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Abstract 

In this paper, a multi-agent computational model is used to simulate the emergence of a 

compositional language from a holistic signaling system through iterative interactions among 

heterogeneous agents. Syntax, in the form of simple word order, coevolves with the 

emergence of the lexicon through self-organization in individuals. We simulate an indirect 

meaning transference, in which the listener’s comprehension is based on the interaction of 

linguistic and nonlinguistic information, together with a feedback without direct meaning 

checking. Homonyms and synonyms emerge inevitably during the rule acquisition. Homonym 

avoidance is assumed to be a necessary mechanism for developing an effective 

communication system. 

Key words: Language emergence, multi-agent model, coevolution, indirect meaning 

transference, heterogeneous learning 
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1 Introduction 

Recently, there has been a resurgence of interest in a multidisciplinary approach to language 

emergence [1]. Along with the theoretical argumentation, computational modeling has joined 

the endeavor to serve as an effective methodology. The computational approach has grown 

rapidly, as exemplified by several reviews (e.g., [2][3][4]). Different types of models, based 

on various evolutionary or artificial life theories, have been reported and various areas of 

language evolution have been discussed. For example, Ke et al. [5] report several simulation 

models to show that a coherent vocabulary can be reached through self-organization in a 

population. Munroe & Cangelosi [6] implement a neural network model to demonstrate how 

learning and natural selection interact under different conditions. A simple compositional 

structure to represent simple meanings, such as “object action”, emerges in their model. Kirby 

[7][8] presents an iterated learning model (ILM) to simulate the emergence of compositional 

language with more complex syntactic structures, such as recursion, from a holistic signaling 

system through iterated learning by successive generations of learners. 

 

All of these “emergent” models (according to [4]) view language evolution as a Complex 

Adaptive System (CAS) [9] and share several assumptions which shed light on the real 

language development. For example, interactions between agents and learning through 

generations drive the emergence of language; language-specific syntactic predispositions are 

unlikely. However, there are still several limitations in these models. 

 

First, most of these models (excluding [6]) assume direct meaning transference in interactions 

among agents; i.e., the intended meanings, encoded in the linguistic utterances produced by 

speakers, are always accurately available to listeners. This approach is based on the 
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assumption that accurate meaning transference through other channels is possible, especially 

in supervised learning. However, if this were true, language as a communication medium 

would have been unnecessary since the intended meaning would always be available without 

linguistic communication. Moreover, it is obvious that there is at least no direct connection 

between speakers’ production and listeners’ comprehension — speakers always use utterances 

that they believe represent the intended meanings and listeners always interpret utterances 

into the meanings that they believe such utterances express [10]. Other channels, such as 

pointing while talking or feedback, can only provide certain degrees of confirmation. Quine’s 

question [11], regarding pointing, is a good counterexample: If someone points to a dog and 

says: “look at the dog!”, how do listeners know that the word “dog” refers to the animal 

instead of the grass on which it sits or even the pointing finger itself? Meanwhile, feedback 

through countenances or gestures may not allow speakers to know for sure whether listeners 

have correctly inferred the speaker’s intended meaning. Therefore, always assuming direct 

meaning transference between speakers and listeners in communication is unrealistic. 

Furthermore, comprehension is not based only on linguistic information: nonlinguistic 

information provided by environment should also be considered. 

 

Second, these models either fail to model syntax (e.g., [5]), build in the syntactic features (e.g., 

[6]), or else do not adopt a coevolutionary view of the emergence of syntax and lexicon (e.g., 

[8]). From an evolutionary point of view, the emergence of lexicon and the convergence of 

syntax should be interwoven, i.e., they should coevolve. 

 

Third, many models are built using homogeneous agents, who have identical characteristics 

and consistent strategies. However, sociolinguists have observed dramatic variations in 
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speech communities [12], and studies on language acquisition have revealed various 

dichotomies in children’s learning styles [13]. Therefore, it is more realistic for computational 

models to take account of heterogeneity. 

 

Addressing these limitations, we present a computational model of language emergence at the 

macrohistory level [14] to show a coevolution of lexicon and syntax from a holistic signaling 

system. Regarding the origins of syntax, there are two notable scenarios: 1) a “bootstrapping” 

scenario [15], which conceives that a full language, originating from words, developed from 

the combination of words regulated by an innate syntax; 2) an “emergent” theory [16] which 

suggests that language may have started from a holistic, “formulaic”, signaling system. In the 

latter theory, sporadic recurrent components in utterances and common meaning aspects are 

assumed to have triggered the emergence of words through segmentation, and then to have 

lead to the convergence of shared syntactic structures.  

 

Considering the following arguments, the “emergent” scenario appears to be more attractive 

and plausible. First, protolanguage may have consisted of a number of holistic signals, similar 

to those found in primates and other animals such as bees and birds [18], though their nature 

may be very different. According to the “emergent” theory, there existed a stage of 

development in which early hominids began to detect recurrent patterns that appeared by 

chance in these holistic signals, which they then segmented into words. Second, from 

evolutionary principles, grammatical rules in language are more likely to have emerged as the 

result of conventionalization features due to language use, rather than as the result of an 

innate, grammar-specific module [17]. Syntax is assumed to have emerged from a pre-adapted 

cognitive capacity reflected in other cognitive processes (e.g., sequencing ability [19]). Such a 

sequencing ability as a cognitive predisposition has been attested in other primates as well as 
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in pre-language infants. In the “emergent” theory, grammar is acquired through segmentation, 

incorporating systematic regularities involving the meaning structures and the sequences used 

to combine words [16] — word combination therefore requires the sequencing ability, which 

provides opportunities to conventionalize certain sequences such as simple, dominant word 

orders. Finally, an analytic language can emerge through iterative interactions among agents 

without any external guidance. Such a developmental process has been attested in both first 

[20] and second [21] language acquisition in children.  

 

Based on the “emergent” scenario, we present here a model that shows a development from a 

non-syntactic, holistic proto-language to a syntactic, compositional proto-language. At first, 

the initial holistic signals have no hierarchical structure. Then, basic syntax, in the form of 

simple word order, is introduced to regulate compositional utterances after they are segmented 

from holistic signals. These word orders, freely chosen by individuals, converge to a 

dominant word order through iterative communications. This process occurs simultaneous to 

the emergence of the lexicon. 

 

We model communication using a process of indirect meaning transference, in which the 

interaction of both linguistic and nonlinguistic information determines comprehension. This 

indirect meaning transference, involving feedback without direct meaning check, simulates a 

more realistic process for handling the multiple channels of information that are available in 

communications.  

 

Finally, the model introduces heterogeneity into the natural characteristics and linguistic 

behaviors of agents, allowing us to study the influence of a population having heterogeneous 

cognitive capabilities on language emergence.  
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The rest of the paper is organized as follows: In Section 2, we provide a concise description of 

the model. Section 3 discusses some major results. Section 4 proposes several promising 

future directions. 

2 Description of the model  

The model for language emergence that we adopt is basically a linguistic communication 

game. Agents produce and comprehend language via communication. We treat language as a 

set of mappings between meanings and utterances; these mappings are acquired in 

communication, not set up beforehand, and are modified during communication, as in the 

model adopted by Kirby [8]. The adjustment of mappings is only executed among available 

mappings instead of all possible mappings, an approach that differs from Kirby’s [8]. 

2.1 Meaning, utterance and rule-based system 

Meanings are single constituents representing discrete features (e.g. “agent/patient”, 

“predicate<#, #>”) or integrations of constituents representing integrated features (e.g. 

“predicate<agent>”) in a semantic space. We consider two types of integrated meaning, 

“predicate<agent>” (e.g. “run<dog>”) and “predicate<agent, patient>” (e.g. “eat<dog, meat>” 

or “chase<fox, cat>”). Some integrated meanings are transparent, such as “run<dog>” or 

“eat<dog, meat>”, since their meanings are inferable from their constituents; others are 

opaque, such as “chase<fox, cat>”, whose meanings are not inferable from their constituents. 

Without further information, such as nonlinguistic information or regulation method in 

utterances, such meanings could be misinterpreted. The transparency and opacity of meanings 

shows that accurate interpretation requires both linguistic and nonlinguistic information. In 
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this model, 12 constituent and 48 integrated meanings make up the semantic space. (The 

integrated meanings are built upon the 12 constituent meanings; half are transparent, half are 

opaque)  Agents only produce and comprehend integrated meanings. 

 

Utterances consist of a string of syllables, and can be combined under the regulation of simple 

syntax to map to either constituent or integrated meanings. 

 

Language is represented by a set of rules, and comprises both lexical rules (mappings between 

meaning and utterance) and word order rules (regulating utterances). Each rule has a strength, 

which indicates numerically the frequency of successful use of the rule. The self-

organizations strategies of the agents include rule competition (decision-making during both 

production and comprehension) and rule adjustment (adjustment among available rules), both 

based on rule strength. When all agents share a set of common lexical rules with high 

strengths, a common language has emerged. 

 

Lexical rules comprise holistic and compositional rules. Holistic rules are mappings between 

integrated meaning and inseparable utterance. For example: 

 “run<dog>” ↔ /a b c/ (0.4), 

where the integrated meaning “run<dog>” and the utterance /a b c/ are associated with 

strength 0.4. Note that the mappings in all lexical rules are bidirectional, encoding both 

production and comprehension. Word rules are mappings between a single constituent and an 

utterance. For example: 

 “eat<#, #>” ↔  /d e/ (0.3)        or        “dog” ↔  /c/ (0.5), 
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where “#” can be replaced by constituents to form an integrated meaning. Compositional rules 

include both phrase rules and word rules. Phrase rules are mappings between two constituents 

(that do not form an integrated meaning) and an utterance. For example: 

 “eat<dog, #>” ↔  /c * f/ (0.4), 

where “#” represents an arbitrary meaning constituent (in this case, an agent) and “*” 

represents an arbitrary syllable(s) of a word rule, so forming an integrated meaning when 

combined with this phrase rule.  

 

Word order rules cover all possible sequences of constituents to regulate utterances in 

expressing integrated meanings. For example, to express “predicate<agent>” meanings, two 

orders are considered: 

 “utterance for predicate precedes that for agent” (SV) (0.4),  

 “utterance for predicate follows that for agent” (VS) (0.3) 

To express “predicate<agent, patient>” meanings, 6 orders are considered. For example: 

 “utterance for agent first; that for predicate second; that for patient last” (SVO)(0.2) 

Word orders are randomly chosen at the beginning. The word orders for “predicate<agent>” 

and “predicate<agent, patient>” meanings evolve independently. A dominant word order 

emerges when all agents share a  high strength for a particular word order rule. 

2.2 Agent 

Each agent has his own set of rules. Lexical rules are stored in a two-layer memory system 

(see Figure 1), inspired by Learning Classifier System (LCS) [22]. The buffer stores an array 

of “previous experiences” — each element of the buffer consists of a mapping between an 

utterance and an inferred meaning (M-U mapping) from some previous communication. The 
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rule list stores the lexical rules that the agent uses for both production and comprehension — 

lexical rules are learned from previous experiences: when the buffer is full, new lexical rules 

are generalized from the M-U mappings, and are updated into the rule list. The buffer is then 

emptied to allow new M-U mappings to be recorded. 

 

 [Figure 1 is about here.] 

 

Agents use two mechanisms to acquire lexical rules. a) Random creation in production. When 

the speaker attempts to convey an integrated meaning for which he has no set of lexical and 

word order rules with which to encode it, he may select a random set of syllables to map 

either 1) the whole integrated meaning, thus creating a holistic rule, or 2) only those 

inexpressible constituent(s) in the chosen meaning, thus creating a compositional rule(s) or 

phrase rule (similar to Kirby’s model [7]). The probability of so doing is restricted by the 

number of inexpressible constituents in the chosen meaning — the greater the number of 

inexpressible constituents, the smaller the probability that the speaker creates new rules to 

encode them. 

 

b) Rule generalization through detecting recurrent patterns. Recurrent patterns are identical 

meaning constituent(s) in the meaning parts and identical syllable(s) in the utterance parts 

contained in two or more M-U mappings. It is assumed that agents can detect recurrent 

patterns. Recurrence of some patterns triggers the segmentation of integrated meanings into 

meaning constituents and holistic utterances into substrings. If a holistic utterance can be fully 

segmented into compositional utterances, we say, it is fully decomposed. Figure 2 shows 

some examples of rule generalization. Regardless of its location in M-U mappings, once a 

recurrent pattern is detected, a new compositional rule, mapping the identical meaning 
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constituent(s) to the identical syllable(s), is created. The residue part, after removing the 

recurrent patterns, sometimes, can also be mapped as new compositional rules. Agents can 

create new rules based on recurrent patterns in the M-U mappings in the buffer alone or both 

by recurrent patterns and residue parts into the rule. 

 

 [Figure 2 is about here.] 

 

Synonym and homonymous rules (see Figure 2) emerge inevitably during the rule acquisition. 

For example, multiple recurrent patterns in the utterance parts but only one recurrent pattern 

in the meaning parts can cause many synonymous rules to be generalized in an agent’s rule 

list (see Example 1 in Figure 2). In addition, neglecting extant rules, flexible detection of 

recurrent patterns can map some extant rule’s utterance to salient constituent(s) (see Example 

3 in Figure 2), thus introducing homonymous rules in an agent’s rule list. 

 

When synonyms arise, agents randomly learn one form in a set of synonymous rules, 

according to the principle of contrast [23]. Other forms can still be learned in future 

communications, but through iterative communication, only one form will win the 

competition and be preferred by agents. For homonyms, a detailed discussion will be given in 

a later section. 

2.3 Communication 

This model simulates communication through indirect meaning transference. Self-organizing 

strategies are implemented in production and comprehension. Comprehension models the 

interaction of both linguistic and nonlinguistic information. 
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 [Figure 3 is about here.] 

 

Communication (see Figure 3), using self-organizing strategies through indirect meaning 

transference, proceeds as follows. In production, the speaker randomly chooses an integrated 

meaning to express. If he has no lexical rules with which to fully encode it and random rule 

creation has failed, the speaker makes no production. Otherwise, a set of extant or newly 

created lexical rules that can express the meaning are activated together with an appropriate 

word order rule , used to combine compositional rules. The speaker decides which set of rules 

should be used to encode the chosen meaning using rule competition, selecting the set having 

the greatest combined strength for speaking, CSspeak , defined by 

 
( )

( )rulesorder   wordapplicableStr
rules availableStr

+
=speakCS        (1) 

An example of rule competition is stated in Appendix A. The utterance, built up accordingly, 

is transferred to the listener, who then attempts to comprehend the utterance. 

 

In comprehension, the listener receives the utterance and, sometimes, some cues, which 

represent the nonlinguistic information available to the listener during communication. Cues 

are modeled as integrated meanings having some strength (here, all set to the same value, 0.5), 

for example 

 “chase<fox, dog>” (0.5). 

                                                 
1 In cue selection, if a randomized number is less than RC, the intended meaning is chosen as the cue, 

otherwise, a randomly chosen meaning from the semantic space is chosen as the cue. Identical cues are 

not allowed. 
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Cues provide semantic hints for comprehension. Based on the principle of shared attention, 

agents are often able to detect salient cues from the environment. But cues are not always 

reliable; that is, the integrated meaning that a cue encodes may not match the meaning 

intended by the speaker. To model this, we manipulate the reliability of cues (RC, the 

probability one of the available cues matches the speaker’s intended meaning)2.  

 

The rules in the listener’s rule list whose utterance parts partially or fully match the received 

utterance are activated. The rule competition process that we execute for listening is more 

complex than that for speaking — we consider not only the strength of the listener’s available 

lexical and word order rules, but also the cues whose semantic hints support some of those 

lexical rules: the combined strength for listening is defined by 

 

( )
( )

( ){ }Cues relatedStr

rulesorder   wordapplicableStr
rules activatedStr

EnvWeight

LangWeight

CSlisten

+








+

= ,      (2) 

where LangWeight and EnvWeight are the relative weights of the linguistic and nonlinguistic 

information. In this model, they are treated as equally important (both are set to 1.0). Note 

that CSlisten has the value zero when the listener has no set of rules with which to decode the 

received utterance and no cues are available. Rule competition in listening is executed 

analogously to the rule competition in production.  

 

For example, the rules available to the listener might only allow the utterance to be interpreted 

as “eat<dog, #>”. But if the cue “eat<dog, meat>” is available, then the strength of the cue 
                                                 
2 In cue selection, if a randomized number is less than RC, the intended meaning is chosen as the cue, 

otherwise, a randomly chosen meaning from the semantic space is chosen as the cue. Identical cues are 

not allowed. 
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“eat<dog, meat>” (here, 0.5) is included in the calculated of the combined rule strength, 

CSlisten. Meanings that are supported by both the available rules and cues tend to be the 

inferred, particularly in the early stages of the emergence of the language.  

 

The listener infers the meaning based on his winning rules having the greatest combined 

CSlisten. If this CSlisten exceeds a certain threshold, the listener sends a positive feedback to the 

speaker indicating the listener’s confidence in the comprehension. Otherwise, a negative 

feedback is sent, indicating that the listener was either unable to infer a meaning or else was 

not confident of correctly inferring the intended meaning. Based on this feedback (rather than 

on a direct meaning check), both the speaker and the listener perform rule adjustment to their 

available rules, increasing the strengths of the winning rules and decreasing those of the 

losing rules. 

 

This process of indirect meaning transference and feedback makes an indirect connection 

between the production and comprehension of different speakers. The interaction of linguistic 

information and nonlinguistic information, rather direct meaning check, direct the emergence 

of mutual understanding. 

3 Results and discussions 

In this model, we simulate iterative concurrent communications among randomly chosen 

agents. At one time step, many communications among different pairs of agents happen 

simultaneously. In this section, we begin by introducing several indices that we use to test the 

behavior of this communication system. Then, we trace the emergence of a compositional 

language from a holistic signaling system, and the coevolution of the lexicon and syntax. We 
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also discuss some factors that determine how effectively a compositional language is acquired. 

Finally, we test the emergence of language in a heterogeneous population, and demonstrate 

that certain types of heterogeneity do not significantly influence the behavior of this 

communication system. 

3.1 Indices to test the behavior 

a) Rule expressivity (RE) — the average number of meanings that all agents can express:  

 
agents ofnumber 

expresscan  agent  that meanings ofnumber ∑
= i

i
RE     (3) 

b) Understanding rate (UR) — the average number of meanings understandable to every pair 

of agents in the group based on linguistic information only:  

 
ji,

ji,
UR ji

 of pairs possible all ofnumber 

agent between  meanings eunderstabl ofnumber 
,
∑

=    (4) 

In models using direct meaning transference, only the RE of the emergent language is tested. 

But the ability of a language to represent meanings should not only consider the RE, but also 

the characteristic of displacement (speech signals can refer to objects and events that are 

removed from the present in both space and time, and can be accurately understood [24]). The 

UR can evaluate such characteristics of the emergent language. A mature language shared by 

agents should be a language with high UR (over 80%, say) in communications using this 

language. 

c) Convergence time (CT) —how many iterations of communication are required to achieve a 

mature language. 
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3.2 Coevolution of lexicon and simple syntax (word order) 

The coevolution3 of the lexicon and syntax is summarized in Figure 4. Figure 4(a) shows the 

RE of both holistic and compositional rules; the decrease of the former and the increase of the 

latter show the transition from an initially holistic signaling system to a compositional 

language. The UR, shown in Figure 4(a), undergoes an S-shaped evolution, indicating the 

emergence of a common lexicon — this is similar to the result of Ke et al.’s model [5]. 

Figures 4(b–c) show the convergence of the syntax from all possible sequential order rules to 

the dominant word orders; the curves trace the average strength of each of the eight order 

rules. Two dominant word orders emerge from the initial state of no syntax, one for each of 

the two meaning types. No prior bias is conferred to any particular word order; each is a 

priori equally likely. 

 

 [Figure 4 is about here.] 

 

The coevolution process typically proceeds as follows: At first, agents only understand 

meanings that are expressed by 6 initial holistic rules. Then, more holistic rules emerge 

through random creation, gradually increasing the RE of holistic rules. The UR also relies on 

holistic rules. Later on, recurrent patterns emerge by chance, and their acquisition greatly 

increases the RE of the compositional rules, triggering the transition from a holistic signaling 

system to a compositional language. A consistent word order becomes necessary as agents 

come to use more compositional rules to encode meanings, so triggering the convergence of 

syntax. The UR relies increasingly on the compositional rules, although the use of 

compositional rules may cause some meanings that were initially understandable when 

                                                 
3 Without further statement, the simulation condition is: 10 agents, 500*5 communications, RC=0.7 



 

 16

expressed by holistic rules to be misunderstood, causing the UR to briefly drop slightly. 

However, the recurrence of these compositional rules in successive communications allows 

them to win the competition with holistic rules, and finally makes possible the emergence of a 

common lexicon and with dominant word orders. Furthermore, if the meaning space is 

increased in size gradually as extant meanings become understandable, the acquisition of 

linguistic rules to express salient meanings follows a similar curve. 

 

Taken together, Figures 4(a-c) show the coevolution of lexicon and syntax: mutual 

understanding requires not only common lexical rules but also a shared syntax to regulate 

utterances. The use of compositional rules triggers the convergence of syntax, which in turn 

boosts the convergence of the lexicon; the sharp increase of UR and the strengths of the 

dominant order rules are almost synchronized. 

3.3 Homophone avoidance and reliability of cues (RC) 

Several constraints are necessary to acquire the above results. Because of the existence of 

unreliable cues (without which the feedback would still be equivalent to direct meaning 

transference) and the lack of context (meanings expressed in communications are independent 

of each other), some internal strategies are required to avoid ambiguity in the utterances 

caused by homonymous rules, which inevitably emerge during rule acquisition. We assume 

that homonym avoidance is one such strategy. Such homonym avoidance can be traced in 

some research (e.g., [21]) on children’s language acquisition ─ children tend to avoid 

mapping utterances that are already mapped to an extant meaning to novel, salient meanings, 

especially those meanings in the same semantic category (“agent”/“patient” or “predicate”).  
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In this model, homonym avoidance is implemented in rule adjustment: one randomly selected 

form among a set of homonymous rules within the same semantic category has its strength 

increased, while the homonymous rules with which it competes decreased. Statistical results 

show that without homonym avoidance, the UR is very low (see Table 1). Table 2 shows the 

common rules acquired under homonym avoidance. Though some homonymous rules with 

meaning constituents in different categories exist, the high UR indicates less 

misunderstanding. 

 

 [Table 1 is about here. Table 2 is about here.] 

 

A high RC is obviously necessary for the emergence of language. However, even when the 

nonlinguistic information is highly reliable, with no internal homonym avoidance, a mature 

language cannot be acquired. Figure 5 shows the UR for different values of RC, both with and 

without homonym avoidance. With homonym avoidance, UR, increasing along with RC, is 

higher than that without homonym avoidance. Indeed, without homonym avoidance, the peak 

UR is not very high, even when the cues are always reliable (i.e., RC =1.0). Although accurate 

interpretation is possible with the aid of highly reliable nonlinguistic information, 

homonymous rules can still cause misunderstandings when such information is absent. The 

language that then emerges does not exhibit the characteristics of displacement. 

 

 [Figure 5 is about here.] 

 

The above discussions suggest that linguistic communication through indirect meaning 

transference requires internal strategies to avoid ambiguity in the comprehension of utterances, 
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homonym avoidance being one such strategy. In addition, in order to efficiently acquire a 

language, highly reliable nonlinguistic information is desirable. 

3.4 Influences of heterogeneous population 

The influences of two types of heterogeneity on the language emergence are discussed here. 

 

1. Storage capacity of the buffer and rule list. Heterogeneous capacity is simulated by 

treating the size of the buffer and of the rule list as random variables, each having a Gaussian 

distribution (rounded off to the nearest integer value). We set the average value of each 

distribution to the same values as was used in the homogeneous situation in which all agents 

have same capacity and the variance to 5. Figure 6(a) shows CT for different buffer capacities 

but a fixed rule list capacity (40). Figure 6(b) shows CT for different rule list capacities but a 

fixed buffer capacity (40). The solid line indicates the homogeneous condition and the dashed 

line indicates the heterogeneous condition. 

 

 [Figure 6 is about here.] 

 

The buffer capacity affects the rule generalization. When abundant M-U mappings can be 

stored in the buffer, the probability for recurrent patterns among them is high and many new 

rules can be generalized simultaneously. However, a bigger buffer needs more 

communications to fill it, which may delay the rate at which rules are updated. The CT curve 

in Figure 6(a) shows that with the increase of the buffer capacity, CT increases limitedly. This 

indicates that the second effect is stronger than the first, but not explicitly. For most 

reasonable sizes of the buffer capacity, most simulations converge to languages with a high 

UR, even in heterogeneous conditions. 
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The rule list capacity determines rule storage. The bigger the capacity, the more easily agents 

store new rules. This can accelerate the convergence process. However, for a fixed semantic 

space, large rule capacity introduces redundancy. For example, in the current model, 12 word 

rules are sufficient to express all integrated meanings. However, when the system converges, 

there are empty spaces in some agents’ rule lists, and some rules which are not shared by all 

agents are still stored. As shown in Figure 6(b), although with the increase of the rule list’s 

capacity, CT decreases limitedly indicating the first effect, it is not explicit. For a reasonable 

size of the rule list capacity (over 12), most simulations converge to languages with high UR, 

even in heterogeneous conditions. 

 

2. Rule acquisition ability. These linguistic behaviors include the ability of random creation 

(Creating Rate (CR), which controls the rate of creation of salient linguistic utterances), and 

the ability to detect recurrent patterns (Detecting Rate (DR), which controls the rate of 

acquiring new rules from available M-U mappings). Heterogeneous abilities are simulated 

using the Gaussian distribution — both CR  and DR have their mean value set to the same 

value as in the homogeneous condition, and their variance set to 0.2. Figure 7(a) shows CT for 

different values of CR but a fixed DR (0.5). Figure 7(b) shows CT for different values of DR 

but a fixed CR (0.5). 

 

 [Figure 7 is about here.] 

 

Obviously, without random creation no salient linguistic utterance will emerge. Also, without 

detection of recurrent patterns, although many linguistic rules might emerge, similarities 

among them will only occur by chance, the result being that emergence of a common lexicon 
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will be virtually impossible! Second, given a certain value of DR, if CR is too small, although 

agents can detect recurrent patterns, acquisition of new rules will be delayed by the 

insufficient number of randomly created lexical rules. Similarly, given a certain value of CR, 

if DR is too small, although many M-U mappings might be available, few recurrent patterns 

are extracted and so few holistic rules are decomposed. This delays the convergence of the 

system. Except in these extreme cases, however, most simulations converge to languages with 

high UR, even in heterogeneous conditions. 

 

To summarize, we infer that a population with certain types of heterogeneity (e.g. storage 

capacity and linguistic behavior) can still allow a mature language to emerge. This shows the 

robustness of the self-organization process in our model, that is, a language can be effectively 

acquired by a population of agents, withstanding interference caused by either external noise 

or internal parameters. 

4 Conclusions and future directions 

In this paper, a computational model of language emergence is presented addressing the 

limitations of current computational models. A coevolution of the lexicon and syntax at the 

protolanguage level is simulated by concurrent linguistic communication using indirect 

meaning transference and feedback without direct meaning check. In order to avoid ambiguity 

in utterances, strategies, such as homonym avoidance, are found to be necessary. In addition, 

we show that certain heterogeneities do not significantly influence the likelihood of 

emergence of a compositional language using this framework. 
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There are still important aspects of language emergence still to be studied: First, this model 

shows that an emergent language can be acquired through iterative communications, to 

enhance its realism, agent replacement and teaching, as well as a separation of rule lists into 

production and comprehension (e.g., [5]), should be considered. Second, homonym avoidance 

is directly built into the current model, but it would be more realistic to observe this as an 

emergent phenomenon of the model. Third, embedding and recursion, rarely touched by 

current models (exc. Kirby’s [8]), are important features of language.  Modeling the 

emergence and interpretation of embedded meanings, based on linguistic and nonlinguistic 

information, would be a major advance. Finally, it would be worthwhile to simulate more 

realistic communication, such as one-speaker-many-listener, and inter/intra-group 

communication.  
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Appendix A: An example of rule competition in production 

Assume that the speaker wants to express “fight<dog, fox>”, according to his own rule list, 

there are three ways to express this meaning and related rules are activated: 1) using one 

holistic rule, no word order rule is considered; 2) using three word rules, all six possible word 

order rules are applicable, so the strongest one (SVO(0.5)) is chosen; 3) using one word rule 

and one phrase rule, the utterance of the phrase rule restricts that only VSO(0.4) and OSV(0.3) 

are applicable word order rules, so the strongest one VSO(0.4) is chosen. In each condition, 

CSspeak is calculated. The strongest CSspeak (CS3) is chosen. Then, the lexical rules and word 

order rules (Bold ones in Figure A.1) contribute to CS3 are the speaker’s winning rules, the 

utterance based on them are built up and sent to the listener. 

 
Figure A.1 is about here. 
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Figure and Table Captions 

Figure 1: 2-level memory system. 

Figure 2: Rule generalization examples. 

Figure 3: Communication through indirect meaning transference. 

Figure 4: Coevolution of lexicon and syntax: (a) Lexicon emergence; (b) Syntax convergence 

for “predicate<agent>” meanings; (c) Syntax convergence for “predicate<agent, patient>” 

meanings.  

Figure 5: UR under different RC with and without homonym avoidance.  

Figure 6: Storage capacity: (a) CT under different buffer’s capacity and a fixed rule list’s 

capacity; (b) CT under a fixed buffer’s capacity and different rule list’s capacity. 

Figure 7: Linguistic behavior: (a) CT under fixed DR and different CR. (b) CT under different 

DR and fixed CR.  

Figure A.1: Example of rule competition in production. 

Table 1: Statistical results of UR with and without homonym avoidance. 

Table 2: Common rules among all agents in one simulation with homonym avoidance.  
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Figures and Tables 

 

Figure 1: 2-level memory system. 

 

Figure 2: Rule generalization examples.  

 

Figure 3: Communication through indirect meaning transference. 
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  (a)                                                (b)                                               (c) 

Figure 4: Coevolution of lexicon and syntax: (a) Lexicon emergence; (b) Syntax convergence 

for “predicate<agent>” meanings; (c) Syntax convergence for “predicate<agent, patient>” 

meanings.  

 

Figure 5: UR under different RC with and without homonym avoidance.  

 

(a) (b) 

Figure 6: Memory capacity: (a) CT under different buffer’s capacity and a fixed rule list’s 

capacity; (b) CT under a fixed buffer’s capacity and different rule list’s capacity.  

  

(a)                                              (b) 

Figure 7: Linguistic behavior: (a) CT under fixed DR and different CR; (b) CT under different 

DR and fixed CR.  
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Figure A.1: Example of rule competition in production 

Table 1: Statistical results of UR with and without homonym avoidance. 

 

Table 2: Common rules among all agents in one simulation with homonym avoidance. 
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