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Exploring social structure effect on language evolution based on
a computational model

Tao Gong*, James W. Minett and William S.-Y. Wang

Department of Electronic Engineering, The Chinese University of Hong Kong,
Hong Kong, People’s Republic of China

A compositionality-regularity coevolution model is adopted to explore the effect of social structure on
language emergence and maintenance. Based on this model, we explore language evolution in three exper-
iments, and discuss the role of a popular agent in language evolution, the relationship between mutual
understanding and social hierarchy, and the effect of inter-community communications and that of sim-
ple linguistic features on convergence of communal languages in two communities. This work embodies
several important interactions during social learning, and introduces a new approach that manipulates indi-
viduals’ probabilities to participate in social interactions to study the effect of social structure. We hope it
will stimulate further theoretical and empirical explorations on language evolution in a social environment.

Keywords: computational simulation; language evolution; social structure; power-law distribution

1. Introduction

Social structures are found in human societies, primate communities, and colonies of some other
species. Almost a century of study on chimpanzees and other primates (e.g. de Waal 2005) has
provided ample empirical data on their social structures. From an evolutionary perspective, these
social structures might resemble those of the early humans, at least as precursors (Whiten 2005),
and they, existing prior to human language, could have played certain roles in language evolution.
Some scholars (e.g. Dunbar 1996) have argued that it was the social structuring and related
social activities (e.g. coalition and competition) that created the conditions for the emergence of
human language. Many sociolinguists have taken into account the influence of social factors on
language evolution, especially on language change. For instance, Labov has argued that individual
linguistic behaviors could be stratified by various social factors, such as age, education level,
social class, and so on. Apart from language-internal factors (Labov 1994), language-external
factors, such as social networks, identity, and gender (Labov 2001) could determine linguistic
variations. Thomason and Kaufman (1988) have further argued that instead of the structural
linguistic relations, the social facts of particular contact situations mainly determine the contact-
induced language change.

In addition to empirical studies, modelling social systems as complex systems also offers
insights into the interdisciplinary social science research regarding self-organisation, emergence,

*Corresponding author. Email: gtojty @ gmail.com

ISSN 0954-0091 print/ISSN 1360-0494 online
© 2008 Taylor & Francis

DOI: 10.1080/09540090802091941

http: //www.informaworld.com



Downloaded By: [Canadian Research Knowledge Network] At: 18:32 29 May 2008

136 T. Gong et al.

and hierarchy (Alessa et al. 2006). This modelling approach has recently become widely adopted
in explaining both historical linguistic changes (reviewed by Bhattacharjee 2003) and sociological
phenomena (reviewed by Malsch and Schulz-Schaeffer 2007). For instance, Livingstone (2001)
used a computational model to study dialectal diversity. In his model, all agents were arranged in
a single row, the ends of which were disconnected. Communications among agents were limited
by predefined neighbourhoods based on distance. After a number of communications, a ‘dialect
continuum’ (minor changes existed within neighbourhoods, allowing successful communications
therein, and major shifts and differences existed across neighbourhoods, allowing reinforcement
of group identities) emerged in this system. The author then claimed that the limitation induced
by neighbourhood or social distance could give rise to emergent dialects. In addition, Nettle
(1999), based on some computational models derived from social impact theory (Nowak 1990),
explored the threshold problem (how an initially rare innovation can win over a strong linguistic
norm) in language change. In his models, social structure was modelled as a weighted, regular
network (a network whose nodes have an equal number of weighted edges connecting to other
nodes). In this network, any innovation at a node could affect its neighbouring (connected) nodes.
This effect decreased exponentially with the increase in the distance between this node and
its neighbours. These models demonstrated that successful innovations usually originate from
the speakers having higher influence (‘social impact’) than others, as others favour learning
from these influential ones. Furthermore, Ke (2004) extended Nettle’s work by introducing some
popular networks found in biological and social phenomena, such as the small-world (Watt and
Strogatz 1998) and scale-free (Barabasi and Albert 1999) networks. She explored the diffusion
of linguistic innovations in these networks, and found that the innovations that occurred in the
idiolects of influential speakers (nodes having more edges) could easily diffuse to the entire
population.

Two aspects of social factors were explored in these previous studies that illustrated the influence
of social structures on linguistic phenomena. In Livingstone’s and Nettle’s studies, the social
distance was the main factor to affect communications; the longer the social distance between the
speaker and listener, the less the social impact they had on each other during communications. In
Ke’s models, the social connection was the main factor to affect communications; the more edges
an agent had, the more influential its idiolect became. In addition, these studies put agents in some
specific structures that were initialised before the simulation and remained stable throughout it.
In Livingstone’s model, agents were arranged in a row, whereas in Nettle’s and Ke’s studies,
they were located in some regular or complex networks. Furthermore, all these studies mainly
discussed the effect of social structure on lexical evolution. For instance, in Livingstone’s and
Ke’s models, language was treated as a set of lexical items. Due to different adopted social
structures, agents could either develop new lexical items or diffuse some salient ones to the whole
population.

In this paper, instead of particular social structures, we concentrate on the probabilities that
individuals participate in communications and discuss their effect on language evolution. Three
kinds of probability, each reflecting the influence of a variety of simple social structures, are
defined as follows:

(1) The probability that a particular agent (the popular agent) participates in communications,
which is denoted by PopRate (PR). The higher the PR, the higher the probability that the popular
agent speaks or listens to others. Similar to the «-male(s) in primate communities, an early hominid
group might have contained some agent(s) who could get involved in many activities. A chief
that still exists in some hunter-gatherer societies (Barnard 2003) could resemble such a popular
agent. PR is subject to many factors, such as an agent’s physical abilities, economic condition,
and so on.

(2) The probability for every individual in the community to participate in communications,
which is denoted by Individual’s Popularity. In a large community, agents with various social
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statuses could have different probabilities to communicate with each other. Many social factors,
such as friendship, political influence and economic incomes, could affect an individual’s pop-
ularity. The distribution of all individuals’ popularities could reflect the collective effect of the
social structure in that community. The difference between PR and Individual’s Popularity is
that PR only concerns the single popular agent, and treats others equally, whereas Individual’s
Popularity concerns each individual in the community, and all these popularities could follow
some predefined distributions.

(3) The probability that individuals of a community choose to communicate with members of
their own community, rather than members of a different community. When two communities
interact with each other, there are two types of communications: intra-community communications
among members of the same community and inter-community communications among members
of different communities, the probabilities of which are, respectively, controlled by IntraRate
and InterRate. These two probabilities sum to 1.0. They reflect the influence of geographical,
economic, and political factors. For instance, enlarging the social distance may decrease InterRate,
and enhancing the economic bond may increase IntraRate.

We design three experiments to explore the effect of social structure on language evolution, each
manipulating one of the above probabilities. In Experiment 1, a community with a single popular
agent is simulated, and this agent’s popularity is regulated by PR. In Experiment 2, a community
with a predefined distribution of individuals’ popularities is simulated. In Experiment 3, a situation
where agents from two communities interact with each other is simulated. Both Experiment 1
and Experiment 2 explore the intra-community effect of social structure, which mainly results
from the non-uniformly distributed communications in the community. Experiment 3 explores
the inter-community effect of social structure, which mainly results from the degree of linguistic
contact and the similarities in some linguistic features.

All these experiments are based on a computational model (Gong 2008) that was originally
designed to study the phylogenetic emergence of language in a population of language users. In
this model, equipped with some domain-general abilities, such as sequencing and pattern detection
abilities, a population of interacting agents can gradually develop a common set of lexical items
and word orders through iterated communications. The model traces a coevolution of two linguistic
universals, compositionality (in the form of lexical items) and regularity (in the form of simple
word order), during the transition from an initial holistic signalling system to a compositional
language. Compared with previous studies that mainly adopt models focusing on lexical evolution,
this model gives us an appropriate level of complexity to observe the effect of social structures on
both lexical and syntactic evolutions. In addition, besides the emergence of linguistic universals,
this model also helps to study the effect of social structure on the maintenance of linguistic
universals, which is more relevant to present-day societies. Also, a better understanding of the
social structure effect can be revealed from a comparison of both the emergence and maintenance
situations.

The remainder of the paper is organised as follows: Section 2 briefly describes the
compositionality-regularity coevolution model; Section 3 discusses the simulation results in the
three experiments; and finally, Section 4 discusses the results, gives the conclusions, and points
out some future work.

2. The compositionality-regularity coevolution model

Figure 1 shows the conceptual framework of this model. Its detailed description can be found
in the study of Gong (2008). The following sections only briefly describe some of its major
components.



Downloaded By: [Canadian Research Knowledge Network] At: 18:32 29 May 2008

138 T. Gong et al.

SEMANTICS:
“run<wolf>", “chase<fox, sheep>", ...

Detection of recurrent patterns Manipulation of local orders

LEXICON:
“wolf" € >/ WOLF/,
“chase” < >/CHASE/,
“sheep”€—>/SHEEP/,

CATEGORIES:
S: "wolf’ € > /WOLF/;
V: "run"€->/RUN/, “chase” € 2 /CHASE/,
O: “sheep"<—=2>/SHEEP/;

"=<" before,; "==" after;

LOCAL ORDERS:
S<aV, §<=<Q, ...

Categorisation

Categorisation

“Bottom-up” syntactic
EMERGENT GLOBAL ORDERS: development

S<<V + 8<<0 2D

MWOLF CHASE SHEEFP/ or WOLF SHEEP CHASE/

Figure 1. The conceptual framework of the compositionality-regularity coevolution model. The SEMANTICS rectangle
represents the predefined semantic space, and the ovals represent the three aspects of linguistic knowledge acquired by
agents based on different domain-general abilities including pattern extraction, sequential learning, and categorisation.
The EMERGENT GLOBAL ORDERS rectangle represents the emergent syntactic patterns triggered by these learning
abilities and correlated linguistic knowledge (indicated by arrows). Letters within ‘ * are semantic items, those within //
are utterance syllables. ‘S’, ‘V’, and ‘O’ represent the syntactic roles of categories.

2.1. The representation and acquisition of linguistic rules

Language in this model is treated as a set of meaning-utterance mappings (M-U mappings).
Individuals exchange two types of integrated meanings in communications: Typel: ‘Prl<Ag>’,
such as ‘run<wolf>’ meaning ‘a wolf is running’; and Type2: ‘Pr2<Ag, Pat>’, such as
‘chase<wolf, sheep>’ meaning ‘a wolf is chasing a sheep’. Here, Ag, Pr1/2 and Pat represent
semantic roles, in which Ag denotes the actor of an action (agent); Pr1/2, the action (predicate);
and Pat, the entity that undergoes an action (patient). These integrated meanings are mapped
to utterances (strings of syllables). In the simulations of this paper, there are 12 semantic items
(four can be Ag, four can be Prl, and four can be Pr2). Also, the items that can be Ag in some
integrated meanings could also be Pat in other integrated meanings. Therefore, all these items
form a semantic space containing 16 (4x4) Typel and 48 (4 x4 x(4-1)) Type2 meanings.

A rule-based system is adopted to represent individuals’ linguistic knowledge (Figure 2). Three
types of linguistic rules are defined. Lexical rules record mappings between integrated meanings
and strings of syllables (these are termed as holistic rules, see rules (a) and (b) in Figure 2) or
between semantic items and strings of syllables (these are termed as compositional rules, see
rules (c) and (d) in Figure 2). A lexical rule consists of a mapping and a strength, the latter of
which numerically indicates the probability (from 0.0 to 1.0) of successfully using that mapping.

Syntactic rules record local orders (e.g. before or after, but not necessarily immediately before or
after) between the strings of two sets (syntactic categories) of compositional rules in utterances (see
rules (I), (IT), and (III) in Figure 2). A syntactic rule contains a local order and a strength, the latter
of which indicates the probability of successfully applying this local order on two lexical rules.

Syntactic categories associate a set of lexical rules whose semantic expressions have the same
semantic roles (Pr1/2, Ag, or Pat) in some integrated meanings, and their utterances are similarly
used (have an identical local order with respect to the utterances of other lexical rules) in some
sentences. The identical local order is also associated with the same category as a syntactic rule.
A syntactic category contains a syntactic role (for convenience, syntactic categories are labelled
with the syntactic roles to which they correspond in simple declarative sentences in English, i.e.
S, Subject; V, Verb; and O, Object), a list of lexical rules encoding items with the same semantic
role in integrated meanings, and a list of syntactic rules encoding local orders between lexical
rules of this category and those of others, or between lexical rules of this category and some
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Lexical rules
Holistic rules: Compositional rules:
(a) “chase<wolf, bear>"¢->/a d/ (0.5) (c) “wolf"€&->/d/ (0.6)
(b) “hop<deer>"<->/e/ (0.4) (d) “chase<#, bear>"<—>/a b * d/ (0.7)

Detection of recurrent patterns

Available M-U mappings Newly acquired lexical rules
1) “hop<fox>"&-=>/d h/

2) “run<fox>"€->/d m/

E (e) “fox"€->/d/ (0.5)
(3) “run<wolf>"€->/a ¢ m/

(

(

(

(f) “run<#>"&->/m/ (0.5)
g) “wolf"€&—>/a c/ (0.5)
h) “fight<wolf, #>"€->/a c b/ (0.5)

(i) “fight<#, #>"€&->/b/ (0.5)

(
4) “fight<wolf, deer>"¢—>/acb e/ (
5) “fight<wolf, gazelle>"&->/acb m/
6) “fight<fox, deer>"€&->/d f k b/

Syntactic categories and syntactic rules
Cat1 (S): Lex-List: rule (e)[0.5]
rule (g) [0.5]

Syn-List: (1) Cat1 <<rule (f) (0.5)
() Cat1 << rule (i) (0.5) " (I) Cat1 << Cat2 (SV) (0.5)

Cat2 (V): Lex-List: rule (f) [0.5]
rule (i) [0.5]
Syn-List: (1ll) Cat2 >> rule (e) (0.5)=—> () Cat1 << Cat2 (SV) (0.5)

Figure 2. The representation and acquisition of linguistic knowledge: ‘#’ can be replaced by other semantic items, and
“** by other syllables. Lexical rules are itemised by letters, M-U mappings by Arabic numerals, and syntactic rules by
Roman numerals. Numbers enclosed by ( ) denote rule strengths, and those by [ ] denote association weights. ‘<<’
indicates the local order ‘before’.

other lexical rule(s). An association weight is defined to numerically indicate the probability for a
lexical rule to follow the syntactic rules of a category. A lexical rule can be associated with many
categories having identical syntactic roles but with different association weights. Lexical rules
encoding items being Ag or Pat can be associated with both S and O categories.

Lexical rules are acquired through the detection of recurrent patterns. Each agent has a buffer
storing some previous experience (a finite list of M-U mappings obtained in its previous com-
munications with others). Newly acquired M-U mappings are compared with those stored in the
buffer before they too are inserted into the buffer. A recurrent pattern is defined as one or more
semantic item(s) and one or more syllables that appear recurrently in at least two M-U mappings
in the buffer. For instance, in Figure 2, by comparing M-U mapping (2) with (1), the recurrent
pattern ‘fox’ «<— — /d/ is detected, and so acquired as a lexical rule, whose initial rule strength is
set to 0.5.

During the acquisition of lexical rules, syntactic rules and categories are also acquired. Evident
in the previous experience (M-U mappings (2) and (3) in Figure 2), the syllables /d/ of rule
(e) and /ac/ of rule (g) precede the syllable /m/ of rule (f). Since ‘wolf’ and ‘fox’ share the
same semantic role (Ag) in these integrated meanings, rules (e) and (g) are associated into a new
category, labelled S (Catl). The association weights are all set initially to 0.5. Meanwhile, the
local order (before) with respect to rule (f) is acquired as a syntactic rule (I) in this category. It
indicates that the syllables of lexical rules from this category should precede the syllable of rule
(f). Similarly, checking M-U mappings (5) and (6), another syntactic rule (II) with respect to rule
(i) is acquired. Furthermore, checking M-U mappings (2) and (6), the syllables /m/ of rule (f)
and /b/ of rule (i) are found to follow the syllable /d/ of rule (e). Consequently, a new V category
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(Cat2) associating rules (f) and (i), which share the same semantic role ‘Pr1/2’, is created together
with a new syntactic rule (IIT). Now, since rules (f) and (i) are already associated into a category,
all these syntactic rules are updated as one rule ‘Catl<Cat2 (SV) (0.5)’ in both categories. It
indicates that the syllables of lexical rules from the S category should precede those of lexical
rules from the V category. In addition to the creation of categories, if rules (f) and (i) already
belonged to different V categories, this previous experience would trigger a merging of these V
categories into one category comprising their lexical and syntactic members. Without directly
acquiring the global orders in sentences that encode Type2 meanings, agents can use their local
orders to regulate the syllables of compositional rules in pairs to build up these sentences. For
example, to express ‘fight<fox, sheep>’based on the lexical rules (i), (¢), and another lexical rule
expressing ‘sheep’, the SV local order in syntactic rule (I) can be used for regulating the syllables
of rules (i) and (e). Meanwhile, another local order, say SO, from another syntactic rule is used
for regulating rule (e) and the rule expressing ‘sheep’. Then, the global order based on these local
orders can be either SVO or SOV. A similar example is shown in Figure 1, in which under the
regulation of two local orders SV and SO, the utterance encoding ‘chase<wolf, sheep>’ could
be either /WOLF CHASE SHEEP/ or /WOLF SHEEP CHASE/.

The formation of global orders based on local information introduces a certain degree of
imprecision: the combination of some local orders can lead to multiple global orders (e.g. SV plus
SO lead to either SVO or SOV, as shown above), and a particular global order can be represented
by the combination of different local orders (e.g. SVO can be represented by SV plus VO or SO
plus VO). This imprecision increases both the difficulty for a population of agents to acquire a
common global word order and the probability of word order change (Minett 2006).

The rule strengths and association weights make possible the competition of linguistic knowl-
edge. Individual’s linguistic knowledge also suffers a forgetting process; after a communication,
agents subtract a small amount (0.05) from the strengths of their linguistic rules and the association
weights of their lexical rules. Lexical rules having negative strengths or association weights after
the subtraction are removed from the individual’s rule list or the syntactic categories containing
these rules. Syntactic rules having negative strengths are also removed from the related cate-
gories. The rule competition and forgetting strengthen and maintain the frequently used linguistic
knowledge and cause language to self-organise.

2.2. The communication scenario

This model simulates dyadic communication. Besides linguistic information, environmental cues
as one type of non-linguistic information can assist the comprehension of heard utterances. An
environmental cue is simulated as an integrated meaning with a fixed strength (0.75). Cues are not
always reliable; otherwise, the learning procedure would involve mind-reading. The probability
that one cue corresponds to the speaker’s intended meaning is represented by Reliability of Cues
(RQ). In this model, RC is set to an intermediate value, 0.6. Introducing environmental cues and
manipulating their reliability make this model semi-situated and provide the physical grounding
of social interactions.

A dyadic communication between two randomly chosen agents (one is speaker and the other is
listener) contains multiple (20) rounds of utterance exchange. During an utterance exchange, first,
the speaker chooses an integrated meaning from the semantic space to express. Then, it activates
some lexical or syntactic rules and related categories with which to encode this integrated meaning.
Through a strength-based competition, it identifies the winning rules, builds up the utterance
accordingly, and transmits the utterance to the listener. If lacking a set of rules to represent all
the semantic items contained in the chosen meaning, the speaker may occasionally (the random
creation rate, 0.25) create a holistic rule to express the whole meaning. After the speaker produces



Downloaded By: [Canadian Research Knowledge Network] At: 18:32 29 May 2008

Connection Science 141

the utterance the listener receives the utterance and one cue from the environment. Then, it
activates both lexical rules whose syllables fully or partially match the heard utterance and related
categories. It selects the set of rules that allows it to comprehend an integrated meaning with the
highest combined strength. The calculation of the combined strength considers the strengths of
both linguistic rules and available cues. If the combined strength of the winning rules exceeds a
Confidence Threshold (CT, set to 1.5 in the experiments reported here), the listener transmits a
positive feedback to the speaker, and both agents reward their winning rules by increasing their
strengths. Otherwise, a negative feedback is sent, and these rules are penalised by decreasing their
strengths. The amount by which the rule strengths are increased or decreased is 0.1.

Throughout the utterance exchange, there is no direct check whether the speaker’s intended
meaning matches the listener’s comprehended one. The listener’s comprehension considers both
linguistic and non-linguistic information. This provides the opportunity for developing reliable lin-
guistic knowledge to withstand the interference from cues that do not match the speaker’s intended
meaning. This communication scenario can trigger a reliable language capable of describing events
not happening in the immediate space or time.

All three types of linguistic rules participate in utterance exchange. For example, as shown in
Figure 3, during production, the speaker first activates the lexical rules that can be combined to
encode the chosen meaning. Then, based on the syntactic categories of these rules, it activates
the syntactic rules (OS and VO) by which these lexical rules can be regulated. Then, it judges
which set of linguistic rules can win the strength-based competition, and produces an utterance
(/abcdef/) accordingly. Similarly, during comprehension, after the listener identifies the lexical
rules whose syllables partially match the heard utterance, the local orders (VS and OS) that are
consistent with the locations of the syllables in the heard utterance (/ab/ before /ef/ and /d/
before /ef/) are detected. If these local orders match the syntactic rules of the categories to
which these lexical rules belong, both the categories and their syntactic rules are activated. Then,
based on the activated categories, the semantic roles of these lexical items in the comprehended
meaning are specified (‘lion’ is Ag, ‘fox’ is Pat, and ‘fight<#, #> is Pr2). The calculation of
the combined strength also considers the strength of the cue that matches this comprehended
meaning (‘fight<lion, fox>"). The listener then judges which set of linguistic rules can win the
strength-based competition and determines the feedback accordingly.

In this example, the speaker’s intended meaning ‘chase<lion, wolf>" encoded in /abcdef/ is
misinterpreted by the listener as ‘fight<lion, fox>’. Nevertheless, it is shown that categories play
an important role in communication. In production, they link semantic structures with syntactic
structures, and based on local orders in their syntactic members, global orders are formed. In
comprehension, they transcribe syntactic structures into semantic structures, and based on the local

“chase<lion, wolf>"

[Jdi<<le ] [Jab ci<<idl]|

/labcdefl Misinterpretation! “fight<lion,fox>"

Production Comprehension

Figure 3. The interaction of linguistic rules in production and comprehension: Catg, Caty, Catp represent syntactic
categories with syntactic roles of S, V, and O, and ‘<<’ represents the local order ‘before’.
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orders in their syntactic members, semantic roles of lexical rules are specified. The whole process
embodies how the conceptual-symbolic system (lexical items) and the regulatory system (syntactic
categories and local orders) work together closely to process complex linguistic expressions.
The coevolution of compositionality and regularity takes place in iterated communications.
During iterated communications, through the above learning mechanisms, individuals first learn
some lexical rules and induce some independent categories to associate these lexical rules. Then,
based on the M-U mappings stored in their buffers, they acquire more lexical rules, expand the
lexical and syntactic members of their categories, and gradually merge categories containing
lexical items with identical semantic roles and having the same usage. Finally, they develop a
communal language in which all lexical items that have the same semantic role belong to a
single category. Moreover, by using syntactic rules to regulate local orders of lexical members
of different categories, individuals form a common, emergent global word order. Together with
the development of compositionality, the development of global word order follows a ‘bottom-
up’ routine based on the local and partial information contained in linguistic instances. This
coevolution results from interactions of many factors, such as lexicon and syntax, linguistic
materials and non-linguistic cues, and individual learning and social interactions. The evolution
process also depends on some hierarchical relations. For example, the acquisition of lexical items
provides a basis for the development of local orders, and both relevant lexical items and local
orders provide a basis for selecting related categories to mediate semantic and syntactic roles.
These aspects make the model suitable for exploring some embodiment-related problems.

2.3. The indices to evaluate the performance

Several indices are defined to evaluate the performance of the model. Understanding Rate (UR)
calculates the average percentage of integrated meanings that are understandable to each pair of
agents in the community based on their linguistic knowledge only. A high value of UR indicates
that the communal language has high understandability.

UR D ; Understood integrated meanings between agents i and j

Number of pairs of i, j x number of integrated meanings

Convergence Time (CT) calculates the average number of rounds of communication that is required
to achieve a language with certain UR (here, 0.8; if the highest UR throughout the simulation is
smaller than 0.8, directly use that UR). CT indicates the time efficiency of language emergence.

In addition, URg; is defined as UR between agents at time step (round) i and those at time step
i + 1 (these agents are the same, but their linguistic knowledge might differ). UR;y; is defined as
UR between agents at the starting time step and those at time step i. To measure UR, all agents
at time step i talk to those at time step i+1, and the percentage of accurately understood integrated
meanings is calculated. To measure URy;, all agents at the beginning of the simulation talk to those
at time step i, and the percentage of accurately understood integrated meanings is calculated. A
high value of UR; indicates high understandability of the communal languages across a limited
time, and a high UR;y; indicates a high possibility of maintaining an initial language for a relatively
long time.

3. The simulation results of the three experiments
This paper adopts the compositionality-regularity coevolution model to study the effect of social

structure on both language emergence and maintenance. In the simulations on language emer-
gence, all agents initially share eight holistic rules to encode eight integrated meanings in the



Downloaded By: [Canadian Research Knowledge Network] At: 18:32 29 May 2008

Connection Science 143

semantic space. However, in the simulations on language maintenance, a compositional language
that can consistently express all integrated meanings in the semantic space is initially shared
among agents. This language consists of 12 compositional rules to encode all semantic items, a
set of S, V, and O categories to associate corresponding lexical rules, and three syntactic rules
(SV, VO, and SO) to form a consistent global order (SVO) at the sentence level. In each situation
of the experiments, the results of 20 simulations are collected for statistical analysis.

3.1. Experiment 1: a community with a single popular agent

In Experiment 1, a 10-agent community is simulated, and the total number of communications is
6000, covering 600 rounds. There are two forms of communication: (1) communications between
the popular agent (Agent 1) and others (Agents 2—10), with probability PR; and (2) communi-
cations not involving the popular agent, with probability 1—PR. In this 10-agent community, PR
lies in the interval [0.1 1.0]. If it equals 0.1, all agents have equal probabilities to communicate
with each other, which is similar to the random communication situation; if it equals 1.0, all
communications involve the popular agent.

Figures 4 and 5 show the statistical results of the simulations on language emergence and
maintenance under different values of PR. Figure 4a shows the average and standard deviation
of the highest UR, and Figure 4b the average and standard deviation of CT. Figure 5a shows the
average and standard deviation of last UR after 600 rounds of communications, and Figure 5b and
5c the average and standard deviation of UR; and URyy;, in which avg URg; (URyy;) indicates the
average URg.; (UR;y;) throughout 600 rounds of communications, and last UR.; (UR;y;) indicates
the UR,.; (UR;y;) at the end of 600 rounds of communications).

PR indicates the degree of centralisation around the popular agent. This centralisation has two
effects:

(1) The acceleration effect. The popular agent, like a hub in a network, connects to many
others. It provides a conduit for other agents to exchange information. Centralisation around it
can accelerate conventionalisation of idiolects and reduce the CT of the communal language.
Some research on complex networks (e.g. Crucitti et al. 2003) has shown that introducing hubs
can accelerate information transmission among nodes and the synchronisation of the whole
network.

Avg highest UR vs. PR

Avg Convergence Time (CT) vs. PR
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Figure 4. The statistical results in Experiment 1 on language emergence: the UR (a) and CT (b) of the emergent

languages under different PR. The distance between a pair of error bars above and below a data point is twice of the
standard deviation.
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Figure 5. The statistical results in Experiment 1 on language maintenance: the UR (a), URge, (b), and URjp; (c) of the
communal languages under different PR.

(2) The deceleration effect. For agents to efficiently transmit information via a hub, this hub
has to be stable. In this model, agents not only exchange linguistic information, but also modify
their linguistic knowledge during communications. If the popular agent’s linguistic knowledge
is stable, it can transmit that knowledge unchanged to multiple agents. In other words, informa-
tion transmission via stable intermediaries is effective. However, if the popular agent frequently
modifies its linguistic knowledge, the knowledge that it transmits to other agents is inconsistent.
In other words, information transmission via unstable intermediaries is not always effective. In
addition, the syntactic knowledge in this model may not easily converge; different previous expe-
riences may cause agents to develop different local orders based on the same global order, and the
global order may in turn greatly shift when agents change one of their local orders as a result of
communications with others. Via the popular agent, the syntactic information in the form of local
orders may not always be efficiently transmitted to others. Both the instability of the popular agent
and the imprecision introduced by local orders may affect the conventionalisation of linguistic
knowledge in the population.

In Experiment 1, both of these effects coexist and compete with each other. On the one hand,
in the simulations on language emergence, the popular agent, like others, continues updating its
idiolect during communications. If its linguistic knowledge is changed as a result of listening
to some agents whose idiolects are quite different from others, then, in the future, when it talks
to others, the communal language shared by these agents might be affected. Not only does the
understandability of the communal language drop, but also more communications are necessary
either to recover the originally shared linguistic knowledge or to diffuse the newly acquired
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knowledge. With the increase in PR, other agents will have higher chances to contact the popular
agent and affect its idiolect, which may enhance the deceleration effect. As shown in Figure 4,
when PR is low, both effects cannot greatly affect language emergence. But when it becomes
high, the average UR of the emergent languages begins to drop, the average CT increases, and the
standard deviations of both increase, too. All these illustrate the deceleration effect. On the other
hand, in the simulations on language maintenance, all agents already share a communal language.
In this situation, the popular agent does not frequently update its idiolect, and communications
via this stable intermediary are effective. As shown in Figure 5, both of the effects do not greatly
affect the maintenance of the communal language; UR, URg,, and UR;,; all remain high under
different PR.

These two effects of the popular agent on language emergence were first explored by Gong
and Wang (2005), in which, due to different simulation details, the competition between the
acceleration and deceleration effects resulted in an optimum UR occurring at a PR lower than 1.0.
It showed that neither absolute ‘democracy’ (the situation of random communication) nor absolute
‘dictatorship’ (the situation where PR is 1.0) can efficiently achieve a communal language with a
high UR. Although such optimum UR does not show up in this paper, the following conclusion
still holds: if PR is too high, both the understandability and emergent process of the communal
language become fluctuated.

3.2. Experiment 2: a community with a given distribution of individuals’ popularities

Experiment 1 focuses on a 10-agent community with a single popular agent. In larger communities,
stratification could cause different agents to have different probabilities to participate in commu-
nications. In Experiment 2, we use the distribution of all agents’ popularities to represent the
effect of the whole social structure. In addition to a 10-agent community, we also study the effect
of individuals’ popularities in communities having larger sizes.

Sociological research has discovered that instead of uniformity, in many social phenomena
(e.g. sexual contact (Lijeros et al. 2003), vote distributions in legislator elections (Situngkir 2004),
spread of rumours (Moreno 2004), Worldwide Web (Broder et al. 2000), and many others), the
elements and interactions among these elements usually follow power-law relations (reviewed by
Newman 2005). It is also evident in linguistic phenomena. For instance, the frequency of usage of
any word in a corpus is approximately inversely proportional to its frequency rank (Zipf’s law), and
the rank of a language family (based on its size) and its size (the number of languages it contains)
also follow a power-law relation (Stauffer et al. 2006). These power-law distributions are also
characteristic in many self-organising systems (Bak 1996), and many factors such as preferential
attachment (Barabasi amd Albert 1999) and geographical constraints (Warren et al. 2002) can
help to explain the formation of power-law distribution in both social and linguistic phenomena.
Considering these, in Experiment 2, the distribution of agents’ popularities is assumed to follow
the power-law distribution.

A power-law relation of two scalar quantities x and y is mathematically defined as follows:

y=ax

where a is a scale parameter, x represents an element or interaction in a given phenomenon, and
y the frequency of this element or interaction. Drawn on log—log axes, a power-law distribution
appears as a straight line, whose slope increases with the value of A. The power-law distributions
in different phenomena may have different A values. As reported by Newman (2003), the A value
in the film actor collaboration network is 2.3, 2.0 in the email message network, and 2.1 in the
telephone call network. In linguistic phenomena, Zipf’s law has a A value of 1.0, and the A value
in the distribution of language families is approximately 2.0.
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In the power-law distributions of Experiment 2, a is chosen so that the sum of all probabilities is
1.0, x represents agent index from 1 to N (the number of agents), and y calculates the probability
for an agent with a given index to participate in communications. The A value lies in the interval
[0.0, 3.0], which dovetails with the A values observed in many real-world power-law distributions.
If A equals 0.0, all agents have an equal probability of communicating with others. In Experiment
2, the sampling A values include 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0, and the community sizes include
10, 30, and 50. As an example, Figure 6 shows the individuals’ popularities under different power-
law distributions in a 10-agent community. On the log—log axes, as A increases, the distribution
line becomes steeper, indicating that agents with bigger indices are significantly less popular than
those with smaller indices, and the latter ones will communicate frequently with each other and
occasionally with the former ones.

In our model, during a single round of communications, many communications are assumed
to take place simultaneously among different pairs of agents. The number of these communi-
cations is proportional to the community size. In the simulations on language emergence, in
order to let all agents have sufficient opportunities to develop their idiolects, the number of
communications per round is set to scale to the square of community size: No.Com oc N2. There-
fore, for a 10-agent community, the total number of communications is 6000 (600 rounds);
for a 30-agent community, it is 54,000 (1800 rounds); and for a 50-agent community, it is
150,000 (3000 rounds). In the simulations on language maintenance, as a communal language
is already shared, the number of communications per round only scales to the community
size: No.Com o N. Therefore, for a 10-agent community, the total number of communica-
tions is 6000 (600 rounds); for a 30-agent community, it is 18,000 (600 rounds); and for a
50-agent community, it is 30,000 (600 rounds). Figure 7 shows the results of language emergence
under different power-law distributions of individuals’ popularities in different communities,
in which panels a and b record the average and standard deviation of the highest UR and
the last UR in these situations; panel c displays the average and standard deviation of CT
in these situations. Figure 8 shows the results of language maintenance in these situations,
in which panel a traces the average and standard deviation of the last UR in these situa-
tions; panels b and c display the average and standard deviation of URg,; and URy,; in these
situations.
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Figure 6. The individuals’ popularities in different power-law distributions. The top figure is in normal axes, and the
bottom one in log—log axes.
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Figure 7. The statistical results in Experiment 2 on language emergence: the high UR (a), last UR (b), and CT (c) of
the emergent languages in communities of different sizes and with different power-law distributions.

As shown in Figure 7, for a fixed community size, when A is small (0.0 or 1.0), most emergent
languages have a high UR exceeding 0.8. With the increase in A, UR drops and CT increases. When
X is greater than 2.0, a communal language with a high UR rarely emerges. This tendency is more
obvious in communities with bigger sizes. Meanwhile, for a fixed power-law distribution, with
the increase in community size, UR drops. But when X is 0.0 or 1.0, in all communities, agents can
develop a communal language with a high UR. Similarly in Figure 8, for a fixed community size,
with the increase in A, the initial communal language gradually disappears. Both URg.; and UR;y;
decrease under power-law distributions with high A values. Meanwhile, for a fixed A value, with
the increase in community size, both UR and URy,, gradually drop. But when A equals 0.0 or 1.0,
in all communities, the initial communal languages are maintained to a certain extent (UR;y; is
around 0.6), and both UR and URg, remain high (around 0.8). These results illustrate a boundary
A value (1.0, beyond which the understandability of the communal language starts to decrease)
in a community with power-law distribution of individuals’ popularities.

This boundary A value results from the competition between two social trends. On the one hand,
individuals in better economic or political conditions (members in higher positions of the social
hierarchy) tend to become more popular and get involved in more social activities. On the other
hand, members in lower positions of the social hierarchy also require sufficient social activities
to maintain the communal language of the community. Without this language, the interactions
between the members in different positions of the social hierarchy cannot well proceed. Then,
the whole community may split up, and the social hierarchy could be demolished. The results in
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Figure 8. The statistical results in Experiment 2 on language maintenance: the UR (a), URg, (b), and URjp; (c) of the
communal languages in communities of different sizes and with different power-law distributions.

Experiment 2 show that a power-law distribution with an intermediate value of A could emerge

as a compromise to maintain a certain degree of both social hierarchy and mutual understanding.
The A value in a power-law distribution of individual’s popularities and the A’ value in the

distribution of communications (activities) among individuals have the following relation:

)J—1+1
- A

The mathematical proof is roughly shown below:

— Az ~ 1= 1
r(k) ~ fp(k) fk dek~k™ -

(r(k)) = r(k) T ak

in which r (k) is the rank of agent k, p’(k) = k=" is the power-law distribution of activities and
p(r) = r~* the power-law distribution of individuals’ popularities, and the scaling factors are
disregarded.

Considering this relation, the boundary A value (1.0) in this model is commensurate with
the A’ value (2.0) in the distribution of communications. As reviewed by Newman (2003), the
power-law distributions in many social activity networks, such as the email exchange network
(59,912 nodes and A’ is 2.0) and the telephone call network (47,000,000 nodes and A’ is 2.1),
all have their A’ values approximately to equal 2.0. This provides an empirical support for the
boundary A value in this model. In addition, as a theoretical model, our results further predict



Downloaded By: [Canadian Research Knowledge Network] At: 18:32 29 May 2008

Connection Science 149

that a social structure with a power-law distribution having bigger A or A’ values is insufficient to
trigger and maintain a relatively high level of mutual understanding. Furthermore, our finding also
reflects some other simulation studies (e.g. Yang et al. 2008) which have shown that sufficiently
transmitting information among nodes requires a scale-free network to have an optimal structure
with a certain value of A.

3.3. Experiment 3: the linguistic contact between two communities

In Experiment 3, agents from two communities can participate in either intra-community or inter-
community communications, the percentages of which are controlled by IntraRate and InterRate.
The simulations on language emergence explore the effect of inter-community communications on
the mutual understandability of the emergent languages in these communities; the simulations on
language maintenance investigate the effect of lexicon and syntax on the convergence of communal
languages in these communities. In both types of simulations, two 10-agent groups are simulated,
and the total number of communications is 6000 (600 rounds), in which intra-community and
inter-community communications are interwoven.

Figure 9 shows the mutual understandability of the communal languages emerging in the two
groups under different ratios between IntraRate and InterRate. These ratios include 100:0 (all
communications are intra-community), 80:20 (roughly 480 rounds of intra-community commu-
nications and 160 rounds of inter-community communications), 50:50, 20:80, and 0:100. Figure 9a
shows the average and standard deviation of the highest URgoup1 (UR among agents in Group 1),
URGroup2, and URcross—group (UR between agents in Group 1 and those in Group 2) in simulations
with different ratios of IntraRate over InterRate, and Figure 9b displays the average and standard
deviation of CT in these simulations.

In these simulations, each community can develop its own communal language with a high
UR. The mutual understandability of these communal languages is determined by the percent-
age of inter-community communications in all communications. As this percentage increases,
URross—group begins to grow, indicating that agents from the two communities can understand
each other better. Although these results are consistent with previous studies showing that the
degree of linguistic contact can affect the convergence of communal languages, they further
illustrate that linguistic contact can take effect quite early during language emergence.

Besides the percentage of inter-community communications, similarities in certain linguistic
features of communal languages may also affect the convergence of communal languages. Based
on the compositionality-regularity coevolution model, we focus on two linguistic features: lexical
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Figure 9. The statistical results in Experiment 3 on language emergence: the UR (a) and CT (b) of the communal
languages in different communities under various degrees of linguistic contact.
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Table 1. The four situations for the simulations in
Experiment 3 on language maintenance.

Case Lexical items Simple syntax

1 (LS&SS) Similar Similar

2 (LS&SD) Similar Different

3 (LD&SS) Different Similar

4 (LD&SS) Different Different

Avg highest URCmss’gmupin different situations Avg CTC,USS,Q,OUP in different situations
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Figure 10. The statistical results in Experiment 3 on language maintenance: the URcross—group between two communal
languages sharing different linguistic features. Numbers outside brackets are average values, and numbers inside brackets
standard deviation values.

items and simple syntax. There are four situations to be considered, as listed in Table 1. Two
communal languages are said to have similar lexical items, if 80% of their lexical rules are
identical; they are said to have similar syntax, if two of their local orders are identical, e.g. SV,
VO, and SO in one, and SV, OV, and SO in the other; they are said to have different syntax,
if all their local orders are different, e.g. SV, VO, and SO in one, and VS, OV, and OS in the
other. The indices to evaluate the convergence of communal languages include URcross—group and
CTcross—group (the average number of rounds of communications required for UR crogs—group to reach
its highest value). Figure 10 shows the simulation results of these four situations for a given ratio
between IntraRate and InterRate (60:40).

As shown in Figure 10, the average UR in Cases 1 and 2 is higher than that in Cases 3 and 4, and
the average CT in Cases 1 and 2 is smaller than that in Cases 3 and 4, which suggest that for a fixed
degree of inter-community communications, sharing lexical items is more efficient than sharing
syntactic rules to converge communal languages. This difference is caused by linguistic features
and language processing mechanisms. In the model used here, there are two types of integrated
meaning: ‘Prl<Ag>’ and ‘Pr2<Ag, Pat>". For Typel meanings, once the related lexical items
have been learned, the whole integrated meanings can be produced or comprehended. For Type2
meanings, however, the syntax mainly plays the role of distinguishing Ag and Pat. This role
must be fulfilled after the related lexical items have been learned. Therefore, the convergence of
communal languages sharing similar lexical items is easier than the convergence of communal
languages sharing similar local orders.

4. Discussions and conclusions

Language evolves primarily via social contact among a finite number of individuals. In this paper,
based on a computational model that simulates individual learning mechanisms to acquire some
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linguistic features, we briefly discuss the effect of social structure on both language emergence
and maintenance in three experiments.

In Experiment 1, the acceleration and deceleration effects of a single popular agent are pointed
out, and their collective impact on language evolution is discussed. It shows that a biased social
learning towards a particular agent has both advantages and disadvantages. Neither totally unbi-
ased nor totally biased social learning can result in a good level of mutual understanding in the
population.

In Experiment 2, the impact on language evolution of individuals having power-law distributed
popularities is discussed. It demonstrates that in both small and large communities, in order to
maintain both an efficient communication system and a degree of social hierarchy, the A value
of the power-law distribution should not go very high. This result also reflects the finding in
Experiment 1 that highly biased social learning (with higher A values) can impair the level of
mutual understanding.

In Experiment 3, social learning involving the contact between two communities is discussed. It
demonstrates that different degrees of linguistic contact can affect the convergence of a communal
language. And under a given pattern of linguistic contact, some linguistic features such as lexical
items can affect the convergence of communal languages.

Without implementing any particular social structure, in these experiments, we mainly con-
trol the probabilities for individuals to participate in communications. This approach has some
advantages for studying the effect of social structure on language evolution. First, from a macro
perspective, social structures with various connection patterns may share similar characteristics
that can cast their influence on linguistic exchange. The approach of manipulating only the proba-
bilities for agents to participate in communications can summarise these general principles of the
social structure. For instance, as discussed in this paper, many social structures exhibit power-law
distributed language-related interaction — the results obtained for these distributions could be inde-
pendent of specific social structures. Second, instead of considering many parameters to define
a specific social structure, our approach focuses on a limited number of probability parameters.
The approximate trajectory of language evolution can be easily analysed through manipulating
these few parameters.

Following the embodiment perspective, our behavioural model takes account of several
important interactions during social learning. For example, the involvement of non-linguistic
information during social interactions provides the physical grounding of social learning. Also,
the evolution of language through iterated social interactions concerns the development of both
lexical and syntactic items, as well as their interactions. These aspects make the process of social
interactions in our study more realistic and illustrate that the social learning process is typically
dependent on many linguistic and non-linguistic factors. Moreover, our work touches upon the
interaction of internal linguistic features and external social learning and exemplifies the influence
of some linguistic features on the efficiency of social learning. This aspect could be insightful for
empirical studies of the competition among languages sharing similar linguistic features.

Despite these advantages, some extensions based on the current approach can help to
systematically study the effect of social structure on language evolution. For example, due to
frequent changes in individuals’ activities and communication patterns, the associated social
networks are subject to constant evolution (Palla et al. 2007). The probabilities that individuals
participate in communications should be frequently updated to reflect changes in social structures.
In addition, PR, Individual’s Popularity, IntraRate, and InterRate only determine the probability
for agents to participate in communications, without specifying their roles (speakers or listeners)
in communications. As shown in some theoretical simulations, these roles can affect language evo-
lution. For instance, as studied by Baronchelli et al. (2006), when the hubs in a scale-free network
are frequently chosen as speakers, they tend to easily propagate successful words to others; the
resultant convergence of language is faster than when the hubs are frequently chosen as listeners.
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Furthermore, apart from power-law distributed popularities, many social structures exhibit the
small-world phenomenon (the principle that most of us are linked by short chains of acquain-
tances (Watt and Strogatz 1998), such as acquaintance networks (Bernard et al. 1998), scientific
citation networks (Nowak et al. 1990), and so on). A key feature of small-world networks is the
existence of ‘shortcuts’ between certain nodes. These shortcuts can affect information transmis-
sion (Newman 2000). To embody the effect of shortcuts, we can introduce additional parameters
that specify the probabilities of ‘shortcut’ communications among particular agents. All these
extensions pave the way for future explorations of the effect of social structure on language
evolution.
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