Abstract

This thesis introduces GRAEL (grammar evolution) as one of the first research
efforts that investigates an agent-based evolutionary computing approach
as a possible machine learning method for data-driven grammar optimiza-
tion and induction. Using the same architecture, but different information
sources, GRAEL can be shown to handle a diverse range of grammar engi-
neering tasks, which can help resolve common issues in corpus-based parsing
systems, such as insufficient grammar coverage and the suboptimal distribu-
tion of probability mass.

After describing a memory-based data-driven parser that applies struc-
ture to sentences by direct reference to grammatical information stored in
memory, we apply different instantiations of GRAEL to alleviate its afore-
mentioned inherent problematic issues. GRAEL is a distributed system, a
computational environment in which agent communicate and co-evolve ac-
cording to neo-darwinist principles. In the GRAEL environment, each agent
is given a partial solution to a problem. By interacting with each other in
an evolutionary context, the grammars are optimized in a practical context,
on the basis of pre-defined fitness functions.

The first instantiation GRAEL-1 does not alter the content of the corpus-
induced grammar and therefore only serves to redistribute the probability
mass of the statistical weights of the grammar rules. Experiments show that
a careful selection of parameters pertaining to the evolutionary aspects of
the environment, can improve performance significantly. The redistributed
probability mass can be considered to reflect useful statistics for the task of
parsing, rather than mirror the distribution of the original training set.

Grammar-rule discovery (GRAEL-2) can be implemented by allowing the
agents in the society to make minor alterations to the rules in the corpus-
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induced grammar. The evolutionary computing approach then not only
serves as a way to redistribute the probability mass, but also to evaluate the
validity of newly created grammar rules. Unsupervised grammar induction
can likewise be performed in a GRAEL environment (GRAEL-3) if we allow
the agents to build up their own structures, using a minimalist grammar in-
duction approach that employs concepts of information theory to bootstrap
structure.

By further reducing the information source, we can leave the engineering
aspect behind and transform GRAEL into a computational environment in
which we can simulate the emergence of grammatical principles in an ar-
tificial language of a group of communicating agents (GRAEL-4). In this
view, GRAEL provides a computational simulation of a possible model for the
emergence of grammar in early hominids.



Samenvatting

Deze thesis introduceert GRAEL (grammar evolution) als n van de eerste
systemen dat een agentgebaseerde aanpak combineert met evolutionair pro-
grammeren als een machine learning methode voor corpusgebaseerde gram-
matica optimalisatie en inductie. Door met dezelfde architectuur verschil-
lende soorten van informatie te verwerken, kan GRAEL een diverse reeks taken
uitvoeren met betrekking tot de constructie van grammatica’s. GRAEL kan hi-
erbij hulp bieden bij vaak voorkomende problematische aspecten van corpus-
gebaseerde syntactische analyse, zoals ontoereikende grammaticale dekking
en een gebrekkige verdeling van de probabiliteitsmassa over de grammaticale
elementen.

In het eerste deel wordt een geheugengebaseerde, corpusgebaseerde parser
beschreven die syntactische structuren toekent aan zinnen op basis van eerder
geziene grammaticale informatie opgeslagen in het geheugen. Vervolgens
gebruiken we deze parser als fundament voor het GRAEL-systeem, waarvan we
verschillende implementaties zullen bekijken, die elk een van de voornoemde
problematische aspecten van corpusgebaseerde parsers proberen op te lossen.
Dit gebeurt aan de hand van een gedistribueerd systeem, een computationele
omgeving, waarin agenten met elkaar communiceren en evolueren aan de
hand van neo-darwinistische principes. In de GRAEL-omgeving krijgt elke
agent initieel een deel van de oplossing wordt aangereikt. Door te interageren
met elkaar in een evolutionaire setting, optimaliseren ze deze grammatica’s
in een praktische context, op basis van vooraf gedefinieerde fitness functies.

De eerste implementatie van de GRAEL-omgeving, GRAEL-1, wijzigt niet
de inhoudelijke eigenschappen van de grammaticale informatie die wordt
verwerkt. GRAEL-1 probeert enkel de probabiliteitsmassa op een optimale
manier te (her)verdelen over de grammaticale elementen in de omgeving. De
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experimenten tonen aan dat een zorgvuldige selectie van experimentele pa-
rameters die de evolutionaire aspecten van de GRAEL omgeving beregelen,
een significante optimalisatie bewerkstelligt van de grammaticale informatie.
De dynamiek van de GRAEL-1 omgeving, zorgt ervoor dat de probabiliteits-
massa op een zodanige manier wordt verdeeld, dat de statistische gewichten
toegekend aan de grammaticale elementen geoptimaliseerd zijn voor de taak
van syntactische analyse zelf.

GRAEL is ook in staat om grammatica’s aan te vullen met potentieel nut-
tige regels. GRAEL-2 implementeert deze functionaliteit door de agenten toe
te laten kleine veranderingen toe te brengen aan de regels die worden gebruikt
tijdens de communicatie. De evolutionaire aspecten van GRAEL zorgen er dan
niet alleen voor dat de probabiliteitsmassa wordt herverdeeld, maar ook dat
de nieuwe regels worden gevalueerd in een praktische context, zodat enkel
nuttige regels overleven na verloop van tijd. Op een zelfde manier breidt
GRAEL-3 de functionaliteit uit naar ongesuperviseerde inductie van volledige
grammatica’s. De agenten creren dan uit het niets grammaticale structuren
aan de hand van een minimalistisch grammatica-inductie algoritme dat ge-
bruik maakt van entropie. De agentgebaseerde aanpak van GRAEL zorgt er
voor dat verschillende alternatieven parallel worden ontwikkeld, terwijl de
evolutionaire dynamiek ervoor zorgt dat de beste grammaticale elementen
overleven..

Door verder de vooraf gedefinieerde informatiebron af te bouwen, kun-
nen we GRAEL profileren als een computationele omgeving, waarin we het
ontstaan van grammaticale principes kunnen simuleren in de artificile taal
van een groep communicerende agenten. Deze omgeving, GRAEL-4, kan een
mogelijke verklaring bieden voor het ontstaan van grammatica in taal.



“There ain’t no promise

or guarantee

Ain’t no wisdom

To be laid on me

And it's a low down dirty shame

But | gotta find the answer just the same”

Rick Davies - Dead Man's Blues
Slow Motion - (©)2002
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“Picassos they’re not. But paintings by a
group of pachyderms fetched a pretty penny
at a benefit auction at Christie’s on Tuesday
night.  The acrylic-on-paper paintings drew
praise from many of the 300 auction partici-
pants. But others snickered at the idea of ele-
phants wielding paintbrushes in their trunks to
create modern art. “For thousands of years,
elephants have been making mysterious charac-
ters on the ground with stones or sticks. Ele-
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phant art is only new to people, but it’s not new to the elephants,” said
Moscow-born artist Vitaly Komar. The eccentric artist also has exhibited
photographs taken by a chimpanzee at an exhibit in Venice, Italy, and aims to
work with beavers using processed wooden boards on an architectural project.”

[CNN, Art&Style, March 30 2000'].

Elephants are among a very exclusive club of animals that use tools to

Thttp://www.cnn.com/2000/STYLE /arts/03/22/life.art.reut/
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accomplish certain tasks. There are many well documented cases of primates
using sticks to obtain food from a narrow hole, or even build primitive con-
structions that allow them to escape from their compounds. Sea otters and
Egyptian vultures have been observed using rocks to break hard shells, while
the green heron sometimes uses small bait to catch fish in rivers. And though
elephants’ trunks mostly wield sticks for less artistic purposes like scratching
themselves, the ability to do so inspires people to attribute some kind of
higher intelligence to the animals. But why is this?

We usually consider animals as creatures that are very much constrained
by their need to comply to basic stimulus-response patterns. What amazes
us about animals that use tools to accomplish some kind of task, is that they
have found a way to deconstruct a problematic stimulus-response sequence
into sub-domains. Without immediately resolving the initial stimulus, the
animal defines an intermediate goal that will allow him to reach the response
he is after.

An animal may for instance resolve an itch by using one of his limbs, or
in the case of an elephant, his trunk, to scratch the area that is bothering
him:

Stimulus™— Trunk " “Response

itch scratch

When there is no immediate way to resolve this situation, however, most
animals are stumped. An elephant however, can add an intermediate stimulus-
response sequence to the solution:

e Short Trunk --..... N
/ Stick —, _ Trunk+Stici{ - .
Stimulus Response — Stimulus Response
itch Grab Stick Have Stick scratch

What impresses us about the elephant’s behavior at this point is that it
no longer appears to be driven by instinctive needs that cause him to observe
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the situation in a serial, linear fashion, but that it seems to be a reflective
creature, seemingly capable of analytical reasoning. As it is wielding its tool,
the animal appears to us as having built a structured mental representation
of the problem and its solution, which is a cognitive capacity we usually only
attribute to humans. Elephants, otters, apes and the like seem to be able
to apply structure to a situation and mentally construct a sequence of rules,
i.e. a grammar that can help them to solve problems.

Many researchers indeed suggest that it is exactly this capacity that was
paramount to the development of linguistic abilities in early hominidsThe
cognitive capacity to construct a structured mental representation of the
world that surrounds us, has indeed not only allowed us to manipulate it
with man-made tools, but also reflect on it and communicate about it as
well. It is therefore not surprising that the analytical nature of our thoughts
is reflected in its external manifestation as well: language.

When we communicate a sentence like

“Winslow hugs the bear”, we provide a lin-

/\ ear string of tokens to our listener. But this

linear string is the by-product of a whole set

| /\ of principles, which ensures for instance that

Winslow  hugs the words are placed in the right order. We

/\ can hypothesize that these principles cause

the bear yg to keep some kind of syntactic structure

in mind for the sentences we speak, much in

the same way an elephant has built a structured mental representation of the

problematic situation of scratching, which in essence constitutes a grammar
that describes the problem and its solution (Figure 1.1).

Whether this structured representation is a mental reality is another mat-
ter entirely and one we will do our best to avoid. As hard as it is to imagine
that elephants have induced grammars for scratching, it is equally challeng-
ing to put forward likewise claims for the syntactic representations used by
a language user. All we can say is that the externalized behavior can a
posteriori be structured using the type of representation featured in Figure
1.1. The research described in the following chapters will try to implement
computational methods that construct syntactic representations for language
utterances, drawing from a variety of information sources and using a number
of different techniques.
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scratch —  itch trunk
Scratch Scratch trunk — Stick Short_trunk
itch trunk itch trunk
N
stick short
trunk

Figure 1.1: A treebank and grammar for the problem of “Scratching with a
(short) trunk”

1.1 Data-Driven Evolutionary Computation

After developing a computational system for syntactic analysis that uses a
corpus of examples as its information source, we will describe a set of exper-
iments that tries to improve grammars by introducing them into a dynamic
system using evolutionary computing for problem solving. Evolutionary
computing, a technique dating back to the late 1950’s [Box 1957; Fraser
1957; Bledsoe 1961], tries to implement computational models that employ
concepts drawn from biological evolution and is a cover term for a whole
range of methods, such as genetic algorithms and programming, classifier
systems and evolutionary programming. [Spears et al. 1993] define evolu-
tionary algorithms as follows:

[Evolutionary algorithms] maintain a population of structures,
that evolve according to rules of selection and other operators,
that are referred to as ”search operators”, such as recombina-
tion and mutation. FEach individual in the population receives
a measure of its fitness in the environment. Reproduction
focuses attention on high fitness individuals, thus exploiting
the available fitness information. Recombination and muta-
tion perturb those individuals, providing general heuristics for
exploration. Although simplistic from a biologist’s viewpoint,
these algorithms are sufficiently complex to provide robust and
powerful adaptive search mechanisms.
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So rather than focusing on mimicking biological evolution itself, evolutionary
algorithms try to employ these principles as a search algorithm throughout a
search space of possible solutions. The GRAEL-environment? we will describe,
establishes a society of individuals that each hold a grammar. By interacting
with each other in an extended series of communicative attempts, the gram-
matical information may be recombined and mutated, thereby yielding
new grammars. By defining a set of fitness functions, we can select which
individuals hold the kind of grammar that we are after and consequently
optimize them for some particular task over time.

In the GRAEL-environment, we combine the concepts of evolutionary com-
puting with an agent-based approach. By incorporating the information to
be optimized in an autonomous agent, we provide a method to fine-tune the
selection process: by defining a number of fitness functions based on inter-
agent communication, we can select grammars that have been optimized in
a practical context, i.e. during actual parsing, rather than hypothesize over
their quality in terms of their formal or distributional properties.

The GRAEL environment provides a distributed approach to grammar
optimization, meaning that a variety of different alternatives are considered
and developed over time. Since there is a large random factor at play in these
types of experiments, this approach therefore also provides a way to resolve
the problem of local maxima, i.e. finding a grammar that is the best overall
solution, rather than a reasonable intermediate solution.

The experiments described in Part II of this dissertation will show that
corpus-induced grammars can indeed be optimized and induced by applying
a distributed /agent-based evolutionary computing method to the problem,
while Part III will describe experiments that apply a similar approach to
model the emergence of grammatical language in a computational context.

1.2 Outline

We can delineate three major parts to this dissertation, each trying to provide
a computational description of the structural properties that can be found
in natural language. In Part I we implement a system that can provide a

2Short for GRAmmar EvoLution.
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syntactic structure for a sentence on the basis of examples. For this purpose,
we use a large collection of sentences that have been provided with tree-
structures by human annotators. The parsing system we describe is able
to mimic the annotators’ behavior by inducing statistical and grammatical
information from these tree-structures. Part I therefore describes the most
straightforward experiment: the implementation of a memory-based parsing
system that is able to provide syntactic structures for sentences.

This approach is however by definition restricted by the material we have
to work with, i.e. the annotated corpus. Information may be lacking from the
corpus, or the information may be distributed in a way that is not optimized
for the task of providing a syntactic structure itself. In Part IT we implement
an agent-based evolutionary computing approach to overcome these
restrictions. While the distributed nature of the system makes sure that a
wide range of alternatives can be considered simultaneously, the evolutionary
computing aspects provide a way to distinguish the good from the bad over
time. This method will eventually allow us to devise a grammar induction
system that goes a long way in providing syntactic structures without the
need for pre-annotated examples.

Parts I and II describe systems that can be integrated in practical appli-
cations for natural language understanding. Part III on the other hand, will
use the sensibilities of the distributed evolutionary computing approach, to
model the emergence of grammatical language in a computational context.
We will try to show that grammar can emerge in a population of agents, to
which we attribute a minimal amount of presupposed cognitive abilities.

Despite the fact that the three parts differ from each other in the aspect of
computational syntax they try to elucidate, there is a continuous thread run-
ning through the entire dissertation that binds all chapters together. We start
off with a parsing system in Part I that tries to provide analyses for natural
language sentences using pre-defined grammatical structures and eventually
end up in Part III with a computational model that tries to create some
artificial compositional language. Part II picks up on some of the systems
that lie between these two extremes. The recurrent theme that binds the
different systems together is therefore a deconstructionist one: starting off
with a fully specified parser, we gradually abandon the pre-defined informa-
tion sources that are available and end up with a minimalist investigation
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into the dynamics of grammar in a computational context.

Table 1.1 displays this development. Chapter 3 starts off with a sys-
tem that is fully specified in terms of the information sources that are
available for processing. Using concepts from the machine learning field
of Memory-Based Learning (introduced in Chapter 2), we redefine a popu-
lar approach to corpus-induced parsing, called Data-Oriented Parsing. The
Pattern-Matching Probabilistic Grammar (PMPG in Table 1.1), uses a corpus
of annotated tree-structures to commit large chunks of syntactic contextual
information to memory. The PMPG is consequently able to provide syntactic
structures for new, previously unseen sentences, by retrieving the structures
recorded in memory and combining them into a new structure, using proba-
bilistic information also extracted from the corpus.

Table 1.1 indicates that we consider the PMPG’s information source to be
fully specified: it uses an existing language, i.e. English, and a pre-defined
grammar, induced from an annotated corpus. The grammar describes how
words in a sentence are grouped together and how those constituents are
consequently combined into higher-order structures. We state that the seg-
mentation properties® are also predefined: at no point during the process-
ing, does the parser consider deviations from the set of segmentation rules
provided by the grammar. Finally, the probability mass that is used to
find the best combination of constituents is also set, as it is directly induced
from the annotated corpus.

In the discussion of the fully specified parsing system from Chapter 3,
we will identify a number of inherent limitations to the system. A lot of
erroneous structures are generated that are caused by (i) a suboptimal dis-
tribution of the probability mass and (ii) insufficient grammatical informa-
tion in the annotated corpus. We therefore set out to find a generalized
grammar induction and optimization technique. Chapter 4 describes this
approach, using an agent-based evolutionary computing environment called
GRAEL. By distributing grammatical knowledge over a society of agents and
having them interact with each other in an extended series of communicative
attempts, grammatical information is optimized in an evolutionary context.
The agent-based approach allows a number of alternatives to be developed

3Segmentation properties describe the way in which words are grouped into segments,
i.e. constituents.
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simultaneously, while the evolutionary computing aspects of GRAEL ensure
that the impact of marginal grammatical structures is diminished over time.

Chapter 5 describes the GRAEL-1 system which abandons the pre-defined
distribution of the probability mass, as featured in the PMPG-system. In
GRAEL-1 grammatical structures extracted from the annotated corpus are
distributed over a society of agents. This provides each of the agents with a
basic initial grammar for parsing. The agents will then start to practice their
grammars on each other. Agents help each other out by explicitly providing
structures to each other that are relevant for obtaining the correct structure.
As the agents are exposed to new chunks of grammatical information, they
re-adjust the probability mass in their grammar in a context that reflects
the actual task at hand: parsing new sentences. Rather than mirroring the
distribution in the original annotated corpus, the probability mass in the
agents’ grammar accommodates useful statistics for parsing. GRAEL-1 only
changes the distribution of the probability mass, while the other information
sources remain intact: segmentation properties are being respected by the
agents and in fact none of the grammatical properties in the annotated corpus
are altered. As a matter of course, the actual language remains constant as
well.

Whereas GRAEL-1 addresses the problematic distribution of probability
mass in data-driven grammars, GRAEL-2 tries to solve the issue of grammar
sparseness. We will often find that the syntactic structure for a previously
unseen sentence requires a rule that is not induced from the annotated cor-
pus. Not even the optimized probabilities that GRAEL-1 provides can resolve
this situation. As the rules that are needed are often not more than a variant
of some existing rule, we abandon the pre-defined segmentation properties
provided by the annotated corpus in GRAEL-2. Chapter 7 describes how
GRAEL-2 expands the functionality of the GRAEL environment to grammar
rule discovery by applying mutation on existing grammar rules. The dis-
tributed nature of the GRAEL environment again makes sure that enough
alternatives are being considered, while the newly created structures are be-
ing practiced on and evaluated in a practical context. The evolutionary
aspects of GRAEL consequently make sure that useful rules are distinguished
from useless ones.

Whereas the grammatical structures in GRAEL-2 were still largely based
on those provided by the annotated corpus, we abandon any pre-defined
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grammatical information source in GRAEL-3 (Chapter 8). This effectively
turns the GRAEL environment into a fully unsupervised grammar induction
technique. A simple grammar induction method based on concepts from in-
formation theory bootstraps structure in the society, after which the society
returns to business as usual: each agent develops an alternative grammar,
while the interaction between agents and the evolutionary approach makes
sure that the grammars are optimized over time. The only information source
that is still pre-defined in GRAEL-3 is the language itself: agents in the so-
ciety are provided with a number of sentences, the structure of which is
implicitly present in the distributional properties of the words. This re-
lates to the discussion of the mental representation of syntactic structure.
Whereas GRAEL-1 and GRAEL-2 allowed agents to explicitly store grammat-
ical structures in their memory, GRAEL-3 abandons this view in favor of a
less presumptuous stance that considers syntactic structure as a mere rep-
resentation of the externalized realizations of the language capacity, rather
than a mental reality.

This view allows us to consider a computational model that studies the
emergence of grammar in a society of agents. By providing the agents with
a minimal linguistic capacity, we can model the emergence of compositional
language solely on the basis of externalized properties of language and princi-
ples of co-evolution. After looking at some alternative approaches in Chapter
9, we will develop such a system in Chapter 10: GRAEL-4. In a GRAEL-4
system we abandon the last pre-defined information source that is left: the
language. All that is left are random utterances, in which initially grammati-
cal structures are implicitly present. The agents will try to provide some basic
structural representation of the sentences they observe, which may eventually
enable them to guide the construction of their own sentences. As the society
goes from grammatical chaos to a general set of grammatical principles that
the agents mostly adhere to, a grammatical language emerges in the society.

Starting out with a fully specified parsing method in Part I, we have
gradually abandoned every pre-defined information source initially available
to the parser in the different GRAEL instantiations in Part II. The end-
result is described in Part III and comprises of a system that creates a basic
compositional language out of a society of agents that initially only were able
to produce unstructured utterances.
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With GRAEL, we hope to present one of the first research efforts that intro-
duces agent-based evolutionary computing as a machine learning method for
data-driven grammar optimization and induction. The GRAEL environment
can then more generally be considered as a framework that allows for the
simultaneous development of a range of alternative solutions to a grammati-
cal problem, optimized in a series of practical interactions in an environment
controlled by evolutionary parameters.

1.3 Navigating the thesis

Given the variety of tasks that we set out to achieve, not all chapters may be
equally relevant to every reader. Appendix A can be consulted to define the
reader’s path through the chapters. Generally, researchers that are partial to
engineering problems, may prefer to read Chapters 3 to 8, while researchers
in the field of evolutionary computing will rather consult Parts IT and III
than Part I. Formal linguists may find pointers for discussion in the first
sections of Chapters 3 and 8 and Chapters 9 and 10.

We hope however that most readers will follow at least the recommended
path outlined in Appendix A, as it will provide a general overview of how
memory-based syntactic parsing can be combined with a distributed evolu-
tionary computing approach to tackle several different grammar optimization
and induction tasks. It speaks for itself however that the only way to grasp
a full understanding of all aspects of the experiments, is to simply read the
text in its entirety.

Appendix J contains a list of abbreviations that are used throughout this
thesis. We recommend that the reader peruses this list to make abbreviations,
most often used in results tables and the like, more transparent.

We now turn to the first part, in which we describe the parsing backbone
for the main experiments in Part II, as well as introduce some concepts
paramount to syntactic parsing in a computational context.
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Part 1

Towards A Memory-Based
Parser






Memory can change the shape of a room; it can change
the color of a car. And memories can be distorted.
They're just an interpretation, they’re not a record, and
they're irrelevant if you have the facts.

Leonard Shelby - Memento - (©2000

A Short Introduction to
Memory-Based Learning

2.1 Machine Learning

Researchers in the field of Machine Learning try to implement algorithms
that allow computers to improve their performance on a particular task, by
learning from experience, rather than employing pre-programmed expertise.
In contrast to expert systems (i.e. computational implementations of a do-
main expert’s knowledge) machine learning algorithms are portable in that
they can be trained to perform a new task without having to recode the al-
gorithm itself. One simply needs to present adequate data about the domain
at hand to the machine learner in order to turn it into an “expert” for that
domain. This data may need to be annotated, which still requires human
intervention, but in theory, machine learning algorithms should be able to
discern useful information from useless information in the data, thereby elim-
inating the need for a human domain expert and consequently the knowledge
acquisition bottleneck that engineering expert systems entails.
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It is therefore not surprising that the machine learning paradigm has
become a major player in the field of computer science, bringing together
researchers from the fields of Artificial Intelligence, statistical processing,
logic programming, natural language processing, biology and the like. While
the engineers have kept busy refining the machine learning algorithms to
make them more powerful, more efficient and more portable, the end-user re-
searchers have employed the methods to gain new insights into their subject
matter, as well as use the systems for practical problem-solving or classifica-
tion tasks.

Machine learning algorithms hold in common that they learn from expe-
rience, i.e. examples, in some way or another. These examples are called
the training data. By processing the training data, the learner will be able
to perform a particular task. These tasks can most often be described as
classification tasks or disambiguation tasks. Given an item with a particu-
lar set of properties, a machine learning algorithm needs to choose a solution
from a finite number of possibilities. The machine learner employs some kind
of processing on the training data it has been presented with, to model the
information needed to trigger the correct disambiguation. To test whether
the system has actually learned anything, an independent test set is used for
evaluation purposes.

The concept of learning itself is controversial: can a memory-based sys-
tem, which stores information in memory for instance, be considered as hav-
ing learned anything? The most frequently adopted stance in this matter is
to view the system as somewhat of a black box: if it can provide a solution
for a problem on the basis of data provided to the systems, it is considered
as having learned to solve the problem at hand.

Most often the data in Machine Learning experiments is presented by a
(usually large) number of feature values. Each instance in the data consists
of a number of features and is associated with a particular value or class.
The features describe the properties of the instance, while the value denotes
the correct classification of the instance.

The data in the next example (taken from [Quinlan 1993]) models whether
or not the weather is suited for playing outside. Each instance represents a
particular weather situation, with features such as the temperature and the
humidity. To each instance of this training data, a class (play/don’t play)
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has been assigned:

OUTLOOK | TEMPERATURE | HUMIDITY | WINDY CLASS
sunny 75 70 true Play
sunny 80 90 true Don’t play

overcast 72 90 true Play

overcast 83 78 false Play
rain 65 70 true Don’t play
rain 70 96 false Play

By processing this data, the Machine learner will learn to classify new
data. Given a meteorological situation such as

OUTLOOK | TEMPERATURE | HUMIDITY | WINDY || CLASS
rain ‘ 83 ‘ 96 ‘ true H ?

the system may choose to classify this instance as don’t play, perhaps
because it has learned that a high value for HUMIDITY, combined with strong
winds and a high temperature constitute an unsuitable condition for playing
outside.

Different machine learning algorithms will provide different classification
decisions. In other words: each machine learning algorithm brings a partic-
ular bias to a system [Breiman 1996; Mooney 1996; Roth 1998; De Pauw
and Daelemans 2000]. A machine learning algorithm will need to resolve
issues such as the relevance of each feature (e.g. is the feature WINDY rele-
vant towards classification), interdependence of features (e.g. is the feature
HUMIDITY dependent on the feature RAIN) and combinatory effects of fea-
tures (e.g. does a high humidity combined with a low temperature trigger
a particular kind of classification), ... All of these issues constitute a search
space through which a machine learning algorithm has to traverse to find the
correct solution. An algorithm introduces bias into the system in the way it
employs different search heuristics to organize its search.

[Langley 1996] describes five paradigms for machine learning, to which
we would like to add one more for convenience’s sake:
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1. Neural Networks

2. Rule Induction

3. Instance-Based Learn-

ing

4. Genetic Algorithms

5. Analytic Learning

Neural networks transform data into
a network of interconnected layers of
nodes. In the training phase, the
data adjusts the weights of the links
in that network. This network can
subsequently be used to classify new
instances: a particular input will ac-
tivate the relevant nodes from the in-
put layer up to the output layer, the
latter of which indicates the classifi-
cation for the instance.

This method transforms the training
data into decision rules or a decision
tree. New data is classified by apply-
ing the rules/tree to the instances.

The learner tries to match new in-
stances by direct reference to the
training data and does not transform
the instances into some new repre-
sentation, such as a network or deci-
sion tree.

A method inspired by biology,
in  which typically (sequentially
ordered) rules are recombined
into stronger classifiers by using a
neo-Darwinist survival-of-the-fittest
type evaluation method.

Uses logical form rules to construct
proofs which are consequently com-
bined to construct new complex
rules that solve similar problems
more efficiently.
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6. Statistical Methods Can also be regarded as a machine
learning method. New data is classi-
fied by considering the probabilistic
distribution of the training data.

Method 1, 2 and 5 will not be dealt with in this dissertation, but we will
deal with statistical methods in Part I and more generally with information
theory concepts in Parts II and III. The concepts of genetic algorithms and
the entire field of evolutionary computing in general are the basis for the
GRAEL-system described in Parts II and III and Memory-Based Learning is
the basic machine learning algorithm underlying this dissertation.

While most of these systems can be implemented either way, one should
make a distinction between batch learning and incremental learning: the
former processes the training data in one sweep, while the latter allows new
training data to be added to the system along the way. Incremental learning
therefore constitutes a psychologically more realistic learning method.

One last distinction needs to be pointed out: supervised vs unsupervised
learning. Most of the machine learning research is involved in supervised
learning, in which a training instance is associated with a particular class.
This provides the system with explicit classification examples. Unsupervised
learning on the other hand does not provide the correct classification for
the training instances. The machine learning algorithm will have to look
at the distributional aspects of the instances on a global level for instance,
to deduce proper classification/problem-solving behavior. Chapters 3 to 7
will deal with supervised methods, while Chapters 8 and 10 will describe an
unsupervised learning method.

2.2 Memory-Based Learning

One of the most straightforward methods in the field of machine learning
is Memory Based Learning, an instance-based learning method [Aha et al.
1991; Kolodner 1993]. Memory-Based learning assumes that problems can be
solved by direct reference to similar, previously observed events. This seems
relevant for many classification tasks such as the aforementioned weather
forecast example: one might look at the most similar weather situation that
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was previously observed and extrapolate the decision whether or not to play
outside to the current situation.

Memory-Based Learning is a lazy learning approach in that it does not
process the data in any way [Aha 1997]. Even though data is typically
presented as feature values, which implies some pre-processing of the data,
memory-based learning does not alter the properties of the data itself by
transforming it into a different representation (e.g. mneural nets, decision
trees), nor is the probabilistic distribution of the data computed during or
after the knowledge acquisition phase. Memory Based Learning models the
acquisition of knowledge through simple storage of events in memory without
further processing.

When a new instance needs to be classified, the most similar items in
memory (the k-nearest neighbors (k-nn) [Cover and Hart 1967]) are deter-
mined and their classification extrapolated. The most important problem in
MBL is exactly how this similarity is computed. A simple method counts for
each instance in memory, the number of features it holds in common with
the instance to be classified.

Distance metrics can be introduced to determine the relevance of the fea-
tures toward classification. Determining the nearest neighbor of an instance
then does not only involve counting the number of features they hold in com-
mon, but also the weights associated with each feature. There are a wide
range of extensions to the MBL method, many of which are outlined in [Daele-
mans et al. 2001], including 1B1-1G [Daelemans and Van den Bosch 1992] and
the IGTREE-method [Daelemans et al. 1997], an efficient approximation of
Memory-Based Learning that compresses the data in a decision-tree type
structure for efficient disambiguation.

2.3 Natural Language Processing in the MBL-
framework

Given the psycholinguistic relevance of MBL [Skousen 1989; Chandler 1992;
Gillis and Durieux 2000], it should come as no surprise that it has been widely
applied to a wide range of linguistic classification tasks as well [Daelemans
1999; Roth 1999], such as part-of-speech tagging, grapheme to phoneme con-
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version and stress acquisition.

The description of natural language is by definition problematic, due to
the many exceptions and irregularities that are inherent to the domain [Daele-
mans et al. 1999]. Approaches that try to model natural language phenom-
ena by inducing regularities from the data are often not robust enough to
discern exceptions from noisy data. The MBL approach is therefore more
suited: exceptions in the data are simply stored in memory for future refer-
ence and will only come into play when the general tendencies in the data
are not sufficient to trigger the correct disambiguation.

2.3.1 Current Research Topics

An exhaustive overview of the field of Memory Based Language Processing
can be found in [Daelemans et al. 2001]. Most of the publications listed there
originate from the research groups ILK (KUB, Tilburg, The Netherlands) and
cNTS (UA, Antwerp, Belgium). Typically, this line of memory-based learning
research focuses on using a propositional representation of the problem at
hand. Most often the data is presented as feature values, such as the one
in the play/don’t play classification task. TIMBL [Daelemans et al. 1998|
provides a useful tool for memory-based natural language processing. It
incorporates a number of different implementations and optimizations of the
memory-based learning algorithm and can deal with symbolic, as well as
numerical features.

Even though the distinction is usually not explicitly made, we can in
general distinguish two types of research efforts: those that concentrate on
the engineering aspect of processing natural language in a memory-based
framework (e.g. [Daelemans et al. 2000], [Zavrel and Daelemans 1997] and
[De Pauw and Daelemans 2000]), while other papers detail the linguistic
aspects of these implementations (e.g. [Gillis and Durieux 2000], [Daelemans
et al. 1997] and [De Pauw 2000a)).

A large part of current machine learning research involving memory-based
learning is also dealing with combinatory methods, such as bagging [Breiman
1996; Hoste and Daelemans 2000], boosting [Hoste and Daelemans 2000;
Schapire 1999; Abney et al. 1999; Henderson and Brill 2000] and system
combination [van Halteren and Daelemans 2001]. The combination of clas-
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sifiers is able to improve on disambiguation accuracy by re-distributing data
or combining the sensibilities of machine learning methods. Chapter 3 will
deal with system combination as well and Chapter 6 will provide a compari-
son between the distributed evolutionary computing model described in this
dissertation and the bagging and boosting methods.

2.3.2 Syntactic Analysis using MBL

Since this dissertation tries to implement syntactic analysis in a memory-
based framework, we will briefly overview related research efforts in this
field. Section 2.3.1 defined three major subfields for memory-based syntactic
processing: shallow parsing, full parsing and the retrieval of grammatical
relations.

Shallow Parsing

Often denoted as chunking, shallow parsing constitutes the task of finding
shallow syntactic patterns and relationships in a sentence. It is unlike nor-
mal parsing, in that it does not build a full syntactic representation of the
entire sentence, but only delineates particular syntactic clauses and assigns
a grammatical category to them. Shallow Parsing typically combines two
tasks: (i) a segmentation task (i.e. finding constituent boundaries) and (ii)
a disambiguation task (i.e. labeling constituents, finding grammatical rela-
tions, ...). Dividing the parsing problem into sub-domains makes it possible
to use propositional feature values representations. Common syntactic pars-
ing pitfalls, such as long-distance dependencies and recursion, are therefore
dealt with in specialized modules.

Many machine-learning algorithms have been applied to this problem:
[Ramshaw and Marcus 1995] use Transformation-Based Learning, [Vilain and
Day 1996] employ rule sequences, [Argamon et al. 1998; Daelemans et al.
1999; Veenstra 1998; Buchholz and Daelemans 2001] implement memory-
based shallow parsing and [Cardie and Pierce 1998] use a similarity-based
method.

[Daelemans et al. 1999] reports on a memory-based shallow parsing



2.3 NATURAL LANGUAGE PROCESSING IN THE MBL-FRAMEWORK

23

method, in which chunking is described as a tagging task. Each word in
the sentence needs to be attributed one of five tags: I_NP(word inside a
baseNP), I_VP(word inside a baseVP), O(outside a baseNP or baseVP),
B_NP(word inside a baseNP but the previous word belongs to another
baseNP) and B_VP(word inside a baseVP but the previous word belongs
to another baseVP). This approach is able to achieve accuracy scores that
compare favorable to other approaches. [Daelemans et al. 1999] also demon-
strates the modular approach to shallow parsing, by describing an extension
that detects subject/object relations, using the output of the chunker.

Combining a competitive classification accuracy with attractive compu-
tational complexity, propositional machine learners for shallow parsing there-
fore have several advantages over full parsers for practical applications. Fur-
thermore, for most applications, full syntactic analysis is not needed. Infor-
mation retrieval systems may already benefit from knowing the content of
the semantically highly informative NP-units, so that only an NP-chunker
[Veenstra 1998] would suffice. A complete tree-structure of the sentences in
the documents would not add much to the accuracy of these systems and
would only introduce computational overhead.

Finding Grammatical Relations between constituents

Often considered part of shallow parsing, the task of finding grammatical re-
lations between constituents is complicated enough to warrant a separate dis-
cussion. One of the most common examples of this task is the PP-attachment
problem. [Zavrel et al. 1997] describes a memory-based approach to this
problem which compares favorably to statistical approaches [Franz 1996] and
other machine learning algorithms [Brill and Resnik 1994; Ratnaparkhi et al.
1994].

More closely tied to shallow parsing is research that automatically tries
to model sub-categorization properties [Buchholz 1998| and cascaded gram-
matical relations assignment [S. Buchholz 1999], the latter of which provides
a link to full parsing.
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Full Parsing

On a general level, we can define two types of full parsing. First, cascaded
shallow parsing, described in [Daelemans et al. 1999; Tjong Kim Sang
2001; S. Buchholz 1999] tries to build full parsers by cascading memory-based
models that deal with subproblems of parsing, such as chunking (segmenta-
tion) and the retrieval of grammatical relations (labeling). The advantage of
using such a modular approach to parsing is that, as opposed to full parsing,
the segmentation and labeling task can be broken down into subproblems.
Sentences can be provided with a structure, using a cascaded model of classi-
fiers trained on propositional representations for these subproblems. [Tjong
Kim Sang 2001; Tjong Kim Sang 2002] shows that a chunker can be trans-
formed into a bottom-up parser by recursively applying it to its own output.
Although it is outperformed by the current state-of-the-art full parsing sys-
tems, it offers an interesting method for full syntactic parsing, using only
propositional feature value representations.

Not a lot of research has been done to apply the insights of memory-based
learning to full syntactic analysis. [Scha 1999; Bod 1998] describe Data-
Oriented Parsing, the memory-based aspects of which have been made more
explicit in [De Pauw 2000a], while MBSL [Argamon et al. 1998] combines the
two different approaches to memory-based sentence analysis. It combines the
Data-Oriented Parsing method of considering all substrings of a sentence with
the modular classification-based approach of shallow parsing as described in
[Daelemans et al. 1999].

In this chapter, we have introduced some basic concepts of machine learn-
ing and memory-based learning in particular, which will be the keystone to
subsequent chapters. In Chapter 3 we will describe a parsing system for natu-
ral language that establishes a more explicit interpretation of memory-based
learning concepts in Data-Oriented Parsing. This memory-based parsing sys-
tem will provide the grammatical backbone for most of the experiments in
Part II.



All life is pattern, but we can't always see the pattern
when we're part of it.

Belva Plain
Crescent City - Delacorte 84

A Memory-Based Approximation of
Data-Oriented Parsing

As we discussed in Chapter 2, the current practice in Memory Based Lan-
guage Processing is to encode the linguistic information needed to trigger
the correct solution, in a propositional format (feature values) and present
it to a memory based learner, such as TIMBL [Daelemans et al. 2001]. Yet,
many of the intricacies of the domain of syntax do not translate well to
this kind of propositional representation, so that established MBL-methods
for syntactic analysis are necessarily geared to models that cascade different
levels of low-level syntactic analysis. With its emphasis on memory as the
main syntactic knowledge base, Data Oriented Parsing however provides an
opportunity to consider a Memory Based model for full syntactic analysis,
that avoids dividing the problem into sub-domains.

But although Data-Oriented Parsing (henceforth boP) can be considered
as a memory-based approach to syntactic analysis, some key issues of MBL are
only implicitly employed. This chapter describes a re-interpretation of the
DOP-model, in which the memory-based aspects of the model are exploited,
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so that any given parse is evaluated in terms of its similarity to previously
recorded syntactic analyses in memory, in the same vein as established MBL-
techniques. Furthermore, this memory-based approach also resolves some
of the computational efficiency issues that are inherent to the prototypical
DOP-methodology.

This chapter will start off with an introduction of DOP in Section 3.1,
after which Section 3.2 will discuss the computational aspects surrounding
DOP. Section 3.3 will introduce some MBL-terminology in the context of this
chapter. Section 3.4 describes the experimental setup and the corpora used
for these experiments. The parsing phase that precedes the disambiguation
phase will be outlined in Section 3.5 and a description of the three disam-
biguating models can be respectively found in Sections 3.6, 3.7 and 3.8. After
the data-analysis in Section 3.9, an integrated model is discussed in Section
3.11, after which we conclude by summarizing the models described in this
chapter and addressing some current limitations to the research.

3.1 An overview of Data-Oriented Parsing

Data Oriented Parsing, originally conceived by [Scha 1990] and applied to
natural language parsing by Rens Bod (consult [Bod 1998] for an overview)
translates the psycholinguistic insight that language users analyze sentences
using previously registered constructions and that not only simple rewrite
rules, but also complete syntactic substructures of arbitrary size can be lin-
guistically relevant units for parsing [Fenk-Oczlon 1989; D. Mitchell and Cor-
ley 1992; Jacoby and Brooks 1994]'.

Classic methods for syntactic analysis employ a context-free grammar,
typically consisting of a large number of rewrite-rules, to power a parser
which is able to generate a parse forest for a sentence. A parse forest consists
of all the possible syntactic parse trees for a sentence that are consistent with
the grammar. But whereas a parser will propose many different analyses
for a sentence, language users typically only perceive one analysis. [Bod
1998] argues that a parser only using rewrite rules may therefore constitute
a competence model, but not a performance model in that it does not prefer

'References reproduced from [Bod 1995)].
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any particular parse over the other.

A statistical parsing method is able to express this kind of preference by
employing statistical information in the grammar. A PCFG? for example is
a normal context-free grammar in which each rewrite rule has some kind of
probability attached to it. To compute the probability of a tree-structure
(i.e. its “preferability”), one can simply multiply the probabilities of the
rewrite-rules that were used to construct the parse. The probabilistic values
attributed to the rules of a PCFG can be easily induced from an annotated
Corpus.

Data Oriented Parsing is similar to such a PCFG-method in that it also
uses corpus-induced statistics to disambiguate a parse forest. But the bop-
approach is novel as it also induces the grammatical information itself from
an annotated corpus in the form of fragments of tree-structures. By not im-
posing any limit on the depth of the grammatical elements®, DOP introduces
context-sensitivity, capturing dependencies and idiomatic constructs in a way
that a simple CFG is unable to do.

3.1.1 Architecture

[Bod 1998] defines four pre-requisites for a DOP system:

a corpus of annotated tree-structures

the substructures of these tree-structures

a combination operation to combine these substructures

e a combination operation to combine the probabilities of these substruc-
tures

The core of a DOP-system is its treebank: an annotated corpus is used
to induce all substructures of arbitrary depth, together with their respective
probabilities, which is expressed by its frequency in the treebank relative

2Probabilistic Context-Free Grammar
3The depth of a grammatical element in a CFG being 1.
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to the number of substructures with the same root-node. In principle, it
should not matter what flavor of (ps-)grammar formalism has been used to
construct the trees, as the DOP method can be extrapolated to process any
kind of tree-based representation. The actual psycholinguistic relevance of
using ps-grammars as a formalism for representing syntactic structures, is
therefore not a key issue in DOP experiments. DOP is typically applied to
phrase structures, like the ones found in the Penn Treebank [Marcus et al.
1994].

A toy example of an annotated corpus is displayed in Figure 3.1. To
construct the treebank which powers the DOP model, we must now extract
every single fragment of each tree-structure. The resulting treebank can be
found in Figures 3.2 and 3.3. Notice that the full tree-structure is included
in the treebank, as well as the smallest possible structures of depth 1. These
are equivalent to simple rewrite rules:

VP

N = VP — offered NP
offered NP

Using this treebank, new, previously unseen syntactic structures and sen-
tences can be generated/parsed, such as Brian offered some bear a haircut.
Whereas a CFG would have only one way of forming this structure (namely
the one described in Figure 3.5), a treebank of tree-structure fragments of
arbitrary size such as the one DOP uses, has different possibilities in generat-
ing the same structure. In other words, the tree-structure for Brian offered
some bear a haircut has multiple derivations, among which those featured
in Figures 3.4 and 3.5.

To compute the probability of a parse-tree, we need to look at the prob-
abilities of the substructures that were used to construct it. Referring back
to the treebank in Figures 3.2 and 3.3, we calculate for each substructure
its relative frequency, i.e. the number of times it occurs in the treebank and
divide it by the number of times a substructure with the same root-node
occurs. For example:
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Tree 1 Tree 2
S
/\ S
NP VP NP/\VP
inslow offerad NP Brian needs NP
/\
/’\ a haircut
some bear hugs
Tree 3
S
NP VP
|
Winslow /’\
offered NP NP
/\

some bear  hugs

Figure 3.1: A Toy Corpus for bop
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Tree 1
S S S S
/\
/\ /\ N P/\VP N Vp
NP VP NP VP | N
| Winslow offered NP

) N N
Winslow Winslow  offered NP

O

ffered NP

some bear  hugs

VP S NP VP NP
PN | PN
N NP VP  Winslow offered NP

offered NP

I

some bear  hugs

some bear hugs

Tree 2
S S S S
/\ /\ o~
NP VP NP VP Nlp vr NP VP
Brian new{\NP Brian needs NP Brian Brian NP
/\'
a  haircut
VP S NP VP NP
needs NP NP VP  Brian needs NP a haircut

a  haircut

Figure 3.2: Treebank for Tree 1 and 2
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Tree 3

/\ NP/S\VP

NP VP

NP

|
| ‘Winslow
Wmslow /’\ Winslow /’\
offered NP

offered P
some bear
some bea.r hugs
S S
NP NP VP
|
Wlnslow /’\ Winslow
offered offered NP NP
hugs
offered offered
/\
some bear hugs some bear
VP
offered NP NP offered /\
N | some  bear
some bear hugs
S NP
P |
NP VP Winslow
offered offered

Figure 3.3: Treebank for Tree 3

/\
m

offered

A
m

offered
|
hugs
offered NP
|
hugs
NP NP

some bear hugs
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S +
|
/\ Brian
NP

offered
/\

some bear

NP

a  haircut

Brlan /’\

offered
/\

some  bear

/\

offered

/\

offered

Figure 3.4: Derivation 1

Brlan /’\

NP
some bear a haircut

Substructure Occurrences Occurrences Relative Fre-
of root-node quency
S 1 20 0.05
NP VP
offered NP NP
|
hugs
VP 2 9 0.22
offered NP NP

To compute the probability of a derivation, we multiply the probabilities
(i.e. the relative frequencies) of its fragments. Figures 3.4 and 3.5 showed
two possible derivations for the parse of the sentence Brian offered some bear
a haircut, the probability of which are computed as follows:

1/20 * 1/7 * 1/7
3/20 % 1/7 % 2/9 * 1/7* 1/7

0.0010
9.72x10-5

Derivation 1(Fig 3.4)
Derivation 2(Fig 3.5)

To compute the probability of the parse itself, we need to generate all
possible derivations of that parse and compute their probabilities. The sum
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S + NP = S
NP VP Brian NP A\
|
Brian
S + VP = S
/\
NP VP
[ offered NP NP NP VP
Brian |
Brian /’\
offered NP NP
S + NP = S
/\
some  bear
Nlp VP NP VP
Brian Bl
offered NP NP rian
offered NP NP
/\
some  bear
S + NP = S
/\
a  haircut
NP VP NP VP
| |
Brian Brian /’\
offered NP NP offered NP NP
some bear some bear a haircut

Figure 3.5: Derivation 2
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of these constitutes the probability of the parse itself.

Typically however, a sentence has many different parses and it would be
computationally hardly tractable to consider all derivations for each parse.
VITERBI optimization* can be considered to find the best parse using a best-
first strategy. [Bod 1998] however shows that VITERBI only succeeds in find-
ing the most probable derivation as opposed to the most probable parse,
which limits parsing accuracy to 69% (as opposed to 85% (cf. Table 3.1))
in experiments on the ATIS-corpus. It is an important notion that the most
probable derivation in the collection of derivation forests of the parse forest
does not necessarily equal the most probable parse in the parse forest, as it
causes many of the computational efficiency issues surrounding DOP.

3.1.2 Experimental Results of pop

The basic DOP-model, DOP1, was tested on a manually edited version of the
ATIS-corpus [Marcus et al. 1994]. The system was trained on 603 sentences
(part-of-speech tag sequences) and evaluated on a test set of 75 sentences.
Exact Match accuracy was used as an evaluation measure, expressing the per-
centage of sentences in the test set for which the parse proposed by the sys-
tem is completely identical to the gold-standard parse, i.e. the tree-structure
featured in the original corpus.

Different experiments were conducted in which maximum substructure
size was varied. With DOP1-limited to a substructure-size of 1 (equivalent
to a PCFG), exact match accuracy is 47%. In the optimal DOP-model, in
which substructure-size is not limited, an exact match accuracy of 85% is
obtained. Table 3.1 displays exact match accuracy scores for the DOP-model
for different experiments in which maximum substructure size was varied
(scores reported in [Bod 1998]).

4Simply put: a best-first search through the search space.
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Exact Match Accuracy
Maximum MonNTE CARLO | Most probable
depth of subtrees Optimization Derivation
1 47% 47%
<2 68% 56%
<3 79% 65%
<4 83% 67%
<5 84% 67%
<6 84% 69%
unbound 85% 69%

Table 3.1: Experimental Results DOP1
3.2 Computational Efficiency of DoP

Looking for the most probable parse using the MONTE CARLO estimation
technique, clearly yields better results than simply looking for the most prob-
able derivation. Table 3.1 shows that there is no difference in exact match
accuracy between the two techniques when substructure size is limited to 1,
since DOP is then equivalent to a PCFG, in which there is only one possible
derivation for any given parse. Whereas there is indeed a one-to-one map-
ping between derivation and parse in a PCFG-system, the task of finding the
most probably parse does not equal to finding the most probable derivation
in the DoP-framework®. As a consequence, all possible derivations of all pos-
sible parses for a particular sentence would need to be considered. This is
not very efficient from a computational point-of-view, so that the MONTE
CARLO algorithm needs to be introduced as an approximation to finding the
most probable parse.

DOP1 in its optimal form achieves a very high exact match accuracy.
The computational costs of the system, however, are equally high. [Bod
1995] reported an average parse time of 3.5 hours per sentence. Even though
current parse times are more reasonable, the optimal DOP algorithm in which
no constraints are made on the size of substructures to be considered, is

5[Sima’an 1996; Sima’an et al. 1994] proves that finding the most probably parse in the
DOP-framework is an NP-complete problem, while finding the most probable derivation
can be solved efficiently in a VITERBI-like manner [Sima’an 1999].



36

CHAPTER 3 : A MEMORY-BASED APPROXIMATION OF DATA-ORIENTED PARSING

still computationally very expensive. And even though the most probable
derivation can be found in polynomial time [Sima’an 1999], the problem of
finding the most probable parse still constitutes a computational bottleneck.
This is however not an issue for PCFGs, which makes them more efficient in
that respect, albeit with a significantly lower degree of accuracy.

Although the use of larger syntactic contexts is highly relevant from a
psycholinguistic point-of-view, it is by no means clear that language-users
actually consider multiple derivations of the same parse when processing
utterances. Furthermore, neither the original bor-framework, nor the opti-
mization proposed by [Sima’an 1999] seem to make an explicit reference to
the internal processing of larger substructures, as is evident in human nat-
ural language processing. While the MONTE CARLO optimization scheme
for instance maximizes the probability of the derivations and seems to prefer
derivations made up of larger substructures, this effect occurs almost as a
side-effect of the probabilistic processes involved. It may be interesting to
see if we can make this preference for larger substructures more explicit by
enhancing the memory-based aspects of the DOP-model.

Whereas most optimization methods for the DoP-model seem to focus
on limiting the number of derivations to be considered or reducing the task
of finding the most probable parse to the task of finding the most probable
derivation as far as possible, one might consider the following syntactically
inspired, rather than probabilistic optimization: by evaluating a single parse
in terms of its similarity to large, previously observed constructions, we make
the memory-based aspect, rather than the probabilistic operator the focal
point of the processing stage. This chapter will show how it is possible to
develop this method, without having to consider multiple derivations for
a single parse, thereby simply equating the problem of finding the most
probable parse to finding the most probable derivation. This allows us to
exploit the attractive DOP-attribute of context-sensitivity and combine it
with the computational efficiency of PCFGs.
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3.3 Pattern-matching: A Memory-Based Ap-
proach

In this section, we take a look at a memory-based approach to syntactic anal-
ysis in the form of the Pattern-Matching Probabilistic Grammar (PMPG).
This re-interpretation of the DOP model amplifies the nearest neighbor and
similarity aspects of MBL by analyzing a parse in terms of its similarity to
syntactic patterns stored in memory to which it can be matched (cf. infra).
Pattern-Matching, a basic concept in statistical as well as symbolical ap-
proaches to machine learning, is used in the context of this chapter to refer
to the method of using syntactic patterns stored in memory to evaluate a
parse.

3.3.1 Memory-Based Parsing

The Memory Based aspects of DOP have already been made more explicit in
[Scha 1999] and [Argamon et al. 1999], but we would like to concentrate on
the following properties that DOP shares with MBL:

Trivial Knowledge Acquisi- Knowledge acquisition in the DOP-

tion Phase framework only consists of storing frag-
ments of syntactic structures in mem-
ory. Even though the fragments have a
probabilistic weight attached to them,
no further supra-segmental information
is extrapolated in the form of decision
tree structures and the like.
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Emphasis on Memory Whereas other parsing methods con-
centrate on optimizing the performance
of PS-grammars, DOP aspires to be
an implementation of memory-based
processing, which tries to corrobo-
rate the psycholinguistically motivated
claim that language users employ previ-
ous language experience stored in mem-
ory, while processing language [Chan-
dler 1992; Skousen 1989]°.

Robustness with respect to Since all syntactic substructures are
low-frequency events stored in memory, even those who seem
to constitute noise, DOP is a robust
parsing method that is able to gener-
ate marginal, low-frequency structures.

Whereas the current DOP-models indeed have a MBL-type acquisition
phase, the classification task is quite dissimilar: when classifying new data,
there is only indirect reference to the stored examples in the probabilistic dis-
ambiguation of the derivation forest. As we have mentioned before, parsing
with the DOP-model involves randomly generating derivations and looking at
the most common tree in the forest. This is different from a MBL-approach
in that there is no real look-up of the nearest neighbor in memory. DOP does
not traverse memory in search of the most similar item in memory, so that
it can extrapolate its solution.

Even though it is not possible for full syntactic parsing to employ such a
direct look-up procedure in the way a feature value-based classification task
can, a more direct implementation of the memory-based aspects of DOP is
possible. When we look at natural language parsing from a memory-based
point of view, one might say that a sentence can be analyzed by looking for
the most similar sentence in memory and by consequently extrapolating its
tree-structure.

The parsing system described in this chapter tries to mimic this behavior

6Note that the psycholinguistic argument does provide a paradox: if language users
employ previously registered constructions to analyze sentences, how did they come to
store these in the first place?
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by explicitly interpreting the DOP-model as a memory-based model, in which
analyses are being matched with syntactic patterns recorded in memory. This
is achieved by evaluating each parse in the parse forest in terms of its sim-
ilarity to the structures in memory. This poses two problems: (i) what is
the level on which we should perform our nearest neighbor look-up operation
and (ii) how do we compute similarity between grammatical structures?

The level of matching

A rigid MBL-approach would involve finding a sentence in memory that is
similar to the sentence to be parsed and consequently extrapolating its tree-
structure. Similar sentences such as I want a drink and I want to drink have
totally different grammatical structures however and simply employing the
tree-structure of the highly similar sentence would yield bad parsing accuracy.
Furthermore, although this point is moot [Chomsky 1957], there is a coverage
problem in that we would need an unlikely huge corpus to account for all
possible productions of sentences and tree-structures.

The nearest neighbor approach employed in classification tasks that can
be described using data in a propositional format, cannot be used for syntac-
tic parsing. A parsing task involves two tasks, i.e. (a) finding the constituent
boundaries and (b) finding the correct category for the clauses. As such, pars-
ing can only be achieved by either cascading classifiers using propositional
data [Daelemans et al. 1999; S. Buchholz 1999; Tjong Kim Sang 2002], or
by introducing a method to deal with new unseen productions, so that the
aforementioned coverage issue can be resolved.

By bringing down the lookup-operation to a lower level, i.e. the con-
stituent level, we do not only make our parser more robust in terms of cover-
age, but we also create an opportunity to produce new syntactic structures
that were previously unavailable in memory. The importance of this feature
cannot be stressed enough, since the goal of our parsing system is indeed to
parse new, unseen sentences. It is therefore inadvisable to employ a rigid
application of the memory-based lookup procedure alone, without imple-
menting a possibility for extra, subsegmental lookup procedures.
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Similarity

Now that we have established the structural level on which we are basing
our comparison, we need a way to compute similarity between structures.
We will define the similarity of a parse in terms of the patterns of which it
is composed. Finding the nearest neighbor of a given parse will be done by
pattern-matching, the exact procedure of which will be outlined in Section
3.3.2.

For each given parse in the parse forest’, its similarity to the structure
in memory can be expressed by computing the number of nodes that can
be retrieved from memory. Note that a one-to-one comparison is not being
made between a particular parse and the analyses recorded in memory, as
is the case for memory-based learners, such as TIMBL. As the basis of our
comparison is on the level of the clause, we allow the memory-based learner
to construct its own analysis from patterns from tree-structures in memory.
The memory-based component will try to find the minimal combination of
the largest chunks of syntactic data to construct the most similar structure
to the proposed parse.

Similarity between the proposed analysis and the patterns in memory is
computed by a combination of the following features:

e the number of patterns needed to construct a tree (to be minimized)

e the size of the patterns that are used to construct a tree (to be maxi-
mized)

The nearest neighbor for a given analysis can therefore be defined as
the derivation that contains the largest substructures that can be retrieved
from memory and therefore shares the most nodes with previously observed
analyses. Sections 3.7 and 3.8 will more formally define how the number
of patterns and the size of the patterns are combined into one probabilistic
similarity measure.

Now that we have established the heuristics for our memory-based parsing

"The experiments outlined in this chapter used the cYK-parser described in [Chappelier
and Rajman 1998] to generate parse forests.
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model, we will take a closer look at the formal encoding of the pattern-
matching procedure.

3.3.2 Compiling Contextual Information

Before we can actually use syntactic substructures as patterns for our look-
up procedure, we first need to introduce a way of encoding grammatical
contextual information.

Training

To compile parse trees into patterns, all substructures in the training set are
encoded by assigning them specific indices. This approach was inspired by
[Goodman 1996], in which a system of indexed parse trees is (unsuccessfully)
used to reproduce DOP-like performance as an equivalent PCFG. The system
of indexing used in our experiments (which is described in more detail in
[De Pauw 2000b]), is however specifically geared toward encoding any type
of contextual information in parse trees.

During the training phase, tree-structures from the training set are in-
dexed in a bottom-up fashion. Let us consider the parse tree in Figure 3.6
for this typical ATIS-corpus sentence: “XXX Show me the flights from Wash-
ington DC to San Francisco early Wednesday’ and the ps-grammar that was
used to construct this parse in terms of levels, by horizontally slicing the
parse tree®:

8Check Appendix H for the meaning of category labels and part-of-speech tags.
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S
NP-SBJ VP
|
X)/l\
vb NP NP
\
NP PP PP NP
dt nns in NP to NP JJ nnp
T
NP NP nnp nnp
| T

nnp nNnp nnp

Figure 3.6: Parse-tree for the sentence XXX Show me the flights from Wash-
wngton DC to San Francisco early Wednesday

Level 1 S — NP-SBJ VP
Level 2 NP-SBJ — xxx

VP — vb NP NP
Level 3 NP —  prp

NP — NP PP PP NP
Level 4 NP — dt nns

PP — in NP

PP — to NP

NP — jj nnp
Level 5 NP — NP NP

NP —  nnp nnp
Level 6 NP —  nnp

NP —  nnp nnp

Next, we iteratively traverse the nodes in a bottom-up fashion, observing
the contents of the nodes. If a node is found that contains only terminals, it is
given an index. This index is either retrieved from memory if that particular
pattern has already been observed (and previously indexed) in the data, or
a new index is created and stored in memory. Starting at the bottom-level
6, we notice that both nodes at Level 6 consist of terminals. We have not
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previously seen this type of node, so we provide it with a new index:

Level 6 NP@Q2 — nnp
NP@l — nnp nnp

The indexed categories and the context which they represent are stored
in memory. This comes in handy when indexing the nodes on level 5. The
first node NP — NP NP contains non-terminals and is therefore not ready
for indexing. The second node however does contain only terminals. Further-
more, this syntactic structure has already been registered before, enabling us
to use the previously registered index for this node:

Level 5 NP — NP NP
NP@l — nnp nnp

This process is repeated for each level in a bottom-up fashion, yielding
the following updated grammar:

Level 1 S — NP-SBJ VP
Level 2 NP-SBJGQ6 — =xxx

VP — vb NP NP
Level 3 NP@5 —  prp

NP — NP PP PP NP
Level 4 NP@4 — dt nns

PP — in NP

PP — to NP

NP@3 — jj nnp
Level 5 NP — NP NP

NPQ1 —  nnp nnp
Level 6 NPQ2 —  nnp

NPQ1l —  nnp nnp

We now consider the indexed nodes as terminals, by pruning the parse
tree (Figure 3.7) and percolating the indexed node to the higher levels in the
grammar:
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S
NP-SBJ@6 VP
vb NP@5 NP
NP@4 PP PP NP@3
/\
in NP to NP@1
/\
NP@2 NP@1
Figure 3.7: Pruned Parse-Tree
Level 1 S — NP-SBJ@6 VP
Level 2 NP-SBJAQ6 — xxx
VP — vb NP@5 NP
Level 3 NP@5 —  prp
NP — NP@3 PP PP NP@4
Level 4 NP@4 — dt nns
PP — in NP
PP — to NP@l
NP@3 — jj nnp
Level 5 NP — NP@2 NP@1
NP@1 — nnp nnp
Level 6 NP@2 —  nnp
NPQ1 —  nnp nnp

Next, the indexing process resumes. The node NP — NP@2 NP@1 at
Level 5 will also be indexed, since it contains two indexed nodes, which are
considered to be terminals. After indexing and percolation of indexed nodes,
we obtain the following grammar and the pruned tree in Figure 3.8.
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S
NP-SBJ@6 VP
vb NP@5 NP
NP@4 PP PpP@s NP@3
/\
in NPQ@7
Figure 3.8: Pruned Parse-Tree 2
Level 1 S — NP-SBJ@6 VP
Level 2 NP-SBJQ6 — xxx
VP — vb NP@5 NP
Level 3 NP@5 —  prp
NP — NP@4 PP PP@Q8 NP@3
Level 4 NP@4 — dt nns
PP — in NPQ@7
PP@8 — to NP@l
NP@3 — jj nnp
Level 5 NPaQ7 — NP@2 NP@1
NPQ1 — nnp nnp
Level 6 NPQ2 —  nnp
NP@1 — nnp nnp

The process of indexing and percolation iterates until the top-node is
indexed. This yields the following grammar:
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Level 1 S@12 — NP-SBJa6 VpP@11l
Level 2 NP-SBJ@6 — xxx

VpPa@ll — vb NP@5 NP@10
Level 3 NP@5 —  prp

NP@10 — NP@4 PP@9 PP@8 NP@3
Level 4 NPQ@4 — dt nns

PP@9 — in NP@7

PP@g — to NP@l

NP@3 — jj nnp
Level 5 NPaQ7 — NP@2 NP@1l

NpP@1 — nnp nnp
Level 6 NP@2 —  nnp

NP@1 — nnp nnp

A single indexed category holds a lot of contextual information. In this
grammar for instance, NP@10 indicates the entire NP-structure for the con-
stituent the flights from Washington DC to San Fransisco early Wednesday.
The original grammar can now be extended to encode this contextual infor-
mation, as is shown in Table 3.2. This grammar can be fed to any parsing
method able to deal with context-free grammars (see Section 3.11 ).

Note that this encoding scheme differs from the one outlined in [Goodman
1996]) in two respects: first, it does not share the binary branching method
[Goodman 1996] employs. Second, in this scheme contextual information is
encoded in a bottom-up fashion. VP@11 only gives us lower-bound contex-
tual information. It does not provide information about the upper syntactic
context. This makes our encoding scheme more flexible and makes bigger sub-
structures more available for the construction of new, unseen tree-structures.

Testing

Indexing during the testing phase only differs from the training phase in that
no new indices are created when confronted with new and unseen substruc-
tures. Consider the next example: in the parse forest for the sentence the
screens display the flights from Washington D C to Los Angeles next Friday,
we find the (correct) parse in Figure 3.9. This tree-structures seems to be
almost identical to the one in Figure 3.6, except for the NP-SBJ-node.
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Original PMPG

S — NP-SBJ VP S@12 - NP-SBJ@6 VPQ@11 S — NP-SBJ@6 VP@11
S@12 —-NP-SBJ VP@l1 S — NP-SBJ VP@l1
S@12 -+NP-SBJ@6 VP S —+ NP-SBJ@6 VP
S@12 —-NP-SBJ VP S — NP-SBJ VP

NP-SBJ — prp NP-SBJ@6 —prp NP-SBJ — prp

VP — vbp NP VP@11 —vb NP@5 NPQ10 VP — vb NP@5 NPQ@10
VP@11 —vb NP NPQ@10 VP — vb NP NPQ10
VP@11 —vb NP@5 NP VP — vb NP@5 NP
VP@11 —vb NP NP VP — vb NP NP

NP — prp NP@5 — prp NP — prp

NP — NP PP PP NP NPQ@10 - NPQ4 PPQ9 PPQ8 NP@3 NP — NP@4 PPQ9 PPQ8 NP@3
NP@10 - NPQ@Q4 PPQ9 PP@Q8 NP NP — NP@4 PPQ9 PPQ8 NP
NPQ@10 - NPQ4 PPQ9 PP NP@3 NP — NP@4 PPQ9 PP NP@3
NP@10 — NP@Q4 PPQ9 PP NP NP —» NP@4 PP@Q9 PP NP
NP@10 - NP@4 PP PP@8 NP@3 NP — NP@4 PP PP@8 NP@3
NPQ@10 —+ NPQ@4 PP PPQ@8 NP NP — NP@4 PP PP@8 NP
NP@10 — NP@Q4 PP PP NP@3 NP — NP@4 PP PP NP@3
NP@10 —- NP@4 PP PP NP NP — NP@4 PP PP NP
NP@10 — NP PPQ9 PPQ@8 NP@3 NP — NP PP@9 PP@8 NP@3
NP@10 —- NP PP@Q9 PP@8 NP NP — NP PP@9 PP@8 NP
NP@10 —+ NP PP@Q9 PP NP@3 NP — NP PP@9 PP NP@3
NP@10 —+ NP PPQ9 PP NP NP — NP PPQ@9 PP NP
NP@10 —+ NP PP PP@8 NP@3 NP — NP PP PPQ@Q8 NP@3
NP@10 —+ NP PP PP@8 NP NP — NP PP PPQ@8 NP
NP@10 —+ NP PP PP NP@3 NP — NP PP PP NP@3
NP@10 —+ NP PP PP NP NP — NP PP PP NP

NP — dt nns NP@4 — dt nns NP — dt nns

PP — in NP PPQ@9 — in NPQT PP — in NPQ7
PPQ@Q9 — in NP PP — in NP

PP — to NP PPQ@8 — to NP@2 PP — to NP@2
PPQ@8 — to NP PP — to NP

NP — jj nnp NP@3 — jj nnp NP — jj nnp

NP — NP NP NPQ7 — NPQ@Q2 NPQ1 NP — NP@2 NP@1
NPQ@Q7 — NPQ2 NP@1 NP — NP@2 NP@1
NP@7 — NPQ@2 NP NP —» NP@2 NP
NPQ@7 — NP NP@1 NP — NP NP@1
NPQ@Q7 — NP NP NP — NP NP

NP — nnp nnp NP@Q1 — nnp nnp NP — nnp nnp

NP — nnp NP@2 — nnp NP — nnp

NP — nnp nnp NP@1 — nnp nnp NP — nnp nnp

Table 3.2: Extended Grammar

S
NP-SBJ

VP
/\
dt nns
vbp NP

NP PP PP NP
/\ /\
dt  nns in/\NP to/ \NP jj nnp
/\ PN
NP Np nnp nnp

nnp Inp  nnp

Figure 3.9: Parse-tree for the sentence the screens display the flights from
Washington DC to Los Angeles next Friday
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S
NP-SBJ@22 VP
&t

s vbp NP@10

NP@4 PP@9 PP@§ NP@3

dt nns in Np@7 to NP@1 jj nnp

N
/\
NP@2 NpailP P

| PN

nnp nnp nnp

Figure 3.10: Indexed Parse-tree

Similarly to the training process, we index this tree-structure in a bottom-
up fashion, this time however without producing new indices for unseen struc-
tures. When a substructure can be retrieved from memory, we index the top-
node of that substructure and prune everything below the node. Assuming
that somewhere in our training material we have observed a node NP-SBJ —
DT NNS which we had indexed as NP-SBJ@22, we can index the parse-tree
as in Figure 3.10.

In this example we see that the object of the sentence, a fully specified
NP, has been completely retrieved from memory, meaning that the NP in

NP-SBJ VP

N
vbp NP

Figure 3.11: Pruned Parse-tree
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NP
NP@4 PP@24 PPQ8 PP@25
dt nns in NPQ1 to NPQ@1 in NP@35
nnp nnp nnp nnp nnps

Figure 3.12: NP-structure

its entirety has been observed in the training set. However, no vP-node
was found in memory that consists of that particular NP as an object to a
VvBP. In other words, there is no grammar rule vP — vBP NPQ10 in the
extended grammar (cf. Table 3.2). The VP can therefore not be indexed and
consequently the s-node as well.

Disambiguating with PMPG consequently involves pruning all substruc-
tures that can be retrieved from memory. This results in the parse-tree in
Figure 3.11. Finally, the probability for this pruned parse tree is computed
in a PCFG-type manner (not adding the retrieved nodes to the product):

P(parse) = P(s — NpP-sBJ vpP) . P(VvP — vbp NP)

An extension: partly matched structures

An important variation to the PMPG algorithm makes it more intuitive with
respect to syntactic pattern-matching. Consider the example in Figure 3.12,
which represents the syntactic-structure for the flights from Los Angeles to
San Francisco on Wednesdays.

The indexing procedure has found the subordinate substructures in mem-
ory. But it has not found an NP-structure consisting of those particular sub-
structures. After pruning the indexed structure, we are left with the following
rule:
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NP — NP@4 PP@24 PP@8 PP@25

In the pmPG-algorithm described so far we would simply calculate the
probability of the following rule:

NP — NP PP PP PP

But in this kind of calculation, no distinction is being made between
partly matched clauses and clauses that have no matched subordinates. Fig-
ure 3.13 exemplifies the problem. From a probabilistic point of view, struc-
ture (a) is just as likely as structure (b) and there is no indication of the fact
that some subordinate clauses in structure (a) can be matched in this kind
of structure (indicate by boxed nodes).

So we need to introduce a way to prefer rule NP — NPQ4 PP PPQ8
PP over NP — NP PP PP PP. However, since the probability of the first
rule is necessarily equal or lower than the probability of rule 2, we cannot
simply use the probabilities attached to these rules.

We therefore need to tweak the calculation of partly matched structures,
so that they will be preferred. Let us resume our example:

NP — NPQ4 ppP@24 pPQSK pP@25

The indexing in this rule indicates that an NP-structure has been found
of which all the subordinate clauses can be retrieved from memory, but
that there was no NP-structure stored in memory containing these partic-
ular clauses. We then list all the permutations of this indexed rule:
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(a) NP-structure with partly matched subordinate clauses

NP

PP@24 P@25

/\
nns in NP@l NDal in NP@35
/\
nnp nnp nnps
= NP — NP@4 PP PP@8 PP
(b) NP-structure with no matched subordinate clauses
NP
NP@35 PP@24 PP@81 PP@25
nnps in NPQ@1 to NP@35 in NP@35
nnp nnp nnps nnps

= NP — NP PP PP PP

Figure 3.13: 2 different NP-structures
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NP — NP@4 PP@24 PP@8 PP@25
NP — NP@4 PP@24 PP@S8 PP
NP — NP@4 PP@24 PP PP@25
NP — NP@4 PP@24 PP PP

NP — NP@4 PP PP@8 PP@25
NP — NP@4 PP PP@8 PP

NP — NP@4 PP PP PP@25

NP — NP@4 PP PP PP

NP — NP PP@24 PP@8 PP

NP — NP PP@24 PP@8 PP

NP — NP PP@24 PP PP@25
NP — NP PP@24 PP PP

NP — NP PP PP@8 PP@25

NP — NP PP PP@8 PP

NP — NP PP PP PP@25

NP — NP PP PP PP

Next we look up these rules in the grammar, such as the one in Table 3.2,
and sum the probabilities of the rules that can be retrieved. This way, we
take the base probability of the rule NP — NP PP PP PP and add the
probability of any partly matched structures, thereby expressing a preference
for (partly) matched structures.

To summarize, PMPG can be defined as having two basic operators. The
Pattern-Matching (i.e. Memory Based) part of PMPG greedily looks for sim-
ilar structures in memory. For each node in the parse, PMPG looks for an
identical node in memory. Inherently, the similarity of a parse and its (com-
pound) nearest neighbor is calculated by counting the number of nodes they
share. In this instantiation, PMPG assigns a probabilistic weight of 1.0 to
a retrieved node, thereby, in actuality, pruning it from the parse tree. The
probabilistic operator of PMPG consequently computes the probability of the
remainder of the parse tree. In the infrequent case of a tie between parses,
PMPG randomly picks a candidate.
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3.4 Experimental Setup

We now look at a set of experiments to evaluate the PMPG method against the
standard PCFG-algorithm. In this section, we will describe the experimental
setup.

The experiments were conducted on two different corpora of the Penn
Treebank [Marcus et al. 1993]: (i) the ATIS-corpus and (ii) the Wall Street
Journal corpus (wsJ). 10-fold cross-validation (10XVv) was used to test the
parsers: the tree-structures of the annotated corpus were randomly divided
over 10 partitions of equal size. Each partition was used as a test parti-
tion, with the other nine partitions being used as training partitions. This
approach leads to more reliable results, as it reduces the possibility of the
results being influenced by an (un)favorable test/training set partitioning.

The main experiments were carried out on an edited version of the ATIS-
[I-corpus, which consists of 578 sentences. The ATIS-corpus is a small, rela-
tively homogeneous set of sentences used by people perusing the Air Travel
Information System and therefore constitutes a corpus of transcribed and an-
notated spoken utterances [Hemphill et al. 1990]. Quite a lot of annotation
errors and inconsistencies were found in the ATIS corpus, but not corrected,
since we want our (probabilistic) system to be able to deal with this kind
of noise. Semantically oriented flags like -TMP and -DIR, most often used in
conjunction with PP, were removed, since there is no way of retrieving this
kind of semantic information from the part-of-speech tags of the ATIiS-corpus.
Syntactic flags like -sBJ, on the other hand, have been maintained. Internal
relations (denoted by numeric flags) were removed. There was no limit on
sentence length.

The experiments on the Wall Street Journal-corpus were limited to (i)
a 10xv setup on section 1 and (ii) a setup consisting of the frequently used
division that takes sections 2 to 21 as the training set and section 23 as
the test set [Collins 1997; Charniak 1997; Ratnaparkhi 1999; Bod 2000]. The
same orthographic adjustments were made on the Wall Street Journal Corpus
as on the ATIS-corpus. This makes it harder to compare the experiments of
the wsJ-corpus with other work in the field [Collins 2000a; Collins 1997; Bod
2000; Ratnaparkhi 1997], which typically strip all semantic flags, co-reference
information and quotation marks and merge the ADVP and PRT categories.
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We believe the orthographic adjustments made on our data set to be more
equitable with regards to the parsing task, even though it negatively affects
accuracy scores.

Figure 3.14 schematically displays the experimental setup. An annotated
treebank is divided in a training set and a test set (usually at a 90% to
10% ratio). A context-free grammar is induced from the training set, which
powers a CYK parser [Chappelier and Rajman 1998]. This parser produces
parse-forests for the part-of-speech tag sequences of the test set. The tree-
structures in these parse forests are not ranked and no preference for any
particular parse is evident as yet.

Next, three disambiguating algorithms (henceforth the disambiguators),
which also employ information culled from the training set, provide a ranking
for the parses in the parse-forests. The first parse of this ordered parse forest
is consequently the one that the disambiguator proposes to be the correct
one.

3 disambiguators were tested:

e PCFG: a simple Probabilistic Context-Free Grammar (Section 3.6)

e PMPG: the DOP approximation, Pattern-Matching Probabilistic Gram-
mar (Sections 3.3 and 3.7)

e PCFG+PMPG: a combined system, integrating PCFG and PMPG (Sec-
tion 3.11)

The main evaluation measure we consider is exact match accuracy, but
also the PARSEVAL measures, Labeled Precision (LR), Labeled Recall (LP)
and the unweighted balance of the 2, Fz_;-score will be provided. [van Rijs-
bergen 1975] defines the computation of these measures as follows:
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Corpus of Annotated Tree-Structures

Training Set Test Set

90% 10%

Part-of-speech

Induced CFG Tag Sequences

CYK Parser [Parse Forests ]

—_—_————————— =

PMPG-+PCFG I’_Tf
| |

\ I
\ . . /
‘Disambiguators:

Ordered Ordered Ordered
Parse Parse Parse
Forests Forests Forests

Figure 3.14: Experimental setup
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C' = number of correct constituents in parse
= number of constituents in Parse
= number of constituents in gold standard structure, i.e. original
structure in annotated corpus

£ £
P T

F _ (B+1)xLP+xLR __ 2xLPxLR
B=1 — " BLLR+LP ~ LP+LR

3.5 The Parsing Phase

In the first processing stage, the parser analyzed each sentence in the test
set. This initial stage proved to be quite problematic for the ATIS corpus,
since overall, 35 out of the 578 sentences (6%) could not be parsed, because
the grammar induced from the training set did not contain the proper gram-
matical information to trigger the correct analysis for a sentence in the test
set. This constitutes a sparse grammar problem, which means that sparse
data causes the grammar that is induced to be incomplete with respect to
its coverage on the structures in the test set.

Note that the 6% figure does not even include those sentences for which
some (erroneous) parse was found, but for which the correct parse could
a priori not be found, since the required rewrite rule needed to construct
the correct parse tree for a sentence in the test set, was not featured in
the induced grammar. We identified 97 tree-structures (16.8%) in the ATIS-
corpus that featured a rule that was unique to that structure, i.e. 97 sentences
that can never be parsed correctly by an independent training set.

NP-annotation in particular seemed to be the main cause for unparsability.
An NP like restriction code AP/57 is represented by the rewrite rule:

NP — NN NN sym sym sym CD CD

Highly specific and flat structures like these are very specific constructs for
one particular sentence and are usually not featured in the grammar induced
from an independent training set.

The most common method to deal with these flat structures is by employ-



3.5 THE PARSING PHASE

57

ing Markov Grammars [Collins 1997] that calculate the probability of these
structures by determining the head daughter-node of the constituent and its
probability, after which the probabilities of its modifiers can be deduced as
well.

Part II will deal with evolutionary approaches to grammatical smoothing
as a possible solution to this problem. Chapter 7 in particular will describe
a method that randomly creates new grammatical information, while evolu-
tionary computing methods distinguish useful from erroneous grammatical
information, thereby increasing grammar coverage without the need for ex-
ternal information sources.

One might also consider generating parse forests with an independent
grammar, induced from the entire corpus (training set+test set). This op-
tion violates the blind-testing constraint by using grammatical information
induced from the test set, but may appear justifiable if we are only interested
in probabilistic ordering of parse forests and only use probabilistic informa-
tion induced from the training set. By employing probabilistic smoothing
this method can attribute a (usually low) probability to unseen rules, which
in this case are rules induced from the test set. But the number of unknown
rules in this case is not arbitrary, as it is relative to the number of known
rules. The distribution of the probability mass reserved for the test set is
therefore also directly related to the number of rules induced from the test
set. The probabilistic smoothing method, which should have provided a way
to perform probabilistic re-ordering of parse forest without exploiting knowl-
edge from the test set, therefore also violates the blind-testing constraint.

Another way of generating parse forests with an independent grammar
would be to induce one from a different, but similarly labeled corpus, e.g. the
wsJ-corpus. This usually entails using grammatical information extracted
from a corpus from a different domain, which would have an unfavorable
effect on parsing accuracy. A way to deal with this would be, as in the
previous method, to extract the grammatical information from the alternate
corpus and use the training set to provide probabilistic weights for the rules.
Again, a portion of the probability mass would need to be reserved to dis-
tribute among the other rules in the grammar. This method might yield
better parsing accuracy, but it is nevertheless unlikely that specific domain-
dependent structures such as NP — NN NN sym sym sym CD CD would be
covered by the alternate grammar, leading us back to square one.
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Neither grammatical, nor probabilistic smoothing was implemented in the
context of the experiments described in this paper, but one should keep in
mind that the accuracy of the parsing systems can be improved, if a more
adequate grammar is supplied.

In any case, the sparseness of the grammar proves to be a serious bot-
tleneck for exact match accuracy, limiting our disambiguators to an upper
bound exact match accuracy of about 83.2%.

Parsing the more elaborate Wall Street Journal corpus is less problem-
atic: the 10-fold cross validation on Section 1 only counted 15 unparsable
sentences, which accounts for less than 1% of the sentences. Note again that
this does not mean that for the remaining 99% of the sentences a grammati-
cal parse was generated in the parse forest. [Collins 1999] reports that when
using section 2-21 as a training set and section 23 test set, 17.1% of the sen-
tences in the test set have a rule not seen in the training set, indicating that
the grammar sparseness problem is still very much apparent, even though it
is seemingly not expressed in the ratio of unparsable sentences.

3.6 PCFG-experiments

A PCFG computes the probability of a parse tree by multiplying the proba-
bilities of the rewrite-rules that were used to construct the parse. Note that a
PCFG is identical to DOP1 when we limit the maximum depth of the substruc-
tures size to 1. Any given parse consequently has one and only one possible
derivation, so that finding the most probable derivation entails finding the
most probable parse as well (cf. Section 3).

The full results of the experiments can be consulted in Appendix B. Table
3.3 provides an overview of the results on the ATiS-corpus. The first line of
Table 3.3 shows the results for the PCFG-experiment: 60% exact match
accuracy for the ATIS-corpus is an adequate result for this baseline model.
Precision is respectable at 88.0%, but recall is trailing at 81.9% (Fz=; score
of 84.8%). During experimentation, we noticed that two partitions scored
significantly lower on exact match accuracy and precision and recall measures
(cf. Appendix B). This was due to an unfavorable data partition, which
causes the aforementioned grammar sparseness to come into play, as well as
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ATIS - 10 Fold Cross Validation
Parser | Exact Match (%) || LP | LR | Fa=1 (%) || sec
POFG 60.0 (£8.3) 88.0 (£3.2) | 8L.0 (£5.4) | 84.8 (£4.7) || 0.04
PMPG 68.3 (+6.1) 85.6 (+4.1) | 85.3 (£4.1) | 85.4 (£3.9) | 0.16
POFG+PMPG 74.0 (£7.6) 92.7 (£1.9) | 88.6 (£3.7) | 90.6 (£5.1) || 1.00

Table 3.3: Experimental Results ATIS - Overview

Wall Street Journal - 10 Fold Cross Validation (Section 1)

Parser || Exact Match (%) || LP | LR | Fg=1(%) || sec
POFG 8.5 (£2.1) 64.8 (£4.6) | 64.3 (£1.4) | 64.5 (£2.7) || 3.2
PMPG 12.3 (£2.0) 67.0 (£1.9) | 66.4 (£1.3) | 66.7 (£1.4) || 34

PCFG+PMPG 14.9 (£2.2) 83.4 (£3.2) | 80.5 (£2.1) | 81.9 (£2.6) 98

Table 3.4: Experimental Results wsJ 10xv - Overview

provide a grammar whose probabilistic distribution is less suited for the test
set.

Exact match accuracy on the Wall Street Journal corpus (first line of Ta-
bles 3.4 and 3.5) is more problematic: a score of 8.5% and 11.0% respectively
was achieved. Whereas in the ATIS-experiment, there was a discrepancy
between precision and recall scores, Tables 3.4 and 3.5 show that for the
wsJ-experiments they are about the same. F-scores are low at 64.5% for
the xv-experiment and 71.7% on Section 23.

Apart from parsing accuracy on one particular partition, there were no
anomalies in the experimental results, probably because the grammar sparse-
ness problem that was encountered on some partitions of the ATIS corpus are
less likely to come into play in a larger-scale corpus such as the wsj. The
low exact match accuracy on Partition 1 is resolved on the other systems
and the normal precision and recall scores indicate that no systematic error
is causing this abnormally low score. Data analysis showed that the low score
can largely be attributed to an unfavorable resolution of ties.

Despite reasonable F-scores for these experiments, serious and fundamen-
tal limitations to the PCFG-model can be observed on examining the parsed
data. The next example displays the most common type of mistake made
by PCFGs. Structure (a) could represent an analysis for the vP-structure in
the sentence: I want a flight from Brussels to Toronto. (b) represents the
analysis the PCFG-model has produced.
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Wall Street Journal Corpus (2.21/23
Parser Exact Match (%) | LP | LR | Fg_1(%)
PCFG 11.0 72.8 | 70.6 71.7
PMPG 7.3 65.5 | 64.6 65.0
PCFG+PMPG 16.0 81.8 | 79.3 80.5

Table 3.5: Experimental Results wsi(2.21/23) - Overview

(a) Correct Analysis (b) PCFG analysis
VP VP
vbp NP vbp NP PP PP
PN P N
dt nn in NP to NP
| |
NP PP PP nnp nnp
N IS N

This example shows that PCFGs have a tendency to prefer flatter struc-
tures over embedded structures. This is a trivial effect of the mathematical
formula used to compute the probability of a parse-tree: embedded struc-
tures require more rewrite rules, thereby adding more factors to the multipli-
cation, which will almost inevitably result in a lower probability. This claim
is further corroborated by the absolute data figures (cf. Appendix B): the
absolute number of constituents in the annotated corpus is much higher than
the number of constituents the PCFG generates

It is an unfortunate property of PCFGs that the number of nodes in the
parse tree is inversely proportionate to its probability. This effect has also
been noted by [Magerman and Marcus 1990; Chitrao and Grishman 199;
Briscoe and Carroll 1993; Charniak et al. 1996; Bod 2000]. One might be
inclined to normalize the probability of a parse tree relative to the number
of nodes in that tree, or by introducing the governing properties of the cat-
egories in any given context in the model [Johnson 1998]. However, a more
linguistically motivated alternative is at hand: the enhancement of context
sensitivity through the use of larger syntactic context within parse trees can
make our disambiguator more robust.
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3.7 PMPG-experiments

An overview of the results for the PMPG-experiments on the ATIS corpus can
be found on the second line of Table 3.3. The results are interesting in that
the F-score stays about the same, while exact match accuracy is significantly
higher. This indicates that more sentences are parsed completely correct. On
average, however, the other sentences are parsed slightly worse. Also, while
recall scores increase, precision decreases. This means that, on average, a
PMPG will propose more constituents, thereby covering more constituents
found in parses, but that the overall percentage of the extra constituents it
proposes is lower.

The error analysis below indeed shows that PMPG is somewhat of a miss-
or-hit affair: it is very good at recognizing patterns in a syntactic structure,
but not able to reach DOP-standards when it comes to overall parsing °. For
the ATIS corpus, PMPG gains significantly on the precision score, but loses out
on recall, while these scores remain level on the wsJ corpus. Also note that
in contrast to a PCFG, there is not a big difference anymore between the num-
ber of constituents found in the annotation and the number of constituents
generated by the PMPG. This can be attributed to PMPG’s preference for
larger substructures, as will be exemplified in the error analysis below.

We recognize the same trend in the 10xv Wall Street Journal experiments
(second line of Tables 3.4): again, the F-score does not improve by a very
great margin, but the increase in exact match accuracy is quite considerable.
There is an increase for all scores on all partitions. This is in contrast to the
experiments on the wsJj-corpus with Section 2—21 as the training set and
Section 23 as the test set (Tables 3.4 and 3.5). Here a significant decrease
on all scores is apparent. Data analysis showed that the overestimation
of context size is very apparent for these experiments. The cause of the
difference between the two wsJ experiments may be attributed to a problem
in robustness for PMPG when increasing the size of the training set.

9Note that these results are quite dissimilar from those reported in [De Pauw 2000b]
and [De Pauw 2000a], where a decrease of exact match accuracy for PMPG was being
observed with respect to the baseline PCFG-model. We believe that the new results are
due to the difference in the pre-processing parsing stage, which was less problematic in
these experiments as it was for the previous experiments. The reason for this lies in (a)
the slightly bigger corpus used in these experiments (578 sentences as opposed to 562
sentences) and can also be attributed to (b) a different distribution of the partitions.
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The dynamics in results when moving from a simple PCFG to the more
elaborate PMPG calls for an error analysis of the parsed data. Figure 3.15
shows a mistake the PMPG-disambiguator has made during the ATIS-corpus
experiments. The correct analysis (a) represents the gold-standard tree-
structure for a sentence like What flights zzz can I get from Brussels to
Toronto. The PMPG analysis (b), featuring a large, nonsensical SBAR-structure,
would never have been considered a likely candidate by a common PCFG.
This particular sentence was in fact effortlessly disambiguated in the PCFG-
experiments. Yet, the fact that large chunks of this tree-structure have been
retrieved from memory, makes it the preferred parse for the PMPG.

Clearly, PMPG overestimates substructure size as a feature for disambigua-
tion. It is interesting to see however, that it is a working implementation of
context sensitivity, eagerly matching patterns from memory. At the same
time, it does seem to have lost track of the common-sense probabilistic sen-
sibilities a simple PCFG is able to exhibit. It is in the combination of the two
systems that one may find a good disambiguator and accurate implementa-
tion of context-sensitivity.

3.8 A Combined System (PMPG+PCFG)

Table 3.3 showed that about 60% of the time, a PCFG finds the correct parse,
meaning that the correct parse is at the first place in the ordered parse forest.
99% of the time, the correct parse can be found among the 10 most probable
parses in the ordered parse forest. This opens up plenty of possibilities for
optimization. One might for instance use a best-first strategy to generate
only the 10 best parses, significantly reducing parsing and disambiguation
time. An optimized disambiguator might therefore include a preparatory
phase in which a simple PCFG retains the most probable parses, so that a
more sophisticated follow-up scheme need not bother with senseless analyses.

In our experiments, we combined the basic sensibilities of a PCFG and used
its output as the input for the pmMPG. This is a well-established technique
usually referred to as system combination (e.g. [van Halteren et al. 1998] for
an application of this technique to part-of-speech tagging):
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(a) Correct Analysis
S
WHNP SQ

i

WHNP PP PP
P | vbp  NP-SBJ VP

wdt nns xxx = XXX | /\
vb NP
NP PP PP
|

prp

XXX innnp to nnp
(b) PMPG Analysis
S
NP-SBJ

vb INP]  [pP] [PP]
N |
wdt nns xxx in |NP]to

| | |
xxx |NP-SBJ | | VP| nnp nnp

|
xxx Vbp
|
prp

Figure 3.15: PMPG Error Analysis
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‘Part of Speech Tag Sequences ‘
|

PCFG

‘N most probable parses‘

PMPG

‘ Preferred Parse ‘

Sentences are first parsed by a PCFG, that generates the n most prob-
able parses and their initial probabilities (in a viterbi-type fashion). These
parses are then presented to the pattern-matching algorithm that adjusts the
probabilities of the parses according to their similarity to previously recorded
structures (possibly entailing a re-ordering of the parse forest). The combined
system then presents the preferred parse.

Since the pattern-matching phase does not precede the probabilistic phase
anymore (as was the case in the original PMPG-method), we no longer prune
the parse tree. We simply divide the probability that the PCFG assigned to
the complete parse tree by the number of non-indexed nodes. A weight can
be attributed to each operator’s “score”, according to the dataset. A homo-
geneous corpus for instance may benefit from a stronger pattern-matching
component.

» ., P(rule;)
number o f non indexed nodes

P(parse) = (3.1)

The weight of each algorithm’s decision, as well as the number of most
probable parses that are extrapolated for the pattern-matching algorithm,
are parameters to be optimized.
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Experimental Results

The third line in Tables 3.3, 3.4 and 3.5 shows that the combined system
performs better than either one of its components, with an exact match
accuracy of 74.0% for the ATIS-corpus and 15 to 16% for the Wall Street
Journal-corpus. F-scores also rise with 90.6% for the ATIS corpus, 81.9% on
the 10xv wsJ-experiment and up to 80.5% on Section 23 of the wsJ-corpus,
which brings the system in range of the state-of-the art parsers (see Section
3.10).

The parsed data reveals that the combined system is indeed able to over-
come difficulties of both algorithms. PCFG+PMPG generates less constituents
than the PMPG, but more than a PCFG. This is an indication of the fact,
that it is able to overcome PCFG’s preference to flat structures, while not
indulging in PMPG’s careless embedding.

Error Analysis

The parse tree in Figure 3.16 represents a tree-structure for a sentence like 1
want a flight from Los Angeles to Miami tomorrow. The PCFG method pro-
vided the parse in Figure 3.17 for this sentence. We notice the aforementioned
typical problematic behavior of PCFGs with respect to embedded structures.
Figure 3.18 displays the PMPG analysis, with the boxed nodes representing
structures retrieved from memory. There is an unnecessary embedding in
the first Pp. The overall structure of the object NP has nevertheless been
reasonably well retrieved.

Figure 3.19 shows the parse for the combined system, which is equal to
the correct one. The PCFG’s sensibility has made sure that the unnecessary
embedding of the NP-structures within the first PP has disappeared, while the
PMPG component has gotten rid of PCFG’s preference for flatter structures.

There was also a problem in both systems with the constituent structure
for tomorrow. PCFG as well as PMPG attached the noun to the NP of the
second PP. PMPG’s mistake can be attributed to the fact that, although
rare and thus low in probability, the rule NP — NNP NN can be found in
memory and is accordingly attributed probability 1. PCFG attached the nn
to the NP, because it prefers trees with lesser non-terminal nodes. But by
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S
NP-SBJ VP
|
prp
vbp NP
NP PP PP NP
dt nn in NP to NP nn
N |
nnp nnp nnp

Figure 3.16: Tree-structure for the sentence I want a flight from Los Angeles
to Miami tomorrow

combining both systems and thus effectively countering PCFGs preference for
flatter structures, as well as PMPG over-eager pattern-matching, the correct
structure is preferred.

3.9 Comparative Quantitative Data Analysis

This section will provide a comparative overview of the experimental results.
The top section of Table 3.6 shows the comparison on the sentence-level. The
table needs to be interpreted as follows: out of a total of 578 sentences, 302
were parsed correctly by all three disambiguators alike. 94 sentences were
disambiguated incorrectly'® by all three methods. Of these 94 sentences, the
disambiguators still agreed on the parse for 31 sentences, yielding a agreement
figure of 333. The C.Disagreement figure of 182 expresses how many sentences
were parsed correctly by one or two, but not three disambiguators.

10This figure also includes the 35 sentences that could not be parsed correctly by the
parsing pre-process.



3.9 COMPARATIVE QUANTITATIVE DATA ANALYSIS

67

S
NP-SBJ VP
|
prp
vbp NP PP
dt nn in NP

N
nnp nnp

Figure 3.17: PCFG analysis

PP

N

to

NP

/\
nnp nn

nnp| [(nnp

Figure 3.18: PMPG analysis

to
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Figure 3.19: PCFG4PMPG analysis

The right-hand side of Table 3.6 displays the distribution of these 182
sentences. PCFG was able to disambiguate 14 sentences that neither PMPG
or PCFG+PMPG were able to. PCFG and PMPG were able to parse 5 sen-
tences that the combined system PCFG+PMPG got wrong, while there were
26 sentences that PCFG and PMPG were able to disambiguate, but not PMPG.
PMPG was the only one to parse 37 particular sentences. PCFG+PMPG is the
clear winner with 49 sentences that could not be parsed by either alternative
method. The same comparison is made on the constituent level as well.

Table 3.6 shows that, apart from finding the only correct analysis for 49
sentences, the combined system PCFG+PMPG also incorporates the decisions
of its parts: 77 times (26+51) one of the composing parts forces the combined
system into the right solution. For 56 sentences, however, the combined
system does not have the advantage over PCFG or PMPG.

Accuracy may be further improved if we consider a meta-classifier that

choses among three alternative parses, provided by PCFG, PMPG and PCFG+PMPG

respectively. In the best-case scenario, this approach may yield a maximum
exact match accuracy of 83.7%. Recall may climb up to a maximum score
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Total Sentences 578 PCFG | PMPG | PCFG
Correct by Al 302 (52.2%) PMPG
Wrong by All 94  (16.3%) | PCFG 14 5 26
Agreement 333 (57.6%) | pmPG 5 37 51
C.Disagreement 182 (31.5%) | PCFG+PMPG | 26 51 49
Total

Constituents 4819 PCFG | PMPG | PCFG
Correct by All 3750 (77.8%) PMPG
Wrong by Al 369 (7.7%) | pcFa 36 29 133
Agreement 4006 (83.1%) | pPmPG 29 116 215
C.Disagreement 700 (14.5%) | PCFG+PMPG || 133 215 173

Table 3.6: Comparative Data Analysis - ATIS

of 92.3% using this approach. Section 3.10 will attempt this by employing a
simple weighted voting technique.

We used the McNemar test to calculate the statistical significance of
differences in results. The McNemar test studies the difference in two sets
of results, only differing from each other in one variable. [Dietterich 1998|
suggests it can be used to compare the results of two classifiers to determine
whether or not one significantly performs better than the other. [Dietterich
1998] further states that the McNemar test is only valid if the variability
in the training set used between algorithms and the internal randomness in
the algorithms are limited. Since the training sets in both algorithms are
identical and the internal randomness is indeed limited, the McNemar test is
a workable approximate heuristic test for calculating statistical significance.

Table 3.7 (reproduced from [Dietterich 1998| and adapted to the parsing
domain) displays the way in which statistical significance figures are calcu-
lated using the McNemar test. Given the amount of sentences/constituents
parsed correctly by method A, but not by method B and vice versa, we are
able to calculate the significance of the difference using the formula in Table
3.7. This formula applies a continuity correct of -1 in the numerator, since
McNemar’s statistic is discrete whereas x? is continuous. We can then use
the standard chi-square table to determine the probability that the methods
are equal when their results yield the figure returned by the formula.

Table 3.8 displays the McNemar test for the experiments on the ATIS
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number of sentences parsed
wrong by both methods (noo)

number of sentences parsed
wrong by method A, but not
by method B (no1)

number of sentences parsed
wrong by method B, but not

by method A (n10)

number of sentences parsed
correctly by both methods
(n11)

P((l"Ol*n10|—1)2)

no1+n10

Table 3.7: McNemar Statistical Significance Test

Methods Compared | Exact Match Recall
Accuracy
PCFG VS PMPG 143 88 540 331
40 307 169 3779
P(17.3) < 0.05 P(51.8) < 0.05
PCFG vS PCFG+PMPG | 131 100 483 388
19 328 65 3883
P(53.8) < 0.05 P(228.9) < 0.05
PMPG Vs PCFG+PMPG | 108 75 403 306
42 353 145 3965
P(8.8) < 0.05 P(56.8) < 0.05

Table 3.8: Significance Tests for experiments on the ATIS corpus

corpus (layout of the tables mirrors Table 3.7). For significance at the 0.05
level, the figure calculated by the formula in Table 3.7 should therefore not
be greater than 3.841. For each combination of methods described in this
chapter, this figure is much larger than 3.841 on the ATIS corpus, so that
the probability that both methods yield the same results is less than 0.05,
thereby making the differences in results significant.

Similar results can be observed on the wsJj(xv)-experiments: PCFG+PMPG
is the only disambiguator to find the correct analysis for 100 particular sen-
tences, while incorporating PCFG’s and PMPG’s sensibilities for 111 more
sentences. Note that PMPG has a rather high number of sentences (82) that
it alone can parse correctly. This may indicate that the weights attached to
the systems in the combination (see Section 3.8) need to be optimized. But
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Total Sentences 1921 PCFG | PMPG | PCFG
Correct by All 76 (4.0%) PMPG
Wrong by All 1513 (78.8%) | PCFG 24 15 48
Agreement 199  (10.4%) | pmPG 15 82 63
C. Disagreement 332 (17.3%) | PCFG+PMPG | 48 63 100
Total

Constituents 39098 PCFG | PMPG | PCFG
Correct by All 20369 (52.1%) PMPG
Wrong by All 5768  (14.8%) | PCFG 234 | 1.068 | 3465
Agreement 26604 (68.0%) | PmMPG 1068 | 542 | 3989
C. Disagreement 12961 (33.2%) | PCFG+PMPG | 3465 | 3989 | 3667

Table 3.9: Comparative Data Analysis - wsJ(xv)

corroborating the intuition that PMPG seems to be biased toward maximizing
exact match accuracy, is the low number of constituents it alone has found
(542), as opposed to PCFG+PMPGs high number (3667).

Again, assuming we can develop an optimal meta-classifier, we can in-
crease exact match accuracy to 21.2% and a recall score of 81.3%. McNemar
tests on these experiments (Table 3.10) indicate that all differences are sta-
tistically significant.

The comparative analysis of the wsj(2—21/23) experiments provides
some interesting details. Despite the fact that exact match accuracy drops
for PMPG during these experiments, the data analysis shows that PMPG is
not performing as badly as the results might indicate: despite a lower overall
accuracy, it does come up with 121 analyses for sentences that the other
disambiguators are not able to parse correctly, which is impressive in its
own right. The cross section with other methods yields relatively low figures
(19,13), further proving that in these experiments PMPG performs in a league
of its own on these experiments, providing correct analyses for sentences that
neither PCFG or PCFG+PMPG can handle, but providing erroneous parses for
other sentences.

An optimal meta-classifier can increase exact match accuracy to 24.4%
and recall to 82.2%. The McNemar test (Table 3.12) indicates that the
differences in results between all models are statistically significant.



72

CHAPTER 3 : A MEMORY-BASED APPROXIMATION OF DATA-ORIENTED PARSING

| Methods Compared | ExMa | Recall
PCFG vS PMPG 1613 145 9431 4531
72 91 3699 21437
P(23.9) < 0.05 P(83.9) < 0.05
PCFG vs PCFG+PMPG | 1595 163 6306 7656
39 124 1302 23834
P(75.5) < 0.05 P(4505.5) < 0.05
PMPG Vs PCFG+PMPG | 1537 148 5998 7132
97 139 1610 24358
P(10.2) < 0.05 P(3486.8) < 0.05

Table 3.10: Significance Tests for experiments on the wsi(xv) corpus

Total Sentences

Correct by All
Wrong by All
Agreement

2416
23
1827
192

C. Disagreement 566

Total
Constituents
Correct by All
Wrong by All
Agreement

C. Disagreement

47333
25057
6490

32044
15946

(1.0%)
(75.6%)
(7.9%)
(23.4%)

(52.9%)
(13.7%)
(67.7%)
(33.4%)

PCFG | PMPG | PCFG
PMPG
PCFG 62 19 161
PMPG 19 122 13
PCFG+PMPG 161 13 189
PCFG | PMPG | PCFG
PMPG
PCFG 330 | 1.428 | 6.598
PMPG 1.428 | 1.710 | 2.380
PCFG+PMPG || 6.598 | 2.380 | 3.500

Table 3.11: Comparative Data Analysis - wsJj(2.21/23)
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Methods Compared || ExMa | Recall
PCFG Vs PMPG 2016 135 9830 4090
223 42 6928 26485
P(21.1) < 0.05 P(730.5) < 0.05
PCFG Vs PCFG+PMPG | 1949 202 8040 5880
81 184 1758 31655
P(50.9) < 0.05 P(2223.4) < 0.05
PMPG vs PCFG+PMPG | 1889 350 6660 10098
141 36 3138 27437
P(88.1) < 0.05 P(3658.8) < 0.05

Table 3.12: Significance Tests for experiments on the wsJj(2.21/23) corpus
3.10 Simple Weighted Voting

In the previous section, we provided some accuracy figures an optimal meta-
classifier may yield. The McNemar tests (Tables 3.8, 3.10 and 3.12) indicate
that there is a very big difference between the three parsing methods, with
differences in results being highly significant. Given these often surprisingly
disparate decisions made by the three parsers, a majority voting method may
provide a significant performance boost. In this section we describe a simple
implementation of such an approach for full parsing.

A well-established way to combine the output of different classifiers is to
use majority voting: each classifier suggests a class and the class that is most
often suggested is the one proposed by the voting method. A refinement of
this system attributes a weight to each classifier’s decision, with some classi-
fiers’ vote bearing more on the final decision than others. This approach has
been proved quite effective on the part-of-speech tagging task [van Halteren
and Daelemans 2001], but it does not readily apply to full parsing. Whereas
the number of classes is typically limited for classifiers using propositional
data, the number of classes in full parsing is by definition unlimited, render-
ing the majority voting method moot. We would need a very large number
of classifiers to reasonably consider majority voting.

We therefore need to develop an alternate method: rather than looking
at the final decision of each classifier, the voting method described in this
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section uses the parse forests that each of the parsers provide. The voting
method takes the n most probable parses of each parser!!, adds up their
respective probabilities and returns an ordered miniature parse forest of at
most 30 parses. The parse with the highest probability is the parse proposed
by the voting method.

If one of the three parsers attributes a particularly high probability to
some parse, its high degree of “certainty” about the analysis is reflected in
the final decision. This method may even provide correct parses that were
previously not considered by any of the parsers: consider the hypothetical
situation in which all three parsers have a different parse at the top of their
ordered parse forest, yet they all have the same runner-up in the parse forest.
The voting mechanism may very well propose this runner-up as the parse of
choice, even though none of the individual classifiers had suggested it before.

The results for this method, found in Table 3.13 and 3.14, are quite
encouraging with accuracies being improved considerably over the individual
classifiers. We observed highly disparate parsing behavior of the individual
parsers in the comparative data analysis of the wsj(2.21/23) experiments and
the weighted voting method does indeed significantly boost performance.

The accuracies hold up well in comparison to related work using the
same training set and test set division. Table 3.15 reproduced from [Tjong
Kim Sang 2002] displays precision and recall scores for the state-of-the-art
parsing systems. The results are still considerably lower than those of the
state-of-the-art systems, but this can be partly ascribed to (a) the fact that
different orthographic edits were conducted for the experiments described
in this chapter'? and (b) the fact that many of the figures in Table 3.15
represent scores on sentences containing less than 40 words (2245 sentences).
The scores in Tables 3.13 and 3.14 represent accuracies on all 2416 sentences
of Section 23, which includes a fairly large number of unparsable sentences'®.

"y was set to 10 in this experiment.

12Gyntactic flags were not removed and the distinction between ADVP and PRT was
maintained. We estimate that exact match accuracy scores especially are affected by this
difference.

13[Henderson and Brill 2000] describe an experiment in which 39832 parsers were built
on the basis of each (and only) sentence in the training set. Experiments showed that
11.2% of these sentences could not be parsed correctly by these parsers.
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PCFG | PMPG | PCFG | weighted
PMPG | voting
ATIS 60.0 | 68.3 | 74.0 78.9
WsJ(xv) 85 | 12.3 | 14.9 19.1
wsJ(2.21/23) || 11.0 | 7.3 | 16.0 22.9

Table 3.13: Results for a Simple Weighted Voting Method: Exact Match

Accuracy

PCFG PMPG

LP | LR | Fg_y || LP | LR | Fgy | LP

PCFG+PMPG
| LR | Fp=i

Weighted Voting
LP | LR | Fg—

ATIS 88.0 | 81.9 84.8 85.6 | 85.3
wsi(xv) || 64.8 | 64.3 | 64.5 67.0 | 66.4
ws1(23) || 72.8 | 70.6 | 71.7 || 65.5 | 64.6

85.4 92.7 | 88.6 | 90.6
66.7 83.4 | 80.5 | 81.9

65.0 81.8

79.3 80.5

93.5 | 90.2 91.8
82.7 | 83.3 83.0
83.0 | 82.4 82.7

Table 3.14: Results for a Simple Meta-Classifier: Precision/Recall

[P IR [Fyi]

[Collins 2000b]
[Bod 2001]
[Charniak 2000]
[Collins 1999]
[Ratnaparkhi 1998]
[Charniak 1997]
[Goodman 1998]
[Magerman 1995]

[

89.9
89.7
89.5
88.3
87.5
86.6
84.8
84.3

Tjong Kim Sang 2001] || 82.3

89.6 | 89.7
89.7 | 89.7
89.6 | 89.5
88.1 | 88.2
86.3 | 86.9
86.7 | 86.6
85.3 | 85.1
84.0 | 84.1
78.7 1 80.5

Table 3.15: Precision and Recall for Parsing systems

WSJ corpus

on Section 23 of the
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3.11 An integrated system for PCFG+PMPG

All experiments described so far have dealt with disambiguation as a post-
parsing process. It is however perfectly possible to integrate both elements
of the combined system in one single process. The grammar in Table 3.2 can
be employed as a standard grammar in any CFG-parsing system, in the same
vein as the method outlined in [Bod 2001]. This way, the parsing system is
able to find the best parse in a viterbi-like manner.

Computing the probabilities is done in the same way as for a normal PCFG:
the probability of a rule is equal to its relative frequency in the grammar:

A — BC

In the same manner as described in Section 3.3.2, the probability of
(partly) indexed rules is computed by summing the probabilities of its valid
permutations. This method yields equivalent results to the post-parsing dis-
ambiguation method with differences in exact match accuracy that are in-
significant and due to the random resolution of ties.

Parsing time using this method is 1 second per sentence for the ATIS-
corpus, on a PIIT 500MHZ linux machine, using a cyK-parser [Chappelier and
Rajman 1998]. Wall Street Journal sentences in the 10-fold cross-validation
experiments took about 90 seconds per sentence to parse.

Due to these favorable parsing times, this parsing system will be used
during most of the experiments described in this dissertation.
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Method | Training Testing ATIS
Phase Phase ExMa
PCFG P(rule) = 425¢ P(tree) = [, P(rule;) 60.0
PMPG ¢ index tree-structures ¢ index parse 68.3
oP(rule) = ﬁ_;—?(? © prune parse
o store permutations of in- | oP(treepruned) = [y P(rule;)
dexed structures
¢ add probability of valid permu-
tations of indexed rules to prod-
uct
PCFG+ ¢ index tree-structures ¢ index parse 74.1
_ ASBC _ Hj= P(rule;)
PMPG OP(TU’le) - Ao © P(tree) — #of non;ndezednodes
PCFG+ ¢ index tree-structures oP(tree) = [, P(rule;) 74.1
PMPG © store permutations of in-
INTE- dexed structures in gram-
GRATED mar
oP(rule) = 428¢

Table 3.16: Comparing four disambiguators

3.12 Summary

Table 3.16 outlines the four disambiguators that were described in this chap-
ter. This table contains the method for training the data, the disambiguation
method and the exact match score on the ATIS-corpus.
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3.13 Current limitations of the research

Even though the PMPG shows a lot of promise in its exact match accuracy,
the following limitations are still apparent:

e the graph in Section 3.8 shows a possible optimized parsing system,
in which a pre-processing PCFG generates the n most likely candidates
to be extrapolated for the actual disambiguator. In this combined
system, each component has been assigned a certain weight: these are
parameters to be tweaked for each data set as well. This work should
include evaluation on a validation set to retrieve the optimal values for
these parameters.

e The bottleneck of the sparse grammar problem prevents us from fully
exploiting the disambiguating power of the pattern-matching algorithm.
The GRAEL-system described in Part II of this thesis will present a pos-
sible solution by using evolutionary techniques to generate, optimize
and complement existing, corpus-induced grammars.

e The current indexing process is bottom-up driven only. It would be
interesting to provide a choice between bottom-up indexing and top-
down indexing, to investigate the effect on parsing accuracy. Also,
a fully specifying-index scheme could be added, like the one that is
featured in [Goodman 1996], in which an index to a node describes
both its upper and lower context.

e Even though it can be argued that part-of-speech tagging is not a task
for syntax proper, experiments could be organized to investigate the
tagging qualities of a DOP-approach. Also, a direct comparison be-
tween the parser described in this chapter and the shallow parsing
methods discussed in Chapter 2(p.22) would provide interesting infor-
mation on the parser as a chunking method.

e Semantic flags and relationships, which have been removed in the anno-
tation for these experiments, could be re-introduced, to see if this kind
of extra-syntactic information can be induced from syntactic contextual
information only.
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e The weighted voting method described in Section 3.10 can also be ex-
tended by using a validation set to adjust the weights of each classifier’s
decision.

3.14 Conclusions

Even though DOP1 exhibits state-of-the-art parsing behavior, the efficiency
of the model is problematic. The introduction of multiple derivations causes
a considerable amount of computational overhead. Neither is it clear how
the concept of multiple derivations translates to a psycholinguistic context.

This chapter introduced a pattern-matching scheme that tries to explic-
itly implement the memory-based aspects of Data-Oriented Parsing. This
was achieved by disambiguating parse forests by trying to maximize the size
of the substructures that can be retrieved from memory. This straightfor-
ward memory-based interpretation however yields sub-standard parsing ac-
curacy in an experimental setting. A greedy pattern-matching method that
analyzes sentences, strictly by compiling them from the largest chunks of syn-
tactic information recorded in memory, without some kind of probabilistic
processing does not seem to be an optimal interpretation of Data-Oriented
Parsing. The probabilistic processes that are the focal point of DOP are
obviously essential for successful disambiguation. This is further corrobo-
rated by the fact that the combination of common-sense probabilities and
enhanced context-sensitivity through pattern-matching provides a workable
parse forest disambiguator, with accuracies comparable to those of regular
DOP.

Finally, we introduced an integrated method that emulates the system
combination method by employing the indices representing syntactic context
directly in the grammar. This method constitutes a computationally efficient
approximation of memory-based syntactic analysis and will be the parser
used in the consecutive chapters.
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Part 11

Data-Driven Experiments in
the Evolutionary Computing
Paradigm






Divide et Impera
Old Latin Proverb, used by a.0o. M. Hurault, Machiavelli and Louis XI.

An introduction to GRAEL -
GRAmmar EvoLution

This chapter introduces the GRAEL environment, which tries to provide a
general computational framework in which grammars for natural language
can interact and co-evolve according to principles of evolutionary computing.
Motivated from an engineering point of view (Section 4.1), GRAEL provides
an environment for grammar optimization and induction, but from a more
theoretical point of view (Section 4.2), GRAEL may also help us to understand
the dynamics of grammar emergence and evolution over time. The basic
concepts of GRAEL will be outlined in Section 4.3 to 4.5 and applied to a
practical context in the subsequent chapters.
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4.1 Grammar Induction and Optimization -
The Engineering Perspective

Data-analysis of the output generated by parsers like the ones described in
Chapter 3, usually brings to light fundamental limitations to these corpus-
based methods. Even though generally providing a much broader coverage
than hand-built grammars, parsers that compile their grammar from a corpus
of annotated sentences will still not hold enough grammatical information to
provide parses for a large number of sentences, as some rules that are needed
to generate the correct tree-structures are not induced from the original cor-
pus!. But even if there were such a thing as a full-coverage corpus-induced
grammar, performance could still be limited by the probabilistic weights at-
tributed to its rules. The GRAEL environment outlined in this section, tries to
provide a distributed evolutionary computing method for grammar induction
and optimization.

4.1.1 Grammar Sparseness

We touched upon the subject of grammar sparseness in Chapter 3 (p. 56).
The initial parsing stage proved to be quite problematic for a small corpus
such as the ATIS-corpus: 35 out of the 578 sentences (which constitutes
6% of the corpus) could not be parsed, due to sparse grammar problems.
Even though ATIS is a fairly homogenous corpus, some very specific and
unique structures reside in its structures. This means that if this kind of
sentence is featured in the test set, chances are considerably large that the
correct grammatical information needed to construct the correct parse tree
is not induced from the training set. A large corpus such as the Wall Street
Journal corpus seems less prone to this type of grammar sparseness. The
10xv experiments showed only 15 unparsable sentences, which accounts for
less than 1% of the sentences.

Note however that the 6% and 1% unparsable sentences on the wsJ and
ATIS corpus respectively do not include those sentences for which some (erro-
neous) parse was found, but for which the correct parse could not have been

LAlso consult [Klein and Manning 2001] for an overview of problems in data-driven
parsers caused by the information source.
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H Parse Coverage ‘ Structural Consistency

ATIS 94% 89%
WSJ 99% 96%

Table 4.1: Parse Coverage vs Structure Consistency

found, since the required rewrite rule needed to construct the correct parse
tree for a sentence in the test set, was not featured in the induced grammar?.
The 1% figure for the wsJ is therefore misleading: [Collins 1999] reports that
when using section 2-21 as a training set and section 23 test set, 17.1% of the
sentences in the test set require a rule not seen in the training set. Even for
a large corpus such as the wsJ, sparse grammar is in fact a serious accuracy
bottleneck.

We therefore distinguish between parse coverage and structural consis-
tency, following the terminology used in the debate between [Goodman 1996]
and [Bod 1996]. Structural consistency expresses how many times the
parser was able to generate the correct parse, i.e. for how many sentences
the parser was able to generate a parse forest in which the correct parse was
featured. [Black et al. 1993] defines the correctness of a parse in terms of the
crossing brackets measure, but we will employ a tighter definition in terms
of exact match and labeled precision and recall. The parse coverage of
a parser expresses how many times the parser was able to generate a parse
forest for a sentence. It does however not inform us of the correctness of
the analyses found. Table 4.1 displays these scores for the ATIS and the wsJ
10xv-experiments described in Chapter 3.

These figures indicate that deficient structural consistency is a genuine
problem for the parsing systems described in Chapter 3, and indeed for
any data-driven parser, because it limits the accuracy of the disambiguation
methods, even before they have started ranking parses in the parse forests.

For the ATIS-corpus we identified NP-annotation as particular problematic
to the overall structural consistency. Highly specific and flat structures like
the one in Figure 4.1 are unlikely to be induced from the training set when
needed to parse the test set. We therefore need to find a way to create new

2There are such 97 sentences in the ATIS corpus (cf. Chapter 7, p. 215).
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PN

NN NN syn sym sym CD CD

Figure 4.1: Np-structure for restriction code AP/57

grammatical information, as well as some kind of filtering mechanism that
can distinguish useful grammatical information from noise.

The GRAEL system that is described in this chapter, involves a distributed
approach to this type of grammar induction. The original (sparse) grammar
is distributed among a group of agents, who can randomly mutate the gram-
matical structures they hold. The new grammatical information they create
is tried and tested by interacting with each other. The neo-darwinist aspect
of this evolutionary system will make sure that any useful mutated grammat-
ical information is retained throughout the population, while noise is filtered
out over time. This method provides a way to create new grammatical struc-
tures previously unavailable in the corpus, while at the same time evaluating
them in a practical context, without the need for an external information
source.

4.1.2 Probabilistic Redistribution

In Chapter 3 we mentioned the necessity of tweaking the weights attached
to each algorithm’s decision in the combined system. Even though the data
analysis in Chapter 3 illustrated PCFG+PMPG’s ability to overcome parsing
accuracies in both components, in many other cases, it can be observed that
the ranking of the parse forest is sometimes counter-intuitive in that correct
constructs are often overtaken by obviously erroneous, but highly frequent
structures.

Table 4.2 displays the comparative data analysis from Chapter 3. This
table shows that the PCFG+PMPG disambiguator was able to correctly dis-
ambiguate 100 sentences more than the PCFG method and 75 sentences more
than the PMPG method. But PCFG and PMPG are able to find the correct
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Total Sentences 578 PCFG | PMPG | PCFG
Correct by All 302 (52.2%) PMPG
Wrong by All 94  (16.3%) | PCFG 14 5 26
Agreement 333 (57.6%) | PMPG 5 37 51
C. Disagreement 182 (31.5%) | PCFG+PMPG | 26 51 49

Table 4.2: Comparative Data Analysis - ATIS (repeated from Chapter
3(p.66))

structure for about 51 sentences that the combined system is not able to
disambiguate correctly. This means that for at least 51 sentences, the parts
are better disambiguators than the whole. This may indicate that for that
particular set of experiments, the weighting of the classifiers in the combined
system is not optimal.

One might consider optimizing these weights on a held-out dataset, to
consequently use the optimized combined system to disambiguate the sen-
tences in the test set. But the integrated method outlined in Chapter 3 (p.
3.11), does not readily allow such tweaking of the weights, since it is actually
an extension of a simple PCFG employing an indexed rewrite-grammar, such
as the one we resume in Table 4.3.

The probability of the rules in Table 4.3 are equal to their relative fre-
quency in the grammar. It might be the case however that, even though
directly induced from the annotated corpus, the probabilities of these rules
are not suited to the disambiguation task as yet. And even though determin-
ing the probability of a full parse does entail some extra calculations (Chapter
3 (p. 49)), it may be the case that the distribution of the probability mass
over the rules in the grammar does not specifically fit the parsing task yet.
It may therefore be useful to have the grammar practice the parsing task and
adjust the probabilistic weights of particular structures according to these
test cases.

Typical methods of probabilistic grammar optimization include, among
others, bagging and boosting [Henderson and Brill 2000; Collins 2000b], re-
estimation of the constituents probabilities [Goodman 1998; Charniak 2000]
and including extra information sources [Belz 2001; Collins 1999]. But the
same technique for grammar induction suggested in Section 4.1.1, can be
used for grammar optimization as well.
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Again, we propose an agent-based evolutionary computing method to
resolve this issue. Grammar optimization using a GRAEL environment is
in this vein related to the aforementioned bagging approach to grammar
optimization, albeit with some notable differences (which will be discussed
in more detail in Chapter 6). By distributing the knowledge over a group
of agents and having them interact with each other, we basically create a
multiple-route model for probabilistic grammar optimization. Grammatical
structures extracted from the training corpus, will be present in different
quantities and variations throughout the GRAEL society. While the agents
interact with each other and in effect practice on each other’s grammar,
a varied range of probabilistic grammars are optimized in a situation that
directly relates to the task at hand. The evolutionary aspects of the system
make sure that, while marginally useful grammatical information is down-
toned, common constructs are enforced, providing a better balanced model
for statistical parsing.
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Original ||

S — NP-SBJ VP S@12 - NP-SBJQ@6 VP@11 S — NP-SBJ@6 VP@11
S@12 —+NP-SBJ VP@11 S — NP-SBJ VP@11
S@12 —-NP-SBJ@6 VP S — NP-SBJ@6 VP
S@12 —+NP-SBJ VP S —+ NP-SBJ VP

NP-SBJ — prp NP-SBJ@6 —prp NP-SBJ — prp

VP — vbp NP VP@11 —vb NP@5 NPQ10 VP — vb NP@5 NPQ@10
VP@11 —vb NP NPQ@10 VP — vb NP NPQ10
VP@11 —vb NP@5 NP VP — vb NP@5 NP
VP@11 —vb NP NP VP — vb NP NP

NP — prp NPQ@5 — prp NP — prp

NP — NP PP PP NP NPQ@10 — NP@Q4 PPQ9 PPQ@8 NP@3 NP — NP@4 PPQ@Q9 PP@8 NP@3
NPQ@10 - NPQ4 PPQ9 PPQ8 NP NP — NP@4 PPQ9 PPQ8 NP
NP@10 - NPQ@4 PPQ@9 PP NP@3 NP —» NP@4 PPQ9 PP NP@3
NPQ@10 —- NP@4 PPQ9 PP NP NP — NP@4 PPQ9 PP NP
NPQ@10 - NPQ4 PP PP@8 NP@3 NP — NP@4 PP PP@8 NP@3
NP@10 — NP@Q4 PP PP@8 NP NP — NP@4 PP PP@8 NP
NPQ@10 —- NP@4 PP PP NP@3 NP — NP@4 PP PP NP@3
NP@10 —+ NP@4 PP PP NP NP —» NP@4 PP PP NP
NP@10 - NP PPQ9 PP@8 NP@3 NP — NP PPQ@9 PP@8 NP@3
NP@10 —+ NP PP@Q9 PPQ@8 NP NP — NP PPQ@Q9 PP@8 NP
NP@10 —+ NP PPQ9 PP NP@3 NP — NP PPQ@9 PP NP@3
NP@10 —+ NP PPQ9 PP NP NP — NP PPQ@9 PP NP
NP@10 —- NP PP PP@8 NP@3 NP — NP PP PP@8 NP@3
NP@10 —+ NP PP PPQ@8 NP NP — NP PP PPQ@8 NP
NP@10 —+ NP PP PP NP@3 NP — NP PP PP NP@3
NP@10 —+ NP PP PP NP NP — NP PP PP NP

NP — dt nns NP@4 — dt nns NP — dt nns

PP — in NP PPQ@9 — in NPQT7 PP — in NPQ7
PPQ@Q9 — in NP PP — in NP

PP — to NP PPQ@8 — to NPQ2 PP — to NPQ@2
PPQ@8 — to NP PP — to NP

NP — jj nnp NP@3 — jj nnp NP — jj nnp

NP — NP NP NPQ@Q7 — NPQ2 NP@1 NP — NP@2 NP@1
NP@7 —- NPQ@Q2 NP@1 NP —» NP@2 NPQ@1
NPQ@Q7 — NPQ@2 NP NP — NP@2 NP
NP@7 — NP NPQ@1 NP — NP NP@1
NPQ@7 — NP NP NP — NP NP

NP — nnp nnp NP@1 — nnp nnp NP — nnp nnp

NP — nnp NP@2 — nnp NP — nnp

NP — nnp nnp NP@1 — nnp nnp NP — nnp nnp

Table 4.3: Extended Grammar (repeated from Chapter 3 (p. 47))
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4.2 Grammar Induction and Optimization -
The Evolution of Language Perspective

At the same time, theoretical insights can be gained on the development of
compositional language in a simulated multi-agent setting. The object of the
experiments is to show that computational agents can develop grammar in
a self-reliant manner, without the need for an external information source.
From an engineering point-of-view, the GRAEL environment described in this
chapter, offers a grammar optimization and induction method that can help
alleviate problems of grammar coverage and sparse data, as well as optimize
the distribution of the probability mass. But by looking at the nature of
the interaction between the agents, a more theoretical account of grammar
optimization in an evolutionary environment can be given.

The evolutionary computing paradigm has always seemed reluctant to
deal with issues of natural language syntax. The fact that syntax is in essence
a recursive system, dealing with complex issues such as long-distance depen-
dencies and constraints, has made it difficult to incorporate it in typically
propositional evolutionary systems such as genetic algorithms. With the
notable exception of Losee’s LUST system [Losee 1995] most GA syntac-
tic research has focused on non-linguistic data. [Smith and Witten 1996],
[Wyard 1991], [Antonisse 1991] and [Blasband 1998] are some examples on
how Genetic Programming can be applied to the induction and optimiza-
tion of simple artificial grammars. But most of these systems are not suited
to investigate the dynamics of grammar evolution itself, mainly because the
grammatical system and evolutionary processes underlying these systems are
designed to fit a particular task, such as information retrieval [Losee 1995].

Computational simulations of the origins of syntax however, can provide
a more relevant account of grammar evolution. [Batali 1998b] implements
a simple agent-based architecture, in which a population of agents commu-
nicate meaning to each other. Through an example-based learning process
agents are able to detect systematic regularities in their communication, and
are able to create novel string-meaning pairs. Even without a presupposed
Language Acquisition Device [Briscoe 1997|, the community of agents is able
to achieve a high degree of coordination in their communication. [Kirby
1999] implements a similar agent-based system, in which compositionality is
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considered to be an emergent adaptation, necessary for the survival of the
language over different generations.

These systems, which we will discuss in more detail in Chapter 9, provide
a very interesting account on how syntax may have originated in primitive
hominids without presupposing any prior linguistic knowledge. Yet, these
systems have a tendency to converge on a particular grammatical model.
For the most part, this is due to the relatively limited meanings that the
compositional models are able to express, so that convergence is almost in-
evitable and further language change consequently problematic. This poses a
problem when trying to explain grammatical change and evolution over time,
which seems to be paramount for the creation of new meaning in particular
and language evolution in general. Moreover, the agents in these systems
are often attributed an implicit linguistic bias towards compositionality and
often establish an unrealistic communication model in which meaning is ex-
plicitly shared. We will go into these issues in some more detail in Chapter
9.

The GRAEL environment is also geared toward the goal of investigating
the behavior of grammars for natural language in an evolutionary context.
In its full form, GRAEL contains a population of agents in a virtual envi-
ronment. Agents are capable of expressing beliefs about this environment
in different ways. Comparable to the systems of [Batali 1998b] and [Kirby
1999], the agents are forced into a converging grammatical system, which
will consequently evolve over further generations and adapt to the changing
population and environment, avoiding finite convergence.

Different experiments will be described that focus on different aspects
of this evolutionary model. And even though the data-driven experiments
outlined in Part II are scarcely connected to the aforementioned research
on the origins of compositional language, a theoretical account of grammar
in an evolutionary context can answer some interesting questions about the
behavior of grammatical systems in an evolutionary context:

e What makes for an accurate grammar in an evolutionary context

e What is the best method to transport grammatical information over
generations

e How does convergence in a society of agents affect their performance
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e What fitness functions yield the best grammars in agents

4.3 Outline of the GRAEL-system

This chapter describes an implementation of an agent-based evolutionary
computing method for grammars, called GRAEL?. Before we go into the
details, it is necessary to define some keywords:

The GRAEL system, method Refers to the technicalities of GRAEL.
Anything to do with the algorithmic
details of GRAEL can be referred to as
belonging to the GRAEL system

The GRAEL environment This term is used to refer to the GRAEL
approach of using a distributed evolu-
tionary approach to grammar optimiza-
tion

A GRAEL society A particular group of agents perform-
ing a particular task, such as grammar
optimization, induction, ...

4.3.1 Architecture

A GRAEL environment typically contains a population of agents in a virtual
setting. Before any interaction occurs, grammatical information is randomly
distributed over the agents. Next, the agents will engage in a series of in-
teractions, called language games, a term borrowed from Al-research inves-
tigating the origins of grammar [Steels 1997] and adapted to the concepts of
the GRAEL environment. During these games, agents have to agree on some
kind of syntactic structure for a sentence. By updating their own information

3GRAEL is an acronym for GRAmmar EvoLution. All GRAEL systems described in this
dissertation feature some kind of grammatical system, evolving from an initial state to a
state in which it has been optimized for a particular task.
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source through practical use, useful grammatical information is re-enforced
throughout the environment.

“Knowledge”

The grammatical knowledge attributed to agents in the data-driven GRAEL
instantiations of Part II is largely determined from an engineering point of
view, as we try to provide the agents with a mental structure that will allow
them to optimize (and induce) grammars. An agent’s internal knowledge
management does therefore not necessarily reflect a psycholinguistically mo-
tivated reality.

Each agent’s “mind” contains a number of grammatical structures, con-
stituting analyses for a set of sentences. These structures can either be drawn
directly from an annotated treebank (Chapters 5 to 7) or be induced in an
unsupervised manner (Chapter 8). The language used by the agents can be
pre-defined (Chapters 5 to 8), but a set of experiments will also be described
which tries to model the emergence of grammatical language (Chapter 10)
within the GRAEL environment.

To illustrate how the GRAEL system operates, we will describe the en-
vironment used in Chapter 5. In these experiments, tree-structures of an
annotated treebank, i.e. the ATIS and WSJ corpus [Marcus et al. 1993], are
randomly distributed among the agents in a GRAEL society. Each agent now
holds a limited number of tree-structures in memory, or in other words: each
agent has some knowledge about the domain at hand. Figure 4.2 displays
the extraction of a GRAEL society from a treebank.

The grammatical information in the agent’s mind is divided into two
functional units: an I-language* and an E-language®. These terms were bor-
rowed from Chomskian terminology, but are used in a slightly different sense
here. The E-language (“externalized language”) consists of the original tree-
structures that the agent received at the onset of the GRAEL-society. One can

4 Chomsky’s term from the mid-1980s for the knowledge of language internalized by
individual speakers. [Matthews 1997].

5 Chomsky’s term in the mid-1980s for a language conceived as a system of events or
utterances or other units external to or as externalized by the individual speaker. Applied,
in effect, to all conceptions of language other than as I-language. [Matthews 1997].
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Treebank
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Figure 4.2: Extracting a GRAEL society from a treebank
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consider these as sentences the agent in question is able to produce and the
mental interpretation the agent has of this sentence. The E-language makes
it possible for agents to produce sentences. The agents also induce a gram-
mar® from these tree-structures. These rules constitute the initial I-language
(“internalized language”).

By interacting with other agents, the I-language is enriched with new
grammatical information. Apart from the initial induction of the I-language
from the E-language, there is no interaction between these two components
in the experiments described in Chapter 5: while the I-language is updated
through language games, the structures in the E-language are not altered.
Chapter 5 will explain why it is necessary to deny this interaction for gram-
mar optimization, but for the induction of new grammatical information, we
need to allow some limited interaction between the two components. The
experiments in Part III however, will abandon the distinction between I-
language and E-language, as psycholinguistic relevance becomes more essen-
tial to the nature of these experiments themselves.

An Example

Let us take a look at a toy example of a language game, to introduce the
operations that underly the communication between agents. Figure 4.3 shows
an annotated corpus of two tree-structures, distributed over two agents. The
tree-structures become the E-language, from which an initial grammar is
induced to create the I-language. Next, the agents in this GRAEL society will
start playing language games. Two agents are randomly selected from the
society. Agent2 is the listener, who will try to parse Agentl’s sentences’.
Once Agent2’s analysis reaches a certain threshold of parsing accuracy, the
language game is considered a success. Parsing accuracy is defined in terms
of the F-measure (see Chapter 3 (p.56)). The threshold value is typically set
to 1 (exact match accuracy), but a looser definition of communicative success
can be used by lowering the threshold value.

In this language game Agent1 presents the (string-only) sentence Winslow

6Represented as PMPG-grammar for most of the experiments.
"The sharing of knowledge is typically unidirectional: Agentl does not learn any new
grammatical data from Agent2.
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Figure 4.3: A Language Game in a toy GRAEL Society
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offered some bear hugs to Agent2. Agent2 tries to parse this sentence and
presents a parse which is consistent with his grammar. This analysis is
not the one Agentl intended, who will consequently try and help Agent2
out by revealing the possibly relevant correct substructure to Agent2 in a
bottom-up fashion (cf. Section 4.5). Agent2 will now parse the sentence
Winslow offered some hugs again with the new grammar recompiled from his
updated treebank. Agent2’s new analysis is consistent with Agentl’s and
the language game is a success.

Note that knowledge is explicitly shared, which does not correspond with
the original notion of language games, as outlined in [Steels 1997] (also see
Chapter 9), in which the success of a language game is typically determined
by whether or not the agents indicate the same point of reference in a com-
municative attempt. Knowledge in these types of language games is not
transferred from one agent to another in raw form, as opposed to the explicit
knowledge sharing in the GRAEL-societies described in Chapters 5 to 6. The
GRAEL approach is justifiable if we are not interested in modeling human-
like communication®, but in providing a workable method for agent-based
grammar optimization and induction.

4.3.2 The Parser

The parser that the agents employ in the corpus-based GRAEL experiments
is a memory-based optimization of the DOP-parser (Chapter 3), in which a
parse-tree is evaluated in terms of its similarity to previously observed tree-
structures in memory. We mostly use the integrated parser, described in
Chapter 3 (p. 76), unless computational problems force us to do otherwise.

4.3.3 Different Instantiations of GRAEL

In parts II and III four instantiations of the GRAEL system will be discussed,
each focusing on a different aspect or goal. (Chapters 5 and 6)

8GRAEL-4 (Chapter 10) will try to provide a possible explanation for the emergence of
grammar in early hominids and will therefore abandon such direct sharing of knowledge
to constitute a more realistic model.
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Figure 4.4: Crossover Operation

will deal with grammar optimization and the simple redistribution of gram-

matical information throughout the GRAEL society. (Chapter 7)
will allow the agents in the society to introduce new grammatical informa-

tion by mutating existing grammatical structures. (Chapter 8) is
an unsupervised approach to grammar induction for natural language, while

(Chapter 10) will try to provide a possible model for the emer-
gence of an artificial compositional language. The further research moves
towards GRAEL-4, the more we will abandon the pre-defined information
sources that are available to the agents, as less cognitive capacities are pre-
supposed in the agents. Notions of explicit knowledge sharing, necessary for
efficient data-driven grammar optimization, will need to be toned down as we
approach GRAEL-4 in favor of a more psycholinguistically motivated model
of human-like communication.

4.4 Link with Genetic Algorithms

There are two major operations possible in the GRAEL environment: crossover
and mutation. These are classic operators for genetic algorithms, but are
used in the GRAEL system in a slightly different sense. Crossover is used to
describe the operation in which parts of syntactic trees are being exchanged.
Figure 4.4 shows a basic crossover operation for two agents. The nature of
the crossover operation is inspired by Data-Oriented Parsing (Chapter 3)
with its emphasis on the substitution of entire substructures, rather than
simple rewrite rules.

There are three types of crossover in the GRAEL environment. Experi-
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mental results will show that crossover operation (2) does not improve on
the accuracy of agents in a GRAEL society, but it is included for completion’s

sake:

1. Language Game Crossover

2. Random Crossover

This is the default crossover operation
in the GRAEL environment. It always
occurs in the context of a language
game, when Agentl reveals part of the
correct structure to Agent2. The lat-
ter will incorporate this new informa-
tion in his grammar. LG-crossover is
limited to be unidirectional, like in the
example in Figure 4.3. Agentl acts as
a teacher to Agent2 and does not re-
ceive any grammatical information. Bi-
directional Language Game Crossover
would allow Agent2 to introduce noise
in the GRAEL society, degrading overall
performance.

An agent can also choose another agent
for random crossover. This means
that the two agents perform random
crossover operations on each other’s
tree-structures, extending each other’s
grammar, without actually testing out
the grammatical information in a lan-
guage game. This extends grammar
faster than Language Game Crossover,
but also introduces more noise. In prin-
ciple, this type of crossover could be
used to speed up knowledge transmis-
sion throughout a society.
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3. End-of-Life Crossover

Generations (cf. infra) allow a GRAEL
society to rid itself of badly performing
agents, while good agents will live on in
their offspring. End-of-Life Crossover
occurs when two (fit) agents are se-
lected to crossover their grammatical
information on a full-sentence level.
In this crossover operation, only full
tree-structures are crossed over, not
substructures present in the grammar.
The resulting agents will constitute
members of the next generation in the
GRAEL society.

The crossover operation can also be extended to include crossover on
nodes with different category labels, in which case it is actually an instance
of mutation (cf infra). This kind of crossover only occurs during random
crossover. An NP node can for example be crossed over with a VP node,
although experiments will show that hardly any useful grammatical informa-
tion can be inferred from relaxing the crossover constraints in this way.

Another classic GA-operator is mutation. Inspired by Darwinist biology,
mutation involves a possibly beneficial distortion of data. We define three
different types of mutation in the GRAEL environment:

1. Crossover Mutation

2. Internal Mutation

occurs when crossover constraints are
relaxed in the context of random
crossover (cf supra).

an agent can mutate his own grammat-
ical information by randomly adding
nodes, deleting nodes or changing node
labels (See Figure 4.5. This typically
occurs prior to procreation).
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Figure 4.5: 3 different Mutation Operations

3. Noisy Channel Mutation only occurs in the context of a lan-
guage game. When Agentl suggests
a substructure to Agent2, a virtual
noisy channel may cause Agent2 to
misunderstand the information sent by
Agentl. This kind of mutation may
involve adding nodes, deleting nodes
or changing node labels (See Figure
4.5). We will discuss these operations
in more detail in Chapter 7.

We have defined six different operations: language game crossover, ran-
dom crossover, end-of-life crossover, crossover mutation, internal mutation,
noisy channel mutation. Of these, only language game crossover is paramount
to the GRAEL system.

Generations

Even though not necessary to have a working GRAEL environment, the im-
plementation of generations in a GRAEL society is desirable from a compu-
tational point of view. Since crossover-operations as well as mutation create
new syntactic structures, an agent’s knowledge can grow unwieldy in a short
period of time. We therefore impose an implicit upper-limit on the number
of grammatical structures an agent can contain, mirroring human memory
restrictions.

When an agent has reached this end-of-life threshold, its performance in
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the GRAEL society will be evaluated in terms of fitness functions (cf infra).
A fit agent’s “genetic material” will proceed to a next generation, while an
unfit agent will merely disappear from the society.

There are two basic methods of procreation in the GRAEL environment:

e Sexual Procreation: The fit agent is allowed to look for another,
preferably fit end-of-life agent and perform end-of-life crossover. The
number of agents in its offspring is dependent on the parents’ size. If
it cannot find another end-of-life agent or its performance has been
sub-par, it will simply disappear from the society.

e Asexual Procreation: New generations can also be created without
an end-of-life crossover operation: a fit end-of-life agent can just splice
itself into two or more new agents, while unfit agents will disappear
from the GRAEL society.

Fitness

Neo-Darwinism is introduced by influencing the above choice between off-
spring or annihilation on the basis of the success of his communicative at-
tempts in the society. Successful communication can be defined in different
ways, by imposing a diverse set of fitness functions on the development of a
society:
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Efficiency

Size

Accuracy

Understanding

Understandability

Internal Consis-
tency

The fitness of an agent is a weighted combination of these metrics, so
that the grammatical properties of the fittest agent are directly influenced
by the weights assigned to each operator. Chapter 5 will describe experiments
in which GRAEL societies were optimized for each of these fitness operators.
Even though observed differences are often slight, some interesting tendencies

will be noticeable.

The computational efficiency of an
agent, i.e. the average CPU-time an
agent needs to parse a sentence.

The size of an agent’s grammar, i.e.
the number of rules in the grammar in-
duced from the agent’s knowledge. Re-
lated to efficiency.

The accuracy with which an agent is
able to parse a held-out set of test
strings.

The average accuracy with which an
agent is able to parse the other agent’s
sentences during the language games.

The average accuracy with which other
agents are able to parse the agent’s sen-
tences during the language games.

The accuracy with which an agent is
able to parse his own sentences.
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4.5 The Basic GRAEL Algorithms

The following algorithm outlines the basic GRAEL system, using only lan-
guage game crossover as an operator.

1. Initialize GRAEL-society
Threshold U: communicative success (F-score)
n agents containing tree-structures for £ sentences

2. Pick 2 agents
Agentl: holds structures S;...S55_1,5; in treebank Tggens1
Agent2: compile grammar G from treebank Tggenso

3. For each S; € {S1...Sk—1, Sk}

(a) Agentl displays part-of-speech tag sequence for S;
(b) Agent2 proposes parse P for S; consistent with G

(c) Calculate F-score F' for P
If F>U
then Go to (3a) with S;;
else  Agentl reveals the minimal correct substructure X C S;
Agent2 adds X toTygent2
Agent2 recompiles G from treebank Tggenso
Go to (3b) (only 3 passes allowed)

4. Goto 2
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The next algorithm describes the way Agentl determines the minimal
correct substructure (cf. Step 3(c) in the Language Game Algorithm).

1. Check for Constituent list CL;
if CL; exists
then goto4
else go to 2

2. Create word/position list for sentence S;
“Owy 1wy 2...w, N”

3. Create constituent list CL; for Agent1’s analysis

0 POS; CAT; — ...
POS;;; | POS;,; | CAT; — ...
N-1 N CAT,, — ...

4. Create constituent list CLo for Agent2’s parse
5. Find constituents in CL; not present in CLg

6. Traverse CL;
if no constituent marked

then choose constituent with highest number of non-
terminals on right-hand side
mark this constituent in CL;

else  look for previously marked constituent and choose the
superordinate node

7. Return marked constituent in CL; and its subordinate clauses
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CHAPTER 4 : AN INTRODUCTION TO GRAEL - GRAMMAR EVOLUTION

4.6 Concluding Remarks

This chapter introduced the GRAEL system, an agent-based evolutionary ap-
proach to grammar induction and optimization. While the distributed nature
of GRAEL allows for several alternatives to be developed simultaneously, the
evolutionary computing aspects make sure that only the best candidates sur-
vive over time.

The basic scope of GRAEL is to implement a framework in which sub-
standard grammars can improve themselves without the help of an external
information source, but simply by interacting with each other, sharing infor-
mation and practicing a particular task on each other. The following chapters
will describe experiments that show that GRAEL can be used to

e adapt a grammar to a very specific purpose, be it grammatical effi-
ciency, accuracy or purely successful inter-agent communication.

e improve a grammatical system by interacting with other (faulty) gram-
matical systems.

e yield a grammatical system that is superior to the overall grammatical
system present in the original corpus at startup time.

e sustain a generation-based environment without finite convergence.

More theoretically, we will look at the evolution and intricacies of each
agent’s syntactic component for particular (combinations of) fitness-functions.

From an engineering point of view, GRAEL shows that real-world natural
language grammars can adaptively improve themselves in an evolutionary
context without the need for external manual or automatic statistical and
grammatical smoothing.



It's survival of the fittest, Max, and we've got the fuck-
ing gun!

Lenny Meyer - Pi - (©1998

GRAEL-1 - An Agent-Based
Evolutionary Computing Approach to
Probabilistic Grammar Optimization

This chapter will discuss the first and most prominent batch of experiments
on the GRAEL environment. GRAEL-1 is a data-driven GRAEL-environment,
meaning that the grammatical structures being processed in the society are
culled from an annotated corpus of tree-structures. The goal of GRAEL-1
is to optimize treebank grammars through an extended series of language
games, in which grammatical information is shared, i.e. crossed over be-
tween agents. This means that no new grammatical information is created
in a GRAEL-1 society at any point: language games only re-distribute the
grammatical information that was present in the original corpus, so that the
probability mass is re-adjusted over the grammatical elements in a setting
that resembles the actual task at hand: parsing unseen data. The overview
in Chapter 1 (p. 8) defined the memory-based parsing system in Chapter 3
(PMPG) as a fully specified parsing system: it processed a pre-defined natu-
ral language grammar and induced the distribution of the probability mass
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directly from the data. GRAEL-1 takes a first step in discarding the pre-
defined elements in a parsing system, by implementing a way to dynamically
alter the distribution of the probability mass in an agent-based evolutionary
computing setting.

In Chapter 4 (pp 4.1,4.2) we defined two distinct uses for the GRAEL sys-
tem: grammar induction/optimization and the investigation of the dynamics
of grammar in an evolving system. GRAEL-1 is more geared towards the for-
mer and serves as a grammar optimization method, in that it optimizes the
probabilistic distribution of the grammatical chunks in a practical situation.
In a sense, the agents in the GRAEL society are practicing on each other by
performing the task that they are supposed to do. This is reminiscent of
an established machine learning optimization technique of using a validation
set! to tweak the training data before it is used to disambiguate a held-out
test set. GRAEL is different in that the agents start with inadequate training
data, using each other as ad-hoc validation sets.

Using an existing natural language and a pre-defined grammar, the exper-
iments with GRAEL-1 cannot provide a possible explanation for the origins
of compositional language in the way that [Batali 1998b; Steels 1997; Kirby
1999] do and GRAEL-4 will attempt to do. Some theoretical insight with
respect to the dynamics of grammars in an evolutionary setting can never-
theless be gained by looking at the data generated in the GRAEL society.
The pre-parsed natural language corpora provide an objective touchstone on
which we can evaluate the grammars developed by GRAEL-1. Furthermore,
by alternating the fitness functions in the GRAEL society, it is possible to
look at the nature of grammars, which were “genetically” enhanced for some
kind of task, such as parsing accuracy or efficiency.

We will discuss the setup of the GRAEL-1 experiments in Section 5.1. The
experimental results on the ATIS and WsJ corpus will be presented in Sections
5.2 and 5.3 respectively, after which we conclude with some summarizing
thoughts in Section 5.4.
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Corpus of Annotated Tree-Structures

— 90% | 10%

[Training Set] Test Set

""" Baseline Accuracy

Baseline Accuracy F-score achieved by the baseline model on the test set

Understanding Accuracy F-score achieved during language games

FS Accuracy Full Society Accuracy. The F-score on the test set achieved
by a grammar compiled from all agents in a society

AA Accuracy Average Agent Accuracy. The average F-score achieved by
agents’ grammars on the test set

GRAEL-1 Accuracy F-score achieved by the fittest agent’s grammar on the test
set

Figure 5.1: Default Setup for GRAEL-1 Experiments
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5.1 Experimental Setup

Chapter 4 introduced different operations the agents are able to perform
in the GRAEL environment. We will deal with the mutation-operation in
Chapter 7, but the different types of crossover we defined in Chapter 4, as well
as population size and the use of generations will be tweakable parameters
in the experiments with GRAEL-1.

5.1.1 General Setup

Figure 5.1 displays the main setup for GRAEL-1 experiments (without a vali-
dation set). An annotated corpus of tree-structures is randomly divided into
a 90% training set and a 10% test set. The training set is used to parse
the test set, like in the experiments of Chapter 3. The accuracy achieved by
the grammar induced from the training set will be considered as the baseline
accuracy. The tree-structures of the training set are then equally divided
over the agents in the GRAEL society.

We can measure the full society accuracy, by which we mean the accuracy
of a parser, powered by a grammar induced from all agents in the society.
In the initial stage, when no language games have been played, full society
accuracy is by definition equal to the baseline accuracy?. Another measure is
the average agent accuracy, indicating the average accuracy of the agents on
the test set. Since the latter involves a lot of computational overhead with
little information to be gained, it is usually not measured in the GRAEL-1
experiments.

Chapter 4 (p. 102) also described some fitness functions. The understand-
ing fitness function for instance measures the average accuracy with which
an agent is able to parse another agents’ sentences. We can determine the
average understanding accuracy in a GRAEL society, which expresses how well
the agents in the GRAEL society are agreeing on some grammatical system.
Understanding accuracy in this sense is a measure expressing how well the
GRAEL society is converging into a particular kind of probabilistic grammar.

LAlso commonly referred to as the tuning set.
2Differences in accuracies can nevertheless be observed, but are caused by the random
resolution of ties
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The measure that we are most interested in, is the one denoted as GRAEL-
1 accuracy in Figure 5.1. It is the accuracy with which the fittest agent in
the GRAEL society parses the sentences of the test set, with the fitness of an
agent being a weighted average of the fitness functions described in Chapter
4 (p. 102).

Section 5.1.2 will describe a number of experimental parameters that can
only be used in a setup with a validation set. In fact most experiments
described in this chapter will require the use of a validation set. In such
an experiment, the training set consists of 80% of the corpus, with a 10%
test set, while another 10% is used as a validation set which can be used
in different ways. We can calculate full society and GRAEL-1-accuracy on
the validation set and use these results to control the duration of the GRAEL
society (cf infra). The use of a validation set is also required if we want
to incorporate the fitness operator we defined as accuracy. This measure
calculates the accuracy with which an agent is able to parse a held-out set of
test strings and provides an objective criterion expressing how well an agent
is able to parse previously unseen data.

5.1.2 Experimental Parameters

In this section, we will take a look at the different experimental parameters
that can be used as variables in the experiments with GRAEL-1: population
size, i.e. the number of agents in the GRAEL society, the type of crossover
operation used to share information, the method for creating new generations
and the fitness functions that not only influence the development of the
GRAEL society, but also determine which agent to select to parse the test set.
But we will first turn to the temporal aspect and look at different methods
to determine the best point at which processing in a GRAEL-society should
be halted.

Defining the parameters

A matter that has so far been unaddressed is the “life-span” of a GRAEL
society. Even in experiments that do not include the use of generations,
a GRAEL society never finitely converges into a definite state, even though
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a tendency for the agents to reach a state of convergence by agreeing on
some kind of common probabilistic grammatical system can be observed.
The experiments will indeed show that the parsing accuracies of the agents
plateau at a certain point. But it is still not possible to determine a finite
point at which the GRAEL environment should end. This however poses a
problem: when exactly do we stop the language games and select the fittest
agent to determine its score on the test set? In other words: how do we find
out when a society is at its peak? We will propose a number of different
[halting procedures] that can determine the point at which activity in the
GRAEL society should be stopped and the fittest agent can be extrapolated.

The simplest method just imposes an upper limit on the number of
Language Game Runs that are performed. Once the society has played
a pre-defined number of language games, it is halted and the fittest agent
is selected. Another simple method just limits the Number of Genera-
tions. This trivially only applies to generation-based systems. We can also
determine the halting point, by looking at the agents’ parsing accuracy in
relation to Training Set Accuracy. This metric requires a validation set,
because we cannot measure these values on the test set as it would violate
the blind-testing principle. We can define some measure of improvement over
the original training set accuracy, after which the GRAEL society is allowed
to halt. This comparison can be made between (i) training set accuracy
and full society accuracy or (ii) training set accuracy and the accuracy of
the fittest agent on the validation set. The same kind of comparison can be
made to determine the halting point in terms of the agents’ parsing accuracy
in Relation to Full Society Accuracy. This means that we define some
measure of improvement of the fittest agent over the full society, with both
accuracies measured on the held-out validation set.

We can also define a threshold value of agreement between agents, by
looking at the average understanding accuracy between agents, by which
we mean the average accuracy the agents obtain on each other’s sentences.
Once the threshold has been reached, the GRAEL society can be considered
to have reached its maximum state of convergence, after which continued
processing would just render more of the same. This method is closely tied
to the last halting method we propose: plateau detection. We can detect
whether or not the fittest agent’s accuracy on the validation set has reached
a plateau of some kind.
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None of these methods however, can guarantee that the GRAEL society is
halted at a global rather than at a local maximum. We will therefore propose
a voting mechanism that halts the society when more than half of the halting
procedures trigger a halting point. This can to a great extent counter the
individual biases of the halting procedures.

[Population size] is another important factor in the GRAEL experiments.
The number of agents in a GRAEL society will have an important effect on
its outcome. A smaller society would appear to achieve a high understanding
accuracy faster than a larger society, but a larger society will generally have
the benefit of having a more diverse distribution of grammatical information.
It is an important point we will make during the discussion of the experi-
mental results that a GRAEL society does not necessarily benefit from a well
converging probabilistic grammar and population size will go a long way into
determining how fast and to what extent a GRAEL-1 society converges. We
will experiment on population sizes of 5, 10, 20, 50 and 100 agents.

Chapter 4 discussed a number of operations: Language Game
Crossover, Random Crossover and End-of-Life Crossover. End-of-life
crossover is closely related to the sexual procreation method of creating
new generations (cf. infra). Mutation crossover in which nodes bearing
different category labels are crossed over, will not be discussed, as this in-
troduces new grammatical rules in the system and therefore constitutes an
instance of mutation, which will be dealt with in Chapter 7. But we will
describe some experiments that investigate the benefit of having a random
crossover operation in Section 5.2.8.

Chapter 4 (p. 101) introduced the notion of in the context of

the GRAEL environment. A GRAEL society can in principle develop over time
without establishing different generations. In such a Single Epoch GRAEL
society, agents are allowed to grow and expand their grammars infinitely,
only limited by computational hardware constraints. But especially when
experimenting on large-scale corpora, such as the wWsJ corpus, one cannot
allow agents to limitlessly expand their grammatical knowledge for compu-
tational reasons. We have defined two different ways of generating newborn
agents out of fit agents that have reached end-of-life: splicing in which new-
born agents are created on the basis of one agent’s grammar and crossover
which creates newborn agents using two ancestors. Apart from being highly
recommendable from a computational efficiency point-of-view, we can also
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consider the use of generations as a way to purge noisy grammatical infor-
mation from the society. Whether new generations are created and the two
different methods for doing so will be considered as variable parameters in
the experiments.

We have already touched upon the [ﬁtness functions ]: efficiency, size, ac-
curacy, understanding, understandability and internal consistency. Several ex-
periments will be conducted that alternate weights for these different fitness
functions. This not only allows us to find the optimal setting with respect to
parsing accuracy, but also to investigate whether an emphasis on a particular
fitness function translates into grammatical peculiarities.

5.1.3 Overview of the experiments

Obviously interaction between experimental parameters can have an effect
on the development of the GRAEL-1 society and we would in principle have
to exhaustively experiment on all different combinations of all values of the
experimental parameters. This is however computationally intractable, since
it would involve a huge amount of experiments®. We therefore make some ed-
ucated guesses on the interdependence of experimental parameters to enable
us to limit the number of experiments to those combinations of parameters
that can reasonable be assumed to influence one another. The details of this
thought exercise can be found in Appendix C.

Let us list the experimental parameters and their possible settings:

1. Corpus

(a) ATIs: edited version of the ATIS-II corpus. (Chapter 3, p. 53)

(b) wsi: a first set of experiments was conducted on 1% sample of
the wsJ-corpus. But two experiments using the standard division
(Sections 02-21 as a training set, Section 22 as a validation set
and Section 23 as a test set) were also conducted.

2. Population Size: 5, 10, 20, 50 or 100 agents

3 A total of more than 5000 experiments.
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3. Crossover Operation (Chapter 4, p. 98)

(a) Random Crossover Disabled
(b) Random Crossover Enabled: random crossover between agents
possible

4. Creation of new Generations

(a) Single Epoch

(b) Sexual Generation: new agents created by end-of-life crossover
between two agents

(c¢) Asexual Generation: new agents created by splicing one agent
5. Halting Procedure

(a) Limiting the number of language game runs
(b) Limiting the number of generations

(¢) Relation of Full Society Accuracy to Training Set Accuracy (re-
quires validation set)

(d) Relation of Fittest Agent Accuracy to Training Set Accuracy (re-
quires validation set)

(e) Relation of Fittest Agent Accuracy to Full Society Accuracy (re-
quires validation set)

(f) Understanding Accuracy
(g) Plateau Detection (requires validation set)

(h) A majority voting method using all seven aforementioned proce-
dures

6. Fitness Function: see Table 5.1

Special attention needs to be drawn to the different possible settings
for the fitness function parameter. Table 5.1 displays 10 different settings.
Exhausting all combinations experimentally is again not computationally
tractable, so we need to limit the number of combinations. Settings 1 to
6 isolates each different fitness function, which allows us to estimate their
validity in combinations (7) to (10). Setting 7 combines the accuracy on the
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Table 5.1: Settings for Fitness Function Parameter

validation set with the average of the efficiency and size fitness functions.
Setting 8 combines validation set accuracy with the UNDERSTANDING fitness
function that measures the accuracy of inter-agent communication. Setting 9
investigates the combination of fitness functions that do not require an extra
validation set. Setting 10 combines all fitness functions.

We will illustrate the way fitness function weighting works using an ex-
ample. Let us consider a 5-agent society using fitness function setting 7 (the
combination of accuracy and understanding). Now each fitness function will
apply a ranking to the agents in a society. Consider the extreme case in
which the rankings of both fitness functions are reversed:

US | AC

HOQW»
CUs W N
CUs W A Ot

Now the weight attributed to the decision of each fitness function is applied
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and the products are summed. The agent with the highest ranking is the
fittest agent according to the combination:

US | AC | combined
A 1*4|5*6 3.4
B 2*4|4%*6 3.2
C 3*4|3%*6 2.7
D 4*4]2%*6 2.6
E 5*4|1%*6 2.5

Ties are resolved by choosing the decision of the fitness function with the
larger weight.

The population size parameter setting should have a significant impact
on all other parameters. We therefore perform experiments for each corpus
and each population size. It is suggested in Appendix C that the optimal
manner in which new generations are created is not related to the cor-
pus used. We can therefore determine the value of this parameter for the
ATIS-corpus and use this value in our experiments with the wsJ-corpus. The
halting procedure parameter constitutes a special case. We defined eight
possible settings, but changing its value, however, does not alter the GRAEL
environment destructively. There is nothing stopping us from resuming ac-
tivity in the GRAEL society after halting it when one of the thresholds of one
of the parameter settings has been reached. It is therefore not necessary to
repeat all experiments eight times for each parameter setting.

The fitness functions are considered to be strongly correlated to the cor-
pus parameter and the population size. Due to the long processing times on
the WsJ-corpus, we chose to limit the experiments to two possible settings
(settings 4 and 8 in Table 5.1). Since the other settings are more geared
towards the investigation of the dynamics of grammar in an evolutionary
context, rather than constitute actual workable parameter settings, this lim-
itation should not be harmful.

The following table provides an overview of the GRAEL-1 experiments:
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ﬁ]orpus H Actual Experiments ‘ Virtual Experiments \
ATIS 5 population sizes

* 3 generation models
* 10 fitness functions

* 8 halting procedures

= 150 experiments = 1200 virtual experiments
+2 random crossover experiments

* 3 generation models

* 5 population sizes

= | 180 experiments = 1230 virtual experiments

WSJ 5 population sizes
* 2 fitness functions
* 8 halting procedures
= 10 experiments = 80 virtual experiments
+ 2 full wsJ experiments

K = |12 experiments = 82 virtual experiments/

The parser used in the experiments is the memory-based approximation
of data-oriented parsing discussed in Chapter 3. For the ATIS corpus it was
possible to employ the integrated system described on page 76. But with
almost 40.000 sentences per run to parse at an estimated average parse time
of 90 seconds per sentence, it was not computationally feasible to run the
GRAEL-1 experiments in the same way for the wsi-corpus. We therefore
performed the 10 experiments for the wsJj-corpus on a 1% sampling of the
training set, validation and test set. The optimal system was then used to
perform two GRAEL-1 experiments on the entire data set.

One important addition was made to the parser: the ability to generate
partial parsers during language games. Agents typically start out with a very
limited and weak grammar, so that in the initial stages of a GRAEL-society
it may not be possible to generate a full parse for some sentences. But since
it is paramount for language games that there is at least some grammatical
structure being proposed, agents are allowed to propose partial parses, such
as the one in Figure 5.2 (illustrating a partial parse for the sentence I would
like a flight from Brussels to Toronto).
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Figure 5.2: Incomplete Parse for GRAEL-1-agents

5.2 Experimental Results: the ATIS corpus

In this section, we will take a look at the experimental results of GRAEL-1 on
the ATIS-corpus. Since population size is the most important experimental
parameter, this section is subdivided according to population size. Experi-
mental results on the wsJ-corpus will be discussed in Section 5.3.

For the experiments with the ATIS corpus, we used the same 10-part
division as in the experiments of Chapter 3. Partition 1 (57 sentences) was
used as a validation set and Partition 2 (58 sentences) was used as the test
set. The remaining 463 sentences were used as a training set to be distributed
over the GRAEL society. Using Partition 1 as a validation set means that we
typically have a smaller training set than in the experiments of Chapter 3,
which renders a direct comparison between the GRAEL-1 and the previous
ATIS-experiments more difficult.

Let us first define a number of default settings as a convenient starting
point to our discussion. This default GRAEL-society has a population size of
20 agents®, does not use generations®, only uses understanding for a fitness

420 is a middle ground between the societies that have a limited amount of agents
(5,10) and the societies that have a large number of agents (50,100).

SFitness functions only apply to the selection of the fittest agent and not to the devel-
opment of the society proper.
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function® (Function 4 in Table 5.1) and puts an arbitrary limit on the number
of language games to determine the halting point of a GRAEL-society. In
contrast to the experiments in Chapter 3, we will focus our discussion on
the F-score, rather than exact match accuracy: with a 58 sentence test set,
observed differences are too small on the sentence level to base our discussion
on.

5.2.1 20 Agents

We will first look at the “default” population size of 20 agents in a GRAEL
society and then respectively look at smaller and larger societies. We will not
exhaustively go into the results of all the experiments. A full results table of
all experiments on the 20-agent society can be found in Appendix D.

Single Epoch

We first consider the default experiment that implements a single epoch
GRAEL environment. This means that the fitness functions play no role in
the actual make-up of the society over time, since they are only used to select
the fittest agent from the society and do not decide on candidates for future
generations. This also allows us to bundle all experiments in which fitness
functions are varied into one experimental run.

Let us first look at the fitness function of understanding (US), in which
the fittest agent in the GRAEL society is the one with the highest average
understanding, i.e. the best F-score observed in inter-agent communication.
Figure 5.3 displays the course of the experiments: understanding accuracy
starts low at around 30%, quickly climbs in the initial phase, with widely
varying accuracies from one language game to the next. Over the course
of about 100 runs, accuracy more or less linearly increases. At around 125
games, understanding accuracy in the corpus seems to level around 95%.
This F-score can be compared to the result one would get when using the
training set to parse itself’, since from around the 150th language game run,

6 GRAEL revolves around language games in which this notion of understanding plays a
pivotal role.
"This figure is displayed in Figure 5.3 as the baseline accuracy (94.9%).
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Figure 5.3: GRAEL-1 - 20 Agents - Single Epoch - Understanding Accuracy
(US Fitness Function)

most of the grammatical information between the agents has been shared
and there is no information in the test set (i.e. the agent to be parsed) that
is not available to the training set (i.e. the agent that parses).

After about 150 runs, variance between accuracies decreases steadily over
time. This indicates that the society has reached convergence and that all
agents have a similar grammar, yielding similar results. The more language
games are being played, the more the agents’ grammars become tuned in to
one another. The graph in Figure 5.3 shows that the weaker agents become
stronger over time, but also that the stronger agents become weaker and
are drawn towards baseline accuracy. The last 200 language game runs in
Figure 5.3 show that there is hardly any development in the agents’ accuracies
anymore. The graph also shows that already after 150 language game runs,
there is no more understanding accuracy to be gained for most of the agents,
while the fittest agents in the society had already reached their peak after
less than 100 language game runs. Since there are no generations, the fitness
functions are only used to select the best agent to disambiguate the test set,
after the society is halted.

Let us now turn to the different halting procedures. Since most of these
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Figure 5.4: GRAEL-1 - Single Epoch - Fittest Agent Accuracy vs Full Society
Accuracy vs Baseline Accuracy on Validation Set

are based on accuracy scores on the held-out validation set, we provide Figure
5.4 in which the F-score of the fittest agent on the validation set is plotted
against the full society accuracy and the baseline accuracy, i.e. the F-score
obtained by the initial training set on the validation set.

The default halting method we suggested earlier is to impose a limit on the
number of language game runs. We halt the society after 200 language game
runs for this experiment. Table 5.2 displays the results on the test set at this
point. The fittest agent achieves a 97.1% F-score in its last language game
with another agent in the society. He scores 91.0% on the validation set and
90.9% on the test set. In other words, at this point a GRAEL-1 Accuracy of
90.9% (cf. Table 5.2) is achieved. This is on par with Full Society Accuracy,
slightly higher than Average Agent Accuracy and significantly higher than
the 89.3% baseline accuracy achieved by the original training set.

McNemar tests (Table 5.3) show that the difference between the baseline
accuracy and the other accuracies is significant on the recall score, but not
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200 Language Exact Match Correct LP LR | Fg=1
Game Runs (/58) | % Constituents %

Baseline Accuracy 41 70.7 437 /483 | /496 | 89.3
Full Society Accuracy 44 75.9 448 /491 | /496 | 90.8
Average Agent Accuracy || 43 (£1) | 74.1 (£1.7) 444 /485 | /496 | 90.5
GRAEL-1 Accuracy 44 75.9 447 /488 | /496 | 90.9

Table 5.2: GRAEL-1 - Single Epoch - US Fitness Function, after 200 LG Runs

| [ Exact Match [ Constituents |
baseline accuracy vs 11 6 44 15
GRAEL-1 accuracy 3 38 5 432
P(0.2) =0.5 > 0.05 P(3.9) = 0.044 < 0.05
full society accuracy vs 12 2 41 7
GRAEL-1 accuracy 2 42 8 440
P(0.3) = 0.6 > 0.05 P(0.06) =1 < 0.05

Table 5.3: McNemar Tests for GRAEL-1 experiment

on the exact match accuracy. But note that the size of the test set does
not allow reasonable statistical significance tests to be performed for exact
match accuracy. The difference between full society and GRAEL-1 accuracies
are not-significant. This indicates that the agents in the single epoch GRAEL-
society have very similar grammars, as there is hardly a significant difference
between a grammar extracted from the entire corpus and the fittest agent’s
grammar. Further corroborating this is the fact that average agent accuracy
has a very low standard deviation.
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For this experiment, we also tested each agent’s accuracy on the test set
after each language game. The figures below display these accuracies
compared to the baseline model. The graph shows that at around 120
language game runs, the GRAEL-society starts performing better than
the baseline model.

Test Set Accuracy Test Set Accuracy

60 —
80100
Language Game Runs

GrAEL e GrAEL

Exact Match Fs_,-score

The halting procedure that limits the number of generations does not
apply here, so we turn to the procedures that peruse the data displayed in
Figure 5.4 to determine the halting point. First up is the halting procedure
that measures the relation between full society accuracy and training set
(baseline) accuracy on the validation set. As soon as full society accuracy
on the validation set exceeds training set accuracy, the last 10 results of the
full society are recorded. Unless training set accuracy exceeds full society
accuracy again, the society is halted if the standard deviation on the last 10
F-scores is lower than 1.0%, suggesting that there is not much more room
for improvement. This measure would halt the society at an early point in
the current experiment, namely after the 90th run. The fittest agent when
the GRAEL society is halted at this point, achieves an exact match score of
69.0% and an F-score of 83.4%, which is significantly lower than the result
obtained by the default halting procedure.

The halting procedure that looks at the relation between the fittest agent
and the training set accuracy operates in a similar fashion, using the accuracy
of the fittest agent on the validation set instead of full society accuracy. This
procedure halts the society at a later point in time (run 120). The fittest
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agent of the GRAEL-society at this point achieves an F-score of 91.1% on
the test set, which is higher than the accuracy of the fittest agent at run 200,
even though this can not be statistically corroborated by the McNemar test.

The relationship between fittest agent accuracy and full society accuracy
on the validation set is problematic in this experiment, as even after fittest
agent accuracy starts exceeding full society accuracy, the two plots are still
interspersed (cf. Figure 5.4) over time, with full society still outperforming
the fittest agent at random intervals. A halting point does occur finally at
run 143, with the fittest agent achieving a 91.0% F-score on the test set.

The plateau detection procedure tries to limit the amount of parsing on
the validation set, by not looking at the relationship between the accuracy
of the fittest agent with some other kind of accuracy. It simply tries to
pinpoint some kind of plateau of accuracy of the fittest agent on the validation
set. Despite limiting the amount of computation involved, this procedure
is vulnerable to halting the society at a local maximum, since there is no
indication of a threshold value for the performance of the fittest agent as is
the case for the previously described halting procedures. In this experiment
however, plateau detection does not need to deal with this problem: it halts
the GRAEL-society at run 114, obtaining a 91.1% score.

Another method which further reduces the amount of computation by
totally eliminating the need for a validation set, looks at the understanding
accuracies recorded during the language games. For each run of language
games, we record the average understanding accuracy, i.e. the average F-
score during the inter-agent communication. If the average understanding
accuracy does not exceed the mean value of the last 10 average understanding
accuracy scores £ the standard deviation, convergence is assumed and the
society is halted. In this experiment, this point occurs after about 146 runs
(also see Figure 5.3 for an indication). But again, differences in parsing
accuracy are not statistically significant, with an exact match accuracy of
75.9% and an F-score of 91.0%.

The final halting procedure uses majority voting. The GRAEL-society is
halted when 4 out of 7 procedures have triggered a halting point. Table 5.4
displays the different halting points and the respective accuracies the fittest
agent obtains on the test set. The halting point according to the majority
voting procedure occurs at language game run 143.
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Halting Procedure Halting Point | Exact F-score on
Match | Test Set (%)
Relation FS Accuracy vs TS Accuracy 90 69.0 83.4
Plateau Detection 114 77.6 91.1
Relation FA Accuracy vs TS Accuracy 120 77.6 91.1
Relation FA Accuracy vs FS Accuracy 143 77.6 91.0
Understanding Accuracy 146 77.6 91.0
Limit number of language game runs 200 75.9 90.9
Limit number of language game runs 500 75.9 90.9
Limit number of generations — — —

Table 5.4: GRAEL-1: Single Epoch: Halting Points for understanding Fitness
Function

Even though the increase in accuracy on the test set is not statistically
significant when compared to the default halting procedure that imposes a
limit on the number of language game runs, the number of games that need
to be played can be reduced from 200 to 143, without any loss in accuracy. In
fact, accuracy is higher at the majority voting halting point. This is typical
for a GRAEL-1 experiment as we will see: there is a small period of time,
right before the society reaches a state of convergence, in which the agents’
performance is at its peak. We will come back to this effect in Section 5.2.6.

With the description of this default experiment, we have mainly tried to
introduce the practical aspects of some of the parameters we discussed in
Section 5.1.3. It is interesting to note that with this very simple approach,
we are already able to improve on the original grammar with a fairly basic
system and a limited amount of processing time. The improvement can be
attributed to the practical context that GRAEL provides: the redistribution
of the probability mass occurs on the basis of observations made during
parsing. So rather than mirroring the distribution of the original data set,
the probabilistic values of the grammar rules now reflect useful values for the
task of parsing itself.

Let us now turn to the different fitness functions and look at their effect
on the course and accuracy of a GRAEL society. Table 5.5 displays the results
of all the experiments on the single epoch GRAEL-1-environment. The fitness
function of size measures the agent’s grammar and singles out the agent with
the most compact grammar as the fittest agent. Not surprisingly, this fitness
function does not produce well-performing agents. Even in the convergence
state after 200 runs, the fittest, i.e. most compact agent roughly achieves



5.2 EXPERIMENTAL RESULTS: THE ATIS CORPUS

127

baseline performance, indicating that the more grammatical structures an
agent possess, the higher it will score on the test set. The data-analysis in
Section 5.2.9 will provide an insight as to whether or not size matters vis-a-vi
performance.

Even though it would intuitively appear to be closely related to size, the
efficiency fitness function, which measures the average CPU-time each agent
uses for parsing, achieves a significantly better result®. Even though it is
outperformed by most other fitness functions at the majority voting halting
point, it does achieve remarkably good scores very early in the lifespan of
the GRAEL-society.

Understandability, which expresses the agent’s fitness in terms of how well
other agents parse its E-language, does not constitute a good fitness function
if we want a well performing grammar. This is hardly surprising, as the
make-up of the E-language only initially influences the I-language that is
being developed. We will see in subsequent experiments that understandability
functions, more as a random choice in the society, rather than as a guided
principle.

The accuracy fitness function, which assumes the fittest agent to be the
one with the highest score on the validation set, would intuitively appear to
yield agents that score equally well on the test set, even though there is a
distinct danger of over-fitting. The data nevertheless shows that this fitness
function does perform well: the majority voting halting procedure produces
an agent that achieves a 91.1% F-score.

Internal consistency is not a very good fitness function, as it does not
make allowance for the parsing of any kind of unseen data. The aim of
implementing this fitness function was to see how far one can get by defining
the fitness of an agent strictly on its own terms. This particular experiment,
with its high degree of convergence, is however not well suited to draw any
conclusions on this issue, as even the worst fitness function will still select
an agent that performs reasonably well.

Looking at the data in Table 5.5, it would seem that little is to be gained
when fitness functions are combined in a single-epoch society. But we would

8Note that the recorded CPU-time may also be influenced by uncontrollable factors
that are unrelated to GRAEL-1.
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size 90 80.1 — — — — 115 | 89.9 | 146 | 89.9 | 200 | 90.2 — — | 200 | 90.2
Efficiency 90 | 88.2 | 106 | 90.8 | — — 104 | 90.7 | 146 | 90.9 | 200 | 90.9 | — | — | 146 | 90.9
Accuracy 90 84.2 | 131 91.1 131 91.1 131 91.1 146 | 91.0 | 200 | 91.0 — — | 131 91.1
Understanding 90 83.4 | 120 | 91.1 | 143 | 91.0 | 114 | 91.1 | 146 | 91.0 | 200 | 90.9 — — | 143 | 91.0
Understandability 90 | 78.6 | 138 | 90.3 | — — 120 | 87.3 | 146 | 90.7 | 200 | 90.8 | — | — | 146 | 90.7
Internal Consistency 90 | 72.3 | — — — — 149 | 90.6 | 146 | 90.7 | 200 | 90.8 | — | — | 200 | 90.8
Efficiency & Size + 90 | 75.4 | 143 | 91.1 | 143 | 91.1 | 143 | 91.1 | 146 | 91.1 | 200 | 91.1 | — | — | 143 | 91.1
Accuracy
US&UB + 90 | 89.9 | 98 | 90.7 | 107 | 91.1 | 98 | 90.7 | 146 | 91.0 | 200 | 91.1 | — | — | 107 | 91.1
Accuracy
Efficiency & Size + 90 82.4 | 131 | 91.1 | 137 | 91.1 | 130 | 91.0 | 146 | 91.1 | 200 | 91.1 — — | 137 | 91.1
US&UB
Efficiency & Size + 90 80.4 | 136 | 91.1 | 137 | 91.1 | 136 | 91.1 | 146 | 91.0 | 200 | 91.1 — — | 137 | 91.1
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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like to draw attention to the experiment that combines the efficiency, size,
understanding and understandability fitness functions. The majority voting
method to halt the society, produces a fittest agent that achieves a 91.1%
F-score on the test set. This combination seems able to yield a strong agent
for parsing, without having to process a validation set, which provides an
advantage from a computational point of view. And when combining under-
standing and accuracy, the system is able to reduce the number of language
game runs by almost 50% with no loss of accuracy.

One last point with respect to Table 5.5 is that the majority voting
method is generally able to halt the GRAEL-society at its peak performance.
No single halting method seems to consequently suggest the best halting
point, but the combination of different sensibilities of what condition the
GRAEL-society should be in to be halted, seems to be a valid method.

We will now turn to the experiments that introduce generations in the
GRAEL-society. We have suggested two method of creating new generations:
asexual procreation (splicing), in which fit agents are allowed to splice
into two agents, and sexual procreation(crossover) in which two fit agents
cross over their grammars to create three new agents. Both methods have
in common that a number of unfit agents will need to disappear from the
society, taking their suboptimal grammatical information with them. This
has as a direct effect, that as opposed to the previous experiments, fitness
functions in fact do shape the development of a GRAEL-society. This requires
each fitness function to have his own experimental run.

But first we need to resolve a fundamental issue: both methods for cre-
ating new generations need a way to establish the end of an agent’s life, i.e.
the point at which it is appropriate to procreate. This can also be considered
as a parameter to be optimized and future research will look into alternative
approaches. But for the experiments described in this chapter, lifespan is de-
fined in terms of the number of new rules an agent acquires during language
games. After each language game run, the number of new grammatical rules
that each agent has learned is recorded. The lower this number, the “older”
an agent is considered to be. If over the course of n language game runs, an
agent does not obtain any new grammatical information from other agents,
it is assumed that it has all the information that is available in the society
and is therefore considered to be an end-of-life agent. n is usually set to the
number of agents in the society: this provides the agent with a buffer period
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Figure 5.5: Splicing an Agent

during which it can engage in language games with most of the other agents
in the society to further optimize the grammatical information it contains
before reaching its end-of-life state. Next, the end-of-life agent is allowed to
procreate, either by splicing itself or by crossing over with another agent.

Asexual Procreation (Splicing)

Let us first look at the experiments on asexual procreation (described in
Figure 5.5): after each language game run, the end-of-life agents are rounded
up and evaluated: if they belong to the 50% fittest agents in the society, they
are eligible for procreation. For each agent to be spliced, the oldest agent
among the 50% most unfit agents will disappear from the society. Before
it does, however, both the fit agent as well as the unfit agent, let go off
their E-language, i.e. their trees to be parsed by other agents, sending them
to what is described in Figure 5.5 as the public domain. The I-language,
i.e. all the grammatical structures that agentl has compiled by playing
language games with other agents is divided into three parts: 50% of the
grammar, containing the most probable rules, and two 25% parts in which
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the remaining 50% are randomly distributed. Each agent receives the 50%
part and one of the two 25% parts. Now there are two new agents, agent1’
and agent1” each containing 75% of their ancestor’s grammar.

The newborn agents agentl’ and agentl” now each have their own I-
language, but still need an E-language. They can obtain this by randomly
pulling trees from the public domain. To make sure all the sentences of the
E-language are accounted for by the I-language, the grammatical structures
are extracted from those trees and added to the I-language.

In the experiments described here, the use of generations does not dynam-
ically alter the population size: there is a fixed number of slots for agents.
The asexual procreation method however creates two new agents. One of
the agents can take the ancestor’s slot in the society, while the other agent
will take the place of the oldest unfit agent in the society. The latter will
disappear from the society. We put an arbitrary limit of 10 generations per
slot in the society. This means that the society is halted when there is only
one agent left in the society and consequently no more language games can
be played.
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(Cav eal It should be noted that at this point in the experiments, th;
method for creating new generations is in no way trying to mirror biological
processes. Since the goal of GRAEL-1 is to optimize the probability mass
of grammars induced from annotated corpora, so that they can be used to
optimally parse new, unseen data, the way in which old agents procreate,
disappear and originate is motivated by practical purposes, rather than
theoretical.

e The strict distinction and separation between the E-language and the
I-language does not agree with psycholinguistic insights on human
language analysis and/or generation. But allowing the I-language
to influence the E-language, would necessarily introduce erroneous
grammatical structures in the agent’s E-language, rendering them
unsuitable as a touchstone in language games with other agents.

e The E-language in unfit agents does live on in new generations, which
violates the concept of a generation-based system. If we would how-
ever remove the E-language as well as the I-language when creat-
ing new agents, the grammatical information that is present in the
GRAEL-society at later stages, would become very limited, as agents
would prefer a small set of easily parsable structures. This would im-
prove convergence and understanding scores throughout the corpus,
but would yield unsuitable grammars for parsing unseen data

e Newborn agents obtain 75% of their ancestor’s grammar. This fig-
ure is not in the slightest motivated by biological evidence, but is a
reasonable ballpark figure that helps the society move along at a rea-
sonable pace, while leaving room for improvement over the original
grammar

e Newborn agents compile their E-language from the so-called “public
domain”, which consists of fit, as well as unfit agents’ structures. This
method ensures that grammatical information, that may previously
have yielded unfit agents is redistributed across the society, so that
other agents may still benefit from these structures.

L J
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Figure 5.6: GRAEL-1 - 20 Agents - Splicing - Understanding Accuracy (US
Fitness Function)

First, we look at the default experiment which uses understanding as the
only operative fitness function. Figure 5.6 plots the understanding accuracies
of the agents. The baseline accuracy is the accuracy of using the training set
to parse itself. The plots start out by running similarly to those in Figure
5.3, but at around the 50th language game run, the first agents start splicing.
The overall effect is that the peak of the society in understanding accuracy
is delayed to around the 150th language game run as opposed to the 100th
language game run in the previous experiments.

After about 200 language game runs, understanding accuracy levels out
and the society seems to have reached a state of convergence. About 120
language game runs later, most agent slots have produced their 10 generations
and the number of agents starts to decrease. This has as an effect that for
a brief period, until the last agent disappears, understanding accuracy rises
again, as the small number of agents seem to have an easier time adjusting
to each other’s trees. The rise in understanding accuracy does not mean that
these agents necessarily constitute better parsers however.
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200 Language Exact Match Correct LP LR | Fg=;
Game Runs (/58) | % Constituents %

Baseline Accuracy 41 70.7 437 /483 | /496 | 89.3
Full Society Accuracy 43 74.1 445 /482 | /496 | 91.0
Average Agent Accuracy || 43 (£0.9) | 74.1 (£1.5) 447 /485 | /496 | 91.1
GRAEL-1 Accuracy 45 77.6 455 /495 | /496 | 91.8

Table 5.6: GRAEL-1 - Splicing - understanding Fitness Function, after 250 LG
Runs

Table 5.6 provides an overview of the results on the test set after the 250th
run. Baseline Accuracy is the same as in the previous experiment. Full So-
ciety Accuracy and Average Agent Accuracy are higher than the baseline
accuracy. The accuracy of the fittest agent at this point however is consid-
erably higher than all other accuracies, with a considerable improvement in
F-score over the previous experiment as well. This is mainly due to a signif-
icantly increased precision score. As in the previous experiment, McNemar
significance tests on these figures, show that the difference between baseline
accuracy and GRAEL-1-accuracy is significant for the F-score, while this is
not the case for the difference between the full society and the fittest agent.

Figure 5.7 shows the accuracy of the fittest agent on the validation set,
plotted against the accuracy of the full society and the baseline accuracy.
Except for a slight lag around the 50th language game run (the point at
which many agents produce their first offspring), we notice that the transition
between generations is not clearly visible in Figure 5.7, because it is not one
particular agent’s plot being displayed, but the plot of the fittest agent after
each language game run. Compared to Figure 5.4, we notice that the fittest
agent accuracy takes about 50 runs longer to catch up to the baseline model
and the full society, but then overtakes it more convincingly than the fittest
agent in the previous experiment.

The different halting points for this experiment and the accuracy of the
fittest agent at that point on the test set can be found in Table 5.7. In
the current experiment, in which understanding is the only fitness function
at work, the majority voting method would halt the society after the 186th
run with an F-score of 91.7%. This is only slightly lower than the score
that is obtained when halting the society after 250 runs. We have already
noted that at the end of the society, when only few agents are left, there is
a danger of overfitting, with only limited grammatical resources available in
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Figure 5.7: GRAEL-1 - Splicing - Fittest Agent Accuracy vs Full Society
Accuracy vs Baseline Accuracy on Validation Set

the society. The agents at this point have been tuned to one another, but
do not hold enough grammatical structures to achieve the accuracy of their
ancestors. It is apparent that for this kind of experiment, the point at which
the society is halted is paramount to finding an agent with a good grammar
for parsing unseen data.

Let us take a look at the other fitness functions. Table 5.7 shows that
the size fitness function does not produce a good GRAEL-society. Agents
that have a lot of grammatical knowledge are not allowed to splice, so that
a typical newborn agent holds less grammatical knowledge than newborn
agents in other experiments. As a consequence, this experiment takes signif-
icantly longer than most other experiments, as new generations are created
in longer intervals. Since only end-of-life agents, containing a fair amount
of grammatical information, are selected for procreation, it would seem that
the effect of the fitness function on the society as a whole would be limited.
But the fitness function is also responsible for selecting the fittest agent to
parse the test set and since at some points in the society no end-of-life agents
are present, this selection is not limited to end-of-life agents, so that overall
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP | F HP | F HP | F HP | F HP | F HP | F HP | F HP | F
Size — — — — — — — — 203 | 76.9 | 250 | 80.3 | 381 | 78.5 | 381 | 78.5
Size (10%) — — — — — — — — 182 | 83.6 | 250 | 86.6 | 381 | 82.3 | 381 | 82.3
Efficiency — — — — — — — — 188 | 86.3 | 250 | 89.1 | 353 | 85.9 | 353 | 85.9
Accuracy 180 | 91.8 | 235 | 92.0 | 235 | 92.0 | 81 | 63.3 | 181 | 91.8 | 250 | 91.9 | 341 | 91.7 | 235 | 92.0
Understanding 209 | 91.8 | 186 | 91.7 | 186 | 91.7 | 186 | 91.7 | 176 | 91.5 | 250 | 91.8 | 370 | 91.1 | 186 | 91.7
Understandability — — | 247 | 91.2 | 257 | 91.2 | 177 | 89.1 | 210 | 90.4 | 250 | 91.2 | 336 | 89.9 | 250 | 91.2
Internal Consistency 153 | 78.3 | 233 | 90.6 | 235 | 90.6 | 233 | 90.6 | 201 | 89.9 | 250 | 90.5 | 351 | 89.5 | 233 | 90.6
Efficiency & Size + 187 | 90.2 | 229 | 91.6 | 229 | 91.6 | 229 | 91.6 | 187 | 90.2 | 250 | 91.4 | 362 | 90.7 | 229 | 91.6
Accuracy
US&UB + 188 | 90.5 | 237 | 92.1 | 237 | 92.1 | 237 | 92.1 | 193 | 90.6 | 250 | 92.0 | 353 | 90.4 | 237 | 92.1
Accuracy
Efficiency & Size + 241 | 91.6 | 246 | 91.7 | — — 60 | 58.9 | 205 | 91.2 | 250 | 91.6 | 379 | 90.0 | 246 | 91.7
US&UB
Efficiency & Size + 209 | 92.0 | 198 | 91.2 | 268 | 91.7 | 198 | 91.2 | 211 | 92.0 | 250 | 91.8 | 361 | 91.0 | 211 | 92.0
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fg—_1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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newborn agents are selected for parsing.

When we limit the number of agents eligible for selection as the agent to
parse the test set to the 10% oldest agents in the society, F-scores do increase
at some points in the society. But there are still not enough halting points
to trigger majority voting at any other point than the end of the society, at
which point there are only two agents left, so that accuracy suffers anyhow.
The results of this experiment suggest that the fitness function of size for
selecting agents eligible for procreation, does in fact have a strong effect on
the outcome of a society.

Experiments described later in this chapter also corroborate this claim:
in these experiments, the selection of agents for procreation and the selec-
tion of agents for parsing are handled by different fitness functions. These
experiments show that even when a strong fitness function like accuracy is
allowed to pick the agent for parsing the test set, the fitness function of size
for choosing candidates for procreation has weakened to society to such an
extent that there are no agents in the society that can parse the test set well.

The efficiency fitness function fares a little better in the splicing experi-
ment, but still does not achieve anything close to baseline accuracy, as op-
posed to its single epoch counterpart. In the latter experiment a high degree
of convergence was apparent, with most agents having a similar grammar
early on, so that the efficiency fitness function was an expression of real effi-
ciency issues in the grammar, rather than be correlated to grammar size. In
this experiment however, agents throughout the society widely vary in gram-
mar size, so that the efficiency function is more related to grammar size, than
to its internal structure. To its credit however, efficiency does outperform the
fitness function of size by a significant margin, proving again that the size of
a grammar is only partially related to the amount of CPU-time parsing with
that grammar entails.

Using understandability as a fitness function achieves results that are better
than the baseline model, but are still lower than other fitness functions. The
understandability measure expresses how well other agents’ I-languages (to be
optimized) are suited to parse the agent’s E-language (constant). Since new-
born agents obtain their E-language from a public domain unit in which trees
not used by the society reside, the understandability fitness function prefers
agents that have a E-language holding a collection of easy to parse trees.
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Figure 5.8: GRAEL-1 - Splicing - Fittest Agent Accuracy vs Full Society
Accuracy vs Baseline Accuracy on Validation Set: accuracy fitness function

This however in no way guarantees that these agents themselves have decent
I-languages. On the contrary: these agents seem to perform significantly
worse than the agents that yield a good understanding accuracy.

The fitness function of internal consistency produces similar results to
its understandability counterpart. We hypothesize that understandability and
internal consistency fitness functions produce fittest agents that are similar
to average agents in a single-epoch society with understanding as a fitness
function.

Figure 5.8 shows the plot for the fittest agent in a GRAEL-society using
the accuracy fitness function. The fittest agent plot linearly increases to
overtake the baseline accuracy, as well as the full society around the 200th
language game run. Even though accuracy decreases over time, the F-score
of the fittest agent at the end of the society (341 runs) is still pretty high.
Halted about 100 runs earlier, as proposed by the majority voting method,
the F-score is 92.0% which constitutes a significant increase over the baseline
accuracy.
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Combining the efficiency and size fitness functions with understanding and
understandability’ does not deteriorate nor improve performance. The ac-
curacy fitness function does not benefit from a combination with efficiency
and size, but the combination with understanding does give it a slight edge
over the other experiments. The combination of all fitness functions finally
achieves a F-score of 92.0%.

Sexual Procreation (Crossover)

The last set of experiments for the 20-agent GRAEL-society involves sexual
procreation, the method in which new generations of agents are created by
crossing over the grammatical information found in two fit end-of-life agents.
Figure 5.9 describes how this works. This procedure requires two end-of-life
agents. If only one is available, it will continue to live on in the society
until another fit end-of-life agent becomes available. The sexual procreation
method used in these experiments creates three new agents. This means that
besides the two end-of-life agents, an unfit agent will need to disappear from
the society. Note the difference with the splicing method in which for each
fit agent and unfit agent also has to disappear from the society.

The two fit end-of-life agents and the unfit agent donate their E-language
to the public domain, so that the three newborn agents can randomly draw
tree-structures from it to compile a E-language of their own. The two fit
agents divide their grammars into two parts: partl contains the 25% most
probable rules in the grammar!® and part2 holds the rest of the grammar.

part2 is further randomly subdivided into three divisions. Each of the
three newborn agents will contain both ancestors’ part1 and a subdivision of
each ancestor’s part2. This means that each newborn agent gets roughly two
25% parts of the grammar from each ancestor. This does not mean however
that the newborn agent’s grammar is the same size as the ancestor’s, since a
lot of the rules in the inherited grammar parts will overlap. On average, the
newborn agents’ I-languages are 75% to 85% the size of their ancestors.

The default experiment using understanding as the only fitness function
(Figure 5.10) runs a similar course as its splicing counterpart: the best un-

9The fitness functions that do not require the use of a validation set.
10Tn the case of PMPG-type rules: their subordinate clauses as well.
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Figure 5.9: 2 Agents Crossing Over grammatical Knowledge (Sexual Procre-
ation)
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Figure 5.10: GRAEL-1 - 20 Agents - Crossover - Understanding Accuracy
(understanding Fitness Function)

derstanding accuracy scores are about the same. The agents in the splicing
experiment seemed to converge around the 100th language game run, while in
this experiment it takes about 50 runs longer. Differences in understanding
accuracies before convergences vary more than in the splicing experiment.
This overall experiment however lasts about 50 runs less, which is due to the
fact that newborn agents from sexual procreation hold more grammatical
information on average than spliced agents.

Using majority voting to determine the halting point for this society,
the fittest agent in this society achieves a 91.5% F-score on the test set,
which constituents a 0.2% improvement over the same society in the splicing
experiments. The size fitness function performs much better in these exper-
iments: 85.3% as opposed to 78.5%. The efficiency fitness function remains
unaffected by the different generation-method and so is the accuracy fitness
function, even though in these experiments the GRAEL-society needs over
30 runs less to achieve the same results. The results of combining fitness
functions are on par with the previous experiments. The combination of ef-
ficiency, size and accuracy benefits from the fact that the size fitness function
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Method Runs | Exact Match | Precision | Recall | Fg_;

/58] % %

Baseline 1 41 70.7 437/483 437/496 | 89.3

Single Epoch 107 44 75.9 450/492 450/496 | 91.1

Splicing 237 45 77.6 459/501 459/496 | 92.1

Crossover 181 | 45 | 77.6 | 456/494 | 456/496 | 92.1

| Baseline | Single Epoch | | Baseline [ Splicing | | Baseline | Crossover |
41 18 26 33 32 27
5 432 11 426 8 429
P(6.3) = 0.01 P(10.0) = 0.002 P(9.3) = 0.002

[ Single Epoch [ Splicing | [ Single Epoch [ Crossover | [ Splicing | Crossover |

36 10 38 8 32 8

1 449 2 448 5 451

P(5.8) = 0.02 P(25) = 0.11 P(0.3) = 0.58

Table 5.8: GRAEL-1 ATIS - 20 Agents

seems to be more suited to this type of procreation. The combination of
understanding and accuracy achieves a 92.1% F-score (similar to splicing),
but had the society halted one run later, 0.1% could have been gained still
(even though the difference is insignificant). The F-score of the two other
combinations are at least 0.1% lower than in the splicing experiment. This
may be due to the fact that the majority voting method halted the society
a little too early in both experiments.

Summary

This concludes the experiments for the GRAEL-society consisting of 20 agents.
Table 5.8 summarizes the results. The GRAEL-1 results are based on the
societies using majority voting to determine the halting point and the com-
bination of understanding and accuracy as a fitness function. Table 5.8 also
shows McNemar tests on the constituent level (i.e. recall). These show that
all differences in results between the baseline model and the GRAEL-1 in-
stantiations are significant. The difference between the single epoch method
and the splicing method is significant, but the difference with the crossover
method can not be substantiated on the basis of F-score alone.

To summarize, we can state that the 20 agent GRAEL-1 society is a good
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\ [SI |[EF |[AC|US |UB|IC |[Cl1 [C2 [C3 |C4 |
10 Agents [[90.3 [ 90.8 [ 91.1 [ 91.3 [ 90.3 [ 90.6 [ 91.2 [ 91.3 [ 91.2 | 91.1
20 Agents | 89.9 [ 90.9 [ 91.1 [ 91.0 [ 90.7 [ 90.8 | 91.1 | 91.1 | 91.1 [ 91.1

Table 5.9: GRAEL-1 - Single Epoch: Majority Voting Scores for different
fitness functions

method for grammar optimization. Using a simple method that does not
include generations, we are already able to significantly improve the F-score
over the baseline model. A further significant improvement is achieved by
introducing a way for the society to create new generations, so that badly
compiled collections of grammatical structures can disappear from the society
to make way for new agents containing the start of an already well-tuned
grammar. We have discussed two ways of creating new generations through
asexual (splicing) and sexual (crossover) procreation. Though there is little
to choose between the two of them in terms of accuracy, the crossover method
reduces processing times considerably without a significant loss in accuracy.

5.2.2 10 agents

We now turn to the next set of experiments, in which we lower the number of
agents in the GRAEL-society. We will not go into great detail, but concentrate
on the similarities and differences between the 10-agent society and the 20
agent society. The full results table for all the experiments with the 10-agent
GRAEL-1-society can be found in Appendix D.

Single Epoch

Figure 5.11 shows the course of the default experiment, with a Single Epoch
10-agent GRAEL-1 society using understanding as the fitness function. Since
this society has fewer agents, each agent holds a larger E-language, so that
grammatical information is typically distributed faster throughout the so-
ciety, now that agents parse more sentence per language game. As a con-
sequence, this society reaches convergences much faster: after 75 runs, all
agents’ accuracies circle around the baseline mark.
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Figure 5.11: GRAEL-1 - 10 agents - Single Epoch - Understanding Accuracy
(understanding Fitness Function)

Table 5.9 displays the F-score on the test set for different fitness func-
tions and the societies discussed so far'!. The same tendencies are apparent:
the size and efficiency functions seem to choose less than optimal agents for
parsing, even though this difference evens out at the end of the society, when
the agents’ grammars have converged and there is little left to choose among
them. The accuracy and understanding fitness function and the combinations
with other fitness functions all perform reasonably well. Overall, the differ-
ence with the 20-agent society is marginal, but the results do appear to be
consistently better. As the 10-agent society seems to converge faster than
the 20-agent society, this would make the 10-agent society more suited as a
single epoch GRAEL-society.

Asexual Procreation (Splicing)

The splicing experiment for the 10-agent society brings to light a couple of
pertinent differences with the 20-agent society: not surprisingly the society

11 Abbreviations used in Table 5.9: SI: Size, EF: Efficiency, AC: Accuracy, US: Under-
standing, UB: Understandability, IC: Internal Consistency, C1: EF/SI + AC, C2: US +
AC, C3: EF/SI/UB + US, C4: EF/SI/UB/IC + US + AC.
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Figure 5.12: GRAEL-1 - 10 agents - Splicing - Understanding Accuracy (un-
derstanding Fitness Function)

\ [SI |[EF |[AC|US |[UB|IC |[C1 [C2 [C3 | C4 |
10 Agents || 82.9 | 82.9 [ 91.9 [ 91.9 [ 89.6 | 90.7 | 91.6 | 92.0 | 91.8 | 91.7
20 Agents || 78.5 [ 85.9 [ 92.0 | 91.7 [ 91.2 [ 90.6 | 91.6 | 92.1 [ 91.7 | 92.0

Table 5.10: GRAEL-1 - Splicing: Majority Voting Scores for different fitness
functions

reaches convergence sooner than a 20-agent society does (Figure 5.12). Note
the situation at the very end of the society, where there are only two agents
remaining. This means that the understanding accuracies that are described
in this plot, are accuracies achieved solely on each other’s sentences. These
accuracies seem to climb linearly as they play language games with one an-
other. This does produce an overfitting effect, as these agents achieve a
subpar F-score on the test set (91.0% as opposed to 91.9% for the fittest
agent halted at the majority voting halting point).

As we mentioned before, the size, efficiency, understandability and internal
consistency fitness function have no positive effect on the evolution of a soci-
ety from a parse accuracy point-of-view. The other fitness functions however
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\ [SI |[EF |[AC|US |[UBJ|IC |[Cl [C2 |C3 |C4 |
10 Agents [ 84.8 [ 85.0 [ 92.2 [ 91.8 [ 90.0 [ 90.5 [ 91.8 [ 92.1 [ 91.9 | 91.5
20 Agents | 85.3 | 85.3 [ 92.0 [ 91.9 [ 91.2 [ 90.9 | 91.8 [ 92.1 [ 91.6 | 91.9

Table 5.11: GRAEL-1 - Crossover: Majority Voting Scores for different fitness
functions

do optimize the society as a whole in a more guided manner. The F-scores
for these fitness functions are less varied than in the previous experiment
(circling around 91.9%), but are on the whole also lower. Also, the efficiency
and size fitness function seem to hamper the stronger fitness functions in
combinations (cf. C1, C3 and C4). The combination of accuracy and under-
standing accuracy provides a slightly higher F-score, which is however still
lower than its 20 agent counterpart.

It is not quite clear which society is to be preferred: the 10-agent society
needs fewer language game runs and produces a certain level of stability
in the F-scores. It does seem to be outperformed by the 20-agent society,
although differences are very small and may be due to random factors.

Sexual Procreation (Crossover)

Neither the results of the 20-agent crossover experiment, nor of the 10-agent
splicing experiment differ much from the results reported in Table 5.11. The
accuracy fitness function is improved upon, while understanding accuracy loses
out. But the combination of the two seems to yield a consistently good result.
The combination of the fitness functions have a tendency to neutralize any
negative bias (caused by overfitting) either component introduces.

We would like to draw the attention to two peculiar graphs (Figure 5.13).
Both plots outline a similar situation: the fittest agent plot is stuck in a local
maximum for about 50 language games. Data analysis shows an exceptional
situation, apparent in both experiments. The new agents that are created
during the creation of the first generation, have a small grammar and have a
good internal consistency score (since the probability mass attributed to the
grammar rules to parse their own trees is larger). This situation continues
in both experiments until the first wave of newborns is finished, after which
accuracy scores rise linearly.
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Figure 5.13: GRAEL-1 - 10 agents - Crossover - Size and Internal Consistency
Fitness Function

Similar to the 20-agent society, crossover limits the number of language
game runs that need to be played, without a loss of accuracy. The C2 fitness
function only needs 100 runs in a crossover-based society to achieve an F-
score of 92.1% as opposed to 131 runs in a splicing-based society.

To conclude, there is little to choose between society sizes for crossover
experiments. All things being equal, the 10-agent society can be preferred
if only for computational reasons. We will argue however that the negative
side-effects of convergence in a GRAEL-society makes a larger society size
preferable as it provides a larger window of time before convergence, during
which the agents can be observed to hold the best grammars (Section 5.2.6).

5.2.3 5 agents

The 5 agent society limits the number of language games that need to be
played even further. Since there is little difference between the results of the
20-agent society and the 10-agent society, it might be interesting to see if we
can still achieve the same kind of results if we further reduce the number of
agents and as a consequence the number of language game runs that need
to be played. In a 5-agent society, each agent starts off with a respectable
chunk of grammatical information. Fewer agents parse more sentences per
language games, which means that convergence happens very fast. This
of course influences the performance of the agents in the society. Detailed
results for the experiments with 5-agent societies can be found in Appendix
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Figure 5.14: GRAEL-1 - 5 agents - Single Epoch - Understanding Accuracy
(understanding Fitness Function)

D.

Single Epoch

Figure 5.14 shows that convergence indeed occurs very early: the agents only
need about 40 runs to reach the top of the learning curve. After that, un-
derstanding accuracy does not increase any more and even seems to decrease
after a while.

The F-scores outlined in Table 5.12 suggest that the 5-agent society is
marred by serious limitations. It yields underwhelming results compared to
the previously described societies. This is caused by the rapid convergence
which does not allow the agents to develop fully. Figures 5.3 and 5.11 showed
a longer, as well as higher peak moment in the understanding accuracy plots.
This peak usually takes place not too long before, or during the moment at
which all agents’ understanding accuracy start to level out and the society
starts to reach a state of convergence. It therefore seems that the more a
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\ [SI |[EF |[AC|US |UB|IC |[Cl1 [C2 [C3 |C4 |
5 Agents [ 90.4 [90.4 [ 90.5 [ 90.5 [ 90.5 [ 90.7 [ 90.7 | 90.5 [ 90.7 [ 90.4
10 Agents [[90.3 [ 90.8 [ 91.1 [ 91.3 | 90.3 [ 90.6 | 91.2 [ 91.3 | 91.2 | 91.1
20 Agents [ 89.9 [ 90.9 [ 91.1 [ 91.0 | 90.7 [ 90.8 | 91.1 | 91.1 | 91.1 | 91.1

Table 5.12: GRAEL-1 - Single Epoch: Majority Voting Scores for different
fitness functions

\ [SI |[EF |[AC|US |[UB|IC |[Cl1 [C2 [C3 |[C4 |
5 Agents [[89.1[91.1[91.2]91.1[90.1 [89.3 ] 91.0 [ 91.1 [ 91.0 [ 91.1
10 Agents || 82.9 | 82.9 [ 91.9 [ 91.9 [ 89.6 | 90.7 | 91.6 | 92.0 | 91.8 | 91.7
20 Agents || 78.5 [ 85.9 | 92.0 | 91.7 [ 91.2 [ 90.6 | 91.6 | 92.1 [ 91.7 | 92.0

Table 5.13: GRAEL-1 - Splicing: Majority Voting Scores for different fitness
functions

society converges the more the agents’ grammars are reflecting the proba-
bilistic distribution of all the structures in the society, rather than constitute
a grammar optimized through “practical” usage, as is the goal of GRAEL-1.
The rapid convergence that is apparent in this experiment, however limits
the size and duration of this peak, so that it gets harder to find the optimal
agent for parsing.

Splicing, Crossover

Figure 5.15 shows the understanding accuracy plots for a GRAEL-society us-
ing understanding as a fitness function. The introduction of societies delays
convergence for a little while, but after about 60 runs, understanding accura-
cies seem to level. This fast convergence again negatively affects F-scores on
the test set, as is evident in Table 5.13. The results of the crossover experi-
ments are scarcely better, as Table 5.14. Even though results are much better
than the single epoch experiments, F-scores are well below the 10-agent and
20-agent counterparts, leaving no reason to prefer a 5-agent society, despite
its fast development and convergence.
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Figure 5.15: GRAEL-1 - 5 agents - Splicing - Understanding Accuracy (un-
derstanding Fitness Function)

\ [SI |[EF |[AC|US |[UBJ|IC |Cl1 [C2 |C3 |C4 |
5 Agents | 87.3]90.2[91.1][91.1]90.1]883]91.090.9[91.2]91.2
10 Agents || 84.8 | 85.0 | 92.2 | 91.8 [ 90.0 [ 90.5 | 91.8 | 92.1 | 91.9 | 91.5
20 Agents | 85.3 | 85.3 ] 92.0 [ 91.9 [ 91.2 [ 90.9 | 91.8 | 92.1 [ 91.6 | 91.9

Table 5.14: GRAEL-1 - Crossover: Majority Voting Scores for different fitness
functions



5.2 EXPERIMENTAL RESULTS: THE ATIS CORPUS

151

5.2.4 50 agents

Let us now look at a larger society of 50 agents, which almost doubles the
amount of agents found in the default experiment. This means that 463
sentences are divided over 50 parts, roughly leaving each agent with 10 sen-
tences at the start of the society. Initial F-scores will therefore be low, but
especially in generation-based societies, the grammars will be more flexible,
as new grammatical information acquired through language games receives
a larger portion of the probability mass. Detailed results can again be found
in Appendix D.

Single Epoch

The 20 agent single epoch society converged after about 150 language game
runs. Using only 10 agents, the number of runs is reduced to 100 runs.
Using 5 times as many agents only doubles the amount of runs (200) to
reach convergence (see Figure 5.16). Considering the fact that each agent
holds fewer sentences and therefore also parses fewer sentences per language
game, one might be inclined to think the agent’s development would be
delayed and that many more language game runs would be required to reach
convergence. However, learning is sped up, exactly because each agent holds
fewer trees: with a limited initial I-language, agents are not able to parse the
other agent’s sentences very well, so that the minimal correct substructure
(determined by the algorithm described in Chapter 4 (p.104)) that the agents
provide to another, are in general more elaborate. The increased amount of
knowledge that is being shared helps to counter the delayed development of
the society.

The results in Table 5.15 show again that, although the accuracy fitness
function has proved to be able to produce strong agents, it is also prone to
instability. Results show in fact that this fitness function causes the society
to halt too early, stranding the society at a point in time at which it has
not reached its full potential yet. The understanding fitness function, as well
as its combination with accuracy, however does provide results that compare
favorably to the other society sizes. The efficiency, size, understandability and
internal consistency functions however do not seem to handle this society well
at all. They also limit the F-score in combination with other fitness functions.



152 CHAPTER 5 : GRAEL-1 - AN AGENT-BASED EVOLUTIONARY COMPUTING APPROACH TO PROBABILISTIC GRAMMAR OPTIMIZATION

100

80

60

Understanding Accuracy

20

0 50 100 150 200 250 300
Language Games

Figure 5.16: GRAEL-1 - 50 agents - Single Epoch - Understanding Accuracy

(understanding Fitness Function)

Taking into account the extra CPU-time this larger society entails, it does
not seem advisable to use it for single epoch GRAEL-1-societies.

Splicing and Crossover

There are not many surprises to be found in the results of the splicing ex-
periments (Table 5.16): the accuracy fitness function provides a slight edge
when compared to other society sizes, whereas the understanding fitness func-

| [SI [EF [AC|[US [UB|IC [Cl [C2 [C3 | C4 |
50 Agents | 90.5 | 90.0 | 90.9 | 91.0 | 91.0 | 90.9 [ 90.0 | 91.1 | 90.9 | 90.8
5 Agents | 90.4 | 90.4 | 90.5 | 90.5 | 90.5 | 90.7 | 90.7 | 90.5 | 90.7 | 90.4
10 Agents | 90.3 | 90.8 | 91.1 | 91.3 | 90.3 | 90.6 | 91.2 | 91.3 | 91.2 | 91.1
20 Agents || 89.9 | 90.9 | 91.1 | 91.0 | 90.7 | 90.8 | 91.1 | 91.1 | 91.1 | 91.1

Table 5.15: GRAEL-1 - Single Epoch: Majority Voting Scores for different
fitness functions
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\ [SI |[EF |[AC|US |UB|IC |[Cl1 [C2 [C3 |C4 |
50 Agents || 85.8 [ 89.5 [ 92.2 [ 91.3 [ 90.7 [ 88.9 [ 92.0 | 92.1 [ 92.0 | 92.0
5 Agents | 89.1[91.1[91.2]91.1[90.1 [89.3 | 91.0 | 91.1 | 91.0 | 91.1
10 Agents || 82.9 | 82.9 [ 91.9 | 91.9 [ 89.6 | 90.7 | 91.6 | 92.0 | 91.8 | 91.7
20 Agents | 78.5 [ 85.9 [ 92.0 | 91.7 | 91.2 | 90.6 | 91.6 | 92.1 | 91.7 | 92.0

Table 5.16: GRAEL-1 - Splicing: Majority Voting Scores for different fitness
functions

\ [SI |[EF |[AC|US |UB|IC |[Cl1 [C2 [C3 |C4 |
50 Agents [ 82.1 [ 81.6 [ 92.1 [ 91.9 [ 89.7 [ 90.2 [ 91.8 [ 92.2 | 91.9 [ 92.0
5 Agents [ 87.3[90.2 [ 91.1 [ 91.1 [ 90.1 [88.3 ] 91.0 [ 90.9 [ 91.2 | 91.2
10 Agents || 84.8 | 85.0 | 92.2 | 91.8 [ 90.0 | 90.5 | 91.8 | 92.1 | 91.9 | 91.5
20 Agents || 85.3 [ 85.3 [ 92.0 [ 91.9 [ 91.2 [ 90.9 | 91.8 | 92.1 [ 91.6 | 91.9

Table 5.17: GRAEL-1 - Crossover: Majority Voting Scores for different fitness
functions

tion loses out severely. This is due to some unfortunate halting points that
eschew the decision of the majority voting procedure. Because not more than
15 runs later, the F-score is significantly higher at 92.1%.

As a consequence, the combination of accuracy and understanding is not
affected with a 92.1% F-score. And the combination of understanding with
understandability, size and efficiency, which indeed seem to slow down the
development of the society, produces better results than the isolated under-
standing fitness function. In fact, all combinations of fitness functions seem
to work well in this society size.

The crossover experiment results are similar, apart from the fact that
this method again reduces the number of language game runs significantly. In
this experiment the combination of understanding and accuracy again proves
to be the best fitness function to use, with a 92.2% F-score. All combinations
of fitness function produce respectable results, as do the single accuracy and
understanding fitness functions. Apart from the idiosyncratic behavior of the
understanding fitness function in the splicing experiment, the 50-agent society
seems to yield F-scores that are on the whole more stable and robust than
in the other society sizes.
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\ [SI |[EF |[AC|US |UB|IC |[Cl1 [C2 [C3 |[C4 |
100 Agents [ 90.5 [ 90.9 [ 91.1 [ 90.9 | 89.8 [ 87.6 [ 90.7 [ 91.0 | 90.7 [ 91.0
5 Agents | 90.4 | 90.4 [ 90.5 | 90.5 | 90.5 | 90.7 [ 90.7 [ 90.5 | 90.7 | 90.4
10 Agents || 90.3 | 90.8 | 91.1 | 91.3 | 90.3 | 90.6 | 91.2 | 91.3 [ 91.2 | 91.1
20 Agents |/ 89.9 [ 90.9 | 91.1 | 91.0 [ 90.7 [ 90.8 | 91.1 | 91.1 | 91.1 | 91.1
50 Agents || 90.5 | 90.0 [ 90.9 | 91.0 | 91.0 | 90.9 [ 90.0 [ 91.1 | 90.9 | 90.8

Table 5.18: GRAEL-1 - Single Epoch: Majority Voting Scores for different
fitness functions

5.2.5 100 agents

Finally, we turn to society size with 100 agents. This is a very large society,
especially given the rather limited size of the corpus: each agent will hold a
minimal number of four to five sentences. This means that the number of
language game runs will again need to be larger to reach convergence, but
also that the structures that are shared during the initial language games are
larger as well. With such a high number of possible candidates for language
games, and such little information to guide the agents at the onset, the initial
stages of these societies will largely be guided by chance. Detailed results of
experiments with the 100-agent societies can be found in Appendix D.

Table 5.18 shows that the 100-agent single-epoch society compares well to
the other society sizes. Again, the strongest contenders are the accuracy and
understanding fitness function and the combination of the two. Notice the
subpar scores for the understandability and internal consistency fitness func-
tions. With each agent’s E-language minimal in size, these fitness functions
are very vulnerable, as the grammatical information of the E-language has
little or no impact on the I-language.

The results of the experiments with generations (Tables 5.19 and 5.20)
corroborate previous claims. The accuracy fitness function performs well in
larger societies, while the understanding fitness function trails a little (which
is especially true for the crossover experiment). But the combination of the
two does not fail to score the best among all fitness functions.

The 100-agent societies produce results that are not subpar, but at no
point rival the other society sizes in performance. Combined fitness functions
seem to suffer from the effects of the society size, which makes the results
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\ [SI |[EF |[AC|US |UB|IC |[C1 [C2 |[C3 |C4

100 Agents || 90.1 | 90.3 | 92.0 | 91.8 | 90.0 | 90.3 | 90.5 | 91.8 | 92.0 | 91.9

5 Agents 89.1 | 91.1 | 91.2 | 91.1 | 90.1 | 89.3 | 91.0 | 91.1 | 91.0 | 91.1

10 Agents 82.9 | 82.9 | 91.9 | 91.9 | 89.6 | 90.7 | 91.6 | 92.0 | 91.8 | 91.7

20 Agents 78.5 1 85.9 | 92.0 | 91.7 | 91.2 | 90.6 | 91.6 | 92.1 | 91.7 | 92.0

50 Agents 85.8 |1 89.5 | 92.2 | 91.3 | 90.7 | 88.9 | 92.0 | 92.1 | 92.0 | 92.0

Table 5.19: GRAEL-1 - Splicing: Majority Voting Scores for different fitness
functions

| [SI [EF [AC|[US [UB[IC [Cl |[C2 [C3 |C4

100 Agents || 87.2 | 86.9 | 92.0 | 90.6 | 88.4 | 88.0 | 92.0 | 92.0 | 91.9 | 91.2

5 Agents 87.3190.2 | 91.1 | 91.1 | 90.1 | 88.3 | 91.0 | 90.9 | 91.2 | 91.2

10 Agents 84.8 1 85.0 [ 92.2 | 91.8 | 90.0 | 90.5 | 91.8 | 92.1 | 91.9 | 91.5

20 Agents 85.3 |1 85.3192.0]91.9|91.2 909 | 91.8 | 92.1 | 91.6 | 91.9

50 Agents 82.1 | 81.6 | 92.1 | 91.9 | 89.7 | 90.2 | 91.8 | 92.2 | 91.9 | 92.0

Table 5.20: GRAEL-1 - Crossover: Majority Voting Scores for different fitness
functions

less stable. There is therefore no added advantage to using this society size,
especially considering the extra computational costs it entails.

5.2.6 General Comments
Explaining Shapes

Understanding Accuracy plots such as Figures 5.3, 5.11 and 5.14 allow us to
look at the course of the experiments, purely in terms of the degree to which
agents are able to parse each other’s parse forests. For different society sizes,
as well as different generation methods, there are some general tendencies
noticeable in the way a society develops over time.

Figure 5.17 shows understanding accuracy plots for the single epoch ex-
periment. The plots were bezier smoothed to more clearly indicate general
tendencies in the data. Looking at the overall plot, we can distinguish three
stages: (1) an acquisition phase during which the agents are building their
grammars, while the plots linearly increase (runs 0 - 100 in Figure 5.17). This
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Figure 5.17: GRAEL-1 - 20 Agents - Understanding Accuracy (understanding
Fitness Function) - Smooth Bezier Curves

is followed by (2) a peak phase during which the accuracies of the most un-
derstanding agents are at their highest (runs 100 - 150) and a (3) convergence
phase, during which the agents’ adapt to one another’s grammar (runs 150
- 500), arriving at a situation where most agents’ grammars are very similar
to one another.

The acquisition phase (1) can be further subdivided into roughly two
or three more parts: (i) a steep phase during which the agents learn noth-
ing but new structures (1-25), an adjustment phase (ii) during which the
agents’ accuracies appear to level (25-50) for a short period of time and an
optimization phase (iii) during which at the same time, more new grammat-
ical structures are acquired and grammatical structures acquired in (i), (ii)
and (iii) are statistically optimized (50-100). Phase (ii) is exceptionally pro-
nounced in Figure 5.17, but seems to be mostly absent in other experiments.
The subdivision of the acquisition phase seems only relevant for single epoch
experiments, because the agents’ plots in generation-based experiments are
marked by periodical decreased accuracy in newborn agents. It is phase (ii)
that often causes halting procedures such as plateau detection to prematurely
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halt at a local maximum.

An important observation is that the last phase (3), during which the
agents’ grammars converges is seemingly characterized by a steady decline of
understanding accuracy. Figure 5.17 illustrates this effect: as the convergence
phase progresses, the better agents start to score slightly lower understanding
accuracies, while the lesser agents’ accuracies climb. It is during the relatively
short phase preceding the convergence phase (2) that we want the society
to halt, because the experiments have shown that halting points located in
this phase produce stronger agents than halting points in the convergence
phase. We would like to dub this the stage of beneficial confusion: the
agents do not fully agree on a grammatical system yet and the distribution
of the probability mass reflects actual usage in a practical context, rather
than constituting an even allocation over a common set of grammar rules,
mirroring the original data set.

It is important to point out that the society as a whole does not deterio-
rate during phase (3): the agents become very much similar to one another,
which weakens the better agents and improves the worse agents. As opposed
to many other agent-based implementations, convergence in the GRAEL-1-
society is not a desirable situation, since the pre-convergence situation pro-
duces the better parsers. A GRAEL-1 society should therefore make sure that
the stage of beneficial confusion last long enough to allow for a halting proce-
dure to trigger a proper halting point. We have found that larger population
sizes in general do indeed provide a longer beneficial confusion stage, which
makes them preferable for GRAEL-1 processing, unless we are sure that our
halting procedure is trustworthy.

Halting Procedures

The discussion of the difference phases again brought up the importance of
the halting points. So far, we have mainly discussed the majority voting
method. The majority voting halting procedure was defined as follows: if at
least 4 out of 7 halting procedures have suggested a halting point prior to or
at the present point in time, the majority voting procedure halts the society.
This means that the majority voting halting point is identical to at least one
other halting point.
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FSvs | FAvs | FA vs | Plateau | Under- | Limit | Limit | Major.

TS TS FS Detect. | Stand. LG Gen. | Voting
Total 22 47 51 37 53 45 6 69
Unique 10 5 10 9 27 26 4 0

Table 5.21: Halting Points - Best Result

But is majority voting really the best halting procedure? Table 5.21
provides an overview of the number of times each halting procedure produced
the best result. The majority voting clearly has the upper hand, even though
it is only the best solution in less than half the experiments. Luckily, in the
other cases, the F-score the majority voting method yields is however rarely
significantly lower than the other best halting procedure: in 102 experiments
the difference was less than 0.2%.

Data analysis showed that very rarely does the majority voting halting
procedure halt the society at the same time as the understanding accuracy
halting procedure does. In 125 of the 150 experiments though, the under-
standing accuracy halting point occurs before the majority voting halting
point, indicating that it more often than not plays a role in triggering the
majority voting procedure. Table 5.21 now also suggests that this halting
procedure is indeed not much worse at determining the halting point than the
majority voting procedure is. Furthermore, it does not need extra processing
in the way the other halting procedures do. It would be interesting to see if
we can squeeze more performance out of this particular halting procedure.
More generally, it would also be interesting to implement weighted voting, so
that some halting procedures have a bigger weight towards the final decision
of the majority voting than others.

5.2.7 Summary of Results and discussion

Let us now summarize the results. Since the combination of the understand-
ing and accuracy fitness functions consistently provided top-of-the-line re-
sults, we will base our comparison on these. Table 5.22 provides a general
overview of the results: if for some reason, we do not want to use a generation-
based GRAEL-society the 10 agent society is the obvious choice. In any case,
even without introducing new generations, GRAEL-1 outperforms the base-
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Method Size | Halting | F3_,-score
Point (%)
Single Epoch ) 47 90.5
10 107 91.3
20 107 91.1
50 233 91.1
100 240 91.0
Splicing ) 63 91.1
10 131 92.0
20 237 92.1
50 266 91.9
100 342 91.8
Crossover 5 94 90.9
10 100 92.1
20 195 92.1
50 234 92.2
100 333 92.0

| Baseline | 1 ] 0 | 89.3 |

Table 5.22: GRAEL-1 ATIS - Majority Voting - understanding+accuracy Fit-
ness Function - Comparison

line method by a significant margin.

Agents in a generation-based society will disappear from the society,
while, depending on their fitness, part of their grammatical information lives
on in their offspring. Since only a certain percentage of the grammar is
transferred to the newborn agents, the use of generations is in effect a way to
purge the grammar of lower frequency rules, which means that they consti-
tute rules, rarely used during language games. This provides an important
performance increase over the single epoch experiments. There is little to
choose between the two methods for creating new generations on the basis
of their accuracy on the test set. The crossover method however signifi-
cantly reduces the number of language game runs, while providing a (albeit
non-significant) performance increase for some experiments over splicing.

The 10-agent society seems to be preferable as it only needs 100 runs to
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[ Single Epoch [ Baseline [| Crossover | Baseline || Crossover | Single Epoch [[ Crossover | Splicing |

40 19 36 23 27 15 9 33
1 133 6 131 31 423 35 419
P(8.5) = 0.003 P(8.8) = 0.003 P(4.9) = 0.03 P(0.001) = 0.9

Table 5.23: GRAEL-1 ATIS - McNemar Tests for 10-agent Societies

achieve a 92.1% F-score. This excellent result can be attributed to a well-
balanced set of halting points, which triggers the majority voting halting
point at an ideal point in time. If we are insecure about the efficiency of the
halting point and we would like to extend the stage of beneficial confusion,
the 20-agent is a good fail-safe choice, as it provides a much larger window
in time, at which the F-scores are peaking, so that we need less “luck” to
halt the society at a good point.

The 50-agent crossover society provides an insignificant .1% advantage
over the other society sizes. Combined fitness functions are more stable in
this society size. This is especially important if we wish to limit the amount
of parsing by eliminating the validation set. Using only understanding, under-
standability, efficiency and size, the society is able to produce an agent scoring
92.0% on the test set (using splicing).

Considering the 10-agent society as the preferred society, we can calculate
significance scores using McNemar tests. Table 5.23 shows that the difference
in recall between the single epoch society and the baseline is significant.
Naturally, the result of the crossover experiment is significantly different from
the baseline accuracy, but also from the single epoch society. The difference
in recall between the two generation methods is not significant.

5.2.8 Extra experiments

Before we turn to the wsJ-experiments, we want to discuss some minor extra
experiments that provide some extra insights and/or serve as a sanity check
to the previously described experiments.
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Random Crossover

One experimental parameter we discussed was the random crossover op-
eration. Random crossover allows two agents to exchange structures outside
of the context of a language game. This operation can speed up convergence,
since more grammatical information is doing the rounds, but the question
remained whether it would negatively affect performance.

The thought exercise in Appendix C helped us to limit the number of
experiments that needed to be done, by only testing those combinations
of experimental parameters that were deemed relevant. We proposed that
the random crossover parameter would only be affected by the method of
creating new generations and the population size. We can therefore limit
the experiments to just one fitness function (understanding+accuracy is the
logical choice), one halting point (majority voting) and one data set (ATIS).

Random crossover was implemented as follows: after each language game
run, each agent was linked to another agent, after which they start exchang-
ing grammar rules at random: one structure for each sentence in the E-
language. There is only one condition on the exchange: the nodes need to
carry the same top-level node label'2.

Table 5.24 shows for the three generation methods the difference in re-
sults between the default setting (no RC) and the setting that enables ran-
dom crossover. We notice that the number of language game runs is in-
deed reduced significantly: since grammatical information is distributed more
quickly throughout the society, convergence occurs sooner, as the agents will
sooner have all possible grammatical constructs at their disposal. The effect
is more noticeable in the generation-based experiments when agents reach
end-of-life sooner.

Not surprisingly perhaps, random crossover introduces a significant per-
formance decrease for almost all societies. With the exception of the oddball
5-agent society, all GRAEL-1 perform significantly worse. The effect is not as
pronounced in the splicing experiment: the use of generations is intended to
prune useless grammatical information, so that the detrimental influence of
the random crossover is somewhat diminished. But the generation method
based on crossover, in which newborn agents inherit on average more gram-

12Regardless of the index provided by PMPG.
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Single Epoch Splicing Crossover
No RC RC No RC RC No RC RC
HP | F |HP | F |HP| F |HP| F |HP| F |HP | F
5 Agents 47 90.5 41 90.4 63 91.1 51 91.0 94 90.9 71 91.1

10 Agents 107 | 91.3 89 90.6 131 | 92.0 97 91.7 100 | 92.1 82 91.4
20 Agents 107 | 91.1 | 101 | 90.6 237 | 92.1 | 174 | 91.8 195 | 92.1 | 187 | 91.5
50 Agents 233 | 91.1 | 178 | 90.5 266 | 91.9 | 201 | 91.7 234 | 92.2 | 188 | 91.6
100 Agents | 240 | 91.0 | 203 | 90.5 342 | 91.8 | 267 | 91.5 333 | 92.0 | 248 | 91.5

Table 5.24: GRAEL-1 ATIS - The Effect of Random Crossover on Test Set
F-score

matical information than newborns out of splicing, is harmed more severely.

In conclusion: even though random crossover does speed up conver-
gence, it significantly affects accuracy scores for almost all types of GRAEL-1-
societies. It therefore seems pointless to implement this extra step in inter-
agent communication, especially given the insight that the agents to not
benefit from entering a state of convergence.

Varying Inheritance Ratio

The experiment, with random crossover raises a question on the actual differ-
ence between the two generation methods. Even though McNemar tests find
no significant difference in the results between these two methods, there are
enough indications that they do have a different effect on the performance of
a GRAEL-1 society. We already noted that newborn agents from a crossover
operation have on average a larger initial [-language than newborn agents
that are the product of splicing. This can explain why crossover reduces
the number of language game runs: newborn agents have a larger I-language
and therefore need less grammatical information to reach the end-of-life state,
hence new generations are created in shorter intervals.

But the question remains whether it is just the size of the initial I-language
that causes the agents to require fewer language games to replenish their
grammars, or if it is also related to the actual way in which it is compiled,
i.e. from two agents as opposed to just one agent. We therefore conducted
two experiments: one experiment in which the splicing method provided the
newborn agents with a larger I-language, and one experiment in which the
crossover method provided a smaller I-language to newborns (Figure 5.18).
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Figure 5.18: Updated thresholds for Generation methods

Both experiments were conducted on a 20-agent society, using the majority
voting halting procedure and the understanding-+accuracy combination as a
fitness function.

Table 5.25 shows the results of the experiments with the new thresholds
for determining the newborn agent’s I-language size. In the new splicing
experiment, a newborn agent holds 85% of its ancestor’s grammar, as opposed
to 75%. This is roughly similar to a newborn agent’s size in a 20-agent
crossover society. The number of language game runs decreases, but not
by much, while the F-score on the test set also seems to suffer. This may
have something to do with the splicing method: as opposed to the crossover
method, the splicing method does not let any of the ancestor’s I-language
go to waste. The common part between the two newborn agents is larger,
making their I-languages more similar than in the default experiment. This
undoubtedly speeds up convergence, which, as we have proposed before, is
not necessarily a good thing.

The new settings for the crossover experiment causes newborn agents to
have a smaller grammar than before: about 25% of the ancestor’s I-language
is just thrown away. This does not seem to hurt the society as a whole,
though, since there is hardly any difference in the amount of language game
runs it takes the society to reach the majority voting halting point. There is
a slight decrease in F-score, but the difference is probably not significant. It
does however indicate that the reduction of language game runs in a crossover
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Default Updated
LGR| F |LGR| F
Splicing 237 | 92.1 225 | 91.9
Crossover 195 | 92.1 200 | 92.0

Table 5.25: Updated Threshold for Generation Methods - Experimental Re-
sults

experiment is not solely due to the size of the newborn agents’ I-language.
We believe the difference to be mainly due to a more advantageous method
of creating the initial I-language, i.e. by culling structures from two agents,
rather than just one.

This experiment is also illuminating in that the new settings for the
crossover experiment do not decrease performance, nor decrease or increase
the number of language game runs. It therefore seems to be a more stable
method for creating new generations, i.e. less vulnerable to the influence of
different threshold setting. And its most significant change, i.e. the creation
of smaller newborn agents, may in fact have a beneficial effect on parsing
times as well. Future research should look into ways to determine the opti-
mal settings for the generation methods.

Fitness Functions for Procreation vs Fitness Functions for Selection

The main difference between the single epoch experiments and the generation-
based experiments is the fact that in the former, fitness functions are only
used to select the fittest agent in the society, and therefore do not have an
effect on the course of the experiments as such. In generation-based experi-
ments, fitness functions are used to select agents for procreation (for conve-
nience sake we will dub this kind of selection SELPRO), as well as select the
fittest agent that needs to parse the test set (henceforth SELFIT). These are
however different types of selection and it may be interesting to see whether
there are any significant differences to be observed when we alternate SELPRO
and SELFIT. In other words: we define two different types of fitness: fitness
for procreation and fitness for parsing.

The 20 agent crossover experiment is the basis for our comparison, with
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SELFIT— SI EF AC us UB IC C1 C2 C3 C4
SELPROJ

SI 85.3 | 86.3 88.6 87.9 85.9 84.2 86.2 88.2 87.0 86.9
EF 84.2 85.3 89.6 88.3 85.9 84.9 85.9 90.0 88.9 88.2
AC 90.2 91.5 | 92.0 | 92.0 91.1 91.9 91.5 92.2 92.0 91.7
uUs 90.3 90.2 92.0 | 91.9 | 91.5 90.6 91.8 92.0 92.0 92.0
UB 90.0 91.2 91.3 91.3 91.2 91.2 91.3 91.4 91.1 91.1
IC 89.3 90.0 91.2 91.1 90.5 | 90.9 | 91.0 91.5 91.3 91.2
C1 90.4 91.0 92.0 91.9 91.2 91.7 91.8 91.8 91.5 91.8
C2 90.1 91.3 92.2 92.1 90.9 91.2 91.8 92.1 92.0 91.9
C3 89.8 91.5 91.9 91.8 91.6 91.2 91.2 91.8 | 91.6 | 91.8
C4 90.0 90.2 91.9 91.8 91.2 91.0 91.6 91.9 91.9 | 91.9

Table 5.26: Fitness Functions for Procreation vs Fitness Functions for selec-
tion

F-scores based on the majority voting halting points. Note that this does not
require extra experimental runs: SELPRO has already determined the course
of the experiments. All we need do is apply difference SELFITS on the same
experimental run.

Table 5.26 describes the results of this experiment: the figures in bold
(diagonal) are the F-scores from the default experiments (with SELPRO =
SELFIT). Size is not very well suited as a SELPRO: it produces F-scores that
are well below the baseline, even when coupled with more powerful SELFITS
such as accuracy. As a SELFIT itself, it seems to have a tendency to select
the worst agent of the society. More or less the same conclusion can be
drawn with regards to efficiency, even though the effect is not as pronounced.
Sometimes efficiency achieves respectables F-scores as a SELFIT, but as a
SELPRO it is subpar.

Accuracy, understanding and the combination of the two (C2) as a SELFIT
seems to consistently select the fittest agent in a society, no matter how bad
results in general are. Note that understanding as a SELFIT rarely performs
worse than accuracy. So even though accuracy has the edge over understand-
ing as a SELPRO, they produce similar results as a SELFIT. This experiment
provides more evidence for the previously made claim that the selection of
agents made by the understandability and internal consistency fitness func-
tions, is unrelated to the agents’ quality as a parser for unseen data. As a
SELPRO they achieve mediocre results, that only scarcely outperform single
epoch experiments, and as a SELFIT their performance is erratic, ranging
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from bottom- to top-of-the line scores.

All in all, there is little advantage to be gained by applying a different
SELPRO and SELFIT to a society. There are some instances where performance
is definitely improved, but applying a different SELFIT to a society guided by
a strong SELPRO does not yield an important performance increase.

I-language vs E-language

In Chomskian linguistics, E-language is defined as the set of externalized
utterances a language user is able to produce. I-language on the other hand
is language knowledge internalized by language users. To produce and un-
derstand utterances (E-language) we apply the knowledge present in the I-
language. The concepts of I-language and E-language in the GRAEL-system
are used in a different sense: E-language is a fixed set of utterances an agent
is able to produce, and the underlying syntactic structures. The I-language,
initially induced from the structures in the E-language, is used to interpret,
i.e. parse, another agent’s E-language.

We have already discussed the lack of interaction between the I-language
and E-language on page 132. In language games, agents acquire new gram-
matical information, enlarging the I-language, while the E-language remains
constant. At no point in the GRAEL-1 experiments do agents use the newly
acquired grammatical information to update their E-language, nor do they
produce new, previously unseen utterances, on the basis of their I-language.

Since it is not the goal of the GRAEL-1 experiments to provide a psy-
cholinguistically realistic approximation of a human language user’s brain,
but rather to provide the best possible agent-based method for grammar
optimization, this rigid boundary between I-language and E-language is jus-
tifiable.

It could however be interesting to see what happens if we allow some
interaction between these two components. We tried two approaches: the
first experiment allowed the agents to parse their own sentences after each
language game run using their newly updated I-language and replace the
structures in their E-language with those parses. The 2nd experiment allowed
the agents to randomly generate syntactic structures from their I-language
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Figure 5.19: Interaction between I-language and E-language - Graphs

in a top-down fashion.

The two experiments were conducted on a 20-agent society with sexual
procreation and using understanding+accuracy as a fitness function and ma-
jority voting as a halting procedure. Figure 5.19 displays the course of both
experiments. The first experiment shows a standard plot, except that F-
scores are reaching 100% many times. This occurs in the convergence phase,
when the agents’ grammars are becoming more and more similar to one an-
other. It is therefore possible that the structures in one agent’s E-language
are identical to the structures that another agent produces for these sen-
tences. The other experiment looks very similar, even though there is a
totally different society underneath the hood. At some points, understand-
ing accuracies do reach 100%, but since the structures in the E-language are
generated by the I-language, the results are more dispersed.

Table 5.27 displays the results of these experiments. At the majority
voting halting point, the fittest agent in the society was selected and its
grammar was used to parse the test set. The F-score for the first experiment
is still quite respectable, but there is a significant decrease compared to
previous societies. The F-score for the 2nd experiment is lower still, even
though it is still higher than baseline accuracy.

It is interesting to note that removing the barrier between I-language
and E-language does not send the GRAEL-1 society into disarray. But if we
want to create an agent to parse unseen data, the GRAEL-1 society bene-
fits from maintaining the original tree-structures from the original corpus.
Experiments with GRAEL-2 (Chapter 7) however will show that the strict
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| | F-score
Baseline 89.3
No Interaction 92.1
I-language parses E-language 91.8
I-language generates E-language 90.9

Table 5.27: Interaction between I-language and E-language - Experimental
Results

Baseline pPMPG || 89.3
GRAEL-1 PMPG || 92.1
Baseline pPcFG || 83.6
GRAEL-1 PCFG | 86.0

Table 5.28: GRAEL-1 scores with a PCFG

distinction is not useful in a grammar induction task.

Aspects of Pattern-Matching

The parser that agents used in the GRAEL-1 experiment is the PMPG-method
described in Chapter 3. It tries to mimic a human language user’s predilection
for larger substructures in parsing. Also, knowledge-sharing between agents
in the GRAEL-system is based on this idea: the algorithm for finding the
minimal correct substructure (Chapter 4, p. 104) focuses on substructures
of trees, rather than single rewrite rules.

To check if the performance increase GRAEL-1 produces is not some side-
effect of the PMPG-method, we also ran a GRAEL-1 experiment using a simple
PCFG as a parser. Again we used a 20-agent crossover society, using under-
standing+accuracy as a fitness function and majority voting to determine the
halting point. Table 5.28 shows the result of this experiment. A GRAEL-
1 system powered by a PCFG does increase significantly over the baseline
model, although it is lower than the PMPG baseline accuracy. Furthermore,
the PMPG-based GRAEL-society yields an error reduction rate of 26.2%, while
the PCFG GRAEL-society only achieves a 14.6% error reduction rate.
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Correct LP LR Fs_;
[ | % / | % %
| Total | 4412 | 4765 | 92.6 (£0.9) [ 4819 [ 91.6 (+4.3) || 92.1 (£2.5) |

Table 5.29: 10-fold Cross Validation Experiment for GRAEL-1

These results indicate that GRAEL-1 does optimize grammars, even when
using a different parser, but PMPG intrinsic preference to larger substructure
seems more suited to the dynamics of the GRAEL-system and the algorithm
that selects the minimally correct substructure in particular.

Sanity Check: 10-fold cross-validation

One final experiment on the ATIS-corpus checked whether the improvement
GRAEL-1 achieves can be attributed to a favorable partitioning of the original
corpus. Using a different seed, we randomly divided the ATiS-corpus again
into 10% partitions of equal size. Each partition was used as a test set and
validation set once, while the other eight partitions served as the training
corpus for the GRAEL-society.

For reasons of time, we used a 10-agent crossover-based society. under-
standing+accuracy was the fitness function of choice, while majority voting
decided on the halting point. Table 5.29 displays the results for the 10-fold
cross validation experiment. The F-scores range from 89.8% to 94.7%. The
overall F-score is 92.1% which is not significantly different from the GRAEL-1
results previously described.

5.2.9 Some Details about the Data

It is clear that GRAEL-1 indeed optimizes grammars for parsing. This is done
by providing a society of agents with a “deficient” grammar and allowing
them to improve on it by “practicing” their own grammars on other agents.
By helping each other out, the grammars become optimized in a setting which
resembles the actual task at hand: parsing sentences. In the end, the agents
in the society have acquired a grammar, which is superior to the grammar
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that was used to create the society. Whereas in standard parsers, like the ones
described in Chapter 3, the distribution of the probability mass is based on
each constituent’s frequency in the training set, GRAEL-1 redistributes this
mass to reflect optimal use for parsing.

So far, we have provided a lot of quantitative data about the GRAEL-1
experiments, but have not really looked underneath the hood of the system
to see what exactly is going on. In this section, we look at the data generated
by agents in a GRAEL-society.

Grammar Optimization: an example

First we look at a typical example of how GRAEL-1 is able to overcome
difficulties of the baseline model. Let us consider the parse for the sentence:
“What flights go from Tampa to Charlotte on Sunday” in Figure 5.203. This
sentence, which is troublesome for a simple PCFG due to its embedded vP,
is also not handled very well by a PMPG. Figure 5.21 shows the PMPG-parse
for this sentence. The highly idiomatic WHNP-construct with an empty pp
is found, as well as the entire vP. The parse is however far from correct,
mainly because of the erroneous attachment of the empty particle.

Using a parser powered by a grammar induced from the fittest agent from
any of the better performing GRAEL-1 generation-based societies however
produces the correct analysis in Figure 5.20. When we look at the language
games in the initial stages of the society, we notice that the erroneous attach-
ment of the empty element, made by PMPG in Figure 5.21 is a very frequent
mistake, because of the relatively high frequency of WHNP-constructs with
an empty PP. It is therefore normal, at least initially, for an agent to propose
analyses with such WHNP-structures. As the society progresses, agents that
suggest tree-structures of the type featured in Figure 5.21, will be provided
with a minimal correct substructure like the one in Figure 5.22.

The parsing agent will include this substructure in his I-language. This
step may need to be repeated several times in subsequent language games
with other agents, but finally, this structure will obtain a probability in
the grammar such that it overcomes the over-eager pattern-matching that is

13We have added words to this structure for clarity’s sake, but actual parsing was done
on part-of-speech tags.
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Figure 5.20: Correct Parse for “What flights go from Tampa to Charlotte on

Sunday”
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Figure 5.21: pMPG parse for “What flights go from Tampa to Charlotte on
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evident in Figure 5.21. In other words: the increased probability it gains,
nudges the probabilistic component of the PMPG to consider the SBARQ-
analysis over the highly matchable SBAR-analysis.

This example provides a good illustration of how GRAEL-1 optimizes
grammars. It fine-tunes probabilistic grammars such that the probabilities
are suited to actual parsing. In this view, annotated corpora are viewed as
unoptimized raw data that constitute building blocks for a grammar, which
are still lacking fine-tuned probabilities. GRAEL-1 provides a way to approach
the ideal distribution of probability mass for the task of parsing unseen data.

Size and Efficiency Fitness Functions

We introduced fitness functions in Chapter 4 as a possible method to obtain
grammars that are enhanced for a specific kind of purpose. Size and efficiency
fitness functions, for instance, can be used to try and build a small and fast
grammar for parsers. So far we have mainly evaluated GRAEL-societies by
looking at their performance on the test set. Let us now take a look at the
fitness functions of size and efficiency to see what kind of grammar these
fitness functions produce in a GRAEL-society. The data discussed in this
section stems from the 20-agent crossover society, except for the last two
lines in Table 5.30.

Turning back to the results in Table 5.26 allows us to inspect the size and
efficiency functions more closely. This table illustrated that they constitute
bad SELPROs and seemed to have a tendency to select some bottom-of-the-
line agent as a SELFIT.

Table 5.30 describes for a number of SELPRO-SELFIT combinations, the
number of (unique non-indexed) rules in the grammar'*, the F-score and the
CPU-time!® used to parse the test set. We notice that the efficiency function
is able to reduce CPU-time significantly. As a SELFIT for a society based on
the understanding+accuracy fitness function, it provides an agent that reduces
the CPU-time by almost 30% compared to the default SELFIT, albeit with
a significant accuracy drop. It is also interesting to note that efficiency in

14The actual indexed grammar (on which size-fitness is based) can be huge. We do not
provide these figures as they are to a large extent based on chance.
I5Figures express an average of 5 runs on a Dual AMD Athlon1.2Ghz CPU.
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| SELPRO | SELFIT | rules | Fg_; | CPU-time |
Size Size 251 | 85.3 49 sec
Size US+AC 255 | 88.2 51 sec
Efficiency | Efficiency | 263 | 85.3 43 sec
Efficiency | US+AC 261 | 90.0 45 sec
US+AC | US+AC 285 | 92.1 70 sec
US+AC | Size 273 | 90.1 63 sec
US+AC | Efficiency | 283 | 91.3 51 sec
C2(50) | C2(50) 209 | 92.2 | 71 sec
C4(50) | C4(50) 279 | 92.0 | 60 sec

Table 5.30: size and efficiency Fitness Functions

general produces larger grammars than size, but not at the cost of CPU-time,
illustrating the previously made claim that there is no one-to-one relationship
between a grammar’s size and its efficiency.

The last two lines of Table 5.30 describe data from the 50-agent society.
The understanding+accuracy(C2) society (both SELFIT and SELPRO) yields
an accuracy score of 71 seconds. The combination of all fitness functions
(C4), which includes both size and efficiency still obtains a top-of-the-line
F-score, coupled with a 15% decrease in processing time.

So even though the size and efficiency fitness functions have a negative
influence on the performance of a society as a SELPRO as well as on its fittest
agents as a SELFIT, it is interesting to note that if practical reasons require
the grammar to be efficient, the GRAEL-society is able to deliver.

This concludes the description of the GRAEL-1 experiments on the ATIS
dataset. So far the results indicate that GRAEL-1 provides a workable gram-
mar optimization method. Given the limited size of ATIS, however, there is
a danger that differences in results that appear significant, are actually the
result of (un)favorable conditions. We will now turn to experiments on the
wsJ-corpus to see if we can corroborate claims made with regards to the
ATIS-experiments on a large-scale corpus.
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5.3 Experimental Results: the WALL-STREET-
JOURNAL Corpus

The wsJ-corpus holds 40.000 sentences, which makes it impossible for present-
day technology to apply the GRAEL-system on the entire corpus. A 20-agent
society would need to generate 114.000 parses'® using the entire WsJj-corpus.
With a conservative estimate of 1 minute parsing time per sentence for the
wsJ-corpus, a 200 language game run experiment would last 16 years on a
single computer.

We therefore conducted the main wsJ-experiments on a 1% subsample of
the wsJ-corpus consisting of 1.000 sentences. Parsing times are much lower
and fewer structures need to be parsed per run, so that a wsJ-experiment
can be over in a couple of weeks, rather than years. Once the experiments on
the subset are over, we decide on the best suited GRAEL-society to process
the full corpus, an experiment described in Section 5.3.4.

As in the ATIS-experiments, we conduct experiments on five different
population sizes. But this time, we only experimented on two fitness func-
tions: the understanding fitness function and the understanding+accuracy fit-
ness function. The former experiment is used as a test to see how well GRAEL
performs without the use of a validation set. To further reduce processing
times, halting procedures that require the use of validation set were not used
for this experiment. All halting procedures were used for the experiment
with the understanding+accuracy fitness function, which has proved to be the
most stable fitness function in the ATiS-experiments.

We use sexual procreation to create new generations, as this has proved
to reduce the number of language game runs without loss of accuracy. We
also showed that its performance seems less subject to threshold settings that
determine the size of newborn agents’ grammars.

One final note on the parser used: whereas we used the integrated model
for the ATis-experiments (see Chapter 3, p. 76), we use the optimized
method, proposed in Chapter 3 (p. 62), of using a PCFG to generate the

1632.000 during language games, 20x4.000 validation set sentences by agents, 1x4.000
validation set by full society.
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n most likely parses for each sentence!”, after which PMPG applies its re-
ranking scheme on the parse forest. This has the possible disadvantage that
a correct parse generated by the parser may not be featured in the minia-
ture 20 sentence parse forest the PCFG outputs, so that not even the PMPG
re-ranking scheme can salvage the parse. Previous experiments on the wsiJ-
corpus showed however that 97% of the time, the correct parse can be found
among the 10 most probable parses in the ordered parse forest generated by
a PCFG. The test set however was parsed by the fittest agent in the society
using the integrated method generating a full parse forest.

5.3.1 20 agents

We start off again with the default society size of 20 agents. 800 sentences of
the training set are distributed over 20 agents, while 100 sentences serve as a
validation set and 100 more as a test set. Detailed results of the experiments
can be found in Appendix E.

Understanding

The course of the experiment, plotted in Figure 5.23 runs very similar to the
ATIS-experiments, except that initial understanding accuracy in language
games is slightly higher but the peak is slightly lower. The first remark-
able thing is that the wsJ-experiment does not need many more language
game runs than the ATis-experiment (342vs332). This is not as strange as
it seems, since in this experiment, each agent holds many more sentences in
its E-language, so that more information is passed per language game run.
This also causes rapid convergence after 150 runs. The crossover operation
apparently makes sure that agents are born with decent I-languages, so that
agents reach end-of-life at regular intervals.

The fittest agent plot in Figure 5.24 is also similar to the ones found in
the ATiS-experiments. The main difference is the F-score, which is much
lower. Baseline accuracy (full training set used to parse the validation set)
is at 79.9%. The fittest agent overtakes the baseline model around the 150th
run. Table 5.31 shows the results for the halting procedure that halts the

17

n was set to the arbitrarily chosen value of 20 for the GRAEL-1 experiments.
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Figure 5.23: GRAEL-1 wWsJ - 20 Agents - Crossover - Understanding Accuracy
(understanding Fitness Function)

‘ H Halting Point ‘ | ‘
Baseline 0 79.9
20 Agents (US) 152 81.2

Table 5.31: GRAEL-1 wWSJ - Results

society at the point where understanding accuracies are levelling out. We
do not consider majority voting for the experiment with the understanding
fitness function, since it does not use most of the halting procedures. The
fittest agent in the society at the understanding halting point achieves 81.2%
F-score on the test set. Exact Match accuracy for GRAEL-1 is 26%, while
the baseline only scores 20.0%. Both the difference on Exact Match accuracy
and the F-score are significant according to the McNemar test (Table 5.32).
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Figure 5.24: GRAEL-1 wsJ - 20 Agents - Crossover - Fittest Agent Accuracy
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vs Baseline Accuracy on Validation Set(US Fitness Function)

[ Exact Match [ Constituents
baseline accuracy vs 74 6 270 172
GRAEL-1 accuracy 0 20 134 1623

P(4.2) = 0.041 < 0.05

P(4.5) = 0.034 < 0.05

Table 5.32: McNemar Tests for GRAEL-1 WSJ experiment
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Figure 5.25: GRAEL-1 WsJ - 20 Agents - Crossover - Understanding Accuracy
(C2 Fitness Function)

Understanding+ Accuracy

The next experiment uses the combination of understanding and accuracy as
the operative fitness function in the GRAEL-1 society. This combination has
proved to consistently provide the best results during the ATIS-experiments.
Since parsing the validation set is part of the fitness function, we can consider
all halting procedures for this experiment.

Figure 5.25 displays the course of the experiment. It is very similar to
that of Figure 5.23 except that overall understanding accuracy seems to be
a bit higher, which can be attributed to the stronger fitness function. This
is also noticeable in the fittest agent plot in Figure 5.26. The fittest agent
halted at the majority voting halting point also produces a slightly better
result than in the previous experiment (Table 5.33).

The 20-agent experiment described so far support the grammar opti-
mization skills of GRAEL-1, even though observed differences seem smaller.
The main problem seems to be that each agent holds many more sentences
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Figure 5.26: GRAEL-1 WsJ - 20 Agents - Crossover - Fittest Agent Accuracy
vs Full Society Accuracy vs Baseline Accuracy on Validation Set(C2 Fitness

Function)

| Halting Point | Fs_; |

Baseline 0 79.9
20 Agents (US) 152 81.2
20 Agents (C2) 184 81.4

Table 5.33: GRAEL-1 wWSJ - Results
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8

Understanding Accuracy

Understanding Understanding+ Accuracy

Figure 5.27: GRAEL-1 WsJ - 10 Agents - Crossover

compared to agents in an ATIS GRAELI-society, creating a situation that is
similar to the 5-agent GRAEL-1 ATIS-experiment, during which convergence
happened too fast and individual agents held too much grammatical informa-
tion, so that the information acquired during language games had a harder
time acquiring a substantial enough portion of the probability mass. When
the state of beneficial confusion (during which we wish to halt the society)
is short, like in the wsJ-experiments described so far, agents have very little
time to achieve such a redistribution before getting dragged along into the
slipstream of the convergence phase. On a more positive note, we would
like to remark that even though the difference over the baseline seems much
smaller, the McNemar tests show that the difference observed so far is easily
just as significant as in the ATIS-experiments.

5.3.2 10 agents, 5 agents

Given the fact that the 20-agent society seems to be marred by the limited
number of agents present, there is little hope for the smaller society sizes.
We therefore shortly deal with them in one combined section. The details of
these experiments can be found in Appendix E.

Figure 5.27 shows the course of the two 10-agent experiments. Whereas
the understanding+accuracy experiment yielded slightly higher understand-
ing accuracies, there is hardly any distinguishable difference between either
method in the 10-agent society. The results show that the 10-agent soci-
ety is indeed able to reduce the number of language games, but each fitness



5.3 EXPERIMENTAL RESULTS: THE WALL-STREET-JOURNAL CORPUS

181

| | Halting Point | Fj_, |

Baseline 0 79.9
20 Agents (US) 152 81.2
20 Agents (C2) 184 81.4
10 Agents (US) 122 81.1
10 Agents (C2) 118 81.2
5 Agents (US) 72 80.0
5 Agents (C2) 100 80.4

Table 5.34: GRAEL-1 wWSJ - Results

function now scores lower than in the 20-agent society. The aforementioned
problem of agents containing too much grammatical information is even more
apparent in this experiment.

The fittest agent plots for the 5-agent society (Figure 5.28) show that the
agents start off with a high accuracy on the validation set and that there is
little left to gain by playing language games with other agents. Even though
GRAEL-1 surpasses baseline accuracy, the result is still significantly lower
than that of the larger society sizes. This experiment again corroborates
the claim that a larger corpus needs a larger number of agents, whose initial
grammars are smaller and therefore more easily tweakable in the GRAEL-
society.

5.3.3 50 agents, 100 agents

By increasing the number of agents in the society and thereby providing
each agent with an initial I-language that is much smaller in size compared
to the I-languages at the onset of the 20-agent society, we hope to alleviate
some of the aforementioned problems. Details of the 50-agent and 100-agents
experiments can be found in Appendix E.

It is clear from Figure 5.29 that these experiments run a similar course
to one another, regardless of the fitness function used. Even though the
accuracies of the 100-agent society are more scattered, they do converge
along the same lines, with only the number of language game runs as a
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| [ Halting Point | F,_, |

| Baseline | 0 | 79.9 |
100 Agents (US) 255 81.4
100 Agents (C2) 260 81.4
50 Agents (US) 175 81.3
50 Agents (C2) 293 81.4
20 Agents (US) 152 81.2
20 Agents (C2) 184 81.4
10 Agents (US) 122 81.1
10 Agents (C2) 118 81.2
5 Agents (US) 72 80.0
5 Agents (C2) 100 80.4

Table 5.35: GRAEL-1 wWSJ - Results

distinguishable difference. The 50 agents society improves its performance
on the respective fitness functions over the 20 agent GRAEL-1-society. The
observed differences are significant over the baseline model, as well as over
the societies with fewer agents.

The 100 agents society does not improve its figures over the 50 agents
society, but helps to illustrate the point that a larger corpus requires a larger
population size. The fact that a 100 agent society does not yield a large
improvement over 50 agents, however seems to indicate that no more im-
provement can be expected by further increasing population size. Doing so
would only increase the number of language game runs.

These experiments complete our results Table 5.35. The society size of
choice appears to be the 50-agent society, as it provides a favorable balance
between the number of language game runs and the F-score achieved on the
test set.

5.3.4 The Main Experiment

We now need to decide on a GRAEL-1 instantiation to apply on the full wsJ-
corpus. It is computationally unfeasible to use the standard GRAEL approach
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of using a validation set to determine halting points and/or determine the
fitness of agents, as it more than doubles the amount of parsing in each
language game run. Table 5.35 however suggests that, if our population
size is large enough, the difference between the two fitness functions largely
disappears.

This means we can reduce processing times by abandoning the validation
set and by focusing on settings that only operate on knowledge obtained
during language games. But even without processing on a validation set, one
single GRAEL-1 experiment using the full wsj-corpus would be computation-
ally intractable, as there are 40k sentences in the standard wsJ training set
(partition 2 to 21)!8. It is also not clear what the population size should be
for a 40k training set and we currently lack the resources to dynamically find
out.

We therefore propose the following adjustment: the 40.000 sentences of
the training set (partitions 2 to 21) are divided into 40 parts of 1.000 sen-
tences each. At the onset of the GRAEL-society, 1 of the 40 partitions is
distributed over the agents. Every 10 language game runs, all agents’ E-
languages are purged and replenished with the next partition of 1.000 sen-
tences. The agents’ I-language is also enriched with the structures from the
newly acquired E-language. This method does not need to disturb the de-
velopment of an agent to any great extent: every 10 language game runs,
it will need to adapt to a new set of sentences, but it will also receive new
grammatical information to do so.

This method makes sure that each sentence in the corpus is featured in the
society at one point or another. Since new grammatical information is added
to the society all the time, we need a new method to determine when an agent
has reached end-of-life and is ready to procreate. Based on observations made
with respect to generation-intervals on the standard GRAEL-1 experiments,
we implemented the following approximation for determining the lifespan of
an agent:

First Generation ‘ Consecutive Generations
n*2 +rand(n) | n + rand(n)

n = the number of agents in the society

18In our experiments, partition 22 is used as an optional validation set and partition 23
is used as the test set.
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The first generation of agents is allowed to build up its grammar for a
longer period of time to establish a firm grammatical basis for future gener-
ations. Consecutive generations occur randomly with a minimal interval of
n runs, with n being defined as the number of agents in a society.

We decided to conduct two experiments: one with a 50 agent society and
one with a 100 agent society. Some minor adjustment were made to speed
up processing:

e Understanding is the SELPRO in both experiments

e A specialized version of understanding+accuracy is used as a SELFIT:
if the halting point has reached the top 5 most understanding agents
in the society are asked to parse the validation set. The agent that
obtains the highest F-score is then selected to parse the test set.

e Only two halting points are considered: the plateau in understanding
accuracy and the very end of the society, i.e. when all 40 partitions
have been used

The graphs in Figures 5.31 and 5.30 show a course of events that is similar
to the experiments with the ATIS-corpus and the restricted wsJj-corpus, which
is encouraging. The corpus seems to be diverse enough not to hurt agents in
their development, if new information is introduced and the approximation
of GRAEL-1 seems to run a similar course to the standard instantiation.

Figure 5.31 shows some downward, as well as upward peaks every 10
runs at the start of the society. This means that some agents’ understanding
accuracy is stunted by the new wave of sentences, while others clearly ben-
efit from the added advantage of having their I-language enriched with new
grammatical structures.

The 50-agent society is halted after the 312th language game run. At this
point the specialized SELFIT procedure selects the fittest agent in the society
to parse the test set. It achieves a 80.7% F-score, while the 100-agent society
improves on that even further with 81.1%. Exact Match accuracies are also
greatly improved over the baseline model. We will show in Chapter 6 that
this is a consequence of GRAEL’s preference for larger substructures.
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Figure 5.30: GRAEL-1 WsJ - 50 Agents - Final Experiment - Understanding
Accuracy
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Figure 5.31: GRAEL-1 WsJ - 100 Agents - Final Experiment - Understanding
Accuracy
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Exact Match Correct LP LR Fg—1

/2416 % / % / % %
PMPG 386 16.0 37535 45908 | 47333 | 81.8 | 79.3 80.5
50 Agents 537 22.2 38195 46904 | 47333 | 81.4 | 80.7 81.1
100 Agents 551 22.8 38401 46985 | 47333 | 81.7 | 81.1 81.4

Table 5.36: wsJ - Final Experiment - Results

| || Exact Match || Constituents |

baseline accuracy vs || 1792 238 1411 8387
GRAEL-1 50 Agents 87 299 7727 29808

P(69.2) =8.7TE — 17 < 0.05 || P(26.9) = 2.1E — 07 < 0.05
baseline accuracy vs 1784 246 1598 8200
GRAEL-1 100 Agents 81 305 7334 30201

P(82.3) = 1.2E — 19 < 0.05 || P(48.2) = 3.9E — 12 < 0.05
GRAEL-1 50 Agents 1593 286 7541 1597
GRAEL-1 100 Agents 272 265 1391 36804

P(0.3) = 0.58 > 0.05 P(14.1) = 0.0002 < 0.05

Table 5.37: McNemar Tests for Final GRAEL-1 WSJ experiments

Thanks to the large test set, we are finally able to calculate significant
tests on a substantial data sets for experiments with GRAEL-1 (Table 5.37).
The results of the 50-agent, as well as the 100-agent GRAEL-1 society are
significantly different from those of the baseline model. Even though in
absolute terms the difference in for instance F-score may not be as big as
in the ATIS-experiments, the improvement on the wsJ-corpus is much more
significant. The difference between the 50-agent and the 100-agent society is
only significant on the constituent level.

The experiments with the wsJj-corpus have given more evidence for the
ability of GRAEL-1 as a grammar optimization method. The final WsJ-
experiment allowed us to back up this claim with some robust statistical
evidence. It should moreover be noted that this experiment was only an
approximation of the actual GRAEL-1-method. It is not clear whether the
absence of consistent processing on a validation set and the rotation of agents’
E-language hurts performance to any great extent. It will be interesting to
see how close our approximation has come to actual GRAEL-1 processing on
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large datasets, once technology has advanced enough to make the experiment
computationally tractable.

5.4 Advances and Future Work

GRAEL-1 provides an interesting method for grammar optimization. It sup-
ports the view that an annotated corpus by itself can be considered as raw
material in need of optimization. The grammar induced from the anno-
tated sentences does not readily hold the best distribution of probability
mass to parse the sentences themselves. GRAEL-1 optimizes a grammar by
breaking it down and distributing it over a group of agents. While these
agents practice their grammars on one another, they learn to distribute the
probability mass over the grammar in a setting that is an explicit reflec-
tion of the task they were set out to accomplish. We define GRAEL as an
agent-based /distributed evolutionary computing approach for grammar op-
timization. The agent-based aspect of GRAEL allows for several alternative
grammars to be developed simultaneously, while the evolutionary aspects of
the environment make sure only those alternatives survive over time that
comply with the fitness functions we apply to the society.

There is however a fine balance between the number of agents and the size
of the initial corpus. Agents should not hold too many sentences (e.g. the
5-agent ATIS experiment), as this provides them with an initial grammar that
is too set in its ways to be enhanced by inter-agent knowledge sharing. But
a society of agents that start off with a very small I-language (cf. the 100-
agent ATIS experiment) seems to produce grammars that are mainly driven
by grammatical structures acquired in language games, which also seems to
reduce the top parsing accuracy such a society can achieve.

The experiments with GRAEL-1 not only researched grammar optimiza-
tion in an agent-based environment, but also served as a trial run for the
next set of experiments. One of the more desirable traits of GRAEL is its
ability to turn faulty grammars into good grammars, simply by having them
interact with each other. This would seem very practical as an unsuper-
vised method for grammar induction, which is typically marred by limited
performance (cf. Chapter 8). And if we tone down some of the aspects of
GRAEL-1 that are explicitly geared towards grammar optimization, such as
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the explicit knowledge sharing and the strict distinction between I-language
and E-language, the basic sensibilities paramount to GRAEL-1 may provide a
setting to attempt a computational simulation of the origins of compositional
language (Chapter 10).

Before we turn to these experiments however, we will first compare GRAEL-
1 to similar methods for grammar optimization in Chapter 6. In Chapter
7, we will then extend GRAEL-1’s data-driven grammar optimization skills,
by introducing a mutation operator that is able to create new grammati-
cal information, while the generation-based approach makes sure only use-
ful structures are maintained, projecting GRAEL as grammar rule discovery
method.
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Gentlemen, when two separate events occur simultaneously pertain-
ing to the same object of inquiry we must always pay strict attention.

Agent Dale Cooper - Twin Peaks, Season | (ep.4) - ©1990

A comparison between GRAEL-1 and
Ensemble Learning Techniques

An important trend in the field of Machine Learning sees researchers em-
ploying combinatory methods to improve the classification accuracy of their
algorithms. Natural language problems also seem to benefit from the com-
bination of classifiers to deal with the large datasets and expansive array
of features that are paramount in describing this difficult and disparate do-
main which typically features a considerable amount of sub-regularities and
exceptions.

Not only system combination and cascaded classifiers [van Halteren et al.
1998; De Pauw and Daelemans 2000; Tjong Kim Sang et al. 2000] are
well-established methods in the discipline of Machine Learning for natural
language, also ensemble learning techniques such as bagging and boosting
have been applied successfully on a number of natural language classification
tasks [Abney et al. 1999; Hoste and Daelemans 2000; Henderson and Brill
2000]. These techniques hold in common that in no way do they alter the
actual content of the information source of the predictor. Simply by re-
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distributing the data, different resamplings of the same dataset are generated
to create a combination of complementary classifiers.

In Chapter 5, we described experiments with GRAEL-1 in which we took
a corpus of tree-structures and distributed them evenly over a society of
agents. Through an extended series of language games, the agents were
able to restock their initial faulty grammars with grammatical information
in a way that optimizes the distribution of the probability mass for parsing.
Simply by re-distributing the data over a group of agents (cf. bagging)
and adjusting the weights of particular subsets of the information involved
(cf. boosting) GRAEL was able to produce a classifier which outperformed
the initial dataset, without changing the actual content of the information
source. The strong similarities between GRAEL and the ensemble learning
methods of bagging and boosting, warrants a direct comparison.

To our knowledge, only [Henderson and Brill 2000] has so far attempted
to apply the methodology of bagging and boosting on treebank parsers, even
though [Collins 2000a] describes a method for reranking parse forest using
similar techniques. The concepts and experimental setup outlined in [Hen-
derson and Brill 2000] will be the basis for the experiments in this chapter.
We will introduce the methods of bagging (Section 6.1) and boosting (Sec-
tion 6.2) and outline the respective similarities with the GRAEL-system. The
experimental comparison and some concluding remarks are presented in Sec-
tions 6.3 and 6.4.

6.1 Bagging

The basis idea behind ensemble learning techniques is to collect a number of
different classifiers for a particular task, each with their own systematic bias
towards classification and combine the results into one classifying combina-
tion that ideally incorporates all of the strengths of its parts and none of the
weaknesses. Trained on different data sets or powered by different machine
learning algorithms, each classifier may be better at some subset of the clas-
sification problem than others. If the individual classifiers complement each
other sufficiently, an ensemble algorithm will try to determine for each item
to be classified which individual classifier(s) is best qualified to trigger the
correct solution.
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But not only is it important for the ensemble algorithm to choose the
right candidate to classify each particular instance, it is also essential that
the individual classifiers be as complementary as possible. Ideally, we want a
set of classifiers that, given an oracle picking the best candidate every time,
achieves a 100% accuracy on the classification task. Generally, an ensemble
technique can be evaluated by looking at the complementary nature of the
components it contains' and the degree to which it approaches oracle-type
decision making.

Bagging (“bootstrap aggregating”) is an ensemble machine learning tech-
nique conceived by [Breiman 1996] which tries to create an ensemble of clas-
sifiers, by training them on different re-samplings of the same data set. These
re-samplings are created by making bootstrap replicates of the training set
and using these as data sets to train new classifiers. So typically, bagging
does not involve using different learning algorithms to create a set of classi-
fiers. It rather uses a single learning algorithm trained on different data sets,
which are created by randomly selecting instances (with replacement) from
a training set and placing them in a number of new training sets, that are
equal in size to the original training set.

Even though the new training sets are consistent with the original data,
each set will yield a different instance space, since the selection mechanism
ensures that some instances from the original training set will not occur in
the newly built training sets, while other instances will occur several times,
creating a different distribution of instances from one set to the next. After
the training sets are used to train new classifiers, each of them will propose
a classification for the instances in the test set, after which a simple ma-
jority voting mechanism can be used as the final predictor. Whereas the
original training set would have provided the classifier with a possibly un-
surmountable systematic bias, bagging ensures that each predictor is based
on a different resampling of the original training set, thereby introducing for
each classifier a different bias towards the final classification.

The success of the bagging approach is largely dependent on whether the
selection mechanism is able to generate new data sets that are representative
of the original dataset, yet varied enough to yield complementary classifiers.
[Breiman 1996] indeed points out that bagging is more suitable for resolving

! Although some methods such as stacked classifiers do not create their own components.
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biases of unstable predictors, such as connectionist methods, rather than
stable methods, such as nearest neighbor approaches.

Regardless of the classifier used, bagging does seem to render good perfor-
mance on a number of NLP problems, including PP-attachment [Abney et al.
1999; McLauchlan 2001], part-of-speech tagging [Hoste and Daelemans 2000],
document classification [Koehn 2002] and syntactic parsing [Henderson and
Brill 2000; Collins 2000a).

6.1.1 Bagging Treebank Parsers

[Henderson and Brill 2000] describes bagging (and boosting (Section 6.2))
experiments with a treebank parser. This requires a slight adaptation of the
bagging approach, the algorithm of which is reproduced here:

Given: A corpus (again as a function) C : SxT—N,
S is the set of possible sentences, and T is the set
of trees, with size m = |C| = 3, ;C(s,t) and parser
induction algorithm g.

1. Draw k bootstrap replicates C;...C; of C each
containing m samples of (s,t) pairs randomly
picked from the domain of C according to the
distribution D(s,t) = C(s,t)/|C|. Each boot-
strap replicate is a bag of samples, where each
sample in a bag is drawn randomly with re-
placement from the bag corresponding to C.

2. Create parser f; < g(C;) for each i

3. Given a novel sentence Siest € Ciest, COmbine
the collection of hypotheses t; — f;(Ssest) using
the unweighted constituent voting scheme of
[Henderson and Brill 1999]

The parser mentioned in step (2) of the algorithm is a distribution of
Collins’ model 2 parser described in [Collins 1997]. The combination method
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LP | LR | Fs—; Gain | Exact Gain
Original Parser | 88.7 |88.5|88.6 NA | 349 NA
Initial 88.4 1 88.3 1884 0.0 33.3 0.0
TrainBestF (15) | 89.5 | 88.8 | 80.2 08 | 346 1.3

Table 6.1: Results for the [Henderson and Brill 2000] bagging experiment

in Step (3) refers to earlier work [Henderson and Brill 1999] on combining
several treebank parsers. The constituent voting scheme involves several
parsers voting on the inclusion of constituents in the parse. If a majority of
the parsers include a certain constituent in their parse, it is included in the
parse proposed by the constituent voting. [Henderson and Brill 1999] also
describes conditions under which the constituent voting [...] combination
techniquefs| are guaranteed to produce sets of constituents with no crossing
brackets. Detailed information on these conditions and the method to com-
bine these constituents into a full parse are however unfortunately lacking in
[Henderson and Brill 1999]. Since we have already defined an efficient simple
weighted voting mechanism for treebank parsers in Chapter 3 (p. 73), we will
use this as a combination technique in the bagging experiments described in
this chapter.

Results for the [Henderson and Brill 2000] bagging experiment (summa-
rized in Table 6.1) show a clear gain in using a bagging approach. The
original parser achieved a 88.6% F-score and a 34.9% Exact Match accuracy
score, while the “Initial” system (consisting of only one bag) scored a 88.4%
F-score. A system consisting of 15 bags yielded the best scores on the train-
ing set and was used to parse the test set: it achieved a 89.2% F-score and a
34.6% Exact Match Accuracy. It is unclear why [Henderson and Brill 2000]
define gain in terms of the observed difference in accuracy with the Initial (1
bag) system and not the original parser. In any case, the bagging approach
yields a .6% performance increase compared to baseline accuracy, but loses
out on exact match accuracy.
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6.1.2 Relation to GRAEL

Bagging a treebank parser involves creating a number of data sets that differ
from each other in terms of the distribution of the grammatical units in the
individual bags. Some structures will not be featured in some bags, while they
may occur multiple times in another bag, because structures from the training
set are distributed randomly over a fixed set of bags, but with replacement,
meaning that the same structure may occur several times in different bags.
And even though the bags differ from one another, bagging tries to make sure
that the aggregate distribution of all bags approaches that of the original
training set. But ultimately, the success of a bagging experiment depends on
whether the bags complement one another well enough to make a difference
over the original data set. This is largely dependent on the nature of the
data itself, but also on the way in which the bags are compiled.

The GRAEL-1 method appears to be similar in concept to bagging: in
GRAEL-1 a collection of tree-structures is randomly distributed over a group
of agents, or “bags”. But in a bagging approach, the newly created data sets
are roughly the same size as the original data set, thanks to the creation of
replicates with replacement, whereas the number of tree-structures that
agents in a GRAEL society hold, equals the number of trees in the original
data set, divided by the number of agents in the society.

The agents replenish their grammars through an extended series of lan-
guage games, which for a fairly limited period of time (defined as the state
of beneficial confusion in Chapter 5 (p. 156)), produces a number of agents
that have grammars that are fairly different from each other in terms of the
distribution of grammatical structures contained. Disregarding the devel-
opment of the agents over time and only considering the grammars in the
society at that moment, one might think of the GRAEL-society as a collec-
tion of bags. The difference with the bagging approach however is twofold:
whereas bagging tries to find a collection of data sets that, considered as a
whole, approach the distribution of the original training set, the grammars
in the GRAEL-society at that point were not optimized to mirror the original
training set, but rather to perform a particular task, i.e. parsing. We have
shown in Chapter 5 that these are not the same, as a parser using a grammar
optimized by GRAEL-1 outperforms a parser trained on the original distri-
bution of the training set. The 2nd difference with bagging is that there is
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no majority voting in a GRAEL-society: typically, only one agent is picked to
parse the test set. We will however describe a experiment in Section 6.3.3 in
which agents in a society are “bagged”.

6.2 Boosting

Boosting is related to bagging as an ensemble learning algorithm in that it
also uses a collection of classifiers that are typically powered by the same
learning algorithm. We noted with respect to bagging that different classi-
fiers are created that each introduce their own particular bias towards clas-
sification. There is however no internal feedback: each bag is given a set of
sentences and does not “reflect” on its data set. Boosting introduces some
form of internal feedback by keeping track of misclassified instances to con-
sequently assign them more weight than correct instances in the subsequent
resampling.

Adaptive Boosting AdaBoost [Freund and Shapire 1996]) is one of the
most popular ensemble learning techniques in machine learning. Similarly to
bagging, the AdaBoost algorithm generates several classifiers from a training
set. In the initial phase, the weights for all instances in the different training
sets are equal. When one of the classifiers makes a mistake, the weight for
that particular instance is increased, forcing the classifier in the next round
to focus on those examples.

This ensemble learning technique has been applied to an increasing num-
ber of machine learning tasks of natural language, among which text clas-
sification [Schapire and Singer 2000], text-filtering [Schapire et al. 1998],
tagging [Hoste and Daelemans 2000; Abney et al. 1999], PP-attachment [Ab-
ney et al. 1999] and syntactic parsing [Henderson and Brill 2000]. Boosting
generally appears to outperform bagging as an ensemble learning algorithm
[Dietterich 2000], but other studies [Hoste and Daelemans 2000] note that
even though boosting yields an important error rate reduction on exceptional
cases, a higher error rate on regular cases can also be observed, because of
overgeneralization of the exceptions.
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6.2.1 Boosting Treebank Parsers

[Henderson and Brill 2000] redefines some of the AdaBoost methodology to
make it applicable for treebank parsing. We reproduce the algorithm here:

Given: corpus C with size m = |C| = ¥;,C(st)
and parser induction algorithm g. Initial uniform Dis-
tribution D_(i) = 1/m. Number of iterations, T.
Counter t = 1.

1. Create C; by randomly choosing with replace-
ment m samples from C using distribution D;.

2. Create parser f; < g(C;) for each i
3. Choose oy € |RR

4. Adjust and normalize the distribution. Z; is a
normalization coefficient. For all 7, let parse
tree ©; < fi(s;). Let 6(f,¢c) be a function
indicating that c is in parse tree 6, and |6 is
the number of constituents in tree 6. T(s) is
the set of constituents that are found in the
reference or hypothesized annotation for s.

D1 (i) — 7 Di(i) Eeer(s (al (1 — a)[6(6], ) —
6(0:,c))

5. Increment t. Quitif t; T
6. Repeat from step 1

7. The final hypothesis is computed by combin-
ing the individual constituents. Each parser
€; in the ensemble gets a vote with weight
«y for the constituents they predict. Precisely
those constituents with weight strictly larger
than £ 3", oy are put into the final hypothesis.
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LP | LR | Fs—; Gain | Exact Gain
Original Parser | 88.7 |88.5|88.6 NA | 349 NA
Initial 88.1 | 88.1 881 0.0 33.3 0.0
TrainBestF (15) | 89.4 | 88.3 | 88.8 0.8 33.0 -0.3

Table 6.2: Results for the [Henderson and Brill 2000] boosting experiment

Constituents are considered correct if they are featured in the tree-structure
proposed by the parser, as well as in the original reference structure from the
training set. Points are added or deducted according to the number of cor-
rect constituents that are parsed. The value of o can be tweaked to express
preference for a specific kind of accuracy measure.

The experimental results which [Henderson and Brill 2000] report on the
boosting experiment can be found in Table 6.2. Again it compares the orig-
inal parser to an initial system with only one resampling and a system with
15 resamplings, which had proved to yield the best results on the training
set. The results show that bagging is to be preferred over boosting. The
performance increase over the original parser is much lower for the F-score
and there is a performance decrease for exact match accuracy. It seems that
the boosting method used is not appropriate for this task, as even the ini-
tial system with only one resampling already shows a significant decrease on
accuracies compared to the bagging counterpart.

[Henderson and Brill 2000] suggest that the underwhelming results for
boosting are caused by a violation of the weak learning criterion. Their
data analysis showed that 11.2% of the training corpus could simply not be
learned by the parser?. An extra experiment was conducted in which those
particular sentences were trimmed from the corpus, but this yielded lower
results. [Henderson and Brill 2000] hypothesize that the boosting algorithm
itself performed better, but that useful lexical information was lacking that
had previously been compiled from those sentences.

2This was tested by creating 39.832 parsers each trained on one sentence. 4.764 of
those parsers could not parse their own sentence correctly.
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6.2.2 Relation to GRAEL

Boosting as an ensemble learning method mirrors some of aspects of the
GRAEL-1 approach. GRAEL-1 shared the bagging concept of distributing a
group of tree-structures to provide a number of different resamplings of the
original training corpus. Boosting further ties in with GRAEL-1 by effectively
implementing a form of error-driven learning, providing a re-distribution
of grammatical structures based on errors made by the parser. Whereas
bagging tries to create an aggregate of bags that approaches the original
training set distribution, boosting can optimize the distribution to achieve
higher accuracy scores in parsing.

This is very similar to what is going on in GRAEL-1, albeit in a differ-
ent way: if agentl parses a sentence wrong, agent2 will cause agentl to
increase the weight of the relevant (sub)structure in his grammar. GRAEL-1
therefore also clearly incorporates a form of error-driven learning. The differ-
ence with boosting lies in the fact that the agents start out with grammars
that are totally distinct from one another, i.e. at the onset of a GRAEL-
society, a tree-structure will only occur once in each agent’s E-language. The
language games consequently make sure that through a form of inter-agent
error-driven learning, grammatical information is shared in a way that opti-
mizes the distribution of probability mass for actual parsing, rather than to
mirror the distribution of the original training set.

6.3 Experimental Setup and Results

Figure 6.1 describes the experimental setup. We are comparing the perfor-
mance of three classifiers: the fittest agent in a GRAEL-1 society, the standard
bagging or boosting approach and a classifier that interprets the agents in
a GRAEL-society as bags. We will refer to the results in Chapter 5 for the
GRAEL-experiments (except for the “bagging GRAEL-1” approach). The same
training set - test set division was used for all data sets. We used two data
sets for our experiments: the toy ATIS-corpus and the keystone wWsJ-corpus.
We used the PCFG+PMPG parser (Chapter 3) to parse the sentences.
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Figure 6.1: Comparing three classifiers: GRAEL-1, “Bagged” GRAEL-1 and
Bagging/Boosting
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ATIS WSJ
Exact Match ‘ Fs—1-score || Exact Match ‘ Fs—1-score
| Baseline | 707 | 83 | 160 | 805 |

GRAEL-1 (5) 72.4 90.9 — —
GRAEL-1 (10) 77.6 92.1 — —

GRAEL-1 (20) 77.6 92.1 — —
GRAEL-1 (50) 75.9 92.2 22.2 80.7
GRAEL-1 (100) 75.9 92.0 22.8 81.1
1 Bag 67.2 80.1 13.3 78.6
10 Bags 72.4 91.7 17.1 81.0
15 Bags 75.9 91.8 20.0 81.4

Table 6.3: Baseline, GRAEL-1 and Bagging results

6.3.1 Bagging

Table 6.3 displays the exact match accuracy and F-scores for the baseline
model, the standard PCFG+PMPG parser that was hitherto used. It also
displays scores of the GRAEL-1 system, using sexual procreation, the combi-
nation of accuracy and understanding as fitness function and majority voting
to halt the society®. We notice a significant gain for all GRAEL-1 models
over the baseline model. Increasing population size over 20 agents seems to
decrease Exact Match accuracy. Note however that there is only an absolute
difference of one sentence between the 20 agent-society and the 50-agent so-
ciety, which produces a seemingly high accuracy shift, due to the small size
of the test set.

The first experiment implements a bagging approach to grammar opti-
mization. The method for creating the bags is the same as in [Henderson
and Brill 2000], but we employ a different method for combining the decisions
made by the different bags. [Henderson and Brill 2000] uses a method called
unweighted constituent voting (described in [Henderson and Brill 1999]) in
which the individual classifiers can contribute constituents to the final de-
cision. We will however use the weighted voting mechanism for full parsers

3Refer to Chapter 5 (Section 5.3.4) for details on important adjustments to the GRAEL-1
system made for the experiments on the wsJ.
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described in Chapter 3 (p. 73) as a combination technique in the bagging
experiments. This implements a simple weighted majority voting method as
follows: the 10 most probable parses are gathered from the parse forests of
the individual parsers. Next, their respective probabilities are added. This
returns an ordered miniature parse forest of at most 10*n parses. The parse
with the highest probability is the parse proposed by the majority voting
method.

We have tested three different bag sizes: an initial system with one bag
and two systems with 10 and 15 bags respectively. Due to time constraints,
we have not dynamically determined the number of bags, unlike the [Hen-
derson and Brill 2000] experiment. Our main focus is the system consisting
of 15 bags, as this was reported by [Henderson and Brill 2000] to yield the
best results on a training set and close to the best result on the test set in
their experiments.

When we look at the results of the bagging experiment, we also notice
a considerable increase when using a bagging approach on the ATIS-corpus.
Using only 1-bag? , exact match accuracy is much lower for the ATIS-corpus.
This can probably be attributed to the fact that ATis, although fairly homo-
geneous, is a small treebank, so that the absence of certain key structures,
may well deteriorate parsing accuracy on a test set. Using 10 bags on the
ATIS-corpus, improves on the baseline model, while using 15 bags (compa-
rable to [Henderson and Brill 2000]) further improves on the accuracy. The
bagging approach is however not able to outperform the GRAEL-1-approach
on the ATIS-corpus.

The situation is more or less reversed for the wsJ-corpus: similar to the
experiments in [Henderson and Brill 2000], using only one bag does not de-
grade performance significantly over the base-line model. But the system
consisting of 15 bags outperforms GRAEL-1 by a significant margin. Never-
theless, GRAEL-1 (100 agents) parses 69 more sentences completely correct
than a 15-bag system does. The advances made by the bagging approach on
the experiments described in this paper are comparable to those in [Hender-
son and Brill 2000], even though the overall scores are still lower.

To conclude, the results are somewhat of a mixed bag: the GRAEL-society

4Even though this would a priori seem to limit parse accuracies, we include this method
for the sake of comparison with [Henderson and Brill 2000].
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outperforms the bagging approach by a significant margin on the ATIS-corpus,
yet the situation is reversed on the wsJ-corpus, even though the difference
between the two methods is considerably smaller. GRAEL-1 seems to do a
better job at improving exact match accuracies than bagging. This means
that GRAEL-1 on average generates more incorrect constituents than the bag-
ging approach does, but is better at finding a global solution for a sentence.

6.3.2 Boosting

[Henderson and Brill 2000] describe an interesting application of the AdaBoost
algorithm on treebank parsing. Although it provides a very well-balanced def-
inition of boosting on this domain, the results are such that it is not always
clear what the actual effect of boosting proper is. Whereas the bagging ex-
periment employed unweighted constituent voting [Henderson and Brill 1999]
to decide on the ensemble’s decision, Step 7 in the aforementioned boosting
algorithm involves a weighted voting scheme. Even though the boosting al-
gorithm provides such a weight on the fly, following [Henderson and Brill
1999], these weights must have also been implicitly present in the data of
the bagging experiment. [Henderson and Brill 2000] also describes an equa-
tion to compute « (Step 3) which can be adapted to optimize the algorithm
for precision, recall, or F-measure. This « is used to adjust the weight of
correctly classified constituents.

We will employ a different boosting algorithm, one that is less intricate,
but which should provide a clearer insight into the effects of boosting proper.
The adjustments of weights in our boosting experiments is defined as follows:
over the course of 10 iterations, adjust the weight w of a sentence i, by looking
at its proposed parse P and the correct parse 1" as follows:

d(ti,t;): a function that counts the number of con-
stituents in tree-structure ¢ that can also be found
in tree-structure j

o O(PT) 5(PT)

1 “S(P.P) " 5(T.T)
W; = 1 — 51 58D
5(p.p) ToT.)

This gives each sentence a weight that is roughly the inverse of its F-
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ATIS WSJ
Exact Match ‘ Fs=1-score || Exact Match ‘ Fs=1-score
| Baseline | 707 | 83 | 160 | 805 |
GRAEL-1 (5) 72.4 90.9 — —
GRAEL-1 (10) 77.6 92.1 — —
GRAEL-1 (20) 77.6 92.1 — —
GRAEL-1 (50) 75.9 92.2 22.2 80.7
GRAEL-1 (100) 75.9 92.0 22.8 81.1
1 Bag 67.2 80.1 13.3 78.6
10 Bags 72.4 91.7 17.1 81.0
15 Bags 75.9 91.8 20.0 81.4
Boosting (1) 67.2 80.9 13.7 77.5
Boosting (10) 74.1 91.7 17.6 80.8
Boosting (15) 75.9 91.7 21.0 81.0

Table 6.4: Baseline, GRAEL-1, Bagging and Boosting results

score. When inducing a grammar for these sentences in the next iterations,
the probability of each constituent will be multiplied by this weight + 1,
thereby redistributing the probability mass over the grammatical structures
to try and resolve previous erroneous analyses.

After 10 iterations, we are left with a number of classifiers that each have
a certain kind of specialty. Rather than giving the classifiers a weight in the
final decision, as in [Henderson and Brill 2000], this weight is intrinsically
provided by the majority voting mechanism previously described: a minia-
ture ordered parse forest is culled from the n best parses in the parse forest
of each classifier. A classifier that is sure of its decision will express this in
the probability of the tree-structures it proposes, thereby supplying a bigger
weight towards final classification in the combination method.

Table 6.4 describes the results of the boosting experiment compared to
the GRAEL-1 experiments and the bagging experiment. Again, we notice a
significant performance increase when using 10 or 15 bags over the baseline
model. Boosting using only one bag significantly reduces accuracies for the
ATIS, as well as the wsJ-corpus. The 10 to 15 bags systems achieve a similar
result on the ATIS-corpus as bagging, i.e. lower than the GRAEL-1 approach.
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GRAEL-1 (50) ATIS WSJ

Exact Match ‘ Fs=1-score || Exact Match ‘ Fs—1-score
1 “bag” 75.9 92.2 22.2 80.7
5 “bags” 77.6 92.2 22.9 81.1
10 “bags” 77.6 92.3 23.1 81.1
15 “bags” 77.6 92.3 23.2 81.1
50 “bags” 75.9 92.0 22.7 80.5

Table 6.5: “Bagging Agents” Results

For the wsJ-corpus, it is a close tie between boosting and GRAEL-1. GRAEL-
1 does outperform boosting on exact match accuracy, but the F-scores are
very close. Neither of them can outperform bagging on this account.

6.3.3 “Bagging’ Agents

One final experiment tried to combine the sensibilities of bagging and GRAEL-
1 by considering agents as bags and applying a majority voting method
on their decision. The basis for this experiment was the 50-agent soci-
ety: we vary the number of bags for this experiment as well, by consid-
ering the n fittest agents of a GRAEL-society as bags. The previously de-
scribed weighted majority voting mechanism consequently compiles an or-
dered miniature parse forest and produces the most probable tree-structure.

Table 6.5 displays the results for this experiments. The first line (1 bag)
expresses the standard GRAEL-1 accuracy, achieved by the single fittest agent
in the society. The 5, 10 and 15 bags-system yields a slight performance
increase on the accuracies of the ATIS-corpus. But for both datasets, a 50
bags-system, i.e. using all agents in the society, decreases performance.

The 5, 10 and 15-bags systems however yield some significant performance
increases on the wsij-dataset. Exact Match accuracy advances significantly
and so does the F-score. Using majority voting, the 50-agent society is now
able to climb up to a 100-agent society in terms of F-score. Interestingly,
a side-experiment that used 10 “bags” from a 100-agent society yielded no
performance increase over the 50-agent counterpart whatsoever.
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ATIS WSJ
Exact Match ‘ Fs—1-score || Exact Match ‘ Fs—1-score
Baseline 70.7 89.3 16.0 80.5
GRAEL-1 (50) 75.9 92.2 22.2 80.7
Bagging (15) 75.9 91.8 20.0 81.4
Boosting (15) 75.9 91.7 21.0 81.0
GRAEL-1 (50-15) 77.6 92.3 23.2 81.1

Table 6.6: Comparison: Baseline - (bagged) GRAEL-1 - Bagging - Boosting
6.4 Concluding Remarks

Table 6.6 provides a comparison between the different systems discussed in
this chapter. The results show clearly that all methods described here im-
prove accuracy on both the ATIS and the wsJ dataset. GRAEL-1 outperforms
bagging and boosting on all accounts in the ATIS-experiment. This can be
explained by the small and homogeneous nature of the ATiS-corpus and may
therefore corroborate the claim made in [Breiman 1996] that bagging is less
suited for stable predictors, as well as the hypothesis put forward in [Hoste
and Daelemans 2000] that bagging has the advantage over boosting for clas-
sification of typical instances.

Bagging outperforms GRAEL on the WsJj-corpus, but only on a constituent
level. When we are interested in improving exact match accuracy, GRAEL ap-
pears to have the edge over bagging and boosting. We believe that this is due
to the way in which grammatical knowledge in a GRAEL-society is shared, i.e.
using substructures, which may provide a predilection for larger structures
in parsing. Boosting is not able to outperform bagging, nor GRAEL-1 as a
grammar optimization method.

The scores for GRAEL-1 seem closely tied to those of the boosting exper-
iments. Apart from the F-score on the WsJ-corpus, GRAEL-1 outperforms
boosting, but only by a small margin. The similarity in results may be ex-
plained by both GRAEL-1 and the focal point of boosting, i.e. error-driven
learning. Boosting re-adjusted the probability mass of grammatical struc-
tures if an error was made on them. This is more or less what is going on
in GRAEL-1 as well, but rather than enforcing the information locally, the
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re-adjustment on the probability mass is being made in another grammar.
The slight edge GRAEL-1 has over boosting may perhaps be explained by the
fact that the non-local re-adjustment of grammatical information in GRAEL-
1 applies more favorably on the task of parsing an unseen test set. Another
possible explanation might be that boosting starts out with all the grammat-
ical information present in the grammar, while agents in a GRAEL-1-society
acquire new grammatical structures in language games, while at the same
time, re-adjusting the probability mass to incorporate the new, as well as
the old structures. The boosting approach would therefore be similar to a
b-agent society based on the ATIS-corpus, in which it was observed that the
agents start out with too much grammatical information to warrant a flexible
redistribution of grammatical structures.

Allowing for the fact that GRAEL-1 requires a lot of computational ef-
fort compared to bagging and boosting, it does seem to hold up very well to
the established ensemble techniques as a grammar optimization technique.
Also note that scores reported on the wsJ dataset were achieved on an ap-
proximation of GRAEL, whereas the ATIS experiments were conducted on a
full instantiation of GRAEL. This may explain the reversed situation when
moving from ATIS to WsJ.

The comparison of GRAEL and the ensemble learning techniques of bag-
ging and boosting expose the similarities between the methods. Important
differences are however apparent, indicating that GRAEL holds its own as an
optimization method for corpus-induced parsing.



Scientistl: "Look at that! | never imagined a tree like that could even exist!”
Scientist2: "Normally it wouldn’t, it must be some kind of mutation.”
Scientist3: " That's right, probably caused by radioactivity.”

Last Days of Planet Earth - (©1974

GRAEL-2 - An Agent-Based
Evolutionary Computing Approach to
Grammar Rule Discovery

In Chapter 5 we discussed a method for the optimization of treebank gram-
mars. By distributing an annotated corpus of tree-structures over a group
of agents and having them interact in a setting that mirrors the task at
hand, the agents replenished their grammars with new information, while re-
adjusting the probability mass over the grammatical structures in an optimal
manner for parsing.

We compared this method in Chapter 6 to other ensemble techniques.
GRAEL-1, as well as the bagging and boosting algorithms, held one impor-
tant trait in common: at no point during processing, was new grammatical
information introduced in the system (society) that was previously unavail-
able to the aggregate components (agents, bags). The grammar optimization
techniques were therefore geared towards redistributing grammatical struc-
tures to make them suitable for parsing.
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Bagging tried to alleviate problems of classifier bias, by resampling the
original training set a number of times to create an ensemble of classifiers,
each bringing to the combination their own particular bias. We described
boosting as an error-driven learning algorithm, which re-adjusted the gram-
matical information based on the errors the individual classifiers made, so
that an ensemble of classifiers was created, each bringing their own line of
specialty to the mixture. GRAEL-1 resembles boosting in that it is also an
error-driven learning process, in which particular chunks of grammatical in-
formation are enforced on the basis of errors, although the re-adjustment was
done in the other agent’s grammar, rather than locally.

In this chapter, we will take one extra step and allow the agents to intro-
duce grammatical information in the society that was previously unavailable
to the aggregate of agents. The creation of new grammatical structures is
however bound to strict rules and ultimately they are nothing more than
adaptations of existing grammatical structures, i.e. grammatical structures
that have undergone some form of mutation.

This ties GRAEL-2 in with some related research efforts in the induction of
grammars using an evolutionary computing approach. Little or no effort has
been made to apply genetic algorithms on the optimization and induction of
grammars for natural language. Most of the research so far has been based
on artificially constructed languages [Dupont 1994; Huijsen 1993; Kammeyer
and Belew 1996; Keller and Lutz 1997a; Keller and Lutz 1997b; Lankhorst
1994; Lucas 1993; Lucas 1994; Wyard 1989; Zhou and Grefenstette 1986;
Losee 1995]', but most researchers claim their insights are also portable to
actual natural language data.

[Smith and Witten 1996] use tree structures as their syntactic represen-
tation, with nodes labeled as either AND or OR, which can be interchanged
during mutation. Fitness of an individual is measured by counting its gram-
mar size and its ability to parse test strings. They found that “recurring
patterns helped to reinforce partial inferences, but intermediate states of the
model may include incorrect generalizations that can only be eradicated by
continued evolution” [Wyard 1991] and [Blasband 1998] also apply Genetic
Programming to induce and optimize grammars. Closely related to this
line of work, is [Antonisse 1991] in which grammar-based crossover is imple-

'References from Literary Survey on Genetic Algorithms for NLP [Kool 1999].
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mented, a feature lacking in [Smith and Witten 1996]. Crossover occurs by
randomly splitting a sentence into two sentence fragments and interchanging
them with two fragments of another sentence.

[Losee 1995] describes the LUST system in which an information retrieval
system is powered by genetically evolving grammars. The grammars in this
system are optimized to contain rules that are specifically suited for the
IR-task. Optimization in the LUST-system takes place by mutation: the
right hand side of fit rules are altered by combining fragments from fit rules
with the same category on the left hand side. But the description of the
mutation process in [Losee 1995] more hints of a crossover operation than
actual mutation.

GRAEL-2 tries to provide a viable alternative for these methods, by ad-
dressing their weaknesses: the linguistic analysis of the generated data in
[Smith and Witten 1996] suffers from the fact that their linguistic represen-
tation (AND/OR) is too weak to offer any insight in the performance of
their grammar for actual natural language, so that it cannot be objectively
evaluated. The grammars described in [Blasband 1998; Losee 1995] seem
foremost geared towards the practical application in which they need to fea-
ture (spoken dialog systems and information retrieval respectively) and are
not able to provide any insights in the dynamics of grammar development
in an evolutionary context itself, the way GRAEL is able to. The grammars
used in [Wyard 1991] are based on artificially constructed languages and it
is not clear how they can be applied to large amounts of language data.
[Antonisse 1991] provides a more interesting account of grammatical devel-
opment in an evolutionary context, but its crossover operation is too relaxed,
creating a large amount of uninterpretable structures?. Also, the main goal
in [Antonisse 1991] is to create a framework for the evolution of all types of
grammars (linguistic and non-linguistic alike).

The advantages of GRAEL-2 compared to the aforementioned research
can therefore be summarized as follows: it provides a corpus-based, therefore
portable method for grammar optimization and induction that can handle
large amounts of natural language data. The modular architecture
allows a GRAEL-society to be tweaked to provide grammars for specific pur-

2Similar to the Crossover Mutation operation described in Section 7.1 and tested in
Section 7.3.4.
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poses, while the corpus-based approach provides an objective touchstone
for the grammars that the system yields.

We will discuss the different aspects of mutation in Section 7.1, go into
the experimental setup in Section 7.2 and discuss the results on the ATIS
and WsJ corpus in Sections 7.3 and 7.4 respectively. Finally, we conclude by
summarizing the insights this chapter has granted us in Section 7.5.

7.1 Mutation

Chapter 4 defined three ways to perform mutation on an agent’s grammar:

1. Crossover Mutation: this kind of crossover only occurs when ran-
dom crossover is enabled. Chapter 5 described a limited set of experiments
in which agents were allowed to randomly crossover substructures in tree-
structures, but with only one restriction: the structures that were crossed
over had to carry the same node label. Crossover mutation abandons this
restriction, meaning that crossover operations such as the one described in
Figure 7.1 are permitted. From this example one may gather that this op-
eration will yield more ungrammatical structures than grammatical ones. It
is only included in this chapter because it resembles the approach proposed
by [Antonisse 1991].

2. Internal Mutation: this is a different type of mutation altogether.
This kind of mutation does not occur by attaching constituents to different
nodes, in the way crossover mutation does, but adapts grammatical struc-
tures, by adding and/or deleting nodes from them and changing node labels
(see Figure 7.2). Internal mutation occurs when an agent mutates the gram-
matical structures in his own grammar. This can in principle occur at any
time, but we apply this kind of mutation only during procreation, since we
have the noisy channel mutation operation (cf. infra) to create mutated
structures during the normal course of the society. Internal mutation occurs
when an agent is born into the GRAEL-society with grammatical structures
inherited from its ancestor(s). To some of those structures a number of mu-
tation operations are applied. This relates GRAEL-2 to the general genetic
algorithm technique of creating new instances, by crossing over and mutating
existing instances.
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Figure 7.2: 3 different (Micro-)Mutation Operations

3. Noisy Channel Mutation: this mutation occurs in the context of
language games and provides a way to more rapidly cause new grammatical
information to be created than internal mutation is able to do. Noisy channel
mutation occurs when Agentl suggests a minimal correct substructure to
Agent2 during a language game, but is hindered by a virtual noisy channel,
which may cause Agent2 to misunderstand the information sent by Agent1.
This kind of mutation may involve adding nodes, deleting nodes or changing
node labels (See Figure 7.2).

Let us look at the mutation operations exemplified in Figure 7.2. We have
defined three different types: adding nodes, deleting nodes and changing node
labels. We start off with a T-structure heading a structure with terminals
abed. The first type of mutation involves adding a terminal node so that
the string turns into abced. To accommodate the node another branch is
added to a node. The location of attachment is limited to the node heading
one of the neighboring terminal nodes. In our example, this means e can be
attached to node C or D. The choice is made randomly. In the example in
Figure 7.2 it is attached to the C-node.

The next mutation operation involves deleting a terminal. In the example,
the deletion yields the terminal string abed. A deletion of a terminal results
in the deletion of the superordinate node, unless there are other terminals
headed by that node, as is the case in the example. Finally, terminals can
also be changed: in Figure 7.2 this results in the terminal string aced.

The mutation operations so far described, mostly affected the terminal
nodes, but one can also apply mutation to the grammatical structure on a
higher level. This is exemplified in Figure 7.3. Adding a node then means
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Figure 7.3: 2 Types of Macro-Mutation

that a node is deleted from its current position and adjoined to a different
node, as in the example of Figure 7.3. Deleting a node involves shifting the
entire subordinate structure one level up in the tree-structure. We do not
consider changing category node-labels, nor adding new category nodes in
the structure as macro-mutations.

We define two categories of mutation: micro-mutation, pertaining to
mutations on terminals, and macro-mutation, which alters the higher-level
structural properties, i.e. the attachment of category node-labels. When
combined, micro-mutation always precedes macro-mutation, but there is no
reason to do it the other way around.

7.2 Experimental Setup

We described a couple of alternative approaches to adding mutation to the
GRAEL-system. We now turn to some experiments to see what kind of advan-
tage the different possibilities can provide. As in Chapter 5, our main batch
of experiments was conducted on the ATIS-corpus, with the wWsJ-corpus pro-
viding corroborating results on a larger-scale data set.

We have suggested three different situations for mutation: crossover
mutation, internal mutation and noisy channel mutation. Crossover mu-
tation will be dealt with as an extra experiment in Section 7.3.4, as little or no
added insight is to be expected from those experiments and is only included
for the sake of comparison with [Antonisse 1991]. The two other situations
will be experimented on in isolation (denoted as im and ncm experiments
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Adding | Deleting | Changing
Nodes Nodes Label
ADC 3 3 .3
A 1 0 0
D 0 1 0
C 0 0 1
Adc .D 3 2

Table 7.1: 5 Calibration Settings for mutation

infra) and in combination (NCIM).

All GRAEL-2 systems will feature micro-mutation, as most of the grammar
sparseness problems can be mostly located in structures directly covering
terminals. But we will also test the combination with macro-mutation, to
see if coverage can be gained by mutating higher-level structures as well.

We also vary some of the micro-mutation operations to test their effect on
the performance of a GRAEL-2 society. Table 7.1 displays the combinations
we will consider. The first default setting (ADC) applies equal weight to
all three operations, meaning that the three types of mutation will occur an
equal amount of times. The next three settings just look at the three different
kinds of mutation in isolation. The results of these experiments allow us to
apply an optimized weighting in the last calibration setting.

So far, we have not addressed the problem of evaluating GRAEL-2. In-
vestigating different settings for GRAEL-2, we are mostly interested in their
ability to generate structures that were needed for parsing, but were previ-
ously unavailable. But with only 58 sentences in a typical ATIS test set and a
fairly limited number of constituents, it would be hard to identify significant
differences using the corpus division used in GRAEL-1. To find a suitable
test set for the GRAEL-2 experiment, we looked at the number of sentences
in the ATIS-corpus that had at least one constituent® not found in any other
sentence. We counted 124 unique constituents in the ATIS corpus, i.e. rules
that were only featured in one sentence (see Appendix F for an overview of
these sentences). Those 124 rules were found in 97 sentences (16.8% of all

3«Constituent” is defined here as a single-level constituent, i.e. as a rewrite-rule.
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sentences). This effectively means that an exact match structure can never
be provided for these sentences, even by a parser trained on all the other
tree-structures in the ATIS-corpus.

We took those 97 sentences and turned them into the test set. Even
though this makes for the most unfavorable training set - test set partition
imaginable (by definition yielding a 0% exact match accuracy score) it does
provide a test set on which any favorable effect of mutation can easily be
observed. A more fundamental problem to this approach however, is that
it does not comply with the blind-testing requirements, since the test set is
compiled by exploiting knowledge about the entire data set. But since the
research issue here is to find a good method for covering marginal structures,
the violation of the blind-testing principle is justifiable to some extent. And
from a more narrow point of view, there is still blind-testing going, as the
agents in GRAEL-2 do not exploit knowledge from the test set when opti-
mizing their grammars, so that testing is still being performed on unseen
data.

However, this does beg the question: how can agents in a GRAEL-2-society
learn to parse marginal structures, when all that is left in the society are non-
marginal structures to practice on. After the 97 aforementioned sentences
are separated from the rest of the training set, there are about 20 sentences in
the rest of the data set left that feature a unique constituent, as they shared
that constituent with one or more of those 97 sentences that now constitute
the test set. This means that the GRAEL-2-society does contain a limited
number of rules that are unique to a particular sentence.

The nature of the language games in GRAEL however would cause those
unique structures to be quickly distributed over the society, so that after a
while, inter-agent communication resembles using a training set to parse the
training set itself. The structures that previously were unique, will become
common-place through inter-agent knowledge sharing. This however poses a
serious threat to the effectiveness of mutated structures, as the agents will
have no real use for them. The original structures will almost always be
preferable, so that the mutated structures are never used and are therefore
treated as noise. The first experiment will show that it is the strict distinc-
tion between E-language and I-language that renders the mutation operation
useless in our first instantiation of GRAEL-2 and subsequent experiments will
therefore relax the distinction.
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One final adjustment we need to make relates to determining the age of
an agent. In a noisy channel mutation model, new grammatical information
is added all the time, so that the default definition of end-of-life does not
apply here. As in the GRAEL-1 WsJ-experiment we implement the lifespan
of an agent, using the following simple method:

First Generation ‘ Consecutive Generations
n*2 +rand(n) | n + rand(n)

n = the number of agents in the society

The first generation of agents is allowed to build up its grammar for a
longer period of time to establish a firm grammatical basis for future gener-
ations. Consecutive generations occur randomly with a minimal interval of
n runs, with n being defined as the number of agents in a society.

The following table displays an overview of all the experiments conducted
on GRAEL-2, minus the extra-curricular experiments described in Section
7.3.4:

(1) | ATIS | 20 agents (I<=E) | micro NeMm | ADC

(2) 20 agents (I<E) | micro NoMm | ADC

3) ADC (SE)
@ ADC (5p)
(5) A

(6) D

(7) C

(8) Adc

9) NIM | Adc

(10) NCIM | Adc

(11) +macro | NCM | Adc

(12) 10 agents (I&E) | +macro | NoM | Adc

(13) 50 agents (I<E) | +macro | NCM | Adc

| (14) | wsif | 100 agents (I&E) | +macro | NoM | Ade |

We conducted a total of 14 experiments with the GRAEL-2 system. The
first experiment (1) maintained the strict division between I-language and E-
language, which will prove not to be tenable. It used noisy channel mutation
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(NoM) and an equal distribution of mutation operations (ADC) in a GRAEL-
2-society in which new agents were created through sexual procreation. The
2nd experiment (2) adds interaction between I-language and E-language and
provides the first workable instantiation of GRAEL-2. Experiments (3) and
(4) investigate single epoch and splicing instantiations of the GRAEL-2 sys-
tem. We then look at the different calibrations of mutation operations in
experiments (5) to (8) (cf. Table 7.1). Internal mutation and its combina-
tion with noisy channel mutation is investigated in experiments (9) and (10),
after which experiment (11) adds macro-mutation operations to GRAEL-2.
The best combination of settings for the 20-agent ATIS society was conse-

quently used for different society sizes and data sets in experiments (12) to
(14)*

7.3 Experiments: ATIS

We start off with the first batch of experiments on the ATIS-corpus. We
already noted that the GRAEL-2 experiments differ from the GRAEL-1 ex-
periments in the test set being used. GRAEL-1-societies were evaluated on
a randomly compiled 58-sentence test set. Since GRAEL-2 is mainly geared
towards supplementing grammars with possibly useful grammar rules, rather
than optimize grammars to achieve maximum performance on a held-out test
set, we argued in Section 7.2 for the offbeat evaluation method of creating
a worst-case scenario test set of 97 trees, of which at least one constituent
is unknown to the training set. To compensate for the sizable test set, we
do away with any GRAEL-processes that involve a validation set, so that we
are left with enough critical mass to constitute a good GRAEL-society. Ex-
periments have shown that the Understanding fitness function by itself can
achieve top-of-the-line agents, while looking at a plateau in understanding
accuracy provides a halting point that usually halts the society at a favorable
time. We are left with a 481 sentence training set (to be distributed over the
GRAEL society) and a 97 sentence test set.

Table 7.2 displays the baseline accuracy achieved by a PCFG+PMPG
parser trained on the 481 sentences of the training set and tested on the

4For reasons of time, we assumed that the best setting for the mutation operations was
independent of population size and data set.
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LP LR | Fs ExMa

Correct | [ ‘ % | % (/968) | % Correct /* ‘ %
Baseline 578 687 | 84.1 59.7 69.8 0/97 0
GRAEL-1 624 712 | 86.3 64.5 73.8 0/97 0

Table 7.2: Baseline and GRAEL-1 Accuracies on 97-sentence test set

97 sentences of the test set. The Exact Match Accuracy score is by defini-
tion 0%, since all of these sentences contain at least one rule that is unknown
to the training set. With 25 sentences for which no parse could be gener-
ated, the number of constituents created by the parser is limited to 687°, as
opposed to 968 constituents in the annotated corpus. With 578 constituents
correct, this still produces a reasonable precision score of 84.1%, but the re-
call score suffers. As a consequence, the overall F-score is very low at 69.8%.
Also included is a standard GRAEL-1 system which yields some performance
increase, but an underwhelming F-score.

7.3.1 20 agents

The first experiment with GRAEL-2 involved noisy channel mutation, in
which structures were mutated while being transferred from one agent to
the next. Preliminary experiments (also described in Section 7.3.4) showed
that assigning a 50% chance of a noisy channel mutation occurring during the
transfer of a grammatical structure, helps to create a considerable amount of
new structures in an appropriate amount of time, without overpowering the
original grammatical content to any great extent.

The experiment featured an equal distribution between the three different
micro-mutation operations: there is 33.3% chance that a terminal node is
added, 33.3% chance that a terminal node is deleted and 33.3% chance that
a terminal node label is changed. Note that this distribution is not exclusive
and that there is for example an 11.1% chance of two mutations happening
and a 3.0% chance of all three happening.

SNote that we do not allow the parser to propose partial parses, like agents are allowed
to in language games.
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Figure 7.4: GRAEL-2 - 20 Agents - NCM - ADC - No interaction I-language/E-
language

Figure 7.4 shows the course of this experiment expressed in the inter-agent
understanding accuracy. This graph looks very similar to the GRAEL-1 coun-
terpart (Chapter 5, p. 141), except for some agents that seem to disperse
the plots somewhat: some agents seem to benefit from the mutated informa-
tion in the early stages of the society (runs 60-100), while other agents are
harmed, but overall, the addition of new grammatical information does not
change the overall course of the experiment too much, compared to GRAEL-1.
Since we have no validation set, we do not include the fittest agent plot for
this experiment as we did for the GRAEL-1 experiment.

As mentioned before, we halt the society when understanding accuracies
observed in language games are leveling. Using the understanding accuracy
halting procedure (halting point at run 191) yields an F-score of 69.1% and
an exact match accuracy of 0% when we use the grammar of the fittest
agent. Table 7.2 shows that the grammar induced from all the agents in
the GRAEL-2 society does indeed perform better on the labelled precision
score: the wealth of grammatical information in the entire society causes
more constituents to be parsed. But whereas recall rises, the system loses
out on precision. Apparently many more grammatical structures are created,
but many of them are also wrong. Furthermore, there are still no sentences
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LP LR | Fy, ExMa
Correct | / ‘ % | % (/968) | % Correct/* ‘ %
Baseline 578 687 | 84.1 59.7 69.8 0/97 0
GRAEL-1 624 712 | 86.3 64.5 73.8 0/97 0
GRAEL-2 (1) 602 | 774 | 77.8 | 622 | 69.1 0/97 0
GRAEL-2 (all) | 612 | 803 | 76.2 | 632 | 69.1 | 0/97 |0

Table 7.3: Baseline, GRAEL-1 and GRAEL-2 Accuracies on 97-sentence test
set

that are parsed completely correct, even though the number of unparsable
sentences has dropped from 25 to 10 in GRAEL-2 (using all agents).

Adding Interaction

The disappointing results can be explained by the lack of feedback agents in
the current GRAEL-2 society receive on the newly created structures. Agents
in a GRAEL-2-society create new grammatical information, but clearly, there
will be a preference for the “correct” structures over mutated structures that
do not conform to the structures in the agents’ E-language. As a conse-
quence, mutated rules are hardly ever used in language games, so that the
agents never receive feedback in any way on the validity of the newly cre-
ated structures. This means that all mutated structures carry the same low
probability and are basically considered as noise in the grammar.

Also, in a generation-based GRAEL-society, low-probability rules tend to
disappear from the society over time, effectively rendering the entire mu-
tation operation useless. In a single epoch society, this would perhaps not
pose a big problem, since all grammatical information is retained throughout
its life-span. When the need arises, these marginal structures may still be
called upon for parsing. But this still leaves us without useful probabilities
for these structures for parsing difficult unseen data. Furthermore, the mu-
tation operations in GRAEL-2 generate a large amount of new grammatical
structures, some of which are useful, but most are not. Clearly this begs for
a generation-based approach to distinguish useful grammatical information
from ineffective structures over time.
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So we are left looking for a method to provide feedback on the validity
of mutated structures in such a way that they are treated as actual possibly
useful grammatical constructs, rather than noise. We argued for the validity
of the strict separation between I-language and E-language in Chapter 5. An
experiment in which interaction was allowed between these two components,
proved that it has a negative effect on the performance of a GRAEL-1 soci-
ety, even though it did not hinder the society in its development. GRAEL-1
was geared towards redistributing probability mass in agents’ grammars to
optimize the construction of tree-structures that need to be as close to the
original as possible. The goal of GRAEL-2 is however different: it does not
explicitly try to create grammars to achieve the best F-score on a test set, but
rather tries to experiment with a large amount of possibly useful structures
and distinguish them from bad structures in an evolutionary agent-based set-
ting. The negative effect that removing the barrier between I-language and
E-language had on GRAEL-1 need therefore not be relevant for GRAEL-2.

In fact, if we allow each agent to parse his own sentences with his I-
language, in which newly acquired, mutated structures reside, we actually
find a way to include these structures in the language games. Some of these
structures will indeed be featured in the updated tree-structures that con-
stitute the E-language, so that in subsequent language games, the minimal
correct substructures that are transferred contain previously mutated infor-
mation. To nudge the agents to use newly acquired tree-structures in their
E-language, we double each newly acquired (and therefore possibly mutated)
structure in the agent’s I-language during the first generation. This will pro-
vide them with sufficient probability mass to overtake the resident structures
if necessary.

Figure 7.5 displays the course of this experiment. The first 10 language
game runs return stable results, but as soon as the mutated structures gain
power the understanding accuracies are very dispersed. There is a substra-
tum of agents that yields similar understanding accuracies until around the
120th language game run. The society at this point is already sprouting
4th generation agents and the diversity in the agents is such that there is
almost a 50% gap between the F-score of the most understanding and least
understanding agent.

Almost surprisingly, after 200 language game runs the society settles down
and seems to converge. The mutated information of the initial generations
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Figure 7.5: GRAEL-2 - 20 Agents - NCM - ADC -I-language —E-language

has become commonly accepted grammatical information and the agents’ E-
languages at this point remain largely unaffected by any mutated structures
that are acquired beyond this point. The convergence phase differs from the
convergence found in the equivalent GRAEL-1 society (Chapter 5, p. 141) in
the variance of the understanding accuracies, but the overall course of the
experiment is remarkably similar.

The results displayed in Table 7.4 are very encouraging. The GRAEL-
2 society that introduces interaction between I-language and E-language
(GRAEL-2 1) outperforms the original GRAEL-2 society (GRAEL-2 NI) on ev-
ery account. The fittest agent’s grammar, as well as the grammar compiled
from all agents produces more constituents, of which many are correct. This
increases recall scores by more than 15%. Whereas precision suffered from
the negative side-effects apparent in the GRAEL-2-society without interaction
between I-language and E-language (GRAEL-2 NI), it is now up to the same
level of baseline accuracy. The overall F-score jumps to 79.4%, an increase
of almost 10%. The fittest agent’s grammar parses two sentences completely
correct (2 sentences are still unparsable), while the entire society adds an
extra sentence to that count (with 0 sentences unparsable).

The interaction between I-language and E-language is clearly beneficial
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LP LR | Fs_, ExMa

Correct | / ‘ % | % (/968) | % Correct /* ‘ %
Baseline 578 687 | 84.1 59.7 69.8 0/97 0
GRAEL-1 624 712 | 86.3 64.5 73.8 0/97 0
GRAEL-2 NI (1) 602 | 774|778 | 62.2 69.1 0/97 0
GRAEL-2 NI (all) 612 | 803 | 76.2 | 63.2 | 69.1 0/97 0
GRAEL-2 1 (1) 732 | 875 | 83.7 | 75.6 | 79.4 | 2/97 |21
GRAEL-2 I (all) 747 | 910 | 82.1 | 772 | 79.6 3/97 | 3.1

Table 7.4: Baseline, GRAEL-1 and GRAEL-2 Accuracies on 97-sentence test
set

for GRAEL-2. It has proved to be a good method for assigning mutated struc-
tures some ballpark probabilistic value based on inter-agent communication.
The new GRAEL-2 system is able to generate more constituents. This means
that also more correct constituents are generated. But compared to the base-
line model, GRAEL-2 I loses out on precision. So even though the mutated
structures allow the parser to generate many more constructions that were
previously not available, there does seem to be a lot of noise in the grammars
as well, causing them to lack precision.

Varying generation methods

The next experiments will try and look underneath the hood of GRAEL-2
to see what experimental parameters may perhaps be limiting its precision.
One of the possible causes may be that sexual procreation does not agree
with GRAEL-2 the way it does with GRAEL-1. We therefore look at the
alternative methods of splicing and the single epoch society. The latter is of
particular interest to us, as no grammatical information is discarded at any
time: agents keep stacking up grammatical information without restriction.

Figure 7.6 shows the plot for the single epoch experiment. Overall, under-
standing accuracy are more dispersed over the graph, even in the convergence
phase compared to the GRAEL-1 counterpart (Chapter 5, p.121). Some very
high F-scores are being obtained in inter-agent communication, but even in
the convergence phase, F-scores down to 80% are not an exception.
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We would also like to draw attention to some peculiar behavior apparent
in the plots in Figure 7.6. Starting at the 50th language game run, one
particular agent seems to have acquired some very beneficial collection of
grammatical structures, as its understanding accuracy on other agents scores.
Due to the constantly changing E-languages in the society, understanding
accuracies vary to a great extent from one run to the next, but this agent
maintains its status, even after living on as his own offspring, until around
the 120th run, when the rest of the society catches up with him. There is
also another agent around the 70th run that breaks loose from the society.
The data shows that it has engaged in a couple of language games with the
aforementioned agent in a relatively short period of time. The “educated”
agent benefits from the grammatical structures provided by the strong agent
and starts a series of successful language games of its own. On the other side
of the scale, we notice an agent that engages in a long series of unsuccessful
language games starting from the 40th run, and only catching up to the
other agents around the 100th run, after it dies off and its slot is occupied
by another agent. The initial mutated structures it has acquired provided it
with a particularly inadequate I-language. The data shows in fact that all
the other agents achieve their worst understanding scores trying to parse this
particular agent’s E-language as well. Eventually though, convergence does
occur and the agents’ grammatical systems are similar to one another.

The results of the single-epoch experiment (GRAEL-2 (SE)) compares fa-
vorably to the crossover-experiment (Table 7.5). The fittest agent’s grammar
is unable to parse two sentences in the test set, while there are no unparsable
sentences for the grammar induced from the entire society. This means
that more constituents are generated and also more correct constituents,
which has a positive effect on recall. But precision loses out compared to the
crossover society. This is of course a direct consequence of the single epoch
method: no grammatical information is filtered from the society, which means
that we ultimately have a huge coverage of grammatical structures. But a
larger set of rules, many of them constituting nothing more than noise, im-
plies that a large portion of the probability mass is lost to useless structures.
This seems to negatively affect the precision score.

Table 7.5 also displays the results for the GRAEL-2 society using asexual
procreation (GRAEL-2 (Sp)). Not much is to be learned from this experiment.
The results are significantly worse than those of the crossover-based GRAEL-2
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LP LR | Fs_, ExMa

Correct / ‘ % % (/968) % Correct/* ‘ %
Baseline 578 687 | 84.1 59.7 69.8 0/97 0.0
GRAEL-2 NI (1) 602 | 774 | 77.8 | 62.2 69.1 0/97 0.0
GRAEL-2 (XO)(1) 732 | 875 | 83.7| 75.6 | 79.4 2/97 | 2.1
GRAEL-2 (SE)(1) 757 | 920 | 82.3 | 78.2 | 80.2 4/97 |41
GRAEL-2 (SE)(all) | 760 | 931 [81.6 | 785 | 80.0 4/97 |41
GRAEL-2 (Sp)(1) 688 | 835|824 | 711 | 76.3 2/97 | 2.1
GRAEL-2 (Sp)(all) | 696 | 851 |81.8| 719 | 76.5 2/97 | 2.1

Table 7.5: Baseline and GRAEL-2 Accuracies on 97-sentence test set
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society. This can be attributed to the fact that agents are born with a smaller
and less cleverly compiled grammar than in a crossover-based society. They
are therefore more susceptible to be disturbed by newly acquired, and often
noisy grammatical information. Exact Match accuracy is the same though,
and precision is higher than in a single-epoch society, indicating that it was
able to filter out some noise, but not to the same extent as the crossover-based
society was able to do.

Altering the generation-method in a GRAEL-2 society does not seem to
resolve the precision issues. We will now take a look at the mutation oper-
ations in isolation to see what type of mutation yields the best coverage on
marginal structures.

Altering Mutation Operations

First, we look at the mutation operation that adds nodes in isolation. This
will give us a rough idea of how useful it is to create new grammatical infor-
mation by adding elements to existing constituents. This type of mutation
would seem to alleviate problems we identified in Chapter 3 with respect to
flat NP-structures, for example in a constituent like restriction code AP/57.
This is represented in the ATIS-corpus as:

NP — NN NN sym sym sym CD CD

Being a highly specific constituent, this kind of rule is unlikely to be in-
duced from the training set. But given a constituent that more frequently
occurs in the ATiS-corpus, like flight number L 4 0, represented by the fol-
lowing rule:

NP — NN NN sym CD CD

a series of addition mutation operations might eventually yield the rule re-
quired to parse restriction code AP/57.

Table 7.6 describes the results of using the mutation operator that adds
node to constituents in isolation (GRAEL-2 (A)), compared to the default
experiment using all three operations, interaction between I-language and



7.3 EXPERIMENTS: ATIS

229

S
{ /\ N|P /VP\

want NP I
/\ want NP
NP PP T
RN TN NP NP
a flight to NP SN |
| a flight Brussels
Brussels

Figure 7.7: Mutation by Deletion

E-language and a crossover-based GRAEL-2-society®. The results are quite
interesting: GRAEL-2 produces many more constituents than the baseline
model, proving that it is able to trigger analyses that were unavailable to the
training set. But compared to the default GRAEL-2 experiment, significantly
fewer constituents are created. This is a direct consequence of the mutation
operation that adds nodes to constituents: constituents contain on average
a larger amount of terminals, so that flatter structures, consisting of fewer
constituents can be generated. This has a beneficial effect on the precision
scores, which is finally in an acceptable league. But the reduced number of
constituents however negatively affects the recall score and the F-score.

It is also interesting to note that exact match accuracy benefits from the
isolated mutation operation: 4 sentences are parsed completely correct. Two
of those sentences had not been parsed correctly by any other previously
discussed GRAEL-2 algorithm before.

The mutation operation that deletes nodes from constituents for very
short NPs like the 2nd one in the sentence There were 3. This requires the
rewrite rule:

NP — CD

This kind of rule can easily be created by deleting a terminal in a con-

6The understanding accuracy plot for the experiment provides little or no added infor-
mation, as it runs a similar course to the default (ADC)-experiment.
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LP LR | Fp ExMa
Correct | / ‘ % | % (/968) | % Correct/* ‘ %
| Baseline | 578 |687|841] 59.7 | 69.8] 0/97 0.0 |

| GRAEL-2 (ADC) || 732 |875[83.7] 756 |79.4] 2/97 21|
) 707 [822[86.0] 73.0 | 79.0 3/97 |31
GRAEL-2 (A)(all) | 714 |843 [84.7]| 738 | 78.9 4/97 |41

1) 715 [ 953 [ 75.0 | 73.9 | 74.4 1/97 |11
all) [ 721 | 970 [ 743 745 | 744 1/97 |11
1) 669 [720]929] 691 | 79.3 0/97 |00
GRAEL-2 (C)(all) | 681 | 735927 704 | 80.0 0/97 100

Table 7.6: Baseline and GRAEL-2 Accuracies on 97-sentence test set: Adding
Nodes

stituent like 2 friends(NP — CD NN), which is also featured in the ATIS-
corpus. Deleting terminals in constituents however, can also have an effect
on a higher level, as exemplified in Figure 7.7. In this structure the termi-
nal node to is deleted. Unless there are other terminal nodes on the same
level, the superordinate node is deleted as well and the subordinate struc-
ture(s) attaches to the first non-terminal node it encounters. This creates a
new structure: NP — NP NP. This example shows that the deletion oper-
ation should not be considered as an operation that only affects structures
containing terminal nodes, even though that is its main focus.

The results of using deletion in isolation provide an interesting illustration
of the effects of this mutation operation (GRAEL-2 (D)). Deletion eventually
creates a whole set of rules containing only one terminal on the right-hand
side. This means that a parse can possibly be construed by using a single
category for each terminal in the sentence and building up the superordi-
nate structure on top. This yields parses consisting of many constituents
as is evident from the results. Many constituents are generated of which a
surprisingly high percentage of correct structures, considering the careless
parsing behavior these results belie. Compared to other GRAEL-2 instantia-
tions however, the results are very low.

On inspection of the data however, we notice that the deletion mutation
operation is not without merit. There is a strong distinction in parsing
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behavior between this society and the society that used a mutation operation
that only adds nodes with many structures found by either method not found
by the other. This may seem trivial, but it does indicate that there is quite
a large performance increase to be gained from combining the two.

Table 7.6 also shows results for the mutation operation that just changes
terminal nodes. This can be thought of as a consecutive deletion and ad-
dition within the same constituent at the same location. Changing a node
is structurally the least radical measure, as it does not involve changing the
number of branches in a grammatical structure. It moreover serves as a fast
way to diversify structures containing terminal nodes, like NPs.

The results in Table 7.6 show that this mutation operator only generates
a limited number of constituents compared to the other operations. This is
due to the fact that (a) it does not reduce the average number of terminals
per node, in the way that the deletion operation did, and (b) it does not seem
to produce low-level constituents that allow good higher-level structures to
be built on top of it in the way the adding operation seemed to do. Exact
Match accuracy for this mutation operation is 0%. Further corroborating the
claim that this mutation operation does not yield good structures globally
is the fact that 10 sentences could not be parsed. All the more surprising
however then that precision is so high: this type of mutation may not yield
a lot of good constituents, and it may not incorporate them in a full tree-
structure very well, but what it does do well, it does very well. Data analysis
shows that changing terminal node labels is a very precise way to mutate
structures. Most of the time the mutated structure is not relevant, but when
it is, it is quickly attributed a probability that elevates it to the status of an
average corpus-induced rule.

A comparative quantitative data analysis of the results of the ex-
periments described in Table 7.6 will allow us to fine-tune a weighted com-
bination of the three mutation operations. Table 7.7 shows that mutation
operation A finds 88 constituents that none of the other mutations is able
to find. It finds 21 constituents that mutation operation D finds, but not C,
etc.

This table reveals some interesting facts: the A mutation is a very useful
operation: it achieves the best F-scores of all mutations in isolation, and
is able to generate quite a lot of constituents the other mutations can not.
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Correct by All: 579 constituents

Constituents Sentences
A|D |C A|D|C
A (|88 ]21 19 Afl21(1 10
D 21|93 22 D|1 (00
C 1922149 Cl0o]0]0

Table 7.7: Comparative Quantitative data analysis - Mutation operations

The deletion operation (D) is an interesting case: its lacking parsing skills
are apparent from the F-scores and the data analysis alike, but on the other
hand, it is able to generate 93 constituents none of the other mutation op-
erations can. The weighted combination should therefore include the D-type
sensibilities. There is in principle no grammatical structure that C can cre-
ate through mutation that a combination of A and D can not create either.
Even though its straightforward operation limits the amount of constituents
that its GRAEL-2-society creates, it does achieve high precision scores, and is
still able to be the only system to find 49 particular constituents. Compar-
ative quantitative data analysis on a sentence level is futile, because of the
extremely low exact match accuracy scores reported.

This data analysis provides a hopeful prospect for a fine-tuned weighted
combination of the three mutation operations. If we (wrongfully) assume that
the inclusion of one mutation operation does not affect the performance of the
other, an oracle that can choose the best constituent each time, would yield a
recall score of 90.0% (871/968). However, this is assuming that the mutation
operations act independently, while the experiment with the unweighted com-
bination in the GRAEL-2 (ADC)-society suggests otherwise. Also, it assumes
that constituents created as an effect of the different mutation operations
would somehow all fit perfectly in one parse for each sentence, which does
not hold true either. On the other hand, the combination of mutation oper-
ations might yield a beneficial side-effect not evident in any of the societies
using the operations in isolation. In any case, we can reasonably expect the
most optimal weighted combination to achieve a score that is significantly
lower than 90.0%, but it is a good upper threshold to keep in mind.
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Based on the data in Tables 7.6 and 7.7 we propose the following weight
distribution:

[AlD|C
Adc [ 5] .3] .2

This provides a good balance between the best performing mutation oper-
ation (A), the careless, but beneficial deletion mutation (D) and the straight-
forward C-operation. It is hoped that the combination can find a good bal-
ance between D’s and C’s predilections for tree-structures with respectively
many and few constituents and A’s solid parsing behavior.

The results of the weighted balance are quite encouraging (Table 7.8).
Although nowhere near the 90.0% upper threshold we suggested, the recall
score of 80% this sytem (GRAEL-2(Adc)) achieves, is significantly better than
any of the GRAEL-2 societies tested so far. The overall F-score is reasonable
and precision, although not much higher than that of the baseline model,
seems respectable. There are quite a number of constituents being parsed,
most likely grace to the D-mutation operation, but overall precision is not
sacrificed because of it. A pleasant surprise was exact match accuracy. All
sentences featured in the right table in 7.7 are also parsed correctly by the
weighted combination method, while the combination itself adds more sen-
tences to the exact match accuracy score.

Macro Mutations

Also related to the mutation operations is the question whether or not macro-
mutations have a beneficial (if any) effect on performance. So far we have
dealt with micro-mutations, that exclusively mutate structures containing
terminal nodes. We have seen that at least for the deletion mutation oper-
ation, this does sometimes entail structural changes on a higher structural
level, but its effect is rather limited.

Macro-mutations like the ones exemplified in Figure 7.3 mutate higher
level structures. Adding this type of mutation to GRAEL-2 provides some
interesting results (Table 7.8). The exact match accuracy shows that macro-
mutation enables two sentences to be parsed correctly that were previously
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LP LR |[Fp ExMa
Correct | [ | % | % (yoe8) | % Correct/* | %

| Baseline | 578 |687[841] 59.7 [69.8 ] 0/97 ]0.0 ]

| GRAEL-2 (ADC) | 732 [875[83.7] 756 [79.4| 2/97 [21]
GRAEL-2 (A)(1) 707 [822[86.0] 73.0 [ 79.0 3/97 3.1
GRAEL-2 (D)(1) 715 [ 953 | 75.0 [ 739 | 74.4 1/97 |11
GRAEL-2 (C)(1) 669 [720[929] 69.1 | 79.3 0/97 [0.0
GRAEL-2 (Adc)(1) 771 [ 902855 | 79.6 | 82.5 5/97 |52
GRAEL-2 (Adc)(all) 779 | 912 | 854 | 80.5 | 82.9 5/97 5.2
GRAEL-2 (+ macro)(1) 771 [ 890 [ 86.6 | 79.6 | 83.0 7/97 |72
GRAEL-2 (+ macro)(all) || 780 | 901 | 86.6 | 80.6 | 83.5 7/97 |72

Table 7.8: Baseline and GRAEL-2 Accuracies on 97-sentence test set:
Weighted combination of mutation operations

not parsable, but it does also allow for very flat structures to be created (most
notably because of the node shifting operation), which negatively affects the
number of correct constituents generated by the parser.

Although the +macro society shares many correct constituents with the
default GRAEL-2 society that only performs micro-mutations, the addition
of macro-mutation has a very beneficial effect on precision, as well as recall.
Some very good higher-level structures are being created. And even though
the macro-mutations generate a lot of grammatical noise, the dynamics of
the GRAEL-2-society seem better able at weeding out macro-mutation noise
than it is at discerning micro-mutation noise. The data-analysis shows that,
though most of the grammar sparseness can be located at the NP-level, i.e.
typically the lower regions of the tree-structure, many of the aforementioned
124 unique rules relate to higher-level structures as well (see Appendix F). It
is clear that the addition of macro-mutation is beneficial to the performance
of a GRAEL-2-society. Data analysis showed that there is about an equal
amount of useful structures created by either macro-mutation, i.e. node-
shifting and node-deletion. All subsequent experiments will therefore feature
macro-mutation.
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Figure 7.8: GRAEL-2 - 20 Agents - IM - Adc - [-language—E-language

Internal Mutation

The last two experiments before we investigate the dynamics of population
size, deal with the situation in which mutation occurs. So far, we have
only implemented noisy channel mutation. But we have also defined internal
mutation, i.e. mutation that occurs at the time of conception of a newborn
agent. A new agent is created by crossing over grammatical knowledge from
two ancestors (identical to GRAEL-1). But before the agent starts processing
the information, a portion of the structures in the I-language undergo a series
of mutations. The newborn agent then provides the sentences in the E-
language with tree-structures on the basis of his (mutated) I-language before
entering the society.

Only applying internal mutation drastically cuts back the number of mu-
tated structures that are going around. It also provides a more stable com-
munication model and a society that is more stable overall. The question
remains whether it provides sufficient variation to make a big impact on the
worst-case test set we have compiled.

We performed a 20-agent experiment using internal mutation, a crossover-
based society and the weighted combination Adc for mutation operations.
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LP LR | Fp ExMa
Correct | [ ‘ % | % (/968) | % Correct/* ‘ %
| Baseline | 578 |687|841] 59.7 | 69.8] 0/97 0.0 |
GRAEL-2(ncm) 771 [890 [86.6 [ 79.6 [ 83.0 7/97 72
GRAEL-2(im)(1) 610 [ 786 [77.6| 63.0 | 69.6 2/97 |21
GRAEL-2(im)(all) 621 | 799 | 77.7 | 64.2 70.3 2/97 2.1
GRAEL-2(ncim)(1) 765 [909[842] 79.0 [ 815 5/97 |52
GRAEL-2(ncim)(all) || 782 [923 | 84.7 | 80.8 | 82.7 6/97 |62

Table 7.9: Baseline and GRAEL-2 Accuracies on 97-sentence test set: Differ-
ent Mutation situations

The course of the experiment is displayed in Figure 7.8: it provides a nice
image of the course of action in this GRAEL-2-society. The society starts off
processing similarly to a typical GRAEL-1-society. The information shared
between agents is clean and does not undergo mutations. Around the 50th
run, the first newborn agents are created. The effect on the data plots is not
visible, due to the dispersed plots at this point. In later stages it is however
clearly visible how some agent’s understanding accuracy is signified by an
extreme drop, caused by internal mutation. In the end, though, convergence
does occur similarly to previous GRAEL-2 societies.

The result of this experiment can be read from Table 7.9 (results for
GRAEL-2(im)). Internal mutation does increase performance over the base-
line model, but it cannot outperform an NCM-type society. It does create
a reasonable amount of constituents but is seriously lacking in the ratio of
correct constituents. Internal mutation seems to create lots of new rules that
create analyses for sentences that were previously unparsable, but the anal-
yses on the whole are not very accurate. Perhaps internal mutation could
perform better if it were allowed to run for many generations, but it appears
unlikely that it would outperform an NCM-society.

A final experiment, the results of which can also be read from Table 7.9,
combined internal mutation and noisy channel mutation. The combination
introduces more mutated structures in the society, but not much in the way
of added performance. More constituents are on average created, but at a
lower precision rate, which is probably due to the larger amount of noise that
is present in this society. Whereas in an NCM-type society, new generations
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Figure 7.9: GRAEL-2 - 10 agents vs 50 agents

try to weed out noise from the society, a new generation in a NCIM-society
typically introduces more. One slight edge this approach has over the other
societies is a 6.2% exact match accuracy. There does not seem to be any
other reason to abandon NCM as the mutation situation of choice however.
It will therefore be used in subsequent experiments that look at different
society sizes.

7.3.2 10, 50 agents

Having optimized the experimental settings for GRAEL-2 on a 20-agent soci-
ety, we now apply the method on respectively a smaller and larger population
size. For reasons of time, we therefore assume that the setting pertaining to
the different mutation operations and the like are not affected by society size.
The experimental results show that this assumption may not be as harmful as
it seems, since results are very close to the 20-agent GRAEL-2-society and the
data-analysis indicates that society has little or no effect on its performance.

The plots in Figure 7.9 show that the 10-agent GRAEL-2-society starts off
with a coherent set of runs, from the 70th till the 100th run, there seems to be
a lot of confusion with a range of over 50% between the best understanding
accuracy score and the worst, indicating that the mutated information seems
to be “settling in”. The society eventually converges not long after this
period of confusion ends. The 50-agent society follows a typical GRAEL-
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LP LR | Fp ExMa
Correct | / ‘ % | % (/968) | % Correct/* ‘ %
| Baseline | 578 |687|841] 59.7 | 69.8] 0/97 0.0 |

GRAEL-2 (20ag
GRAEL-2 (10ag

( ) 771 890 | 86.6 79.6 83.0 7/97 7.2

(10ag)
GRAEL-2 (10ag)

(50ag)

(50ag)

(1)

(1) 761 | 888 | 85.7 | 78.6 | 82.0 | 4/97 |41
(all) | 779 [ 903|863 | 805 | 833 4/97 |41
(1)
(al

GRAEL-2 (50ag
GRAEL-2 (50ag

1 7 923 | 84.2 80.3 82.2 7/97 7.2
all) 786 945 | 83.2 81.2 82.2 7/97 7.2

Table 7.10: Baseline and GRAEL-2 Accuracies on 97-sentence test set: Dif-
ferent Society Sizes

2-course, with the only difference that understanding accuracy scores in the
convergence phase can drop as low as 80%, almost always because of newborn
agents trying to adapt to the GRAEL-2-society.

Around the 100th language game run, we have a peculiar situation in
which three agents break away from the society in terms of understanding
accuracy. On inspection of the data, we noticed that an anomaly in the ran-
dom selection of agents for language games, had caused these three agents to
develop a miniature GRAEL-2-society, only playing language games with one
another. This causes them to have unusually high understanding accuracies.
Around the 110th run, this miniature society breaks up and rejoins the rest
of the society.

Table 7.10 shows the results for the different society sizes. Each society
size displayed in this table used a crossover-based GRAEL-2 society, employ-
ing noisy channel mutation, and the Adc-weighted mutation operation. The
10-agent society produces less constituents than the 20-agent counterpart,
but at a higher precision rate, while recall is slightly lower. The 10-agent
society seems to produce a less diverse selection of mutated structures, but
its application of these structures is more meticulous. Overall, the F-score
of the 10-agent GRAEL-2-society is within range of that of the 20-agent so-
ciety. Note also that exact match accuracy is slightly lower, with the same
4 sentences parsed correctly by both the 20-agent and the 10-agent society,
although the 20-agent society adds one extra sentence to its exact match
score.
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The 50-agent society presents a different situation. In this society, more
agents provide a more diversified range of E-languages, containing a limited
set of sentences. This seems to speed up the transformation of mutated struc-
tures into resident grammatical structures. As a consequence, there are more
constituents generated, but on the whole not many more correct ones than in
a 20-agent GRAEL-2-society. Precision is therefore trailing compared to the
other societies, while the recall score is slightly higher. The overall F-score
is the same. The exact match score however benefits from the more diverse
range of mutated structures with up to seven sentences parsed correctly by
a grammar compiled from all agents in the society.

To conclude, there is little to choose between the different society sizes,
certainly in terms of F-score. While the 10-agent society has the edge on the
precision front, the 50-agent society is able to squeeze out a few more marks
on the exact match accuracy score. Overall, the 20-agent society seems to
provide a workable middle-ground between the two society sizes.

7.3.3 Summary of Results and Discussion

Table 7.11 displays the full results of the GRAEL-2 experiments on the ATIS-
corpus. We also include Table 7.12 which reports GRAEL-2 results on the
ATIS-corpus, but for grammars that are compiled from all agents in the soci-
ety, as opposed to just the fittest agent in Table 7.11.

The results show that a combination of noisy channel modeling and Adc
can obtain a reasonable F-score of more than 80%. The main factor in
increasing precision seems to be limiting the scope of the deletion operation
even though it needs to be included in the weighted combination to allow for
a good recall score. Comparing Table 7.11 with 7.12, we see that a grammar
compiled from all agents in a GRAEL-society always performs better than that
of the fittest agent. This is in direct contrast with the GRAEL-1 experiments
in which the fittest agent almost always outperformed the full society, even
on weaker fitness functions.

This can easily be explained by looking at the task at hand: GRAEL-1
tried to find the agent with the grammar containing the best tuned distribu-
tion of probability mass over a number of constituents. Agents differed from
each other, not in the structures they held in their grammar, but in the way
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| Ag |I&E | Gen [ +Mac | M? |AD.C[| LP | LR || Fs_; | ExMa |

Baseline 84.1 | 59.7 || 69.8 0.0
20 - X0 GRAEL-1 86.3 | 64.5 || 73.8 0.0
20 - X0 - ncm | ADC || 77.8 | 62.2 || 69.1 0.0
20 + XO - ncm | ADC | 83.7 | 75.6 | 79.4 2.1
20 + SE - ncm | ADC | 82.3 | 78.2 || 80.2 4.1
20 + SP - ncm | ADC | 82.4 | 71.1 || 76.3 2.1
20 + X0 - ncm A 86.0 | 73.0 || 79.0 3.1
20 + XO - ncm D 75.0 | 73.9 || 74.4 1.1
20 + X0 - ncm C 92.9 | 69.1 || 79.3 0.0
20 + X0 - ncm Adc 85.5 | 79.6 || 82.5 5.2
20 + X0 + ncm | Adc | 86.6 | 79.6 || 83.0 7.2
20 + X0 + im Adc 77.6 | 63.0 || 69.6 2.1
20 + XO + ncim | Adc 84.2 | 79.0 | 81.5 5.2
10 + XO + ncm | Adc 85.7 | 78.6 || 82.0 4.1
50 + X0 + ncm Adc 84.2 | 80.3 | 82.2 7.2
Ag: Population Size
I&E: Interaction Between I-language and E-language
Gen: Generation Method
+Mac:  Macro Mutation allowed
M7?: NCM or IM or NCIM
A.D.C: Adding Nodes, Deleting Nodes or Changing Node Labels
XO: Crossover (Sexual Procreation)
SE: Single Epoch
Sp: Splicing (Asexual Procreation)

Table 7.11: GRAEL-2 ATIS: Complete Results Table (fittest agent only)
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| Ag |ISE [Gen | +Mac | M? |AD.C[| LP | LR || Fs_; | ExMa |

Baseline 84.1 | 59.7 || 69.8 0.0
20 - X0 GRAEL-1 86.3 | 64.5 || 73.8 0.0
20 - X0 - ncm | ADC || 76.2 | 63.2 || 69.1 0.0
20 + XO - ncm | ADC | 82.1 | 77.2 || 79.6 3.1
20 + SE - ncm | ADC | 81.6 | 78.5 || 80.0 4.1
20 + SP - ncm | ADC | 81.8 | 71.9 || 76.5 2.1
20 + X0 - ncm A 84.7 | 73.8 || 78.9 4.1
20 + X0 - ncm D 74.3 | 74.5 || 74.4 1.1
20 + X0 - ncm C 92.7 | 70.4 || 80.0 0.0
20 + X0 - ncm Adc 85.4 | 80.5 || 82.9 5.2
20 + X0 + ncm | Adc | 86.6 | 80.6 | 83.5 7.2
20 + XO + im Adc 7771642 | 70.3 2.1
20 + X0 + ncim | Adc 84.7 | 80.8 || 82.7 6.2
10 + X0 + ncm | Adc 86.3 | 80.5 || 83.3 4.1
50 + X0 + ncm Adc 83.2 | 81.2 || 82.2 7.2
Ag: Population Size
I&E: Interaction Between I-language and E-language
Gen: Generation Method
+Mac:  Macro Mutation allowed
M?: NCM or IM or NCIM
A.D.C: Adding Nodes, Deleting Nodes or Changing Node Labels
XO: Crossover (Sexual Procreation)
SE: Single Epoch
Sp: Splicing (Asexual Procreation)

Table 7.12: GRAEL-2 ATIS: Complete Results Table (full society)



242

CHAPTER 7 : GRAEL-2 - AN AGENT-BASED EVOLUTIONARY COMPUTING APPROACH TO GRAMMAR RULE DISCOVERY

the probability mass was distributed over them. In GRAEL-2 agents do differ
from one another in terms of the grammatical information they hold. And
since the task at hand is to parse difficult, marginal structures, bigger does
actually mean better in the context of GRAEL-2.

But the data should also put things in perspective. The fittest agent’s
grammar in a generation-based society is considerably smaller than the gram-
mar induced from all agents. The fittest agent’s grammar is only 10% to 40%
the size of the full society’s grammar and this significant reduction (which
can also be observed on parsing times) does not translate into an extreme
performance drop. If we want our grammar to have the largest sweep in terms
of recall, we can use the mogul-solution that inducing a grammar from the
entire society provides. A more meticulous method that yields a more com-
putationally attractive grammar is the standard GRAEL-method of inducing
grammar rules from the fittest agent in the society provides.

We have argued for the case of our unconventional test set by stating that
it allows us to measure more accurately the success of the mutated structures
created by different instantiations of the GRAEL-2 society. Let us now look
at some more detailed figures on the parsing behavior of GRAEL-2 compared
to the baseline model.

There are a total of 97 sentences in the test set consisting of 968 con-
stituents. There are 124 single-level constituents (i.e. rewrite rules) in the
test set that are not found in the training set (see Appendix F). The base-
line model retrieves 578 constituents of those constituents, but it is not able
to find a parse for 25 out of 97 sentences. These 25 sentences consisted of
263 constituents, so that the baseline model is limited in the LP/LR~scores it
can achieve, since it cannot cater to 263 constituents (only a relatively small
percentage of which causes the sentence to be unparsable).

We can therefore redefine the score of the baseline model by looking at
scores achieved on parsable sentences alone: the baseline model is then able
to score 84.1% LP (578/687) and 82.0% LR (578/705) which results in an
F-score of 83.0%. This is however still significantly lower than the F-score
reported in Chapter 3 (90.6%), indicating that the test set we compiled is
indeed a very hard one to parse well.

GRAEL-1 performs better with an F-score of 73.8%. Its optimization
seems to have beneficial effects on parsing, even on a very tough test set. But
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GRAEL-1 is also unable to parse the same set of 25 sentences that defeated
the baseline model. The scores on the 72 parsable sentences are as follows:
an LP-score of 86.3% (624/723), an increased LR-score of 88.5% (624/705)
resulting in a 87.4% F-score. But this is still much lower than the F-scores
reported in Chapter 5 and also lower than what the baseline model achieved
on a randomly compiled test set (Chapter 3).

The GRAEL-2-society using Adc with noisy channel mutation in a 20-agent
crossover-based society that uses the fittest agent’s grammar (henceforth
GRAEL-2-BEST) is not marred by unparsable sentences at all. For each of
the 97 sentences it is able to come up with at least one possible analysis.
This means however that its F-score of 82.5%, which basically constitutes
the F-score on parsable sentences, negatively compares to the baseline model
and GRAEL-1 F-scores on parsable sentences.

It is indeed important not to overestimate GRAEL-2-BEST simply by look-
ing at the 10% increase in F-score. A grammar holding all possible rewrite
rules would be able to parse all sentences as well and might therefore perform
better than the baseline model on a global level, but it does not make for a
good grammar. To really evaluate GRAEL-2 as a grammar induction module,
we need to look at its success vis-a-vi the 124 rules that were not available
to the training set and its success on those sentences that the baseline model
were able to parse, but not correctly.

Let us first look at the performance of GRAEL-2-BEST on the list of unique
rules. Table 7.13 provides an overview of how many of the 124 rules were
found in the GRAEL-2-BEST grammar and how many actually showed up in
the parses. The results are encouraging: more than 70% of the rules were
retrieved by GRAEL-2-BEST’, while more than 50% were actually used in
parses.

The Np-category, which account for almost half of the unique rules, is
also the category that GRAEL-2 is able to discover best. But also higher-level
structures, such as vPs do not perform bad either, thanks to the beneficial
effect of macro-mutations. GRAEL-2 was unable to find useful mutations for
the NX-constituents, which is due to the fact that only one sentence in the
training set used this category. There were several instances of rules that

"Note that this not necessarily mean we have a good grammar induction system, as a
mindless system generating all possible rewrite rules, would yield a 100% retrieval.



244 CHAPTER 7 : GRAEL-2 - AN AGENT-BASED EVOLUTIONARY COMPUTING APPROACH TO GRAMMAR RULE DISCOVERY

‘ Total ‘ H In GRAEL-2 Grammar ‘ In GRAEL-2 Parses ‘
124 [ALL | 91 | 64 |

56 NP 53 39

18 VP 12 7

9 PP 7 )

8 FRAG 5 3

5 SQ 2 1

5 WHNP 2 1

5 X 3 3

4 ADJP 3 2

3 NX 0 0

3 QP 1 1

3 S 1 0

2 SBAR 1 1

1 ADVP 0 0

1 PRT 0 0

1 SBARQ 1 1

Table 7.13: GRAEL-2-BEST performance on list of unique rules
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705 constituents || 263 constituents

# [FFB=1%| # [F=1%

Baseline 578 82.0 0 0
GRAEL-1 624 88.5 0 0
GRAEL-2-BEST | 560 79.4 211 80.2

Table 7.14: Baseline vs GRAEL-1 vs GRAEL-2-BEST F-scores

were not discovered by GRAEL-2 because of their peculiar nature: one such
example is PP — TO INTJ. We would probably need a more radical mutation
operation to discover this rule, but this would unavoidably make the task of
distinguishing useful grammatical information from noise even harder. But
despite the fact that some rules are still not covered by GRAEL-2, Table 7.13
does prove that GRAEL-2 is a workable method for grammar rule discovery.

We had identified 25 sentences that could not be parsed by the base-
line model, nor by GRAEL-1. The mutated structures of GRAEL-2 however
generate parses for all 25 sentences. Five out of the seven sentences that
GRAEL-2-BEST is able to parse correctly are among these sentences. Fur-
thermore, all five of these sentences featured at least one constituent out of
the 64 constituents from the first line in Table 7.13. While 20 out of 25 sen-
tences were parsable by other mutated rules, five of them seemed to require
one of the highly specific structure in the list of 124 to trigger the correct
parse.

Table 7.14 shows recall scores for two parts of the test set: the parsable
sentences (containing 705 constituents) and the unparsable sentences (con-
taining 263 constituents). GRAEL-2-BEST achieves a significantly lower recall
score on the parsable sentences compared to GRAEL-1 and to a lesser extent
the baseline model. But the recall score on the unparsable sentences shows
that at least GRAEL-2-BEST is consistent and that it does not seem to make
a distinction between “difficult” and “easy” sentences.

It is clear that GRAEL-2 provides a decent method for discovering pecu-
liar grammatical constructions. But the results show that it is in fact very
different from GRAEL-1: while the added structures in the grammar allow for
a broader coverage, they also seem to clutter the grammar. This is evident
from the comparison with GRAEL-1 on parsable sentences: GRAEL-1 was
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able to optimize the probability mass in such a way as to provide a signifi-
cant performance boost over the baseline model. But the added structures
in GRAEL-2 seem to render this optimization more difficult, which brings the
overall recall score back to the level of the baseline model.

7.3.4 Extra Experiments

In this section, we describe some extra experiments with GRAEL-2 that pro-
vide some extra insights and/or serve as a sanity check to the previously
described experiments.

Crossover Mutation

One situation for mutation we still need to experiment on is crossover muta-
tion. This occurs when random crossover is enabled in a GRAEL-society and
agents can randomly crossover structures. The restriction that crossover can
only occur for structures carrying the same node label is abandoned, which
results in mutated structures (Figure 7.1).

We experiment on a GRAEL-2-BEST-society to which we added random
crossover and crossover mutation. As is to be expected, the results in Ta-
ble 7.15 prove that this type of crossover is indeed useless. Scores for this
type of GRAEL-2-society (GRAEL-2-BEST (xover)) decrease all around. Data
analysis shows that crossover mutation has no positive effect on a grammar
whatsoever. This corroborates the results of [Antonisse 1991], who is also
unable to render useful grammars using a similar approach.

Threshold for number of sentences mutated

Section 7.3.1 detailed how we put a 50% chance of noisy channel mutation
occurring on transferred structures. We have also conducted experiments in
which this threshold was lowered to 25% and raised to 75% respectively, but
to no avail. A GRAEL-2-BEST-type society in which the number of mutated
structures was lowered to 25% (GRAEL-2(25%) in Table 7.15) performed
worse compared to the 50% counterpart. It may however be the case that
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LP LR | Fp ExMa
Correct | / ‘ % | % (/968) | % Correct/* ‘ %
| Baseline | 578 |687[841] 59.7 | 69.8[ 0/97 0.0 |

GRAEL-2-BEST 771 890 | 86.6 79.6 83.0 7/97 7.2
GRAEL-2(xover) 753 | 921 | 81.8 | 77.8 79.7 6/97 6.2
GRAEL-2(25%) 685 | 832 | 82.3 70.8 76.1 5/97 5.2
GRAEL-2(75%) 768 | 941 | 81.6 79.3 80.5 7/97 7.2

Table 7.15: Baseline and GRAEL-2 Accuracies on 97-sentence test set: Extra
Experiments

the careful approach improves results should we allow the GRAEL-2 society
to run longer. The society in which we raise this threshold to 75% (GRAEL-
2(75%) in Table 7.15) performs worse as well, due to the large amount of
noise that the over-eager mutation ratio seems to produce.

Sanity Check: Test Set Accuracy of All agents

An issue that has so far not been addressed is the halting point of the society.
We spent a lot of time discussing the effects of the different halting procedures
in GRAEL-1 and the so-called SELFITs to select the best candidate agent for
parsing. But for the GRAEL-2 experiments we had to make do with looking
at the understanding accuracies during language games to determine when
to halt the society and which agent to select, because the larger test set
required us to reserve all other structures for the training set.

It might be interesting to see if we would be able to squeeze out more
performance from GRAEL-2 if we apply more intelligent halting procedures.
The graph in Figure 7.10 might help us to provide an insight into this matter.
This graph plots each agent’s accuracy on the test set throughout the entire
lifespan of the GRAEL-20 BEST society. There are two horizontal lines in this
graph: the bottom one displays the baseline accuracy of using the training set
to parse the test set. The top line presents the F-score of the agent selected
from the GRAEL-2-BEST-society at the understanding accuracy halting point
to parse the test set. It is clearly shown here that the accuracy on the test
set achieved by GRAEL-2-BEST is not exceptional: at each point during the
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100

Test Set Accuracy

o 50 100 150 200 250 300 350
Language Games

Baseline ----------------o- Fittest Agent

Figure 7.10: GRAEL-2-BEST - Test Set Accuracies

convergence phase of the society, there are a number of agents that achieve
this kind of F-score. While there are many agents that achieve a considerably
lower F-score (many of which “young agents” catching up to the rest of the
society), there are also a few agents that overtake the top horizontal line, but
not by a great margin.

This data shows that the score achieved by GRAEL-2 best is not some
lucky shot achieved by a favorable random halting procedure. The best
agents in the GRAEL-2-society achieve a good F-score for a considerable pe-
riod of time, so that selecting the best agent is not as troublesome as in
GRAEL-1. Judging from the graph in Figure 7.10, little is to be gained from
implementing different halting procedures and SELFITs to boost performance.
This does however indicate again that the difference between GRAEL-1 and
GRAEL-2 amounts to more than just a variation on the same theme.

GRAEL-2 4+ GRAEL-1

This raises the issue of the difference between GRAEL-2 and GRAEL-1. The
latter optimizes the probabilistic weights of grammatical structures in a
grammar, but does not discover any new grammatical structures. The former
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is able to employ the dynamics of the GRAEL-system to invent and evaluate
new grammatical structures, but the data in Table 7.14 indicates that it is
not at all able to optimize the probabilistic weights of the grammar, so that
its overall parsing accuracies are similar to that of the baseline parser.

In Chapter 5 we explained the GRAEL-1-method as follows: by providing
a society of agents with a “deficient” grammar and allowing them to improve
on it by “practicing” their own grammars on other agents, the grammars
become optimized in a setting which resembles the actual task at hand:
parsing sentences. This view of GRAEL-1 provides an interesting window
of opportunity to improve the results of GRAEL-2: GRAEL-2 leaves us with
a collection of broad coverage grammars that is lacking in the distribution
of probability mass. But GRAEL-1 provides a system that is geared towards
such optimization in particular. Combining GRAEL-2 with a GRAEL-1 post-
processing phase might therefore provide an interesting increase in results.

Figure 7.11 explains how the combination works. A training set of tree-
structures is distributed over a GRAEL-2 society. The agents have a E-
language consisting of a number of tree-structures and a I-language, con-
taining a grammar induced from these trees. As GRAEL-2 progresses, the
E-language trees are changed, while the I-language obtains a lot of new gram-
matical information.

Using the understanding halting procedure, we then halt the society and
distribute the original tree-structures over the agents again, who add them
to the mutated structures in their respective E-languages. This provides the
agents with a gold-standard touchstone of tree-structures from the original
training set, while the mutated structures are maintained as a criterion for the
mutated grammar rules in the I-languages. After that, the society progresses
as a GRAEL-1 society and no more structures are mutated and no interaction
between I-language and E-language is allowed. The society is halted when
the understanding accuracies are leveling out again.

We conducted two experiments: one is trained and tested on the standard
GRAEL-2 division, while the other experiment is conducted on the GRAEL-
1 division and was tested on a 58 sentence test set. Figure 7.12 displays
the course of the experiment on the GRAEL-2 division (the experiment with
the GRAEL-1 division ran a similar course). This graph quite noticeably
illustrates the point at which GRAEL-2 turns into GRAEL-1. Overall under-
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Figure 7.12: GRAEL2+1 Experiment - Understanding Accuracies
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LP LR Fs—: | ExMa
Correct / ‘ % % (/968) % /97 ‘ %
Baseline o978 | 687 | 84.1 99.7 169.8] 0 0
grael-1 624 | 712 |86.3 | 64.5 73.8 || 0 0
grael-2 771 | 890 | 86.6 | 79.6 83.0 || 7 | 7.2
graell—+2 801 |[902|88.8| 827 |85.7 | 11 |11.3

Table 7.16: GRAEL2+1 Experiment - GRAEL-2 Division - Results

standing accuracies drop a little, but as GRAEL-1 progresses, understanding
accuracies rise again.

Tables 7.16 displays the results of the combination of GRAEL-1 and GRAEL-
2 on the 97-sentence test set used in the main GRAEL-2 experiments. The
results are very encouraging: the combined system achieves an F-score of
82.7%. The increase shows that GRAEL-1 has indeed redistributed the prob-
ability mass so that the grammar is better tuned to parsing sentences, rather
than exploit GRAEL-2’s prediliction for coverage. The most impressive gain
is seen on exact match accuracy: 11.3%. Even though this is still a modest
result, the increase over the standard GRAEL-2 approach is clear.

Table 7.17 shows results on the standard GRAEL-1 test set. The GRAEL-2
approach achieves an F-score that is similar to that of the baseline model.
This is an almost identical situation as we had observed during the main
GRAEL-2 experiments. GRAEL-1 outperforms GRAEL-2 by a significant mar-
gin, while the combination of GRAEL-1 and GRAEL-2 further increases the
F-score over GRAEL-1. Note however that in absolute terms, there is only a
difference of seven constituents between the two systems, although this fig-
ure belies more fundamental differences. These differences are projected in
the exact match accuracy, which increases to 86.2%. The mutated informa-
tion that GRAEL-2 brings to the mixture made it possible for 12 previously
unparsable sentences to be parsed, of which five correctly.

This experiment that combined GRAEL-1 and GRAEL-2 proves that the
two systems are very different from another but this difference can be used
to each system’s advantage. The results show that GRAEL-2, although mod-
est in its results, can provide a grammar that expands the coverage, while
GRAEL-1 takes care of the fine-tuning of probabilities. The combination of
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LP LR Fg_: | ExMa
Correct / ‘ % % (/496) % /58 ‘ %
Baseline 437 | 483 90.5 | 88.1 89.3 || 41 | 70.7
grael-1 454 | 491 | 92,5 | 915 92.0 || 45| 77.6
grael-2 443 | 495 | 89.5 | 89.3 89.4 || 43 | 744
graell+2 461 | 498 | 92.6 | 92.9 92.8 || 50 | 86.2

Table 7.17: GRAEL2+1 Experiment - GRAEL-1 Division - Results

the two therefore provides a way to extend an original corpus-induced gram-
mar to a large coverage grammar that is optimized for the task of parsing
unseen data.

7.4 Experiments: Wall-Street-Journal

Due to the complex nature of processing a GRAEL-2 society®, experiments
on the wsJ-corpus are limited to one experiment using the standard divi-
sion: Sections 1 to 21 as a training set and Section 23 as a test set. The
same adjustments were made on the GRAEL-system as in the GRAEL-1 WSJ-
experiment:

e No validation set was used. The halting point and fitness of agents was
determined by looking at inter-agent communication

e 40 slices of 1.000 sentences were brought into the system at a 40 run
interval

We conduct a single GRAEL24-1 experiment using a 100-agent crossover-
based society. Interaction between I-language and E-language is included®
and mutation only occurs as noisy channel mutation with the weighted mu-
tation combination Adc. Figure 7.13 shows the course of this experiment.

8The interaction between I-language and E-language entails a doubling of the amount
of parsing done per language game run.

9To speed up parsing, a 50% sampling of the I-language was used to construct the
E-language.



7.4 EXPERIMENTS: WALL-STREET-JOURNAL

253

100

80

60

Understanding Accuracy

20

o 50 100 150 200 250 300 350 400
Language Games

Figure 7.13: GRAEL2+41 Experiment - wsJ - Understanding Accuracies

The transition between GRAEL-2 and GRAEL-1 is slightly visible at language
game run 281. The plots for GRAEL-1 continue at first in a more dispersed
state, but a 2nd halting point (i.e. a plateau in understanding accuracy)
is reached, when some agents’ slots have used their 10 generations and the
number of agents decreases.

The results of this experiment can be read off Table 7.18. GRAEL-2 (right
before the transition to GRAEL-1) does not perform well on the wsJ-corpus
and is well below baseline. Yet, it does prove to be able to provide good
mutated rules: [Collins 1999] states that there are 17.1% of sentences in the
test data that have a rule not seen in the training data. In our version of
the wsJi-dataset, this percentage is 20.1%. The fittest agent’s grammar in
the GRAEL-2-society reduces this ratio to 18.3%, while the grammar induced
from the entire GRAEL-2-society reduces it further down to 17.4%. Com-
bined with GRAEL-1 this causes a .2% increase on the F-score, while 14 more
sentences are parsed correctly.
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LP LR Fs_y ExMa
Correct / ‘ % % (/496) % /58 ‘ %
Baseline 37535 | 45908 | 81.8 | 79.3 80.5 || 386 | 16.0
grael-1 38401 | 46985 | 81.7 | 81.1 81.4 | 551 | 22.8
grael-2 36355 | 47658 | 76.3 | 76.8 76.5 || 467 | 19.3
grael-2+1 || 38549 | 47102 | 81.8 81.4 81.6 || 565 | 23.4

Table 7.18: GRAEL-1, GRAEL-2 and GRAEL-2+1 experiments on WSJ-corpus

7.5 Advances and concluding remarks

The experiment on the WsJ-corpus provides results that encourage many
extensions to the research described in this chapter. There are still numerous
experimental parameters left to optimize, but the same conclusion we drew
with respect to the GRAEL-1 experiment holds here as well: currently the
computational resources are lacking to fully test all experimental parameters
of GRAEL-2. Extensions of the research should include some dynamic way
to determine the best weights for the combination of mutation operations,
which was determined rather ad hoc in this chapter.

In the context of the experiments that varied the threshold of the number
of structures that were mutated, we also suggested that a lower threshold
of 25% might provide an increase if we leave the GRAEL-2-society running
for a long period of time. Future research should therefore look into an
automatic method for determining the best balance between the ratio of
mutated structures and the life-span of a GRAEL-2-society.

The beneficial combination of GRAEL-2 and GRAEL-1 also provides a
window to future research investigating a less abrupt transition from GRAEL-
2 and GRAEL-1. Perhaps some effort should be invested in finding a type of
GRAEL-society that integrates the 2. The interaction between I-language and
E-language seems to be a crucial issue in this matter: its absence is required
for grammar optimization, but only its presence can produce new rules. A
way to combine the two could be to allow the interaction in some agents and
prohibit it in others. The ratio of each agent type however, would need to
be experimentally established.
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In this chapter we presented an instantiation of the GRAEL-environment
that was able to create new grammatical structures and assess their usefulness
in an agent-based evolutionary environment. Evaluating a grammar rule
induction method is in essence an empirical problem: its purpose is to create
grammars that provide a broad coverage for grammatical structures, so that
marginal and unusual structures, that were previously unavailable can now
be parsed by the grammar. But this is exactly the problem: previously
unavailable structures are just that: unavailable. This makes it hard to
manually inspect and evaluate a mutated treebank grammar, as one can
never be sure what rules could need to be triggered in what context.

The test set we compiled to perform the GRAEL-2 ATIS-experiments on
went a long way in providing a decent touchstone to see how well GRAEL-2
performed as a supervised grammar induction/rule discovery method. And
results indicate it seems to perform quite well: mutated information becomes
available that is able to create parses for difficult constructions, while the
number of structures that constitute noise is limited and is attributed a
small enough portion of the probability mass as not to stand in the way of
actual useful mutated structures.

The key feature towards the success of GRAEL-2 is the addition of inter-
action between I[-language and E-language, which we ruled out as a beneficial
setting for GRAEL-1, which required the actual correct tree-structures to ren-
der an optimal distribution of probability mass. Since the E-language serves
as a benchmark for other agents, it provides a window of opportunity to test
the validity of mutated structures. The interaction between I-language and
E-language then provides feedback on the quality of mutated structures in
two ways. First, agents will have a harder time incorporating nonsensical
structures in the analyses for the sentences of there E-language, so that their
will be a preference for cleverly altered structures, if not for the original
grammatical structures. And second, the mutated structures that are even-
tually featured in the E-languages are spread throughout the society, to be
picked up by another agent who will process it in his I-language and possibly
use it for future reference, if its usefulness can be confirmed.

The addition of this type of interaction does counteract GRAEL-1’s ability
to optimize the distribution of the probability mass of a grammar however
and a grammar obtained from a GRAEL-2 society therefore seems unsuited
to be directly applied to parsing. But combining it with a GRAEL-1 society
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however, goes a long way in resolving this issue, providing a grammar that
has a broader coverage, as well as a better tuned probability mass distribution
over the structures contained therein.



11:15, restate my assumptions: 1. Mathematics is the
language of nature. 2. Everything around us can be
represented and understood through numbers. 3. If
you graph these numbers, patterns emerge. Therefore:
There are patterns everywhere in nature.

Lenny Meyer - Pi - (©1998

GRAEL-3: An Agent-Based
Evolutionary Computing Approach to
Unsupervised Grammar Induction

We described a parser using a probabilistic grammar induced from a training
set of annotated tree-structures in Chapter 3. The constituent structure,
i.e. the segmentation and labeling properties, were directly derived from
examples in the training set, and the probability mass in the grammar mir-
rored that of the original training set. In Chapter 5 we used an agent-based
evolutionary computing method to redistribute the probability mass so that
it reflects probabilities needed for the actual task of parsing. GRAEL-1 did
however not alter the content of the structures itself.

Strictly adhering to the segmentation and labeling properties that the
treebank provides us, gives rise to problems of grammar sparseness, when
grammatical information needed to parse the test set is not featured in the
training set. Chapter 7 described a method to mutate existing grammati-
cal structures and evaluate them in a GRAEL-2 society. This constituted a
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workable grammar discovery rule method. From a slightly different point of
view, GRAEL-2 could also be conceived as a supervised grammar induction
method, since new grammatical information is created on the basis of actual
structures in an annotated corpus. This provides a guideline for segmenta-
tion and labeling to which the newly created structures to a large extent still
adhere to.

In this chapter we take one step further and abandon all pre-defined gram-
matical information in the GRAEL-environment. Grammatical structures are
provided to the agents in a GRAEL-3 society on the basis of information theo-
retic distributional properties between words (or tags) in previously observed
sentences. By consequently playing a large number of language games, the
agents in the society adapt to each other’s grammars and optimize them for
parsing. This effectively establishes GRAEL-3 as an unsupervised grammar
induction method, as it induces and optimizes a grammar on the basis of
raw, unstructured textual data.

We will take a look at some relevant research efforts in the field of unsu-
pervised grammar induction in Section 8.1. Adapting some of the insights
of this research to the GRAEL architecture allows us to develop GRAEL-3 in
Section 8.2, after which we describe the experimental setup and results of
the experiments in Section 8.3. We conclude by discussing the capabilities of
GRAEL-3 as an unsupervised method for grammar induction in Section 8.4.

8.1 Unsupervised Grammar Induction

In Chapter 7 we discussed some genetic programming approaches for gram-
mar induction [Dupont 1994; Huijsen 1993; Kammeyer and Belew 1996;
Keller and Lutz 1997a; Keller and Lutz 1997b; Lankhorst 1994; Lucas 1993;
Lucas 1994; Wyard 1989; Zhou and Grefenstette 1986; Losee 1995; Blasband
1998] and stated that most of these systems employ evolutionary computing
to induce a set of grammar rules that can cover a small, artificially con-
structed set of sentences. The data sets most of these systems used, were
such that the grammars could not be extrapolated to realistically sized cor-
pora.

But outside the field of genetic programming, a large body of work has
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researched the unsupervised induction of grammars using different kinds of
algorithms, like neural networks [Honkela et al. 1995], Bayesian methods
[Stolcke and Omohundro 1994; Chen 1995|, but mainly using concepts from
information theory [Magerman and Marcus 1990; Grunwald 1994; de Mar-
cken 1995; Yuret 1998; M. Redington and Finch 1998; Wolff 1998; Clark
2001]*. [van Zaanen 2002] describes the interesting method of using align-
ment based learning to bootstrap the acquisition of structure. Like [Adriaans
1999, it is based on the notion of substitutability described in [Harris 1951].

A discussion of all methods for unsupervised grammar induction would
fall beyond the scope of this chapter, so we will therefore limit ourselves
to a brief discussion of some systems based on information theory, that are
relevant to the grammar-bootstrapping method employed by the GRAEL-3
system. We will also refer to [van Zaanen 2002| and [Clark 2001] in Section
8.3.1, as they comprise the first methods evaluated on a purely objective
basis. But first we will discuss Lexical Attraction modeling as conceived by
[Yuret 1998|.

8.1.1 Lexical Attraction Modeling

[Yuret 1998] starts out by stating that his approach to unsupervised grammar
induction does not find grammatical relations in the way a phrase-structure
grammar formalizes them. He argues that a ps-grammar only indirectly repre-
sents [linguistic] relations as side-effects of the constituent-grouping process
and therefore turns to dependency grammars [Mel’¢uk 1988; Sleator and
Temperley 1991] as his formalism of choice.

Figure 8.1 compares a PS-type structure to a dependency representation.
A phrase-structure can be interpreted in two ways: in a bottom-up inter-
pretation, a phrase structure tries to group terminals into constituents, after
which the superordinate structures are grouped into constituents of their
own, until finally one top-level node is reached. In the top-down point-of-
view, a structure starts with a single node, to be expanded in such a way
as to cover all terminals. A dependency structure on the other hand always
needs to be considered in a bottom-up fashion. It links words related to one

!Thanks to [van Zaanen and Adriaans 2001] for a good overview of the most relevant
research efforts in the field of unsupervised grammar induction.
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some bear  hugs

Winslow offered some bear hugs

PS-tree Dependency Structure

Figure 8.1: PS-tree vs Dependency Representation

another directly and formalizes their dependency relation.

[Yuret 1998] argues for the case of using a dependency formalism for his
unsupervised grammar induction task as follows:

First, the indirect representation of phrase-structure
makes unsupervised language acquisition very difficult.
Second, if the eventual goal is to extract meaning,
then syntactic relations are what we need, and phrase-
structure only indirectly helps us retrieve them [Yuret
1998] (p.21)

[Yuret 1998] also states that there are many other accounts that state that
the automatic induction of phrase-structure grammars is very problematic
[de Marcken 1995|, if not impossible [Gold 1967]. [Yuret 1998] therefore
adopts the dependency formalism to represent the structure to be induced
and claims that dependency between words can be measured by looking at
the affinity between words, or in other words: their lexical attraction to one
another. The lexical attraction method which [Yuret 1998] proposes, tries to
express the dependency between words by using concepts from information
theory.

Consider the following sentence (example reproduced from [Yuret 1998]):
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The IRA is fighting British rule in Northern Ireland

We can express the probability of the words in this sentence, by referring to a
large corpus of sentences and looking at the likeliness of each word occurring
according to a unigram-model, which looks at each word in isolation, using
the following formula:is

__ n(w)
Pu = 50
w = focus word
* —

any word
n(i) = function counting the number of times i occurs

Following [Shannon and Weaver 1949] we can compute the information
content of the context word, by looking at the amount of bits needed to
encode the word. This entropy figure can be calculated on the basis of its
probability (cf. supra) using the formula: —logsp,,. We can now attribute
each word in the example sentence an entropy figure expressing its informa-
tion content according to a unigram model:

The IRA is fighting British rule in Northern Ireland
420 15.85 7.33 13.27 12.38  13.20 5.80 12.60 14.65

The information content of the sentence can be computed, simply by
adding the information content figures of each individual word: 99.28bits,
which equates to a 27%%2% probability of encountering this sentence, based
on the probabilities induced from the corpus.

Yet, unigram models do not take any kind of context into account and
are therefore considered as weak language models that do not capture any
kind of relevant linguistic information. If we expand the scope of our model
and consider a bigram model, which calculates the probability of a word,
based on the preceding (or possibly the following) word, we can induce some
useful information: in our example, the word Northern carries 12.6 bits of
information by itself. Yet, in our data set, it precedes the word Ireland
36% of the time. Consequently, the word Northern only adds 1.48 bits of
new information to Ireland. Using this information, we can recalculate the
number of bits needed to encode the phrase Northern Ireland: using a bigram
model this phrase carries 16.13 bits (14.65 + 1.48) as opposed to 27.25 bits
(12.60 + 14.65) in the unigram model.



262 CHAPTER 8 : GRAEL-3: AN AGENT-BASED EVOLUTIONARY COMPUTING APPROACH TO UNSUPERVISED GRAMMAR INDUCTION

We can now re-assign information content measures to the words in our
sentence, using a bigram model:

The IRA is fighting British rule in Northern Ireland
420 129 3.73 10.54 8.66 5.96 3.57 9.25 3.53

We now only need 62.34 as opposed to 99.28 bits to encode this sentence.
This exemplifies how a bigram-model will almost always require less bits to
encode the same sentence than a unigram model. Following the maximum
likelihood principle, which tries to maximize the probability of a sentence
(and consequently minimize its entropy), the bi-gram model can be consid-
ered as the better language model.

[Yuret 1998] now argues that we can further reduce the entropy by in-
terpreting the context of a word in terms of its syntactic relation to other
words rather than just looking at the surrounding words. The information
content of a word is then calculated on the basis of its head or modifier in
a dependence structure. Lexical attraction tries to retrieve these syntactic
relations, by linking words to each other in such a way that the amount of
bits required to encode a sentence is minimized. In other words: all com-
binations of words are considered and only that combination of links, i.e.
dependencies, is maintained which minimizes the amount of bits needed to
encode the sentence.

Determining which links are maintained and which links are discarded,
depends on their mutual information content, as well as on the formal re-
strictions the dependency formalism imposes on them: links between words
have to be acyclic? and planar®. [Yuret 1998] hypothesizes that, given enough
data, the dependency structure this linkage provides is the correct one for the
sentence, since the affinity of words in a sentence can be directly measured
in terms of their mutual information content.

To compute the mutual information between two words, [Yuret 1998]
considers combinations of words and computes their mutual information with
the following formula:

2Each word is linked to only one head, except for the head word that governs the entire
sentence.
3Links cannot cross.



8.1 UNSUPERVISED GRAMMAR INDUCTION

263

_ P(z,y) n(z,y)/N _ n(z,y) N
MI(z,y) = 1092 pypiegy = 1092 M nGa® = L0925 n(eg)

MT: mutual information

P(x,y): probability of considering x y as a combination
n(x,y): the count of (x,y)
N: total number of observations made

There are three different methods for considering combinations: the first
method only records (1) adjacent pairs, the second method records (2) all
possible pairs and the third method uses (3) combinations of pairs identified
by the processor. The latter method requires some explanation: if a sequence
of words AXB is found, the first method records the adjacent pairs A-X
and X-B. If the processor discovers a sentence like AX....YB, it will now
consider the combinations A-Y and X-B. Because of the planarity restriction,
no linking between words X and B is allowed, unless they can break the A-Y
and X-B links. After these combinations are recorded, more structures can
be built using the recorded information and so on so forth.

In practice however, only a limited number of possible links are consid-
ered and not all possible linkages are computed. [Yuret 1998] describes an
approximation algorithm, which processes sentences from left-to-right, con-
sidering links for the current word with each of the preceding words. This
approximation does not guarantee to find the most likely linkage, but exper-
imental results show that little is to be gained from employing the optimal
algorithm, that considers both directions.

Returning to our example enables us to describe how the approximation
algorithm works. The first two words of the sentence our processed and their
mutual information is computed:

/2.9\

The IRA

The following word enters the processor. Two possible links are considered
now:
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The IRA is

This introduces a cycle however: the has two heads (cf. dashed line), which
violates the formal aspects of dependency grammars. Therefore the weakest
link in the cycle is removed and the next word enters the processor:

I 9.3 I
29 (12 27
201227

The IRA is fighting

Cycles are removed and the strongest links are maintained in this structure.
This processing goes on for all words in the sentence until finally we reach
the last word of the sentence, which brings us to the following situation:

| o 0 .
L — 9.3 — 1 .
2.9 ( ;2.7 i : 7-3{ ; 11.1

The IRA is fighting British rule in Northern Ireland

NTT T T T T T T T T T TS

Again a lot of links are considered, the introduction of which would cause
cyclic dependencies (cf. Ireland-rule) or crossed links (cf. Ireland-is). The
weaker links are removed, which finally leaves us with the following depen-
dency structure:
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The IRA is fighting British rule in Northern Ireland

This is the correct dependency structure for the sentence, as found by the
lexical attraction model. The actual lexical attraction model was trained on
a 100 million words data set and tested on a held-out set of 200 sentences,
in which the content words were linked (1287 links). The test set featured a
restricted vocabulary, since linking of unknown words is not supported by the
lexical attraction model. Lower bound precision/recall scores* are 8.9/5.4%,
while there is an upper bound of 85.7% recall as this is the ratio of links that
actually featured positive lexical attraction between them.

Using different methods for recording pairs (cf. supra), the lexical attrac-
tion models are able to achieve a precision score between 75%(method (1))
and 55%(method (2)) and a recall score ranging between 40%(method(1))
and 50%(method (3)). Unfortunately [Yuret 1998] only included experi-
mental results plots, rather than numbers, so that these figures are only an
estimate.

These results are modest, but encouraging. The lexical attraction method
is indeed able to retrieve affinity between words and meaningful dependencies
from this information. The advance of lexical attraction is however limited
by the fact that it does not provide a label for the syntactic relations that
are retrieved and does not generalize over the data in the way a ps-grammar
induction method is able to.

[Yuret 1998] states that dependency formalisms are able to capture de-
pendencies between words, such as subject-verb relationships, that can only
be indirectly induced from a phrase structure. But what is lacking from the
output of the lexical attraction model, is exactly the nature of the syntac-
tic relations that are retrieved, so that the most detailed representation this
approach can yield is the description of what words are syntactically related
(cf. the dependency structure in Figure 8.1). In no way is there however any

4These were obtained by providing random numbers when the lexical attraction of a
combination was measured.
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indication of what kind of relation has been established. Since the nature of
a syntactic relation in the dependency structure would need to be indirectly
retrieved from this type of structure as well, this renders Yuret’s argument
against ps-structures as a representation method moot. Even though depen-
dency structures do have distinct advantages over phrase structures, [Yuret
1998] does not exploit them.

Furthermore, it is also clear from Figure 8.1 that a phrase structure may
contain semantically relevant information expressed in its higher-order struc-
tures that a dependency formalism can only capture indirectly. In the right
hand structure in Figure 8.1, it can be deduced that Winslow is the one that
is offering something, whereas the phrase structure displays clearly what it
is that Winslow is offering to whom.

Since each formalism seems to have its advantages, which renders things
more or less equal from a theoretical point of view, the grammar bootstrap-
ping method for GRAEL-3 will try to induce phrase structures. The method
that is used, however, is based on the same principles employed in [Yuret
1998] to create basic dependency structures. Despite its fundamental short-
comings, lexical attraction does provide an interesting minimalist approach
to building structures in an unsupervised manner.

8.1.2 Other Distributional Methods

Yuret’s reluctance to deal with the unsupervised induction of ps-grammars
is the result of a long tradition of troublesome unsupervised grammar in-
duction techniques. The underwhelming results achieved by applying an
inside-outside algorithm for grammar induction [Baker 1979; Lari and Young
1990] have prompted researchers to simplify the task by using a partially la-
beled data set [Pereira and Shabes 1992; Briscoe and Waegner 1992]. As
[de Marcken 1995] rightfully points out, this benefits the engineering task of
unsupervised grammar induction, but it does not establish an actual method
for the unsupervised induction of grammar, as it involves human annotation
effort on raw data.

[de Marcken 1995] explains the limited success of information theory-
based approach to ps-grammar induction by pointing out that a phrase struc-
ture does not necessarily establish a low-entropy representation of a sentence.
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Using information theoretic measures on sequences of words to compile a ps-
grammar is therefore almost guaranteed to fail.

Unsupervised methods for the induction of ps-grammars are very vul-
nerable to local maxima, as early decisions on low-level structures made by
the induction algorithm are unlikely to be reversed during later processing
stages. [de Marcken 1995] suggests that either a different search strategy is
needed to induce ps-grammars, or an entirely different representation scheme
to represent syntactic structure altogether.

Whereas [Yuret 1998] adopted the latter solution, [Clark 2001], a recent
attempt to apply information theory concepts on real unsupervised induc-
tion of ps-grammars, redefined the notion of mutual information and there-
fore seems to have implemented the former solution. [Clark 2001] uses a
window of three tags: the focus word, the preceding and the following word
and records these sequences and their respective information content. Con-
stituent boundaries can then be determined by looking at the mutual infor-
mation of these sequences: [Clark 2001] hypothesizes that if a high mutual
information value exists between the symbols immediately before and after
a constituent candidate, the two symbols are not independent.

To counter the overestimation of mutual information for sparse data,
[Clark 2001] normalizes the mutual information measure on the basis of the
distance between them. A grammar can be induced by applying a minimum
description length approach: an initial grammar is created that assigns one
rule for each sentence type. Next frequent collocations are clustered and the
mutual information criterion filters out the spurious constituents. Next, a
cluster is selected that provides the largest reduction in description length
and a new non-terminal is added with rules for each sequence in the cluster.
Finally, the new rules are created to perform a partial parse of the sentences
after which new sequences are looked up.

[Clark 2001] tested the system on the ATIS-corpus, an evaluation method
for unsupervised grammar induction proposed by [van Zaanen and Adriaans
2001], which we will discuss in some more detail in Section 8.3.1. The results
are very encouraging with a 42.0% F-score on the ATis-corpus. [Clark 2001]
proves that a system based on information theory for the induction of ps-
grammars is not a contradictio in terminis. [de Marcken 1995] pointed out
that there is an inherent danger attached to these systems of getting stuck in
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a local maximum, but [Clark 2001] seems to resolve this by defining mutual
information in terms of the symbols surrounding the putative constituent.
Using this information to filter out spurious constructs, minimum description
length measures seem less vulnerable to the aforementioned problem that the
induction of ps-grammars tends to get stuck in a local maximum.

8.2 GRAEL-3

In this section we will discuss the development of an unsupervised grammar
induction method that can be used to bootstrap and process a GRAEL-3
society. We will first commit to a representation model for compositionality
in language (ps-grammar) and a method to infer this from raw data (lexical
attraction), after which we will describe how grammars can be induced and
optimized using our distributed evolutionary computing approach.

8.2.1 PS-grammar as a performance model

A lot of time and effort has been spent by formal linguists, psycholinguists
and computational linguists alike arguing against the case of ps-grammars
as a suitable formalism to describe structure in language. While there are
many valid arguments for discarding ps-grammars, none of the alternatives
succeeds however in providing a formalism with as much impact on the field
of linguistics as the formalism proposed in [Chomsky 1957]. Present day
parsing algorithms are still largely based on the early algorithms that try
to incorporate ps-grammars in computational implementations. And while a
considerable amount of computational linguists try to implement other for-
malisms with varying degrees of success, the implementations hardly ever
seem to be expanded in optimized engineering approaches towards parsing,
especially compared to parsers for ps-grammars. Furthermore, researchers
trying to compile a corpus of annotated structures (cf. [Marcus et al. 1993]),
are more likely to prefer a controversial, but well established grammar for-
malism in favor of a more obscure, but psycho-linguistically more relevant
theory.

Most research in the field of machine learning of natural language syntax
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Figure 8.2: A phrase structure for The return flight should leave at around 7
pm

has conformed with ps-grammars to some extent. Even a task like shallow-
parsing, which typically does not try to build full ps-trees for a sentence, is
firmly rooted in the segmentation and labeling aspects that the ps-formalism
provides. Phrase structures do indeed seem able to provide the kind of seg-
mentation for basic constituents that seems acceptable for most researchers
and even the more controversial higher-order grouping of constituents can
provide tree-structures from which a decent amount of semantic information
can be deduced.

Consider the example in Figure 8.2. This structure identifies a topic the
return flight and a focus should leave at around 7 pm and expresses this
structurally. Semantically valid clusters of words are grouped in the same
constituent structurally (at around 7 pm), while the scope of the modal mod-
ifier should is correctly displayed in the structure it governs. The example
shows that, although this structure does not explicitly display subject/object
distinctions or subcategorization restrictions, the most basic structural prop-
erties of the sentence can be described in a phrase structure.

Its greatest strength from an engineering point of view is that it presup-
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poses a minimal set of assumptions on the words: trees can be constructed,
almost regardless of the actual content of the words, simply on the basis of
their distributional properties. Parsing in this view does not require lan-
guage understanding proper and syntax is viewed as an expressive module
in its own right.

We would like to argue that this may be its greatest strength from a
linguistic point of view as well. If we consider syntactic structure as a neces-
sary precursor to the extraction of meaning from a string of words, explicitly
describing syntactic structures in terms of semantic relationships between
words (cf. dependency grammar, HPSG,...) reduces the functionality of syn-
tax as an entity expressing meaning by itself, as it has been reduced to a mere
by-product of semantic relations between the words of the sentence. In other
words, it does not carry any meaning by itself, it simply provides a structural
representation for it. But even though postulating this direct link between
semantics and syntax is highly relevant towards explaining language under-
standing, many of the formalisms incorporating this relationship are not. Let
us for instance turn back to the dependency grammar formalism: it indicates
(semantic) relations between words in a sentence which is fine if we want to
explain how structure arises from meaning. But if we want to hypothesize
that structure attributes meaning (e.g. through word order), a ps-grammar
is indeed a formalism that presupposes a minimal set of assumptions and is
therefore suited to represent syntax proper.

Our decision to maintain phrase structures as our syntactic representation
of choice is motivated by this (undoubtedly controversial) assessment of ps-
grammars from a linguistic point of view. If the reader disagrees with this
motivation, (s)he can disregard the linguistic motivation and focus on the
engineering point of view, which simply requires us to use ps-grammars as the
Romans do, to enable a comparison with other grammar induction methods.
This avoids the problematic evaluation of the grammar induction system that
was apparent in [Yuret 1998].

Given the historical development of ps-grammars into Government and
Binding type theories, we need to explain what exactly our definition of a ps-
grammar is, as most of those theories obviously do not conform to our view
of ps-grammars as a formalism making a minimal set of assumptions. The
following issues are paramount to our view of ps-grammars as a minimally
presupposing grammar formalism:
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e A ps-grammar uses a set of ps-rules for segmentation and labeling: a
string of words is segmented into constituents, by matching the right-
hand side of a re-write rule in a grammar. The category on the left-hand
side of the rule is used as the label for that segment. The category label
should provide a minimal description of the items in the constituent.

e A ps-grammar provides a structure for a sentence, expressing struc-
tural properties first and semantic properties as a by-product of the
structural properties.

e A phrase structure grammar should not require subcategorization in-
formation of the words in the sentence to yield a structure.

e A ps-grammar in our view constitutes a performance model of lan-
guage, not a competence model. It should be able to provide syntactic
structure for any kind of utterance made by language users.

e The use of phrase structures to represent syntactic properties does not
presuppose nativism (see Chapter 10).

These key issues greatly reduce all prior assumptions that are usually
connected to using a ps-grammar. In our view, it is a suitable approach to
minimally describe full structures for sentences, using a simple segmentation
and labeling approach.

8.2.2 Information Theory for grammar induction

In Section 8.1.1 we introduced some basic concepts from information theory
and showed how [Yuret 1998] is able to exploit this information to induce
dependency structures from raw text. We discussed some of the difficulties
researchers encounter when using this approach to induce a ps-grammar in
Section 8.1.2. But [Clark 2001] showed that it is possible to use mutual
information values to induce as well as filter grammar rules. In this section,
we would like to describe a simplified version of the method described in
[Yuret 1998] for the induction of ps-grammars that does not require massive
data sets or several processing stages like [Yuret 1998] and [Clark 2001] do.
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With GRAEL-3, we wish to develop a method to induce grammars for
natural language. Whereas in GRAEL-1 and GRAEL-2 the agents were pro-
vided with a set of pre-parsed examples on which to base the development
of their grammar, this kind of information is not available to the agents in
GRAEL-3. We can supply the agents with natural language sentences, but
they will need some grammar induction method to bootstrap their gram-
matical knowledge about them. The system described in this section will
establish such a method.

The method we propose is based on information content values provided
by a simple bigram-model expressing “lexical attraction” between words in
a bigram. Given a set of sentences, the bigrams are recorded (in two passes:
from left-to-right and from right-to-left), so that mutual information between
adjacent words is recorded (cf. Section 8.1.1).

Let us consider an example for a grammar induction task that works for
part-of-speech tag sequences of the ATIS-corpus. We are given a part-of-
speech tag sequence for the sentence “the return flight should leave at around

7 pm”:
1.5 1.0 0.2Y3.4 —1.2Y—0.8 3.1Y-3.1
(g nf I md x in I cd l
6.5 2.3 2.7 7.1 1.2 4.4 6.9 1.9 3.8

Each part-of-speech tag is attributed a value expressing its information
content based on the preceding word®. The mutual information between two
adjacent words is expressed on the arcs between part-of-speech tags. This
provides a very rough idea of the affinity between the words on which we can
build our syntactic structure.

Using this information, we now greedily lookup the bigram that has the
highest mutual information content and join it together in one constituent
bearing the label of the part-of-speech tag with the highest information con-
tent, to ensure that it is reflected in the labeling properties of higher order
structures:

5The figures displayed in the example express actual values measured on the entire
ATIS-dataset.
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(15r10r02\/\K12Y 08\{31 Cd 311)

3.8

We now consider the newly created constituent as one symbol and link
the preceding and following tag to this node as if it were in fact a single
tag. The sequence “md in” has never been observed in the corpus and
there is therefore no lexical attraction between these tags and the link will
be discarded in the next step. Note that the 2nd nn can be linked to the
md-terminal node directly or to the superordinate md-node:

1.5 1'0\/_02 12Y -0.8 31 3.1
(g I m g \g cd l
6.5 2.3

7.1 3.8

After this first grouping, we greedily look for the next case of strong lexical
attraction and find it in two sequences “rb c¢d” and “cd rb”. Given these two
choices, we pick the sequence containing the tag holding the largest amount
of bits, group them into one constituent and update the mutual information
values:
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02 /—-0.8T2.3ﬁ
r

1.5 1.0\/‘02 —1 2\( -0.8 (‘3.1\
g RS
6.5 2.3

4 4 6.9 1.9 3.8

A new link is being made for the “rb rb” sequence that holds a rather
large mutual information value, but the lexical attraction between “cd rb”
is higher. This means that the last rb element should preferably be attached
on the level of the cd tag directly and not to the superordinate structure.
Doing so, however, causes the following problematic situation:

/—02 /—08

1.5 1.0\/‘02 —1 2\( -0.8 /\
g
6.5 2.3

71 12 69 19 38

Basic PS-grammar restrictions stipulate that we cannot allow the same
terminal to be headed by two different nodes. We therefore attach the newly
created superordinate rb-node at the node where previously cd was attached.
We will stipulate later that this operation is only allowed if it does not change
the label of the root node of the structure it attaches to. Since this is not
the case in the current situation, we can update the structure as follows:
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/—02 \

((15Y10\/-02 -12\/ 081
r cd rb

2.7 4 4 6.9 1.9 3.8

The next bigram we join is “dt nn”:

——08
Al
15ﬂ/—02 \
rb
1.0 0.2 -12 -0.8
r Y W YRy
r cd rb

4 4 6.9 1.9 3.8

Next up is the newly created “dt nn” sequence whose lexical attraction

(1.5bits) is higher than that of the other bigrams:
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e b R ..: (

dt nn nn md v
6.5 2.3 2.7 7.1 1.2 4.4

/ \ﬁwnd
/\ /-O.QW/\QLQ\.KO.S

-0.8

&

6.9

X
\

cd rb
1.9 3.8

This leaves us with an interesting situation: there are now two equally
likely attachment possibilities for the second nn: we can directly attach it to
the following tag md or its superordinate node. Since they both carry the
same label, the lexical attraction between the two is the same. Given the
choice between levels of attachment, we choose the highest, since the node
at that level can be considered to incorporate information content values of

its subordinates®. This would bring us to the following state:

-
dt md
/ N\
/
/
dt / md
I/
/
/
/
/,’ €-1.2 ~-0.8
dt nn nn md v in

6.5 2.3 2.7 7.1 1.2 4.4

-0.8

&

6.9

o

\

cd rb
1.9 3.8

6 Also note that the flattening operation described later, often ignores the level of at-

tachment committed to during the building of the tree.
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But this again violates the constraint that one terminal node cannot be
directly headed by two head nodes. If we were to follow the same procedure
we used to resolve the issue with the “rb cd rb”-sequence, we would create
the left substructure below, the root node of which is replaced by that of the
terminal carrying the highest entropy value in the constituent, yielding the
structure on the right:

dt md
dt md dt md
dt nn nn md dt nn nn md
N N
md vb md vb

This is of course a highly undesirable structure, but fortunately one our
grammar induction method rejects. But why? Attaching the md-constituent
on a leaf node of the dt-constituent is counterintuitive in that it replaces a
node carrying 2.7 bits to accommodate a structure whose root node, i.e. the
element with the highest information content, carries 7.1 bits. We committed
to using the tags with the highest information content as the label for our
superordinate nodes on the basis of the intuition that they should be featured
in higher-order structures. Attaching it at the level of a node carrying a
considerably less amount of bits is therefore counterintuitive, unless there is
a very strong lexical attraction warranting this kind of operation (as was the
case for the “cd rb” sequence).

This would pose not much of a problem if it did not override segmentation
and labeling properties earlier committed to by the induction method. But
in this situation, the attachment of the md-constituent changes the original
label of the dt nn nn sequence. This is undesirable, since there was obviously
enough lexical attraction to commit to this label at an earlier point than the
current state. We therefore stipulate that a node can only be attached at
a leaf-node of a constituent, if the root-node of the structure to which the
constituent is attached can maintain his node label, i.e. if it carries more
bits than the node to be attached.

If this is not the case, we climb higher in the structure of the place of
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attachment and look at its superordinate node. Unless we can find some
alternative node on our path to attach the constituent to, we create a new
root node for both root nodes as follows, despite the earlier observed lack of
lexical attraction between the dt and md nodes:

R X ..............
md
-0.8
-
;b\
md rb
/ \ -1.2 ~ -0.8
md vg in l) cd rb

7.1 1.2 4.4 6.9 1.9 3.8

This structure does not change the labeling and segmentation properties of
the “dt nn nn” sequence, which the induction method had committed to
earlier on on the basis of its mutual information.

Sequences with negative mutual information content values were not con-
sidered by [Yuret 1998]. But since the grammar induction method we de-
scribe here searches for a syntactic structure in a greedy fashion, it considers
every kind of lexical attraction starting from the strongest and ranging to
the lowest. The current sequence under consideration is “in rb” for which a
new structure is created:



8.2 GRAEL-3 279

r
AN
rb

dt :
/ \ N\
dt md 19 /rb\
dt/ \nn nn / \ b/ ?n cd rb
6.5 2.3 2.7

md v rb
7.1 1.2 4.4 6.9 1.9 3.8

With only one link to revolve, we are again faced with the aforementioned
problem: the vb-node is already headed by the md-node. Attaching the rb-
node on the leaf node currently containing vb would involve replacing a low
entropy node with a high entropy one. We have stipulated that a structure
may only be attached to a leaf node, if it does not involve changing the root-
node label. It is a close call between the information content of rb(6.9) and
md(7.1), but attachment is allowed yielding the following final structure:

md
/ o
\
rb
\
rb
\
dt rb
/ /// AN
dt rb
dt/ \nn nn md vb in rb cd/ \rb

6.5 2.3 2.7 7.1 1.2 4.4 6.9 1.9 3.8
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md

dt md
dt nn md/\rb
dt nn flight  should /\

| | vb rb
The return | /\
leave in b
| /\
at rb rb

around cd rb

|
7 pm

Figure 8.3: Binary Branching output

We can now compare the original tree in Figure 8.2 (p. 269) with the
one found by our grammar induction method in Figure 8.3. It is clear that
these trees apply a form of segmentation that is to a certain extent similar.
The difference between the trees can mainly be explained by the binary-
branching structure that the grammar induction method outputs. We can
consider flattening tree-structures to make them more similar to the ones
found in the ATIS corpus. We can achieve this by compacting a branch with
nodes carrying the same label. This flattened tree can be found in Figure
8.4. This structure does retrieve the correct segmentation for “The return
flight” , but loses a lot of structural information in the rest of the tree.

But we can also process the binary-branching tree by relabeling the nodes:
if only one of the two branches in a node is a terminal, we percolate the label
of the terminal to its direct head. If the node’s branches expands to two
terminals or two non-terminals, the node receives the label of the symbol
with the highest information content. Processing the tree like this produces
the re-labeled tree in Figure 8.5.

If we flatten our tree using the same principle as applied in Figure 8.4,
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md
dt md
d|t n|n n|n md =S
; |
The return  flight should

vb in rb cd rb
| | | | |

leave  at around 7 pm

Figure 8.4: Flattened Tree

/md\

nn md
dt nn md/\vb
d|t n|n flight  should Vb/\jn
The return | /\
leave ;7 rb
| /\
at b rb
| N
around c¢d tb
| |
7 pm

Figure 8.5: Relabeled Tree
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md

nn md
& wow e
/\ |
o m fight ges

| | vb in
The return | /\
leave .
in rb
|
at rb cd rb
| | |
around 7 pm

Figure 8.6: Relabeled and Flattened Tree

we obtain the tree in Figure 8.6. Even though this produces an unnecessary
embedding in the “The return flight’ sequence, it does retrieve the correct
segmentation for the rest of the sentence. Also note that the labels attributed
to the nodes are on the whole close in spirit to those featured in the ATIS-
representation of Figure 8.2.

This section introduced a grammar induction method based on simple bi-
gram probabilities. Whereas previous methods employed a rigid application
of maximum likelihood estimation to construct the parse tree that minimizes
the entropy contained in it, this induction method uses a greedy algorithm
that builds trees on the basis of the affinity, i.e. lexical attraction, between
subsequent words.

Using actual values induced from the ATIS corpus, we were able to find
a tree-structure that very closely matched the original gold-standard of the
annotated corpus. Unfortunately, the grammar induction method does not
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work equally well on all sentences alike”. Test results will show that it is
vulnerable to the distribution of the data and that small local differences in
mutual information content can produce dire parses globally. This means
that our unsupervised grammar induction method® will yield a highly defec-
tive grammar altogether. However, chapters 5 and 7 introduced an agent-
based system that goes a long way in resolving these kinds of limitations in
grammars.

8.2.3 Bootstrapping GRAEL-3

The basic idea of the GRAEL system is maintained in GRAEL-3: knowledge is
distributed over a society of agents who will adapt to each other in language
games and optimize it for inter-agent communication. Whereas in GRAEL-
1 and GRAEL-2 the knowledge distributed over the agents took the form
of syntactic tree-structures, this kind of information is not readily available
at the onset of the GRAEL-3 society. The grammar induction method we
described in the previous section (henceforth Gim) can be used to bootstrap
structural knowledge in the GRAEL-3 society in several ways.

The first method which we will dub GRAEL-3A is displayed in Figure 8.7:
the bare unannotated sentences are run through the Gim which produces an
annotated set of tree-structures, which can be distributed over the agents.
This method most closely resembles previously described GRAEL-systems.
But we can also use the GRAEL-3B method, described in Figure 8.8. Here
the raw data itself is distributed over the agents, each of which will apply
the GIM on its own data.

Having defined two methods to provide the agents with knowledge, there
is still one issue to be resolved: how exactly is knowledge shared in the
context of a language game. And more importantly how are language games
played? We now have two methods for creating a structure: a parser using
the induced ps-grammar? to create analyses (cf. GRAEL-1 and GRAEL-2) and
the grammar induction method itself. As GRAEL-3 implements interaction

”An example of how the grammar induction method becomes pigeon-holed is described
in Appendix G.

8and in fact any grammar induction method.

9As usual it is extended to incorporate memory-based aspects (PMPG).
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GIM N
~— Annotated —

Unannotated

xxx vb prp dt nns in nnp nnp to nnp nnp nnp
xxx vb prp dt nn in nnp nnp to uh

xxx vb dt nns

xxx vb prp dt nn in nnp to nnp nnp

xxx vb prp dt nns

[Agentl] Agent2

GRAEL-3

[Agentl] [AgentQ]

Figure 8.7: GRAEL-3A
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Unannotated

xxx vb prp dt nns in nnp nnp to nnp nnp nnp
xxx vb prp dt nn in nnp nnp to uh

xxx vb dt nns

xxx vb prp dt nn in nnp to nnp nnp

xxx vb prp dt nns

AN

[Agentl] [Agent?]
-

[
GIM —
N |
. Y GIM — GIM
! !

[Agentl] [Agent2]

GRAEL-3

[Agentl] [Agent2]

Figure 8.8: GRAEL-3B

between the I-language and the E-language, there are three points at which
parsing occurs: (1) an agent parses other agents’ sentences in a language
game, (2) an agent provides new structures for his E-language using newly
acquired information and (3) the fittest agent in a society parses the test
sett0.

Table 8.1 hints that there is a wide range of possible combinations, which
we will not exhaust in this chapter. We will only consider the two GRAEL-3
instantiations described in Table 8.1. As a point of reference, we include
GRAEL-1 in this table, which used PMPG!! for all occurrences of parsing.
GRAEL-3-1 bears a close resemblance to GRAEL-1, except that it starts off
with a corpus annotated by the GiMm.

GRAEL-3-2 not only uses GIM to provide initial structures for the sen-
tences, but also to conduct parsing in the language games as well. Language
games are still being played in the same way as before but with some slight
differences: agentl proposes a parse for a sentence of agent2’s E-language.

10We will not require a validation set in the GRAEL-3 experiments.
11 Actually short for the combined system PCFG+PMPG.
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| || Grammar Induction | Language Games | E-language | Test Set |

GRAEL-1 PMPG PMPG PMPG PMPG
GRAEL-3-1 GIM PMPG PMPG PMPG
GRAEL-3-2 GIM GIM GIM PMPG

Table 8.1: 2 instantiations of GRAEL-3

agent2 then compares the structure provided by agent1 to his own and finds
the minimally correct substructure needed for correct parsing. But instead
of sharing the structure, agent2 repeats the terminal nodes of the minimally
correct substructure to agentl. When the society is halted, the fittest agent
can use the GIM to construct a parse directly on the basis of the I-language
he compiled over the course of the language games.

Note that, coupled with the previously described distinction between
GRAEL-3A and GRAEL-3B, there are in principle four different GRAEL-3 in-
stantiations to be experimented on: GRAEL-3A-1 and GRAEL-3A-2 on the
one hand and GRAEL-3B-1 and GRAEL-3B-2 on the other. Note however
that from an experimental point of view, GRAEL-3A-2 and GRAEL-3B-2 are
identical, because there are no actual structures being distributed at the on-
set of the society, which dissolves the distinction between GRAEL-3A-2 and
GRAEL-3B-2. Let us know turn to the discussion of the experiments.

8.3 Experiments

We have already mentioned the problematic evaluation of grammar induction
methods in Chapter 7 and Section 8.1. An interesting proposal was made by
[van Zaanen and Adriaans 2001] to evaluate unsupervised grammar induction
methods in the same way as we would a supervised method: by measuring
the accuracy of the method in terms of precision and recall (cf. Chapters 3,5
and 7). [Clark 2001] criticizes this approach by pointing out that the gold-
standard structures an annotated corpus provides, are the result of human
annotators making arbitrary decisions and that the structures provided in
the annotated corpus do not reflect some “theory-independent reality”. This
point is moot however, since there is no such thing as syntactic structures
that reflect a theory-independent reality. [Clark 2001] therefore argues in
favor of a qualitative analysis of the grammar induction method rather than
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a quantitative, but fortunately continues to provide both. We will employ
the same evaluation method in this chapter.

8.3.1 Experimental Setup

We will describe three types of experiments: the first set of experiments
featured GRAEL-3 trained and tested on the ATIiS-corpus. This restricted
domain will allow us to consider a number of different experimental settings,
including the three previously defined GRAEL-3 instantiations. The next set
of experiments uses the wWsJ-corpus as a training set. Both experiments with
words and tags will be described, while different GRAEL-3 instantiations are
tested on the test sets for the ATIS corpus and Section 23 of the WsJ-corpus.
A final batch of experiments provides a limited qualitative analysis, as we
apply GRAEL-3 on large amounts of texts from a limited domain.

Grammar induction methods generally need all the data they can get,
so one might be inclined to simply use single-epoch GRAEL-3 societies. One
of GRAEL-1’s strengths as a grammar optimization method however was its
ability to weed out bad grammatical information from a society. Given the
fact that the GIM indeed creates a lot of erroneous grammatical structures,
a generation-based system therefore seems advisable. All GRAEL-3 societies
described here are crossover-based societies, using a 10-agent society using
understanding accuracy information to determine agent fitness. Each agent
slot is given 10 generations'? and the experiment was stopped after the last
agent disappears.

Note that in a GRAEL3-2 type society, grammatical knowledge is not rep-
resented as actual structures, but is induced from a collection of sequences
of part-of-speech tags. In a typical GRAEL-society newborn agents are cre-
ated by joining two agents’ top 50% most probable rules and a selection of
the other structures. This kind of probabilistic information is of course not
present in an I-language solely consisting of part-of-speech tag sequences.
The sequences for newborn agents are therefore randomly selected from the
ancestors’ I-languages.

Noisy channel mutation was not implemented in the GRAEL-3 experi-

12Generation shifts were triggered using the formula on p. 183.
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ments, as the development of the grammars is already unstable. Since we
need to take into account that the structures in the initial E-languages are
subpar and can therefore a priori not function as a gold-standard touchstone
for the agents, we do allow the agents to re-parse their E-language after every
language game run.

8.3.2 Restricted Domain - ATIS

Let us first consider GRAEL-3A-1 applied on part-of-speech tags as it is
the closest in spirit to the previously described GRAEL systems. To recap:
GRAEL-3-1 annotates a collection of sentences (sequences of part-of-speech
tags) using the GIM. The trees are re-labeled, but not flattened!® (cf Figure
8.5) and distributed over a society of 10 agents. The agents use these initial
structures to induce a PMPG which is consequently expanded and optimized
in a series of language games using a GRAEL-1 type approach.

We use the same data set partitioning as in the GRAEL-1-experiments: a
58 sentence test set was used to evaluate GRAEL-3, while the remaining 463
sentences, together with the unused validation set, was used as a training
set. As a first step, the GIM provided structures for the 520 sentences in
the training set. We then induce a PMPG from these structures and record
its precision and recall. Since there is no straightforward way to match the
node labels provided by Gim to those featured in the original corpus, we
measure unlabeled precision and recall and look at the number of correct
constituents, regardless of their category label. The grammar obtained from
the GIM-structures achieves a 22.4% F-score on the test set.

Following [van Zaanen and Adriaans 2001; Clark 2001], we also adopt the
somewhat looser criterion 0CB (zero crossing brackets). This measures the
amount of times the brackets of a parse!* crosses those of the gold-standard.
Note however that the 0CB measure tends to overestimate the importance
of flat parses, as they are less likely to have crossing brackets. Baseline 0CB-
accuracy for the initial grammar is 21.3%. If we use the grammar to parse
the training set, we get higher scores, but still considerably lower than those
obtained from a supervised induced grammar: 22.7% F-score and 24.3%

13The flattening operation would eliminate recursion in our grammar.
14 The brackets of a parse are identical to the constituent boundaries.
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Figure 8.9: GRAEL-3A-1 - ATIS - Understanding Accuracies

0CB. This indicates that the grammar found is far from optimal in that it
is not able to generalize over the data in such a way as to make accurate
parsing possible. The main problem lies in the labeling which hampers the
usability of the ps-grammar in a parser.

To see if our GIM is actually doing better than the lower threshold baseline
accuracy we can expect, we also conducted an experiment in which we ran-
domly generated tree-structures for sentences. We achieved a 6.7% F-score
for the sentences on our training set and a 7.8% F-score for the sentences of
our test set. Using these structures in a GRAEL-3-A-1 society did increase
the scores up to 8.2%, but the difference was not significant.

Figure 8.9 shows the understanding accuracy plots for this experiment.
The baseline accuracy is set at 22.7%, as this is the accuracy achieved by
the grammar induced from and tested on the training set. The society starts
off with very low understanding accuracies with many agents being totally
incomprehensible to one another. As the agents acquire structures in lan-
guage games and share grammatical knowledge, they slowly start to reach
a state of convergence and agree on a larger number of grammatical struc-
tures. They eventually achieve understanding accuracies up to 55%. This
only indicates that the agents are converging and does not necessarily mean
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that they have acquired a better grammar than the one that was distributed
over the society. Understanding accuracy in the last 50 runs of the society
circles around 40%.

Note that, even though this is a generation-based society, this does not
seem apparent from the plots in Figure 8.9: this is due to (1) the dispersed
nature of the plots, concealing accuracy shifts and (2) an apparent stability
in parsing behavior, even when part of the grammar is taken away. This may
suggest that the agents are mainly using the most probable portion of their
grammar for parsing, which is always transferred to the offspring.

Table 8.2 displays the accuracy achieved by the fittest agent, when the
society is halted at the 285th language game run (understanding accuracy
halting point). As a point of reference we also include accuracy scores for
EMILE and ABL [van Zaanen and Adriaans 2001] and cpc [Clark 2001]. The
latter however uses a different adaptation of the ATIS corpus than [van Zaanen
and Adriaans 2001]. The results on GRAEL-3 report on a different version of
the ATIS-corpus'®, making a direct comparison troublesome. We include the
figures since they are our only basis of comparison and should provide some
general idea of GRAEL-3’s performance.

The result of GRAEL-3A-1 improves considerably on the baseline model,
but a 25.6% F-score is still a rather modest result, even for an unsupervised
grammar induction method, especially compared to the other methods. Note
that for both the baseline method as well as for GRAEL-3A-1, precision is
much higher than recall. This can be explained by the poor ps-grammar
obtained by both methods: a lot of sentences could not be parsed at all,
limiting the total number of constituents that are generated, which affects
the precision score as it expresses the ratio of correct constituents vs the total
number of constituents generated.

Let us look at GRAEL-3AB-2 which uses GIM consistently for all parsing
operations. Figure 8.10 displays the understanding accuracy plots for this
experiment. We calculate a new baseline accuracy, by using the training
set to induce structures for the test set using the GIM. Surprisingly perhaps,
this yields a significantly higher score than the PMPG-approach. The baseline
accuracy on the training set for the GIm is 33.1%. The first thing we notice
when we look at the results for GRAEL-3AB-2 in Table 8.2 is that precision is

15 ATISIT holds less trees and on the whole less homogeneous trees.
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[ UP UR Fpy OCB]

EMILE 16.8 51.6 254 474
ABL 35.6 43.6 39.2 29.1
CDC 34.6 53.4 420 45.3
Baseline (PMPG) || 25.1 20.2 224 229
GRAEL-3A-1 28.5 23.2 25.6 24.9
Baseline (GIm) 274 294 284 30.8
GRAEL-3AB-2 30.1 31.9 31.0 31.1

Table 8.2: GRAEL-3A-1 VS GRAEL-3AB-2 - ATIS - Results
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Figure 8.10: GRAEL-3AB-2 - ATIS - Understanding Accuracies
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now lower than recall, because the GIM induces a structure for all sentences.
This means that on average more correct constituents are generated, but at
a lower ratio to the total number of constituents created. The overall F-
score for the fittest agent in the GRAEL-3AB-2 society is 31.0%, a significant
increase, both over the baseline method and GRAEL-3A-1.

We now turn to the GRAEL-3B instantiations which provide the agents
with part-of-speech tag sequences at the onset of the society, rather than full
tree-structures. The agents then apply a GIM to those sentences and end-up
with an annotated set of trees. But whereas the structures in GRAEL-3A were
based on distributional information about the entire training set containing
520 sentences, the initial grammars in GRAEL-3B are each based on only
1/10 of that amount. The GIM is a greedy algorithm and will come up with
structures regardless of the size of the training set, but the quality of those
grammars seems a priori questionable.

If we interpret the agents in GRAEL-3B as bag-like entities, we might
however conjecture that among all the grammatical structures that exist in
the society, many are erroneous, but some might also benefit from some
lucky sampling of the original training set and constitute useful grammatical
structures. The GRAEL society should then try to distinguish erroneous from
useful structures. Note that from an experimental point of view GRAEL-3A-
2 and GRAEL-3B-2 are identical, since there are no actual structures being
distributed at the onset of the society.

Figure 8.11 shows the course of the GRAEL-3B-1 experiment. Optimizing
the grammar in this environment is apparently very problematic, with a very
gradual learning curve. This time, newborn agents seem more affected by
the newly compiled grammar, as minimal F-scores can be observed until as
far as the 200th run. The society gradually picks up after that, but is still
only barely able to outperform the baseline model. The fittest agent in this
GRAEL society achieves an F-score of 22.7% which is comparable to that of
the baseline (Table 8.3). Note how precision is again much higher than recall.
In fact, the recall score for GRAEL-3B-1 is much lower than that of GRAEL-
3AB-2. The disappointing scores for this GRAEL-3 instantiation shows that
it is not very well suited to this kind of optimization task.

Apparently the GRAEL-3-2 method of using GiM for all parsing tasks, is
more capable of optimizing the initial grammars. This is not surprising: we
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GRAEL-3B-1 26.6 | 19.8 | 22.7 | 22.9
Baseline (GIM) 274 | 294 | 284 | 30.8
GRAEL-3AB-2 30.1 | 31.9 | 31.0 | 31.1
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The

The return should

T

leave at
should leave at around
/\ /\
flight should around 7
PN
7 pm

Figure 8.12: Word-based Parse

identified the labeling as one of the main problems in parsing with a PMPG-
grammar based on structures induced by the GiM. If these structures are
based on a tiny dataset, the way the structures are built is largely dependent
on very local lexical attraction values and is therefore to a large extent guided
by chance. The labeling that these structures yield can be expected to be less
accurate as well. And since a parser using a ps-type grammar uses these labels
to generate structures, it is therefore not surprising the agents do not perform
very well at the onset of the society and that even GRAEL cannot salvage the
situation over time. In the GRAEL-3B-2 method, structures become gradually
better when new information is introduced, so that local maxima are more
easily overcome.

Considering the tiny data set that the GiM had to base its grammar on,
the results are encouraging. Even though transforming the structures into
ps-grammars is not a good idea, GRAEL-3 does seem to improve both the
performance of societies wielding phrase structures and of societies powered
by the GiM exclusively. But compared to other methods, the overall results
are disappointing and it seems that if we are to exploit the grammar opti-
mization capabilities that GRAEL provides to the fullest, we will need a larger
data set that can deliver more fine-tuned information content values, that
are not as vulnerable to the negative side effects the distributed nature of
GRAEL can cause.



8.3 EXPERIMENTS

295

Before we turn to a set of experiments that uses a larger dataset, we
briefly look at unsupervised grammar induction on the word-level. Due to
the size of the ATIS corpus, the GIM was not able to induce a decent grammar
for parsing strings of words. To illustrate this, we show the (re-labeled and
flattened) structure for the sentence “the return flight should leave at around
7 pm”1® in Figure 8.12. If we train and test a GIM on the words of the ATIs-
corpus, we only achieve a 10.5% F-score. If we want to generate structures
on top of the words of the ATiS-corpus, we will need a larger dataset to
adequately estimate the (mutual) information content of the words in the
Corpus.

8.3.3 “Unrestricted” Domain - WSJ

The experiments on the ATIS-corpus showed that our GIM is able to build a
grammar that can provide parses that range from impressively accurate (cf.
the “the return flight...” sentence) to nonsensical (cf. Appendix G). Trained
on 520 sentences and tested on 58 similar sequences, the GIM achieved a
remarkably high, if still overall underwhelming F-score. Transforming the
induced grammar to a ps-grammar has been shown to produce substandard
results, mainly due to the aforementioned problem of labeling. A method
that pre-distributes the unannotated sentences over the GRAEL-society only
amplifies this problem.

The GciMm used by GRAEL-3 seems able to provide parses for sentences
based on a very limited amount of data. This begs the question: does the
performance of GIM benefit from the fact that training was performed on a
set of sentences similar to the test set, or is its performance in fact limited
by the size of the data. We therefore need to experiment on a larger corpus,
which will not only enable us to investigate this matter, but should also
enable us to perform some experiments for unsupervised grammar induction
on words, rather than part-of-speech tag sequences, since the latter can still
be considered as a semi-supervised method of grammar induction.

16«The” is the most salient word, because it is capitalized and only six sentences in the
ATIS corpus start with “The”.
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Tags

Due to the computational costs of using GRAEL with a ps-grammar backbone,
we limited the experiments to only one with GRAEL-3-B-1 on part-of-speech
tag sequences. Since the wsJ-corpus is much larger, the issues that lim-
ited the performance of this particular GRAEL-3 instantiation in the ATIS
experiment should be resolved.

We will first describe the GRAEL-3-B-1 experiment. Like in the previous
experiment with the full wsJ-corpus, we first divide the training set (Sec-
tions 2 to 21 of the wsJ-corpus) into 40 parts of about 1000 sentences each.
Actually, it is divided into 40 parts of 10x100 sentences, with a random par-
titioning for the 10 agents'” already present. At the onset of the society,
the first partition of 10x100 sentences is distributed over the society of 10
agents. Each agent holds about 100 sentences in his E-language. Contrary to
previous experiments the agents now use information on all 40x100 sentences
that are attributed to them to power the GIM. This produces tree-structures
for their initial sentences.

Next, processing continues similarly to a regular GRAEL-experiment with
the agents parsing other agents’ sentences using the ps-grammar induced
from the structures provided by the GiM and the grammatical structures
acquired during language games. In this experiment, however, the sentences
in the E-language are not re-parsed after each language game run, as this
would be too computationally expensive. Therefore, interaction between
[-language and E-language is limited to parsing the sentences of the new
E-language that is provided every 40 runs.

Figure 8.13 displays the course of the experiment. The baseline accuracy
(26.3%) provided in this plot is the F-score on the 1st partition of 1000
sentences, achieved by the grammar extracted from the structures provided
by the GiM from the entire training set. In this graph, we notice at regular
intervals some upward, as well as downward peaks when a new partition
is introduced in the society, most notably at run 40. Overall, this does not
seem to influence the agents’ development at all. Although an understanding
accuracy halting point can be determined after run 373, the plots seem to

17 As opposed to previous experiments with GRAEL on the WSJ we use a limited popula-
tion size, to provide each agent with sufficient data to induce an initial grammar.
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Figure 8.13: GRAEL-3B-1 - WsJ - Understanding Accuracies

suggest that understanding accuracies might rise if the society is allowed to
continue. Future research should look into this issue.

When the society is halted, the fittest agent is selected and its grammar is
used to parse the test sets (the 58 sentence ATIS test set and Section 23 of the
wsJ corpus). The results are encouraging (Table 8.4): GRAEL-3B-1 achieves
a 25.3% F-score on the wsJ test set and a 31.8% F-score on the ATIS test
set. This compares favorably to the GRAEL-3B-1 counterpart trained on the
ATIS corpus. The GRAEL-3B-1 seems to scale well to larger corpora, achieving
an important performance boost. It outperforms the GRAEL-3AB-2 society,
but not by a great margin, especially considering the large amount of extra
computation involved. Scores are considerably lower than those reported
by [van Zaanen and Adriaans 2001] and [Clark 2001], but this can also be
attributed to the increased amount of training data used in these compared
to the experiments described here.

Note that for both the baseline model and GRAEL-3B-1 recall is higher
than precision when parsing the wsJ test set, but about the same when
parsing the ATIS test set. This indicates that many sentences of the wsJ test
set could not be parsed, in contrast to ATIS, for which almost all sentences
were attributed some parse.
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Test Set =wsJ Test Set = ATIS
UP \ UR \F,@:1 \ 0CB || UP \ UR \F,le \ 0CB
GRAEL-3B-1 ATIS — — — — 26.6 | 19.8 | 22.7 | 22.9
Baseline (PMPQG) 38.0 | 16.2 | 22.8 | 24.3 || 25.6 | 24.8 | 25.2 | 27.3
GRAEL-3B-1 wsJ || 38.1 | 19.0 | 25.3 | 28.2 || 31.6 | 32.1 | 31.8 | 32.8

Table 8.4: GRAEL-3B-1 ATIS vS GRAEL-3B-1 WSJ - Results
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Figure 8.14: GRAEL-3AB-2 - wsJ - Understanding Accuracies

Generating structures with the GIM is a very inexpensive process, since it
is a bottom-up, best first-search algorithm. For the wsJ experiment with the
GRAEL-3AB-2 method, we can therefore abandon some of the restrictions we
normally apply when processing the wsJ dataset in a GRAEL society. In this
experiment, all sentences are distributed over the agents in the society at the
onset. To still allow the society to move along at a reasonable pace, 100 full
sentences are sampled from the agents’ I-language after each language game
run to compile an E-language.

In this experiment, we allowed each agent’s slot to create 20 newborn
agents, as opposed to 10. Figure 8.14 shows that this is to no avail, as
there is hardly any noticeable increase in understanding accuracy among the
agents. A very gradual increase can be observed, but overall, the society
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Test Set =wsJ Test Set = ATIS

UP ‘ UR ‘ Fg—1 ‘ 0CB || UP ‘ UR ‘ Fg—1 ‘ 0CB
GRAEL-3AB-2 ATIS — — — — 30.1 | 31.9 | 31.0 | 31.1
GRAEL-3B-1 WsJ 38.1 (19.0 | 25.3 | 28.2 || 31.6 | 32.1 | 31.8 | 32.8
Baseline (GIM) 249 | 26.1 | 25.5 | 26.6 || 31.4 | 33.1 | 32.2 | 32.5
GRAEL-3AB-2 wsJ 175 || 25.2 | 26.3 | 25.7 | 26.6 || 31.5 | 33.3 | 32.4 | 32.5
GRAEL-3AB-2 wsJ 350 || 25.2 | 26.3 | 25.8 | 26.6 || 32.8 | 34.1 | 33.4 | 33.6
GRAEL-3AB-2 wsJ’ 350 | 26.0 | 26.9 | 26.5 | 26.7 || 33.2 | 34.5 | 33.8 | 34.0

Table 8.5: GRAEL-3AB-2 trained on wsJ - Results

evolves very slowly. So much so that the understanding halting procedure
triggers a halting point after run 175. We therefore selected another fittest
agent at the arbitrarily chosen halting point of run 350.

Table 8.5 provides an overview of the results. The first line shows the
results of the GRAEL-3AB-2 society trained on the test set. This society
achieved a reasonable F-score of 31.0%. It is outperformed by the GRAEL-
3-B-1 society that was trained on the wsy corpus (2nd line). The baseline
for this experiment was the GIM applied on the test set, using distributional
information from the training set.

The fittest agent at run 175 (GRAEL-3AB-2 WsSJ 175 in Table 8.5) in-
creases the score slightly on the wsJ and ATIS test set compared to baseline
accuracy. The fittest agent almost 200 runs later (GRAEL-3AB-2 WsJ 350)
does yield some performance increase on the ATIS test set, but a hardly no-
ticeable effect on the wsJ test set. In fact, looking at the ATIS test set, there
is a difference of less than 10 constituents between the GRAEL-3AB-2 systems
described in Table 8.5, which indicates that the beneficial effect of GRAEL-3
is minimal.

Apparently GRAEL-3 does not provide much of a performance gain for
this kind of parser. This is not surprising if we consider what is going on in
the language games: agentl provides a structure for one of agent2’s sen-
tences. agent2 will seek out the minimal correct substructure and provide
it to agent1. But since agentl does not use these structures itself for pars-
ing, only the part-of-speech tag sequence is recorded. However, adding this
sequence to an already large I-language, does not have a directly significant
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Test Set =wsJ Test Set = ATIS
UP ‘ UR ‘ Fg—1 ‘ 0CB | UP ‘ UR ‘ Fg—1 ‘ 0CB
Baseline 18.1 | 19.0 | 18.6 | 19.0 || 23.5 | 23.8 | 23.6 | 23.9
GRAEL-3AB-2 || 20.0 | 20.4 | 20.2 | 20.8 || 25.2 | 24.8 | 25.0 | 26.2

Table 8.6: GRAEL-3AB-2 trained on wsJ - Words - Results

impact on the agent’s parsing behavior. Therefore learning is slow and the
increase achieved from GRAEL is minimal.

A bigger performance increase can be achieved if we gather all I-languages
of all agents and use the distributional properties of this set of sentences to
parse the test sets. This approach (GRAEL-3AB-2 wsJ’ 350 in Table 8.5)
outperforms any other system discussed so far: apparently the distributional
properties observed across the society have been optimized, providing an
extra increase for the accuracy scores of the GIM on the test set.

‘Words

The experiments so far have all been conducted on part-of-speech tag se-
quences. Ideally, however, we want to be able to induce grammars without
the help of human annotators. We therefore present one experiment in which
we tried to induce a grammar based on the distributional properties of the
words of the wsJ-corpus rather than their tags. A preliminary experiment
on the ATIS-corpus had shown that it was too small to extract meaningful
structures (cf. Figure 8.12). It may be interesting to see if we can improve
the performance of the GIM on words if we have a larger data set at our
disposal.

We trained and tested a GRAEL-3-AB-2 society on the words of the wsJ
training set and tested its fittest agent on the ATIS test set, as well as on
Section 23 of the wsJ corpus. The results are not very good (Table 8.6):
there is a significant drop in accuracy on the wWsJ test set, although not as
great as for the ATIS test set. The GIM is having a hard time extracting
distributional information for words. Especially the ATIS corpus does not
seem to be easily parsable on a word-level.
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leave

T

should leave

return should /I\

/’\ leave

he return flight
& around

N

at around
Figure 8.15: Word-Based Parse

Let us turn to our standard example to see what is going on. Here is the
sentence to which the mutual information content values have been added'®:

_0.4\{—5.7W._... ( 30Y36)
pm

The return flight should leave at around
3.7 12.8 8.7 11.3 13.7 6.3 91 1.6

First thing we notice is that now the item carrying the largest informa-
tion content is the actual verb, which is a better estimation than previously
suggested (md and The). But there are two very important arcs missing:
the one connecting 7 and pm, leave and at, and most importantly, the one
connecting should and leave. Upon inspection of the data, it is indeed the
case that there is no occurrence of the bigram “should leave” in the wsJ-
corpus. As both elements carry a high number of bits, they each occur at
the head of each other’s half of the sentence, which makes it practically im-
possible to attach the two structures properly. The final structure proposed
by the GIM can be found in Figure 8.15, although not completely without
merit, is obviously a far cry from the one we obtained in Figure 8.6.

18If there was no mutual information content, the unigram information content of the
word was used, rather than the bigram information content.
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There are a number of limiting factors at work here: the wsJi-corpus
provides a way to consider unsupervised grammar induction on words, but
at 1,056,519 words'? it is seemingly still not large enough to capture not
uncommon phrases such as “should leave” or “7 pm”.

The internet provides an infinite corpus to extract distributional informa-
tion, so that given enough data, we should eventually be able to capture these
kinds of sequences. But this argument misses the point: to capture these se-
quences, we perhaps need some form of generalization, like part-of-speech
tags. It is obvious that a modal followed by an infinitive is a very common
sequence and our grammar induction method should know about this rather
than wait till it has observed all combinations of modals and infinitives. Un-
supervised grammar induction on words should therefore perhaps limit its
scope to restricted domains (cf. ATIS), provided there is enough data to cap-
ture the most relevant sequences, or should either generalize over the words in
the form of part-of-speech tag sequences. Recent research however [van den
Bosch and Buccholz 2002] suggests that the latter type of generalization is
not required and that a word-based system for shallow parsing can outper-
form a system that generalizes over the data in the form of part-of-speech
tags, provided there is enough data available.

On a more general level, it is also clear that a simple bigram approach
to grammar induction is missing a lot of lexical relations between words. An
obvious way to increase the performance of the Gim would be to look beyond
the range of the surrounding words for grammatical relations. This might
provide a better way to build structures on top of sequences of words and
tags alike.

8.3.4 Restricted Domain

In this section, we would like to take a quick look at how we can apply
GRAEL-3 to a large amount of texts from a restricted domain. This will
allow us to test the capabilities of our GIM and GRAEL-3 on a pre-selected
text type.

We tried to look for a type of text that does not just feature homoge-

19Compared to e.g. 15,000,000 words in [Clark 2001].
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nized sentences like ATIS does, but which is not unrestricted either in the
sense that wsJ is. Our domain should feature a sufficient range of sentences
of unrestricted content, but also have a number of sentences featuring some
recurring terminology. This will allow us to see how well our grammar in-
duction method is able to make syntactic generalizations on both types of
sentences.

The domain we chose was that of DVD-reviews on the internet. Typically,
a DVD-review will consist of a discussion of the movie featured on the disc
(i.e. unrestricted content), as well as a discussion of the technical features of
the disc (recurring terminology). The internet-site DVD-Basen? is a portal
site that links to 63063 DVD-reviews on the internet at the time of writing.
Using the search term “the”, we downloaded thousands of reviews, stripped
formatting information and headings from the text and randomly drew about
250.000 sentences, leaving us roughly with a 5 million words training set.

We distributed these 250k sentences over 10 agents in a GRAEL society.
The agents then played a series of 400 language game runs in a single-epoch
society. There was no interaction between I-language and E-language and
the E-languages consisted of 200 sentences randomly drawn from any of the
full sentences in the agents’ I-language. After the 400th run, the society was
halted and the agents’ I-languages were compiled into one big training set.
This training set was consequently used to power the GiM which provided
tree-structures for the text of a DvD-review for the movie “Clerks”?!.

We distinguish two types of texts in a DVD-review: unrestricted content
text, describing the story of the movie and the technical discussion of the
disc featuring a recurring terminology. As a qualitative analysis of GRAEL-3,
we will discuss the structures induced for sentences of each text type.

First we look at two sentences from the description of the movie:

1. Clerks is the story of two, well, clerks.

2. Writer and Director Kevin Smith has a great knack for writing dialogue.

The first sentence of these two seems reasonably easy, except for the

20http:/ /www.dvd-basen.dk/
2http:/ /www.dvdangle.com/reviews/clerks_cs.html
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clerks

clerks two  well clerks

N

story of two

N

is story

./\
is the

Figure 8.16: Parse for “Clerks is the story of two, well, clerks’

interjection “well”. This sentence receives a totally nonsensical parse however
and it is clear that our GIM is not able to handle such an exceptional structure
(Figure 8.16). The 2nd sentence seems more difficult, but the parse it is
attributed is in fact far from bad (Figure 8.17). The parse correctly creates a
separate constituent for the subject, even marking the apposition. And even
though the vp features some unnecessary embedding, the basic constituent
boundaries seem to have been respected.

Next we look at two sentences from the technical description of the DVD,
which should feature some typical constructs and terminology:

1. The picture is quite grainy and there is some dirt present.

2. The dialogue is clear and distinct with little hiss throughout.

The first sentence is given a decent parse in which the two conjoined
parts are prominently featured (Figure 8.18). Some interesting constituent
boundaries are proposed and while this structure is quite respectable, it is
unlikely that the human annotators that created the wsJ corpus would have
provided a structure that is similar. This means that, even though the F-
score provides a good quantitative measure of a grammar induction method,
it should not be overestimated as a measure of the quality of the induced
grammar itself.
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Kevin

T

Kevin knack

T

Writer Kevin

Writer director Kevin Smith has a  great knack

o~ /\

and director knack dialogue

TN

writing dialogue

N

for writing

has great

Figure 8.17: Parse for “Writer and Director Kevin Smith has a great knack
for writing dialogue. ”

grainy

T

grainy and

. /[\ and there
w 18 grainy /\

The Picture there some

is dirt present

N

some dirt

Figure 8.18: Parse for “The picture is quite grainy and there is some dirt
present. ”
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dialogue

T

dialogue is
the dialogue ig clear

TN

clear hiss

distinct with hiss throughout

/\ P
and distinct with little

Figure 8.19: Parse for “The dialogue is clear and distinct with little hiss
throughout. ”

Although the 2nd sentence features common terminology such as dialogue
and hiss, the attachment of the PP-structure seems difficult to retrieve, which
is acknowledged in the parse in Figure 8.19: the subject is clearly delineated
from its predicate, but the attachment of the PP-structure is indeed incorrect.
Despite the high number of observations for this type of sentence, the GiM
coupled with GRAEL-3 is still not able to find a good parse for this sentence.

Although there are many sentences that do not obtain a good parse using
this method, there are also quite a lot of sentences that receive at least a
partially good parse. We noticed that GRAEL-3 is in general able to obtain
a good segmentation accuracy for NPs, but it does still seem very vulnerable
to sparse data problems (cf. “well” in Figure 8.17).

8.4 Advances and Concluding Remarks

In this chapter, we introduced the GRAEL environment as an unsupervised
grammar induction method. We described a minimalist method to boot-
strap syntactic structure throughout the society. Especially given its ex-
tremely simplistic approach, the results compared reasonably well to other
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approaches, such as [Clark 2001] and [van Zaanen and Adriaans 2001]. Ini-
tially outperformed by these more elaborate systems, the GRAEL environment
was able to narrow the gap.

There are still some research issues left to explore: Table 8.1 provided a
wide range of possible instantiations, which uses different parsing methods
at different moments in the GRAEL environment. Perhaps we are overlook-
ing some obvious combinations which might increase GRAEL’s optimization
capabilities. Graphs like Figure 8.13 and Figure 8.14 also hint that perfor-
mance might still be increased if we allow the society to run even longer. We
will also need to extend the bigram-nature of our GIM so that it can consider
a wider range of syntactic relationships. And there is also no reason not to
use other unsupervised grammar induction methods such as ABL [van Zaanen
and Adriaans 2001] or cpc [Clark 2001] to bootstrap a GRAEL-3 society.

We have also discussed that on the one hand, we wish to perform com-
pletely unsupervised grammar induction on words, but also the need to have
some intermediate level of generalization. Perhaps a pre-processing phase
that tags the words of a corpus with an (un)supervised method, might ad-
vance our grammar induction task. On the other hand, the structures pro-
vided by the grammar induction method, might also help to generate part-of-
speech tags by itself or provide clues for the disambiguation task of tagging.

What the experiments with GRAEL-3 wished to prove is that it is possible
to induce a ps-grammar in an unsupervised manner, using a very simple but
effective approach. Current limitations do not seem inherent to phrase struc-
ture as a method of representing syntactic structure, as [de Marcken 1995
and [Yuret 1998] claim. Most unsupervised grammar induction methods in-
vestigated so far may have concentrated too hard on inducing structure by
strictly adhering to maximum likelihood estimation, instead of looking at the
possibilities of employing very basic information about the affinity between
words, in the same way [Yuret 1998] used to induce dependency structures.
By introducing a factor of randomness in the induction of grammars (cf.
GRAEL-3B), we may also have found a way out of the local maxima that
[de Marcken 1995] described.

The limitations of using GRAEL-3 as a grammar induction method can
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therefore be situated in the limited performance of the grammar induction
method itself, rather than the GRAEL system as an optimization technique.
The research described in this chapter has given further evidence for GRAEL’s
ability to optimize grammars. Even if they are vastly deficient, the dis-
tributed approach to grammar optimization always seems able to squeeze
some extra percentiles out of the grammars, simply by having them interact
with each other.



Part 111

The Emergence of Grammar






The Lord said, "If as one people speaking the same
language they have begun to do this, then nothing they
plan to do will be impossible for them.

Genesis 11: 1-9

Modeling the emergence of
Compositional Language

In this chapter, we will provide an overview of some research efforts that
have tried to model the emergence of syntax in a computational context. We
will mainly focus on what kind of information is provided to the system, i.e.
what is presupposed, and see what kind of grammatical structure emerges
from that. In Chapter 10 we will then present our implementation based
on the previously defined GRAEL environment and key elements from the
research described in this chapter. We will discuss the individual approaches
in Section 9.1 and compare them to each other in Section 9.2.

LA great deal of gratitude is due to [van Trijp 2003] which laid the groundwork for this
overview.
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9.1 Computational Simulations of the emer-
gence of syntax: the systems

There are three major players in the field of research that tries to model
the emergence of compositional language in a computational context. This
section will discuss these respective systems and finish off by briefly looking
at some other related research efforts.

9.1.1 Negotiated Communication

John Batali has published two major publications that describe two rather
different approaches towards the computational modeling of the origins of
compositional grammar. [Batali 1998a] describes a society of agents equipped
with a recurrent neural network that can link strings of sentences to a limited
set of meanings. [Batali 2002] on the other hand uses an exemplar-based
approach to allow a society of agents to develop a mapping of sentences to
complex meanings.

[Batali 1998a]

Batali adopts a non-nativist point-of-view by hypothesizing that language
can emerge in a population of agents that do not need any innate linguistic
capacities, but some general cognitive abilities that allow them to build a
structured mental representation of a situation. The capacity to do so is
usually attributed to animals with a superior intellect and has in fact been
linked to the development of language in early hominids. Even though Batali
does not claim to provide a realistic simulation of the actual origins of lan-
guage, he aims to prove that language can emerge without presupposing an
innate language acquisition device.

To study the emergence of grammar, [Batali 1998a] first defines a meaning
space, featuring the different possible meanings the agents can express. This
meaning is presented as a sequence of 10 binary digits, of which the first six
constitute the predicate and the remaining four the referent. 100 different
meanings can then be represented as follows:



9.1 COMPUTATIONAL SIMULATIONS OF THE EMERGENCE OF SYNTAX: THE SYSTEMS

313

Predicates Referents Example Meanings
values sp | hr | ot | pl values
011001 | happy |1 |0 |0 |0 | me | 0110011000 | me happy
100110 | hungry |1 |1 |1 |1 |all | 1001101111 | all hungry
011001 all happy

A society of agents is then initialized, in which each agent holds a meaning
vector (a string of 10 binary numbers between 0 and 1) and a recurrent
neural network that can link strings from the signal space (random elements
from {a,b,c,d}) to one of the 100 meanings from the meaning space. Each
round, one agent is selected as the learner and 10 consecutive other agents are
selected as the teachers. Each teacher will convey a string, expressing some
meaning to the learner. This string is run through the learner’s recurrent
neural network: if the string causes the neural network’s output layer to
trigger the meaning the teacher intended, the communication is successful.
Learner and teacher are considered to hold the same meaning if there is less
than a 0.5 difference between their 10-number meaning vectors.

If the communication is not successful, i.e. the meaning vector sug-
gested by the learner is different from the one the teacher intended, back-
propagation in the learner’s neural network causes the weights to be altered
to incorporate the negative evidence for the meaning-signal relationship pro-
posed by the learner.

When a teacher wants to produce a signal to a learner, he would in effect
need to reverse the direction of the neural network. This is however not
trivial. Actual production is done by having the agent produce a string that,
if run through his own neural network, would trigger the correct meaning
vector.

The experiments show that after 15.000 rounds, the agents use the same
string sequence for most of the meanings in the meaning space. The agents
seemed to have converged on a grammatical system. Batali points out that
this kind of convergence does not necessarily indicate the actual emergence
of grammar, as the agents might have settled on a set of strings that is not
compositional in nature. But Batali is able to show that there are systematic
tendencies: the strings produced by the agents can be interpreted as having
a stem, consisting of two to three letters which expresses the attribute and a
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modifier expressing the referent. This referent is often the same regardless of
the predicate, indicating that the agents have converged on a common way
to modify it.

Another experiment was conducted to see if agents would be able to cre-
ate novel meaning combinations, by holding out 10 meanings. One agent
was selected to produce sequences for the novel meanings, after which an-
other agent was asked to interpret them. The experiment showed that the
agents used the regularities, learned in the society, to convey and interpret
these novel meanings, which had previously been unavailable to them, with
reasonably good accuracy.

[Batali 1998a| shows that agents can converge on a compositional system
to express a limited set of meanings. But it is indeed this restricted meaning
space that is problematic for the appreciation of this experiment: with only
one distinction to make (predicate vs referent) and a small pre-structured
meaning space, it might be the case that the neural network approach pro-
vides an obvious lead towards convergence. Providing the agents with the
explicit cognitive capacity to link a small signal space to a small meaning
space, might provide the society with an unrealistically big advantage towards
convergence. But even though the grammatical system that originated in the
society seems limited to a collection of inflection rules on the predicate, the
experiment does provide a basic method for the emergence of compositional
language without reference to explicit innate linguistic capacities.

[Batali 2002]

Batali addresses most of the problematic issues of his 1998 paper in a new
set of experiments, featuring a huge meaning space and a new approach to
modeling mental processing: neural networks are replaced by an exemplar-
based approach, akin to Similarity-Based approaches (cf. MBL in Chapter 2).
The hypothesis remains unaltered: Batali suggests language originated as a
means to externalize and communicate past and planned situations stored in
memory using general cognitive mechanisms.

Rather than using neural networks, or a rule-based approach, Batali
adopts exemplars as the basic building blocks of mental processing. For lan-
guage, these exemplars can be used directly to convey some kind of meaning,
or be modified to construct new analyses of the mapping between signal and
meaning. Learning, according to Batali, involves the resolution of the com-
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petition between a large set of exemplars, of which only a consistent set of
frequently used items are retained over time.

In this experiment, Batali expresses the meaning of a situation in a for-
mula set: a formula consists of a predicate and one or two numerical variables:
e.g. (goose 1) or (tickled 1 2). The variables in the formula set designate
the participants. Batali defines two types of formulas: properties (e.g. (goose
1)), that only take a single argument and describe a name for an animal or an
intransitive verb, and relations which define two participants to some kind of
course of action. With 22 properties and 10 relations, the meaning space in
this model comprises of 2.3x10'® formula sets for the agents to choose from.

The following formula sets describe a meaning representation for “The
goose sang’ and “The goose tickled a cow’ respectively:

e {(goose 1) (sang 1)}
e {(goose 1) (cow 2) (tickled 1 2)}

Batali also allows the agents to not only manipulate the sequence of words
(strings) that they produce to express this meaning, but also the mental rep-
resentations of a situation (formula sets) itself to represent more complex
situations. This is done by taking the union of two formula sets. The follow-
ing unified formula set expresses the meaning “the singing goose tickled the

cow’:

e {(goose 1) (sang 1) (cow 2) (tickled 1 2)}

The mapping between the formula set expressing some kind of meaning
and a string of words is performed by a data structure called a phrase. Such
a phrase may simply store a 1-to-1 mapping between signal and meaning,
but may also present an analysis of how a signal is mapped to a meaning and
vice versa. Batali defines two types of phrases: tokens (Figure 9.1 left), which
only contain a formula and a string, and complex phrases, which represent a
structural analysis of the mapping from a string to a meaning on the basis
of its constituents (Figure 9.1 right).

When producing or interpreting sentences, agents can use these stored
phrases, but they can also compile new phrases from different phrases or



316

CHAPTER 9 : MODELING THE EMERGENCE OF COMPOSITIONAL LANGUAGE

Token Complex Phrase
[(snake 1) (sang 1)] [(snake 1) (sang 1)]
ifal
usliala
(snake 1) (sang 1)
usi fala

Figure 9.1: 2 Different Types of phrases

build their own phrases. They differ from each other in the cost value
that is attributed to them, which expresses their preferability for produc-
tion/interpretation. In communication, agents will also observe other agents
map a meaning into a signal and will record these phrases in their own mem-
ory. Phrases observed in other agents are called ezemplars and they will also
be attributed a cost figure based on their value in subsequent communicative
attempts.

The following example describes an idealized situation of an agent induc-
ing compositional language out of communication with other agents. Initially,
the agent is without phrases, but he observes another agent using the string
usifala to express (snake 1) (sang 1). He will then consequently record this
phrase/exemplar as a token (cf. Figure 9.1). Next, he might observe another
agent use the string usifalaozoj to express (snake 1) (sang 1) (chased 1 2).
The agent has no exemplar that can map the string directly, but he does have
a phrase that maps the first seven characters. The agent can then induce
two new exemplars: a token and a complex phrase (Figure 9.2). Consequent
observations may cause the agent to create new exemplars by replacing sub-
phrases of existing exemplars, as well as renaming the variables of exemplars
or even create new tokens.

Obviously, this kind of processing will cause the agents to consider a wide
range of different exemplars to choose from. The cost value attributed to
them, however, introduces a way for the agents to select the most preferable
phrase. An exemplar can be re-enforced by reducing its cost value, if it is used
in the phrase an agent constructs to record a learning observation. Exemplars
with a low cost value will typically be shared by many more agents in the



9.1 COMPUTATIONAL SIMULATIONS OF THE EMERGENCE OF SYNTAX: THE SYSTEMS

317

Token Complex Phrase

[(chased 1 2)] [(snake 1) (sang 1) (chased 1 2)]
0Z0j /
/

[(snake 1) (sang 1)] [(chased 1 2)]
usifala 0z0]

Figure 9.2: 2 Different Types of phrases

society, thereby increasing its observed frequency and thus lowering its cost
value. The cost value of exemplars may also be increased if it is inconsistent
with other observed exemplars. Finally, exemplars that have not been used
for 200 runs are removed from the agent’s mind.

The experiments show that the exemplar approach provides an interesting
model for the emergence of compositional language. In one experiment, the
society developed a kind of reflexive pronoun, others fixed word order and
the marking of inversion. The result was different for most experiments,
but some kind of grammatical system was apparent in all of them. Batali
expresses the convergence of his system in a communicative accuracy figure?:
almost all societies showed a high degree of convergence after a while. After
the agents had learned to map the meaning space using a set of phrases,
the society converged to a negotiated set of phrases that is shared by most
agents.

[Batali 2002] improves over [Batali 1998a] by using a very large meaning
space, which provides a much harder task for the agents. Impressive though
the results are, there are still some problematic issues. In [Batali 1998a,
Batali used a neural network, which provided an implicit bias for the agents
to map the signal to the meaning it tried to express. The symbolic approach
in [Batali 2002| replaces this bias with another approach that may presume

2The communicative accuracy figure is also used to compute the cost of a phrase.
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too much linguistic capacities in the agents. Even though Batali argues that
his approach only presupposes cognitive mechanisms of general utility that
allow them to memorize structured representations of certain situations, the
agents seem to be able to do more than just that. Whereas the substantial
manipulations the agents are allowed to make on the formula sets, can be
considered as being driven by the aforementioned general cognitive mecha-
nisms, it is a bit more problematic to assume the same for phrases, which
map a signal to a meaning and vice versa.

One can indeed imagine that primitive hominids are able to mentally rep-
resent the meaning space in a structured fashion using primitive cognitive
control structures, but the intricate use of phrases that is apparent in Batali’s
system is more problematic from this point-of-view. And it is exactly these
phrases that are the key to the emergence of grammar in the society. To
bootstrap syntactic structure in the agents’ minds, Batali needs to define a
large number of manipulations and extrapolations that the agents are allowed
to perform on phrases. But this presupposes an intermediate mental level
between meaning and language. This would be justifiable if it were limited
to a mere engineering trick that translates meaning into syntactic structures
using very simple principles. But the way this intermediate level is imple-
mented in [Batali 2002], makes it paramount to the emergence of grammar
itself, controlling the way in which structured phrases are built. As it is, the
use of phrases crosses the line from being a general cognitive mechanism to
a more or less implicit innate linguistic capacity.

Also, it is not clear how the exemplar-based approach in [Batali 2002]
incorporates a very essential aspect of natural language: irregularity. The
use of phrases allows the society to converge unto a common grammatical
system that is shared among agents, but it appears that this grammatical
system is too clean cut to constitute an approximation of grammar in natural
language.

The main merit of [Batali 2002] lies in his implementation of a symbolic,
and therefore well interpretable method for modeling the emergence of gram-
mar in a computational context. It should also be noted that the agents do
not share structured knowledge explicitly, as is to some extent the case in
the experiments described in Section 9.1.2. In Batali’s system, the agents
are able to converge to a grammatical system simply on the basis of linear
strings of words and the (unstructured) meaning they represent. It is also
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noteworthy that, despite a very strong bias towards compositionality in the
agents’ mind, the agents converge to a different kind of grammar in each ex-
periment. Batali’s experiments therefore prove his hypothesis that grammar
can emerge in a society of agents that only require cognitive capacities of
general use, even though the latter point is open to debate.

9.1.2 [Iterated Learning

In this section, we overview the basic methods followed by Simon Kirby,
Henry Bright and James Hurford, as they present the emergence of grammar
from roughly the same point of view. We will first look at the iterated
learning model developed by Kirby [Kirby 1999; Kirby 2000; Kirby 2001;
Kirby and Hurford 2001; Kirby 2002a; Kirby 2002b], which he expanded
on with Brighton [Brighton and Kirby 2001a; Brighton and Kirby 2001b;
Brighton 2002]. James Hurford usually provides a more theoretical backbone
for these experiments in publications such as [Hurford 2000].

[Kirby 98-01]

The iterated learning model, originally conceived by Kirby, tries to ex-
pand on the experiments of [Batali 1998a] by introducing a symbolic meaning
space and a generation-based system. Developed over a number of publica-
tions, the iterated learning model has seen several adaptations to make it a
more realistic computational model for the emergence of language, culminat-
ing in an entropy-based approach described in [Brighton and Kirby 2001b].
In this section, we will highlight the main features of the iterated learning
model and see how it is used to model the emergence of compositionality.

Kirby states that the emergence of language is influenced by three com-
plex adaptive systems: (1) learning in which children try to make sense of
the observations around them during ontogeny, (2) cultural evolution which
accounts for the fact that languages change over time and (3) biological evo-
lution which provides humans with the cognitive capacities to process an
intricate system such as language. Kirby hypothesizes that the emergence
of compositionality can mainly be situated by the interaction of (1) and (2),
provided (3) has given us the basic cognitive capacities to develop mental
structural representations.
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This matches Batali’s views closely, but the iterated learning model that
Kirby develops is quite different: it tries to explain the emergence of com-
positionality on the basis of the transmission bottleneck. If language is to be
transmitted by cultural evolution from a parent to his offspring, the language
should be easily learnable and therefore be compositional in nature, rather
than holistic. The iterated learning method therefore provides a generation-
based approach that ensures that language will develop over time in such a
way as to make it easier to learn.

The iterated learning model holds two agents, one of which is a teacher
(adult) and the other the learner (child). Initially, the teacher will present a
randomly chosen meaning to produce signals for. The meaning space consists
of two components: a number of actions and a number of objects/persons,
while the signal takes the form of symbolic characters. For example: the
teacher presents the signal “rkkq’ to the hearer and its related meaning
loves(mary,john). The learner will store a rule that matches the signal to its
meaning:

s / loves(mary,john) — xkkq

As the teacher presents a whole set of utterances to the learner, a trans-
mission bottleneck becomes apparent: the learner may indeed store the sen-
tences and their meaning as a holistic language, but he will not be able to
capture any other meanings than the ones originally provided by the teacher.
The learner is therefore provided with an incremental grammar induction al-
gorithm which generalizes over the rules: the learner may generalize over
a pair of rules in the grammar and yield a generalized version of this rule,
thereby introducing a notion of compositionality and therefore the ability to
process new meaning/signal pairs.

After the learner has applied the induction algorithm on the data provided
by the teacher, the latter dies and the former takes his place. He will then
produce signals for a new set of meanings to a new learner, by finding the
closest match for the meaning/signal pair he is trying to convey and fill in
the blanks with randomly generated strings.

The experiments show that this kind of approach indeed allows the agents
to develop a compositional language. The first generations will feature a
largely holistic language, but sudden changes then allow syntax to emerge
rapidly. On the basis of signals like gjhftejm, representing the meaning ad-
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mires(mary,john) and gjhftejwp (loves(mary,john)), agents indeed develop
rules such as:

s / p(xy) —gi A/y fA/xB/p
A/Mary (h)

A/John (tek)

B/loves (wp)

B/admires (m)

Kirby also introduces a frequency bias into the system, to bootstrap the
use of frequently used, but irregular exceptions and also allows the agents to
produce imperfect sentences, introducing noise into the system. A principle
of least effort is also implemented, which provides the agents with a preference
for shorter strings. Despite these obstacles, compositional language is still
able to emerge in the iterated learning model.

With these experiments, Kirby claims to have proved the fact that syntax
can emerge, simply as a by-product of iterated learning: it is the transmission
bottleneck that requires the language to be compositional in nature and
therefore more easily learnable. But there are some problematic issues to the
iterated learning approach as a computational model for the emergence of
grammar.

A first minor issue is that the iterated learning method seems to involve
batch learning: the grammar induction mechanism seems to process the data
in one sweep (cf. batch learning vs incremental learning in Chapter 2). This
does not constitute a realistic model of human language learning, but it
does not seem impossible to transform the iterated learning method into an
incremental model.

Whereas the agents in the model described in [Batali 2002] were pre-
sented with a signal and a linear meaning, the agents in the iterated learning
model have the ability to mind-read and retrieve the entire structured mental
representation. Clearly, this gives them an advantage in developing a compo-
sitional system that maps these meanings into signals. This is not necessarily
problematic though, if there is no explicit connection between the structure
of the transmitted meaning and the syntactic structures that emerge. Nev-
ertheless, the explicit sharing of structural knowledge constitutes a rather
unrealistic communication model.
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But the main issue lies in the grammar induction method, which pro-
vides a very strong bias towards compositionality. Kirby’s hypothesis that
compositionality emerges to resolve the transmission bottleneck, misses the
point: even though compositional languages are easier to learn than non-
compositional language, its actual origins lies in a very strong grammar in-
duction mechanism. It may be a by-product of complex adaptive systems
such as cultural evolution and learning, which is what Kirby indeed proves,
but its actual origins are the result of an implicit innate linguistic ability to
generalize over grammar rules. The transmission bottleneck therefore helps
explain why compositional language could have emerged, but not how.

[Brighton 01-02]

[Brighton and Kirby 2001a; Brighton and Kirby 2001b] address some of
the problematic issues we identified in the iterated learning model. The
strong grammar induction mechanism is replaced by one based on the Mini-
mum Description Length principle (cf. Chapter 8). [Brighton 2002] describes
the further development of this approach. The meaning space of Kirby’s ex-
periments is replaced with an external environment containing a number of
objects (i.e. communicatively relevant situations) that are internally repre-
sented as points in the agents’ meaning space. Brighton thereby introduces
a distinction between object and meaning which allows a different mapping
between meaning space and objects to be created for each experimental run.
This feature also allows for synonymy and homonymy.

The overall architecture of the iterated learning model remains largely
unaltered: a teacher transmits a meaning and a signal to a learner. The
latter will memorize the observed data and then induce regularities using
a minimum description length (henceforth mdl)-approach, which will allow
him to generate new signals based on his previous observations. If the learner
does not hold grammatical knowledge that allows him to create a signal for
a meaning, he can invent one.

The key difference with the previously described iterated learning model,
lies in the grammar induction approach. Rather than using an approach that
is biased towards compositionality, Brighton induces grammar using infor-
mation theory measures, not unlike those described in [Clark 2001]. Given
a set of observations, the agent will create a Finite State Unification Trans-
ducer (FSUT) which maps symbols to meaning. This will initially express
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a holistic language, with a path for each signal-meaning pair. A general-
ization process can merge states and edges in the transducer that looks for
common elements in the descriptions, introducing compositionality into the
signal /meaning mapping.

Since many different mergings may be possible, there is a large hypothesis
space of FSUTs. A beam search is implemented which considers the trans-
ducers in this hypothesis space: unless a transducer is not consistent with the
observed data, it is evaluated in terms of the amount of encoding it requires
(mdl). The transducer that yields the smallest encoding is then chosen as
the grammar for the agent. The agent becomes the teacher in the next round
and will produce new signals by searching for a signal in the transducer that
is consistent with the meaning that the agent is trying to express. The degree
of compositionality in an agent’s grammar can be measured by looking at
its erpressivity: the more a transducer becomes compositional in nature, the
fewer new inventions the agent will need to express some kind of meaning.

The experiments show that despite a very complex meaning space, a
stable grammar does emerge. Brighton hypothesizes that the poverty of
the stimulus problem puts pressure on the agents to develop languages that
are easy to learn. This is in line with Kirby’s notion of the transmission
bottleneck, which requires the agents to develop compositional languages.

Even though Brighton’s experiments involve a very complex meaning
space, it does not entirely succeed in addressing the problems inherent to
the original iterated learning method. There is still the unresolved issue of
the structured meaning space. Brighton invokes the poverty of the stimulus-
argument to explain how and why compositional language emerges. But
providing the learner with a structured meaning does not exactly establish
a poor stimulus.

Brighton does succeed in finding an alternative to Kirby’s grammar in-
duction method, which was geared to inducing grammatical concepts. But
even though the method itself is different, the actual outcome is not. The
explicit linguistic notions are replaced by a MDL method, which however pro-
vides an almost equally strong bias as a grammar induction method. Chapter
8 already discussed several unsupervised grammar induction methods that
use the minimum description length principle to induce grammar. Not con-
sidering the problematic issues described by [de Marcken 1995], Brighton’s
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grammar induction method introduces a powerful linguistic bias that, even
though hidden behind an information theoretic method, is just as problem-
atic as Kirby'’s.

Brighton acknowledges the fact that his agents can be considered to have
an innate LAD, that allows them to develop structure, but argues that “[t]he
possibility of a design does not imply its occurrence”. Emergence of gram-
mar is the result of the transmission bottleneck, which requires languages to
be easy to learn and therefore compositional in nature. But the same con-
clusion we drew with respect to Kirby’s experiments applies to Brighton’s:
compositionality may have indeed developed over time to make languages
more learnable, but Kirby, as well as Brighton are only able to prove that
this is so, if and only if some innate linguistic ability is present that is able to
generalize over grammar rules, which begs the question: how did this ability
develop out of the cognitive mechanisms of general utility in early hominids?

9.1.3 Language Games

The research conducted at the VUB Al-lab, models the emergence of lan-
guage by interpreting a community of language users as a complex adaptive
system, trying to develop a shared communication system. The research is
subdivided to yield explanations for different aspects of language, including
phonology, lexicon and meaning creation and grammar. Work on modeling
the emergence of grammar is still in progress, but some interesting exper-
iments have been presented nevertheless [Steels 1998b; Steels 1998a; Steels
2000].

The computational model presented in [Steels 1998b] differs from the
previously described systems in that grammar is not seen as a formal set of
rules that govern the structural aspects of utterances, making transmission
between speaker and hearer an easier task, but as a way to map semantic
meanings unto sentences. Steels thus adopts a functional [Dik 1997] and
cognitive [Langacker 1987] point of view by considering grammar as a way
to combine basic lexical items to express more complex meanings, rather
than a way to minimize the entropy of a sentence. To allow for such a view,
the agents are not only required to organize their grammars, but also the
meaning space itself: initially the basic lexical items suffice, but as the need
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for more complex meanings arises, grammatical principles need to be devised
to allow for the expression of these meanings.

[Steels 1998b] describes such an experiment: the agents are provided with
a general cognitive framework that allows them to record situations, recognize
previously recorded situations and re-enact situations. A situation is encoded
as a schema, that holds slots, restrictions on the fillers for those slots and a
number of constraints on the overall schema. The experiment starts off as a
discrimination game?® between two agents: a speaker and a hearer situated
in a context. An object is selected and both speaker and hearer will record
the distinctive features of that object as the meaning to be expressed.

If the speaker has no word to express this meaning, nor any means to
recombine previously recorded words to express it, he can invent a new one.
Whether newly invented, or retrieved from memory, the hearer will observe
a word. If the hearer does not know this word, he will associate it with
each possible distinct feature set he observes, allowing for ambiguity to re-
main (temporarily) unresolved in the lexicon. If some word presented by the
speaker is incompatible with the meaning it triggers in the hearer’s lexicon,
both agents will remember the lack of communicative success it yields.

As the lexicon expands and the agents start to agree on a lexicon, the
need to express more complex meaning may arise. Rather than inventing new
words for each complex meaning, the lexicon will start to propose multiple
word utterances. Grammar arises when the cognitive memory system in the
agents intervenes in the mapping of these multiple word utterances to their
meaning by recording the form of word groups as syntactic schema’s like in
the following example:

Schema-541
SLOTS (syn-slot-51 syn-slot-50)
DESCRIPTION SET
([syn-slot-50 syn-cat-75] [syn-slot-51 syn-cat-76])
CONSTRAINTS ((PRECEDES (>>syn-slot-50)(>> syn-slot-51)))

CATEGORY syn-cat-77
USE 10
SUCCESS 3

3An instance of a language game, the notion of which we borrowed and adapted to
describe communicative attempts between agents in a GRAEL society.
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The slot fillers (syn-slot-*) represent syntactic functions such as subject,
object, ..., while the syn-cat-* elements relate to syntactic categories, like
part-of-speech tags. But not only the form of word groups is recorded, but
also the complex meaning being expressed by them is recorded as a schema:

Schema-542
SLOTS (sem-slot-51 sem-slot-50)
DESCRIPTION SET
([sem-slot-50 sem-cat-75] [sem-slot-51 sem-cat-76])
CONSTRAINTS ((CONJUNCTION (>>sem-slot-50)(>> sem-slot-51)))

CATEGORY sem-cat-77
USE 10
SUCCESS 3

The semantic slot fillers might correspond to such semantic functions like
agent, patient, ..., while the sem-cat-* elements might express semantic
properties of the slot-fillers, such as [-human] and the like. Also, the asso-
ciation between the semantic and the syntactic schema is recorded, to make
the mapping between the two possible:

Schema-271

FUNCTION Schema-542

FORM Schema-541

MAPPING ((syn-slot-51 sem-slot-51)(syn-slot-50 sem-slot-50))
USE 10

SUCCESS 3

Let us return to the language games. When the speaker needs to commu-
nicate a complex meaning to the hearer that requires a group of words, his
cognitive memory will be invoked to find associations for this word group.
The inference rules will look in the schema’s related to this association and
will extrapolate the syntactic and semantic restrictions. If all the slots in the
semantic schema are filled and the restrictions imposed by the description
set are not violated, the syntactic constraints are enforced on the group of
words and communicated to the hearer.

The hearer will search the associations that are compatible with this
word group and consequently extrapolate the semantic schema. The meaning
provided by this semantic schema is consequently compared to the expected
meaning. The game is a success when these two meanings match. When
a language game fails, new schema’s, associations and inference rules can
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be created randomly to accommodate the current observation. This entails
however that early word order is highly likely to turn into fixed word order
later on.

[Steels 1998a] studies on a more general level how complex meanings can
be expressed through a collection of forms (e.g. word order, intonation,...).
The basic idea is the same: grammatical means only serve as a way to com-
bine basic lexical items to express more complex meanings. As forms are
re-used and combined, a hierarchy is created and categories, semantic as well
as syntactic can be distinguished based on the slot fillers in the schema’s.
These categories can however also be used to increase the systematicity of
the grammar itself.

The experiments described in [Steels 1998b; Steels 1998a; Steels 2000]
present an interesting view of the emergence of grammar. By interpreting
syntax as a method to convey complex meanings with basic items, the psy-
cholinguistically relevant link between syntax and semantics is made more
explicit. The experimental results presented by Steels however, do not in-
dicate whether more complex utterances can be built using this approach.
Currently, the grammar seems only able to render a minor structural impact
on the language. Whereas the output of the systems described by Kirby
and Batali could be analyzed in linguistic terms, this holds less true for the
experiments described by Steels: the grammatical concepts can be found in
the agents’ minds, rather than in their productions.

Steels does succeed in showing that grammar can emerge in a society of
agents without the need for an innate LAD, as there is less of a linguistic
bias towards compositionality in Steels’ agents. It is indeed the case that the
agents are equipped, only with a general cognitive capacity to record, retrieve
and re-enact situations. One might object to the use of the schema’s, but
these appear to be general enough to be considered as primitive cognitive
constructs. This capacity can be used to record a complex semantic situation,
a complex syntactic situation and an association between the two. It is
not quite clear if these methods will suffice to create the kind of structural
language in the way Batali and Kirby have, but current results go a long
way.



328

CHAPTER 9 : MODELING THE EMERGENCE OF COMPOSITIONAL LANGUAGE

9.1.4 Other Approaches and Related Research

In this section, we will briefly overview some related research efforts. A more
elaborate description of these systems is usually not warranted, as they either
describe a partial solution to the problem, or are more limited in their overall
scope than the aforementioned models.

The conditions for Syntactic Communication

The group around Martin Nowak has written some influential papers on the
computational modeling of the origins of syntax [Nowak et al. 2001; Plotkin
and Nowak 2000; Komarova et al. 2001; Komarova and Nowak 2001b; Nowak
and Jansen 2000; Komarova and Nowak 2001a]. The most important one of
these [Nowak and Jansen 2000] describes a mathematical model that can
explain why syntactic communication came about. The holistic language of
animals is compared to human (compositional) language, by relating it to
the number of events that need to be referred to. A mathematical model
is proposed that relates the size of the lexicon to the number of events that
agents need to express. A holistic language is at an advantage when there
is a relatively small number of events that need to be expressed, but as the
number of required signals exceeds a threshold value, a grammatical system,
making infinite use of finite means, becomes preferable.

Even though the mathematical model described by Nowak goes a long
way in explaining why syntactic communication emerged, it does not re-
ally describe how it happened. It merely outlines what conditions require a
species with increases cognitive capacities to develop syntactic communica-
tion. The model described in [Nowak and Jansen 2000] is therefore to a large
extent reconcilable with the research of Batali, Kirby, Brighton and Steels.
Particularly the latter’s view that syntax is a way to recombine lexical items
into combinations expressing more complex semantic constructs, seems com-
patible with the conditions [Nowak and Jansen 2000] puts forward. Steels
however takes the extra step to hypothesize how exactly grammar might have
emerged.

Subsequent publications by Nowak [Nowak et al. 2001; Komarova et al.
2001] however take a different stance to Steels, Kirby and Brighton, by as-
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suming a nativist point of view. A Language Acquisition Device is assumed
and different experiments are devised in which a mathematical model is used
to describe the properties of the universal grammar contained therein, as
well as the conditions that need to be met to trigger one particular grammar
on the basis of an innate universal grammar. Since Steels, Kirby and Batali
succeed in modeling the emergence of compositionality with far fewer a priori
assumptions on the agents’ cognitive abilities, the universal grammar point
is rendered moot by applying the principle of Occam’s Razor. None of the
experiments succeed in providing an insight into how early hominids might
have evolved from beings with general cognitive mechanisms, to beings with
an innate universal grammar.

[Plotkin and Nowak 2000] however provides an interesting account of how
concepts of information theory can help explain the evolution of language on
a more general level. The experiments with the aforementioned mathemat-
ical model show that the fitness of a language increases exponentially with
word length. This is related to Shannon’s theorem which states that for a
given noisy channel, there exists a sequence of codes with linearly increas-
ing codeword length such that the probability of transmission error decreases
exponentially. The emergence of syntactic communication may therefore be
seen as a way to decrease the transmission error in a noisy channel. This is an
interesting point of view, as it also describes a condition for a species to move
from holistic to compositional languages: since animals only need to express
a rather limited set of events, they do not need more than a collection of un-
ambiguous holistic signals. Human language users have the cognitive ability
to communicate many events, but given the limited amount of sounds our
vocal system can produce, using a holistic language to communicate these
events, would produce a set of long sounds, often similar to one another. A
noisy channel will then prevent successful communication from taking place,
as similar sounds would become ambiguous and long sounds unintelligible.
But again this publication describes the conditions that cause compositional
language to emerge, rather than modeling how it happened.

Grammatical Evolution: Principles & Parameters

Ted Briscoe describes a series of experiments in [Briscoe 1997; Briscoe 1998;
Briscoe 1999a; Briscoe 1999b] in which he tries to model the evolution of



330

CHAPTER 9 : MODELING THE EMERGENCE OF COMPOSITIONAL LANGUAGE

grammar rather than the origins, but we include his work here to provide
another nativist point-of-view. Briscoe works with a society of agents in an
evolving context. All these agents have been provided with a LAD in which
a UG is specified. The UG itself is implemented as a categorial grammar in-
corporated in an inheritance network describing the set of possible categories.
Roughly speaking, the paths through the network describe the parameters
of the UG. The agents are also equipped with a parser that can be used to
analyze strings and consequently adjust the value of each parameter. The
novelty in Briscoe’s approach lies in the Bayesian mechanism that consid-
ers parameters not as binary dip-switches, but as a continuous scale with a
particular threshold point to trigger the desired parameter setting.

Some experiments were performed in which a society of agents is initial-
ized with varying parameter settings. After each round, the agents are at-
tributed a fitness-value, based on their communicative success. As the fittest
agents reproduce, a dominant language will appear over time. The Baldwin
effect* will make sure that over time agents will be consistently born with
compatible parameter settings to those of the dominant language.

Briscoe’s experiments describe the application of the interesting hypoth-
esis that parameters in a LAD should be considered as a continuous scale
during acquisition and how language and the LAD can be considered as by-
products of co-evolution in a society of agents. Briscoe does not however ex-
plain how (compositional) language might have originated in early hominids,
nor does he intend to. Even though he assumes that the original LAD would
only presuppose minor changes to general cognitive abilities, the previously
described experiments hypothesize that no such adjustment is necessary to
trigger compositional language. Firmly rooted in a nativist point-of-view of
language acquisition, the appreciation of Briscoe’s experiments tends to be
dependent on one’s conviction on this matter.

4[Baldwin 1896] describes how advantageous learned behavior may turn into innate
capacities over time through Darwinist evolution, e.g. sheepdogs who seem to have the
innate ability to gather sheep.
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Grammatical Evolution: Competing Grammars

[Yang 2000] describes an alternative approach to Briscoe’s P&P experiments.
Rather than explicitly implementing a parameter-based approach, Yang con-
siders a hypothesis space of competing grammars in our minds. Language ac-
quisition consequently involves attributing weights to these grammars based
on the linguistic observations. Rather than considering one possible gram-
mar, a speaker can be considered to hold multiple grammars in his mind, all
competing to produce and analyze sentences.

This point-of-view provides a very dynamic perspective on the evolution
of grammars. It is able to explain grammatical changes, without presuppos-
ing actual mental changes and it can account for several natural language
effects, such as dialects, sociolects and idiolects. But again [Yang 2000] does
not give any insight into the origins of compositional language itself. It still
presupposes innate grammatical knowledge, which is justifiable if we consider
a general nativist point-of-view to language acquisition, but does not provide
a realistic model of how language emerged in early hominids. Again, this was
never the intention of the experiments to begin with. We have included this
model here because it is able to explain the evolution of grammatical prin-
ciples, using a very general notion of innate knowledge that is able to model
linguistic properties that the usual P&P approach cannot.

Emergence of Tree-Adjoining Grammar

A more formal approach to modeling the emergence of grammar is described

in [Allexandre and Popescu-Belis 1998a; Allexandre and Popescu-Belis 1998b].

In these experiments agents send and receive signals about the meaning
space, with both signals and meanings being structured by a Tree-Adjoining
grammar. This presupposes a cognitive capacity in the agents to apply struc-
ture to both. The meanings that are expressed are situations in a block-world
domain in which objects (cubes, spheres, ...) can have characteristics (color,
size, ...) and can be positioned in a certain way (in front of, on top of, ...)
as well as compared to one another (size, ...).

A society of agents is initialized in which the agents have no names for
any of the objects in the meaning space. In each round (dialog), two agents
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Figure 9.3: The Emergence of Tree-Adjoining Grammar

are selected and presented with a common situation. The sender uses his
preferred lexicon and word order® to send a signal which the hearer will
consequently try to decode using his lexical and grammatical knowledge. If
the dialog is a success, the parameters that were used, have their fitness
increased.

Initially, the agents are presented with only the objects. A 5 agent society
needs about 500 dialogs to establish unique names for these objects. When
characteristics are introduced, the society needs 1200 dialogs to establish
a unique word order for them, after which the two types of relations are
introduced, which each takes the society about 9000 dialogs to converge on
a common grammatical system.

The experiments show that the agents are indeed able to derive syntactic
structures from structured meanings, as is illustrated in Figure 9.3. But
this should come as no surprise, as there is already structure present in
the meanings presented to the agents. It also seems there is an uncanny
resemblance between the structured meaning and the syntactic structure,
which indicates that the meanings that are presented to the agents may
bias them towards a particular type of structure. This experiment therefore
provides only a basic illustration of how syntax has emerged out of necessity

5if these are not available, they are randomly generated.
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to describe more complex situations, which is in line with [Nowak and Jansen
2000] and [Steels 1998b).

Inexplicit Transmission of Meaning

Even though [Smith 2001] does not explicitly deal with the emergence of syn-
tax itself, it does provide a very interesting solution to the problematic issues
apparent in the works of Batali, Kirby and particularly Allexandre. Smith
criticizes these systems for considering communication as an interaction in
which not only signals are transmitted, but also unambiguous meaning con-
structs. This not only constitutes an unrealistic model of communication,
but also reduces the significance the results of some of these systems, as the
syntactic structure that is introduced mirrors the structural aspects of the
meaning space.

Smith proposes an approach similar to [Steels 1998b], in which agents
identify objects in terms of their discriminative properties in a context. The
hearer agent does not know which object exactly the speaker is talking about,
and will need to discriminate it in the context based on its own perception
of the context. Smith goes one step further than [Steels 1998b] still, by
not providing the agents any feedback on the communicative success of the
language game. The internal lexicon is only developed by considering the
probabilistic properties of the lexical items observed either as a speaker or
as a hearer.

Another interesting novelty Smith introduces is the way in which a speaker
decides which word to use to express a particular meaning. There is a lot
of synonymy in the system, which causes the same meaning to be expressed
by several words. Rather than looking at the most frequently used word to
express a meaning, the speaker will find the word that he most likely would
associate with that particular meaning, therefore concentrating on how the
hearer will perceive the signal, rather than finding the most likely production.

Experiments show that even after many language games, there is still a
lot of synonymy in the agents’ lexicon, even though the agents do converge
on a shared lexicon. [Smith 2001] constitutes a very interesting account of
how distributional properties observed in communications alone can account
for convergence, even without explicit meaning sharing. The large amount
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of synonymy is probably due to the lack of feedback among agents, which
causes a lot of alternatives to co-exist.

It appears that Smith’s communication model might be driving things too
far, effectively establishing an unrealistically strict communicative model: in
real-life communication, participants usually do not need to distinguish the
topic from the context using distinctive features as it is obvious what is
being talked about, especially if the referent is visible to the participants in
the communication®. Early hominids can be for instance considered to point
at things they want to talk to, rather than internalize the distinctive features
first to trigger the best lexical item for it.

And the lack of feedback does not seem a very realistic view of commu-
nication: if the participants indeed notice that they are talking about differ-
ent things, this would become apparent from their behavior, causing them
to either initiate another communicative attempt to get things right, or at
least make a mental note of how that particular signal-meaning mapping has
yielded a failed interaction”. Nevertheless, [Smith 2001] does establish an
interesting framework for a communicative model that presupposes minimal
meaning transmission as well as a model that can consider language, not
necessarily as a means to communicate about directly visible referents, but
as a way to externalize mental recollections. In this view, the referent is not
available to the participants in a conversation and only the utterances them-
selves can provide an ambiguous clue. We will argue in favor of this view
in Chapter 10, as it incorporates the essence of language itself and allows
syntax to develop as an expressive module in its own right.

A Formal Account

One of the first notable attempts to study the dynamics of grammar in an
evolutionary context was presented in [Hashimoto and Tkegami 1996]. The
experiments described in this publication, look at the evolution of grammars
on a very formal level, i.e. by evaluating them in terms of their position in
the Chomsky hierarchy. The experiments involve a society of agents that

6This only holds true if both participants are adults, but does not translate to a context
of child language acquisition.

"This is however not trivial, as it would not be apparent what factor in the communi-
cation causes the failure of the communicative attempt.
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hold a grammar, which they can use to communicate with one another.

In a series of language games, each agent transmits a sentence (top-down
process in the grammar), while the other agents try to parse it (bottom-up
process). The fitness of an agent is computed on three levels: (1) speaking,
how many and what type of sentences the agent is able to produce, (2)
recognizing, how many and how fast an agent is able to recognize a sentence
and (3) how fast on general an agent’s sentences are being interpreted by
other agents.

Grammatical evolution is introduced by allowing the agents to mutate
rules in their grammars, which allows them to produce more sentences, but
which may also affect some of the other fitness measures. The experiments
investigated two types of evolutionary dynamics: (1) module-type evolution
occurs when a rule is introduced that allows other rules in the grammar to
generate almost twice as many sentences. This causes the agents to be able to
recognize many more sentences in a short period of time. (2) loop forming
evolution on the other hand introduces recursion in the grammar, which
allows the grammar to climb up in the Chomsky hierarchy (to context-free
grammars). Hashimoto hypothesizes that the higher the grammar climbs up
in this hierarchy, the better it will perform.

In the experiments however, the grammars do not seem to climb any
higher up the hierarchy, due to the synergetic behavior of agents. Some
agents will form a mini-society in which they develop their own grammars,
effectively allowing them to optimize their fitness functions on a smaller scale.
This does not only weed out unfit agents, but also has the tendency to delete
agents holding higher hierarchy grammars, which are however different from
those of the miniature society.

Even though Hashimoto seems to describe this effect as an undesirable
trait, it actually may constitute a realistic situation. Arguably the weakest
point in the method presented by [Hashimoto and Ikegami 1996, is its ad-
herence to the competence view of grammar. Grammars are deemed to be
good if they can produce many sentences, the only touchstone of which are
the other agents’ grammars. But the initialization of these grammars, as
well as the mutation operations on the rules are largely random in nature. A
sentence is deemed grammatical if it can be interpreted by enough randomly
compiled grammars, regardless of what kind of meaning it actually expresses
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(cf. rote learning). The fact that a substratum evolves that disturbs the
evolution of the grammars is therefore desirable in that they refuse to evolve
into a state that allows them to become ultimately expressive.

Although [Hashimoto and Tkegami 1996] does not describe the emergence
of grammar by itself, its formal account of grammar evolution in a computa-
tional context contrasts and in some ways complements the systems of Kirby,
Batali and Steels. By totally disregarding meaning as a crucial factor in the
development of grammatical principles, [Hashimoto and Ikegami 1996] show
that through simple processes of mutation, a grammatical system by itself
can evolve into a more powerful state, provided it can rely on group dynamics
for self-organization.

Evolutionary vs Group Dynamics

Another interesting point of view is provided by [Zuidema 2000], in which the
emergence of grammar is studied by looking at the interaction between group
dynamics and evolutionary dynamics. Zuidema states that (compositional)
language emerges at the cross-section of a wide range of influential factors
and builds on the experiments described in [Hashimoto and Tkegami 1996] to
prove his point.

The first experiment describes the genetic transmission of grammars with-
out employing some kind of cultural transmission. The experiment shows
that social patterns, even without inter-agent interaction do indeed influence
evolutionary dynamics. Subsequent experiments study the different kinds of
grammars that emerge, depending on social and evolutionary factors, as well
as the circumstances that are required for the agents to come to syntactic
communication.

The research described in [Zuidema 2000] presents an interesting bridging
between the dynamics of evolutionary computing and the formal aspects
of linguistic analysis and therefore provides an alternative to [Hashimoto
and Tkegami 1996]. The experiments are however firmly rooted in the work
of [Hashimoto and Ikegami 1996], who study the emergence of grammar
on a very formal level, so that the analysis provided by Zuidema may not
extrapolate very easily to some of the more realistic computational models
for the emergence of grammar.
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A connectionist Approach

[Tonkes 2001] describes an alternative approach to Kirby’s model, in which
the strong grammar induction method has been replaced with the general
cognitive mechanisms of neural networks. Tonkes adopts the non-nativist
view that this is all that is needed for (compositional) language to emerge.
Grammatical principles emerge, similarly to Kirby’s experiments, as a result
of a transmission bottleneck which requires languages to be easily learnable.

A first experiment shows that languages that match the innate learning
biases of their users, will have more chance to survive over time. This lan-
guage is generated by the encoder of the agents (i.e. the neural network as
a production mechanism) and its success is measured by the decoder of the
agents (i.e. the neural network as an interpreter of sentences).

Subsequent experiments are described that study generalization effects in
language. Languages can be observed to evolve to facilitate generalization in
the decoder simply by evolutionary means, but also on the basis of a specific
set of examples. A final experiment expands Kirby’s iterated learning model
by introducing it into a larger population. Structure can still be observed to
emerge, even though the process is significantly slowed down.

One of the most important factors in the emergence of grammar how-
ever, seemed to be the amount of training data available to the learners (in
other words: the learner’s exposure to language). The society in Tonkes’
experiments needed a critical amount of data to trigger compositionality.
Communicative success could also be increased by providing each learner
with a fixed set of examples, which leads Tonkes to hypothesize that lan-
guage users are also exposed to a perhaps not fixed, but still very similar set
of examples while acquiring language.

The biggest difference between Kirby’s iterated learning model on the one
hand and the neural network approach of both Tonkes and Batali, is the lack
of an explicit transmission bottleneck in the latter. Tonkes however argues
that there is an implicit learning bottleneck in that neural networks have the
tendency to generalize on similarity and that it is therefore much easier for
them to learn a regular language than an irregular language. This is indeed an
important point to make. We have already stipulated that the transmission
bottleneck in Kirby’s experiments describes why compositionality occurs, but
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not how. Batali and Tonkes seem to have found a way to join and situate the
why and the how of compositional language in the cognitive domain, rather
than in the communicative domain.

9.2 Computational Simulations of the emer-
gence of syntax: General Tendencies

We can roughly divide the aforementioned publications into two categories:
the first category describes properties of the emergence of compositional lan-
guage, while the second more broadly tries to cover the acquisition of com-
positional language and/or its evolution over time. We present an overview
of the systems described in this chapter using this dichotomy and a general
subclassification:
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Origins

Negotiated Neural networks Batali 1998a]
Communication | Exemplar-Based Batali 2002]

Iterated General Induction Kirby 1999; Kirby 2000]
Learning Kirby 2001]

Kirby and Hurford 2001]

Information Theory

Brighton and Kirby 2001al
Brighton and Kirby 2001b]

[
[
[
[Kirby 2002a; Kirby 2002b]
[
[
[Brighton 2002

Neural Networks

Tonkes 2001]

Co-Evolution

Language Games

Steels 1998b; Steels 1998al
Steels 2000]
Smith 2001]

Group Competence Grammar | [Hashimoto and ITkegami 1996]
Dynamics Evolutionary Dynamics

Mathematical | Neo-Darwinist Nowak and Jansen 2000]
Model Evolution Nowak et al. 2001]

Information Theory

[
|
[Zuidema 2000]
[
[
[

Plotkin and Nowak 2000]

Acquisition/Evolution

Re-Estimation

LAD Mathematical Komarova and Nowak 2001a]
Model Komarova and Nowak 2001b]
Komarova et al. 2001]
Bayesian Briscoe 1997]
Parameter

Briscoe 1999a]
Briscoe 1999b]

Competing Grammars

Yang 2000]

Co-evolution

Tree-Adjoining
Grammars

Allexandre and Popescu-Belis 1998a]

[
[
[
[
[Briscoe 1998]
[
[
[
[
[Allexandre and Popescu-Belis 1998b]

In the next chapter, we will describe experiments with GRAEL-4, our
own skeleton model for the emergence of grammar, which will draw several
elements from the above sources to propose a system that presupposes a
minimal amount of cognitive mechanisms in the agents, as well as a min-
imalist model of communication with as little knowledge sharing between
the participant as realistically possible. Let us therefore quickly overview
these particular properties in the systems described in this chapter. Table
9.1 outlines the most important properties of all the systems that study the
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actual emergence of grammar. Not included are systems that concentrate on
the conditions for the emergence of grammar [Nowak and Jansen 2000] or
the acquisition/evolution of grammar (cf. supra). There are basically two
variables that determine the degree to which the models are pre-defined: (1)
the cognitive mechanisms that are presupposed in the agents and (2) the
amount of information that is shared in communicative turns.

These aspects are important to keep in mind if we are to propose a possi-
ble model of how compositional language might have originated in early ho-
minids. The cognitive mechanisms should be as general as possible: on one
end of the scale, it is ludicrous to suppose the agents have a fully developed
LAD, as this is the kind of language capacity we are trying to investigate.
On the other end of the scale, it would be equally ludicrous to attribute no
cognitive abilities to the agents at all, as this would a priori render them
unable to produce language.

One of the most important limitations to many of the systems described
in this chapter, including Batali’s and Kirby’s, is the explicit meaning sharing
that is evident in inter-agent communication. Following the 'gavagai’ argu-
ment in [Quine 1960], meaning should not be considered as something that is
readily available to participants in a conversation for the disambiguation of
a signal. And even if we would disregard the 'gavagai’ argument and suggest
that a single object can unambiguously be referred to by pointing at it or
some similar technique, it is not clear how one can visibly distinguish and
unambiguously point at a complex state-of-affairs, as is the case in Kirby’s,
as well as Batali’s systems.

The communication model should focus on the transmission of signals,
while the shared meaning aspect should be played down. Again, if we con-
sider a virtual continuous scale, we would on one end find a system as de-
scribed in [Allexandre and Popescu-Belis 1998a] in which a shared mean-
ing structure is completely available to the communicating agents, while
[Hashimoto and Ikegami 1996] finds itself at the other end of the scale with
a view of grammar that is totally exempt from meaning.

Using these two scales, we outline a very crude 2-dimensional space in
Figure 9.4 in which the models described in this chapter can be situated.
The aforementioned desirable traits our computational model should have,
tries to minimize the “value” of each variable and therefore the more desirable
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(ognitive Mechanism

[Batali 1998a]

[Batali 2002]
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[Brighton 2002]

[Tonkes 2001]
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[Hashimoto and Ikegami 1996]
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Meaning

Figure 9.4: Assumption Scale for computational modes of the emergence of
grammar

systems are located at the bottom left corner. This however does not mean
that these systems automatically constitute good computational models for
the emergence of syntax. We would need a third axis for that, but it is hard
to define a “quality” measure for these models, as it is largely dependent
on (a) what the author’s view on the actual role of syntax is and (b) the
expressivity of the emerged grammar. As to the latter factor, it seems that
the two systems that do find themselves at the bottom left corner in our
graph, do indeed describe emerged grammars with limited expressiveness.
On the other hand, as we move up towards the top of the axes, the grammars
that have emerged seem to become more elaborate and reminiscent of natural
language grammars. The following chapter will describe the basic outline of
a model that breaks this apparent correlation.

This concludes our discussion of some of the most relevant pointers in the
computational modeling of the emergence of grammar. In the next chapter,
we will try to re-define the GRAEL-environment as such a method.



Even in the case of lifeless things that make sounds,
such as the flute or harp, how will anyone know what
tune is being played unless there is a distinction in the
notes?

Corinthians 14:7-8

GRAEL-4 - Modeling the Emergence of
Grammar

In this chapter, we pick the GRAEL-environment up where we left off: by
further reducing the pre-defined elements in the unsupervised grammar in-
duction method of GRAEL-3, we will propose a computational model of the
emergence of grammar, similar to those discussed in Chapter 9. We will first
discuss the features of this system in Section 10.1 and discuss the experi-
ments in Section 10.2, after which we identify some problematic issues in
Section 10.3. We conclude with some summarizing thoughts and pointers to
extended research.

10.1 Architecture of GRAEL-4

In this section, we will propose a computational model that tries to limit
the assumptions made on the agents’ cognitive capacities, as well as on the
content of their communicative transmission. Rather than pre-supposing a
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direct link between semantics and syntax, cf. [Steels 1998b|, we will con-
centrate on how rudimentary principles of syntax emerge from distributional
aspects of communication, rather than the actual content that is being ex-
pressed. In this view, syntax is considered as a more or less autonomous
expressive module in language production and understanding. Despite the
fact that this view seems firmly rooted in Chomskian linguistic theory, we
will take a deliberate non-nativist and performance-oriented stance in this
matter.

10.1.1 The Innateness Discussion

We have already discussed some aspects of the innateness discussion in Chap-
ter 9. There is a clear dichotomy between research efforts concentrating on
modeling the origins of the language acquisition device that can account for
the origins of compositional language [Briscoe 1998; Nowak et al. 2001] and
research that tries to model the origins of compositional language proper
on the basis of general cognitive mechanisms, rather than innate linguistic
capacities [Steels 1998b; Batali 2002]. In Chapter 9, we have dismissed the
former point of view on the basis of Occam’s razor. Simply put: there is
no need to assume specialized language capacities, if general cognitive ones
suffice.

Many publications have already appeared on the innateness-debate and
it is by no means our intention to add to the discussion. In this chapter, we
will largely adopt the view presented in [Schoenemann 1999], as this provides
an interesting falsification of the nativist stance from an evolutionary point-
of-view. Schoenemann outlines a list of basic principles that hold true for
any kind of evolutionary change, but are largely disregarded by the nativist
field. These principles are used to evaluate a list of universal characteristics
that are often attributed to a UG!. Schoenemann suggests that the features
of the UG that can be identified on the basis of cross-linguistic comparison,
“are so general in nature that they do not resemble rules, but instead are
simple descriptions of our semantic conceptualization of reality. [...] there
18 no reason to suppose that syntax is anything other than conventionalized
(i.e. invented) rules that allow languages to accurately communicate human

!Largely compiled from [Pinker and Bloom 1990].
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semantics (the features of which may or may not have innate components)” .

[Schoenemann 1999] therefore sees syntax as the consequence of a need
to communicate about an increasingly complex meaning space, which agrees
with the nativist, as well as the non-nativist models described in Chapter
9. But whereas the nativist field assumes that this need somehow translated
into an innate set of syntactic guidelines over time, the non-nativists are
able to show that even without a genetic predisposition, syntactic principles
emerge, but rather as a consequence of human semantic complexity, than
constituting its actual cause.

10.1.2 The Naming Insight

A very important point with respect to the emergence of grammar is made by
[Wray 1998; Wray 2000]. The classical view of early hominids’ protolanguages
is that of a language that can name objects, but is unable to express complex
relationships between them (e.g. [Bickerton 1990]). [Wray 1998; Wray 2000)]
however suggests that protolanguage was holistic in nature and consisted
of a large number of arbitrary, agrammatical signals expressing an entire
state-of-affair.

This entails that utterances would need to be general enough, as very
specific holistic messages would not be functional in everyday language. But
this also means that these utterances would need to be specified by indicative
gestures, such as eye-gaze or pointing, to disambiguate the general signal
and as a consequence, the protolanguage could not be used in declarative
statements to communicate about situations of which the referent was not
immediately available. According to [Wray 1998] the holistic nature of the
protolanguage explains a cultural and technological stagnation between 1.4
million and 100,000 years BC [Mithen 1996]:

“The holistic protolanguage [...] would stifle its own further
evolution [...J: specific naming is unsustainable; without nam-
ing, declaratives have almost no purpose; without declaratives,
information exchange is largely impeded; this minimizes tech-
nological and cultural innovation, rendering naming unimpor-
tant.”
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The emergence of grammar, according to [Wray 2000], occurred simulta-
neously to the naming insight, so that there is no need to consider a gradual
development of grammar:

“[...] nmaming is unleashed into a powerful cognitive forum
that can immediately exploit referentiality by creating arqu-
ment structure out of the juxtaposition of a word and a holistic
utterance, and by segmenting holistic utterances to “identify’
new words and structures post hoc.”

[Wray 2000] further corroborates her claim by pointing at ’living fossils’
of holistic phrases in present-day natural language, but also by referring to
first-language acquisition. It is suggested that children also produce holistic
utterances by imitation at the early stages of language acquisition. As they
obtain the “naming insight”, they become able to segment these strings into
smaller meaning units that can be juxtaposed in grammatical relationships.
It is however not entirely clear from [Wray 2000] what kind of development
triggers the naming insight and what method is used to segment holistic
utterances into parts.

This view has been adopted by Batali, as well as Kirby in their experi-
ments: early signals for meanings are completely holistic in nature. Gram-
mar emerges as some generalization method finds regularities in the holistic
strings, which leads to the naming insight, as well as grammar?®. This is also
the reason why the agents in these systems need to present the meaning of
the signal alongside the signal itself. It would otherwise be impossible to
extract generalizations from the signals.

But even though this is a valid method if we are to model the emergence
of compositional language in the way that is suggested by [Wray 1998; Wray
2000], we first need to question the degree to which we need to entertain
this proposal. Considering language as a means to converse about visible
referents, in the way that Kirby and Batali suggest, reduces language to a
collection of speech acts, not as a general way to externalize mental state-
of-affairs. Language indeed enables us to converse about past recollections

2This means that the two operations are considered to occur simultaneously, which
contrasts the widely adopted view that grammar requires an a priori naming capacity.
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in such a way that the referent does not need to be available at the time of
speaking.

Furthermore, the meaning structures that both Batali and Kirby put for-
ward are often so intricate, that simple methods such as eye-gazing or point-
ing would not be able to provide an unambiguous referent®. So if we adopt
the view that compositional language evolved from a holistic protolanguage,
we are not only diminishing the functionality of language from a pragmatic
point-of-view, but we are also making a paradoxical assumption in that we do
consider the ability of these hominids to mentally process structured items,
but that this ability somehow does not extend to the linguistic domain until
some kind of naming insight occurs.

[Wray 2000] answers this question by saying that the hominids do not
feel the need to apply this kind of structure on their language, since their
holistic utterances will do. But as the need for linguistic creativity becomes
apparent, they somehow gain naming insight, which also allows them to seg-
ment the holistic utterances into re-usable parts. But this begs the question:
how does this segmentation take place? Since [Wray 2000] states that the
utterances of the holistic protolanguage are by definition not dividable into
discernible parts, the segmentation and therefore the mapping between name
and referent should be arbitrary.

But unless there are discernible parts in holistic utterances, there would
be no reason to assume a correlation between the segmentation properties
the naming insight incurs and the emergence of grammar. Linguistic gen-
eralization in for instance Kirby’s iterated learning model, occurs when two
rules can be generalized into one rule on the basis of the observed data. In
the initial phase, this assumes that a holistic utterance is composed in such a
way that there are in fact distinguishable components, which can be turned
into names and consequently into grammatically re-usable items. To gen-
eralize over linguistic observations, there should indeed be enough evidence
to turn part of a holistic utterance into a name. But this is supposed to be
impossible, following the definition of holistic utterance as non-compositional
tokens.

Furthermore, this does not make sense from an evolutionary point of view:
if the original holistic structures are such that in a later stage of evolution

3This is already problematic for simple objects, as [Quine 1960] suggests.
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they can be segmented to yield re-usable names, they should be quite lengthy.
But [Wray 2000] agrees that the set of holistic utterances is necessarily limited
and unspecific, so the hominids should suffice with rather short utterances.
So why would the hominids invent lengthy holistic utterances, unless the
length itself would indicate some compositional meaning, which necessarily
presupposes an a priori naming insight?

And why would the emergence of grammar extract names from holistic
utterances, if these names would need to be replenished with a new batch
of arbitrarily chosen names anyway? It therefore seems reasonable to as-
sume that the naming insight was available to hominids before they could
consider re-usability mechanisms in grammatical constructs. But to assume
that names were extracted from holistic utterances without considering a
fully operational naming insight seems problematic, especially if we are to
view language as a way to internalize the stimulus (word) - response (mean-
ing) sequence*. We therefore adopt the classic view that agents have acquired
the naming insight and therefore to a large extent compositionality in its own
right. The GRAEL-4 experiments can therefore not be considered as a sim-
ulation of the emergence of compositional language, but as a simulation of
how grammatical restrictions imposed on the juxtaposition of names, turns
compositionality into a means of expression by itself.

10.1.3 GRAEL-4 Features

We will take a non-nativist point-of-view when considering a computational
model for the emergence of language. The agents in the GRAEL-4 society will
not be provided with explicit innate linguistic abilities, but with cognitive
mechanisms that can be supposed to have been available to early hominids.
[Batali 1998a| for instance suggested the agents’ mind consists of a neural
network that generalizes over the observed data. [Kirby 2001] did not sim-
ulate a “brain” in the agents, but did presuppose the ability to generalize
over linguistic observations, while [Steels 1998b] provided his agents with the
cognitive ability for planning and structuring.

Arguably the most controversial assumption relates to the previously dis-

4Comprehension: ~ Stimulus=Word, Response=Meaning. Production:  Stimu-
lus=Meaning, Response=Word
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cussed naming insight. Whereas Kirby and Batali start off with agents that
do not have fixed names for objects, we will assume a basic lexicon in the
agents’ minds, containing concepts and names for those concepts. We do re-
alize that this takes a totally different stance and this may also constitute an
unrealistic model for the emergence of grammar to many researchers working
in the field. But we have argued in the previous sections that we believe the
existence of names to be a necessary prior condition to the re-usability of to-
kens and therefore grammar itself. The paradigmatic stance we take is that
either one assumes that language starts out holistic so that stimulus (mean-
ing/word) and response (word/meaning) always need to be in the vicinity,
which renders the need for compositional language unnecessary, or one as-
sumes that the agents can use basic, meaningful tokens to refer to things but
not yet in a compositional manner such that compositionality itself carries
meaning. Our stance is inspired by the acquisition of language in children,
who typically are able to acquire an extensive lexicon, before they start pro-
ducing multiple word utterances. As our outline of the GRAEL-4 system will
show, we do however consider the co-existence of names and small holistic
phrases, in accordance with [Wray 1998|.

Cognitive Capacities

The agents in GRAEL-4 are assumed to have acquired the following abilities:

e segmentation: the agents are able to distinguish objects and their
basic properties from the context and memorize them as separate en-
tities

e labeling: the agents are able to provide words for these entities and
memorize the mapping of meaning and word

e agents keep track of previous linguistic observations in their memory,
as well as the frequency with which they’ve been observed to co-occur

The cognitive abilities are therefore limited to memorizing linguistic ob-
servations, their frequency and the meaning attached to the basic lexical
items. Table 10.1 shows the lexical items the agents are able to express. We
will discuss the importance of the subcategorisation property [+ animate]
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Objects Attributes
[+animate] [-animate] sad  happy
agentO | agentl | house | fire hungry stinky
agent2 | agent3 | water | tree Relationships
agentd | agentb | stick | rock and not
agent6 | agent7 | seed | fruit runto  chase
agent8 | agent9 | leaf | sand throw  love
dog duck | flower | bed fight hit
pig bear coat egg eat kick
ape horse nut lake know fear
fish snake | river | bone see offer
lion tiger | society | food catch talk

Table 10.1: Agents’ Lexical Items

in the next section. The right-hand side of Table 10.1 describes the attributes
for and relationships between objects.

Similar to Kirby, we do not consider fitness functions. Even though lan-
guage does provide a beneficial condition for the development of a species as
a whole, we do not consider enhanced language abilities as a selective advan-
tage for procreation, despite what [Rostand 1897] suggests. Our society will
be generation-based, but this only means that agents will die and be born in
the society: no knowledge will be passed on genetically from one generation
to the next.

Contrary to the models of Kirby and Batali, the agents will not have the
ability to mind-read, i.e. no explicit meaning will be presented to the agents:
the hearer will need to distinguish the meaning of the utterance, purely on
the basis of the words® themselves and the word order.

5 As names that express mental concepts, these can already be considered as meaningful
units in themselves.
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10.1.4 Communicating GRAEL-4 agents

Let us now look at the underlying communication model for GRAEL-4. There
are 10 agents in the society, who live in a closed world, surrounded by the
objects outlined in the Table 10.1 (left). We assume our conversations to
be a form of gossip, as suggested by [Dunbar 1996]® and we therefore sug-
gest that the reference for the utterances are not immediately available. In
other words: what the agents convey are previously encountered, internal-
ized situations, which are not visible to the participants of the conversation.
We acknowledge that child language acquisition, and in all likelihood the
emergence of language in early hominids, is rooted in the identification and
naming of visible referents. But whereas previous methods trivialized the
problematic aspect of the shared meaning in communication, we would like
to oppose this in the GRAEL-4 experiment, to show that grammar can emerge
in a society of agents without mind-reading skills.

Two agents are selected in the society to converse. The first agent rec-
ollects a situation in the form of a 2-dimensional matrix (between 2x2 and
4x4), consisting of cells with objects. The topic of the recollection is another
agent (stated in the top-left corner):

= Agent0

& &
VIIIROMING
® | & | /A

6Even though Dunbar may not agree with the time frame of the development of gram-
mar we propose.

= Agent6

= Agent7

Animate Object C (“pig”)

Animate Object J (“tiger”)

Inanimate Object 6 (“rock”)
Inanimate Object 16 (“lake”)
Inanimate Object 5 (“stick”)

BERRSGHOOS

End-state
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Diamonds represent animate objects, circles inanimate objects. We repre-
sent agents by diamonds that hold a digit, while animals have an alphabetic
character. This matrix represents a state-of-affair in which three agents were
present, as well as a tiger, a pig and there was also a stick and a rock, even
though none of these may be particularly relevant to the situation itself.
Next, we connect the cells with arcs, expressing specific relationships be-
tween the objects (cf. Table 10.1). Arcs leaving a [- animate] object are
mere jump arcs, as we consider the inanimate objects unable to initiate a re-
lationship. This restriction expresses the semantic distinction between agent
and patient. Arcs inside a cell express attributes’, while pop-arcs leading to
the end-state (triangle) do not carry a label and are uni-directional:

:

NP NP
@/ \(CQ/ N

The matrix now expresses a scene in which the topic of the conversation,
agent6 in our example, was present. To prepare for the first utterance about
this scene, the agent plots a path through the matrix, starting from the topic
cell to the end-state cell:

"Trivially, these are not available for [- animate] objects.
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This path currently expresses a seemingly serial sequence of events:

e and(agent6,agent7)
e chase(agent7,tiger)

e eat(tiger,pig)

which we could interpret as meaning “agent6 and agent7 chased a tiger
that was eating a pig’, even though this particular structure is not apparent
as yet®.

An important point we would like to make is that the arcs in the above
matrices, are not only able to describe relationships between objects, but also
relationships between objects and the state-of-affairs surrounding the object.
The and(*,*) property might for instance indicate that agent6 was simply in
the neighborhood, while agent7 chased a tiger that was eating a pig. The
serial sequence of events is therefore still ambiguous. Since there is no need

8Note that the words themselves do not guide the actual meaning of the sentence to
be expressed. They are just used to facilitate interpretation. In other words: a tiger is
just as likely to chase a fire as it is to chase a pig. We impose no meaning restrictions
on the combination of words, as this could be considered to unfairly guide the emergence
process.
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to assume this kind of mental ambiguity, we next describe a way to apply an
unambiguous structure to the events.

First we list the objects in the path in a serial manner, ordered by their
occurrence in the path from topic to end-state and describe the basic rela-
tionships between them:

chased

/\/\/\

agent6 agent7 tiger

This structure can express the serial sequence of events, but not embedded
meaning. We then superimpose a structure on these relationships which is
able to express embedded meanings:

e
N
NS

ag

/&\/

\
S

tiger

\

We then impose some formal constraints on this structure: (1) no item
may be directly headed by two different nodes and (2) each node must head
two leaf nodes, except for terminal nodes and empty nodes. The latter are
just place-fillers and passers-through for superordinate attachment and can
be deleted if they are not heading any nodes. Constraint (1) is checked in

[¢]
&
N

agen
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a bottom-up fashion, constraint (2) in a top-down fashion. We have num-
bered the branches in the structure to illustrate how the application of the
constraints might work:

VAN
11 12
® ©
VRN /TN
7 8 9 10
/ NS AN
and chased eat
1 7N 2 3 7N 4 5 7N 6
s N S NS AN
agent6 agent7 tiger pig

First we check constraint (1) and find two sets of conflicting branches on
the lowest level: (2 3) (4 5). We randomly pick a set to resolve, in this case
set (2 3), and delete one of the branches:

RN
11 12
@ ©
VRN /TN
7 8 10
/ NS AN
and chased eat
VRN AN VRN
1 2 4 5 6
s AN NS AN
agent6 agent7 tiger pig

We then check constraint (2) and find that the node with label “chased”
does not head two leaf nodes. Following a randomly chosen path, the label
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settles in an empty node that does meet the requirements set by constraint

(2):
/ ®\
11 12 N
/
chased @
7 7N 8 9 7’ \10
/ N~ N
and @ eat
VRN AN ) RN ;
/ AN NS AN
agent6 agent7 tiger pPig

Constraint (1) is applied again and this time, we delete branch (4):

VRN
11 12\
/
chased @
7N\ /TN
7 8 9 10
/ N N
and @ eat
VRN RN
1 2 5 6
e AN / AN
agent6 agent7 tiger pig

The empty node labeled E does not head any other nodes and is therefore
deleted:
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VAN
11 12
7 AN
chased @
7 - A
10
/ AN
and eat
VRN VRN
1 2 5 6
e AN e AN
agent6 agent7 tiger pig

Constraint (2) is violated by the chased-node, which is consequently
moved to a superordinate empty node:

chased
VRN
11 12
® @ ©
7 4 b 10
/ AN
and eat
VRN VRN
1 2 5 6
e AN e AN
agent6 agent7 tiger pig

We now arrive at a situation where neither constraint is violated: the
message is considered to be fully structured now. The meaningless empty
nodes now act as passers-through by collapsing the structure, yielding the
following representation:



358 CHAPTER 10 : GRAEL-4 - MODELING THE EMERGENCE OF GRAMMAR

I AN

agent6 agent7 tiger pig

This structure represents the situation in which agent6 and agent7 to-
gether chased a tiger that had eaten a pig. But given the randomness of the
entire approach, many different embeddings are possible. Using the same
sequence of events, we are able to describe different situations and meanings,
for example:

and eat
agent6 chased K pig
agent7 eat and tiger
N
tiger pig agentb agent7
agent6 was there, as agent7 chased | agent6 and agent7 chasing a tiger,
a tiger that ate a pig caused a pig to be eaten

An important note to make at this point is that in no way are we consid-
ering syntactic processing, despite what the tree-structures and constraints
might suggest. What we just described should therefore be considered as a
mere engineering trick to apply (embedded) structure to a scene and should
therefore not be considered as a realistic mental process. We assume that
the agents have the ability to induce a structured mental representation of a
scene, simply by ordering them according to salience, not by applying random
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operations and constraints to mentalized structures. The process just out-
lined, is therefore only a way to construct an arbitrary structured situation,
stored by the agents’ cognition.

Linguistic Structure

Given the ability to recollect situations in a structured manner, we will now
describe the way the agents are able to communicate about these. On the
basis of the mental structure of the situation, the speaker agent will decide
how he will create his utterance: he is in principle able to use a name for each
node in the semantic structure (cf. Figure 10.1). He can in principle express
the atomic objects and relations at the leaf nodes of the semantic structure
(agent6,tiger,eat,...) using compositional phrases, but he can also use a holis-
tic phrase, which expresses a node higher up in the semantic structure. In
other words: he can express a complete situation with one name/token, but
there are some restrictions.

[Wray 2000] suggests that holistic utterances in protolanguage were used
to express complex semantic meanings. A token such as tebima can for
instance be used to express a meaning “give that to her”. To simulate these
remnants of a prior holistic language, we randomly define 50 holistic tokens at
the onset of the society. These can be used to express general situations like
ate([+animate/,[-animate]) or happy([+animate]) or even chased(relation, *)
and are defined in terms of the relations and attributes from Table 10.1. The
names of these tokens are considered to be arbitrarily chosen, but for clarity
of reference, we construct these names as follows:

Node Name
eatanimateany
eat
[+animate] *

The agents are considered to have picked up the meaning of these holistic
tokens, as well as the mapping between the atomic mental concepts and
their names during a lexical acquisition phase that is not simulated in these
experiments.
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chased
and eat
/\

agent6 agent7 tiger pig
Figure 10.1: Structured Mental Representation of a Scene

So given a semantic structure like the one illustrated in Figure 10.1, an
agent can express the leaf nodes, or one of the nodes higher up in the hierar-
chy, provided there is a holistic token compatible with it. The choice between
leaf nodes or their superordinate nodes is random, but we place an important
restriction on the use of holistic tokens based on its information content. We
will describe below how the agents keep track of all productions observed in
memory. Using information content metrics extracted from this data, the
agents are able to apply a word order for these sentences. The restriction on
the use of holistic phrases is also based on these values: a holistic token can
only be used if its information content® is not significantly lower than the
sum of the information content values of the names of its atomic concepts'®.

The idea behind this is that it is only useful to employ a holistic token,
if it does not overly generalize the situation and miss out on salient informa-
tion. So if there is important information lost by using a holistic token, a
compositional phrase of the atomic names is preferred. The basic intuition
behind this is that if for instance agent7 in the meaning structure in Fig-
ure 10.1 is very important to the state-of-affairs being expressed, a holistic
utterance should not be preferred, as its general nature would cause agent7
as informative entity to be disregarded.

There are two conflicting forces at work: the probability of holistic tokens
will benefit from its general nature: a holistic token might therefore be more
widely applicable. But this means its information content decreases the more
frequently it is being used. The atomic concepts on the other hand can be

9 As there is no sign of word order in the semantic structure yet, we measure its infor-
mation content using a unigram model on the observed utterances.

10Tf the information content value of the holistic token is less than 90% of the value of
the atomic token, the former’s value is deemed to be significantly lower.
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used less generally, but in a wider range of combinations, as there are no
restrictions on its usage. Both atomic names and holistic names are driven
by different forces that control their probability. The experiments will show
which is the stronger.

Whether a holistic token is used to express a node in a semantic structure
or a compositional one, does not have any effect on the rest of the production.
The other nodes in the structure are expressed and conjoined with the token
in the same way and holistic tokens are therefore treated as atomic objects
from a syntactic point-of-view.

When there is more than one name to be expressed, the agent needs to
decide on a way to juxtapose the names. In the experiments described in this
chapter, we will concentrate on word order as the basic syntactic principle,
but future research will include alternate methods for applying syntactic
structure, such as inflections, prepositions, case, ... . The initial word order
in which the agents communicate the events is as good as random. We define
six different possible ways to order subject (S), verb (V) and object (O) (if
it is expressed)'!: SVO, SOV, VSO, VOS, OSV or OVS.

Initially, the agents have no preference at all for either order. In fact,
different relationships can be expressed using different word orderings. Let
us suppose the agent wants to express the fully compositional meaning of the
mental structure in Figure 10.1. He therefore needs to express three different
constructs, which each can be produced using a different ordering:

e chased(and,eat): SOV
e and(agent6,agent7): VSO

e cat(tiger,pig): SVO

So that finally the utterance itself can be produced:

1 These can be considered as placeholders. The verb is the relation/attribute being
expressed, while the (syntactic) subject is the agent of the relation and its object the
patient.
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O
S O Vv
|
S v O chased

\Y% S 0O | | |

| | | tiger eat i
and agent6 agent7 18er P18

Thus, the utterance the agent uses to express the complex meaning is:
“And agent6 agent7 tiger eat pig chased.”

This method does not establish totally free word-order, as it groups men-
talized groupings in the utterance, which seems an acceptable constraint on
utterances. But for the other agent, it is impossible, at least initially, to tell
what exactly is meant, as there are many different interpretations to this
sentence and the referent, i.e. the actual unambiguous meaning being ex-
pressed, is not visible. He recognizes the basic objects and relations, but he
can not unambiguously interpret this sentence.

The speaker will store the names he uttered in his lexicon. But if we are
to suppose a basic cognition in the agent, it does not make sense to store
explicit linguistic information in memory, in the form of rewrite rules and
the like, as this presupposes a level of linguistic abstraction that the agents
should not be assumed to have at this point. We do however consider the
agents to have the ability to store frequencies of linguistic events. Given the
string he produced, the agent records bigram frequencies as follows:

AN N 0 1S 18, 0N
and agent6 agent7 tige/r eat ;)1g chased

So bigrams that are not directly headed by the same node, are not in-
cluded in the count. Using this information, the speaker is able to reconstruct
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Speaker Hearer
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and + + chased + +
agent6 agent? tiger + agent6 T eat +
SN N /} d
eat pig agent7 tiger pig  chase

Figure 10.2: Agreement between speaker and hearer

the structure for his own sentence, using the unsupervised grammar induction
technique described in Chapter 8.

In subsequent productions, the agent can use the bigram-probabilities
recorded in memory to decide on a preferred ordering. For each concept
to be expressed, the agent will consider the six aforementioned possibilities.
A relation between an agent and a patient is expressed by at most three
words. The triplet of words with the highest degree of lexical attraction on
the bigram-level (cf. Chapter 8), will be the one the agent produces.

Let us now turn to the hearer agent. He observes this sentence, but
has no access to its meaning. He therefore records the frequency of the
bigrams, so that he can use these frequencies later to apply structure to new
utterances. Without any prior knowledge, the hearer agent is still able to
construct a structure for this sentence, albeit in a totally random fashion.
We can then compare the structure of the hearer and the speaker to measure
the degree to which they agree (cf. Figure 10.2). This information is however
solely used as a way to measure how well the agents are agreeing, and is in no
way used to guide communication, or provide some kind of fitness measure
to the agents.

Upon hearing this utterance, the hearer agent will have some vague notion
of what exactly the speaker is talking about. Naturally curious about the
situation, the hearer agent will pick one of the objects from the utterance
and repeat it to the speaker. The latter will then turn back to the matrix
defined on page 351, find the object the hearer wants to know more about
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and track a path to the end-state, for which he consequently will construct
an utterance. The hearer will observe this utterance, again pick one of the
objects he wants to know more about and so on and so forth.

In each language game, the hearer will ask 50 such questions, so that in
the end, plenty of information about this scene has been conveyed. Even
though the entire process seems long-winded the actual language game from
a computational point-of-view is over in a matter of seconds.

This section introduced the basic cognition and conversational model that
the agents employ in GRAEL-4. Let us now turn to the experiments that try
to investigate the emergence of grammar using this system.

10.2 Experiments with GRAEL-4

In this section, we describe the general experimental setup and the course of
the experiments themselves. As there are virtually no parameters to tweak,
we can limit this discussion to the description of only one experiment, which
was conducted three times, to compensate for the large degree of randomness
involved.

10.2.1 Setup

A 10-agent GRAEL-4 society was initialized, in which the agents held no prior
knowledge in their memory, apart from a lexicon, which we consider to have
been acquired during the agent’s early stages of language acquisition. Two
agents are selected from the society, one speaker and one hearer and they
play a language game as outlined above: the speaker recollects a scene and
extracts a particular state-of-affairs from it. Then he presents a sentence
expressing this scene which the hearer observes. The hearer picks one of
the objects in the sentence, for which the speaker will present a new sentence
based on his recollection of the scene. After the hearer has asked 50 questions,
the language game is finished. The hearer will turn the speaker’s last sentence
into a semantic structure, that forms the basis of his own situation matrix.

Then, two agents are again chosen in the society to play a language
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game with only one restriction: each agent will assume the role of speaker
and hearer only once per language game run. When all agents have been
a speaker and a hearer, the language game run is finished and the process
starts anew.

To test the agreement of the agents, we record the F-score, based on the
unlabeled precision and recall measures for the tree-structures as displayed
in Figure 10.2. Since this does not necessarily tell us anything about how the
agents converge on a grammatical system to express meaning, we also define
a set of 100 structured meanings like the one in Figure 10.1 and have the
agents create sentences for these meanings (without allowing them to record
any distributional properties of their utterances). The output of the agents
at this point provides the basis for a more qualitative appreciation of the
degree of convergence of the grammatical systems that the agents employ.

The GRAEL-4 society is generation-based, but does not employ fitness
functions, or the genetic transmission of information. This means that there
is no need to consider a difference between splicing or crossover. At some
points in the society new agents will be introduced, while other agents die
at random intervals (lasting at least 200 runs, but without an upper-bound
limit on their life-span). This allows for a dynamic population size, which is
only restricted by imposing a lower-bound society size of 5 agents.

10.2.2 Experiments: Quantitative view

Figure 10.3 shows the average F-score in each language game run. For at
least 1000 runs, nothing seems to be happening in terms of the F-score. The
large degree of randomness does not seem to be replaced with any kind of
systematicity. In fact, there even seems to be a slight decline. After 1000
runs, the situation slowly changes and an almost linear, but very subtle
increase is clearly noticeable for at least 3000 runs. Between 3500 and 4000
runs, the linear increase evens out and F-scores start to settle down. Figure
10.3 bears some resemblance to the one we encountered in the unsupervised
grammar induction experiment on the wsJ-corpus in Chapter (p. 298). The
two other simultaneously conducted GRAEL-4 experiments each exhibited a
plot that was more or less similar to the one in Figure 10.3.

Starting off with an average F-score of 35% and ending up with an F-
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Figure 10.3: GRAEL-4 - Average F-score

score of 45% does not seem a great increase, but it is evident that some
kind of change has occurred. It is indeed worth noting that the F-score is
just an indicative score on tree-structures generated by a method that only
to a limited extent is able to create fully-fledged syntactic structures. We
have already pointed out in Chapter 8, that underwhelming F-scores do not
necessarily mean that bad grammars have emerged/been induced.

The plot in Figure 10.3 indeed shows that some improvement is noticeable
in the extent to which the agents agree in building syntactic structures for
utterances. To really get a grasp of what exactly is happening in the GRAEL-
4-society we need to conduct a more production-oriented data-analysis.

To check whether the agents are indeed developing some general notions
on word order, we halt the society after every 1000 runs and extract the
agents'?>. We then place (the same set of) 100 pre-defined meanings in their
mind, for which they need to render sentences. These 100 meaning constructs
can be found in Appendix I. The degree to which the sentences that are
produced are similar among the agents, expresses their convergence on a

12Given the dynamic population size, we sometimes needed to wait for at least 10 agents
to become available. If there were more than 10 agents in the society, we randomly selected
10 agents.
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Figure 10.4: Convergence Diagram: Initial Situation

word order.

To illustrate this convergence, we use the diagram in Figure 10.4. This
diagram displays the 100 meanings, starting off with the four attributes,
followed by 36 simple relationships and followed by 60 complex meanings (cf.
Appendix I). Figure 10.4 displays the situation at the start of the GRAEL-4
society. The four attributes (meanings expressed by at most two tokens) are
trivially found by at least 1/2 of the population. The word order for some
of the simple relations is also shared by several agents in some situations,
either by a very lucky ordering of the words, or in the event of several agents
choosing the same holistic utterance to express a complex meaning, reducing
the randomness effect of word ordering.

Figure 10.3 showed that after 1000 language game runs, F-scores have
not increased significantly throughout the society. This does not mean that
nothing is being learned however as the convergence diagram on the left in
Figure 10.5 illustrates: the word order for almost all attributes is shared by
most all agents. At this point, the newborn agents’ holistic languages are
still the limiting factors for the observed convergence “scores”. The simple
relationships are also increasingly expressed with the same word order, even
though the choice still seems largely random. The word order for meaning
(17), which was shared by up to 5 agents in the initial stage (Figure 10.4)
has now become randomized again, indicating that the initial convergence
was a random effect, one that could not be maintained in the society.
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Figure 10.5: Convergence Diagram: 1000 Runs - 2000 Runs

There is however a difference noticeable between the meanings that ex-
press a relation between two [+animate] objects (meanings 4-21) and mean-
ings that express a relationship with a [-animate] patient (meanings 22-39).
On the whole, the word order seems less random for these meanings. It is
trivial that agents have a much easier time, distinguishing word order be-
tween two classes of objects, whereas it is not transparent from the word
order alone which object is the agent and which is the patient.

Figure 10.3 showed that after about 1000 runs, the F-scores start to in-
crease linearly. Looking at the convergence diagram after 2000 runs (Figure
10.5, right-hand side), we notice that there does indeed seem to be a notice-
able tendency for convergence. Almost all the simple relationships involving
a [-animate] object are starting to be expressed by a majority of the agents
using the same word order. The agents are also picking up on the other
simple relationships.

The complex relationships are also catching up, even though there is still
a very large degree of randomness noticeable. Note for instance how the
convergence on meaning (82) disappears and convergence on meaning (83)
arises. This is most likely due to the lower frequency of observations made
where a relationship is the agent or patient of another relationship itself,
so that the word order for these types of meanings is less easily learned.
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Figure 10.6: Convergence Diagram: 3000 Runs - 4000 Runs

Notice however the convergence on the first six complex meanings (40-45):
these are simple meanings, in which one of the arguments is an attribute.
The convergence on these meanings can be explained by the high degree of
convergence noticeable on the single attribute meanings (1-4) itself.

The convergence diagram on the left in Figure 10.6 shows that this pos-
itive trend of convergence, also noticeable in Figure 10.3, continues. All
simple meanings now display at least some limited degree of convergence,
with many word orders shared by more than half of the population. It is
mainly the young agents in the society that account for the randomness that
is still present in the word ordering mechanism of the society. As convergence
continues however, the newborn agents will be met with more consistent word
order patterns, which helps them to pick up general tendencies more quickly.
This is in line with Kirby’s notion of the transmission bottleneck.

The right-hand side diagram in Figure 10.6 corroborates this claim. The
situation has changed considerably, compared to 1000 games earlier: many
complex meanings are now expressed in the same word order by more than
half of the population. There is less disagreement on how to order sentences
in which relations themselves are used as agent or patient, so that these
patterns can be picked up faster by the newborn agents.
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At the end of the experiment (Right-hand side of Figure 10.7), nothing
much has changed compared to the situation 1000 runs earlier. Convergence
has improved on some meanings, while other (mostly complex) meanings
seem to have become a bit more randomized (cf. (60)), even though this is
probably due to newborn agents adjusting to the language at this point in
time. No considerable increase has been gained in 1000 runs (also see Figure
10.3), indicating that either the society is residing at a local maximum, like
it was during the first 1000 runs, or it has reached the degree of convergence
that can be maximally expected from the GRAEL-4 society. The qualitative
analysis in the next section indicates that the former interpretation holds
true.

10.2.3 Experiments: Qualitative View

So far, we have presented a rather abstract view of the course of the GRAEL-4
experiment. Let us now look at the data in some more detail to see what
exactly is going on. We will base our discussion on the previously presented
meaning structure chase(and(agent6,agent7),eat(tiger,pig)), which was
included in the set of 100 meanings (cf. meaning (91) in the convergence
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diagrams).

At the onset of the society, word order seems totally random for this
meaning. Many different variations for the example sentence can be observed,
three of which are:

1. “and agent6 agent7 tiger eat pig chased”
2. “eatanimateany agent7 and agent6 chased ”
3. “agent6 agent7 and eat pig tiger chased”

Sentence (2) shows an example of a holistic token that was applied on
the meaning substructure eat(tiger,pig). Sentence (1) and (3) show a very
different word ordering and given the fact that both agents tried to express
the same meaning, we can consider them to be unintelligible to one another.
They each convey the same concepts to one another, but it is for instance
not clear who is chasing whom.

Looking at the situation after run 2000, we have noticed that many at-
tributes are being expressed in the same word order already (Figure 10.5).
This is of course not surprising, considering the fact that attribute concepts
constitute a fairly limited set and only take [+animate] objects as their
argument. Agents will observe sentences like “pig and happy tiger food eat’
as well as sentences such as “food happy tiger eat’ and infer that there is a
stronger correlation between the words “happy tiger” than there is between
“food happy”.

The rule of thumb, not only for attributes, but for relations as well, is
that early observed word order is usually maintained throughout the rest of
the society, even though gradual changes can occur. Our example sentence
is seemingly still being generated with the same degree of randomness and it
seems that the agents have not learned how to order relations yet.

After 3000 runs (cf. Figure 10.6), we do notice that the first constant
word ordering is apparent among the agents. Again three samples from
three agents:

1. “and agent6 agent7 chased tiger eat pig”
2. “and agent7 agent6 chased pig eat tiger”
3. “and agent6 agent7 chased tiger pig eat”
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The agents seemed to have learned two things so far: and as a relation
always takes front position, while chased is used between two arguments that
instigate relations themselves. Holistic phrases at this point seem to have
vanished from the society. The aforementioned conflicting forces between
the information content of generally applicable, therefore probable holistic
tokens and specific, unrestricted and thus also probable atomic tokens, has
been settled in favor of the latter.

After 4000 runs, we have seen that almost all simple relations have a
fixed word order. There are no general tendencies in terms of SVO, SOV,
. ordering. Instead each “verb” seems to introduce its own ordering. This
ordering has been established on the basis of relationships in which the pa-
tient was a [-animate] object. These objects are indeed distinguishable from
[+animate] objects in their distribution: they are less widely applicable and
are therefore more salient in the observations. A strong lexical attraction be-
tween a [-animate] object and a verb, will result in their juxtaposition,
which has an effect on the word order of the entire phrase and therefore on
the observed lexical attraction between the verb and the [+animate] object.
Even though there is a fundamental problematic issue at hand here, which
we will discuss in Section 10.3, it is clear that a fixed word order has been
established for simple relationships.

Figure 10.7 also shows that six agents have used the same word order to
express our example meaning structure:

“and agent6 agent7 chased eat tiger pig”
“and agent6 agent7 chased tiger pig eat”
“and agent6 agent7 chased tiger eat pig”
“and agent6 agent7 eatanimateany tiger chased”

=W =

6 agents used word order (1), two agents used word order (2), one agent
used word order (3) and a newborn agent (20 runs old) uses sentence (4).
The latter’s “correct” word order for and(agent6,agent7) seems coincidental
as it does not seem to have picked up any general notions of word order at
this point.

1000 runs later, the situation is very similar. There are still only six
agents who agree on the word order, but the remaining three have adopted
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word order (2) above. The lexical attraction in the sequence tiger pig seems
to be strong enough to keep them grouped together. Another agent had
placed chased at the back of the sentence.

The qualitative data analysis shows that even though there is a large
degree of randomness at work in GRAEL-4, fixed word order does emerge in
the society. The fact however that the preferred word order for our example
meaning hardly changes over 1000 runs (and five generations) indicates that
this word order is here to stay.

But the randomness factor seems to allow for language evolution: if for
some reason, the word order in sentence (2) above, which was already the
one proposed by three different agents, takes over, language evolution occurs.
This is a very slow process, driven to a large extent by a random factor.
Further experiments will need to investigate whether extended processing
will take the society out of this possibly local maximum and evolve into a
society with an ultimately fixed word order, but it seems that this is the type
of convergence that can maximally be expected to occur. The society seems
instead to go from one local maximum of convergence to the next, which we
will argue in Section 10.4 is a realistic view of language as a complex adaptive
system.

10.2.4 Extra experiments

As we have mentioned before, the GRAEL-4 experiment was run three times.
A similar situation developed in every experimental run: only the time-frame
and the word order that evolved was different in each experiment. Holistic
elements disappeared over time in all experiments but one: in one experi-
ment, two holistic meanings had been maintained throughout the society on
which the agents had converged. These meanings were:

happy([+animate])
fear([-++animate],any)

Analysis of the data did not reveal any reason as to why these particular
phrases had been maintained and why this occurred in the same experimen-
tal run. We do not consider this as a problem for this system, as [Wray
1998] suggests holistic utterances are always present in natural language,
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even today, as living fossils of early protolanguage.

The disappearance of holistic items in these experiments can be explained
by the large amount of different meanings that can be expressed. This allows
for high information content values of atomic elements, providing them with
a reasonably high information content, that can easily overtake that of the
holistic token. This effect in fact seems to simulate the abandonment of
holistic utterances, as there is no need for them: everything can be expressed
using a compositional sequence of atomic names with a higher information
content value to boot.

We also conducted a single experiment in which one immortal agent was
introduced into the GRAEL-4 society with a pre-defined and unalterable set
of word orders. This agent had no noticeable effect on the development of
the society.

10.3 Problematic Issues

Even though GRAEL-4 provided a computational model for the emergence
of grammar in the form of “fixed” word order, there are some problematic
issues surrounding the implementation, as well as our interpretation of the
data. We have started this chapter by pointing out that with GRAEL-4, we
are trying to define a computational model of the emergence of grammar
that makes a minimal amount of assumptions on the cognitive abilities of
its agents. GRAEL-4 achieves this by not presupposing any innate linguistic
abilities in the agents. On the other hand, we do render the agents able to
exploit a lexicon that is seemingly innate and universal for all agents. But
this is an innateness assumption not even nativists dare to make.

We have avoided the issue by stating that the agents have developed a
naming insight, during the early stages of language acquisition and/or emer-
gence, that enables them to provide names for objects. [Smith 2001; Steels
1998b] show how we can develop such a lexicon in a model similar to GRAEL-
4 using principles of co-evolution. We therefore consider GRAEL-4 to be a
method that takes the accomplishments of this research and uses it as a given.
We do however realize that this is a considerable shortcut, which may not
agree with everybody’s view of grammar acquisition and emergence. Future
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experiments might tackle this issue by incorporating a lexicon emergence
stage in the GRAEL-4 model, as well as a method to simultaneous structure
the meaning space, as exemplified in [Steels 1998b].

Another controversial issue may be the cognitive abilities the agents are
attributed: despite a notable absence of linguistic abilities, the agents do
seem able to make intricate computations on a large array of memorized
linguistic observations. This seems to provide the agents with cognitive ca-
pacities that seem out of reach even for evolved humans. But the information
theoretic approach is warranted if we do not consider these calculations as a
mental reality, but rather as a reflection of the cognitive ability to memorize
observations and the ability to remember the saliency of these observations.
Future research should implement a mechanism that introduces noise in the
agents’ memory, to make the computation of these capacities less straight-
forward.

None of the methods that model the emergence of grammar, including
GRAEL-4 described so far provide any insight into the distinction between
comprehension and production. Language users are usually able to compre-
hend many more sentences than they are able to produce, indicating that
there is some kind of mechanism that limits production. Future research
should look into this matter and investigate whether agents in a GRAEL-4
have some implicit implementation of this mechanism, for example by using
a preferred set of constructs.

Future research might also look into communicative attempts between
adult agents and newborn agents and see if the development of the latter’s
language somehow mirrors that of child language acquisition. Typically, a
child’s language constitutes a simplified version of the adult’s. Clearly this is
not the case in GRAEL-4, as newborn agents’ languages are allowed an equal
amount of compositionality, with only the lack of a fixed word order as a
limiting factor.

We introduced GRAEL-4 as an alternative computational method to model
the emergence of grammar, whereas we mainly discussed the emergence of
compositional language in Chapter 9. These are of course not one and the
same thing. GRAEL-4 could be said to already start off with compositional
language, but this may perhaps be overstating matters. Even though Kirby
and Batali do indeed have their systems evolve from a holistic language to a
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compositional language exhibiting grammatical properties, we have argued
in Section 10.1.2 why this approach is paradoxical in intent. GRAEL-4 does
allow for holistic utterances, but there is indeed a strong preference for the
agents to prefer the atomic objects. Nevertheless, the random use of words
in compositional sequences, as exhibited at the onset of a GRAEL-4 society,
does not by itself constitute compositionality, as initially no meaning is be-
ing expressed in the way the atomic objects are joined. Similarly, there is no
meaning in the way an early hominid constructs a holistic grunt from sounds
to express some kind of meaning.

The point is however well taken that GRAEL-4’s a priori predilection
for compositionality and its usage of pre-defined atomic objects does not
constitute a model in which the actual emergence of compositional language
can be proved. We therefore think of GRAEL-4 rather as a model of the
emergence of grammatical principles. In the experiment described in this
chapter, we have modeled word order, but it would also be feasible to devise
experiments that allow the agents to employ other syntactic tools.

The data analysis presented in the previous section however belies a more
fundamental problem: we have seen how the agents are using the same word
order to express the same meaning. We can therefore consider them to be
able to understand each other in a conversation. If two agents are talking,
it should indeed be clear to them, who is chasing whom and what animal is
being eaten. But we cannot be sure that the word order in the phrase “and
agentb agent?’ is indeed an expression of an internalized VSO word order
in the agent’s mind or simply the effect of distributional properties of the
bigram “and agent6”.

So even though we have evidence of a direct mapping between the agent’s
semantic structure and his syntactic structure, we cannot be sure that the
syntactic structure is indeed expressing the proper (agent,patient) relation-
ship, or if it is just a side-effect of beneficial bigram probability distributions.
However, there is no reason to assume that there would be a stronger lexical
attraction in the sequence “and agent6” than in the sequence “and agent?7’,
so the choice should be more or less random. The word order is also further
defined by the next bigram “agent6 agent7’. Even though it is not trans-
parent how exactly agent-patient relationships are expressed by the combi-
nation of the two bigrams, the fact of the matter remains that the majority
of agents, each depending on a different set of linguistic observations have
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learned to impose the same word order for this meaning. But even though
we can consider the mapping from semantic structure to syntactic structure
to be converged, we are faced with an empirical problem in that it is im-
possible to authenticate its validity. We hope that this appreciation of the
data generated by GRAEL-4 can instigate a more general discussion on the
signal-meaning relationship in the research field that implements computa-
tional models for the emergence of compositional language, as many of the
reservations made in the discussion of the output of GRAEL-4, might also
hold relevant for similar methods as well.

10.4 Concluding Remarks

In this chapter, we introduced GRAEL-4 as a computational model for the
emergence of grammar. We have presented a first experiment with the model,
in which the agents were provided with very basic cognitive mechanisms.
More importantly, we tackled the mind-reading abilities that were attributed
to the agents in Batali’s and Kirby’s systems. Whereas they viewed language
as a means of communicating about visibly present situations, we presented
language as a means of communicating mental constructs. As the agents
have no immediately available referent, we had to make some important sim-
plifications, most importantly with respect to the agents’ lexicon. We were
however able to show how the most typical and most expressive grammatical
principle, i.e. word order, can emerge without direct reference to meaning,
and without using specialized linguistic generalization techniques.

In doing so, we have mainly focused on how grammar emerges, rather
than why. [Kirby and Hurford 2001] described how grammar emerges be-
cause of the transmission bottleneck, which forces language to become struc-
tured, while [Nowak and Jansen 2000] describes how compositional language
emerged because of the need to express an increasingly complex set of mean-
ings. GRAEL-4 did not implement such a driving force that compels the agent
to develop a fixed word order. It merely develops as a side-effect of commu-
nication. This helps the agents to pick up fixed word orders more easily, but
this does not translate into a selective advantage. Grammar can be consid-
ered to emerge, as a side effect of basic semantic constraints that translate
into probabilistic distributional properties when communicating about them.
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However, there is a large amount of work that still needs to be done to turn
GRAEL-4 into a realistic computational model for the emergence of grammar.
Future research should look into the emergence of lexical information, rather
than predefining it at the onset of the society. Similar to our conclusion in
Chapter 8, we would also like to check whether or not extending the scope
of our statistical processing beyond that of the bigram, can lead to more
intricate word order schemes. We would also like to provide a more elaborate
world description. Right now, the distinction is limited to [+animate] and
[-animate|, but apart from that, anything goes from a syntactic, as well as a
semantic point of view. Even though a pre-structured world, might provide
an unfair bootstrap to the emergence of the grammar, it would constitute
a realistic situation, as early hominids should also be considered to know
that eat(agent6,lake) is not a possible situation. Providing more elaborate
subcategorization properties should allow us to closely monitor the emergence
of grammar over time and should help resolve the empirical problem we
identified in Section 10.3.

One of GRAEL-4’s seemingly biggest shortcoming is its apparent limited
convergence on a word order. Especially considering the pre-defined lexicon,
it may be surprising that the society does not converge on a fixed word-order
more rigorously and faster than it does. But we would like to argue that
this is in fact GRAEL-4’s biggest asset. In Part II, we have observed many
times that, from an engineering point of view, convergence results in lower
results. The best results were mostly gained in the brief period of “beneficial
confusion”, before the society settles down into a converged language system.
Most of the systems described in Chapter 9 are however primarily looking for
this state of convergence. But language itself never converges and constantly
adapts to a changing environment and seems to be driven by chaotic elements,
introducing a large degree of randomness in language both from a synchronic,
as well as a diachronic point of view.

Despite some of the unrealistic assumptions we made to bootstrap GRAEL-
4, we consider its route of slow evolution from one local maximum to the next,
a better approximation of natural language than finite convergence. Because
even in a stable environment, language should be considered to evolve, simply
because of the human mind, that is able to structure, and re-structure reality
in an infinite number of ways. Viewing language as a way to communicate
about states-of-affair that are not immediately present to the hearer, has
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forced us to limit the scope of GRAEL-4, but does indeed provide us with the
desired non-converging language model.

Another point of criticism that applies to most of the models described
in Chapter 9 deals with language understanding from a computational, as
well as a conversational point-of-view. There seems to be a view of natural
language processing in these systems as a finite 1-to-1 mapping of meaning
and syntactic structure. But even computational parsing systems processing
huge amounts of language data (cf. Chapter 3) are not able to accomplish
this task. Furthermore, not even human language users are able to provide
such a 1-to-1 mapping: the same meaning can be expressed in so many
different ways, many of which not only syntactic in nature, but heavily reliant
on semantic and pragmatic principles as well. Why should we then expect
the compositional languages that emerge in a computational model to not
exhibit ambiguity of any kind, as well as allow for some margin of plausible
misunderstanding in inter-agent communication? The models described in
Chapter 9 can therefore be considered as too strict, in that they impose many
less than plausible restrictions on language and its conversational properties,
but also as too unrestricted, as they presuppose explicit linguistic abilities,
unrealistic mind-reading skills, resulting in an a priori stilted transition from
holistic language to compositional language.

We have argued that compositionality does not just constitute splicing
holistic utterances in atomic objects, but also the manipulation of these ob-
jects to express meaning in itself. In this view, syntax is not just a way
to generalize over data, but a linguistic module that can apply meaning to
a string of words. GRAEL-4 showed that a general notion of word order
emerges, expressing semantic agent-patient distinctions, simply on the basis
of observed bigram statistics. In the same vein, we have shown in Chapter 8
how simple bigram statistics can build a full syntactic phrase structure. We
therefore would like to contrast the nativist point of view that syntax is an
innate capacity that pre-defines the way we are able to apply structure to
the building blocks of our lexicon. We suggest that syntax emerges out of
the probabilistic distributional properties of utterances formed on the basis
of semantic structures we wish to express. In this view, syntax emerges as a
side-effect, but then takes over to manage further production as an expres-
sive language module in its own right. We have shown how GRAEL-4 models
this evolution, using general cognitive mechanisms and without referring to
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immediately available meaning constructs.



It's such a fine line between stupid, and clever.
David St. Hubbins - This is Spinal Tap - (©/1984

Conclusion

Throughout the different chapters of this thesis, we have covered a consid-
erable range of research issues, extending from corpus-induced parsing to
simulating the emergence of grammatical language. In this final chapter,
we would like to overview the main insights and advances gained in these
experiments (Section 11.1). It is clear that given the diversity of the tasks
described in these pages, many unresolved issues are however still apparent,
for which we will provide pointers to future research (Section 11.2). We will
finish off by discussing, on a more general level, the merits of evolutionary
computing in tackling NLP-problems pertaining to syntax (Section 11.3).

11.1 Advances

In Chapter 1, we attributed a deconstructionist intent to the course of ex-
perimentation throughout this thesis: we started off with a full specified
corpus-induced parser, after which we introduced GRAEL as an agent-based
evolutionary computing approach. By gradually dismissing each pre-defined
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information source available to the society, we were able to tackle different
NLP-tasks, such as grammar optimization and unsupervised grammar induc-
tion using roughly the same architecture. In this section, we will overview the
results of the different experiments, ranging from the memory-based parser
described in Chapter 3 to the simulation of the emergence of grammar in
Chapter 10.

We started off with an overview
of the machine learning method of
memory-based learning, which has

S

been successfully applied to a number n\%m s

of NLP-problems, but to a lesser ex- i D

tent full syntactic parsing. The Data-

Oriented Parsing method however, is
closely tied to the concepts that under- ol [

pin memory-based learning. We there- Partly Matched Tree-Structure

fore implemented a variant of Data-

Oriented Parsing that magnifies the pattern-matching aspects of the sys-
tem, by analyzing syntactic structures on the basis of substructures recorded
in memory, or in other words: by looking at the nearest neighbor for a
structure and consequently extrapolating its classification decision, similar
to standard memory-based learning implementations like TIMBL that pro-
cess propositional feature values.

In the initial experiments, a standard PCFG was used to parse the test set,
yielding less than optimal scores. We identified inherent limitations to the
PCFG method, which causes flat structures to be preferred over structures
featuring a large degree of embedding. The pattern-matching probabilis-
tic grammar (PMPG) we devised, does exhibit a more robust approach to
embedded structures. But error analysis shows that the PMPG greedily over-
estimates substructure size, yielding structures that are highly unlikely, yet
made of large chunks of grammatical information recorded in memory.

A comparative data analysis between the output of the PCFG and the
PMPG however showed that these systems complement each other to a certain
extent. We therefore applied system combination, in which the PMPG was
allowed to re-rank the parse forest proposed by the PCrG. This approach
showed a significant improvement over each individual method and provides
a workable memory-based corpus-induced parsing system, integrating the
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common sense probabilities of the PCFG, as well as the context-sensitivity
and memory-based aspects of the PMPG.

Despite the fact that the parsing systems described in Chapter 3 were
able to exhibit scores that were in line with those reported by the state-of-
the-art parsers, we did identify two major issues inherent to any statistical
data-driven approach towards parsing: probability mass distribution and
grammar coverage. Many sentences were provided with erroneous struc-
tures, but on inspection of the ordered parse forests, we found that the correct
parse was very often to be found in the 10% most probable parses, leading us
to assume that the probability-mass may not be optimally distributed over
the elements in the grammar if we directly induce it from the training data.
But even if we were to obtain an optimally distributed probability mass,
parsing accuracy would still be hampered by another inherent limitation:
suboptimal grammar coverage. Even on a small-scale corpus such as ATIS,
many rules are not present in the corpus-induced grammar that are needed
to parse the test set.

We therefore defined GRAEL: an
agent-based evolutionary computing
framework that can perform gram-

e mar optimization and grammar

//\>\ T induction in an evolutionary environ-
T e ment that serves as a parallel opti-
T mization technique (distributed evolu-

tionary computing) using a practical

context (agents that practice the valid-

(Agentl) (Agent2] .. [(Agentn) ity of their knowledge on each other).
AL Typically, a corpus of tree-structures

is distributed over agents in a GRAEL
(Agent1] [Agent2] .. [Agentn] society. This leaves each of them with
a small grammar that enables them to

process a limited set of sentences. The agents are then allowed to interact
with one another in an extended series of so-called language games, the con-
cept of which was borrowed from Al-research and adapted to the domain
of data-driven grammar optimization. These language games entail that the
agents parse each other’s sentences, all the while helping each other out along
the way by providing substructures of the correct solution. This enables the
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agents to evaluate the validity of grammatical information in a practical
context.

Chapter 5 described the first instantiation of the GRAEL environment,
GRAEL-1, which leaves the structural properties of the original corpus-induced
grammar intact. GRAEL-1 therefore functions as a grammar optimization
technique, which can be said to redistribute the probability mass over the
grammatical information originally induced from the annotated corpus. The
new probability distribution therefore makes the grammar more suited for
the task of parsing itself, rather than trying to reflect actual distributional
properties of the training set.

We introduced a large array of dif-
ferent experimental parameters for the
GRAEL-environment and proceeded to
test them on the GRAEL-1 gram-
mar optimization task. The experi-
ments showed a clear increase in us-
ing GRAEL-1, indicating a beneficial
redistribution of the probability mass.
But the many different experimen- ‘«————= = =
tal parameters each affected scores to
some extent: generation-based soci-
eties clearly outperformed single-epoch societies, which suggests that the use
of generations and the associated fitness functions are able to weed out noisy
and possibly harmful grammatical structures over time. It also provides a
way out of local maxima, as the playing field is leveled every time an agent’s
grammar is partially transmitted to his offspring.

The fitness functions served as a way to provide the grammars with a
particular bias: the most straightforward goal is to increase parse accuracy
and fitness functions can be described that do indeed allow agents to evolve
into genetically enhanced parsers. But it is also possible to allow for fitness
functions that minimize grammar size, or maximize computational efficiency,
if we require such a grammar from a practical point of view. Furthermore, a
combination of fitness functions helps to counter overfitting effects, creating
grammars that are more robust in dealing with new, unseen data.

One of the most important issues however, was the halting point: given
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that GRAEL allows for infinite processing, we need to find the best moment
at which to halt the society and extract our grammar. Experiments showed
that it is generally not a good idea to wait for a state of convergence to arise,
as this means that the worst agents are getting better, but that the best
agents are getting worse. We identified a brief window of time, occurring
right before the aforementioned state-of-convergence, in which there is some
beneficial confusion which yields the best agents in the entire lifespan of
the society. It is at this time, that the probability mass is distributed over
the agents explicitly on the basis of inter-agent interaction and that the
convergence phase seems to return the distribution to that of the original
training set itself.

The experiments with GRAEL-1 indeed showed that even without intro-
ducing new grammatical information, grammar optimization is possible in an
agent-based evolutionary computing environment. While the use of agents
makes sure the probabilities are enhanced in a practical context, the dis-
tributed nature provides a parallel processing technique in which several al-
ternatives can be developed simultaneously!. The evolutionary computing
aspect of GRAEL-1 makes sure only those grammars survive over time that
meet the fitness requirements we impose on the society.

!The experimental parameter of society size can be adjusted to vary processing times
and accommodate different data sizes.
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Chapter 7 introduced mutation into the GRAEL environment, by consid-
ering a noisy channel in inter-agent communication, which causes elements
in structures to be replaced, added or deleted. The source of the initial
grammatical information is still the annotated corpus that was processed in
GRAEL-1. We can therefore consider the grammatical elements to be pre-
defined and also the labeling properties of the constituents, but the segmenta-
tion properties of said grammatical structures are abandoned. This projects
GRAEL-2, as a grammar induction method, or more precisely a grammar
rule discovery method, which can deal with the problematic issue of gram-
mar sparseness identified in Chapter 3.

We performed a number of exper-

_é iments, using the insights gained on

T c T GRAEL-1 to limit the combinations of
el e 5 m experimental parameters to be consid-
O T T N ered. The most important adjustment
! 5 ! we needed to make, was to allow the

i agents to use their I-language? to cre-

ate structures for the sentences in their
E-language?, rather than maintaining the gold-standard parse from the origi-
nal annotated corpus. This allows the agents to test the validity of the newly
created grammatical information in a practical context.

Using a manually compiled worst-case scenario test set, we evaluated
GRAEL-2 on the ATIS set and found it was indeed able to overcome the prob-
lematic grammar coverage issue. We were able to draw the same conclusion
on the standard wsJ-test set, indicating that GRAEL-2 is indeed a work-
able grammar rule discovery method. A mutation operation such as the one
used in GRAEL-2 renders many useless grammar rules, but the properties
of GRAEL-2 allow the agents to evaluate the validity of mutated rules in a
practical context, while the evolutionary computing aspects make sure that
only useful grammar rules survive, as many different alternatives are being
considered simultaneously.

The experiments showed however that the grammar rule discovery func-
tionality, caused GRAEL-2 to loose touch with the beneficial grammar opti-

2The set of grammar rules acquired during language games.
3The set of sentences that need to be parsed by other agents.
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mization properties of GRAEL-1. We therefore initiated an experiment that
started off with a GRAEL-2 society, but was turned into GRAEL-1 at a par-
ticular point in time to yield a grammar that has a large coverage, while
at the same time featuring a probability mass that is optimally distributed.
We believe that the combination of GRAEL-1 and GRAEL-2 constitutes an
appropriate method to induce a large coverage grammar from an annotated
corpus that can be used in a practical application that requires a good recall
score, but not at the cost of precision.

Whereas GRAEL-2 can be per-
ceived as a supervised grammar induc-
tion method as it creates variants of
a corpus-induced grammar, GRAEL-3
does not require an annotated corpus
and therefore constitutes an unsuper-
vised approach to grammar induction.
GRAEL-3 still needs a (large) amount
of sentences to be distributed over the society, but these sentences need not
be pre-annotated. Chapter 8 described how we can use lexical attraction, a
measure based on mutual information content, to bootstrap structure in the
GRAEL-society. We introduced a simplified method that can apply structure
to a sequence of words using lexical attraction in bigrams to provide the
agents in GRAEL-3 with a basic notion of grammatical structure.

We presented two different approaches: GRAEL-3 can either take the en-
tire collection of (unannotated) sentences, provide them with structures and
distribute them over the agents, or it can distribute the sentences first and
have the individual agents themselves apply structure. Since our grammar
induction approach also constitutes a (very fast) parser, we are also presented
with different methods for processing data in a GRAEL-3 society. Using the
PMPG-parsing method defined in Chapter 3 in these experiments is problem-
atic, as the ad hoc nature of the labeling properties of the grammar that
is induced, has a detrimental effect on parsing accuracy. On the whole, the
agents benefit from using the simplified parsing method as it produces bet-
ter parse accuracies. But this approach does limit the beneficial aspects of
GRAEL as an optimization method. Particularly on large data sets, gram-
matical information in the form of bigram probabilities is too limited as a
knowledge source to yield considerable grammatical optimization by simple
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re-distribution.

Even though GRAEL-3 only has a limited optimization effect on the origi-
nal grammars, it does provide a significant improvement nevertheless. Using
the same architecture for our grammar optimization task in GRAEL-1 and
our grammar rule discovery method in GRAEL-2, we were able to devise an
unsupervised grammar induction method, which can create grammars from
scratch and consequently enhance and evaluate them in an evolutionary con-
text. This presents GRAEL-3 as an interesting method to produce grammars
for any kind of domain, provided there is enough textual data available.

Finally, we presented a computational
model for the emergence of grammatical lan-
guage. We provided an overview of the most
important research efforts in this area in Chap-
ter 9 and found that many of them provide
the agents with a very strong linguistic bias

d/or establish a communication model in
(60) @ 2 3 @ 6 @ @ o © an

which meaning is explicitly shared between
72 78
g‘ o g:g:gg participants. By further reducing the only

(o) @ @ % (56) @7 98 pre-defined linguistic element that was left in

GRAEL-3, i.e. the textual data, we can model
the emergence of grammatical principles in a

society of agents.

We provided the agents with limited cognitive mechanisms that allowed
them to name objects and record linguistic observations in memory. Lan-
guage games occur when an agent recollects a scene and communicates about
it to another agent. By using information culled from linguistic observations
stored in memory, the agent can provide a sentence with a particular kind of
word order. As the agents play more and more language games over time, the
semantic properties of the objects that are expressed will enable the agents
to apply a fixed word order on utterances.

Following the GRAEL-4 experiments, we suggested that grammar emerges,
not as the result of an innate linguistic capacity, nor directly as a way to make
language more learnable, but merely as a side-effect of the distributional
properties of utterances formed on the basis of semantic structures we wish
to express. A side-effect, which somewhere along the line took over as an
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expressive module in its own right.

This section illustrated how we started off looking for a memory-based
parsing system using pre-annotated data and ended up with a minimalist
view of grammatical processing. The memory-based aspect can arguably be
considered to be still present in the GRAEL-4, as natural language processing
is still viewed as something that is done on the basis of previously recorded
linguistic observations.

The problematic issues in PMPG have prompted us to consider an agent-
based evolutionary computing approach to grammar optimization and induc-
tion, as this allows for the simultaneous development of several grammars,
enhanced over time by evolutionary computing techniques implemented in
a society of agents that interact in language games mirroring the task at
hand: parsing unseen data. By reducing the predefined linguistic elements
in GRAEL, we were consequently able to move from grammar optimization
to supervised and unsupervised grammar induction to a computational sim-
ulation of the emergence of grammar, using the same computational archi-
tecture, but with different emphases and information sources.

11.2 Future Research

We have already identified many pointers to extended research in the respec-
tive chapters, some of which we will recap in this section. Furthermore, we
would like to take a look at GRAEL from a more general point of view and
propose some possible future research efforts that look into the validity of
the approach, both from a computational point of view, as well as from a
(psycho-)linguistic point of view.

The memory-based parser we described in Chapter 3 displays promising
results on its own accord. The comparison with other systems however was
problematic, as there were slight, but significant differences in the annotation
properties of the data that was used during parsing. Future research that
fine-tunes the performance of the PMPG should simplify the data in the same
way as for instance [Collins 1999] does, to allow for a direct comparison
with the state-of-the-art systems. To increase performance of the memory-
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based parser, more time should be spent in the automatic optimization of the
weights attributed to each classifier’s decision towards parsing. Furthermore,
different data sets (e.g. OVvISs,...) should be used to test whether the enhanced
memory-based aspects still hold for other types of tree-structures as well.
This of course holds true for all data-driven GRAEL experiments as well:
there should in principle be no restriction on the type of tree-structures that
can be processed and consequently any type of grammar employing a tree-
type structures, can be optimized by GRAEL.

The GRAEL-1 experiments constituted the bulk of the research in this the-
sis. When it comes to the investigation of GRAEL as a grammar optimization
method, we consider most angles covered from an experimental point of view
in Chapter 5. The largest amount of future work mostly pertains to compu-
tational issues: we were unable to conduct a standard GRAEL experiment on
the wsJ-corpus because it would be too computationally expensive. Future
research will need to compare the approximation of GRAEL used for the wsJ
experiments, to the real deal. Perhaps a subsection of the wsJ corpus could
be used to compare the approximation of GRAEL with the standard version,
which will give us an insight that may translate to the experiment described
in Chapter 5.

Based on the knowledge acquired during the GRAEL-1 experiments, we
limited the amount of experiments on GRAEL-2. Future research should try
to find out whether we missed some important details that can be benefi-
cial to GRAEL-2. The use of a validation set may for instance provide an
important performance boost as it has been observed to do for GRAEL-1.
Also, the rather abrupt transition from GRAEL-2 to GRAEL-1 to provide an
optimized replenished grammar is not very elegant. An integrated method
should therefore be proposed that can perform grammar optimization, as
well as grammar rule discovery in simultaneously.

We defined three different GRAEL-3 instantiations, but many more are
possible: there are at least three different types of parsing going on*, and with
at least two different possible parsers, we are presented with a wide range
of possible GRAEL-3 methods. We also noted in the GRAEL-3 experiments
that a very slow, but equally steady performance increase occurred. We
should therefore revise our halting procedures and allow the slow progress to

4Language Game, Test Set Parsing, E-language Parsing,...
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continue for a longer period of time.

We presented GRAEL-3 as a grammar induction method that can pro-
vide structure to any type of text. Even though many respectable structures
can be found in a completely unsupervised manner, their results are under-
whelming compared to a grammar induced from an annotated corpus. If our
goal is to find a grammar that can be applied to a particular domain, we
could however turn back to the combination of GRAEL-2 and GRAEL-1 as
a supervised grammar induction method: after they have been allowed to
process data of, for instance the wsJ-corpus, the agents could be provided
with sample sentences of the domain for which we require a grammar. The
agents can then use the grammatical information available to them at this
point to adapt to the new domain over time.

GRAEL-4 constitutes arguably the most controversial set of experiments,
as it claims to provide a minimalist approach to the computational simulation
of the emergence of grammar, yet stipulates many assumptions on the agents
that do not seem to provide a realistic situation. Future research will look into
the emergence of the problematic lexical abilities the agents currently exhibit.
This will also allow us to abandon the given nature of compositionality, and
therefore resolve the initial distinction made between names and holistic
utterances. Also, other grammatical properties such as intonation, case,
prepositions, inflections,... need to be made available to the agents as possible
syntactic tools. This will in particular allow us to view the emergence and
evolution of grammar in terms of grammaticalization.

From a more theoretic point of view, we should look at child language
acquisition and compare it to the GRAEL-4 approach. If “ontogeny epit-
omizes phylogeny” as [Studdert-Kennedy 1998; Wray 2000] suggest, there
should indeed be parallels in the way the agents in GRAEL-4 learn grammar
and children acquiring language. In the same vein, the grammar induction
method of GRAEL-3 could be applied on a child language corpus like CHILDES
to see if the structural aspects proposed by GRAEL-3 can predict the produc-
tions found in the data.

On a more general level, we could define a meta-GRAEL society in which
we can allow agents from completely different societies to interact with one
another. On a small scale, we can study what happens if we introduce wsJ
agents to ATIS agents, but we can also construct a GRAEL-society with agents
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from any of the four GRAEL instantiations. It will be interesting to see how
fast for instance a GRAEL-4 agent adapts to a pre-structured environment
and what effect it will have on the other agents. Likewise, we can combine
agents that were trained on different language corpora and see if some kind
of structured creole language arises over time.

Following the comparison between GRAEL and the ensemble learning
methods of bagging and boosting in Chapter 6, we would also like to compare
GRAEL to active learning. This technique has been identified in [Banko and
Brill 2001] as a way to provide more annotated data with a minimal amount
of human effort. In active learning, a trained set of learners classifies a set
of (unannotated) data items. The instances that provide the most confu-
sion among the set of learners, can then be considered the most useful for
inclusion in the training data. Human annotators should then concentrate
on these instances, while the machine learning algorithms take care of the
unambiguous instances. [Banko and Brill 2001] describe a bagging approach
to active learning, but it should also be possible to apply active learning
within the GRAEL environment. After allowing the society to develop on an
annotated corpus, the E-languages of the agents can be replaced by sentences
from unannotated data. The confusion on these sentences can then be mea-
sured in GRAEL in a straightforward manner by looking at understanding
accuracy scores during language games.

A final proposal for future research applies to the GRAEL method as a dis-
tributed evolutionary computing approach for NLP. The data-driven GRAEL
experiments described in this thesis were very much applied to syntactic pro-
cessing, but it would be interesting to see if we can take the basic sensibilities
of GRAEL and apply them to other domains as well. Agents in the GRAEL-
1 experiments for instance communicated by parsing each other’s sentences
using the memory-based parser defined in Chapter 3 and a set of grammat-
ical constructs. But we could just as well give these agents a propositional
learner as TIMBL and a set of feature values, which they can use to classify
each other’s data. Knowledge sharing can also be performed along similar
lines. It would be interesting to see if GRAEL translates well to the proposi-
tional domain and other NLP-problems in particular.
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11.3 Concluding Remarks

This thesis has presented one of the first research efforts that introduces
agent-based evolutionary computing as a machine learning method for data-
driven grammar optimization and induction. In recent years, many re-
searchers have employed ensemble methods to overcome any negative bias
their training data might impose on their classifiers. It is indeed important
to view (annotated) data, not as an ideally distributed set of examples but
as raw material that needs to be pre-processed before it can be used by a
machine learning classifier. The bagging and boosting approach for instance,
tries to create resamplings of the original data, to overcome the local maxima
the data might restrict the classifier to (cf. Chapter 6), but we believe GRAEL
adds an extra dimension to the task: by splicing the data and incorporating
it in a society of communicating agents, we allow for the parallel development
of several grammars at once, enhanced in a practical context that mirrors
the ultimate goal: parsing unseen data.

We have shown how different parameters and information sources can
help us tackle a considerable number of tasks pertaining to the development
of grammar. With GRAEL we therefore believe to have developed a general
framework in which grammars can interact and co-evolve. Rather than view-
ing this as a competitive situation, the agents mutually benefit from helping
each other out, despite the fitness functions we may impose on them. And by
lowering the plane at which evolution occurs from the genetic transmission
of (grammatical) knowledge to the level of inter-agent communication, we
have not only found a way to speed up evolution itself, but also to ground it
in practical usage.

It is indeed the agent-based aspect of GRAEL that sets it apart from
ensemble techniques such as bagging and boosting: rather than resampling
the data, we provide agents with a partial solution which they have to built
up in co-operation with each other. Rather than greedily trying to gather
as much information as possible, the agents reconstruct data on the basis
of experience on performing a particular task, e.g. parsing sentences. We
therefore believe the redistribution of data to be the key feature to GRAEL,
despite other types of functionality that can be integrated in GRAEL.

An important notion however is the degree of convergence in a GRAEL
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society: experiments have shown that the biggest gain is to be found, not
during the state of convergence, but in the state of what we have dubbed
beneficial confusion. This is a direct consequence of the agent-based ap-
proach: convergence will occur if all agents possess a knowledge-base that
is distributed along the same lines. With a high random factor evident in a
GRAEL society, this kind of convergence can only reasonably be expected to
occur when all agents have acquired a distribution of the data that starts to
mirror that of the original training data. In other words: once convergence
sets in, the beneficial redistribution GRAEL has provided is slowly being torn
down in favor of a more conservative one. It is therefore important that the
right parameters are set to (a) provide a large enough window of time for
beneficial confusion and (b) halt the society at some point during that time.

In this vein, the parsing system we described in Chapter 3, can be inter-
preted as a GRAEL society with one agent, unable to play language games,
causing an a priori and eternal state of convergence. GRAEL can then be
considered as a method to break the convergence and move the grammar up
to at least a higher plane of local maxima. The best grammars can then
consequently be found right before the society reconverges.

And even with respect to GRAEL-4, in which there is no need from an
engineering point of view to ever halt the society, we have argued why we do
not wish to arrive at a state of convergence. A view of natural language as
flowing from one local maximum to the next, not only helps to explain the
diachronic evolution of language, but also the key aspects of language from
a synchronic point of view: redundancy and ambiguity. These are indeed
features in language that can be considered to constitute a local maximum
state of language from a formal and functional point of view. But they are
nevertheless features which make natural language what it is: a complex
adaptive system in an ever-changing environment.

With its implementation of the “diwvide and conquer” principle, GRAEL
provides a general framework for the development of grammars. Not only
does it allow us to tackle engineering tasks like grammar optimization and
induction, but it can also provide an initial insight into how early hominids
might have developed grammatical language. GRAEL therefore establishes
an environment to study the evolutionary dynamics of grammar itself. We
believe grammar to be, not only the most productive module in natural
language, but also the consequence of the basic capacity to create a men-
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tal structure of a given situation. Even though we hardly give a moment’s
thought as to how this capacity allows us to transform complex thoughts into
equally complex utterances, most people will attribute some degree of artifi-
cial intelligence to a computer program that can do the same, while others
are prepared to pay thousands of dollars for the exhibition of grammar in an
elephant wielding a paintbrush. If we indeed suppose that structure renders
meaning and grammar governs structure, the investigation of the dynam-
ics of grammar development seems paramount to establishing computational
natural language understanding. We hope that the GRAEL system provides
a way to initiate at least some part of the solution.
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Paths through the chapters

Consult Tables A.1, A.2 and A.3 to plot a course through the chapters of
this dissertation.
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Recommended links:
Optional links: ——————————————__

Many people will want to skip Chapter 2 entirely as it just provides a
basic introduction into some concepts of machine learning and memory-
based learning in particular. The reader can also skip Chapter 3 and go
straight to Chapter 4, if (s)he is only interested in grammar optimiza-
tion and induction itself, and not in the underlying data-driven parser.
Whether or not to follow the other optional links inside the chapters,
should be considered on the basis of how the titles relate to personal
interest and background knowledge.

Table A.1: Path - Chapter 1 to 4
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Chapter 6 can be skipped by people who are not interested in how GRAEL
compares to other ensemble learning techniques. In principle, Chapter
7 can also be skipped if the reader is only interested in completely un-
supervised grammar induction, rather than the intermediate approach
GRAEL-2 provides. Subsections inside chapters can be skipped according
to the reader’s judgment

Table A.2: Path - Chapter 5 to 7
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It is possible to skip the supervised optimization and induction methods
of Chapters 5 to 7 and go straight to the unsupervised grammar
induction method in Chapter 8, but readers should not do so without
consulting Chapter 4. The data-driven experiments can be skipped
altogether to advance to the experiment that investigate the emergence
of compositional language. If the reader is knowledgeable about research
in this area, Chapter 9 can be skipped as well. Chapters 9 and 10 can
also be disregarded if the reader is only interested in engineering tasks,
so that he can advance from the data-driven experiments in Chapter 8
to the conclusion in Chapter 11.

Table A.3: Path - Chapter 4 to 11



Complete Results for PCFG vs PMPG
vs PCFG+PMPG experiments

B.1 ATIS

B.1.1 Labeled Precision

Partition Absolute %
PCFG PMPG PCFG PCFG | PMPG | PCFG
PMPG PMPG
1 420/499 446/522 451/499 84.2 85.4 90.4
2 360/398 384/460 390/411 90.5 83.5 94.9
3 396/436 410/502 428/466 90.8 81.7 91.8
4 437/493 451/500 468/501 88.6 90.2 93.4
5 360/402 435/480 445/460 89.6 90.6 96.7
6 360/440 366/456 391/430 81.8 80.3 90.9
7 454/515 461/531 467/510 88.2 86.8 91.6
8 365/425 384/449 402/429 85.9 85.5 93.7
9 441/493 391/482 448/481 89.5 81.1 93.1
10 355/387 382/418 381/413 91.7 91.4 92.3
Total 3.948/4488 4.110/4800 4.271/4608 88.0 85.6 92.7
stdev +3.2 +4.1 +1.9
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B.1.2 Labeled Recall

Partition Absolute %

PCFG | PMPG | PCFG | /const. || PCFG | PMPG | PCFG
PMPG PMPG

1 420 446 451 496 84.7 89.9 90.9

2 360 384 390 468 76.9 82.1 83.3

3 396 410 428 479 82.7 85.6 89.4

4 437 451 468 512 85.4 88.1 91.4

5 360 435 445 485 74.2 89.7 91.8

9 360 366 391 471 76.4 7.7 83.0

7 454 461 467 519 87.5 88.8 90.0

8 365 384 402 446 81.8 86.1 90.1

6 441 391 448 490 90.0 79.8 91.4

10 355 382 381 453 78.4 84.3 84.1
Total 3948 4110 4271 4819 81.9 85.3 88.6
stdev +5.4 +4.1 + 3.7

B.1.3 F-score

Fg—1-score
%
PCFG | PMPG | PCFG

PMPG
84.4 87.6 90.6
83.1 82.8 88.7
86.6 83.6 90.6
87.0 89.1 92.4
81.2 90.1 94.2
79.0 79.0 86.8
87.8 87.8 90.8
83.8 85.8 91.9
89.7 80.4 92.2
84.5 87.7 88.0

84.8 85.4 90.7
+3.4 | £3.9 +2.4
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B.1.4 Exact Match

Partition Absolute %
PCFG | PMPG | PCFG | /sent || pcFG | pMPG | PCFG
PMPG PMPG
1 32 36 39 57 56.1 63.2 68.4
2 39 44 48 58 67.2 75.9 82.8
3 30 41 45 58 51.7 70.7 77.6
4 40 45 49 58 69.0 77.6 84.5
5 35 36 37 58 69.3 62.1 63.8
6 42 42 46 58 72.4 72.4 79.3
7 33 40 43 58 56.9 70.0 74.1
8 36 36 42 58 62.1 62.1 72.4
9 26 35 36 58 44.8 60.3 62.1
10 34 40 43 57 59.6 70.2 75.4
Total 347 395 428 578 60.0 68.3 74.0
stdev +8.3 +6.1 +7.5

B.2 Wall-Street Journal (10xv)

B.2.1 Labeled Precision

Labeled Precision

Partition Absolute %
PCFG PMPG PCFG PCFG | PMPG | PCFG
PMPG PMPG
1 2488/3683 2523/3683 3182/3642 67.6 68.5 87.4
2 2120/3156 2209/3156 2649/3117 67.2 70.0 85.0
3 2596/3966 2710/4112 3487/3995 65.5 65.9 87.3
4 2348/3562 2410/3667 2792/3588 65.9 65.7 77.8
5 2647/4025 2753/4173 3243/4040 65.8 66.0 80.3
6 2458/3621 2510/3767 2923/3607 67.9 66.6 81.0
7 2557/4881 2618/3994 3312/3835 52.4 65.5 86.4
8 2861/4266 2968/4427 3623/4297 67.1 67.0 84.3
9 2585/3926 2664,/4100 3223/3918 65.8 65.0 82.3
10 2476/3707 2603/3707 3056/3711 66.8 70.2 82.3
Total 25136/38793 | 25968/38786 | 31490/37750 64.8 67.0 83.4
Stevy +4.6 | +1.9 +3.2
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B.2.2 Labeled Recall

Labeled Recall

Partition Absolute %

PCFG | PMPG | PCFG | /comst. || PCFG | PMPG | PCFG
PMPG PMPG

1 2488 2523 3182 3780 65.8 66.7 84.2

2 2120 2209 2649 3325 63.8 66.4 79.7

3 2596 2710 3487 4189 62.0 64.7 83.2

4 2348 2410 2792 3598 65.3 67.0 77.6

5 2647 2753 3243 4094 64.7 67.2 79.2

6 2458 2510 2923 3693 66.6 68.0 79.1

7 2557 2618 3312 4019 63.6 65.1 82.4

8 2861 2968 3623 4545 62.9 65.3 79.7

9 2585 2664 3223 4061 63.7 65.6 79.4
10 2476 2603 3056 3794 65.3 68.6 80.5
Total 25136 | 25968 | 31490 39098 64.3 66.4 80.5
stdev +1.4 +1.3 +2.1

B.2.3 F-score

Fg—1-score
%
PCFG | PMPG | PCFG

PMPG
66.7 67.6 85.8
65.5 68.2 82.3
63.7 65.3 85.2
65.6 66.3 7.
65.2 66.6 79.7
67.2 67.3 80.0
57.5 65.3 84.4
64.9 66.1 81.9
64.7 65.3 80.8
66.0 69.4 81.4

64.5 66.7 81.9
+2.7 | 1.4 +2.6
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B.2.4 Exact Match

Exact Match Accuracy

Partition Absolute %
PCFG | PMPG | PCFG | /sent || PCFG | PMPG | PCFG
PMPG PMPG
1 7 21 26 192 3.6 10.9 13.5
2 16 27 28 192 8.3 14.1 14.6
3 13 16 22 192 6.8 8.3 11.5
4 19 24 37 192 9.9 12.5 19.3
5 18 25 31 192 9.4 13.0 16.1
6 21 30 33 192 10.9 15.6 17.2
7 16 23 26 192 8.3 12.0 13.5
8 15 24 28 192 7.8 12.5 14.6
9 20 26 30 192 10.4 13.5 15.6
10 18 20 26 193 9.3 10.4 13.5
Total 163 236 287 1921 8.5 12.3 14.9
stdev +2.1 +2.0 +2.2

B.3 Wall-Street Journal (2.21/23)

Absolute %
PCFG PMPG PCFG PCFG | PMPG | PCFG
PMPG PMPG
Precision 33413/45905 | 30575/46684 | 37535/45908 72.8 65.5 81.8
Recall 33413/47333 | 30575/47333 | 37535/47333 70.6 64.6 79.3
Exact Match 265/2416 177/2416 386/2416 11.0 7.3 16.0
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Correlation between experimental
Parameters

We define the following variable experimental parameters:

ﬂ]rossover the situation in which crossover of grammaticm
structures occurs
Corpus the annotated treebank used by the society

Halting Procedure the method to determine when to halt the soci-
ety and select its fittest agent

Fitness the method to determine the fittest agent in the
society
Generations whether and how new generations are created
Q?opulation Size the number of agents in a GRAEL society J

Some of these parameters will necessarily have some influence on each other.
The most straightforward example of such a correlation is the data set used and
the number of agents in a GRAEL society. A large corpus may require a larger
number of agents in a GRAEL society to achieve a good result. Another more
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[Fitness Functions]

Crossover

1

Population Size]

Figure C.1: Experimental parameters

complicated example involves the interdependence between the way in which new
generations are created and the halting procedure. A halting procedure that looks
at the accuracy of the full society compared to the baseline accuracy, may for
example be dependent on the way new generations are created. But one might be
less inclined to assume an interaction between the different types of crossover and
the way new generations are created.

Figure C.1 displays all combinations of the experimental parameters defined
in Section 5.1.2. For each combination, we will now consider whether or not it is
reasonable to assume some kind of correlation between the two parameters that
could have some influence on the performance of the society. First we will discuss
those combinations of parameters that would seem to have an a-priori conspicuous
correlation. This is followed by a discussion of less uncertain correlated parameters,
after which we examine some combinations of parameters that could reasonably
be considered to be uncorrelated. The numbers associated with the combinations,
reflect those in Figure 5.1.2.
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Strong Interdependence

1. Corpus < Fitness Functions: fitness functions are paramount to the perfor-
mance of any GRAEL society. But corpus-specific properties may influence the way
in which the fitness functions operate in the GRAEL environment. The small and
fairly homogeneous ATIS corpus may provide the agents with favorable scores for
the fitness function of understanding throughout the society, rendering it less useful
as a method for finding the fittest agent. And the sparse grammar problem appar-
ent in previous experiments on the ATIS corpus may cause the agents to achieve
unfavorable accuracy scores on the validation set, which may perhaps overempha-
size it as a fitness function. It is clear that a corpus such as ATIS will need to
employ different weights for the fitness functions than a large, heterogeneous cor-
pus such as wsJ. The correlation between the corpus used and the optimal weights
for the fitness functions should therefore be exhaustively investigated.

3. Corpus < Population Size: the number of agents in the GRAEL society
should have a direct influence on its performance. And whereas a homogeneous
corpus may not need a large number of agents to provide a diverse distribution of
grammatical information, it seems trivial that a larger scale corpus would need a
larger society. The correlation between corpus and population size should therefore
be researched.

7. Fitness Functions < Population Size: the correlation of population size
and the optimal combination of fitness functions is straightforward: the number
of agents in a GRAEL society should have an effect all kinds of fitness functions,
such as understanding accuracy, efficiency and size.

13. Population Size <> Creation of New Generations: when new gen-
erations are created by end-of-life crossover which joins the information of two
agents to create new agents, the actual number of agents in a GRAEL society is
an important factor in this process. A new generation in a small population may
not differ very much from the previous generation, as combinatory possibilities
between agents is by definition limited. The correlation between population size
and the creation of new generations should therefore be exhaustively investigated.

15. Creation of New Generations <+ Halting Procedure: the way in which
generations are created may also be dependent on the halting procedure. Not only
the limitation on the number of generations is evidently related to the way these
generations are created, but also a halting proceeding like the relation between
Full Society Accuracy and baseline accuracy is dependent on the constitution of a
particular generation
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Medium Interdependence

5. Corpus <> Halting Procedure: we defined several halting procedures, many
of which are related to parsing accuracies on the data extracted from the annotated
corpus, such as training set accuracy and parsing accuracy on a held-out validation
set. The size and content of the actual corpus does not necessarily have to influence
the way in which the halting procedure deals with these accuracies, but it can not
be ruled out either. Since exhaustively investigating different halting procedure
does not entail extra CPU-cycles (cf. infra), there is no reason not to check the
correlation.

8. Fitness Functions <+ Creation of New Generations: it does not seem
apparent that the optimization of the fitness functions is strongly dependent on the
way new generations are created. But since the fitness functions play an important
role in the selection of agents for procreation, it seems advisable to exhaust the
possible combinations anyway.

14. Population Size <> Halting Procedure: halting procedures such as the
limitation on the number of language games or plateau detection may to a con-
siderable degree depend on the size of the population. A smaller population will
achieve convergence faster and therefore plateau sooner than a larger, more dis-
tributed society. The correlation between these two experimental parameters will
therefore also be experimented on.

9. Fitness Functions < Halting Procedure: the optimization of the fitness
functions would not seem to be influenced by the way a GRAEL society is halted,
or vice versa, but since the fitness functions themselves play an important role in
some of the halting procedures, it is advisable to exhaust the combinations.

Weak Interdependence

10. Type of Crossover Operation < Population Size: whether or not
random crossover has any beneficial effects on the society can be related to its size.
A larger population may be more robust in dealing with the random distribution
of grammatical information random crossover entails, than a smaller society. The
beneficial effect of random crossover may indeed depend on the population size
and we should therefore experiment on the different combinations.

11. Type of Crossover Operation <> Creation of New Generations:
the random crossover of grammatical information which happens when random
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crossover is enabled, should have a noticeable effect on determining when an agent
reaches end-of-life (cf. infra) which makes the two experimental parameters a pri-
ori related. Furthermore, random crossover is not computationally tractable in a
Single Epoch GRAEL system, as it enlarges agents’ grammars too fast, without the
possibility to splice agents. And though it may not seem apparent that the way in
which a new generation is created is dependent on the number of times it needs to
be created, it seems advisable to check the combination between random crossover
and the two methods for creating new generations.

No Interdependence

2. Corpus < Type of Crossover Operation: intuitively random crossover
would not seem able to yield a performance increase for the society as a whole.
Random crossover only speeds up the process of the sharing of grammatical infor-
mation. Language Game crossover on the other not only achieves the same goal
(albeit at a slower rate), but also distributes grammatical information in a more
intelligent manner. Any positive effect random crossover may have, can therefore
also be achieved by lengthening the life-span of a GRAEL society through the halt-
ing procedure. Since checking for interdependence between corpus and crossover
would effectively double the amount of experiments that need to be run, with little
or no added insight to be gained, we only experiment on the crossover operation
on one corpus, i.e. the ATIS corpus.

4. Corpus <> Creation of New Generations: whether or not new generations
are created and the way in which new agents are introduced in new generations,
is possible related to the fitness functions and population size. The nature of
the grammatical content of the agents in a society would however intuitively not
appear to play a vital role on the performance of a particular method of creating
new generations. We therefore limit the experiments to exhaustive experiments
for different methods on the ATIS corpus.

6. Fitness Functions <> Type of Crossover Operation: the performance
of different fitness functions seems more dependent on the nature of the corpus
and the overall architecture of the society (population size, ...) and less on another
factor that has to do with inter-agent communication, such as the type of crossover
employed throughout the society. It is not clear what insights are to be gained when
we alternate fitness functions and crossover operations to check for correlation
effects.

12. Type of Crossover Operation < Halting Procedure: it is hard to
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imagine a situation in which the addition of random crossover would have any effect
on the best way to halt a GRAEL society. The rapid distribution of grammatical
information will undoubtedly have an effect on various accuracy rates, but not on
the actual method these halting procedures employ to determine the appropriate
halting point.

Figure C.2 summarizes this thought exercise and adapts Figure C.1 to exclude
those combinations of experimental parameters that intuitively seem unrelated.
Note that the absence of experiments for these combinations is mainly because of
reasons of computational tractability and that a definite answer about the correla-
tion between these parameters is only possible in an experimental context, rather
than the thought exercise we performed in this section.
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Figure C.2: Correlation of experimental parameters
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D.1

D.2

D.3

D4

D.5

GRAEL-1 ATIS Full Results Tables

20 Agents
10 Agents
5 Agents

50 Agents

100 Agents
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size 90 80.1 — — — — 115 | 89.9 | 146 | 89.9 | 200 | 90.2 — — | 200 | 90.2
Efficiency 90 | 88.2 | 106 | 90.8 | — — 104 | 90.7 | 146 | 90.9 | 200 | 90.9 | — | — | 146 | 90.9
Accuracy 90 84.2 | 131 91.1 131 91.1 131 91.1 146 | 91.0 | 200 | 91.0 — — | 131 91.1
Understanding 90 83.4 | 120 | 91.1 | 143 | 91.0 | 114 | 91.1 | 146 | 91.0 | 200 | 90.9 — — | 143 | 91.0
Understandability 90 | 78.6 | 138 | 90.3 | — — 120 | 87.3 | 146 | 90.7 | 200 | 90.8 | — | — | 146 | 90.7
Internal Consistency 90 | 72.3 | — — — — 149 | 90.6 | 146 | 90.7 | 200 | 90.8 | — | — | 200 | 90.8
Efficiency & Size + 90 | 75.4 | 143 | 91.1 | 143 | 91.1 | 143 | 91.1 | 146 | 91.1 | 200 | 91.1 | — | — | 143 | 91.1
Accuracy
US&UB + 90 | 89.9 | 98 | 90.7 | 107 | 91.1 | 98 | 90.7 | 146 | 91.0 | 200 | 91.1 | — | — | 107 | 91.1
Accuracy
Efficiency & Size + 90 82.4 | 131 | 91.1 | 137 | 91.1 | 130 | 91.0 | 146 | 91.1 | 200 | 91.1 — — | 137 | 91.1
US&UB
Efficiency & Size + 90 80.4 | 136 | 91.1 | 137 | 91.1 | 136 | 91.1 | 146 | 91.0 | 200 | 91.1 — — | 137 | 91.1
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP | F HP | F HP | F HP | F HP | F HP | F HP | F HP | F
Size — — — — — — — — 203 | 76.9 | 250 | 80.3 | 381 | 78.5 | 381 | 78.5
Size (10%) — — — — — — — — 182 | 83.6 | 250 | 86.6 | 381 | 82.3 | 381 | 82.3
Efficiency — — — — — — — — 188 | 86.3 | 250 | 89.1 | 353 | 85.9 | 353 | 85.9
Accuracy 180 | 91.8 | 235 | 92.0 | 235 | 92.0 81 63.3 | 181 | 91.8 | 250 | 91.9 | 341 | 91.7 | 235 | 92.0
Understanding 209 | 91.8 | 186 | 91.7 | 186 | 91.7 | 186 | 91.7 | 176 | 91.5 | 250 | 91.8 | 370 | 91.1 | 186 | 91.7
Understandability — — 247 | 91.2 | 257 | 91.2 | 177 | 89.1 | 210 | 90.4 | 250 | 91.2 | 336 | 89.9 | 250 | 91.2
Internal Consistency 153 | 78.3 | 233 | 90.6 | 235 | 90.6 | 233 | 90.6 | 201 | 89.9 | 250 | 90.5 | 351 | 89.5 | 233 | 90.6
Efficiency & Size + 187 | 90.2 | 229 | 91.6 | 229 | 91.6 | 229 | 91.6 | 187 | 90.2 | 250 | 91.4 | 362 | 90.7 | 229 | 91.6
Accuracy
US&UB + 188 | 90.5 | 237 | 92.1 | 237 | 92.1 | 237 | 92.1 | 193 | 90.6 | 250 | 92.0 | 353 | 90.4 | 237 | 92.1
Accuracy
Efficiency & Size + 241 | 91.6 | 246 | 91.7 | — — 60 | 58.9 | 205 | 91.2 | 250 | 91.6 | 379 | 90.0 | 246 | 91.7
US&UB
Efficiency & Size + 209 | 92.0 | 198 | 91.2 | 268 | 91.7 | 198 | 91.2 | 211 | 92.0 | 250 | 91.8 | 361 | 91.0 | 211 | 92.0
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F F—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — 223 | 84.3 | 225 | 84.5 | 250 | 80.3 | 343 | 85.3 | 343 | 85.3
Efficiency — — — — — — — — 201 | 85.6 | 250 | 85.9 | 303 | 85.3 | 303 | 85.3
Accuracy 217 | 92.1 | 189 | 92.0 | 189 | 92.0 | 189 | 92.0 | 199 | 92.0 | 250 | 91.7 | 289 | 91.2 | 199 | 92.0
Understanding 177 | 90.6 | 201 | 91.8 | 217 | 91.9 | 201 | 91.8 | 233 | 92.0 | 250 | 91.9 | 332 | 91.0 | 217 | 91.9
Understandability 236 | 91.0 | — — — — 184 | 90.8 | 233 | 91.0 | 250 | 91.2 | 343 | 90.6 | 250 | 91.2
Internal Consistency 207 | 90.9 | 208 | 90.9 | 217 | 91.0 | 207 | 90.9 | 203 | 90.8 | 250 | 90.4 | 312 | 89.3 | 208 | 90.9
Efficiency & Size + 181 | 91.8 | 171 | 91.7 | 179 | 91.8 | 171 | 91.7 | 190 | 91.9 | 250 | 91.6 | 303 | 91.1 | 181 | 91.8
Accuracy
US&UB + 178 | 91.8 | 182 | 91.9 | 195 | 92.1 | 181 | 91.9 | 196 | 92.2 | 250 | 92.0 | 313 | 91.6 | 195 | 92.1
Accuracy
Efficiency & Size + 170 | 90.9 | 182 | 91.3 | 192 | 91.6 | 158 | 88.6 | 210 | 91.6 | 250 | 91.2 | 299 | 90.8 | 192 | 91.6
US&UB
Efficiency & Size + 227 | 92.0 | 190 | 91.9 | 191 | 91.9 | 73 | 72.6 | 197 | 91.9 | 250 | 91.7 | 332 | 91.3 | 197 | 91.9
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size 139 | 90.4 | 140 | 90.3 | 142 | 90.5 | 140 | 90.3 | 102 | 83.1 | 200 | 90.5 — | — | 140 | 90.3
Efficiency 139 | 90.8 | 136 | 90.9 — — 112 | 90.9 | 102 | 89.9 | 200 | 90.6 — | — | 139 | 90.8
Accuracy 139 | 91.3 84 91.3 84 91.3 84 91.3 | 102 | 91.1 | 200 | 91.0 — — | 102 | 91.1
Understanding 139 | 91.1 81 91.2 81 91.2 28 65.0 | 102 | 91.3 | 200 | 91.0 — — | 102 | 91.3
Understandability 139 | 90.1 | 119 | 90.3 | 120 | 90.3 97 87.7 | 102 | 90.6 | 200 | 90.6 — | — | 120 | 90.3
Internal Consistency 139 | 89.3 — — — — 166 | 90.1 102 | 90.4 | 200 | 90.6 — | — | 200 | 90.6
Efficiency & Size + 139 | 91.1 98 91.4 | 123 | 91.2 94 91.3 | 102 | 91.4 | 200 | 91.0 — — | 123 | 91.2
Accuracy
US&UB + 139 | 91.0 99 91.2 | 107 | 91.3 99 91.2 | 102 | 91.4 | 200 | 91.0 — | — | 107 | 91.3
Accuracy
Efficiency & Size + 139 | 90.9 | 105 | 91.2 | 110 | 91.2 | 100 | 91.3 | 102 | 91.4 | 200 | 91.0 — — | 110 | 91.2
US&UB
Efficiency & Size + 139 | 90.8 | 100 | 91.0 | 101 | 91.0 | 100 | 91.0 | 102 | 91.1 | 200 | 91.0 — — | 102 | 91.1
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fg—_1-score of fittest agent on test set (%)

UsS Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — 167 | 83.6 | 121 | 76.9 | 200 | 84.6 | 231 | 82.9 | 231 | 82.9
Efficiency — — — — — — 161 | 84.1 | 140 | 80.3 | 200 | 83.0 | 221 | 82.9 | 221 | 82.9
Accuracy 89 90.6 | 112 | 91.9 | 112 | 91.9 | 112 | 91.9 | 102 | 92.0 | 200 | 91.0 | 201 91.0 | 112 | 91.9
Understanding 116 | 82.3 | 155 | 91.9 | 155 | 91.9 | 155 | 91.9 | 112 | 82.1 | 200 | 91.4 | 219 | 91.0 | 155 | 91.9
Understandability — — — — — — 129 | 90.7 | 123 | 90.8 | 200 | 89.6 | 201 | 89.6 | 201 | 89.6
Internal Consistency — — 152 | 90.8 | 158 | 90.7 | 141 | 90.5 | 132 | 90.2 | 200 | 89.5 | 211 | 88.9 | 158 | 90.7
Efficiency & Size + 96 | 82.3 | 133 | 91.6 | 133 | 91.6 | 133 | 91.6 | 134 | 91.6 | 200 | 91.0 | 211 | 91.1 | 133 | 91.6
Accuracy
US&UB + 77 | 89.9 | 96 | 91.0 | 131 | 92.0 | 131 | 92.0 | 111 | 91.7 | 200 | 90.9 | 199 | 90.9 | 131 | 92.0
Accuracy
Efficiency & Size + 124 | 90.9 | 135 | 91.8 | 158 | 91.8 | 134 | 91.7 | 121 | 91.4 | 200 | 91.0 | 222 | 90.8 | 135 | 91.8
US&UB
Efficiency & Size + 127 | 91.3 | 139 | 91.7 | 139 | 91.7 | 139 | 91.7 | 134 | 91.8 | 200 | 90.5 | 217 | 90.7 | 139 | 91.7
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — 153 | 82.3 | 131 | 85.3 | 200 | 84.9 | 215 | 84.8 | 215 | 84.8
Efficiency — — — — 163 | 85.3 | 135 | 85.1 | 119 | 84.9 | 200 | 85.0 | 201 | 85.1 | 200 | 85.0
Accuracy 89 | 92.1 | 103 | 92.2 | 103 | 92.2 | 103 | 92.2 | 95 | 92.2 | 200 — 195 | 90.7 | 103 | 92.2
Understanding 129 | 91.9 | 109 | 91.8 | 109 | 91.8 | 109 | 91.8 | 102 | 91.8 | 200 | 90.7 | 201 | 90.7 | 109 | 91.8
Understandability 143 | 90.7 | — — — — 136 | 90.2 | 141 | 90.6 | 200 | 90.0 | 209 | 89.5 | 200 | 90.0
Internal Consistency 173 | 90.5 | 166 | 90.2 | — — 119 | 89.9 | 138 | 90.4 | 200 | 90.0 | 209 | 90.0 | 173 | 90.5
Efficiency & Size + 103 | 90.9 | 112 | 90.7 | 144 | 91.5 | 111 | 90.6 | 121 | 91.8 | 200 | 90.5 | 201 | 90.5 | 121 | 91.8
Accuracy
US&UB + 59 | 78.5 | 100 | 92.1 | 100 | 92.1 | 100 | 92.1 | 99 | 92.2 | 200 — 198 | 90.9 | 100 | 92.1
Accuracy
Efficiency & Size + 134 | 92.0 | 139 | 91.9 | 139 | 91.9 | 105 | 90.5 | 119 | 91.8 | 200 — 199 | 90.7 | 139 | 91.9
US&UB
Efficiency & Size + 107 | 89.7 | 126 | 91.7 | 163 | 91.8 | 126 | 91.7 | 131 | 91.5 | 200 | 90.8 | 209 | 90.7 | 131 | 91.5
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fg—_1-score of fittest agent on test set (%)

UsS Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size 47 90.4 45 90.4 | 125 | 90.5 45 90.4 45 90.4 | 100 | 90.5 — — 47 90.4
Efficiency 47 | 90.4 | 43 | 90.6 | 49 | 90.6 | 42 | 90.7 | 45 | 90.6 | 100 | 90.7 | — | — | 47 | 90.4
Accuracy 47 | 90.5 | 47 | 90.5 | 97 | 90.6 | 44 | 90.6 | 45 | 90.6 | 100 | 90.7 | — | — | 47 | 90.5
Understanding 47 | 90.5 | 43 | 90.8 | 49 | 90.7 | 47 | 90.5 | 45 | 90.6 | 100 | 90.7 | — | — | 47 | 90.5
Understandability 47 | 90.5 | 47 | 90.5 | — — 42 | 90.7 | 45 | 90.4 | 100 | 90.5 | — | — | 47 | 90.5
Internal Consistency 47 | 90.5 | — — — — 42 | 90.6 | 45 | 90.4 | 100 | 90.7 | — | — | 100 | 90.7
Efficiency & Size + 47 | 90.4 | 56 | 90.7 | — — 43 | 906 | 45 | 904 | 100 | 905 | — | — | 56 | 90.7
Accuracy
US&UB + 47 | 90.5 | 43 | 90.8 | 97 | 90.6 | 43 | 90.8 | 45 | 90.6 | 100 | 90.7 | — | — | 47 | 90.5
Accuracy
Efficiency & Size + 47 [ 90.5 | 73 | 90.7 | — — 44 | 90.6 | 45 | 90.4 | 100 | 90.6 | — | — | 73 | 90.7
US&UB
Efficiency & Size + 47 90.4 42 90.6 — — 41 90.8 45 90.6 | 100 | 90.7 — — 47 90.4
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fp—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — 95 | 90.3 | 91 | 90.4 | 100 | 90.6 | 160 | 89.1 | 160 | 89.1
Efficiency — — 95 | 91.0 | 97 | 91.1 | 93 | 91.0 | 8 | 91.0 | 100 | 90.7 | 153 | 89.0 | 97 | 91.1
Accuracy 39 (912 | 39 | 912 | 40 | 91.2 | 39 | 91.2 | 45 | 90.9 | 100 | 90.6 | 131 | 90.5 | 40 | 91.2
Understanding 62 91.1 62 91.1 81 90.9 62 91.1 61 91.1 | 100 | 90.8 | 134 | 90.4 62 91.1
Understandability 130 | 90.1 | — — — — 82 | 88.0 | 72 | 89.4 | 100 | 90.0 | 139 | 90.0 | 130 | 90.1
Internal Consistency — — — — — — 75 | 90.1 82 | 90.3 | 100 | 90.4 | 137 | 89.3 | 137 | 89.3
Efficiency & Size + 48 | 823 | 8 [ 91.0 | 95 | 90.8 | 87 | 91.0 | 73 | 91.2 | 100 | 91.1 | 129 | 90.3 | 87 | 91.0
Accuracy
US&UB + 46 91.3 63 91.1 | 114 | 90.6 63 91.1 51 91.2 | 100 | 90.7 | 121 | 90.4 63 91.1
Accuracy
Efficiency & Size + 75 | 89.3 | 90 [ 91.0 | 90 | 91.0 | 90 | 91.0 | 80 | 91.2 | 100 | 90.7 | 130 | 90.8 | 90 | 91.0
US&UB
Efficiency & Size + 45 | 80.1 | 62 | 91.1 | 63 | 91.1 | 62 | 91.1 | 60 | 91.1 | 100 | 90.8 | 130 | 90.2 | 62 | 91.1
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

uUsS Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — — — 71 86.3 | 100 | 88.1 | 120 | 87.3 | 120 | 87.3
Efficiency — — — — — — — — 76 | 90.0 | 100 | 90.3 | 118 | 90.2 | 118 | 90.2
Accuracy 48 91.2 60 91.1 60 91.1 60 91.1 51 91.1 100 | 91.2 | 105 | 91.2 60 91.1
Understanding 64 | 91.1 | 70 | 91.1 | 70 | 91.1 | 70 | 91.1 | 62 | 91.1 | 100 | 90.8 | 109 | 90.7 | 70 | 91.1
Understandability 68 | 90.1 | 63 | 90.3 | 119 | 83.1 | 60 | 90.5 | 58 | 90.2 | 100 | 90.4 | 110 | 89.6 | 68 | 90.1
Internal Consistency 70 | 90.3 | — — — — 78 | 90.6 | 63 | 89.6 | 100 | 88.3 | 113 | 90.0 | 100 | 88.3
Efficiency & Size + 82 | 91.0 | 50 [ 91.0 | 76 | 91.0 | 94 | 90.7 | 46 | 91.0 | 100 | 90.7 | 109 | 90.4 | 82 | 91.0
Accuracy
US&UB + 103 | 91.1 | 94 | 909 | 94 | 90.9 | 84 | 91.1 | 52 | 91.1 | 100 | 91.1 | 105 | 90.9 | 94 | 90.9
Accuracy
Efficiency & Size + 57 91.2 64 91.2 68 91.2 64 91.2 58 91.1 | 100 | 90.7 | 101 | 90.7 64 91.2
US&UB
Efficiency & Size + 68 | 91.2 | 55 | 91.2 | 55 | 91.2 | 55 | 91.2 | 49 | 91.1 | 100 | 90.6 | 107 | 90.5 | 55 | 91.2
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size 161 | 64.3 | 225 | 90.5 | 225 | 90.5 | 225 | 90.5 | 198 | 90.5 | 300 | 90.1 — | — | 225 | 90.5
Efficiency 161 | 79.3 — — — — 215 | 88.6 | 198 | 90.0 | 300 | 90.0 — | — | 300 | 90.0
Accuracy 161 | 90.5 | 166 | 90.7 | 216 | 91.2 | 166 | 90.7 | 198 | 90.9 | 300 | 91.0 — | — | 198 | 90.9
Understanding 161 | 90.0 | 196 | 91.0 | 197 | 91.0 | 163 | 90.2 | 198 | 91.0 | 300 | 90.6 — — | 197 | 91.0
Understandability 161 | 76.7 | 231 | 91.0 | 231 | 91.0 | 182 | 86.6 | 198 | 91.1 | 300 | 90.1 — | — | 231 | 91.0
Internal Consistency 161 | 80.6 | 214 | 90.9 | 217 | 90.6 | 214 | 90.9 | 198 | 90.6 | 300 | 90.7 — | — | 214 | 90.9
Efficiency & Size + 161 | 89.0 | 213 | 90.0 — — 213 | 90.0 | 198 | 90.4 | 300 | 90.6 — | — | 213 | 90.0
Accuracy
US&UB + 161 | 90.2 | 233 | 91.1 | 233 | 91.1 | 233 | 91.1 | 198 | 91.0 | 300 | 90.9 — | — | 233 | 91.1
Accuracy
Efficiency & Size + 161 | 79.3 | 206 | 90.9 | 212 | 90.8 | 206 | 90.9 | 198 | 90.7 | 300 | 90.6 — | — | 206 | 90.9
US&UB
Efficiency & Size + 161 | 79.6 | 225 | 90.8 | 225 | 90.8 | 225 | 90.8 | 198 | 90.9 | 300 | 90.1 — | — | 225 | 90.8
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fg—_1-score of fittest agent on test set (%)

UsS Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — 332 | 88.9 | 310 | 87.8 | 350 | 86.8 | 431 | 85.8 | 431 | 85.8
Efficiency — — — — — — 312 | 89.3 | 308 | 89.2 | 350 | 89.3 | 422 | 89.5 | 422 | 89.5
Accuracy 217 | 84.3 | 278 | 92.2 | 279 | 92.2 | 190 | 79.8 | 253 | 92.1 350 | 91.9 | 401 91.2 | 278 | 92.2
Understanding 214 | 78.6 | 275 | 91.3 | 290 | 92.1 | 261 | 90.7 | 263 | 91.1 | 350 | 92.0 | 410 | 90.8 | 275 | 91.3
Understandability 263 | 91.5 | 280 | 90.7 | — — 280 | 90.7 | 271 | 91.2 | 350 | 90.3 | 417 | 90.2 | 280 | 90.7
Internal Consistency — — — — — — 150 | 52.7 | 302 | 88.9 | 350 | 89.3 | 413 | 88.9 | 413 | 88.9
Efficiency & Size + 292 | 92.0 | 264 | 91.2 | 275 | 91.3 | 180 | 65.9 | 293 | 91.9 | 350 | 91.8 | 399 | 90.3 | 292 | 92.0
Accuracy
US&UB + 231 | 86.8 | 257 | 91.8 | 266 | 92.1 | 149 | 62.7 | 271 | 92.2 | 350 | 92.0 | 409 | 91.8 | 266 | 92.1
Accuracy
Efficiency & Size + 207 | 70.2 | 282 | 91.7 | 302 | 91.9 | 130 | 58.7 | 299 | 92.0 | 350 | 91.9 | 423 | 91.1 | 299 | 92.0
US&UB
Efficiency & Size + 247 | 89.4 | 271 | 92.0 | 277 | 92.0 | 228 | 81.4 | 261 | 91.6 | 350 | 91.6 | 412 | 90.8 | 271 | 92.0
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — 337 | 82.3 | 312 | 80.9 | 300 | 80.1 | 412 | 82.1 | 412 | 82.1
Efficiency — — — — — — | 242 | 82.1 | 249 | 83.1 | 300 | 84.2 | 398 | 81.6 | 398 | 81.6
Accuracy 191 | 85.9 | 229 | 91.1 | 246 | 92.1 | 158 | 75.9 | 250 | 92.2 | 300 | 92.1 | 351 | 91.8 | 246 | 92.1
Understanding 116 | 64.3 | 231 | 91.9 | 231 | 91.9 | 182 | 89.4 | 213 | 92.0 | 300 | 91.8 | 361 | 90.7 | 231 | 91.9
Understandability — — — — — — 142 | 59.6 | 213 | 89.9 | 300 | 90.0 | 355 | 89.7 | 355 | 89.7
Internal Consistency — — — — — — | 211 | 83.3 | 249 | 89.7 | 300 | 89.9 | 365 | 90.2 | 365 | 90.2
Efficiency & Size + 192 | 91.2 | 186 | 90.8 | 216 | 91.6 | 96 | 60.9 | 209 | 91.8 | 300 | 91.3 | 349 | 90.6 | 209 | 91.8
Accuracy
US&UB + 244 | 92.2 | 232 | 92.2 | 232 | 92.2 | 165 | 73.2 | 234 | 92.2 | 300 | 91.8 | 331 | 91.3 | 234 | 92.2
Accuracy
Efficiency & Size + 221 | 91.1 | 246 | 91.9 | 246 | 91.9 | 211 | 90.8 | 242 | 91.8 | 300 | 91.6 | 359 | 90.7 | 246 | 91.9
US&UB
Efficiency & Size + 151 | 72.1 | 267 | 92.0 | 267 | 92.0 | 246 | 91.2 | 241 | 91.3 | 300 | 92.0 | 361 | 91.5 | 267 | 92.0
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fg—_1-score of fittest agent on test set (%)

UsS Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size 195 | 88.3 | 266 | 90.5 — — 223 | 90.6 | 241 | 90.9 | 300 | 90.6 — — | 266 | 90.5
Efficiency 195 | 88.1 | 227 | 90.9 | 227 | 90.9 | 227 | 90.9 | 241 | 90.8 | 300 | 90.7 | — | — | 227 | 90.9
Accuracy 195 | 90.9 | 242 | 91.1 243 | 91.1 242 | 91.1 241 91.1 300 | 91.2 — — | 242 | 91.1
Understanding 195 | 90.3 | 212 | 90.6 | 221 | 90.9 | 212 | 90.6 | 241 | 90.8 | 300 | 90.5 | — | — | 221 | 90.9
Understandability 195 | 76.9 | — — — — | 247 | 89.1 | 241 | 88.9 | 300 | 90.3 | — | — | 300 | 90.3
Internal Consistency 195 | 79.8 | — — — — | 205 | 82.1 | 241 | 83.9 | 300 | 90.6 | — | — | 300 | 90.6
Efficiency & Size + 195 | 90.6 | 222 | 90.7 | 222 | 90.7 | 222 | 90.7 | 241 | 90.9 | 300 | 90.6 | — | — | 222 | 90.7
Accuracy
US&UB + 195 | 90.9 | 240 | 91.0 | 240 | 91.0 | 240 | 91.0 | 241 | 91.0 | 300 | 90.7 | — | — | 240 | 91.0
Accuracy
Efficiency & Size + 195 | 83.3 | 254 | 90.7 | — — | 254 | 90.7 | 241 | 90.4 | 300 | 90.8 | — | — | 254 | 90.7
US&UB
Efficiency & Size + 195 | 88.8 | 240 | 91.0 | 240 | 91.0 | 208 | 90.8 | 241 | 91.1 | 300 | 90.8 — — | 240 | 91.0
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — | 351 | 90.6 | 353 | 90.2 | 400 | 90.5 | 478 | 90.1 | 478 | 90.1
Efficiency — — — — — — | 346 | 87.9 | 359 | 88.0 | 400 | 88.2 | 468 | 90.3 | 468 | 90.3
Accuracy 275 | 82.3 | 340 | 92.0 | 340 | 92.0 | 174 | 55.7 | 345 | 92.0 | 400 | 91.8 | 451 | 90.6 | 340 | 92.0
Understanding 246 | 78.1 | 310 | 90.5 | 331 | 91.9 | 310 | 90.5 | 322 | 91.8 | 400 | 90.8 | 448 | 90.6 | 322 | 91.8
Understandability 258 | 79.8 | — — — — | 254 | 79.8 | 322 | 90.8 | 400 | 90.0 | 453 | 89.8 | 400 | 90.0
Internal Consistency 344 | 90.2 | 361 | 90.3 | — — | 303 | 84.3 | 350 | 90.3 | 400 | 89.5 | 461 | 89.0 | 361 | 90.3
Efficiency & Size + 166 | 59.3 | 288 | 90.3 | 291 | 90.5 | 165 | 59.5 | 310 | 91.0 | 400 | 91.0 | 434 | 89.9 | 291 | 90.5
Accuracy
US&UB + 265 | 84.3 | 330 | 91.0 | 342 | 91.8 | 279 | 85.7 | 352 | 92.0 | 400 | 92.0 | 441 | 91.5 | 342 | 91.8
Accuracy
Efficiency & Size + 381 | 91.9 | 370 | 92.0 | 370 | 92.0 | 238 | 60.6 | 374 | 92.0 | 400 | 91.8 | 455 | 90.3 | 374 | 92.0
US&UB
Efficiency & Size + 244 | 76.3 | 300 | 91.1 | 320 | 91.9 | 275 | 88.3 | 329 | 91.9 | 400 | 90.9 | 423 | 89.9 | 320 | 91.9
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fg—_1-score of fittest agent on test set (%)

UsS Understanding

UB Understandability
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Fitness Function FS vs FA vs FA vs Plateau Under- Limit Limit Majority
TS TS FS Detect. Stand. LG Gen. Voting

HP|F HP|F HP|F HP|F HP|F HP|F HP|F HP|F
Size — — — — — — 379 | 87.1 | 387 | 87.9 | 400 | 88.3 | 440 | 87.2 | 440 | 87.2
Efficiency — — — — — — 354 | 90.3 | 350 | 90.2 | 400 | 88.9 | 431 | 86.9 | 431 | 86.9
Accuracy 327 | 90.7 | 347 | 92.0 | 347 | 92.0 | 248 | 78.3 | 340 | 91.9 | 400 | 91.6 | 425 | 90.9 | 347 | 92.0
Understanding 271 | 84.1 | 329 | 90.6 | 340 | 91.6 | 304 | 89.3 | 274 | 81.9 | 400 | 91.6 | 419 | 91.5 | 329 | 90.6
Understandability — — — — — — 266 | 85.3 | 351 | 87.6 | 400 | 88.4 | 403 | 88.4 | 403 | 88.4
Internal Consistency — — — — — — 121 | 45.9 | 250 | 70.6 | 400 | 838.1 | 409 | 88.0 | 409 | 88.0
Efficiency & Size + 260 | 75.2 | 310 | 90.8 | 333 | 92.0 | 257 | 78.6 | 340 | 92.1 | 400 | 90.9 | 419 | 90.7 | 333 | 92.0
Accuracy
US&UB + 309 | 91.5 | 333 | 92.0 | 368 | 92.1 | 243 | 74.9 | 300 | 91.0 | 400 | 91.9 | 427 | 91.8 | 333 | 92.0
Accuracy
Efficiency & Size + 370 | 91.7 | 335 | 91.9 | 335 | 91.9 | 260 | 81.0 | 353 | 91.9 | 400 | 90.5 | 401 | 90.5 | 353 | 91.9
US&UB
Efficiency & Size + 316 | 91.2 | 311 | 91.1 | 347 | 91.9 | 306 | 91.1 | 310 | 90.9 | 400 | 91.1 | 413 | 90.9 | 316 | 91.2
Accuracy + US&UB
Legend FS Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

HP Halting Point

F Fpg—1-score of fittest agent on test set (%)

US Understanding

UB Understandability
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E.1

E.2

E.3

E.4

E.5

GRAEL-1 wsJ Full Results Tables

20 Agents
10 Agents
5 Agents

50 Agents

100 Agents
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UsS US+AC

HP ‘ Fg—1 | HP ‘ Fg=1

FS vs TS — | — 1252 80.5
FA vs TS — | — 184 | 814
FA vs FS — | — 184 | 814
Plateau — | — 184 | 814
Understanding | 153 | 81.2 | 149 | 81.3
Limit LG 250 | 81.2 | 250 | 80.5
Limit Gen 342 | 79.8 | 333 | 79.7
Majority Voting | — | — | 184 | 814

FS  Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

LG Language Games

HP Halting Point

US Understanding Fitness Function
AC Accuracy Fitness Function

Table E.1: GRAEL-1 wsJ - 20 Agents - Crossover - Halting Points and F-
scores on Test Set
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US US+AC

HP [Fy_, [ HP [ Fsy

Table E.2: GRAEL-1 wsJ - 10 Agents - Crossover - Halting Points and F-

scores on Test Set

FS vs TS — | — 103 80.9

FA vs TS — — | 118 | 81.2

FA vs FS — | — | — | —

Plateau — | — [ 118 | 81.2

Understanding || 122 | 81.1 | 113 | 81.1

Limit LG 200 | 80.5 | 200 | —

Limit Gen 211 | 80.6 | 181 | 80.8
Majority Voting | — | — | 118 | 81.2

FS  Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

LG Language Games

HP Halting Point

US Understanding Fitness Function

AC Accuracy Fitness Function
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UsS US+AC

HP ‘ Fg—1 | HP ‘ Fg=1

FS vs TS — | — | — | —
FA vs TS — | — | 77 | 80.3
FA vs FS — | — | — | —
Plateau — | — | 59 | 80.1
Understanding 72 1 80.0 | 79 | 80.3
Limit LG 100 | 80.1 | 100 | 80.4
Limit Gen 122 | 80.2 | 115 | 80.5
Majority Voting | — | — | 100 | 80.4

FS  Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

LG Language Games

HP Halting Point

US Understanding Fitness Function
AC Accuracy Fitness Function

Table E.3: GRAEL-1 wsJ - 5 Agents - Crossover - Halting Points and F-scores
on Test Set
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US US+AC

HP [Fy_, [ HP [ Fsy

Table E.4: GRAEL-1 wsJ - 50 Agents - Crossover - Halting Points and F-

scores on Test Set

FS vs TS — | — 223|814

FA vs TS — | — | 199 | 81.3

FA vs FS — | — | — | —

Plateau — | — | 138 ]| 81.2

Understanding || 175 | 81.3 | 214 | 81.4

Limit LG 250 | 81.3 | 250 | 81.4

Limit Gen 301 | 80.8 | 298 | 81.0
Majority Voting | — | — | 223 | 814

FS  Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

LG Language Games

HP Halting Point

US Understanding Fitness Function

AC Accuracy Fitness Function
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US US+4+AC

HP ‘ Fg—1 | HP ‘ Fg=1

FS vs TS — | — 1260 | 81.4
FA vs TS — | — ]266 | 81.4
FA vs FS — | — 1260 | 81.4
Plateau — — | 260 | 81.4
Understanding || 255 | 81.4 | 251 | 81.4
Limit LG 300 | 81.4 | 300 | 81.3
Limit Gen 342 | 81.3 | 359 | 81.3
Majority Voting | — | — | 260 | 81.4

FS  Full Society Accuracy

TS Training Set Accuracy

FA Fittest Agent Accuracy

LG Language Games

HP Halting Point

US Understanding Fitness Function
AC Accuracy Fitness Function

Table E.5: GRAEL-1 wsJ - 100 Agents - Crossover - Halting Points and
F-scores on Test Set
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ADJP
ADJIP
ADJP
ADJP
ADVP
FRAG
FRAG
FRAG
FRAG
FRAG
FRAG
FRAG

2
s
R A R Yy

— ADVP NP

— NP INTJ

— NP NP NP NP

— NP NP PP PP

— NP PP ADVP

— PP PP VP

— PP VP

— WHNP PP

CC NNP CC NNP

CD

CD CD CD RB

CD JJ

DT ADJP NN

DT CD CD CD NN

DT CD CD NN

DT CD NN NN

DT JJ NNP NN

DT JJ X NNS

DT JJS JJ NN NNS

DT JJS NNS

DT NN NN SYM

DT NN SYM CD

DT NN SYM SYM SYM CD CD
DT NNP NNP CD CD NN
DT NNP NNP NN

DT NNP NNP NNP NN
DT NNP NNP NNP NNS
DT NX

JJ JJ NN

JJ NNP NNS

JJS NN NN

JJS NN NNS

JJS NNS

NN NN NN

NN NN NNP NNP CD CD CD CD

NN NN SYM

NP — NN NNP NNP
NP — NN NNP NNP CD CD
NP — NN NNP NNP CD CD CD
NP — NN NNP NNP CD CD CD CD CD
NP — NNP CD CD

NP — NNP CD CD CD

NP — NNP CD CD CD CD
NP — NNP NNP NN

NP — NNP NNP NNS§

NP — NNP NNS

NP — NNPS

NP — NP CC ADVP NP

NP — NP CC PP PP

NP — NP NNS

NP — NP NP PP PP PP

NP — NP NP PP X PP

NP — NP PP ADJP

NP — NP PP NP

NP — NP PP PP ADVP NP
NP — NP PP PP NP ADVP
NP — NP PP PP PP NP

NP — NP PP PP PP VP

NP — NP PP VP VP

NP — NP SBAR PP

NP — QP NNS QP

NP — RB DT NNP NNP NNS
NP — RB VBG NNS

NP — WDT NNS

NX — NN

NX — NN NN

NX —» NX CC NX

PP — ADVP IN NP

PP — IN

PP — IN ADJP

PP — IN CC IN NP

PP — NP IN S

PP — PP CC PP

PP — PP PP

PP — TO ADVP

PP — TO INTJ

PRT — RP

QP — CC JIR

QP — CD CD CD CD

QP — RB JJR IN CD CD CD
S — FRAG

S — NP ADVP VP

S—SS

SBAR — WHNP SQ

SBAR — XXX

SBARQ — PP WHNP SQ

SQ — INTJ MD NP VP

SQ — VBP NP NP PP PP NP SBAR

SQ — VBP NP PP

SQ — VBZ NP PP

SQ — X VBZ NP ADJP
VP — NN NP

VP — VB

VP — VB ADVP NP
VP — VB ADVP PP ADJP PP
VP — VB NP ADVP
VP — VB NP PP ADVP
VP — VB NP PP PP
VP — VB NP PP X PP
VP — VB PP PP NP
VP — VB PRT NP

VP — VBD NP

VP — VBN NP

VP — VBP FRAG

VP — VBP PP PP NP
VP — VBP RB VP

VP — VBP VP

VP — VBZ VP

VP — XXX

WHNP — NP PP PP PP
WHNP — WHNP ADJP

WHNP — WHNP PP PP NP SBAR
WHNP — WHNP PP PP PP PP PP

WHNP — XXX
X =17

X =S

X — SBARQ

X — VBZ NP
X — WRB IN



456 APPENDIX F : 124 UNIQUE RULES IN GRAEL-2 TEST SET




Grammar Induction failure

We try to induce a tree-structure for a fragmentary sentence like flights from Los
Angel’s to Toronto. The original tree-structure for this sentence is displayed in
FigureG.1.

1.3T 1.2 0.4 22—~ ,— 2.2
mﬁs in nlp Tp to nlp
3.3 1.9 1.2 1.9

2.0 0.2

Starting off with this situation, there are two bigrams with the same lexical
attraction value. We choose the one with the largest amount of information content
and create a constituent:
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FRAG
|
NP
NP PP PP
nnp in NP to NP
| o~
flights from nnp nnp 10 IlI|lp
| | Toronto

Los Angeles

Figure G.1: Original Tree-Structure

2.2
‘r13w— #041/ \(—22 S

The next sequence under consideration is “nnp to”, which creates a new leaf
to the constituent headed by to:

.............. X
to
\( 2.2
to
13T1.2 / \ 29
L nlp nnp t nnp
1.2 1.9 2.0 0.2
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Next we choose the highest attachment point for the sequence “to nnp”. This
provides a conflict where a node is headed by two other nodes. Resolving this
situation, we obtain the following structure:

------------------- ' G EE RPN
to
to
to
1.3 T 1.2 / \
an in nlp nnp to nnp
3.3 1.9 1.2 1.9 2.0 0.2
The “nns in” sequence is next:
....................... b R R
to
to
" ya
nns to
/ \ 12 / \
nns in nnp nnp to nnp
3.3 1.9 1.2 1.9 2.0 0.2

This leaves us with only one linking to resolve and a troublesome one at that,
since it presents us with the added difficulty of two leaf nodes to join in one con-
struct. The grammar induction tries to minimally interfere with the segmentation
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and labeling we committed to earlier. We can identify three options for joining
these two structures:

The first option just

introduces a new top- nns
level-item and joins /\
whatever constituents nns to
are left. PN /\
nns in
nnp to
/\
to nnp
N
nnp to

The second option
attaches the nns-

nns
constituent as a /\

leaf node on the

nns to
to-constituent. This P
however changes the nns nnp to nnp
label of the root-node SN P
which is not allowed. nns - in nnp  to

The 3rd option attaches

the to-constituent as a nns

leaf-node of the nns- /\

constituent. This is al- nns to

lowed, since it does not /\
change the root-node la- in to

bel. Since the first op- /\
tion is only used when nnp to

neither option is valid, P
the grammar induction to nnp
uses this constituent. N

nnp to

The structure that is induced is however totally wrong: Figure G.2 shows the
tree-structure with the words attached. The flattened tree (Figure G.3) and re-
labeled flattened tree (Figure G.4) appear a bit better, but overall, the grammar
induction fails on this sentence.
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nns
nns to
| /\

flights

n to

| /\

from
nnp to
| /\
Los to nnp
TN |
nnp to  Toronto
| |
Angeles to
Figure G.2: Binary Branching Output
nns
nns to
s |

flights

n nnp nnp to nnp

from  Los Angeles to Toronto

Figure G.3: Flattened Tree
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nns
nns in
|
flights
in nnp
|
from
nnp to nnp
| TN |
Los nnp to  Toronto
| |
Angeles to

Figure G.4: Re-labeled flattened tree



Symbols used in the Penn Treebank

ADJP Adjectival Phrase ADVP | Adverbial Phrase
CONJP Conjunction Phrase FRAG Fragmentary Phrase
LST List marker NP Noun Phrase

NP-SBJ Subject-NP NX Head of NP in complex NP
PP Prepositional Phase PRN Parenthetical

PRT Particle QP quantitative Phrase
RRC Reduced Relative Clause SBAR Conjoined S-Phrase
SBARQ WH-Question SINV Inverted decl. sentence
SQ Inverted yes/no question || VP Verb Phrase
WHADVP | WH-Adverbial Phrase WHNP | WH-Noun Phrase
WHPP Wh-prepositional Phrase || X Unknown

Table H.1: Syntactic Category Labels in the Penn Treebank
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APPENDIX H : SYMBOLS USED IN THE PENN TREEBANK

Tag ‘ Description ‘ Example
CC coordinating conjunction and

CD cardinal number 1, third

DT determiner the

EX existential there there is
FW foreign word d’hoevre

IN preposition/subordinating conjunction | in, of, like
JJ adjective green

JIR adjective, comparative greener

JJS adjective, superlative greenest

LS list marker 1)

MD modal could, will
NN noun, singular or mass table

NNS noun plural tables

NNP | proper noun, singular John

NNPS | proper noun, plural Vikings
PDT | predeterminer both the boys
POS possessive ending friend’s
PRP | personal pronoun I, he, it
PRP$ | possessive pronoun my, his

RB adverb usually
RBR | adverb, comparative better

RBS adverb, superlative best

RP particle give up

TO to to go, to him
UH interjection uhhuhhuhh
VB verb, base form take

VBD | verb, past tense took

VBG | verb, gerund/present participle taking

VBN | verb, past participle taken

VBP | verb, sing. present, non-3d take

VBZ | verb, 3rd person sing. present takes

WDT | wh-determiner which

WP wh-pronoun who, what
WP$ | possessive wh-pronoun whose

WRB | wh-abverb where, when

from http://www.mozart-oz.org/mogul/doc/lager/brill-tagger/penn.html

Table H.2: The Penn Treebank Tag Set




Set of 100 fixed Meanings

1.1 4 Attributes

happy (Agent0) sad(Agent1)
stinky (dog) hungry(tiger)

1.2 96 Relations

I.2.1 18 x [+ animate] [+ animate]

and(fish,Agent3) not (dog,Agent2)
and(Agent2,Agent9) not(Agent3,Agent4)
eat (bear,dog) fight (tiger,Agent5)
hit(ape,tiger) see(horse, snake)
runto(dog,pig) catch(Agent0,ape)

kick(Agent2,Agentl) offer(Agent3,fish)



466 APPENDIX I : SET OF 100 FIXED MEANINGS

fear (Agent4,lion) chase(Agent5,tiger)
throw(Agent6,duck)  talk(Agent7,Agent2)
know(Agent8,Agentl) love(Agent9,AgentO)

I.2.2 18 x [+ animate] [- animate]

and (Agent4,stick) catch(pig,leaf)
chase(Agent6,flower) eat(horse,nut)
fear(lion,bone) fight (Agent1,society)
hit (Agent9,bed) kick(duck,nut)

know (Agent9,bone) love (Agent4,lake)
love(fish,river) not (ape,sand)

not (Agent0,bed) offer(horse,leaf)
runto (Agent0,bone) see(horse,coat)

talk(Agent7,society) throw(ape,bone)

1.2.3 60 Complex Relationships

hit (happy(agent9) ,egg)
kick(sad(snake) ,duck)

know (happy (bear) ,agent5)

love (hungry(agent9) ,egg)

runto (sad(snake) ,bone)

talk (hungry(agent3) ,ape)
catch(chase(agent2,ape) ,duck)
chase(fish,love(agent9,horse))

eat (duck,know(tiger,agent2))
fear(stinky(agent4) ,happy(agent2))
fear(talk(agent9,agentl) ,fire)
fight (snake,know(agent2,lion))
fight (throw(agent2,fish) ,sand)

hit (eat (agent9,tree) ,egg)

know (agent8, (runto(agent9,river)))
know (agent8,hit (agent3,flower))
know (hungry (tiger) ,happy (bear))
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love (agent8,eat (snake,nut))
love(hit(tiger,tree) ,ape)
not(dog,love(tiger,agentb))
not(talk(agent5,bear) ,bear)
runto(and(duck,fish) ,agent7)
runto(and(lion,agent9) ,house)
runto(bear,love(agent4,fruit))
runto(dog,chase(agent4,lion))

runto (horse,love(tiger,agent2))
runto(not (agent3,agent7) ,ape)
see(agent0,fight (agentl,fire))
see(ape,love(agent0,agent2))
see(snake,runto(agentl,dog))
talk(agent0,and(agent9,dog))
talk(agent9,see(agent2,fish))
throw(agent2,and (horse,pig))
throw(fish,hit(agent7,tree))
throw(snake,catch(agent4,fire))

and (hungry (agent5) ,1ove(agent8,pig))
catch(fight (stinky(agent5) ,bear) ,snake)
fight (happy(agent3) ,chase(agentl,tiger))
fight (sad(bear) ,fear(agent7,lion))

fight (stinky(dog) ,runto(agent8,sand))
know (horse,eat (sad(duck) ,seed))

know (stinky(bear) ,hit (agent8,agent5))
love (agent3, chase (happy(agent9) ,duck))
not (sad(agent6) ,and (bear,agent6))
runto(agent4,talk(agent4,sad(horse)))
runto (happy(bear) ,chase(agentl,agent8))
talk(agent9,runto (bear,stinky(horse)))
talk (stinky(agent?2) ,love(bear,lake))
catch(sad(horse) ,see(sad(agent4) ,agent5))
chase(love (agent5,ape) ,chase(agent6,lion))
chase(see(know(ape,bed) ,agent9) ,pig)
chase(and(agent6,agent7) ,eat (tiger,pig))
kick(horse,chase(sad(fish) ,stinky(bear)))
love(stinky(ape),catch(happy (ape),seed))
see(and(bear,snake) ,hit (agent0,horse))
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talk(catch(dog,catch(fish,house)) ,fire)
know (agentb5(chase (agent0,
love (agent4,
fight (duck,happy(pig))))))
hit(fish,talk(agent4,
see (hungry(agent8),
kick(sad(agent4) ,snake))))
runto(sad(agent4) ,and(agent?2,
and(and(agent3,tiger),
catch(agent4,stick))))
chase(offer (runto(eat(chase(stinky(agent6),
love(agent1,happy(duck))),
agentl) ,pig) ,flower),
not (see(chase(fish,fruit) ,seed) ,tree),society)



Abbreviations

J.1 GRAEL Instantiations

GRAEL-1 Grammar Optimizations
GRAEL-2 Grammar Rule Discovery

GRAEL-3A-1  Unsupervised Grammar Induction.
Pre-processing Stage by GIM. Parsing by pPmMPG

GRAEL-3B-1  Unsupervised Grammar Induction.
No Pre-processing Stage. Parsing by pMPG

GRAEL-3AB-2 Unsupervised Grammar Induction.
Parsing by GIM

GRAEL-4 Computational simulation of the emergence of grammar
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APPENDIX J : ABBREVIATIONS

J.2 Terms

0oCB
A
AA
AC
ADC

ADcC

ATIS

C

CFG

D

DOP

E

EF
F-score

FA
FS
GIM
GRAEL

1C

M
LAD
LG
LGR

Zero-Crossing Brackets
Adding Nodes

Average Agent

Accuracy on Validation Set
Adding, Deleting, Changing
Nodes

Adding, Deleting, Changing
Nodes (weighted)

Air Travel Information System
Changing Node Labels
Context-Free Grammar
Deleting Nodes

Data-Oriented Parsing
E-language

Efficiency

Weighted Average of LP and
LR

Fittest Agent

Full Society

Grammar Induction Method
Grammar Evolution
I-language

Internal Consistency

Internal Mutation

Language Acquisition Device
Language Game

Language Game run

LP
LR
M?
MBL
MDL
NCM
P&P
PCFG

PMPG

RC
SE
SELFIT

SELPRO

SI
Sp
TS
UB
UG
us

WSJ
X0
XV

Labeled Precision

Labeled Recall

Mutation Type
Memory-Based Learning
Minimum-Description Length
Noisy Channel Mutation
Principles and Parameters
Probabilistic Context-Free
Grammar

Pattern-Matching Probabilis-
tic Grammar

Random Crossover

Single Epoch

Fitness function that selects
candidate for evaluation
Fitness function that selects
candidates for reproduction
Size

Splicing

Training Set
Understandability

Universal Grammar
Understanding (Accuracy on
other agents)

‘Wall-Street Journal

Crossover

Cross-Validation



