally study the phenomena of adaptation by importing the mechanisms

of natural adaptation into computer simulation models. However, most of the current
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applications of GAs are used for speci�c optimization problems, where the focus is on

the derivation of optimal solutions to the problem rather than the process of adaptation.

The basic idea of GAs is based on �natural selection�, the principle of �survival of the

�ttest�, which assumes that the individual which is �tter to the environment produces

more o�spring; its ��t� genes are then transmitted to the next generation. A Genetic

Algorithm operates on a population of chromosomes, each generating a potential solu-

tion to the studied problem. The process of a traditional simple GA is as follows: at the

beginning, a population is randomly initialized, and the �tness of each chromosome is

evaluated according to an objective, also called �tness, function. A number of chromo-

somes are selected as parents from the population according to their �tness, and parents

then undergo crossover and mutation to produce o�spring with certain probabilities.

O�spring with better �tness are inserted into the population, replacing the inferior chro-

mosomes in the last generation. With this replacement, usually the population size is

kept constant. This cycle is repeated for a given number of generations, or stopped when

a solution is obtained as optimal. This process leads to the evolution of a population in

which the individuals are more and more suited to their environment, just as in natural

adaptation. Due to its global search mechanism, a GA model usually can �nd the global

optimal solutions in a more e�cient way than traditional optimization methods.

2.2 Multi-objective Genetic Algorithm

In a traditional GA, the �tness function deals only with one optimization objective.

However, many practical problems are concerned with several equally important, and

usually con�icting, objectives. These types of problems are called Multi-objective or

Multi-criteria Optimization Problems (MOP) (Stadler, 1988).

Human language is such a case of an MOP. A language system is constrained by

many demands and requirements. We can consider that the current language system is
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the product of an optimization process based on such constraints. The constraints can

be divided mainly into three categories: the speaker constraint, the listener constraint

and the learner constraint, which often lead to di�erent directions of development of the

system. For example, for a sound system, the requirement from speaking and listening

often con�ict with each other. A sound which is easy for the speaker to produce may

not be easy for the listener to perceive. Similarly, perceptually distinctive sounds may

be di�cult to pronounce. A system with a high perceptual contrast may have a high

production cost at the same time, such as the consonant set [â k' ts ë m r Ø] suggested

by J. Ohala in questioning the e�ectiveness of the principle of maximum perceptual

di�erence in explaining consonant universals (Lindblom and Maddieson, 1988).

We can see the e�ects of such a tug-of-war in various aspects of a language system. For

example, in the perception of tones, a completely level tone is the easiest to di�erentiate

from non-level tones from a psychophysical viewpoint. However, it requires much e�ort

of the speaker to produce a perfectly level tone. As a consequence of accommodating a

speaker's e�ort, the listeners will shift their linguistic perception boundary between level

and rising tones away from the psychophysical boundary, to allow some freedom in the

articulation of the speaker (Wang, 1976).

Also, in syntax, a language with free word order may give the speaker a high �exibility

in constructing sentences; however, it would place the burden on the listener to �gure

out the relationships among the words. This is solved by signaling the roles of words by

various case markers. However, if the case marking system is too complex, it will be hard

for the children to learn. Therefore there may exist a balance point among the di�erent

constraints of the three parties involved.

The most distinctive characteristic of an MOP is that the problem does not have
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one singular optimal solution, but rather a set of non-dominated1, alternative solutions,

which is often called the Pareto-optimal set. Recently a set of algorithms, called Multi-

Objective Genetic Algorithms (MOGAs), have been developed speci�cally to solve such

multi-objective problems. MOGAs have received much attention and many scienti�c and

engineering applications have been reported (Fonseca and Fleming, 1998; Van Veldhuizen

and Lamont, 2000).

The simplest and most common way to tackle an MOP is to combine the several

objectives into one scalar function as the �tness function. Di�erent objectives are given

di�erent weights based on some a priori knowledge (Stadler, 1988). However, such knowl-

edge is not available very often, and most of the time the weights are chosen by trial

and error. Thus the performance of the algorithm usually is sensitive to or biased by

the weights. Early studies on sound system optimization with multiple criteria, such

as Redford, Chen, and Miikkulainen (2001) and Schwartz et al. (1997a), adopted this

approach.

Within the GA approach, another method called Pareto-ranking is often used in the

�tness evaluation. The several objective values of a chromosome are kept as a vector,

instead of being combined by a scalar function into one single �tness value. The �tness

of a chromosome is determined by its ranking in the population which is obtained from

comparing the its objective vector with others. There are many ranking methods and

in this study we use the one proposed in Goldberg (1989). This method assigns ranks

according to the following procedures. First, �nd the non-dominated chromosomes from

the whole population, assign rank 1 to them, and remove them from further consideration

in the ranking process afterwards. Then, �nd another set of non-dominated chromosomes

1 Assuming a minimization problem with p objectives, dominance is de�ned as follows: x1 is said to
dominate x2 (or x2 is inferior to x1), if the �tness of x1, f(x1), is partially less than the �tness of
x2, f(x2), i.e. fi(x1) � fi(x2), 8i 2 f1; 2; : : : ; pg; and fi(x1) < fi(x2), 9i 2 f1; 2; : : : ; pg. A
non-dominated solution is such a solution that there are no other solutions whose objectives are all
better than its.
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from the remaining population and assign them rank 2, and so forth. To illustrate the

algorithm, Figure 1 gives an example. Points A, B, C, D, E, F, G represent candidate

solutions to a problem whose goal is to minimize two objectives. The objective values of

the solutions are shown in the f1-f2 plane. According to the method, solutions A, B, C

and D are all non-dominated and therefore assigned rank 1. Solutions E and F both have

rank 2, while G has 3, the worst rank.

A(1)

C(1)

B(1)

E(2)

F(2)
G(3)

f2 D(1)

f1

Figure 1
An illustration of Goldberg's Pareto ranking method. The numbers in parentheses represent
the ranks for the chromosomes.

3 Optimization model for vowel systems

In this study, we use a simple GA model to search for the optimal con�guration of

systems of simple vowels. We apply various optimization criteria proposed by earlier

studies (Liljencrants and Lindblom, 1972; Lindblom, 1986; Schwartz et al., 1997a), in

our GA model and compare the predictions. Also di�erent vowel inventories are used

to provide another set of comparison. The predictions are also compared with observed

systems.

3.1 Implementation of the GA model

The GA model consists of a population with a number of chromosomes, each represent-

ing a possible vowel system. Each vowel is encoded by the three primary articulatory
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parameters, that is, tongue height, tongue backness, and lip roundness. The �rst two

articulatory parameters are supposed to be continuous within the range of [0,1], while

the last parameter is a binary value. Though this encoding method allows an in�nite

number of vowels, following previous studies (Lindblom, 1986; Schwartz et al., 1997a),

we assume there is a limited inventory of prototypes from which the system can select

candidate vowels. Only normal plain vowels are considered. The encoding of the pro-

totypical vowels is designed according to the vowel position shown in the International

Phonetic Alphabet(IPA) vowel chart. Although the IPA vowel chart is better interpreted

as an acoustic chart, rather than an accurate projection of real articulation of the vowels,

the chart can still be assumed to re�ect the relative positions for articulation.

Two inventories of vowel prototypes are used, denoted as INVL and INVS respec-

tively. One consists of 18 vowels from a set of 19 vowels given in Lindblom (1986)2. The

other set includes 24 vowels extracted from the set of 33 vowels given in Schwartz et

al. (1997a). Figure 2 shows the two inventories in terms of the vowels' �rst formants

(F1) and transformed second formants (F 0

2) (Fant, 1966) (see the Section 3.2 for more

explanation), both expressed in terms of the Bark scale (Hartmann, 1997).

In the GA model, one-point crossover and one-point mutation are used. Take the

simulation of 3-vowel systems as an example. Two chromosomes are selected as parents

from the population, as shown in Figure 3. Parent 1 includes three vowels: 0 ø and E,

represented by [0.0 0.5 1], [0.3 0.1 1], and [0.7 0.2 0] respectively. And three vowels W, @,

and A are included in parent 2, represented by [0.0 1.0 0 | 0.5 0.5 0 | 1.0 1.0 0]. Crossover

is randomly chosen to take place between two vowels, say the second and the third vowel

in the example, and the two chromosomes exchange their vowels. Next, by random, the

mutation occurs to the third vowel in the second o�spring, [E] is changed to [÷]. So the

2 The original inrounding front vowel [y] is deleted as it is not a common primary vowel, and the
outrounding [ü] is changed to symbol [y] in order to conform to the IPA transcription.
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Figure 2
The F1 and F

0

2 diagram of prototypical vowels, left: 18 vowels from INVL; right: 24 vowels
from INVS.

two o�spring generated from the pair of parents are [0, ø, A] and [W, @, ÷].

0.0  0.5  1 0.3  0.1  1 0.7  0.2  0

0.0  1.0  0 0.5  0.5  0 1.0  1.0  0

crossover point

parent 1

parent 2

offspring 1

offspring 2
mutation point

0.0  0.5  1

0.0  1.0  0

0.0  0.5  1

0.0  1.0  0

0.3  0.1  1

0.5  0.5  0

0.3  0.1  1

0.5  0.5  00.7  0.2  0

1.0  1.0  0

0.7  0.2  1

1.0  1.0  0

Figure 3
Crossover and mutation operations in simulation of 3-vowel systems.

Since the aim of the GA model used here is to �nd the optimal solution, the crossover

and mutation rates are both set to 1.0 in order to have the highest e�ciency in searching

for the optimal solution. If the genetic operations generate o�spring with one vowel

occurring twice in a system, this o�spring is removed from the population and a new

chromosome is randomly generated to keep the population size constant. Next, o�spring

with higher �tness are re-inserted into the population, replacing those individuals with

lower �tness values.

3.2 Fitness evaluation functions

Two sets of criteria are taken into account. One considers only the principle of maxi-

mal perceptual contrast (Liljencrants and Lindblom, 1972), and the other considers both
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inter-vowel's perceptual distance and intra-vowel's spectral salience related to the prox-

imity of formants, i.e. the dispersion-focalization principle proposed by Schwartz et al.

(1997a).

For the �rst criteria, the objective is to minimize the following �tness function:

F1 =

n�1X
i=1

nX
j=i+1

1

d2ij
(1)

where dij is the perceptual distance between vowels i and j. Various metrics for cal-

culating perceptual distance between vowels have been proposed based on perceptual

experiments manipulating di�erent combinations of formants and amplitudes of speech

signals (Schwartz et al., 1997a). Usually the acoustic parameters, i.e. the higher formants

(F2, F3, and F4), are �rst combined and transformed into an �equivalent second formant�

F 0

2. And the auditory distance between two vowels is calculated as the weighted Euclidean

distance in the space of F1 and F 0

2, where the weight between F1 and F 0

2 is determined

by �:

dij =
q
(F1i � F1j)2 + �(F 0

2i � F 0

2j)
2 (2)

In this study, two methods of calculating F 0

2 are tried, one proposed in Fant (1966),

and one given in Schwartz et al. (1997a), in order to examine the e�ect of di�erent metrics

of calculating perceptual contrast. Therefore, we will have two �tness functions regarding

the �rst criterion perceptual contrast, denoted as F1F and F1S .

The second criteria includes another objective in addition to the above F1, which is

the intra-vowel formant convergence:

Fc =

nX
i=1

�1

(F2i � F1i)2
+

nX
i=1

�1

(F3i � F2i)2
+

nX
i=1

�1

(F4i � F3i)2
(3)

The overall �tness function for the second set of criteria is a weighted summation of
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the above two objectives, i.e.

F2 = F1 + �Fc (4)

The values of � and � are crucial for the prediction. Schwartz et al. (1997a) tested a

number of values and found that the following ranges give the best prediction with their

vowel inventory3: 0:04 � � � 0:09 and 0 � � � 0:4. In our experiments, we choose the

values � = 0:0625 and � = 0:3 which are within the above ranges.

3.3 Results and analysis

We predict the optimal 3- to 7-vowel systems using six sets of experiments, each for

a combination of one of the two vowel inventories (INV1 and INV2), and one of the

three di�erent �tness functions (F1F , F1S and F2). The predicted systems are listed in

Table 1, together with the commonly observed systems found in the database UPSID

given in Schwartz et al. (1997a), and the predictions given in Schwartz et al. (1997a)

using the same parameters as those for F2 here, listed as S0.

First we compare the predictions using the same vowel inventory but di�erent �tness

functions. The two perceptual distance metrics (F1F and F1S) produce the same predic-

tions for systems of small sizes, i.e. 3-, 4- and 5-vowel systems, but di�erent predictions

for larger systems, i.e. 6- and 7-vowel systems, which means that predictions for larger

systems are more sensitive to the transformations F20. That transformations used in

Schwartz et al. (1997a) produces a more spread perceptual space in the F20 dimension,

and especially [i] has a much larger F20 than Fant's transformation. It is hard to give an

overall evaluation of which perceptual distance metric gives better predictions based on

these results. F1S predicts a symmetric 6-vowel system while F1F does not when using

3 Note that the � in our formula 2 corresponds to �
2 in Schwartz et al. (1997a), therefore the range of

� is modi�ed accordingly.
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Table 1
Frequent vowel systems in UPSID and predicted vowel systems using di�erent inventories and
�tness functions.

N observed systems predicted systems
INVS INVL

3 [i, a, u](14)

F1F :
F1S :
F2:
S0:

[i, a, u]
[i, a, u]
[i, a, u]
[i, a, u]

[i, a, u]
[i, a, u]
[i, a, u]

4

[i, `e', a, u](14)
[i, a, u, 1](5)
[i, a, `o', u](2)
[e, a, o, @](2)

F1F :
F1S :
F2:
S0:

[i, E, a, u]
[i, E, a, u]
[i, `e', a, u]
[i, `e', a, u]

[i, E, a, u]
[i, E, a, u]
[i, E, a, u]

5
[i, `e', a, `o', u](97)
[i, E, a, u, 1](3)

F1F :
F1S :
F2:
S0:

[i, E, a, `o', u]
[i, E, a, `o', u]
[i, E, a, `o', u]
[i, `e', a, `o', u]

[i, E, a, O, u]
[i, E, a, O, u]
[i, E, a, O, u]

6

[i, `e', a, `o', u, @](26)
[i, `e', a, `o', u, 1](12)
[i, `e', æ, A, `o', u](12)
[i, e, a, O, o, u](4)

F1F :
F1S :
F2:
S0:

[i, e, æ, a, `o', u]
[i, e, æ, a, o, u]
[i, e, æ, a, `o', u]
[i, E, a, `o', u, 1]

[i, E, a, O, u, 0]
[i, æ, a, O, u, ø]
[i, E, a, O, u, 0]

7

[i, e, E, a, O, o, u](23)
[i, `e', æ, a, `o', u, @](6)
[i, `e', a, `o', u, @, y](5)
[i, `e', a, `o', u, 1, @](4)
[i, e, E, a, `o', u, 1](3)

F1F :
F1S :
F2:
S0:

[i, `e', æ, a, `o', u, W]
[i, e, æ, a, O, u, W]
[i, e, æ, a, `o', u, W]
[i, e, E, a, `o', u, W]

[i, e, E, æ, a, O, u]
[i, e, æ, a, O, u, 0]
[i, e, æ, a, O, u, 0]

INVS ; however, when using INVL, F1S predicts a strange 6-vowel system with a front

rounded vowel ø which is rarely attested in primary vowel systems while F1F predicts a

system close to the observed system.

From the comparison of the two �tness functions F1S and F2, we can see that

the predictions in most cases are the same. There are some exceptions, i.e. in those

experiments using INVS for 4-, 6- and 7- vowel systems, and INVL in 6-vowel systems.

Predictions given by F2 only di�er in some small variations between E and `e', `o' and o, O

and `o'. F2 does not predict more non-peripheral vowels than F1S , inconsistent with the

proposal of Schwartz et al. (1997a), although the parameters are set within the optimal

range. The discrepancies may need further examination, because in our experiment using

the same F2 and INVS as those in Schwartz et al. (1997a), the predictions of optimal
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5-, 6- and 7-vowel systems are di�erent from their reports (reproduced as the list of S0

in the table), given � = 0:0625, � = 0:3. However, when � is set to 0.09 for the 5-vowel

system, and � = 0:025 and � = 0:1 for the 6-vowel system, the predictions are the same

as those in Schwartz et al. (1997a).

Second, we compare predictions with the same �tness function but di�erent inven-

tories. Though the original dataset where INVS is selected from is said to be carefully

controlled in order to sample the acoustic space as evenly as possible (Schwartz et al.,

1997a), we do not see much di�erence between INVS and INVL for predicting small size

systems. If we consider the vowel E in Lindblom's inventory to be equivalent to the vowel

`e' in Schwartz et al. (1997a), O to `o', and 0 to W, then the predictions from the two

inventories are almost the same. This is not surprising since we can see from Figure 2

that the peripheral vowels in the two vowel inventories are almost the same in the F1-

F20 plane. However, for the 6-vowel system with three �tness functions and the 7-vowel

systems with the �rst �tness function (F1F ), there are some big di�erences. This may be

mainly due to the fact that the non-low unrounded back vowels are much farther away

from rounded back vowels in INVS than in INVL.

Compared the predicted systems with the observed systems, we �nd that only the

most frequently observed 3- and 4-vowel systems are predicted, while other predictions do

not match the observed systems. The reasons may include the following: �rst, the vowel

inventories, specially INVL, do not provide enough vowel prototypes, such as `e' and

'o' which are not included in INVL; second, the perceptual distance metric used in the

study may have not perfectly re�ected the actual human perception mechanism; third,

only one optimal system can be identi�ed using the current simple GA model. Further

considerations of the optimization criteria for the GA model including the su�cient,

instead of maximal, perceptual contrast principle proposed by Lindblom (1986) may lead

to more consistent predictions. Also the central vowel @, which occurs often in large vowel
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systems, may call for another optimization criterion (Schwartz et al., 1997a). GA models

are promising in carrying out such investigations in which multiple optimization criteria

are addressed simultaneously. The following study on the optimal tone systems is such

an experiment.

4 Optimization model for tone systems

A tone language is a language having lexically contrastive pitch on each syllable (Pike,

1948). Tone languages are found in many parts of the world (Wang, 1991). Though tone

as fundamental a constituent in tone languages as are vowels and consonants, to our

knowledge, there has been no explanatory or numerical model proposed to study the

universal structure of tone systems such as those being done for vowel and consonant

systems. In this section, we extend the GA models reported above for vowel systems to

study the con�guration of tone systems from the optimization perspective. Two di�erent

sets of criteria are investigated. The �rst criterion considers only the perceptual con-

trast, as was done for the vowel systems; the second takes both perceptual contrast and

markedness complexity into account. The predicted systems are analyzed and compared

with those reported from empirical studies.

4.1 Tone inventory and chromosome representation

Similar to the simulation of vowels, we �rst choose a tone inventory from which a system

selects individual tones. Wang (1967) suggested 13 idealized tones in his study of the

phonological features of tones, including �ve level (11 22 33 44 55), two rising (35 13),

two falling (53 31), two falling-rising (535 313), and two rising-falling (353 131)4. These 13

tones are considered to represent the maximum contrasts found in any language. Later in

4 Tones are represented according to the conventional Chao's �ve-level transcription system (Chao,
1930).
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a tone perception experiment, Gandour (1983) used an extended set of 19 tones, adding

to Wang's list two rising tones 15 and 24, two falling tones 51 and 42, and two complex

tones 424 and 242. The 19 tones are shown in Figure 4. In this study, we take Gandour's

19 tones as the inventory.

In the model, the chromosome is represented by a number of tones each of which

is selected from the 19 tones. Each tone is described by three numerals representing its

shape. The genetic operations and parameters are the same as those in the vowel models.

Level

55

44

33

22

11

Falling

51

53

42

31

Rising

15

35

24

13

535

424

313

353

242

131

Falling-rising Rising-falling

Figure 4
Numeric and corresponding graphic representation of the 19 tones proposed in Gandour
(1983). Tones not found in Wang (1967) are underlined.

4.2 Fitness evaluation functions

4.2.1 The �rst objective It is assumed that tone systems tend to have a maximum

perceptual contrast within the system, much like that proposed for vowel systems. Similar

to the study of vowel systems, we need to derive a method to calculate the perceptual

distance between tones. In this study, we use the experimental results from Gandour

(1983) to develop such a metric to measure the perceptual distance.

Gandour's experiment was designed to investigate the perceptual dimension of tone

and the e�ect of linguistic experience on a listener's perception of tone. He synthesized

speech-like monosyllables [wa] with the 19 types of tones superimposed on them. Four
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groups of subjects who were from four tone languages including Cantonese, Mandarin,

Taiwanese and Thai, and one group from a non-tone language, English, made judgments

of dissimilarity between paired stimulus tones. The collected data were analyzed by an

INDSCAL (Individual Di�erences SCALing) model, and the perceptual dissimilarity for

the 19 tone types is presented in a perceptual space shown in Figure 5. Using this result,

we design a metric of calculating the perceptual distance of a pair of tones i and j as

computing their Euclidean distance in the perceptual plane:

dij =

q
(Dim1i �Dim1j)

2 + (Dim2i �Dim2j)
2 (5)

Dim1i and Dim2i represent the two coordinates of tone i in the perceptual plane.

Similar to the method used in the vowel systems, the perceptual contrast within a tone

system is measured by the total perceptual distance for all pairs of tones. The �tness

function is therefore the same as the F1 given in Section 3.2.

53

353

33

44

55

35

535

24
424

15

13

313

242

11

131

22

42 51 31

Dim 1

D
im

 2

Figure 5
Dimensions 1 and 2 of the two-dimensional INDSCAL tone space (Adapted from Gandour
(1983))

4.2.2 The second objective Following the �rst objective of considering perceptual

contrast, the second consideration would naturally be the production cost. Various mech-

anisms for controlling the tension of vocal cords and subglottal air pressure and their

e�ect in regulating pitch change have been proposed (Ohala, 1978). Di�erent laryngeal
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muscles, such as the cricothyroid, sternohyoid and sternothyroid muscles, etc. are found

to perform various actions in raising or lowering pitch. It is found that there is an asym-

metry in the maximum speed of rises as compared to falls in pitch change, which suggests

that falling tone may in some sense be easier to produce than rising tones (Collier, 1984;

Ohala, 1978). It is found that level tones are universally preferred to contour tones, and

simple contour tones to complex contour tones (Maddieson, 1978), which may be due to

the di�erent production cost of various types of tones. However, it is hard to quantify

these di�erences, and no systematic measurements have been available yet.

Due to the lack of data measuring the production e�ort of di�erent tones, we choose

another criterion as the second objective: the markedness complexity, which is based

on a study of phonological features of tones proposed in Wang (1967). Each tone is

assigned a complexity value based on the analysis of the tones with features and marking

conventions, as shown in Table 2. The `m' stands for the marked speci�cation, which is

the favored speci�cation, while `u' for unmarked. The assignment of `+' and `-' is due

to the consideration that there is no empirical ground for favoring either +HIGH or -

HIGH, or RISING or FALLING. We note that the latter may need further justi�cation

or modi�cation regarding our earlier discussion above on the rising and falling tones. In

this study, however, we still adopt this analysis for our simulation. The speci�cations

`m', `+' and `-' each add one unit to the complexity, while `u' does not.

Table 2
Relative complexity of tones as de�ned by marking conventions(adapted from Wang (1967)).

55 11 44 22 33 35
/15

13
/24

53
/51

31
/42

535 313
/424

353 131
/242

CONTOUR u u u u u m m m m m m m m
HIGH + - + - - + - + - + - + -

CENTRAL u u m m m u u u u u u u u
MID u u u u m u u u u u u u u

RISING u u u u u + + - - + + + +
FALLING u u u u u - - + + + + + +
CONVEX u u u u u u u u u u u m m

COMPLEXITY 1 1 2 2 3 4 4 4 4 4 4 5 5
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While maintaining the original complexity assignment of the 13 typical tones given in

Wang (1967), we have incorporated the six additional tones proposed by Gandour (1983).

It is assumed that tone pairs such as 35 and 15, 13 and 24, 53 and 51, 31 and 42, 313 and

424, 131 and 242, are of the same complexity. As far as we are aware, there is no tone

system having more than two falling or rising contrasts which all give lexical distinctions.

Those transcriptions of tone systems which do incorporate more than two rising or two

falling tones may be due to over-di�erentiation within a single tone paradigm (Wang,

1967).

Markedness is a method of representing the linguist's knowledge of a phonological

system. This knowledge derives primarily from observations of three sorts: the frequency

of distribution of the sounds in the languages of the world; the patterns of historical

change in sound systems; and the acquisition of sounds in children and the dissolution of

sounds in linguistic pathology. Therefore the assigned complexity of tones based on the

markedness may re�ect an integrated e�ect of perception, production and learnability.

The two objectives, perceptual distance and markedness complexity, are taken into

account in a Multi-objective GA model using the Pareto-ranking method as introduced in

Section 2.2, to predict optimal tone systems. Simulation results are shown in the section

following the empirical data analysis.

4.3 Empirical data analysis

Before reporting the simulation results, we report our analysis on an available database

of observed tone systems with which we can compare our predictions. To our knowledge,

there is no large database for tone systems of the same scale as SPA or UPSID for

vowel and consonant systems. However, we have been able to �nd a a computer database
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consisting of 737 dialect5 locations in China, which was compiled by C. C. Cheng (1973).

Some of the 737 entries are from the same location, but from di�erent reports or at

di�erent times. They are considered as individual systems in our analysis since they were

obtained independently and we want to consider as many systems as possible in our

analysis, though it is possible that our analysis may be contaminated by the unequal

quality of the reports.

In order to make comparison with predicted systems, we normalize non-typical tones

in Cheng's database to the 19 typical ones. For example, tones 54, 12, and 324 are con-

verted to 53, 13, and 313 respectively. Such normalization also provides some advantage

in dealing with di�erent types of transcription of the same system. Very often di�erent

researchers each have their own individual strategy of transcription, and di�erent infor-

mants employed for the same dialect also have individual di�erences. Therefore there

often arise controversies such as in Cantonese whether a tone is 13 or 23. By normalizing

the tones into the 19 typical tones, some of such controversies will be resolved. Table 3

shows the frequencies of occurrence of the 19 types of tone in the normalized database.

After normalization, when the changes result in a situation such that one tone occurs

twice in one system, these systems were excluded in the normalized database for further

analysis. The original database includes 737 systems of 606 di�erent types. After nor-

malization, there are 641 systems of 319 di�erent types. Table 4 shows the frequencies of

di�erent sizes of tone system in both the original and the normalized database. Systems

with 4 tones are by far the most frequent type.

Figure 6 shows the frequencies of the tone types occurring in the 4-tone normalized

systems. Frequencies of occurrence are indicated beside the tone. We can see that tones

are heavily clustered in three areas in the perceptual plane, that is, the upper right

5 The �dialects� we used here are referred to as the various languages such as Mandarin, Cantonese,
Min dialect, Wu dialect, ect.

20



Ke, Ogura and Wang Optimization Models of Sound Systems Using GA

Table 3
Frequencies of occurrence of the 19 tone types in the normalized database.

tone 31 53 55 42 35 24 313 44 33 13

freq 326 294 291 281 262 248 241 219 185 167

tone 11 51 22 424 353 242 131 15 535

freq 86 78 66 27 12 8 8 6 1

Table 4
Frequencies of occurrence and types of di�erent sizes of tone system in both original and the
normalized database.

size 3 4 5 6 7 8 9 total

freq(original) 26 497 105 91 10 7 1 737

freq(normalized) 22 448 86 79 4 2 641

types(normalized) 19 162 72 60 4 2 319

(including tones 42, 51, 31, 22, 11, 131) �cluster 1; the low right (24, 13, 424, 313, 15)

� cluster 2; and the mid left (55, 44, 35, 53, 33, 353, 242) � cluster 3. Tone 535, though

not occurring in 4-tone systems, can also be classi�ed into cluster 3 as inferred from

Figure 5. We calculate the frequencies of occurrence of tones in these three areas for 3-,

4- and 5- tone systems, as shown in Table 5. It is found that most of the systems tend to

select tones from each of the three individual clusters, rather than selecting tones from

only one or two clusters. The percentages of systems having tones from each of the three

clusters are shown in the last column of Table 5. We can infer from this observation that

the observed systems tend to have large perceptual contrast within the systems, since

the tones from distinctive clusters often have larger perceptual distance than tones in the

same cluster. Furthermore, for 4- and 5- tone systems, the three clusters are not utilized

evenly. It is obvious that cluster 2, which includes most of the rising tones (except high

rising tone 35 which is contoured in cluster 3), contributes fewer tones than the other

two clusters. This implies that rising tones are less preferred in the observed systems.
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    cluster 3

      cluster 2

  cluster 153(60)

353(6)

33(37)

44(50)

55(66)

35(59)

24(55)

424(11)

15(4)

13(37)

313(56)

242(1)

11(17)
131(4)

22(23)
42(68)

51(26)
31(68)

Figure 6
Frequency of occurring of tones in observed 4-tone systems shown in the perceptual space
(total 162 systems)

Table 5
Number of tones in the three clusters in perceptual space and percentage of systems having
tones from each of the three clusters.

# of systems tones in C1 tones in C2 tones in C3

% of systems
having tones
from each of
the 3 clusters

3-tone system 19 19 17 21 73.7%
4-tone system 162 206 163 279 75.0%
5-tone system 72 107 91 162 74.3%

4.4 Simulation results and comparison with observed systems

Tables 6, 7 and 8 give the predicted �optimal� 3-, 4- and 5- tone systems obtained from

the GA model. A number of frequent tone systems in the normalized database are also

given in the tables for comparison. The frequencies of the tone systems observed in the

normalized database are given in parenthesis besides the tones.

For a given size of system, the model using the single objective, i.e. maximal per-

ceptual contrast, predicts only one optimal system which is indicated with asterisks in

the table. This optimal system has the maximum perceptual contrast but the largest

markedness complexity. On the other hand, the two-objective model predicts a number

of optimal systems, besides the optimal one predicted by the single objective model.

These optimal systems, as the points A, B, C, and D shown in Figure 1, form a Pareto-
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optimal set. They are equally good in terms of the two objectives, i.e. large perceptual

contrast and small markedness complexity. The two-objective model may be viewed as a

possible implementation of the �su�cient perceptual contrast� proposed for the study of

optimal vowel systems by Lindblom (1986).

Table 6
Predicted optimal and frequent observed 3-tone systems.

predicted system3 observed system3

perdist complexity t1 t2 t3 perdist complexity t1 t2 t3 (freq)

*14.41 9 55 31 15 12.97 9 55 31 424(3)
13.77 7 55 22 15 11.52 12 42 35 13(1)
13.97 6 55 11 15 8.84 11 33 53 313(2)

Table 7
Predicted optimal and frequent observed 4-tone systems.

predicted systems observed systems

perdist complexity t1 t2 t3 t4 perdist complexity t1 t2 t3 t4 (freq)

*24.63 12 55 11 31 15 22.42 14 44 53 31 13(21)
24.55 10 55 11 31 15 22.02 13 55 42 31 24(27)
23.67 9 44 22 11 15 21.98 13 55 53 31 24(17)
23.24 8 55 44 11 13 21.03 13 55 51 35 313 (20)

Table 8
Predicted optimal and frequent observed 5-tone systems.

predicted systems observed systems

perdist compl t1 t2 t3 t4 t5 perdist compl t1 t2 t3 t4 t5 (freq)

*39.20 17 55 53 31 15 13 35.90 13 55 44 22 31 13(1)
38.44 14 55 11 53 15 13 35.82 17 55 42 31 24 313 (4)
38.60 12 55 44 11 31 15 34.54 15 55 44 42 24 13(1)
38.17 10 55 44 22 11 15 32.33 12 55 22 11 31 24(1)

32.15 10 55 44 33 11 24(1)
28.12 17 11 51 53 42 24(2)
27.09 18 44 53 42 31 35(3)

We can observe in the predicted systems similar characteristics as in the observed

systems, i.e. the uneven utilization of the three clusters in the perceptual space. If we

assume that tones within the same cluster are interchangeable, then we can see that most

of the predicted optimal systems have correspondents in the observed systems, except
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one prediction for a 3-tone system (55,11, 31), which does not include have a tone from

cluster 3.

The predicted systems seem to exploit more tones in the outer area of the perceptual

space, such as 55, 11, 31 and 15, while in the observed systems tones in the relative inner

area such as 35, 53, 42, 24 and 313 are more frequent. High rising tone 15 occurs often

in predicted systems, which is due to its high salience in the perceptual space. In the

observed systems, however, tone 15 is very infrequent (only 6 occurrences among the 641

systems). In the observed systems, pairs of contrasting tones, such as 24 and 42, 13 and

31, occur quite often. This tendency is not clear in our prediction. Tone 31 co-occurs

more frequently with tone 15 than with tone 13, which again is due to the perceptual

salience of tone 15.

The observed systems include more tones close to the center of the perceptual space,

while the predicted systems prefer tones located in the periphery of the perceptual space.

This is similar to the long-standing problem in the study of vowel systems (Liljencrants

and Lindblom, 1972). In the observed vowel systems, especially the larger systems, central

vowels commonly occur (examples can be seen in Table 1), while the proposed optimal

vowel systems predict them only rarely. The utilization of less peripheral areas suggests

that the role of maximizing perception contrast may need to be adjusted, or that more

optimization criteria in addition to the perceptual contrast and markedness complexity

should be added.

Moreover, the markedness complexity we hypothesize is an abstract measure which

incorporates many factors, including perception and production. Thus the consideration

of perception contrast may have been duplicated in the �tness function. This may be

another reason for the discrepancy mentioned in the above paragraph. When more em-

pirical studies in the physiology of tone production are available, we may consider tone

production as an individual objective in the �tness function, which we would expect to
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allow better predictions.

5 Conclusions and discussion

In this study, we apply optimization models using Genetic Algorithms to study the con-

�guration of vowels and tone systems. This approach is similar to previous explanatory

models that have been used to study vowel systems. Certain criteria, which are assumed

to be the principles governing the structure of sound systems, are used to predict the

optimal systems. In most of the previous studies, only one criterion has been consid-

ered (Liljencrants and Lindblom, 1972; Crothers, 1978; Lindblom, 1986). When two cri-

teria are considered, the two objectives are combined into a single weighted function (Boë,

Schwartz, and Vallée, 1994). In our study of vowel systems, the simple GA model also

adopts a weighted function to combine two criteria, perceptual contrast and focalization.

In the study of tone systems, however, we apply a Multi-Objective GA model which

uses Pareto-ranking method to consider two criteria, including perceptual contrast and

markedness complexity, simultaneously, without combining them into a scalar function.

Prior knowledge of the weights between the two criteria are not necessary.

Another advantage of an MOGA is that we can obtain a set of Pareto optimal results,

instead of only one optimal. An MOGA model generates more optimal predictions than

a single-objective model and therefore it is more likely to have more predicted systems

close to the observed systems. Although the consistency between the current predictions

and the observed systems is not as signi�cant as that obtained for vowel systems, further

investigation along this line is promising.

Following the deductive approach pursed in this study, we can design various criteria

to predict optimal systems. This approach provides the convenience and freedom in the

manipulation of di�erent parameters in the models, such as the parameters � and �

in Schwartz et al. (1997a), to testify di�erent hypothesized mechanisms. However, it is
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necessary to seek explanations for such parameters in terms of physiological or cognitive

constraints.

Studies following the deductive approach must not be independent from the induc-

tive approach. For example, in the study of tone systems, not many comprehensive tone

databases are made available. The resources which our investigation of tone systems re-

lies on, including the experiment in Gandour (1983) and the database in Cheng (1973),

are mostly based on the observation of tone languages found in Asian languages. The in-

corporation of data from other types of tone languages in Africa and America is expected

to help in re�ning our explanatory hypothesis about the con�guration of the systems.

Lastly, we would like point out that though in this study we apply optimization to

predict vowel and tone systems, we do not imply that there exists any explicit and/or

global optimization processes in the formation of such systems. We have no grounds to

believe that speakers are aware of what sounds will provide maximal perceptual contrast

or require the least production e�ort, and therefore deliberately choose those sounds. The

optimization must be an emergent property from the interactions of language users (de

Boer, 2000; de Boer, 2001). Each individual speaker has certain physiological and cogni-

tive constraints which limit the possible sounds and assign preference to certain sounds.

However, these constraints only provide a range of possibilities. It is the interactions

among individuals that determine precisely which systems will emerge. That is why dif-

ferent con�gurations, even sub-optimal ones in the sense of some hypothesized criteria,

can be observed in real systems. Research including modeling from this perspective is

promising and may lead to more realistic predictions.
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