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Abstract

Words, like genes, are replicators in competition to
colonize our brains. Some, by luck or thanks to their
intrinsic qualities, manage to spread in entire popula-
tions. In this paper we take the approach of cultural
selectionism to study the emergence of communica-
tion systems in a population of agents. By studying
simple models of word competition in noisy environ-
ments, we define the basic dynamics of such systems.
We then argue for their generality and introduce the
notion of semiotic schemata, generic replicators that
account for the different competitions that are going
on during lexicon formation. Eventually, we present a
synthesis of the dynamics using this new formalism.

Introduction

Genetic and cultural systems can both be seen as
complex evolving dynamic architecture. In this paper
we will discuss a particular paradigm for understand-
ing the dynamics of cultural systems: selectionism.
The comparison between genetic evolution and cul-
tural evolution , popularized by Dawkins’s memes, has
proved to be fruitful (Dawkins, 1976; Dennett, 1995;
Blackmore, 1999). By analogy with genes, Dawkins
defines memes, as cultural replicators. Dawkins defines
a replicator as ”any entity in the universe which inter-
acts with its world, including other replicators, in such
way that copies of itself are made” (Dawkins, 1984).
In genetics, replicators are single genes or fragments of
genetic material. Evolutionary genetics study the com-
petition between genetic replicators, how some of them
are selected, how some of them disappear. Metaphori-
cally, we can talk about the survival of some replicators
and the death of others. From a similar perspective we
could say that cultural replicators are in competition to
colonize our brains. Like for genetic replicators, crite-
ria such as fecondity or fidelity in the copying process,
are useful notions to understand the victories or de-
feats of some memes against others.

The idea of cultural selectionism has been applied
in the study of a particular kind of cultural evolu-
tion: the evolution of communication systems and

languages. Indeed languages, like organisms, could
be seen in competition with one another. They try
to ”survive” by being used by speakers. This par-
ticular perspective, different from contemporary lin-
guistic approaches, is not really new. In 1937, Ar-
sene Darmesteter wrote ”the life of words” already
announcing this paradigm (Darmesteter, 1937). To-
day, several researchers in Artificial Life talk of their
work in similar terms (Batali, 1998; Hurford, 1998;
Kirby, 1999a; Kirby, 1999b; Steels, 1997).

In our previous work, we have explore the emer-
gence of complex communication systems, in particular
the coupling between creation of grounded categories
and lexicon formation (Steels and Kaplan, 1999c;
Steels and Kaplan, 1999b; Steels and Kaplan, 1999a),
and the effect of noise on the evolution of such sys-
tems (Steels and Kaplan, 1998b; Steels and Kaplan,
1998a). This paper is a synthesis, using the cultural
selectionism paradigm, of the results we have obtained
with complex architectures. We study basic model
of linguistic evolution, simple enough to account for
most experimental results in the field. In identifying
these basic dynamics, we try to point out the differ-
ent competitions that are going on during lexicon self-
organisation. The main difficulty is to define the right
selection unit. Like for memes, it is uneasy to precisely
define what are the replicators in the cultural linguis-
tic evolution. Should we consider competition between
words, meanings or larger parts of languages?

The paper is organised as follows. In the next sec-
tion, we study very simple models showing the com-
petition between words for naming the same referent
when there is noise in the environment. Then, we move
to more complex architectures and analyse how these
dynamics evolve when a lexicon is emerging to name a
set of objects under the presence of noise during word
transmission. We then argue that the dynamics iden-
tified are general and apply to other kinds of competi-
tion that are present during the self-organisation of a
communication system. To account for all these differ-



ent competitions, we introduce the notion of semiotic
schemata, which are general replicators for linguistic
evolution. We present a synthesis of the dynamics us-
ing this new formalism.

Competition between words

In this section, westudy the basic dynamics that enable
one linguistic convention to be collectively chosen by a
population of agents.

Positive feedback loop

Model 1.1 Each agent a in a population of N agents
is defined by a single preference vector (zl,22,..,2Y).
2! represents the score that agent a gives to the word
convention i. Agents interact through a very simple
protocol. Two agents are picked at random in the
population. One agent is speaker and the other one
is hearer. When an agent is speaker, it uses the con-
vention associated to the highest score in its preference
vector. The convention is transmited to the hearer,
and the latter simply increases by 1 the score of the
convention used by the speaker in its own preference
vector. Initially the population starts with N agents,
each agent a having a single bias for one preferred
convention which is modelised by a vector of size N
(0,0,..,0,1,0,..,0).

Exp 1.1 (N=50, 1 run). Figure 1 shows the com-
petition of the different word conventions for 50 agents
trying to impose their word. The positive feedback
loop introduced in this simple model creates a winner-
take-all situation where one word dominates. The word
that finally wins has no special properties and any new
run of the simulation would lead to the selection of a
different word.
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Figure 1: Word competition in a population of 50
agents. Each curve represents the diffusion of a word
convention in the population. Eventually, one conven-
tion dominates being used by the 50 agents (Exp 1.1)

Implicit evaluation

Model 1.2. We now consider a set of words of un-
equal qualities. For instance, some are more resistant
to noise. We model that in a very crude way by as-
sociating to each convention a mutation probability
P, (W;) between 0 % and 100%. For each game, a ran-
dom test is done to check whether the word has been
transmitted successfully or not. In case of failure, the
word is transformed to another word randomly picked
among all the possible ones.

For this experiment we choose a mutation probabil-
ity that grows linearly with the word number. Thus
for word W;, the formula is:
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Exp 1.2.a (N=50, 1000 runs) Figure 2 shows, for
1000 simulations, the distribution of the winning words
for a population of 50 agents. Words with low muta-
tion rates have been selected. An external observer
could say that the agents are doing a collective opti-
misation. They are naturally converging towards the
best words. The phenomena is based of a implicit eva-
lution of the solution similar to the one described for
forraging behavior in ant colony (Dorigo et al., 1997).
It means that the agent are not evaluating individually
the quality of each word for choosing the more robust
ones. Illadapted words simply mutate more often and
cannot propagate as easily as the others.
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Figure 2: Distribution for 1000 simulation runs of the
winning words for a population of 50 agents (Exp.1.2.a)

Reorganisation in the presence of an agent
flux

In some cases though, the population might not con-
verge towards the most robust words. The most impor-
tant danger is premature convergence. If, for instance,
a very good word appears in the population more lately
during the experiment, it is probable that it will not



be picked up because the positive feedback loop would
have already caused the agents to converge towards a
suboptimal one.

To consider an open population where agents are
entering and leaving the population can correct this
effect. Indeed, new agents entering the population have
no special preference for the dominant word. They can
discover the best solution and maybe, if it is really
more robust than the one currently dominating, the
outsider might eventually win.

Exp 1.2.b (N=50, different runs for different
P.). The following experiment is the same as the pre-
vious one, excepted that an agent flux, defined by the
probability P, of replacing an old agent by a new one,
is applied. We want to see if this flux leads to a bet-
ter selection of the words. For several values of P,., we
measure the proportion of simulation runs that end up
with one of the three best word dominating. Beyond a
certain value of P,, the flux is too high to achieve con-
vergence. The reorganisation can only be active near
the edge of this threshold. Figure 3 shows this effect.
We can draw an analogy between this effect and the
role of temperature in optimisation techniques such as
simulated annealing.
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Figure 3: Proportion of simulation runs converging to-
ward one of the three best solutions for different agent
flux P, (Exp 1.2.b)

In more complex models, an agent flux can also have
a regularising effect. Because it increases the chance
of picking up "good” linguistic conventions, conven-
tions easier to learn will tend to be selected. Simon
Kirby has illustrated this feedback loop on regularity
in his simulation on the emergence of compositionality
(Kirby, 1999b).

Conclusions

In this section we have identified the basic dynamics
in the competition between different word conventions
for naming one object.

e Positive feedback loop. If each agent is trying to
induce the diffusion of each convention in the popu-
lation, in order to use the one the most widely spread
from its own point of view, then a positive feedback
loop is created, leading to the domination of one
convention. This dynamic is ”blind” and does not
prefer any convention per se.

e Implicit evaluation of solutions. But if some
conventions are less easy to transmit, they will im-
plicitely be left aside. Thus, best conventions tend
to be chosen by the population.

¢ Reorganisation and regularisation with an
agent flux. The presence of a flux of agent in the
system avoids premature convergence. Better con-
ventions (more robust, easier to learn) tend to be
selected. The arrival of new agents enables a contin-
uous parallel search for solutions that can replace the
ones currently dominating. If needed it can cause a
reorganisation in the communication system.

Competition during lexicon formation

In this section, we consider the case of the emergence
of a lexicon: a mapping between a set of words and a
set of objects.

Model 2.1. In this new model, the agents have to
agree on names for a set of M objects. Each agent
has an associated memory where are stored associa-
tions between words and objects. They use this mem-
ory to code an object into a word and to decode a
word into an object. When several solutions are possi-
ble the agents choose the association with the highest
score. Their associatiove memory is initially empty.
Associations are progressively created as the agent in-
teracts with other agents. As in the model of the pre-
vious section, a positive feedback loop enables lexicon
self-organisation. Several experiments have shown that
with such an architecture, a coherent lexicon emerges.
Each word becomes associated to a single object and
each object to a single name (Arita and Koyama, 1998;
Steels, 1996; Steels and Kaplan, 1998b; Ferrer Can-
cho and Sole, 1998; Hutchins and Hazlehurst, 1995;
Oliphant, 1997).

We consider a noisy environment where word trans-
mission is difficult. Each word is an integer value be-
tween 0 and 1000. Each time a word is transmitted,
a random number betwen —B/2 and +B/2 is added
to the word. B is a measure of the global noise level.
Each agent is equipped with a filter enabling him to
select all the words in his associative memory which
are at a distance D less than D = B. The structure of
an interaction is the following:



1. The speaker randomly chooses an object 01 between
the different objects available and uses a word w; to
name this object. If he doesn’t have words associ-
ated with this object, the agent creates a new one (a
random integer between 0 and 1000).

2. The word w; is transmitted to the hearer with an
alternation between —B/2 and +B/2. The word
heard is w].

3. The hearer selects all the possible associations with
a word close to w) (at distance less than B). If no
association is available, the speaker indicates what
was the subject and the hearer creates a new as-
sociation between w| and the object o;. If several
associations are possible, the hearer chooses the one
with the highest score: (ws,02) .

4. if 01 = 02 the game is a success.

In case of success, the hearer increases the score
of the association (wsz,03) with 4+ and diminishes
the score of competing associations (synonyms and
homonyms) with —§. In case of failure, the hearer
decreases the score of (ws,02) with —§, the speaker in-
dicates what was the subject and the hearer increases
the score of the association (wsq, 02) with 44, otherwise
it creates it. Associations are initialy created with a 0
score. In the following experiment we take § = 1.
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Figure 4: Interaction between agents using an associa-
tive memory (Model 2.1.).

Distinctivity
In the simple model of the previous section we have
shown that collective dynamics lead to choose the

"best” words to name an object. What are the best
words in the current model 7 A good word is a word
than an agent will not confuse with another one that
has a different meaning. A ”good” lexicon should have
set of words clearly distinct from one another depend-
ing on the object they name.
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Figure 5. Evolution of the forms in the form space.
After a first period of ambiguity, five well separated
bands are forming to name each object (Exp. 2.1.a)

Exp 2.1.a (N = 10,M = 5,B = 100) Figure 5
shows the evolution in the word space of the word
associated with 5 objects in an experiment involving
10 agents. After an initial ambiguity period, five well
separated bands in the word space are clearly indenti-
fiable. Agents do not converge on a unique word form
for each object. Each agent uses a different word. But
as lexicon self-organisation is going on, these words
tend to be very similar. For each object, they form a
band in the word space which is cleary distinct form
bands associated with other objects. No confusion is
possible.

Figure 6 plots the same data as figure 5 showing
the ”average” word of each band. On this graph, it is
easier to see the collective optimisation of distinctivity
leading to a solution compatible with the level of noise
present in the environment.

These results are somehow similar to the ones ob-
tained by Bart de Boer (de Boer, 1997; De Boer, 1999).
De Boer shows how the collective dynamics and noise
lead a population of agents to converge towards a set of
vowels optimally distributed in the phonological space
in order to favor distinctiveness between them. Such
emerging phonetic systems have high similarity with
real ones as observed in natural languages.



Form space

500

000
1500
2000

Games

Figure 6: Evolution of the ”average” forms in the form
space (Exp. 2.1.a)

Compromise between distinctivity and
robustness

Model 2.2 In the previously described experiments
our model of a word - an integer - was very crude. In
this section, each word is now a numeric chain of vari-
able length. Each character of the chain is a number
between 1 and 9. Noise is modelised by a probabil-
ity of alteration P,, equal for each character. When a
character mutates, it is simply replaced by a random
character between 1 and 9.

As in the previous model, the hearer can look up in
its lexicon for the chains that are ”close” to the trans-
mitted words. We define a distance D, between word
chains, similar to the traditional Hamming distance.

Let wy and ws be two words, the length of w; being
either smaller or equal to the length of ws. Let wi(4)
and wsy(4) be the character in position i in each of the
chain. We define D, as being the sum of the distance
between the character of both chains to which is added
10 times their length difference, I3 — [y:

De(wi,wa) =Y wi(i) —wa (i) +10.(la = l1)  (2)

%

For instance the chains 1-4-5-2 and 1-4-5-7-3 are at
a distance 5 + 10 = 15. In the interaction the hearer
selects the chains which are at a distance less than the
threshold D.

We see that, with such a mechanism, too long or too
short chains are naturally less adapted. Indeed, the
longer a chain is, the more risk it has to be altered
during transmission. In the first model, we have seen
that such words generally loose the competition. But
on the other side, if the lexicon is only composed of very
short words, a single mutation might very often lead to
confusion. A compromise between word robustness and
distinctivity must be found: Short words are robust

but easy to confuse, long words are easy to distinguish
but difficult to transmit correctly.
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Figure 7: Example of evolution of the ”average” words
for 10 agents naming 20 objects with D = 20 and P, =
0.1

Exp 2.2.a (N =10, M =20, D = 20, P,, = 0.1, 1
run) Figure 7 shows the evolution of average words
for 10 agents naming 20 objects. As no word contains
the 70" character, we can still visualize the situation in
a one dimensional word space. In this representation,
the values between 1 and 9 represent 1 word character,
between 11 and 99, two word characters, etc. Consid-
ering this formalism, a logarithmic scale is appropriate.
Fach new division shows a new class of words. On the
graph we observe that for this single run, as expected,
the words of intermediary length constitute the major-
ity of the final lexicon.

Exp 2.2.b (N =10, M = 20, D = 20, P,, = 0.1, 100
runs) We have repeated experiment 2.2.a. a hundred
times and analysed the distribution of all the words
used by the agents after 5000 games (at this point, we
have observed experimentally that the lexicon reaches
a stable state). The results of the distribution of the
word length are shown on figure 8. The distribution
has a peak around words of length 3. Words too long
or too short are less present in the final vocabularies.

Exp 2.2.c (N =10, M =20, D =5, P, = 0.1,
100 runs) The result of another series of experi-
ments with a reduced noise tolerance level (D = 5)
are shown on figure 9. The peak is now for words of
length 2. As the noise level tolerance is reduced, a
larger set of shorter words can be used as long as the
tolerance is sufficient to cope with the noise level. It is
the case in the conditions of these experiments.
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Figure 8: Distribution of word length on 100 simula-
tion runs for 10 agents naming 20 objects with D = 20
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Figure 9: Distribution of word length on 100 simula-
tion runs for 10 agents naming 20 objects with D =5

Natural lexicon drift

We have seen with the model 2.1. that in a noisy en-
vironment, agents can converge on a stable system in
which distinct bands in the word space are associated
with distinct meanings. As we see in figures 5 and
6 this repartition in separated band does not evolve
anymore once a stable solution has been found.

Exp 2.1.b (N = 20,M = 2,B = 400, P, = 0.01)
Graph 10 shows the evolution of the average form in
the presence of an agent flux defined by a probability
of replacing an old agent by a new one P, = 0.01, for
a population of 20 agents naming 2 objects. We see
on the graph that the center of the bands are sponta-
neously evolving as new agents are entering the system.
We will call this effect: the natural lexicon drift.
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Figure 10: The natural lexicon drift. Spontaneous evo-
lution of the "average” forms in presence of an agent
flux (Exp 2.1.b)

This effect is easily understandable. A new agent
tends to converge on words belonging to the existing
bands for each meaning to express. But within this
band, it has no reason to converge towards the exact
center of the band. Thus the center is moving as the
flux of new agents enters the system. The higher the
agent tolerance on noise, the higher the amplitude of
this drift.

These form bands are evolving spontaneously with-
out any functional reasons. But this does not exclude
that external pressures can direct these dynamics in a
direction or another. The natural lexicon drift provides
novelty and thus can lead to a more efficient reorgani-
sation if needed.

We have shown in (Steels and Kaplan, 1998a) that
this effect was active for more complex agent architec-
tures including, like the simple agents of our model,
a tolerance mechanims to cope with noise in the en-
vironment. Scott C. Stoness and Christopher Dircks



have reproduced these results using another architec-
ture based on neural networks (Dircks and Stoness,
1999). This shows that for such systems, collective
dynamics are much more important than actual archi-
tecture and implementation details.

Conclusions

In this section we have explored the basic dynamics
identified in the previous section with more complex
models. Our conclusions are the following:

e Distinctivity. Noise during word transmission fa-
vors sets of words that are cleary distinct from one
another when they mean different things. We exper-
imentally observed the emergence of well separated
bands in the word space. Each band is associated
with a different word meaning.

e Compromise between distinctivity and ro-
bustness. When words can have different lengths, a
compromise must be found between distinctivity and
resilience to noise. Short words are easy to transmit
but easy to confuse, long words are difficult to trans-
mit correctly but are easily distinguishable from one
another. We experimentally observe the convergence
towards words of intermediary sizes.

e Natural lexicon drift. In the presence of noise and
agent flux, we experimentally observe a spontaneous
not, functional lexicon evolution. This continuous
exploration of the form space can lead to a more
efficient reorganisation of the lexicon if needed.

Synthesis: the semiotic schemata
Other kind of competitions

We have considered in the previous sections very sim-
ple models in which meanings are simply discrete
symbols without any particular properties. In some
more complex architectures (Steels and Kaplan, 1999¢;
Steels and Kaplan, 1999b; Steels and Kaplan, 1999a)
we have shown that when meanings are categories dis-
criminating properties of the objects of the world, addi-
tional competitions can be observed. Some categories
might be general and other specific. For instance, one
might be used for describing a very particular shade of
green, and another one for describing green objects in
general. Depending on the environment and on the ob-
jects that need to be discriminated, sometimes general
categories will be sufficient, sometimes specific ones
will be needed.

Categories, like words, are competing with one an-
other. Considering ompetition between isolated cate-
gories is not sufficient. The quality of a category needs
to be evaluated regarding the category set to which

it belongs. A specific category might survive if other
categories are present to ”back it up”.

Associations linking words and meanings of different
qualities can also be seen as competing units. A widely
spread association has a real advantage, even on an as-
sociation linking a very solid and easily distinguishable
word with a very often used category.

In Simon Kirby’s work, more complex system are
competing with one another (Kirby, 1999b). He dis-
cusses the victory of a compositional system on a idio-
syncratic one because the first one, being more regular,
is easier to learn.

Eventually, several competitions can be observed at
the same time, each of them involving part of languages
of different sizes and types.

Semiotic schemata

Our point in this paper is to suggest that even though
the kind of replicators involved in language emergence
can be very different, the dynamics are merely always
the same ones. These dynamics are the same as the
one we have identified with the simple models of word
competition that we have studied in the previous sec-
tions.

In (Steels and Kaplan, 1999b; Steels and Kaplan,
1999a), we have introduced the notion of semiotic land-
scape to analyse the complex dynamics involved in the
emergence of word meanings. A semiotic landscape
is a complex network linking objects, categories and
words with associations of ”different weight”. If, for
instance, the weight between a word and a meaning
is strong in a semantic landscape its means that this
associations is frequently observed in the agents behav-
ior. All the cultural replicators, that we have identified
in our experiment, can be seen as partial specification
of a semiotic landscape. Words and meanings are sim-
ple nodes. Associations are couple of nodes and their
links. Lexicons are more complex configurations.

Analysing what should be the right selection unit
for studying artificial genetic dynamics, John Holland
has introduced the notion of schema (Holland, 1995).
A schema is a partial specification of the genome. By
analogy, we introduce the notion of semiotic schema
as a partial specification of a semiotic landscape. A
word is a semiotic schema, a meaning is a semiotic
schema, associations, sets of distinct words and even
set of associations are semiotic schemata.

Order of a semiotic schema

A genetic schema, in artificial systems like genetic al-
gorithms, can be modeled as a chain using only three
characters 0, 1 and * (Holland, 1995). Each character
of the chain can be seen as a particular gene which
can take two values 0 or 1 or be undetermined, in



which case it takes the value *. For instance, if the
length of the genome is limited to L = 10 characters,
s = (%,%,%,1,%, %,0,%, %, x) is a possible schema, spec-
ifying only the genes number 4 and 7.

Schemata can be compared by studying their spread-
ing in the population. For instance, if the schema s is
present in all the population members, it means that
all the genomes have the value 1 for the fourth gene
and the value 0 for the seventh one. Landscapes are
representations of the distribution of schemata at a
given state of the evolution. For each possible schema,
the number of agents in which this schema is present
can be plotted. In practice, such landscapes are diffi-
cult to draw as the number of possible schemata can
be very high. For a genome of length L, 2¥ different
schemata are possible. Yet, the landscape metaphor
is a good starting point to visualize the competition
between schemata.

Unfortunately, the situation for semiotic schemata is
a bit more complex. It seems that several kinds of com-
petitions are going on in parallel involving schemata of
different complexity. We can introduice the notion of
order of a schema. Words, groups of words, mean-
ings and groups of meanings are first order semiotic
schemata. Associations and lexicons are second order
semiotic schemata. For a given order, semiotic schema
can be modeled exactly like genetic schema using a
chain composed with the characters 0, 1 and *.

For instance, the results of Exp 1.2.a, where 50 words
of decreasing quality were in competition, can be seen
as the competition between schema of Length L = 50
where each character codes for a word in the word
space. Figure 2 shows that schemas starting with ”1”
in the first positions have a higher fitness than others.
Results of Exp 2.1.a can be seen as the competition
between schema of length L = 1000 and show that
schemata including equidistributed ”1” in the word
space have a higher fitness than schemata where 717
are close from one another. Results of Exp 2.2.b show
that schemata including words of intermediary length
have a higher fitness than others.

The same analysis can be done for schemata of order
2. In these schemata, each character is a possible asso-
ciation of the lexicon. The length L of these schemata
is equal to the product of the number W of possible
words and the number M of objects to name. Once
a stable mapping has been found, the semiotic land-
scape of such systems is defined by M distinct peaks
corresponding the the M objects to name.

Selection dynamics

Semiotic schemata are replicators. The more complex
they are, the more difficult it is for them to replicate.

Their competition progressively structures the semi-
otic landscapes defining the common lexicon which is
emerging. In particular kinds of word competition that
we have studied in this paper, we observed three kinds
of selection dynamics:

e Individual choices select good schemata. An
agent has a way of evaluating semiotic schemata.
The agent will use the ones that have proved to be
efficient for communicating in past interactions. In
the models we presented, a score was monitoring the
success and the failure of each association and thus
indirectly measuring their diffusion in the popula-
tion. This dynamics create a positive feedback loop
leading some semiotic schemata to be used more and
more often. For this individual selection, schemata
that are widely spread, resilient to noise and easy to
learn have a selective advantage.

e Agent flux ensures regularisation and reor-
ganisation. Individual selection is responsible of
the lock-in effect on particular schemata. Because of
premature convergence, the schemata chosen might
not be the most efficient to communicate. The pres-
ence of a constant agent flux in the system puts ad-
ditional pressure on the system for selecting really
good schemata. An efficient schema might have been
constructed by some individuals but appeared, later
on, to be too difficult to transmit culturally to each
new generation of agents. This agent flux creates
a positive feedback loop on simplicity and therefore
on regularity. The more regular and easy to learn a
schema is, the more likely it is to pass the ”genera-
tion bridge”. The agent flux is also responsible for
a continuous exploration of new possible schemata.
Newborn agents might find simpler and more effi-
cient solutions. If they are really good schemata
they might replace the existing dominant ones.

e Neutral dynamics ensures spontaneous nov-
elty. We have also observed some neutral dynam-
ics. Schemata might be victims of neutral drifts sim-
ilar by some aspects to process described in neutral-
ist evolutionary theories (Kimura, 1983). Neutral
dynamics are observed when a small level of noise
causes inter-individual variations for schemata and
new agents are regularly entering the population.

We guess that these dynamics are the most impor-
tant for a large kind of semiotic schemata. But this
remains to be tested in future works.

The role of noise

Semiotic schemata are always used in a particular con-
text of a given environment. In the model we presented



the effect of environments was limited to the addition
of noise during the transmission phase. Noise has a
double effect on semiotic schemata:

e Noise as a diversity generator. In artificial ge-
netic evolution, noise could be assimilated to dif-
ferent mutations and errors that can appear during
the copying phase of the genetic schemata. Noise is
a diversity generator. In our dynamics also, noise
could be a source of novelty for the creation of new
semiotic schemata.

e Noise as a pressure for selecting good
schemata. But its most important role is in the
destabilisation of ill-adapted schemata. Words not
distinct enougth from one another could not survive
in the presence of noise. Too long words are avoided.
Only robust categories that are efficient in noisy en-
vironments are selected, etc.

Adaptation not optimisation

At the beginning of the experiments, pool of semi-
otic schemata are unstructured. Then, the dynam-
ics select sets of schemata that are well adapted to
the environment in which the agents are communicat-
ing. During this process, we might be tempted to say
that the ”quality” of the schemata increases. But,
like for species natural evolution, optimisation stops
once adaptation is reached. We have seen that in the
presence of noise, well separated bands of words were
emerging. Though, once a stable solution was found,
this optimisation of distinctivity stops. This effect
has been also observed in more complex architectures
where residual polysemy was observed (Kaplan, 2000).
In all these situations, there is no absolute optimisa-
tion, only the search for stable solutions adapted to the
environment. Once a set of stable schemata emerges, it
can be considered as a higher level schema that might
enter in competition with other higher level schemata.

Conclusion

The understanding of cultural dynamics involved in
the emergence of communication systems is only at its
beginning. In this paper, we have shown on simple
models some basic mechanisms that organise the se-
lection of words in the emergence of a lexicon. We
believe that these mechanisms apply to a larger set of
replicators that we call semiotic schemata. Adapted
semiotic schemata are culturally selected through in-
dividual choices in a population continuously renewed.
As this process goes on, shared communication systems
emerge.
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