
 
 

 

  

Abstract—The emergence of a compositional language with a 
simple grammar and the effects of individuals’ popularity on 
the phylogeny of language are studied based on a multi-agent 
computational model. In this model, a bottom-up syntactic 
development is traced, in which the global syntax in sentences is 
gradually formed from local sequential information. Assuming 
that the popularity of individuals follows a power-law 
distribution, we demonstrate that a common language can 
emerge efficiently only for certain power-law distributions and 
that these distributions could also be formed as a result of the 
language phylogeny.  

I. INTRODUCTION 
HE issue of the origin and evolution of human language 
has been widely explored using computational modeling 

[1-2]. Many existing models are behavior-based, in which 
artificial language users (agents) are equipped with some 
computational mechanisms to develop individuals’ idiolects 
[3] and to shape the communal language [3]. In each case, a 
population of agents is able to develop an artificial language 
with some linguistic features that resemble those in human 
language after numerous iterated communications. The 
linguistic features that have been modeled include the lexicon 
[4], semantic categories [5][6], and grammatical regularity 
such as linguistic morphology. Compared with the models 
focusing on lexical communication, there are few simulations 
studying the evolution of grammatical ability, a universal 
aspect of natural languages [3]. These models include: 
Batali’s neural network model [7], an early version of the 
Iterated Learning Model (ILM) [8], and Fluid Construction 
Grammar (FCG) [9]. 

First, some of these models have adopted “top-down” 
learning mechanisms, or have studied the evolution of 
grammatical ability after the development of lexical items. 
For example, in ILM, before being fully decomposed, the 
global (sentence level) structure of the heard utterance is 
always preserved for future segmentation; agents acquire the 
complex meanings of utterances directly without reference to 
their own linguistic knowledge. In FCG, after all agents have 
come to share sufficiently many lexical items, morphology 
begins to develop by adding, identifying, and acquiring the 
morphological constituents of the constructions that consist 
of these lexical items. However, considering the “tinkerer” 
view of evolution [10], linguistic competence should develop 
gradually from the available materials or from some simple 
abilities, for example, certain biological and cognitive 

activities, discussed in [10]. Since it is necessary to express 
complex meanings, complex linguistic features such as 
syntax or morphology tend to develop along with the learning, 
production, and comprehension of the language [11]. As 
indicated by some empirical findings on language acquisition, 
syntactic development follows a “bottom-up” process (e.g., 
from a single-word stage to a multiple-word stage [12]) and 
the acquisition of lexical items and of grammar are 
inseparable [13]. Any theory of the acquisition of language 
should mirror this. Besides, the meanings contained in the 
heard utterances should result from a comprehension process 
that uses both lexical and grammatical knowledge, and, 
sometimes, available non-linguistic cues, which might be 
unreliable. 

One possible “bottom-up” syntactic development scenario 
is implemented here in a model that we have modified from 
our previous work [14-15]. In that work, both the 
conventionalization of global syntax and the emergence of 
compositional linguistic materials were studied. In our new 
model, we extend that framework to study the formation of 
global syntax based on simple local orders. In this model, 
based on previous experience (sentences exchanged in 
previous communications), agents acquire compositional 
linguistic knowledge by detecting and learning recurrent 
patterns in the linguistic input, much like when someone 
learns a second language [16]. During the acquisition of 
lexical items, the simple relative orders between pairs of 
constituents in the input sentences are noticed and acquired as 
syntactic knowledge. The ability to manipulate simple orders 
is not specific to language or to humans; even chimpanzees 
have a similar ability [17]. Through some categorization 
mechanisms, agents gradually build up syntactic categories 
that associate sets of lexical items with simple orders. These 
categories are similar to the verb islands in [18]. Meanwhile, 
consistent word order in sentences consisting of more than 
two lexical items can emerge through the use of local orders 
that regulate these lexical items pair-wise. This linguistic 
knowledge of lexical items and local orders is used and 
updated during communications when agents exchange 
meaningful sentences. After many such communications, 
based on the local information, a set of common lexical items 
and a consistent local syntax are established and then diffuse 
among the agents. 

Second, most of the available models of language 
evolution have adopted dyadic communications in which 
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agents in the population are picked to take part in a particular 
communication with equal probability. This process 
disregards the effects of some social factors. Sociological 
research has already discovered that instead of such 
uniformity, in many social phenomena, the distribution of the 
elements or the interactions among them follows a 
“power-law” distribution (reviewed in [19]), which is also 
known to characterize a wide range of phenomena in the 
political and the natural world. These phenomena include 
sexual contact networks [20], the distribution of votes in 
legislator elections [21], the spread of epidemic diseases [22], 
rumors [23], etc. A power-law relationship between two 
scalar quantities x and y is defined as: y = ax-λ, where x 
represents the element or the interaction in a specific 
phenomenon, and y the frequency of this element or 
interaction. For example, in the rumor spreading network, x 
represents the number of people and y the probability for that 
number of people to spread the rumor. a is a scale parameter. 
The power-law distributions in different phenomena have 
different λ values. For example, as reported in [24], the λ 
value in the actor collaboration network is 2.3, 2.0 in the 
email message network, and 2.1 in the telephone call network. 
Drawn on a log-log graph, a power-law distribution appears 
as a straight line, whose slope increases with the λ value. 

To a certain degree, social factors such as friendship, 
geographical constraints, and political influence can affect 
the selection of participants in communications. Linguistic 
communications can also trigger some social, economical or 
political interactions by causing different individuals to 
attract and be attracted by others. In addition, some linguistic 
features have been shown to have power-law distributions, 
e.g., the distribution of the sizes of different language families 
[25] and the co-occurrence of syllables in some languages 
[26]. Therefore, power-law distributions are suitable for 
describing certain linguistic-related phenomena.  

In this paper, we define an individual’s popularity as the 
possibility for that individual to participate into linguistic 
communications. The distribution of an individual’s 
popularity in the community is assumed to follow a 
power-law distribution. An individual’s popularity represents 
the influence of a variety of social factors, e.g., friendship, 
political influence, economic incomes. The greater the 
popularity of an agent, the more frequently he takes part in 
communications. The computational simulation shows that 
for certain power-law distributions of individuals’ popularity, 
a common language can be more efficiently triggered in the 
community for some λ values than for others. We believe that 
these distributions formed as a result of self-organization 
during language communication. 

The remainder of the paper is organized as follows: Sec. 2 
briefly describes the model; Sec. 3 and 4 discuss the 
emergence of language and the effects of individuals’ 
popularity. Finally, conclusions are summarized in Sec. 5. 

II. MODEL DESCRIPTION 
The major components of our behavior-based model are 

introduced in this section, including the representation and 
acquisition of linguistic knowledge, and the communication 
scenario. 

A. The Representation of Linguistic Knowledge 
Language is represented by Meaning-Utterance mappings 

(M-U mappings) in this model. The semantic space contains 
two types of integrated meaning, each describing a complete 
event: Type-I: “Pr1<Ag>” (e.g., “hop<deer>”) and Type-II: 
“Pr2<Ag, Pt>” (e.g., “fight<fox, wolf>”). “Pr1” is a predicate 
(action) having a single argument, “Pr2” is a predicate having 
two arguments: “Ag”, the instigator of the action; and “Pt”, 
the entity undergoing the action. Utterances consist of a string 
of combinable syllables which can be mapped to either a 
whole integrated meaning (such a string is called a sentence), 
or one or two semantic items (such strings are called a word 
or a phrase, respectively). 

 
An agent’s linguistic knowledge is represented by rules 

and syntactic categories (see Fig. 1). Linguistic rules include 
lexical and syntactic rules. A lexical rule is a M-U mapping 
plus a strength, which indicates the probability of that 
mapping. A lexical rule can be holistic or compositional. The 
former is a mapping between an integrated meaning and a 
sentence (e.g., rules (a) and (b)). The latter is a mapping 
between a semantic item and a word (e.g., rules (c) and (d)), 
or between two semantic items that do not form an integrated 
meaning and a phrase (e.g., rule (d)). A syntactic rule is a 
relative order plus a strength, which indicates the probability 
of this relative order. These relative orders include BEFORE 
and AFTER; “relative” here means it is not necessarily 
immediately before or after. 

Syntactic categories represent the linguistic knowledge of 

(2) “run<fox>” /d m/

(4) “fight<wolf, deer>” /a c b d/

(a) “chase<wolf, bear>” /a d/ (0.5)
Holistic rules: Compositional rules: 

(b) “hop<deer>” /a/ (0.4) (d) “chase<#, bear>” /a b * d/ (0.7)

(c) “wolf” /d/ (0.6)

(1) “hop<fox>” /d h/

(3) “run<wolf>” /a c m/

(6) “fight<fox, deer>” /d f k b/

(5) “fight<wolf, gazelle>” /a c b m/

Lexical rules

Detection of recurrent patterns

(f) “run<#>” /m/ (0.5)

(g) “wolf” /a c/ (0.5)

(e) “fox” /d/ (0.5)

(h) “fight<wolf, #>” /a c b/ (0.5)

New acquired lexical rules

(i) “fight<#, #>” /b/ (0.5)

Cat1 (S): Lex-List:

Syn-List: (I) Cat1 << rule (f) (SV) (0.5)

Cat2 (V):

rule (g) [0.5]
rule (e) [0.5]

Syntactic categories and syntactic rules

(II) Cat1 << rule (i) (SV) (0.5)

rule (i) [0.5]

rule (f) [0.5]Lex-List:

Syn-List:

(I) Cat1 << Cat2 (SV) (0.5)

(II) Cat1 << Cat2 (SV) (0.5)
 

Fig. 1. Linguistic rules and syntactic categories: “#” can be replaced by 
other semantic items, and “*” by other syllables. Lexical rules are 
itemized by letters, M-U mappings by Arabic numerals, and syntactic 
rules by Roman numerals. Numbers enclosed by ( ) denote rule 
strengths, and those by [ ] denote association weights. “<<” indicates 
the relative local order BEFORE. 
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how to regulate sequences of syllables of lexical rules 
belonging to one category and with those belonging to 
another. A syntactic category associates the semantic roles 
(“Ag”, “Pr1/2” and “Pat”) of the lexical items belonging to it 
with their respective syntactic roles (“Subject”(“S”), 
“Object”(“O”), “Verb”(“V”)), and contains the list of 
syntactic rules that apply to its lexical members. The 
association weight of a lexical rule to a particular syntactic 
category denotes the probability that the syntactic rules of the 
category are applied to that lexical rule. One lexical rule can 
be associated with many categories having identical syntactic 
roles but with different association weights. Moreover, 
lexical rules encoding semantic items like “fox” or “wolf” can 
be associated with both “S” and “O” categories, since in 
different integrated meanings, they can be either “Ag” or 
“Pt”. 

B. The Acquisition of Linguistic Knowledge 
Lexical rules are acquired through the detection of 

recurrent patterns. Each agent has a buffer storing some 
previous experience (a limited list of M-U mappings obtained 
in previous communications). Newly acquired M-U 
mappings are compared with those already stored in the 
buffer before they too are inserted into the buffer. A recurrent 
pattern is defined as one or more semantic item(s) and one or 
more syllables that appear recurrently in at least two M-U 
mappings in the buffer. For instance, in Fig. 1, by comparing 
M-U mapping (2) with M-U mapping (1), the recurrent 
pattern “fox” /d/ is detected and so acquired as a lexical 
rule. The segmentation of holistic M-U mappings through the 
detection of recurrent patterns has been argued to be an 
effective way to acquire linguistic knowledge [27]. 

During the acquisition of lexical rules, syntactic rules and 
syntactic categories are also acquired. Evident in the previous 
experience (the M-U mappings (2) and (3) in Fig. 1), the 
words /d/ of rule (e) and /a c/ of rule (g) have the same 
relative order (BEFORE) with respect to the word /m/ of rule (f). 
Since “wolf” and “fox” share the same semantic role (“Ag”), 
rules (e) and (g) are associated into a new category, labeled 
“S”. The association weights are all set initially to 0.5. 
Meanwhile, the local order (BEFORE) with respect to word (f) 
is acquired as a syntactic rule (I) in this category. This rule 
indicates that the words of lexical rules from the “S” category 
should precede the word (f). Similarly, checking M-U 
mappings (5) and (6), another syntactic rule (II) with respect 
to rule (i) is acquired. Furthermore, checking M-U mappings 
(2) and (6), the words /m/ of rule (f) and /b/ of rule (i) are 
found AFTER the word /d/ of rule (e). Consequently, a new 
“V” category associating words (f) and (i), which share the 
same semantic role “Pr1/2”, is created together with a new 
syntactic rule. Now, since words (f) and (i) are already 
associated into a category, syntactic rules (I) and (II) are 
updated into one syntactic rule “Cat1<<Cat2 (0.5)” in both 
categories. This syntactic rule indicates that the words 
belonging to the “S” category should precede those of the 

“V” category. In addition to the creation of new categories, if 
rules (f) and (i) already belonged to different “V” categories, 
this previous experience would trigger a merging of the two 
“V” categories into one category comprising their lexical and 
syntactic members. Without directly acquiring the global 
orders in sentences that encode Type-II meanings, agents can 
use their local orders to regulate the syllables of 
compositional rules in pairs to build up these sentences. For 
example, to express “fight<fox, sheep>” based on the lexical 
rules (i), (e) and another lexical rule expressing “sheep”, the 
SV local order in syntactic rule (I) can be used for regulating 
the words (i) and (e), another local order, say SO, from 
another syntactic rule is used for regulating rule (e) and the 
rule expressing “sheep”. Then, the global order based on 
these local orders can be either SVO or SOV. 

The formation of global orders based on local information 
introduces a certain degree of imprecision: the combination 
of some local orders can lead to multiple global orders (e.g., 
SV + SO lead to either SVO or SOV, as shown above), and a 
particular global order can be represented by the combination 
of different local orders (e.g., SVO can be represented by SV 
+ VO or SO + VO). This imprecision increases not only the 
difficulty for a population of agents to acquire a common 
global word order but also the probability for word order 
change. 

The rule strengths and the association weights make 
possible the rule competition (discussed later). After a 
communication, agents subtract a small amount (the 
forgetting rate) from the strengths of their linguistic rules and 
the association weights of their lexical rules. Rules that as a 
result of this subtraction have negative strengths or 
association weights are removed from the rule list or the 
syntactic categories containing these rules. The rule 
competition strengthens and maintains frequently used 
linguistic knowledge, and causes the language to 
self-organize. 

Through the above acquisition, categorization and 
adjustment mechanisms, agents first learn some lexical rules 
and create some independent syntactic categories to associate 
them. Then, based on the information contained in their 
previous experience (e.g., recurrent patterns and local orders 
among them), they acquire more lexical rules, expand the 
lexical and syntactic members in their categories, and 
gradually merge categories that share identical syntactic roles. 
Finally, they may develop a communal language in which all 
lexical items having the same semantic role belong to the 
same syntactic category. Moreover, by using similar local 
syntactic rules to regulate the relative word order of lexical 
members from the syntactic categories, some common global 
word orders in sentences might emerge. The whole process 
simulates a “bottom-up” syntactic development based on the 
local, partial information available in previous experience. 
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C. The Communication Scenario 
As a language emergence model, we assume that early 

communications are describing simple events represented by 
the two types of integrated meanings introduced above. One 
type of nonlinguistic information, environmental cues, is 
simulated. Environmental cues, which are represented as 
integrated meanings plus a fixed strength (0.5), assist the 
comprehension of the heard utterances. However, cues are 
not always reliable (otherwise the learning procedure would 
still involve mind-reading, as in [8]). The probability that one 
cue corresponds to the speaker’s intended meaning is 
represented by a parameter, the Reliability of Cues (RC).  

A communication contains multiple rounds of integrated 
meaning exchange, each one of which proceeds as follows 
(for detail, see [14-15]): the speaker chooses an integrated 
meaning from the semantic space to express and activates 
certain lexical rules and related syntactic categories with 
which to encode this integrated meaning. Through a 
strength-based competition, the agent identifies the winning 
rules, builds up the utterance accordingly, and transmits the 
utterance to the listener. If he lacks a set of compositional 
rules that can represent all the semantic items contained in the 
chosen integrated meaning, the speaker may occasionally 
create a holistic rule to express the whole meaning (some 
models, e.g., [6], adopt a certain exploitation mechanism: if 
part—but not all—of the integrated meaning can be encoded 
by compositional rules, new compositional rules will be 
created to cover the remaining part. This mechanism provides 
a strong built-in bias toward compositionality). 

The listener receives the utterance from the speaker and 
sometimes some cues from the environment. Then, he 
activates lexical rules whose syllables fully or partially match 
the heard utterance, and related categories. The listener 
selects that set of rules that allow him to comprehend an 
integrated meaning with the highest combined strength. His 
calculation of the combined strength considers the strengths 
of both linguistic rules and the available cues. Then, if the 
combined strength of the winning rules exceeds a Confidence 
Threshold (CT), the listener transmits a positive feedback to 
the speaker, and both agents reward their winning rules by 
increasing their strengths. Otherwise, a negative feedback is 
sent and these rules are penalized.  

In this communication scenario, there is no direct check 
whether the speaker’s intended meaning matches the 
listener’s comprehended one. The listener’s comprehension 
considers both linguistic and nonlinguistic information, 
which provides the opportunity for developing reliable 
linguistic knowledge that can withstand the effect of cues that 
do not match the speakers intended meaning. A reliable 
language that is capable of describing events not happing in 
the immediate space or time can be triggered. 

Both linguistic rules and syntactic categories participate in 
the meaning exchange. For example, during production, the 
speaker first activates the compositional rules that can be 
combined to encode the chosen meaning. Then, based on the 

syntactic categories of these rules, he activates the syntactic 
rules (OS and VO in Fig. 2) by which these lexical rules can 
be regulated. Then, he judges which set of linguistic rules 
wins the strength-based competition, and produces an 
utterance accordingly. Similarly, during comprehension, after 
the listener identifies the lexical rules whose syllables 
partially match the heard utterance, the local orders (VS and 
OS) that are consistent with the locations of the syllables in 
the heard utterance (/a b/ before /e f/ and /d/ before /e f/) are 
detected. If these local orders match the syntactic rules of the 
categories to which these lexical rules belong, both the 
syntactic categories and their syntactic rules are activated. 
Then, based on the activated categories, the semantic roles of 
these lexical items in the comprehended meaning are 
specified (“lion” is “Ag”,  “fox” is “Pt” and “fight<#, #>” is 
“Pr2”). The calculation of the combined strength also 
considers the strength of cues that match this comprehended 
meaning (“fight<lion, fox>”). The listener then judges which 
set of rules wins the strength-based competition. 

In both production and comprehension, under the guidance 
of syntactic categories, agents use their available building 
blocks (lexical rules and local orders) to produce utterances 
and comprehend integrated meanings. This shows how the 
conceptual-symbolic system (lexical items) and the 
regulatory system (syntactic categories and local orders) 
work together closely to process complex linguistic 
expressions. 

 

III. LANGUAGE EMERGENCE WITH BOTTOM-UP SYNTACTIC 
DEVELOPMENT 

The implementation of the model that we discuss here 
adopts a semantic space having 16 Type-I and 48 Type-II 
integrated meanings (consisting of 4 “Ag”=“Pt”, 4 “Pr1” and 
4 “Pr2” elements). Agents have choose to express Type-I and 
Type-II meanings with equal probability. Rule strengths and 
connection weights are bounded on the interval [0.0, 1.0], the 
initial value is 0.5, the update increment is 0.1, and the 
forgetting rate is 0.01. RC is set to 0.6 and CT to 0.75. Each 
communication contains 20 meaning exchanges. Each 
agent’s buffer size is set to 40 and the rule list size is set to 60. 
The community has 10 agents, who, initially, share 8 holistic 
rules with which they can express 8 integrated meanings— 
initially, they have no syntactic rules or categories.  

The agents then begin to communicate with each other in 
randomly selected pairs. The total number of 

 
Fig. 2. Categories in production and comprehension: “<<” represents 
the relative order “before”. 
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communications is 5,000. Every 50 communications, the 
Rule Expressivity (RE, the average percentage of the total 
integrated meanings that all agents can produce), the 
understandability of each global and local order (the average 
percentage of Type-II integrated meanings that are 
comprehended using that global or local order), and the 
Understanding Rate (UR, the average percentage of the total 
integrated meanings accurately understood using linguistic 
knowledge without cues) are calculated. 

The results for the above parameter settings are shown in 
Fig. 3. During iterated communications, agents can acquire 
new linguistic materials, which increase the RE of both 
holistic and compositional rules. After a number of 
communications, the original and newly acquired holistic 
expressions are replaced by the newly acquired 
compositional ones; the RE of the holistic rules drops and the 
RE of the compositional rules gradually rises to almost 100%. 
Meanwhile, the diffusion of rules among the agents increases 
the understandability of the emergent language. During the 
period in which the compositional rules and holistic rules are 
competing, the UR follows a U-shaped curve. However, 
when the holistic rules come to be replaced by the 

compositional rules, the UR curve exhibits a sharp, S-shaped 
growth as the population negotiates a set of common 
compositional rules, indicating the transition from an initial 
holistic signaling system to a compositional language. 

During the acquisition of common compositional rules, a 
certain degree of regularity emerges. Fig. 3(b-e) shows the 
understandability of different global and local orders among 
the agents. Along with the increase of UR, some global orders 
(SVO and SOV) become prevalent, i.e., most agents use these 
orders to comprehend most integrated meanings. From Fig. 
3(c-e), it can be seen that these global orders result from the 
combination of the prevalent local orders (SV and SO). The 
absolute strengths of the local orders VO and OV fluctuate, 
but have no significant impact on the global word order. This 
indicates that the VO and OV local orders are not unified 
among agents. If the average strength of the VO local order 
were to greatly exceed that of OV, the number of meanings 
comprehended using SVO would then greatly exceeds that of 
meanings comprehended using SOV. The emergent global 
syntax is merely an emergent property of the simple 
sequential information specified by the local order. Changes 
in the surface word order result from changes in the local 
sequential information; a detailed study of the influence of 
local orders on the emergent global word order is given in 
[28]. Furthermore, changes in the strengths of the local orders 
do not greatly influence the understanding rate (UR), which 
suggests that the whole system can efficiently and robustly 
adapt to new situations. 

Language emergence in this model can be viewed as a 
self-organizing process: each individual’s organization of his 
own linguistic knowledge leads to convergence in the 
language of the entire population. Communications provide 
opportunities for linguistic knowledge to diffuse among 
agents. The acquisition of compositional rules and the 
development of local orders boost each other and are 
achieved simultaneously. The model also shows the viability 
of a bottom-up syntactic development process; complex 
linguistic features can develop based on some general 
competences which might not be unique to humans (such as 
detecting recurrent patterns and manipulating simple, local 
sequential information).  

The model only simulates horizontal transmission 
(language communication among agents in the same 
generation), but can be easily extended to simulate vertical 
transmission across generations. 
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Fig. 3. Language emergence results: (a) UR and RE; (b) Global orders 
understandability (Type-II meanings, for Type-I meanings, see (c)); 
(c)(d)(e): Local orders understandability (SV/VS, VO/OV, SO/OS). 
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IV. EFFECTS OF INDIVIDUAL’S POPULARITY 
In this section, we study language emergence in the 

community for different power-law distributions of agent 
popularity. In these distributions, the value of the a parameter 
is set to 1.0; the value of λ lies in the interval [0.0, 3.0], which 
corresponds to the range of λ values observed in many real 
world power-law distributions. λ = 0 corresponds to the case 
in which every agent has equal chances to communicate with 
each other. The particular power-law distributions of agent 
popularity that we investigate are shown in Tab. 1 and Fig. 4. 
On a logarithmic scale, as λ is increased, so the distribution 
line becomes steeper, i.e., most agents are significantly less 
popular than the few agents having high popularity. These 
few agents frequently communicate with each other and with 
other agents. 

 

The UR value and the number of communications required 
for the UR to reach its peak value are recorded for different 
power-law distributions. Fig. 5 shows these results for a 
10-agent population. In Fig. 5(a), the solid line traces the 
average peak UR of the emergent language for each 
distribution; the dashed line traces the average UR of the 
emergent language at the end of 5,000 communications. Fig. 
5(b) traces the average number of communications for the UR 
to reach its peak value for each distribution. 

For small λ values (within the interval [0.0 1.5]), a 
language with high UR emerge. The emergence of high UR is 
achieved in fewer than 3,000 communications. After 5,000 
communications, the high understandability is maintained. 
With the increase of the value of λ from 1.5 to 3.0, not only 
does the understandability of the emergent language begin to 
drop, but also the number of communications required to 
reach the peak UR value increases. When λ is set to 3.0, the 
understandability of the language drops to 40%; after 5,000 
communications, the understandability falls to below 20%. In 
a 10-agent community, steeper power-law distributions of 
agent popularity provide a reduced probability for a common 
language to emerge, and understandability of the emergent 
language is rarely maintained. 

Linguistic communications provide opportunities for 
salient linguistic materials created by different individuals to 
diffuse across the population. Given sufficiently many 
communications, the development of common linguistic 
knowledge and mutual understanding based on this 
knowledge can be achieved. Therefore, in order to develop a 
common language, each agent is required to have sufficient 
opportunity to communicate with other agents in order to 
conventionalize his idiolect to the communal language. 

For power-law distributions with small λ values, the 
absolute value of each agent’s popularity is still high and the 
difference of popularity among agents is not that significant, 
i.e., each agent has the opportunity to communicate with each 
other agent. Therefore, a communal language with high UR 
can emerge under these conditions. 

When the value of λ is high, the opportunity for many 
agents to take part in communication drops significantly. 

 
Fig. 4. Power-law distribution of popularity: the upper panel shows the 
distribution on linearly scaled axes, the lower on logarithmically scaled 
axes. 
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Fig. 5. Language emergence in different power-law distributions of 
popularity: (a) average UR in different power-law distributions; (b) 
average number of communications for UR to reach its peak value. 
Under each power-law distribution, the results of 20 simulations are 
collected. 

TABLE I.  
POPULARITY OF EACH AGENT IN DIFFERENT POWER-LAW DISTRIBUTION 

Index / λ 0 1 2 3 
1 0.1 0.342 0.645 0.835 
2 0.1 0.171 0.161 0.105 
3 0.1 0.114 0.072 0.031 
4 0.1 0.085 0.040 0.013 
5 0.1 0.068 0.026 0.007 
6 0.1 0.057 0.018 0.004 
7 0.1 0.049 0.013 0.002 
8 0.1 0.043 0.010 0.002 
9 0.1 0.038 0.008 0.001 

10 0.1 0.034 0.006 0.0008 
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Besides, the majority of agents tend only to interact with the 
few extremely popular agents. In this situation, those popular 
agents act as hubs connecting closely among themselves and 
loosely with the unpopular ones. Some research on complex 
networks [29] has demonstrated that by introducing hubs, 
information transmission among the nodes and 
synchronization of the whole network can be accelerated. A 
similar acceleration effect exists in our model, although, there 
are other factors which may reduce the impact of the 
acceleration effect.  

First, considering the imprecision introduced by the local 
orders, although it is easier to share lexical items through 
frequent communications, the syntactic knowledge may not 
easily converge. Based on different previous experiences 
agents may develop different local orders from the same 
global syntax. Furthermore, the global syntax may diverge 
when one agent changes his local orders as a result of 
communicating with another. Therefore, the information 
transmission via the popular agents is not always efficient 
transmitted to the entire population. 

Second, affective transmission of information through the 
hubs requires that these hubs be stable. However, these 
popular agents are also language learners themselves who 
continue to update their idiolects during communication. If 
some popular agents update their linguistic knowledge as a 
result of listening to some unpopular agents whose idiolects 
differ greatly from their own, then in future, when the popular 
agents talk to others, the communal language shared by these 
agents might be damaged. Not only does the 
understandability of the communal language drop, but also 
more communications are needed either to recover the 
originally shared linguistic knowledge or to diffuse the 
linguistic knowledge newly acquired from the unpopular 
agents.  

The above two factors can both delay the emergence of a 
communal language and reduce the understandability of the 
emergent language. These acceleration and deceleration 
effects coexist and compete with each other in our model. In a 
10-agent community, it is shown that the deceleration effects 
becomes more obvious as the value of λ is increased. The 
optimal value of λ for triggering a language with high UR in 
this population lies within the interval [0.0 1.5]. The optimal 
value for λ differs according to the population size. Fig. 6 

shows the UR for a 50-agent population after 150,000 
communications. Here, the optimal λ value is around 2.0, 
which matches the λ values of many social phenomena’s 
power-law distributions, e.g., the email network, the 
telephone call network [24]. In those networks, the 
community sizes are much greater than 50. In addition, in Fig. 
6, where λ = 0, the UR value is just around 50%. This 
indicates that in communities having larger population sizes, 
it is unrealistic to assume that each agent has equal 
opportunities to participate into communications. Under this 
assumption, high understanding rate will not be obtained, and, 
as shown in many social networks, such uniform structure 
does not exist. 

In the above simulations, the power-law distribution of 
individual popularity is predefined without discussing how 
these distributions are formed. There are some explanations 
for the formation of the power-law distributions in complex 
networks, social and physical phenomena. For example, 
preferential attachment [30] is claimed to be a key mechanism 
to form a scale-free network with power-law degree 
distribution. Many social phenomena are simulated based on 
similar preferential attachment mechanisms (e.g., [21][23]). 
Physicists believe that the power-law distribution is the 
characteristic of many self-organizing systems [31]. In 
addition, factors like geographical constraints [32] and 
kinship relations [33] can also trigger certain power-law 
distributions.  

Besides these factors, we suggest that communications 
during the phylogenetic emergence of language can be 
another factor to trigger such power-law distribution of 
individual popularity. Self-organization during linguistic 
communications and mutual understanding based on the 
evolving language can adjust the possibility for an individual 
to participate in future communications. For example, an 
agent whose language is understandable to others would 
gradually gain more opportunities to communicate with 
others. And, similar to preferential attachment, others will 
tend to prefer to communicate with these popular agents. 
Then, a scaling emerges among the originally equal 
popularities, and a power-law distribution of individual’s 
popularity could be formed. 

In other words, the phylogeny of language and the 
individual’s popularity may coevolve. Some preliminary 
work (e.g., [34]) has already touched upon the coevolution of 
language emergence and the formation of certain social 
structure. 

V. CONCLUSIONS 
By implementing a “bottom-up” syntactic developmental 

process, we have shown that some complex linguistic 
features can develop based on general competences not 
unique to humans. This supports Emergentism [36] rather 
than Innatism [35]. 

 We have studied the influence of individuals’ popularity 
on language emergence. We suggest that different power-law 
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Fig. 6. Language emergence in different power-law distributions of 
popularity in the community of 50 agents. Under each power-law 
distribution, the results of 10 simulations are collected. 
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distributed popularities can affect the emergence of the 
communal language in different communities, and that the 
process of phylogenetic emergence of language may have 
selected for certain power-law distributions. 

Besides the understandability, it is necessary to observe 
whether the global word order is also influenced by the 
individuals’ popularity. Furthermore, in communities having 
greater population, it is interesting to know whether the 
distribution of individuals’ popularity can trigger a 
segmentation of the whole group into subgroups and whether 
a common language can emerge in those subgroups. The 
emergence of different languages in different subgroups 
could maintain the global social structure and the  popularity 
distribution. All these questions provide promising future 
directions for this research. 
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