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Chapter 1

Introduction

Language provides humans with the ability to convey information using a
set of shared symbols, called words. The intriguing question of how the
relation between words and meaning is achieved is not well understood,
e.g. (Kripke, 1972; Putnam, 1975, 1988; van Orman Quine, 1975; Marconi,
1997). As the title indicates, the study in this thesis concerns autonomous
agents. An autonomous agent is a system, situated in an environment, that
receives sensor information, selects actions, and receives evaluative feedback
expressing the appropriateness of its behavior. A recent direction in arti-
ficial intelligence research studies the question of how such autonomous
agents can function and adapt their behavior to the requirements posed
by their environment, see e.g. (Agre & Chapman, 1987; Maes, 1989; Beer,
Chiel, & Sterling, 1990; Sutton, 1990; Wilson, 1990; Beer & Gallagher,
1992; Steels, 1993; Clancey, 1997). An autonomous agent can be a soft-
ware system, in which case the environment is simulated, or a hardware
system, in which case the environment is the physical world. It is called
autonomous because it receives no instructions from outside but has to
decide on itself what actions it will produce. Setting the particular proper-
ties of human language aside, the above question may be formulated more
generally as the question of how a population of autonomous agents may
develop a system for communicating information about their environment.
The research in this thesis addresses this question, and delivers several
contributions relating to it.

Insight into this general question may not only explain aspects of ex-
isting systems of communication, but can also be put to use in the design
of autonomous agents that develop communication about their environ-
ment. This is important when the possible situations that may arise in



2 CHAPTER 1. INTRODUCTION

the environment of these agents are partly unknown at the time of de-
sign. In such cases, the capacity of developing a system for communication
that can adapt to the requirements posed by the particular environment in
which the agents find themselves is essential. The importance of being able
to communicate derives from the advantage in coordinating behavior that
this ability brings.

Many different forms and aspects of the research question can and have
been investigated. In order to specify which aspects are of interest to
the current investigation, the different choices that can been made and
corresponding research will first be discussed.

1.1 Animal Communication, Evolved Communi-
cation, and Learned Communication

A reliable way to learn something about a phenomenon is to study existing
examples of it. Thus, it is no surprise that much research has investigated
the use of communication by animals, as will be discussed first. Most
animal communication systems have genetically evolved. Much of the early
simulation research also dealt with evolved communication, but the present
investigation will consider learned communication.

1.1.1 Animal Communication

A large amount of research exists that studies communication in the ani-
mal world. An excellent overview of such research has been given by Marc
Hauser (1997). This research belongs to the realm of biology, and is primar-
ily concerned with the particular behavior that animals display. In other
work, the focus is on the investigation of general laws and principles that
apply to the phenomena studied in biology and ethology. An example is
the work by Maynard Smith applying game theory to evolution, e.g. (1982).
The relevance of theoretical biology to biology is that it may explain why
and under what circumstances particular behaviors or phenomena may be
observed. For example, if evolution takes place in a competitive environ-
ment, as is the case in natural evolution, an important question is how
reliability of signals is achieved (Maynard Smith & Harper, 1995), and the
related question arises of when the altruism required for sharing informa-
tion evolves, see e.g. (Ackley & Littman, 1994). One explanation that has
gained momentum is that a reliable signal must be costly (Zahavi, 1975,
1977), as the handicap involved in displaying such a signal can only be
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afforded by highly fit individuals. The feasibility of this idea has been
demonstrated in theory as well as in autonomous agent simulations, see
(Wheeler & de Bourcier, 1995).

The use of agent based simulation is an interesting extension of the
methods of theoretical biology; another good example of such work is pro-
vided by Jason Noble’s thesis (1998). Noble considers simulation research
performed in the fields of artificial life and adaptive behavior as a tool
for testing models in biology (or other sciences). Indeed, an important
problem with artificial life research is that the number of artificial models
that can be constructed and subsequently explored is infinite, and many
of those possible models are of no interest whatsoever; the condition that
the model should have something to say about the real world, for example
about biology, is a useful criterion to address this problem. However, the
criterion is needlessly restrictive, as will be discussed in section 1.10; it ex-
cludes research that tries to develop methods that are not present in the
world yet but nonetheless useful. Both computer science and mathematics
abound with examples of such research, and also artificial intelligence is not
only interested in understanding human intelligence but at least as much
in possible architectures of other intelligent systems. Thus, experiments
concerning the development of communication may not only serve to im-
prove our scientific models of human and animal communication, but also
to gain knowledge about how artificial constructs may develop communi-
cation. An example of where such knowledge could be usefully applied is
the development of multi-agent systems (of robots or in software) where
new agents are allowed to enter the system and where the imposing the
restricting condition that the agents must speak a fixed, given language is
not acceptable. For these reasons, the research here is not restricted to
learning about the behavior of actual animals.

1.1.2 Evolved vs. Learned Communication

A substantial amount of simulation work on communication addresses the
question of how systems of communication can genetically evolve, that is,
how can a population of agents that do not communicate initially evolve
towards population that does communicate, see e.g. (Werner & Dyer, 1991;
MacLennan, 1991; Di Paolo, 1997; Hurford, 1989; Noble, 1998). A differ-
ent question is how an existing population can develop communication, in
which case we speak of a learned communication system, or of cultural evo-
lution. A crucial difference between evolved and learned communication is
that the latter form of communication can adapt at a much smaller time
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scale, namely during the life of an agent, in response to requirements posed
by the environment. As the ability of communication to adapt to the en-
vironment is highly desirable when agents are to coordinate their behavior
in an environment unknown at the time they were designed, this research
will address the question of how communication can be learned. Existing
work addressing this question is discussed in sections 1.4 and 1.5.

1.2 Discrete vs. Analog Communication

Concerning the interpretation or description of signals, a distinction can
be made between discrete and analog communication. Discrete communi-
cation uses a number of distinct signals, e.g. letters or words, to encode
information. An example of such an encoding is given by the signals used
in digital circuits, where two logical states are distinguished: zero and one.
In contrast, in analog communication, signals are not distinct but have an
infinite number of possible states, and small differences in the signal are
meaningful. Analog signals can usually be represented by a real variable
that changes as a function of time. Underneath digital systems there often
is an analog system. In the example of the digital circuit, the two logical
values are represented by different voltage levels. The physical states cor-
responding to the two states of a bit of information are only two possible
values of an in principle continuous voltage level. Likewise, although the
sound produced by the human voice is perceived as a sequence of distinct
vowels and consonants, the underlying acoustical signal displays a variety
that is far greater than the number of letters used to represent it. Although
hybrid systems exist, it is useful to distinguish between discrete and analog
signals.

The advantage of discrete communication over analog communication
is in its robustness against noise. When a spoken A is correctly perceived
as an A and subsequently reproduced, chances are that this reproduction
will again be interpreted successfully, as a result of the tolerance in the
production and interpretation process; since there is only a limited number
of discrete values that has to be encoded in the analog signal, the analog
values can be chosen such that they are not too easily confused. Likewise,
the voltage levels corresponding to zero and one are sufficiently far apart
not to be confused by noise or other variations under normal circumstances.
Likewise, the sounds of the vowels of a language are distributed over the
acoustic space such that small errors in production and perception are tol-
erated. In analog communication on the other hand, where even small
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distinctions between the possible real values of the signal may carry mean-
ing, this fault tolerance and error correction is not present. Thus, a note at
a random pitch sung by one person may, when perceived and subsequently
reproduced by another person, be slightly lower or higher than the original
note’.

If analog information has to be replicated often, the small errors in the
reproduction process accumulate, and information about the signal is lost.
Thus, much of the power of discrete communication is in its capacity to
retain information in the presence of noise. A property that often accom-
panies discrete communication is that the nature of the signal has no direct
relation to its meaning, but is in a sense arbitrary. Such arbitrary signals
are called symbols (Eco, 1976; Maynard Smith & Harper, 1995). An ex-
ample of a communication system where there is a direct relation between
a signal and its meaning, as is common in the animal world, is that of the
European Blackbird. The territorial males of this species vary the intensity
of their songs in relation with the amount of aggression evoked by intruders
(Hauser, 1997)2. The present investigation will be limited to discrete com-
munication; apart from the above considerations, an additional advantage
is that the investigation of this form of communication is more straightfor-
ward given the symbolic nature of the experimental platform provided by
computers.

1.3 Grammar

The research question focuses on how information about the environment
may be communicated, as this particular subject of communication is most
relevant to the goal of coordinating the behavior of agents by sharing infor-
mation. The most basic case that can be studied is that where a message
of a single symbol, called word or signal in this thesis, yields information
about aspects of the environment, and this case will be studied here. A
more sophisticated case arises when multiple words may be used in a mes-

!The example assumes that no musical context is present; if it were, the pitch would
not be random, but would be interpreted as an approximation to one of the tones in the
musical scale, in which case the system would be properly modeled as discrete.

2Hauser presents the European Blackbird system as an example of graded communi-
cation, which he notes Marler defines as communication where signal variation is con-
tinuous, lacking clear acoustic boundaries for demarcating one signal type from another.
However, in the description of this system, three categories of signals are distinguished
(low-intensity, high-intensity and scrambled song). The non-arbitrariness of the Black-
bird example is perhaps a clearer aspect than its gradedness.
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sage describing the situation, especially when the order of the words affects
the meaning of the message. In the latter case, information can be encoded
in a more efficient way, and the issue of grammar begins to play a role, see
e.g. /citebatali:98, kirby:99,steels:1998a,.

1.4 Concepts and their Formation

The aforementioned aspects of the environment about which communica-
tion yields information are called features. Features are used in pattern
recognition (Duda & Hart, 1973) to denote information that can be used
for classification, and as a concept may be viewed as a pattern, concepts
are often seen as consisting of features (Bala, De Jong, Huang, Vafaie, &
Wechsler, 1996; Schyns, Goldstone, & Thibaut, 1998). Typical examples
of features used in pattern recognition systems are color features (redness,
or the quality of being green), texture features (rough, smooth), orientation
features, etc., but in principle there is no limit to the complexity of the
patterns a feature detects.

The meaning of a word is determined by the features with which it
is associated. The complex of features that determines to what extent
a word is applicable will be called a concept or meaning. Since concept
formation is performed by individual agents, concepts are entities internal
to the agent. The publicly observable aspects of the environment to which
they refer are called referents. This section considers the role of concepts
in the development of communication.

1.4.1 Universal Concepts?

The notion of a concept appears to reduce the problem of establishing a
relation between words and sets of features to that of establishing relations
between words and concepts. However, this raises the question of where
concepts come from. A possible answer to this question is that agents
have universal concepts at their disposal. This means that the concepts a
situation gives rise to in different agents are the same, in the sense that
they are evoked in the same situations. In this case, the only task faced
by agents is to establish a relation between shared concepts and words.
This explanation will be called the universal concepts hypothesis. Although
the idea that concepts are universal may appear difficult to maintain, it
does exist, for instance as part of the idea that language is a timeless,
unchangeable, objective structure, see (Katz, 1981).
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To make the discussion easier to envisage, it will be useful to consider
the case of human language. The universal concepts hypothesis appears to
provide an accurate account of the lexicons used in human languages. Dic-
tionaries give a description for each word, and although a word may have
several meanings and several words may share a meaning, an underlying
assumption behind the very existence of a dictionary is that the meaning
of a word is independent of the person using it. However, the hypothesis
also raises serious questions. A particularly striking question is how the
hypothesized identical concepts end up in the heads of people. A purely
nativist explanation must be ruled out by the immediate observation that
the meaning of at least certain words can only be learned during a per-
son’s life, for the very reason that many new words did not exist when the
person was born (e.g. words for new technological inventions). But even
slightly more sophisticated models that assume people simply need to learn
a number of truth conditions in order to acquire the meaning of a concept
implicitly make the very strong assumption that there is a single concept
that is shared by every speaker of a language. The immediate observation
that different people, when asked to define a word, come up with different
features as defining properties raises doubts concerning the realism of this
assumption.

In (Fodor, 1998), several conditions for a theory of concepts are pro-
posed. The conditions result from the viewpoint of the Representational
Theory of Mind, which assumes that laws can be formulated specifying
causal relations between beliefs, desires, and intentions. Among these is
the condition that concepts should be public, and shared by people. The
research that is presented here and the previously mentioned work by Steels
explores another possibility. Whereas Fodor states that there must be (in-
finitely) many primitive concepts, another possibility is that concepts can
be formed, as will be discussed in the following sections.

Research into the development of communication can be grouped ac-
cording to whether it assumes that concepts are already present or not. In
the first case, the problem to be addressed is how a relation between the
existing concepts of agents and public signals or words can come about. An
example is the work of Oliphant (1997), where each agent possesses a num-
ber of concepts that abstractly represent situations, and perfect coherence
regarding these concepts is assumed in the sense that all agents will al-
ways observe the same situation. Thus, the concepts are public, in that the
current situation is always known to each agent, or, in other words, a one-
to-one correspondence between referents and concepts is given. Oliphant’s
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thesis presents experiments on both evolved and learned communication.
The latter experiments concern Bayesian learners that attempt to commu-
nicate optimally with the current population, biased by a normalization
procedure that assumes a one-to-one relation between concepts and words.

The given presence of concepts does not imply that those concepts are
public however. MacLennan, in one of the first papers presenting simu-
lations concerning the evolution of communication (1991), has considered
experiments where each agent has access to a private part of the state of
the environment. The evolution of communication allows agents to share
this private information by establishing a correspondence between concepts
and signals. The interesting question of how these private concepts arise is
not addressed.

Research on communication that assumes the concepts are already
present leaves a substantial part of the question of how communication
may develop unaddressed, viz. the question of how these concepts are ac-
quired. We will now turn to this question.

1.4.2 The Acquisition of Concepts

It has been seen that the universal concepts hypothesis incorporates a
rather strong assumption and has consequences that are difficult to ex-
plain. In this thesis, an alternative explanation for the coherent relation
between situations and words is explored. While the idea of universal con-
cepts is difficult to defend, the idea that concepts are constructed by each
individual based on interaction with the world and the people one meets
raises a new question that is perhaps as difficult: how can the relations
between words and the concepts formed by individuals develop such that
these individuals use the same words in approximately the same circum-
stances? It is clear that such a situation can only come about if there is a
strong coherence between the concepts people maintain.

Two main sources for this coherence can be identified. First, people may
construct concepts because they are useful, independent of communication.
For an excellent account of the present-day view in artificial intelligence that
individuals develop internal representations in the process of coordinating
their interaction with the environment, see e.g. (Clancey, 1997). To give an
example, a fisherman may come to develop accurate distinctions between
cloud patterns that are correlated with the advent of rain and cloud patterns
that are not. Likewise, lifelong experience may allow a music teacher to
develop a concept of a promising young player, determined by all kinds of
different features of which the teacher herself may not even be aware, that
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indicates whether a five year old pupil is apt to become a concert pianist
or not. Although the association with the word ’promising’ is determined
by the fact that the teacher has heard this word being used for promising
children or events, the structure of the concept is primarily determined by
the personal experiences of the teacher. In the case of the fisherman, this
is even more clear, as he probably has not even associated the concept of
a rainy cloud pattern with a word. If there would be a need for such a
word, for instance because fishermen want to refer to the cloud patterns
on such a regular basis that they tire of using long sequences such as ’the
cloud pattern that is almost always followed by rain’, they might coin a
new word for it. If the word catches on, it may spread, first through the
local population of fishermen, but perhaps further. To give a final example
illustrating the power of the principle, the fact that high school children can
be taught the concept of force as developed by Newton allows Newtonian
mechanics to spread to much larger parts of the population than would
be the case if teachers would simply wait for each student to invent the
concept him- or herself; the latter would only work in a world of geniuses.

This brings us to the second principle that may induce coherence in
the concepts people maintain. If a new fisherman overhears two colleagues
using the new word for rain inducing cloud patterns, he will not know its
meaning initially. However, after a while, perhaps merely by observing the
context in which the word is used, he may come to develop an idea of what
his colleagues mean with the word. The development of this idea allows
him in turn to distinguish between different cloud patterns, and hence the
new concept has spread. The latter principle is especially powerful in that
it can cause concepts to spread over populations of language users, but will
not be investigated here. It involves concept learning, which is discussed
below, but, as will be seen, concept learning alone cannot account for the
principle.

1.4.3 Concept Learning

Concept learning as it is studied in the machine learning community refers
to the acquisition of a mapping from an input space to an output space,
where this acquisition is based on known combinations of input examples
and output examples. Thus, it is a form of supervised or instructive learn-
ing. From a cognitive perspective, this raises the question of where the
concepts that are thus learned originally come from; if a set of labeled ex-
amples is required to learn a concept, this presupposes the existence of the
concept, and therefore mechanisms of this type can not explain the initial
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formation of concepts. Examples of concept learning include decision tree
learning, see e.g. (Quinlan, 1990; Michalski, Carbonell, & Mitchell, 1986),
where learning consists of building a tree with distinctions in its node that
divide the input space into subsets.

Aude Billard (1997, 1999) has investigated the development of a map-
ping between words and situations in the environment of a mobile robot.
The concepts in this experiment are learned, and consist of sensory motor
patterns. The relation between situations and words is determined by a
teacher robot. The learner robot learns this relation by associating words
received from the teacher with its own sensory motor patterns using a vari-
ant of the Willshaw net (Willshaw, Buneman, & Longuet-Higgins, 1969)
that employs Hebbian learning. Other work where a learner robot learns a
relation between words and concepts from a teacher robot is that by Yanco
and Stein (1993). There, the following learner robot receives the teacher’s
signal but no sensor input, and has to learn a mapping between these sig-
nals and its actions based on reinforcement. The communicative behavior
of the teacher is not fixed however, but also learned based on reinforce-
ment learning, where success is determined by whether the follower robot
executes the appropriate action based on the signal. Thus, the work also
addresses the question of how the teacher learns its language. The teacher
is an example of a central control force determining the language that de-
velops, and does not address the question of how a distributed population
of agents may develop a communication system.

An important question in the development of a communication system
however, is which of the words will spread through the population and
which will not. This question is not addressed by concept learning itself,
but depends on other factors that determine whether a word is likely to
be learned and produced by agents. For this reason, the presence of a
teacher that decides how words are used is required. This is characteristic
for concept learning, and distinguishes it from concept formation, discussed
in the following section.

1.4.4 Concept Formation and Bias

It has become clear that the formation of concepts requires criteria de-
termining which concepts an agent should form; without such criteria, an
agent has no means to select a finite number of concepts from the endless
amount of possible concepts it could construct. It is important to realize
the hardness of this problem. The more information an agent receives, the
more concepts it could form in principle. Let us consider a simple sim-
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Figure 1.1: Example of a concept in a (discrete) sensor space. Each point
in a sensor space represents a combination of sensor values, one value for
each sensor. The concept distinguishes five such combinations from the
other possible combinations.

ulated agent possessing only two sensors that determine its view on the
world, where both sensors yield values between one and five. Then the
number of possible concepts is already 225 = 33,554, 432. This number is
found by considering all single sensor values of each sensor, all combinations
of two sensor values (e.g. sensor one equals 1 or 5, or both sensors equal
3), all combinations of three, and so on. The two sensors can be depicted
in a diagram by using an axis for each sensor, see figure 1.1 for an example.
The sensor information at one point in time can then be represented by a
point of which the two coordinates equal the two sensor values. This two-
dimensional space is called the sensor space, and a concept distinguishes
one or more points in this space from the rest of the space. However, this
is only the beginning. We have so far only considered the current sensor
values; if a concept may also capture information about the sensor infor-
mation at previous time steps, extra axes are required to represent those
previous sensor values. With each axis, or dimension, that is added, the
number of possible concepts grows extremely fast®. By adding not only the
last, but all previous sensor information, and in addition the actions taken

3As with each added axis the exponent is multiplied by the number of values along
the new dimension, the exponent grows exponentially, and thus the number of concepts
grows super-exponentially.
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by the agent and the subsequent rewards, the space of possible interaction
histories is obtained. It is clear that this complete space corresponds to
such a vast number of concepts that it becomes infeasible to consider every
possible single concept. Moreover, we have so far only considered sensors
with discrete values; as soon as continuous variables are considered, the
number of possible concepts becomes infinite.

These considerations make clear that strong restrictions have to be
posed on the possible concepts that will be considered by an agent. Two
forms of restrictions can be distinguished.

First, restrictions may be imposed on the shape of the concepts, i.e. on
the set of concepts that can be represented. Such a restriction cannot be
made without loss of generality; if the agent may encounter any theoreti-
cally possible environment, there is no principled reason to prefer a simple
concept, e.g. one that distinguishes between high values and low values of
a sensor, over a concept distinguishing a completely random set of data
points from all other possible sets of data points. This point relates to
the No Free Lunch theorem (Wolpert & Macready, 1995), which basically
states that if the set of possible problems one may encounter is unrestricted,
no search method can do better than random search. When constructing a
concept is viewed as searching in the space of possible concepts, this type of
restriction could be called a representational bias in analogy with (Gordon
& desJardins, 1995), as it limits the solutions that may be represented.

The second type of restriction on the concepts that are constructed does
not exclude any concepts, but favors certain concepts over others in that
some concepts occur earlier in the search than other concepts, i.e. the order
of the search is changed. Since the time available for the search for concepts
is not unlimited, this in effect restricts the concepts that can be found. In
the framework of (Gordon & desJardins, 1995), this form of restriction
would be called a procedural bias, as it influences the order of the search.
In the presence of procedural bias, certain concepts are highly unlikely to
be found, as only abnormal data or a very long search for concepts would
produce them.

1.4.5 Criteria for the Formation of Concepts

This section discusses various criteria on which the formation of concepts
may be based. In discussing such criteria, it is useful to consider the form
of feedback they assume. The feedback of a learning system can be:



1.4. CONCEPTS AND THEIR FORMATION 13

e instructive, in which case the learner receives the output it should
have given or, equivalently, the error vector between the possibly
multidimensional output the agent gave and some desired answer.
This form of learning is called supervised learning.

e cuvaluative, in which case the learner receives a numerical evaluation
of its behavior, for example the magnitude of the error between its
output or action and the optimal action. This form of learning is
called reinforcement learning.

e absent, in which case the learning system learns properties of the
data, e.g. its density distribution. This form of learning is called
unsupervised learning.

As supervised feedback assumes the presence of a teacher providing
the feedback, using this information as a criterion would result in concept
learning as opposed to concept formation. As will be argued in chapter 2,
evaluative feedback is well suited to be used as a guiding principle for con-
cept formation by autonomous agents. The assumption that autonomous
agents have such feedback at their disposal does not imply that it is pro-
vided by the environment from some mysterious source; rather, evaluative
feedback on behavior may be viewed as a judgement by the agent itself of
its current situation. The ability to judge one’s own behavior is a powerful
and flexible mechanism, of which human sensation of pleasure and pain
may be viewed as instantiations.

The question of how evaluative feedback can be used for concept for-
mation was considered by Wrobel (1991). There, failure of the learning
system to predict the reward following an action results in the addition of
perceptual distinctions. The resulting sensor intervals were used as sym-
bols in a concept learning tree. Although the idea is powerful, the model
had several limitations. It requires binary rewards, but moreover requires
direct rewards, and thus it is not suitable for environments that have mul-
tiple states?, which excludes all interesting environments. These issues are
addressed by Andrew McCallum’s U-Tree method, which builds a tree of
distinctions regarding current and past information available to the agent
in order to estimate the value of the different actions an agent may take.

4As soon as actions influence state transitions, the value of an action is not only
determined by its direct reinforcement, but also by its effect on the state due to possible
changes in the value (discounted sum of expected future rewards) caused by the state
transition.
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Apart from concept formation methods based on evaluative feedback,
methods have also been proposed that use no feedback at all; these are
called unsupervised methods. An overview of several such methods is given
in (Gennari, Langley, & Fisher, 1989). For examples of unsupervised con-
cept formation methods, including Fisher’s CobWeb system, Feigenbaum’s
EPAM system, and Cheeseman’s Autoclass system, see (Shavlik & Diet-
terich, 1990).

In methods that use evaluative feedback, this feedback can be used
to guide concept formation such that it assists the production of useful
behavior. In methods based on unsupervised learning, no such feedback
is present, and only general considerations can guide concept formation
process. These include error minimization, entropy maximization, feature
mapping, clustering, and density estimation (Fritzke, 1997). The maps that
are found in mammalian cortex, e.g. retinotopic maps, tonotopic maps, and
Kohonen'’s self-organizing map (SOM) (1995), are good examples of feature
maps. Their existence suggests that the principles guiding unsupervised
learning may have biological relevance.

A general principle that underlies concept formation is the aim of dis-
criminating between various entities (e.g. objects, situations). This princi-
ple is investigated in the discrimination game, introduced in (Steels, 1996b).
In a discrimination game, an agent receives information about the objects
in its environment, called the contert, and randomly selects one object to
be the topic. The information about an object consists of a value for each
of a number of sensory channels. It then determines whether it can dis-
tinguish each object from the topic using its current segmentation of the
sensory channels. If not, the segmentation has to be refined. If it can, the
topic gives rise to a meaning, a feature set that distinguishes the topic from
the other objects in the context.

In the standard typology of learning systems, the discrimination game
would be considered a form of unsupervised learning; the agent only receives
sensor information, but selects no action. However, the criterion that guides
the concept formation is, as in reinforcement learning problems, given by
the agent’s performance on a task. This task is to discriminate between
the objects in the context. As the agent possesses all necessary information
to determine whether it can perform its task (discrimination), the agent
itself can determine whether it is successful or not. Apart from its value
as an approach to concept formation, the discrimination game is a good
demonstration of the point that evaluative feedback may well be available
to an agent even though it is not 'sent’ by the environment or by a teacher.
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Unsupervised learning has also been applied to data resulting from the
interaction of a robot with its environment, e.g. (Oates, Schmill, & Co-
hen, 1999). Dynamic time warping (Sankoff & Kruskal, 1983) is used to
measure similarity between time series. The similarity measure is used in
a subsequent clustering method, and is used to find distinctions between
time series. Although the unsupervised approach excludes the use of goal
directed criteria for these distinctions, the idea of looking for patterns in
the interaction history is a notable aspect. Oates and Cohen also make a
connection to language learning. In (Oates, Eyler-Walker, & Cohen, 1999),
human subjects were asked to generate unrestricted natural language ut-
terances to describe the behavior of a robot. Word clustering was then
used to learn the relation between these utterances and the behavior of the
robot.

A limitation of many concept formation methods, including the one
investigated here, is that they yield crisp, rigid representations, whereas the
production of adequate behavior in the real world often requires fluidity. In
(MacDorman, 2000), partition nets (MacDorman, 1999) are used to learn
the effect of the motor commands of a robot in sensor space. Although
crisp distinctions are used to build a KD-tree, a method using blends of the
experiences stored in the nodes or, when more accurate, a neural network
approximation, yields smooth variable resolution function approximation
that also learns quickly, both in terms of time and experience required.

Another approach, also based on the predictive patterns in time series
data, is Jun Tani’s Recurrent Neural Network (RNN) approach (1998). By
letting RNN modules compete to predict the stream of sensory motor data
and using a gating mechanism to allow the most appropriate network to
learn, the modules become specialized in particular forms of behavior.

An interesting mechanism for concept formation, inspired by the con-
structivist theories of Piaget, has been given by Gary Drescher (Drescher,
1991). The computational model he describes, called the schema mecha-
nism, constructs schemas, actions, and items to represent the state of the
world, discover regularities in the world, and organize action sequences in
pursuit of the goals of the agent. A schema represents a prediction of what
the result will be when a particular action is taken in a particular con-
text, where the context and the result are specified by sets of conditions.
Drescher’s approach employs increased predictability of the environment as
a criterion for concepts.

In a number of the above methods (Drescher, 1991; Wrobel, 1991; Mc-
Callum, 1996; Tani & Nolfi, 1998; Oates et al., 1999; MacDorman, 2000),
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concept formation involves searching for patterns in the history of the in-
teraction between the agent and the environment, and/or the predictive
aspect of concepts is used as a criterion. These two ideas, especially when
used in combination, lead to powerful methods for concept formation, even
though the methods are not seen as concept formation method in all of the
above cases. The combination of the two aspects mentioned yields methods
that search for patterns in the interaction history that have a predictive
aspect. Since this is a rather general principle, it may be useful to have a
term for such concepts. They will be called situation concepts here, as the
meaning of the word situation captures both the aspect of relating to the
current state of the environment and the aspect of being relevant with re-
spect to the future course of development of that state, possibly conditional
on the actions the agent will select.

1.4.6 Situation Concepts

At each point in time, the total information an agent may possess about the
state of its environment is called the interaction history. The interaction
history contains the information the agent received through its sensors,
but also incorporates the actions the agent itself selected. Furthermore,
it will be assumed that the agent receives feedback evaluating the quality
or appropriateness of its actions. As the interaction history represents the
complete information an agent has about its environment, the features it
uses to distinguish between different possible states of the environment can
be defined over the interaction history, i.e. no information other than the
interaction history is required to determine the degree to which a feature
is present. Another, equivalent way to think about features is that they
restrict the possible interaction histories.

Any system that uses words to transmit information about its environ-
ment may be described as representing a relation between features in the
interaction history and words. This can be seen as follows. If a word con-
veys information about the state of the environment, it can not be equally
applicable to all possible interaction histories. According to the view that
features restrict the possible interaction histories then, the word can be
viewed as corresponding to a set of features. Regardless of how these fea-
ture are implemented, they are characterized by the restrictions they pose
on the possible interaction histories. The central question can then be for-
mulated as the question of how relations between features and words can
come about in agents such that the production of a word by one agent
restricts, and hence yields information about, the possible states of the
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environment for an agent that receives this word.

To capture information about the environment, concepts may be formed
that are made up of features defined over the interaction history of an agent
with its environment. However, not all information about the environment
is equally relevant to an agent that needs to choose actions. Of particular
relevance are those concepts that predict aspects of the future behavior
of the environment. Such concepts will be called situation concepts. The
predictive aspect may simply concern information about future states of
the environment, whatever actions the agent chooses. For example, the
presence of low flying swallows may indicate the advent of a rain shower.
A slightly more sophisticated form of situation concepts considers how the
environment will react to the actions of an agent. For example, knowl-
edge that the floor is slippery influences the effect that different forms of
walking may have, and may be reason to place one’s steps more carefully
than usual. Or, for another example, knowledge that the fire extinguisher
is empty may cause one to adapt one’s expectation of the effects of using it
in case of fire. In all examples, the presence of the concept, i.e. its relevance
to the current state of the environment, may be known to some agent from
observations in its interaction history (e.g. trying to walk on the slippery
floor, or having observed someone attempting to use the empty fire extin-
guisher), and capture information about future states of the environment,
or about the effect of actions on these states.

The definition of situation concepts is very general, and can be instan-
tiated in a large number of ways. The examples illustrate how complex the
concepts that have been defined may be; distinguishing visual scenes con-
taining a book from all book-less scenes is, although a relatively easy task
for most humans, already a highly nontrivial task for a computer vision
system. They are mentioned to illustrate the generality of the description
given so far, as the actual concepts that will figure in the experiments are
much more primitive. In order to determine whether the approach is fea-
sible, one of the most basic form of situation concepts will be investigated.
If the findings of these experiments are positive, the road will have been
paved to consider more elaborate situation concepts in the investigation of
communication.

Situation concepts are interesting because of their special relevance to
the problem of coordinating behavior with the environment. As the current
state of the environment determines its future behavior, including the ac-
tions an agent may take and the way it responds to them, knowledge of the
situation is crucial in determining what actions to take. The research in-



18 CHAPTER 1. INTRODUCTION

vestigates the simplest case of communicating about the situation, namely
the case where information about the situation is expressed using a single
word.

Biases of the Adaptive Subspace Method for Situation Concept
Formation

In the particular method for the construction of situation concepts that will
be considered here, called the Adaptive Subspace Method, both previously
mentioned types of bias will be applied. Representational bias is used by
limiting concepts to solid regions in sensor space. Thus, the features con-
stituting a concept directly correspond to the current values of the sensors,
and a concept defines an unbroken range of possible values for each of the
sensors®. Furthermore, the concepts that are formed do not overlap.

The procedural bias is a more interesting case. It is determined by
the criterion that guides the choice of these regions in sensor space. This
choice is based on the central idea that communication must provide useful
information about the environment. As mentioned, the behavior of an
agent is evaluated by the rewards it receives after its actions. Therefore,
knowledge about the environment is useful if it allows an agent to estimate
in advance what rewards an action will return. In general, the action
not only determines the evaluative feedback that follows it, but may also
influence the next state of the environment and, by consequence, affect its
capacity of obtaining rewards in the future. As will be seen, the combined
influence of these two effects of an action on future rewards can be estimated
at once by considering the walue of the action as opposed to merely the
reward following it. The proposed method uses the ability to estimate the
value of a possible action as a criterion for the quality of a concept.

A further procedural bias is caused by the way concepts are formed.
This happens by means of an increasing number of distinctions. Initially,
no distinctions are made between interaction histories. Then, gradually,
distinctions are introduced based on to what extent the action value es-
timation differ in different regions of the interaction history space. This
approach brings with it a procedural bias that favors concepts that can be
constructed with a small number of distinctions, as constructing concepts
requiring many distinctions necessarily involves producing the other kind of
concepts first. Whether this form of procedural bias is helpful depends, as

SNote that this use of the term ’subspace’ (i.e. as hyperrectangles) differs from the
perhaps more common way Oja (1983) uses the term, namely as a lower-dimensional
manifold embedded within the space.
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CONCEPT ASSOCIATION
FORMATION FORMATION

Figure 1.2: The coupled dynamics involved in the development of commu-
nication, as it is also investigated in the work of Steels. To the left, an
individual agent is shown. The concept formation process forms concepts
based on experience with the environment. The association formation pro-
cess forms associations between these concepts and words. As the diagram
shows, the concept formation process can also influence or be influenced by
the association formation process.

with all biases, on the problem. However, it has an important advantage.
The distinctions it makes only break up a single existing concept into two
refined concepts. As a result, it produces a very small number of concepts,
even if the dimensionality of the interaction history space is high; with each
new distinction, only a single new concept is introduced. A small number
of concepts is desirable because it reduces the amount of experience that
is required to associate properties with a concept, in particular the values
of the actions in the situation it represents, and the word with which the
concept will be indicated in communication.

1.5 Associating Concepts with Words: Language
as a Dynamical System

The view that concepts are formed in the heads of individual agents compli-
cates the already difficult question of how a coherent relation between con-
cepts and words may come about. The experiments in this thesis address
this question by showing one of the simplest cases where this is achieved.
Part of the contribution of these experiments is therefore in providing ev-
idence for the viability of a particular view on the development of com-
munication. This view is that a population of language users, consisting
of multiple agents that interact by communicating, can be viewed as a dy-
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namical system. A diagram depicting the interactions in such a system
is given in figure 1.2. The words an agent uses depend on the concepts
it has constructed (the right arrow in the diagram), but communication
can also influence concept formation (the left arrow). Whereas the exter-
nal (vertical) arrows of the concept formation process represent interaction
with the sensors and actuators of the agent itself, the association formation
process interacts with other agents by means of communication. Thus, the
dynamics of concept formation and association formation are coupled. The
interactions between different agents are shown to the right. Together, the
coupled interactions determine how communication develops.

Mathematically, a dynamical system is a system that changes over time,
see e.g. (Strogatz, 1994). Such systems can be used as models for all sorts of
systems in our physical world. Particularly interesting forms of dynamical
systems are those which consist of many interacting elements. The number
of interactions between the elements in such a system may be so large that
considering them individually becomes infeasible. Surprisingly, this does
not imply that such systems cannot display interesting observable behav-
ior. The development of ordered patterns in such systems results from the
many interactions between the elements of the system, not by some central
organizing force that imposes order. Although the above is not a strict
definition, the principle occurs in such a variety of systems and is often so
clear that it is useful to have a term for it, namely self-organization. A good
example of self-organizatoin is provided by ant colonies, see e.g. (Bonabeau,
Theraulaz, Deneubourg, Aron, & Camazine, 1997). When ants walk, they
leave a pheromone trail. Since ants are attracted by this substance, they
are more likely to walk over paths that have been used by other ants. As
this in turn causes more pheromone to be placed on those paths, the re-
sult is that gradually the ants start using the same paths. The process
of path formation has several interesting aspects, such as a preference for
short paths and paths that lead to food, but these need not be discussed
for the basic principle to be clear. The lesson is that although no central
control force, i.e. no single ant, decides on the choice of the paths, the result
of the many interactions between the ants and their environment (placing
and following pheromone) is that the ants follow the same paths instead
of randomly crossing the area, and thus these local interactions lead to a
global form of order.

Globally, there are two ways of taking a dynamical systems perspective
on language and communication. First, the system that learns a language
can be viewed as a dynamical system. Following this approach, Elman
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(1995) used Simple Recurrent Networks that had to learn to predict se-
quences. The dynamic aspect of this task is a result of the necessity for
the network to build up a form of internal state, based on the parts of the
sequence observed so far, in order to predict its continuation. Furthermore,
Pollack introduced the dynamical recognizer (1991), a variant of which in-
duced languages consistent with all Tomita (1982) data sets. Successful
induction corresponded to a phase transition in the weights of the learning
network, and an analysis is provided in (Blair & Pollack, 1997).

The other approach is to view language itself as a dynamical system. In
this view, the interactions between the members of a population determine
the language they develop as whole. This approach has been advocated
by Steels, see (1997a) for an overview of work from this perspective and
(Steels, 1996¢, 1996d, 1996a; De Boer, 1999) for examples of this approach.
As we are interested in the development of communication in a population
of agents, as opposed to learning an existing language, this approach will
be adopted here.

In the view of communication development as a dynamical system, the
order that needs to be explained is how agents may come to use the same
words in the same situations. The interactions between the agents are
the production and interpretation of words. In contrast with most phys-
ical dynamical systems, simulation experiments allow an investigator to
have complete information about what determines these interactions. In
the view of communication development as the formation of associations
between concepts and words, these are the variables that govern the pro-
duction and interpretation behavior of communicating agents. Therefore,
an exceptional opportunity presents itself, in that the behavior of this dy-
namical system may be investigated mathematically. In the thesis, a (de-
terministic) communication system will be demonstrated mathematically
to have attractors that correspond to perfect communication.

Approaches to learned communication, i.e. where agents adapt associ-
ations between meanings and words during their lifetime, can be classified
bas on various criteria. First, there is the question of whether concepts
determine the language that may be developed, or whether communica-
tion also influences the conceptual systems of agents. These two forms of
interactions respectively correspond to the right and left arrows in figure
1.2. The current investigation has been limited to the right arrow, which
greatly facilitates the analysis of the concept formation processes. On the
other hand, it implies that the powerful idea of concepts spreading through
the population can not be examined. Work that does address this question
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has been done by Steels in an experimental setup called the Naming Game,
introduced in (Steels, 1996c¢).

The naming game investigates how concepts, formed e.g. in a discrimi-
nation game, can be associated with words such that different agents refer
to different referents with the same word. In the naming game, the speaker
produces the word that is most strongly associated with the meaning this
agent has found for the topic. This word is received by the hearer, which
interprets the word to yield a meaning, and uses this meaning to identify
one of the objects in its context. If this results in the same object, the
speaker has successfully communicated the intended object to the hearer,
and the game is a success. This success information is then used to adapt
the associations between the meaning and word of both the speaker and
the hearer. If it is unsuccessful, the underlying discrimination module is
triggered to form new distinctions, and thus communication can influence
the concept formation process.

A second distinction concerns the availability of feedback on communi-
cation. Oliphant (1997) describes ’observational learning’, where no feed-
back on communication is given. The motivation is illustrated by this quote
from (Pulliam & Dunford, 1980): “the obvious problem with trial-and-error
learning is error”. However, a possible role of evaluative feedback could be
to improve upon information available from the observation of communica-
tive behavior by taking into account the value of the choices involved in
communication. If the agent has a way of determining which ways of using
communication (its production or perception) are successful, the extra in-
formation thus provided can be used to refine knowledge obtained by pure
observation.

In several approaches to communication, e.g. in (Yanco & Stein, 1993)
and in the naming game mentioned above, success is communicated as non-
verbal communication and used by the agents to adapt their communicative
behavior. Similar to the way agents can determine their own success in the
discrimination game, this is also possible when associating concepts with
words. In the experiments that will be described, words represent situa-
tions. Since a situation must have a predictive aspect, the agent can test
whether the subsequent development of the environmental state conforms
to its expectation. The outcome of this test indicates whether the deter-
mination of the situation was correct. If this determination was based on
communication, the agent can determine its own success regarding the in-
terpretation of words. This setup is another demonstration of the idea that
evaluative feedback is not necessarily provided by an external source, which
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would raise the questions about the plausibility of this feedback being avail-
able, but can be determined by the agent itself. A related question, which
will also be addressed, is whether evaluative feedback is required for the
development of communication in the experimental setup that is used.

A final distinction, although many more distinctions are possible, con-
cerns the information received by agents other than feedback on commu-
nication. In order for communication as it is viewed here to develop, this
should minimally include the production of words or signals by other agents.
In the observational learning paradigm used by Oliphant (1997), agents
additionally receive information about the interpretation behavior of other
agents. The rationale behind this appears to be that communication cor-
responds to situations, situations correspond to actions, and since actions
can be observed, the corresponding situation as interpreted by the receiver
can be inferred®.

One of the commitments of the current research is that meanings are
not passed from one agent to another. Thus, even if there would be a one
to one correspondence between the actions and internal meanings of other
agents, this fact could not be used to observe the interpretation behavior
of other agents.

1.6 Measuring the Development of Concepts and
Communication

In any experimental investigation of the development of concepts or com-
munication, it is valuable for the experimenter to have information about
the state of this development. The thesis provides measures expressing this
information for both the development of concepts and the development of
communication. In order to determine whether a concept or word rep-
resents useful information about the environment, one has to know what
information it is that needs to be represented. The subjects of communi-
cation that are to be distinguished, here situations in the environment, are
the referents. This use of the term referent differs slightly from its use in
linguistics, where referents are the entities and states of affairs designated
by linguistic expressions in particular utterances (Lambrecht, 1994); the
difference is that whereas the linguistic notion of a referent is that to which
language refers, here the term is used to denote the entities that should be
referred to by the words in a system of communication.

5The interpretation in terms of situations and actions is purely abstract; no concept
formation or action selection is involved in the experiments
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The measures presented in thesis assume the presence of a set of ref-
erents. They can be used whenever the number of occasions on which a
referent and meaning or a referent and word occur together, called the
co-occurrence frequencies, can be counted. Using the co-occurrences, the
conditional probability matrices on which the measures are based can be
calculated.

For both the relation between referents and meanings and that between
referents and words, two aspects are desirable. First, a meaning or word
should capture information. In the case of words, let us assume that the
receiver of a word initially has no knowledge of the referent intended by
the speaker. Then the word captures information if, after receiving the
word, the receiver has gained information about which referent the speaker
intended. Ideally, the receiver’s initial uncertainty as to the nature of the
referent would be taken away completely by reception of the word.

The uncertainty about the identity of an entity can be measured in a
principled way using entropy. Let us consider a variable with a limited num-
ber of outcomes, each of which is associated with a probability. Whereas
the probability of the most likely outcome P,,, determines the probability of
guessing wrong (1— P,,), it does not capture any information about the way
the probabilities over the less likely outcomes are distributed. Shannon’s
entropy measure does capture this information, and provides a principled
measure of uncertainty, see (Shannon, 1948).

The degree to which a word has the capacity to take away uncertainty
about the referent can be measured as the decrease of uncertainty, relative
to the maximum possible decrease of uncertainty, which equals the initial
uncertainty. The measure in which this results is called specificity, and
indicates to what extent a word identifies a referent. By combining the
specificity of all words into a single measure, the specificity of an agent is
obtained.

The capacity of words to bring information is not the only criterion
for an optimal communication system. A second desirable criterion is that
for each referent an agent consistently uses the same word. The former
criterion of specificity could perfectly be satisfied by using a new word each
time an agent wants to communicate a referent. Although all words would
perfectly identify the referent they corresponded to, such a state of affairs
is not desirable, as it would be difficult or, in this extreme case, impossible,
to learn the language these agents speak. This second requirement, which
will be called consistency, can be measured using the very same principle
as the first measure, but reversed; that is, by considering to what extent a
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referent identifies the word an agent produces to express it.

If both specificity and consistency are achieved by a system of commu-
nication, there is a strong correspondence between referents and the words
an agent uses to refer to them; a referent identifies a word, and a word
identifies a referent. The only remaining requirement for perfect communi-
cation is that the agents not only consistently use a word for each referent,
but that different agents use the same words for those referents. This is
expressed in the coherence measure, which is calculated as the maximum
fraction of agents that have the same preferred word (i.e. the word they use
most often) for a referent.

Having described ways to measure the satisfaction of requirements that
may be posed for a system of communication, conceptual systems can now
be considered. Interestingly, the requirements for a conceptual system are
similar to those used to evaluate the communicative behavior of a single
agent; whereas words should capture information about the environment
to represent it in communication with other agents, the meanings inside
an agent’s head must capture information about the environment to rep-
resent it to the agent itself. Thus, a meaning should identify a referent,
and the degree to which it succeeds in doing so for the meanings of an
agent is expressed by the distinctiveness measure, named so because it in-
dicates whether the agent can distinguish between the various referents.
Analogously, the extent to which referents identify meanings is called the
parsimony measure, and expresses whether the agent has developed a par-
simonious set of meanings. In contrast with the case for communication
systems, the coherence between the conceptual systems of different agents is
not measured; as long as words can be associated with meanings such that
coherent communication develops, there is no need to demand coherence
between the meanings these agents use internally to achieve this coherence.

1.7 Commitments

In order to determine the relevance of research results and to appreciate
their significance, it is important to know the commitments made in the
design of the experiments’. A central tenet is that agents autonomously
construct the concepts they use to communicate about their environment.

"This criterion has been proposed as a feature that distinguishes different cognitive
architectures (Van de Velde, 1995).
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This implies that agents may not be assumed to possess identical concepts®.
This point of view has earlier been taken in the research of Luc Steels, see
e.g. (Steels, 1996¢, 1996d, 1996a), which has been of great influence on the
ideas in this work.

Although concepts are formed independently by each agent, it is clear
that communication can only be functional if there is a close match between
the concepts constructed by the different agents, even if these are not iden-
tical. For this to be possible, two additional assumptions are necessary
given that the agents share the same environment:

e The concept formation mechanisms of the agents are similar.

e The perceptual apparatuses of the agents are similar. If they would
be different, the agents would view the world in different ways. A
good example is given by the paper "What is it like to be a bat?’ by
Thomas Nagel (Nagel, 1974), which asks the reader to imagine what
the world would be like when ’viewed’ using echo-location.

In human language, a complementary, and probably more influential
source of coherence between concepts is that language influences the con-
cepts people form. This relates to the Principle of Linguistic Relativity, see
e.g. (Foley, 1997), and is discussed in some more detail in chapter 2.

Furthermore, the following commitments are made:

e Meanings are not passed directly from one agent to another. To some
extent, this is already implied by the previous point; if agents form
concepts themselves, this means they do not receive them from some
other source. There are two reasons for making this commitment.
First, it poses less restrictions on the concept formation mechanisms
that agents may employ; if agents were to share concepts, some for-
mat for specifying these concepts would be required, i.e. a common
language for defining concepts. It may be very difficult to define such
a language for the interesting and complex forms of concepts that lean
on associations with experiences. Investigating how communication
can be formed without sharing meanings explicitly leaves open the

8 A possible objection to this is that the generalization capacities of agents may be
such that, in combination with the regularities of the world, they come to construct
identical concepts. Although this can certainly be achieved in simulation, it is only likely
to happen when the shapes of the concepts agents are allowed to form are restricted.
In order not to introduce such restrictions, it is necessary to assume that agents may
possess different concepts.
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possibility of discovering communication formation mechanisms that
can be used by populations of agents with different internal struc-
tures. Such mechanisms can be required for agents that develop con-
cepts based on their specific experiences, and suited to their specific
competences and requirements, as such concepts would not function
in the same way when used by an agent with different experiences.
Second, the commitment increases the chances of finding results that
apply to other communication systems where agents can not look ’in-
side the head’ of other agents. Communication between humans is
an example of such a system.

e There is no central control to guide the formation of concepts or
communication. This is not to say that the development of commu-
nication using a central control is not an interesting problem, merely
that it will not be investigated here. This has implications for the
possible interactions between agents; for example, it means that it is
not possible to let one agent choose a system of communication and
allow all other agents to learn it. Coordination mechanisms that do
not require central control are of interest because they can be used
in situations where agents are more or less equivalent, in that they
can all influence the course of affairs. Such systems can be more ro-
bust than centralized systems; the presence or absence of a number
of agents does not change the capacity of the group to achieve coor-
dination, as can be seen in the development of human languages or
food trails in ant societies.

e Agents are not appointed fixed roles; there is no separation between
teaching and learning agents, and every population member at times
acts as a speaker and at times as a hearer. Like the previous point,
this allows all agents to influence the system of communication that
develops.

e No direct feedback on the quality of the communication system is
available. The only way in which an agent can notice whether it
interprets received signals correctly, is to consider the feedback on
its actions. This assumption is necessary because of our interest in
the autonomous development of communication; since the agents de-
termine their own feedback, direct information about the complete
communication system (as determined by the communicative and in-
terpretative behavior of the collected agents) is not available. Rather,
the fact that communication can positively influence the behavior and
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the experiences of an agent is one of the mechanisms that provide
feedback to communication.

1.8 Restrictions

The question of how agents can autonomously form concepts about their
environment and arrive at a system of communication is a very general one.
In addressing this question many restrictions have been made to limit the
scope of the investigation. First there are the commitments that have been
described; in a way these are also restrictions. However, the commitments
differ from the remaining restrictions in that the restrictions are primar-
ily made to limit the scope of the investigation; in subsequent research,
extensions would rather consider a different choice of restrictions than a
different set commitments, as the latter have been made with particular
goals in mind, as has been described.

Both the idea of using the interaction history to construct situation
concepts and the idea of adapting relations between concepts and words
to arrive at a system of communication, are of a general nature, and can
be instantiated in many different ways. To use these ideas in experimental
research, a particular instantiation has to be chosen. A good idea in such
situations is to select the simplest instantiation possible; in this way, the
behavior of the system that is investigated is as uncomplicated as possible,
which best allows one to analyze why the system works or why it doesn’t
work. As more knowledge is gained about the ideas, more complex and
powerful instantiations can then be investigated in further research. In the
above, apart from the commitments, several restricting choices have been
mentioned that were made to keep these first experiments on communica-
tion about autonomously formed situation concepts simple. Here they are
reiterated:

e The investigation concerns learned as opposed to evolved communi-
cation

e Only discrete communication is considered, as opposed to analog com-
munication.

e Messages used in communication consist of single words; thus, gram-
mar plays no role.

e The concepts are situation concepts, defined by the criterion that
they can be determined from the history of interaction between an
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agent and its environment, and have predictive value regarding some
aspect of the future state evolution of that environment, possibly con-
ditioned on the actions the agent may select. In the particular method
for forming situation concepts that has been used, called the Adaptive
Subspace method, concepts correspond to unbroken regions in sensor
space. This implies that the features that constitute a concept are
limited to the sensor values at the current point in time. Possible ex-
tensions would be to include information about previous time steps.
Another possible extension is to use more sophisticated features as
a basis for concepts, e.g. if an agent would receive video images as
sensor input, filters are probably better suited to provide input to
the concept formation mechanism than the direct sensor data. Fi-
nally, the shapes of the concepts could be extended. The shape of the
regions does not have to be restricted to hyperrectangles; concepts
could also consist of conjunctions of regions, or curved multidimen-
sional volumes, and they might be allowed to overlap. Also, the
relation between a point in sensor space and a concept does not have
to be binary, but could for example be based on fuzzy sets, in which
case each point is associated with a value that expresses the degree
to which the point is a member of the concept.

Concepts are formed by all agents on the basis of their own experi-
ences. Thus, communication has no direct influence on the concepts
that are formed, and the left arrow in figure 1.2 is not functional. This
important restriction simplifies the analysis of the concept formation
process. However, it also is a limitation. The influence of communica-
tion on concept formation represents the powerful idea that concepts
can spread through a population, as in the example of the fishermen.

The strongest restrictions have been described. Further choices made in

instantiating the ideas to arrive at an implementable mechanism are docu-
mented as part of the description of the concept formation and association
formation mechanisms, as describing them here would require going into
too much detail.

1.9 Contributions

The contributions of this thesis are the following:

e A contribution to the dynamical systems perspective on the devel-

opment of language and communication is delivered by describing a
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mechanism that, when followed by individual agents to update their
associations between concepts and words, leads to coherent commu-
nication. For a deterministic version of this mechanism, it is proven
mathematically that systems of ideal communication are attractors
of the dynamical system determined by the associations. Further-
more, it is demonstrated experimentally that the standard, stochas-
tic mechanism, which more reliably results in communication, has
pseudo-attractors that play a role similar to the attractors in the
deterministic system.

A class of concepts called situation concepts is described. This class of
concepts is particularly relevant to the problem of communicating in-
formation about the environment. An algorithm for the formation of
one of the most basic forms of situation concepts is described, called
the adaptive subspace method. This method performs generalization
in continuous sensor action spaces. By keeping sensor and action
distinctions separated, concepts are obtained that do not require in-
formation about the action to be selected, but are identified by the
current sensor information. Because of this property, the concepts
can be used by agents to communicate about the current situation
before selecting an action.

An algorithm for updating the associations between words and the
concepts of an individual agent is described. The algorithm is specif-
ically suited to be used in combination with situation concepts, as
it provides a way for an agent to determine whether it interpreted a
word it received correctly. This function is based on matching the sub-
sequent behavior of the environment to the expectation of the agent.
The mechanism is a demonstration of how evaluative feedback may be
involved in language learning without relying on nonlinguistic com-
munication or other sources that evaluate communicative behavior.
In an additional experiment, it is demonstrated that communication
can even be achieved without this information, called success infor-
mation, and that the specificity of words required for unambiguous
communication can also be obtained as a result of lateral inhibition
alone.

Measures are introduced that express the quality of conceptual sys-
tems and communication systems. The measures are principled in
that they are based on the decrease of uncertainty achieved by these
systems, and complete in that for both conceptual and communica-
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System class

‘ Particular system 1 ‘ ‘ Particular system 2‘

Figure 1.3: Diagram illustrating a methodological danger in artificial intel-
ligence research (see text).

tion systems, optimal values for all measures of a system implies an
optimal system.

1.10 Methodology

The methodology of this research is somewhat complex. The primary pur-
pose of the experiments reported here is to determine whether particular
mechanisms are successful in the formation of concepts and communication.
This purpose is given in by the underlying objective of developing artificial
systems that are able to communicate about their environment and use this
facility to coordinate their behavior. However, at the same time, an aim is
to investigate the general question of how agents can develop communica-
tion in such a way that findings may apply to the specific case of human
language. Although these aims may sometimes conflict, they are not con-
tradictory. An example of a commitment that is made partly in view of the
second aim, is the commitment that agents do not pass meanings to each
other, although additional reasons for the commitment have been outlined.

The above methodology is not uncommon in artificial intelligence re-
search, which has both the goal of constructing novel systems that display
intelligence and of improving our understanding of living examples of in-
telligent systems, although this is not always explicitly pronounced. The
approach requires careful consideration in the interpretation of experimen-
tal results. A clear danger is that results are interpreted beyond their
scope. Consider for example figure 1.3. Although both particular system 1
(e.g. a human population) and particular system 2 (e.g. a particular brand
of autonomous agents) are particular members of a certain class of systems
(populations of autonomous agents), this does not imply that properties of
particular system 2 (e.g. conditions under which communication develops)
also hold for particular system 1 (and vice versa). However, this method-
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ological danger does not imply that knowledge about a particular system
can only be gained by investigating that particular system. The abstraction
from a particular system to a more general class of systems (autonomous
agents, or populations thereof) can lead to two forms of solid results.

First, general properties of the system class must, if the class correctly
represents the particular systems under study, by definition hold for all
particular systems. Some examples of such properties are the second law of
thermodynamics, which says that the entropy of a closed system can only
remain constant or increase, or the property that a signal must be minimally
be sampled at the Nyquist frequency in order not to lose information, or
the property that at least 2log n bits of information are required to encode
n equiprobable outcomes, etc.

Second, the investigation of a particular system may be used to inves-
tigate possible mechanisms that produce a phenomenon of interest. The
demonstration that a proposed mechanisms produces a certain phenomenon
in particular system 2 can not in itself prove that this mechanisms must be
the explanation for a phenomenon observed in particular system 1. How-
ever, it can suggest a mechanism that may be responsible for such a phe-
nomenon. The role of such experiments is therefore primarily in testing
whether hypothesized mechanisms may work, and in generating new hy-
potheses when they do not. The value of such a research strategy, which
is adopted here, is therefore in its potential to gain insight into proposed
mechanisms. When such research reliably demonstrates a mechanism to
produce a certain phenomenon, the possible role of the mechanism in other
particular systems displaying the same phenomenon can be hypothesized
and subsequently investigated.

1.11 Relevance and Motivation

The two central topics of this thesis, concept formation and the devel-
opment of communication, are both relevant to artificial intelligence. To
appreciate this, some familiarity with the bottom-up route to artificial in-
telligence and the notion of shared ontologies is required.

1.11.1 The Bottom Up Route Versus the Top Down Ap-
proach

The top-down approach to artificial intelligence begins by analyzing the
requirements of an intelligent systems and gradually refining these, down
to a level where all required components can be implemented. A typical
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area where this approach is followed is the design of expert systems. The
approach has the advantage that high level constructs can be used right
from the start. However, it involves a serious risk. The risk is that there
may be no path from the high level model leading down to the lowest level
where a system can be grounded by coupling it to the environment. This is
a possible consequence of assuming a structure for high level concepts. If
the actual structure of high level concepts is different from the one hypoth-
esized, then the approach is likely to fail. This problem is associated with
that of brittleness (Holland, 1983) in expert systems. Brittleness refers to
the notion that when a system is used for goals slightly different from those
held in mind by the designer, the resulting behavior of the system may be
useless. An issue related to this is the grounding problem (Harnad, 1990).
This signifies the problem that when a the meanings in a system, repre-
sented as symbols, are only defined in terms of other symbols, the system
is not linked to the environment.

These ideas have been an important influence in the rise of a differ-
ent approach to synthesizing intelligence: the bottom-up approach, see
e.g. (Steels & Brooks, 1995). According to the bottom-up approach, the
research and development of intelligent systems should start at the lowest
level, e.g. the level of sensory-motor interaction in the case of robots. An im-
portant advantage of this approach is that it produces models along the way
that can be tested to see if they work. Within artificial intelligence, much
current research follows the bottom-up approach, for example research into
neural networks, behavior based robotics, and dynamical systems. It is as-
sumed that gaining knowledge about these low levels of operation clears the
way towards higher level behavior and, eventually, full-fledged intelligent
systems. Research into communication along these line addresses the sym-
bol grounding problem by developing relations between the environment
and the symbols used in communication via the perception of the agent
as provided by its sensors. Examples where symbols are grounded in the
physical environment as opposed to simulated environments are provided by
research into communication development on robots, see e.g. (Vogt, 1998;
Steels & Vogt, 1997; De Jong & Vogt, 1998; Billard & Hayes, 1999; Oates
et al., 1999)

1.11.2 Shared Ontologies

In recent years, the notion of a multi-agent system has become influential
in computer science, see e.g. (Weiss, 1999). The idea of these systems is
that instead of determining a single sequence of operations that will solve
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a problem, it may sometimes be more effective to analyze a number of
concerns that need to be taken into account, and let each of these concerns
be represented by one or more agents from a collection that makes up the
multi-agent system. The possible advantage of this approach is that instead
of having to specify a sequence of operations that coordinates the different
concerns, the required coordination may result from interaction between the
different agents, each guarding their own concern. If a suitable coordination
mechanism is found, this reduces the task of the designer to implementing
the individual agents, thus relieving him or her of the need to worry about
the interaction between the different activities.

The metaphor of a multi-agent system is based on human organiza-
tions, where the possible benefits of this form of coordination is most clear.
A difficulty with computer systems however is that current command lan-
guages require a formal and exact notation of the task that is to be per-
formed. Thus, when large multi-agent systems are designed, consisting of
entities that are contributed by different sources (persons, organizations),
it is necessary to specify exactly the meaning of the concepts used by agents
in communication. This problem has lead researchers with an interest in
multi-agent systems to propose formal specifications for agent communi-
cation, such as KQML (Finin, Fritzson, McKay, & McEntire, 1994) and
FIPA (fipa, 1999)°. However, as noted in (Steels, 1998), this may not be
the best way to proceed. When all concepts that are used by agents in
a multi-agent system need to be defined beforehand, a large potential for
flexibility is lost; the introduction of new agents to the system with capabil-
ities that were not available before can not be benefited from unless these
new capabilities happen to be expressible in the existing language.

1.11.3 Relevance and Motivation

Now that the notions of a bottom-up approach and shared ontologies have
been described, the relevance of the research in this thesis to computer
science can be discussed. With respect to the bottom-up approach, an
important open research question is how concepts may be formed based
on experience. The mechanism used in the concept formation experiments
takes experiences as input and forms concepts, based on patterns in this
data. These concepts allow the agents to adapt their behavior such that it
becomes more appropriate with respect to the environment, as evaluated
by the increasing success of their actions. Although the concepts that are

®Although the FIPA specification includes a protocol for the exchange of rule-based
code, the language for these exchanges still presupposes a public, shared semantics.
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formed are of a very basic nature, the experiments are interesting in that
they demonstrate the potential for evaluative feedback to serve as a guiding
principle for concept formation.

Coordination requires a common language. This is a problem in multi-
agent system design, since part of the potential power of multi-agent sys-
tems is that they can adapt by incorporating new agents. However, if the
requirements for agents are too tight, this limits the class of new agents
that may enter the system. In (De Jong, 1997b), a coordination method
for multi-agent systems was proposed that limited communication between
agents to the transmission of numerical evaluations. The evaluations are
sent from one agent to another, and indicate to what extent the sender
appreciates the behavior of the receiver of the evaluation. Although this
approach addresses the problem of shared ontologies by reducing the com-
plexity of the common ontology to a minimum, it also seriously limits the
complexity of communication.

In the subsequent research that is reported in this thesis, a different
approach has been explored. The language used by the agents to commu-
nicate about their environment is formed by the agents themselves. It is
based on concepts that are formed by the agents and grounded in interac-
tion with a shared environment. Even though, due to different experiences,
the agents may form different concepts, the language that is developed
in the experiments is such that agents use the same words for the same
situations, and may thus be said to be a shared language. To overcome
the fundamental limitations connected with fixed ontologies, coordination
methods along these lines may be necessary in the long run.

1.12 Nomenclature and Notation

Following Steels, see e.g. (Steels, 1996¢), the internal representations that
are formed by the concept formation process are called meanings, while the
objective aspects of the environmental state these meanings correspond to
will be called referents.

In the simulation experiments, the referents are the optimal concepts,
i.e. the concepts that distinguish between states of the environment where
different actions are required, but that make no unnecessary distinctions.
It is only due to the uncomplicated nature of the experiments that these
referents can be determined. In more complicated environments, such as
the real world, this will often not be possible. Each individual agent only
has access to the concepts it formed itself, as described in the introduction.
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Therefore, referents only play a role in the analysis of experiments, not in
the experiments themselves.

Meanings, the categories of sensory experiences formed by agents, are
also referred to as concepts. Although this is not uncommon in the machine
learning community, see e.g. (Mitchell, 1997), it may raise eyebrows of peo-
ple with a different background, such as psychology, linguistics or cognitive
science. For these readers, it is important to state clearly that the concepts
formed by the agents in the experiments are not viewed as models of hu-
man concepts; they are far simpler. However, the particular structure of
these concepts does not imply the assumption that all concepts have simi-
lar properties. What the research does assume about concepts is they are
entities that relate possible contexts to a word. This has no direct impli-
cations for the structure of concepts; even highly abstract concepts such as
democracy or reflerivity are relevant in certain contexts and not in others;
the assumption here is that a concept allows a speaker to distinguish be-
tween these classes of contexts'®. In this thesis, the focus is on a particular
kind of concepts, called situation concepts. A situation concept captures
aspects of the environment that determine its expected future behavior.

Matrix notation is used to describe the relations between referents, con-
cepts, and words. Conceptual systems are characterized by the conditional
probabilities of a referent p activating a meaning g in the matrix P(ulp),
and of the probabilities of a referent being present given the activation of
a meaning in the matrix P(p|p). Concerning communication, analogous
matrices are used, but here there is an additional distinction, viz. whether
the probabilities concern production (speaking) or interpretation (hearing).
The production behavior of an agent is represented by probabilities relat-
ing meanings to signals or words o in the matrix Pp.,q(o|u), while inter-
pretation is characterized by the conditional probabilities in the matrix
Pint(p|o). Matrix multiplication can be used to determine an objective
representation of an agent’s communicative behavior as provided by the
matrices Pproq(c|p) and Pipi(p|lo). The objectivity of these matrices de-
rives from the fact that no meanings but only publicly observable entities
are involved, and is useful in comparing the communicative behavior of
different agents. Measures based on these matrices are given where they
are introduced in the text.

Much has been written about the problem of defining communication,
see e.g. (Hauser, 1997; Noble, 1998; Di Paolo, 1997). As communication oc-

10The applicability of a concept to a context can also be gradual. In the experiments
here however, it will be binary.
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curs in a wide variety of contexts, and its study likewise concerns different
aspects and forms of communication, it appears unlikely that a single defini-
tion can be given that covers all instances of it without being over-inclusive.
The form of communication that will be studied here is characterized by
a sender, a symbolic message, and a receiver. The defining requirement
that will be posed before this process can be called communication is that
by the act of sending the message, the sender provides information to the
receiver. Here information refers to the notion as it is used in information
theory, where information is seen as uncertainty, see (Shannon, 1948). The
uncertainty of the receiver concerns its knowledge about the state of its en-
vironment. Thus, the information of a message is determined by the degree
to which it improves the receiver’s knowledge about its environment. This
definition has the consequence that the information of a message can not
be considered separate from the context and the receiver.

The definition of communication used here addresses a possible ques-
tion concerning the subject matter of the thesis, namely to what extent
communication develops in the experiments; if an explicit mechanism for
adapting associations between meanings and words is present, are agents
not already communicating from the very beginning? Although providing
such a mechanism implies that the development of this mechanism can not
be the subject of experiments, the answer to the question is that communi-
cation does develop. This can be seen by considering an experiment. At the
beginning of each experiment, agents have not yet received any words yet
and hence they are unable to extract information from any word that is sent
to them. This implies that according to the above definition, no commu-
nication can occur at this point. As will be seen, this situation changes in
the course of the experiment; interaction between the agents brings about
a situation where the same words are used for the same referents. In this
situation, receiving a word increases the knowledge of an agent about its en-
vironment when this knowledge was incomplete, and hence communication
has developed.

A final note concerns the use of the term language. Here, this term
will be used to denote any system relating symbols to meanings. Thus,
it is a technical term here (cf. programming languages, formal language),
and refers to systems of a whole different order of complexity than hu-
man language. Accordingly, the systems encountered in the investigation
should not be viewed as models human language or animal communication.
Rather, the aim is to investigate issues concerning the formation of con-
cepts and communication for autonomous agents in general. As argued,
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this approach may lead to knowledge about principles involved in the de-
velopment of communication, and such knowledge can be relevant to the
study of human or animal communication.

1.13 Outline

In chapter 2 evaluative feedback is described as a possible guiding principle
for concept formation. According to this perspective, certain generalization
methods used in reinforcement learning can be used for concept formation.
One such mechanism, based on incrementally partitioning the sensor-action
space(the space where each point represents a (possibly multidimensional)
action and the values of the sensors at the moment the action was selected),
is described. A matrix notation is used to describe the result of concept
formation as conditional probabilities specifying the relation between mean-
ings u, subjective entities formed during concept formation, and referents p,
objective entities determined by the structure of the environment, leading
to the matrices P(u|p) and P(p|u). The entropy in these matrices corre-
sponds to the uncertainty in determining a meaning or a referent. This
leads to a principled definition of two measures indicating the quality of a
conceptual system. The effects of sensor and evaluation noise on concept
formation are investigated.

The formation of concepts can serve as the basis for mechanisms gov-
erning the association between privately formed meanings and words. In
chapter 3 a mechanism with special relevance to the case where commu-
nication concerns states of the environment is described. It is experimen-
tally demonstrated that when the agents in a population use this adapta-
tion mechanism, their initially random associations between meanings and
words converge towards a shared system of communication. Analogous to
conceptual systems, communication systems can be captured by specifying
the production of words ¢ in the conditional probability matrix P(o|u)
and the interpretation behavior in the matrix P(u|o). These subjective
matrices can be combined with the concept formation matrices to yield the
objective production and interpretation matrices P(c|p) and P(p|o). These
matrices give rise to entropy based measures that quantify the quality of
communication.

In the same chapter, the necessity of the different components of the
algorithm is assessed by removing each component and comparing the de-
velopment of communication of the modified system to that in the standard
system. The comparisons show that each component when removed leads
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to a statistically significant degradation of the quality of communication.
Analysis of the component responsible for maintaining information about
the success of communication reveals that not the success information itself,
but rather the lateral inhibition performed by the component is essential
for the development of communication.

In further experiments, differences between the privately formed mean-
ings are induced by varying the noise on the sensor inputs of different
agents. These experiments demonstrate how interactions based on differ-
ent conceptual systems can lead to a public, shared language.

The strengths of associations between meanings and words of the dif-
ferent agents determine a high dimensional dynamical system. In chapter 4
it is shown, both mathematically and experimentally, that a deterministic
version of the system converges to point attractors that correspond to ideal
systems of communication. Based on these results, it is shown that the
stochastic systems has points in its phase space that play a role similar to
the attractors in the deterministic communication system. Stochasticity is
found to be a useful ingredient for the development of communication in
that it encourages exploration; the introduction of stochasticity improves
both the stability and range of conditions under which communication is
developed. Finally, the behavior of the system in phase space as a function
of temperature, an important control parameter, is examined, providing in-
sight into the effects of this parameter. The analysis in this chapter demon-
strates that it can be fruitful to view the development of communication
as the behavior of a dynamical system.

Finally, chapter 5 presents conclusions and briefly looks ahead.






Chapter 2

Autonomous Formation of
Concepts

2.1 Introduction

This chapter describes a way for autonomous agents to form concepts about
their environment based on their experiences. As described in the previous
chapter, the only assumption adhered to here concerning concepts is that
they relate possible contexts to a word. Although the knowledge of the
particular set of contexts in which a given concept is appropriate does not
define or identify that concept, this assumption is minimal in the sense
that any agent wishing to use a concept in communication has to be able
to determine this relation.

A further aspect of concepts as they are viewed here is that they par-
tially determine the behavior its holder can produce; the concepts an agent
has at its disposal determine the way this agent views the world. The aim
of this research is not to present a model for concepts that matches the
concepts humans possess as closely as possible. Rather, it is to investi-
gate one of the principles that may guide the formation of concepts. Even
though the concepts in the experiments will be of a much simpler form
than the concepts humans employ and only concern a particular type of
concepts (those that capture information about the situation), the prin-
ciple may also play a role in human concept formation. The principle is
that concepts should improve the ability of an agent to produce successful
behavior.

The approach requires the presence of evaluative feedback. Arguments
are given for the potential of adaptation based on such feedback, suggest-

41
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ing this assumption is not implausible. Furthermore, a matrix notation is
introduced that describes the result of concept formation, and principled
measures to evaluate the quality of a conceptual system will be derived.

The first section discusses the influence of feedback on behavior, and
argues for the potential of evaluative feedback as a criterion guiding various
forms of adaptation. Two such forms are selectionism and reinforcement
learning. Selectionism is discussed in section 2.3. In section 2.4, reinforce-
ment learning is discussed. Next, in section 2.6, experiments in concept
formation are presented. The presentation includes the definition of a ma-
trix notation capturing the result of concept formation, and the definition
of measures that monitor the process of concept formation. The chapter
ends with conclusions in section 2.7.

2.2 Feedback and Adaptation

2.2.1 Concepts Influence Behavior and Communication

The influence of concepts on behavior is twofold: first, concepts determine
the way an agent views the world, and the actions of an agent therefore
depend on the concepts that are evoked in the agent. The other influence is
that on communication; the lexicon used in communication is a set of words
that are associated with concepts, and thus the set of concepts an agents has
at its disposal confines the set of words it may use in communication. The
latter influence is a special case of the former. The realization that concepts
influence behavior leads to a principled research paradigm for investigating
the formation of concepts, which is laid out in this introduction.

Before continuing though, it is important to notice that there is not
only an influence of an individual’s concepts on communication, but that
there can also be an influence the other way around. To appreciate this,
it will be useful to consider the example of human communication. The
words a person encounters during his or her life determine what concepts
will be learned and hence the ways in which the person thinks and views
the world.

Different versions of this idea have been described by several researchers.
Foley (1997) describes its history as follows. Boas pointed out the function
of language in organizing our experience of the sensible world, and em-
phasized its classificatory function. The difference with earlier researchers
considering this idea is that Boas appreciated the necessity of grounding
the ideas in empirical work. Sapir (1949) described the idea that the world
is to a large extent unconsciously built up on the language habits of the
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group. This is known as the Principle of Linguistic Relativity. This princi-
ple was not viewed as an experimental hypothesis, but rather as an axiom,
especially in the case of Whorf.

Different versions of this idea are known as the Sapir-Whorf hypothesis,
which has been surrounded by controversy. This may be partly due to the
many interpretations that can be given to the idea that language influences
thought; if these are exaggerated, they can lead to the idea that someone’s
native language determines his or her potential for thought. Unmindful
reports of the evidence may have been another factor; a good example of
this is the number of words Eskimos use for snow, which has varied from 3
to (at least) 400 in written reports (Pullum, 1991).

For scientific knowledge about the issue, empirical evidence is required.
A recent example of such evidence has been reported by Davidoff. In
(Davidoff, Davies, & Roberson, 1999), he reported experimental evidence
that people with native languages containing different sets of color terms
show differences in remembering colors. More specifically, color catego-
rization tasks were learned more rapidly if the distinctions were consonant
with those made in the language of the subject. This appears to be a clear
example of the influence of language on memory, an aspect of cognition,
although other explanations of the findings are still possible (e.g. that the
differences are not a result of the different color terms in the languages, but
of environmental differences).

Perhaps some of the controversy can be removed by considering the in-
fluence of language on a single person. This results in the more general idea
that the words and corresponding concepts a person possesses influence his
or her thought. The verity of this idea can almost be seen a priori; whenever
one comes to learn a new word and its meaning, e.g. serendipity, instances
of this meaning can henceforth be recognized and therefore influence one’s
behavior.

Although the influence of language on concepts is an interesting and
important phenomenon, it will not be studied here; rather, the subject
of study will be the influence of the concepts formed by agents on their
behavior and on the language they develop.

2.2.2 Feedback on Behavior may Guide Concept Formation

Although the realization that concepts influence behavior may seem ob-
vious, it is important in that it leads to a principled research paradigm
for investigating the formation of concepts. For this to follow, an assump-
tion has to made, viz. that the concepts an agent forms are useful in the
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way they may influence that agent’s behavior. Given this assumption, the
formation of concepts may be investigated by considering any concept for-
mation method that yields concepts which improve the behavior of the
agent. But before continuing, a possible objection needs to be addressed.

2.2.3 Where Does Feedback on Behavior Come From?

The assumption requires that the agent can somehow determine what is use-
ful behavior and what is not. Ultimately, useful behavior is behavior that
ensures survival. Survival provides environmental feedback by selecting in-
dividuals with the capacity to survive long enough to reproduce. However,
the forces of Darwinian evolution operate on the population level and can
not provide feedback on behavior at the smaller time scale of an agent’s
lifetime. Indirectly though, they do provide a possible explanation. The
solution is as follows. Whether an individual survives depends on factors
such as its ability to maintain homeostasis (Cannon, 1932) (which involves
keeping properties such as body temperature, oxygen level in the blood,
hydration, etc. all within certain ranges), and to avoid dangers (fire, fast
moving objects, falling from a high tree, etc.). From the principles of Dar-
winian evolution, it may be expected that evolution favors maintenance
of homeostasis and recognition and avoidance of threats. The most direct
way for evolution to induce particular behaviors in agents is to construct
organisms in such a way that they will produce these behaviors under any
conditions that are normally encountered in the environment of the organ-
isms; the behaviors could be said to have been hard-wired into the organism.
Whenever possible, this way of ensuring behavior is most likely to be suc-
cessful, and it is responsible for many primitive forms of behavior, such as
reflexes. Examples include breathing, a reflex activated by chemoreceptors
detecting the oxygen level in arteries near the heart, and the heart beat,
which is regulated by reflexes acting in response to activity of mechanore-
ceptors detecting high and low brood pressure.

Although hard-wiring is a good way to ensure some behaviors, it lacks
the flexibility that is needed for more complex tasks. Consider for example
the problem of obtaining food. For basic life forms, e.g. bacteria, it may be
sufficient to have a mechanism that retains food once it enters the organ-
ism. To obtain the diverse diet that humans need is rather more complex.
At the very least this involves recognizing appropriate types of food. After
the early phases in a person’s life, some degree of sensory motor control
will be required in order to successfully take in the recognized food items.
Moreover, it is typically not sufficient to recognize food whenever it comes
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along; from the hunting and gathering societies to the world of today, as-
suring food requires a form of interaction with the environment that cannot
be captured in any small set of responses to be executed upon reception of
stimuli. Rather, people adapt to their environment using trial and error.
After several crop failures, a different piece of land will be tried. If more
fish are landed in the morning than during the afternoon, a fisherman will
make it a habit to rise early. If merely displaying vegetables in a market
place does not attract the customers necessary for a stall-holder to earn
her living, she may decide that some shouting is called for. In these ex-
amples, variation of behavior leads to the discovery of a better practice.
It is important to notice however that this variation is not random; some
form of model of the world is used to limit the production of inappropriate
behavior, and in this manner errors can be limited. This is an important
argument against the idea that “the obvious problem with trial-and-error
learning is error” (Pulliam & Dunford, 1980), quoted in (Oliphant, 1997);
using basic knowledge about the world to avoid unnecessary mistakes does
not prevent anyone from evaluating his or her own behavior and using this
information to learn and improve that behavior.

A common factor of the examples is that this adaptation of behavior
only requires evaluative information about the behavior that was produced.
The agent uses its own evaluation as qualitative feedback on its behavior.
Considered from an evolutionary perspective, a genetic adaptation that
equips an organism with the ability to evaluate its own behavior and use
it as a guiding principle for adapting it is incomparably more powerful and
flexible than a repertoire of fixed routines and reflexes. Concluding, the
answer to the question posed in this section is that evaluative feedback
probably comes from the need for flexible, adaptive behavior.

2.2.4 Using Feedback to Guide Behavior

The idea that organisms adapt their behavior according to some evaluative
criterion was first formulated by Edward Thorndike in his Law of Effect
(1911):

Of several responses made to the same situation, those which
are accompanied or closely followed by satisfaction to the an-
imal will, other things being equal, be more firmly connected
with the situation, so that, when it recurs, they will be more
likely to recur; those which are accompanied or closely followed
by discomfort to the animal will, other things being equal, have
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their connections with that situation weakened, so that, when it
recurs, they will be less likely to occur. The greater the satisfac-
tion or discomfort, the greater the strengthening or weakening
of the bond.

Around the same time, the behaviorist school of psychology gained mo-
mentum. The central tenet of behaviorism is that the study of psychology
should be based on objective observations, and that any reference to in-
ternal, mentalistic notions should be avoided. Pavlov investigated classical
conditioning, the association of a random stimulus with a natural reaction,
such as a dog’s salivating in response to the presence of food in its mouth;
when the bell sounds every time the dog receives food, the salivation reflex
will be triggered by the sound of a bell. Skinner built boxes to study the
behavior of animals, which became known as Skinner boxes. One of the
phenomena he investigated is that a pigeon can learn to perform a ran-
dom action (pressing a lever) in response to a random condition (a flashing
light) when this action is followed by a reward (food); this principle, where
the learned behavior is a new one, is known as operant or instrumental
conditioning.

Both classical and operant conditioning are forms of Stimulus-Response
learning, a very simple type of learning where some action always follows
a particular condition. They are perfect examples of Thorndike’s Law of
Effect. However, it is these types of very basic adaptive behavior that are
often associated with adaptation based on evaluative feedback. What is
often not realized is that evaluative feedback can be used in an indefinite
number of ways to guide behavior. One of these is selectionism, where the
principle is that new, (partially) random structures are generated, and an
evaluative criterion guides the selection of structures that remain, while
other structures disappear. Another one is reinforcement learning, where
the usual approach is to learn the value of different behaviors. The theory
of optimal control is still another field where behavior is based on evaluative
(and other forms of) feedback, the difference being that here a model of
the system is usually present.

When humans are viewed as having a model of their environment, it
becomes clear that evaluative feedback can in principle guide sophisticated
behavior, such as planning. As the examples that were given earlier pur-
port to show, there is no reason not to consider more sophisticated forms
of adaptive behavior guided by evaluative feedback. Since models or exper-
iments requiring evaluative feedback are not considered plausible by some,
it may be useful to note that neurophysiology has indicated the presence in
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primates of neurons that produce signals related to the prediction of future
salient and rewarding events (Schultz, Dayan, & Read Montague, 1997).
More completely, there is substantial evidence that dopaminergic neurons,
located in the pars compacta of the substantia nigra and in the ventral
tegmental area, play an essential role in both the primary reinforcement of
behavior and in guiding preparatory behavior on the basis of the likelihood
that the animal will subsequently receive reinforcement (Houk, Adams, &
Barto, 1995), although dopamine is not the only reward transmitter, and
the dopamine system probably also relates to other aspects of motivation
(Wise & Rompre, 1989).

Naturally, the presence of neurons correlated with rewards on itself does
not imply that this presence is innate in the sense that it invariably develops
regardless of the lifetime experience of the animal; however, finding such
neurons consistently in the members of a species does imply that evolution
has developed individuals such that these neurons develop under normal
circumstances.

In summary, it appears useful from an evolutionary perspective to equip
organisms with the ability to produce evaluative feedback on their own
behavior, and evolution indeed has developed such functionality. The work
in this thesis, and much other work in artificial intelligence, is built on the
assumption that some form of evaluative feedback is available to the agent.

Using Evaluative Feedback to Guide Concept Formation

At the beginning of this chapter, the role of concepts in guiding behavior
was mentioned. In combination with the idea of evaluative feedback guiding
behavior, this naturally leads to the idea of using evaluative feedback to
guide concept formation. It is this approach that will be followed here.

The idea of using behavioral success to guide concept formation was
also used in a proposal for concept formation by Stefan Wrobel (Wrobel,
1991). The model was somewhat ahead of its time, in that the quick growth
of the field of reinforcement learning was yet to come, and indeed Wrobel
mentions that the emphasis in the field was on action selection, rather than
representation development. Naturally, the primary goal of reinforcement
learning methods is to learn to produce appropriate behavior, but mean-
while there exists a substantial amount of work in reinforcement learning
where internal representations are constructed as part of this. A good ex-
ample is Andrew McCallum’s U-Tree algorithm, which will be discussed in
more detail later on in this chapter.

In Wrobel’s model, preprocessing elements segment the sensor ranges,



48 CHAPTER 2. AUTONOMOUS FORMATION OF CONCEPTS

and the resulting intervals, which he refers to as the symbolic vocabulary
of the system, are used to learn a tree (conceptual hierarchy). The nodes
in this tree represent situations in the environment, and in this sense the
method is similar to the one that will be described here. A limitation
of Wrobel’s model is that it assumes binary rewards, and does not take
the issue of delayed rewards into account; hence, it is not applicable to
the general reinforcement learning problem. The methods that will be
described later on in this chapter overcome this problem.

Using Supervised Feedback to Guide Concept Formation

There is no reason to assume that the feedback available to agents is limited
to the evaluative sort. Although this is the most basic form of feedback that
can be imagined, some forms of learning in human appear to benefit from
richer forms of feedback, that might be referred to with the term supervised
feedback as it is used in computer science.

Supervised feedback on behavior yields information about what other
behavior would have been more appropriate than that produced by the
agent. Thus, it tells the agent what it should do, and for this reason
this form of feedback is sometimes called instructive feedback. Adaptive
mechanisms based on supervised feedback can use input-output examples
(sensor-action examples) to learn a mapping from inputs to outputs. This
description fits the fields of pattern recognition (see e.g. (Duda & Hart,
1973)), where the goal is to construct a system that, based on features
of objects, groups objects into classes. For this reason, the problem of
pattern recognition is also known as classification. The classes, and a set
of examples for which the classes are known, have to be known in advance.
Concept formation based on decision trees, see e.g. (Quinlan, 1990), is a
particular type of pattern recognition.

An example of human learning that appears to be based on supervised
feedback is practicing the mastery of musical instruments. If a particular
sequence of motions does not produce the right sound when playing the
guitar, the player would need to apply more or less random changes to this
motion and judge their effect if only evaluative feedback were present. This
is not the case, or at least not always; rather, since the player has a model
of the instrument and his own hands, he has an idea of what changes might
yield the desired sound. This idea is a form of supervised feedback, since
it specifies not only that the initial behavior was incorrect, but also how it
should change. For another example, consider a person who is learning to
play tennis, and notices his last ball bounced somewhat to the left of the
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intended spot, e.g. due to side wind; in this case, the tennis player could use
his internal model of hitting a ball to determine a motion that would have
caused the ball to go more to the right, and adapt his play accordingly.

Although the above shows that evolution can result in organisms that
generate supervised feedback on their own behavior, the computation of
supervised feedback is generally more complicated than that of evalua-
tive feedback. Whereas the generation of evaluative feedback only requires
recognition of desired situations, supervised feedback is necessarily linked
to the mechanism that produced the behavior, since the desired behavior
must be specified in terms proper to that mechanism. For this reason,
research in artificial intelligence, including the work reported in this the-
sis, often limits the form of feedback that is assumed to be available to
evaluative feedback. The argument given here however indicates that this
limitation is not mandatory.

2.3 Selectionism

Selectionism is a powerful mechanism that performs search in a very broad
sense, its domain ranging from well-defined problems such as optimizing a
function to the construction of organisms that adapt themselves to changing
environments.

A large literature exists on computational methods inspired by evolu-
tion. This research is known under various names, including evolutionary
computation, genetic computation, and evolutionary strategies.

In Darwinian evolution, changes become manifest after spreading though
many generations of individuals; hence, it does not (directly) account for the
adaptation of an individual during its life. Individuals are elements of vari-
ation in this process. Cultural evolution on the other hand, see e.g. (Steels,
1997b; Steels & Kaplan, 1999), describes a process of change where individ-
uals adapt their behavior during lifetime. Thus, changes may spread from
one person to another, through parts of the population that are related by
interaction, and yield patterns specific to an interacting group of individ-
uals, such as culture. The elements of variation are structures within the
individual.

There is neurological evidence suggesting that selectionist principles are
involved in the development of the human brain. In (Huttenlocher, 1990),
measurements of the volume of the visual cortex and synaptic density have
been combined to obtain estimates of the total number of synapses in the
visual cortex as a function of age. This revealed that the number of synapses
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has its maximum around the age of 8 months, and starts to decrease to
arrive at 50-60% of that amount at the age of 11 years. When related to
the number of neurons, the average number of synapses per neuron in visual
cortex can be estimated. This ratio peaks at over 15,000, also at 8 months,
and decreases to around 10,000 in adults. Apart from this overall decrease
of synaptic contacts, it may well be possible that synapses constantly form
and disappear; since the data only provides estimates at fixed points in
time resulting from anatomic countings, this would not be visible in the
experimental setup used.

This data can be interpreted as support for the idea that cognitive de-
velopment is the result of selective pruning of initially superfluous synaptic
contacts, where selection is activity dependent. The main proponents of
this idea are Changeux (Changeux, 1985), and Edelman (Edelman, 1987).
Changeux hypothesizes that at the stage of transient redundancy, embry-
onic synapses can be labile, stable, and degenerated, and that labile connec-
tions can become stable (stabilization) or degenerated (regression), depend-
ing on the activity of the post synaptic cell (the cell receiving the signal).
Also, stable connections may become labile (labilization). According to
Changeux, “To learn is to stabilize preestablished synaptic combinations,
and to eliminate the surplus” (emphasis in the original).

A related theory is expounded in (Edelman, 1987). Edelman has put
forward the hypothesis that selection forms neuronal groups whose exact
composition differs among individuals. A second selective process then acts
on these groups, the criteria for selection being dependent on correlation of
activity with signals arising from adaptive behavior.

2.3.1 Generation and Selection of Sensory Channels

An example of the use of selectionism as an adaptive mechanism based on
evaluative feedback is the experiment reported in (De Jong & Steels, 1999),
where sensory channels were generated randomly and selected according to
their capacity to discriminate between different geometrical figures. Figures
were represented symbolically, with representations consisting of the type of
figure (triangle, circle, trapezium, square, or rectangle) and data concerning
the shape of the figure, depending on its type. The primitives that were
available to build sensory channels (see table 2.1) were operators that act
on these representations to extract the curvatures, lengths, and angles of
the curve segments that make up a figure. These operators all yield a
lists of numbers, to which sequence operators (first element, n'* element,
n'® subsequence of length m) and arithmetic operators (sum, difference,
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Table 2.1: Functions used for generating sensory channels and their appli-
cability

Input type Function Output type
figure break-figure list of curves
list of curves curvatures list of numbers
list of curves lengths list of numbers
list of curves angles list of numbers
list of numbers | nth subsequence of length m | list of numbers
list of numbers | sum number

list of numbers | difference number

list of numbers | average number

list of numbers | first number

list of numbers | nth element number

average), could be applied. The result of generation and selection was
a set of these sensory channels, which was evaluated on its capacity to
distinguish between different figures; if and only if a sensory channel yields
substantially different values for two figure, they can be discriminated from
each other.

Although the search space in this experiment is not large, an interesting
phenomenon was found. When selection operated at the level of single sen-
sory channels, reasonable but not outstanding solutions were found. When
selection was applied to complete sets of sensory channels however, much
better solutions were found, even though by selecting for complete groups,
information about individual sensory channels is lost. The explanation is
that the group selection favors diverse solutions, containing several com-
plementary channels. By selecting for successful individual channels on the
other hand, cooperation between the sensory channels that constitute a
solution is not ensured. Indeed, the difference boils down to that between
selecting the best group of channels and a group of the best channels, the
latter of which is less likely to be sufficiently diverse for distinguishing be-
tween a variety of figures.

The idea that perceptual mechanisms may be formed by selection-
ist principles is further investigated in research by Tony Belpaeme, see
e.g. (Belpaeme, 1999). Marc Ebner used genetic programming to evolve an
image operator yielding points that can be used to determine the optical
flow in images (Ebner & Zell, 1999).
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2.4 Reinforcement Learning

Another domain where evaluative feedback drives adaptation is that of re-
inforcement learning. According to (Sutton & Barto, 1998), reinforcement
learning characterizes a learning problem, rather than a set of learning
methods. Specifically, the problem is that of an agent in an environment
that has to achieve a goal. The section begins with a brief explanation of
reinforcement learning. This background is necessary to explain the adap-
tive subspace method!, that is used for concept formation in the experi-
ments. The adaptive subspace method is an algorithm that allows agents
to develop situation concepts. As their name indicates, situation concepts
represent situations in which an agent may find itself. From the agent’s
perspective, a situation is determined by the recent interactions between
the agent and its environment. However, since the agent has no complete
view of the environment, it may not always be able to determine its own
current situation. Knowledge of the current situation is useful because it
implicitly brings information about the near future.

Reinforcement learning can be described as the problem an agent in an
environment faces if it wants to obtain delayed rewards. Such problems can
be addressed using methods and techniques that have been developed in
the reinforcement learning field; examples include learning to ride a bicycle
(Randlgv & Alstrgm, 1998), elevator scheduling (Crites & Barto, 1996),
job shop scheduling (Zhang & Dietterich, 1996), network routing (Littman
& Boyan, 1993), and all sorts of games (e.g. Backgammon (Tesauro, 1995),
checkers (Samuel, 1959)). An excellent introduction to the subject is pro-
vided in (Sutton & Barto, 1998). For a shorter overview, see (Kaelbling,
Littman, & Moore, 1996).

A cycle or step in reinforcement learning proceeds as follows. Through
its sensors, the agent receives information about the state of the environ-
ment. After receiving information about the environmental state, the agent
has to select an action. This action may cause the state of the environment
to change. At this point, the agent receives its evaluative feedback in the
form of a numerical reward.

A formal model commonly used to describe reinforcement learning prob-
lems is the finite Markov Decision Process (MDP). An MDP is defined by
a finite set of states the environment can assume, a finite number of ac-

n this thesis, the word subspace is used to refer to n-dimensional regions, in partic-
ular those of hyperrectangular shape, that lie within a confined n-dimensional space. In
the literature, see e.g. (Oja, 1983), the term often refers to spaces of lower dimensionality
than the original space.
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Figure 2.1: Reinforcement learning: an agent in an environment tries to
obtain delayed rewards.

tions the agent can select, and a state transition function ’P;‘y ¢ describing
how the environment reacts to the actions of the agent. More formally, the
function returns the probability that given an action a of the agent, the
environment will transit from state s to state s:

Py =P(sty1 = s'|st =sNay = a) (2.1)

The process is further required to have the Markov property, which states
that the next state is a function of only the current state and action, and
depends on no other information such as previous states. Thus, in a Markov
Decision Problem the state information received by the agent identifies the
complete state of the environment; otherwise, the non-observable elements
of the environmental state would violate the Markov property. When the
information the agent receives is not guaranteed to identify the state of
the environment, the problem belongs to the class of Partially Observable
MDPs (POMDPs), which require different methods.

The task of the agent is to find a good policy determining its behavior.
A policy m(s,a) is specified by giving the probabilities of taking action
a in state s. If the state transition function of equation 2.1 is known,
the methods of dynamic programming (Bellman, 1957) can be used to
determine the optimal policy such as value iteration or policy iteration,
both of which approximate a value function over the states and use it to
determine a policy. In reinforcement learning however, the state transition
function is generally unknown. Thus, the state transition function can
be learned, or the value function or policy can be approximated directly
without using a transition function.

Although it is possible in principle to find a policy by randomly gen-
erating policies and selecting one that performs well, this approach would
take a long time because evaluating the fitness of a solution requires a
sufficiently large number of interactions with the environment.
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Instead of varying a complete policy, the element of variation normally
corresponds to a state, and often even to an action in a state. The level of
adaptation of these three options respectively corresponds to policy space
(where each point represents a distribution over the entire state-action
space), state space (where a change affects all states which for some ac-
tion have nonzero probability of transiting to it), and state-action space
(where a change only affects the optimal policy in other states if the action
becomes or ceases to be optimal in its state).

It is interesting to note a parallel with the experiments on sensory chan-
nel construction described in the previous section. One of the conclusions of
that experiment was that it was better to evaluate complete solutions (sets
of sensory channels) as opposed to using the fitness information of the low-
est available level, i.e. that of the individual sensory channels. The analogy
here would be that it might be better to evaluate complete policies instead
of using each state’s distribution of action probabilities. There are two rea-
sons why this is not true in general. First, by varying policies instead of
action probabilities, the size of the search space is increased by a factor that
is exponential in the number of states, which is normally much larger than
the size of a set of sensory channels in those experiments (5). But what’s
more important is that the elements of the solution are far less interdepen-
dent, making it easier to improve a solution by adapting its elements one at
a time. The influence of a single channel on the quality of the set of chan-
nels strongly depends on the other channels within that set; for example,
generating a channel that was already present in the set does not increase
this quality. Changing the behavior of the agent in a single state however
depends far less on the policy in other states (although the dependence is
certainly important). For these reasons, most work in reinforcement learn-
ing attempts to benefit from the structural property reinforcement learning
problems have of involving different states and actions.

A good way of using the division into states and actions to be able to
vary policies at a finer grain size, is to approximate the value of each state.
The value of a state s is determined by the future rewards that are to be
expected given the information that s is the current state. If the lifetime
of an agent is unknown, the influence of rewards far in the future needs
to be discounted to avoid infinite returns. By multiplying each immediate
reward R; with a discount factor v that decreases exponentially over time,
a bounded estimate of the future rewards is obtained:
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t=00
> A= THOR, (2.2)
t=T+1

The value function V(s) returns the expected value of this discounted
sum of future rewards for each state. The optimal value function V*(s)
satisfies the Bellman equation (Bellman, 1957):

V*(s) = maz Y PR, + 4V (5")] (2.3)

The term RY,, is the reward function, which gives the immediate reward
given the transition from state s to s’ as a result of the agent choosing
action a. The equation, which is actually a system of equations, states that
the optimal value of a state is the maximum over all possible actions a of
the expected return of a. Given the optimal value function, an optimal
policy is simply a policy which in each state s selects one of the actions
with an expected return of V*(s).

Instead of approximating V*(s) with a value function V(s), another
possibility is to approximate the value of every action that may be selected
in a state. This function is called the action-value function, and is denoted
by Q(s,a). This has the advantage that it is not necessary anymore to
know the state transition function P, in order to choose an action. A well
known learning method for reinforcement learning based on this idea is
called Q-learning, introduced in (Watkins, 1989). Q-learning is a temporal
difference (Sutton, 1988) learning method. Temporal difference learning
methods adapt estimates of whatever quantity is to be approximated to
later approximations of that same quantity. With Q-learning, the later ap-
proximation is the approximated value of the immediate next state. More
general temporal difference reinforcement learning methods also take later
states into account, where the influence of the future decays with a param-
eter A, hence their name: TD(A) methods. The learning rule for Q-learning
is as follows (Watkins, 1989):

Qe+1(st,at) = (1 — @)Qu(st, ar) + (Rt + ymazaQi(st+1,a)) (2.4)

An interesting variation is SARSA (Rummery & Niranjan, 1994; Sut-
ton, 1996). SARSA is similar to Q-learning, but instead of using the maxi-
mum action value of the successor state, the value of the actual action that
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is selected at the next time step is used. This makes SARSA an on-policy
method, meaning that it behaves according to the policy it is learning.

Qe+1(st,at) = (1 — @)Qu(se, ar) + Ry + yQ4(St41, 1)) (2.5)

2.4.1 Exploration and Exploitation

Since reinforcement learning agents have to learn which actions to choose,
the initial policy will normally not be optimal (otherwise there is nothing
to learn!). This normally means that the quality of some actions is overes-
timated, whereas other actions are underestimated. The actions for which
the value is overestimated will tend to be selected soon enough (sooner than
desirable in fact), receive lower evaluations than expected, and their values
will be adjusted accordingly. Although this is desirable, the actions for
which values are underestimated are a more difficult case. If the agent acts
according to a greedy policy, i.e. it always chooses actions with the highest
estimated values, most of these actions will never be selected?. Since these
actions may include optimal actions, the agent may never learn a good pol-
icy. Thus, it is necessary to ezplore. But since the goal of reinforcement
learning is to achieve good behavior even while learning, there is a tradeoff
between exploration, which improves the agent’s current knowledge, and
ezploitation, which benefits from the acquired knowledge by choosing good
actions.

In the experiments in this section, exploration is ensured by selecting a
random action with a small probability €, and the estimated optimal action
with probability 1 — e. This is a simple, and very common exploration
method, and is known as the epsilon-greedy policy. € decreases over time,
and is determined as t%, where in the experiments o = 0.97.

One of the most interesting exploration methods is the Interval Esti-
mation algorithm developed by Leslie Kaelbling (Kaelbling, 1993), which
uses a statistical method to determine the upper bounds of an action’s
value. The actions with the highest upper bounds are selected, so that
values of overestimated actions will quickly decrease as more information
becomes available. Actions which have not been selected so often (or re-
cently, if statistics are decayed), have a high uncertainty and thus high
upper bounds, which encourages their exploration. For an overview of ex-
ploration policies, see (Thrun, 1992).

2Exceptions are possible since actions with underestimated values may still have higher
estimated values than the other actions
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In (De Jong, 1997a), an exploration method is described that keeps an
ezxploration bucket for each action. At each time step, the contents of this
bucket are increased with a value composed of a term proportional to the
estimation error of the action value when the action was last selected, and
a term proportional to the average estimation error over all actions. Action
selection is based on the sum of the estimated action value and the contents
of the exploration bucket, and is followed by emptying the corresponding
bucket. The method is simple, and has the property that exploration is par-
ticularly active when the approximation of the value function is or becomes
inaccurate. The method is particularly suited for changing environments
that are deterministic at each point in time; in stochastic environments, it
will tend to explore too much. For such environments, a better approach is
to consider the expected improvement in the reliability of future predictions
that is gained by exploration, as done in Schmidhuber’s Adaptive Curiosity
method (Schmidhuber, 1991).

2.4.2 (Generalization and Bias

It is a common idea that reinforcement learning is tabula rasa learning,
i.e. that no a priori knowledge can be provided. This is a misconception;
several ways exist. One way of providing a priori knowledge is to initialize
the value function with an approximation based on that knowledge. An-
other possibility is to use generalization. This is the subject of the current
section.

Although principled learning methods have been derived for problems
with finite state-action spaces, these methods are slow for large finite state-
action spaces since information has to be learned about every single com-
bination of a state and an action. Furthermore, they cannot be directly
applied to continuous state-action spaces. Generalization addresses these
problems, and is a way of benefiting from similar experiences.

When generalization is used, the information gained by executing an
action in a certain state is not only used to update the value of that par-
ticular state-action pair, but also the values of other state-action pairs that
are assumed to be related. Thus, some sort of bias is introduced. For a lu-
cid explanation of the tradeoff between errors due to bias and variance, see
(Geman, Bienenstock, & Doursat, 1992). There, the mean squared error in
regression problems is decomposed into a bias component and a variance
component. In the paper, the corresponding terms in the formula are la-
beled “bias” and “variance”, but it is important to keep a clear distinction
between a bias itself and the component of the error caused by that bias.
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A bias may be viewed as an assumption, e.g. concerning the shape of a
function for instance, or concerning the likelihood of different parameter
settings. This view is consistent with that of Geman et al., who discuss the
crucial problem of designing a bias that is useful for a certain problems3,
and refer to ’a set of simple constraints on the architecture’ as a bias. The
error due to bias is the error that results when inappropriate assumptions
are made.

When a bias is appropriate, using it can have very positive effects. The
necessity of finding useful forms of bias in the context of generalization has
been stressed by Mitchell (1980). There, bias is described as ’any basis for
choosing one generalization over another, other than strict consistency with
the observed training instances’. Thus, bias refers assumptions explicitly
or implicitly made by a system, namely the assumptions that cause it to
make the choices referred to by Mitchell.

When no assumptions are made at all, a method is unbiased. Analogous
to (Gordon & desJardins, 1995), the assumptions constituting a bias can
be viewed as factors influencing search. If no assumptions are made, there
is no bias, and hence all states of the search space are equally likely to be
visited, which amounts to random search. Representational bias reduces the
search space by simply not considering certain parts of it; this is equivalent
to the assumption that the solution is not located in those parts of the
search space. Procedural bias on the other hand changes the order of the
search, so that during a search of limited duration some states will more
likely be encountered than others. In this case, the assumption that is
made is that some states are more likely to result in a (good) solution or
in more information that may lead to a (good) solution than others, and
hence should be visited first.

If the assumptions that are made are consistent with the problem (the
environment, in this case), it will be easier to learn appropriate behavior.
A strong bias carries a risk though; if the assumptions are inconsistent
with the problem, it becomes more difficult, or even impossible to learn
appropriate behavior. If on the other hand one chooses to use a very
general model, the bias-variance tradeoff shows: the error due to bias will
be low, but errors due to variance will be high because many parameters
have to be learned, which is problematic given a limited amount of training
data. Examples of using knowledge of the problem to create a useful bias
by introducing generalization are the famous Boxes system for learning to

3By its nature, a bias can not be appropriate for all problems, and thus introducing
a bias always implies restricting oneself to a limited set of problems.
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control a cart-and-pole (Michie & Chambers, 1968), and experiments with
control problems in (Santamaria, Sutton, & Ram, 1998).

Even if no very specific domain knowledge is available for constructing
a useful bias, one may introduce bias that is expected to be appropriate
for the learning tasks that will be addressed. For example, Tomas Lan-
delius (1997) argues that locality and continuity are useful biases for many
reinforcement learning problems. In the following section, a generalization
method is introduced which assumes locality; experiences that are close in
sensor-action space are expected to have similar values. Other generaliza-
tion methods include neural networks (Williams, 1990), the G-algorithm,
which builds a tree by selecting bits of the inputs that are correlated to the
reward (Chapman & Kaelbling, 1991), variable resolution dynamic pro-
gramming (Moore, 1991), the Parti-game algorithm, which refines the re-
gions in state space the agent visits (Moore & Atkeson, 1995), and CMAC,
a linear combination of a fixed set of features (Albus, 1981; Sutton, 1996).

2.4.3 Adaptive Resolution Methods

Adaptive resolution generalization methods divide a multidimensional space
into regions based on some criterion. An early implementation of an adap-
tive resolution method for discrete problems is the G algorithm (Chapman
& Kaelbling, 1991). It uses the Student’s t-test to determine which bits of a
binary state variable are relevant. Andrew Moore’s Parti-Game Algorithm
(1995) is an adaptive resolution method for continuous reinforcement learn-
ing with very good performance, but requires the availability of a controller
that moves the system between states.

The Adaptive Subspace Method, which is used for the concept formation
experiments in this thesis, was introduced in (De Jong & Vogt, 1998). It
initially considers the complete state-action space to be a single region. As
experiences are obtained though interaction with the environment, this re-
gion is split into subregions recursively. In the most straightforward case,
splits are parallel to the axes of the coordinate system. The decision of
whether to split and in what dimension to split is based on some split cri-
terion, which depends on the application of the method. The recursive
splitting process terminates when no region is left for which distinctions
should be introduced according to the split criterion. An important point
is that a split only introduces a distinction in a single dimension. Thus,
a split only increases the number of regions with 1. Because of this prop-
erty, the algorithm is economic in the number of states it generates. In
k-dimensional versions of the two-dimensional quad-tree (Finkel & Bent-
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ley, 1974) and the three-dimensional oct-tree (Jackins & Tanimoto, 1980),
which have been developed to represent spatial occupancies, each split in-
creases the number of regions with 2¥ — 1. Splits are made in the middle of
existing intervals. This choice is based on a trade-off against computation;
whereas it would be possible to select a split location that better fits the
data, for instance by considering a split between every two data points,
this would involve more comparisons, and would complicate the algorithm.
Furthermore, if increased precision is required, this can always be obtained
by introducing one or more extra splits. When operating in a k-dimensional
space, the tree generated by adaptive subspace methods is called a k-d tree
and has efficient methods for storage and retrieval (Bentley, 1975) and find-
ing nearest neighbors (Friedman, Bentley, & Finkel, 1977). A k-d tree is
a binary tree. Its root represents the whole k-dimensional space, and each
node splits a region of the space into two subregions. Therefore, the leaves
of the tree are non-overlapping regions of the space, and their union equals
the complete space again.

To apply the adaptive subspace method to reinforcement learning, a
useful split criterion is the difference in distribution of the values of the ex-
periences in the two potential subregions, where the value of an experience
(8¢, a¢, 7, St41,a¢+1) is based on SARSA and defined as follows:

V = Ry +vQ(s¢41,0¢+1) (2.6)

An adaptive resolution generalization method similar to the adaptive
subspace method is Andrew McCallum’s U-Tree algorithm (McCallum,
1996), which also constructs a k-d tree. The U-Tree algorithm recursively
partitions a discrete state-action space based on the cumulative distribu-
tion of future discounted rewards of the experiences in a region. It employs
fringes, provisional distinctions applied to a short term memory of past
experiences to store information at higher resolution than the current one,
allowing to determine which splits are useful.

The U-Tree algorithm uses a Utile Distinction Test (McCallum, 1996)
to determine a history of experiences that allows for accurate prediction
of the values of experiences in a region of the state-action space. This
principle augments the state information the agent receives by taking into
account the extra information of previous experiences when necessary, and
can overcome some degree of partial observability of the environment. On
the other hand, if the expected value of actions is similar within some region
of the state-action space, this region is represented by a single node of the
tree, thus accomplishing generalization.
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The U-Tree method uses the Kolmogorov-Smirnov Test to determine
whether the distribution of values in two adjacent regions of the state-
action space is constant or not, and in the latter case decides to separate
the two regions. Although this statistical test determines whether these
values are different, it does not tell how different they are; thus, possible
splits for which the difference in expected value is large cannot be distin-
guished from those for which it is marginally small. In the discrete spaces
for which the U-Tree method was designed this is not necessarily a prob-
lem, since the number of possible distinctions can be finite. However, the
criterion can not be directly applied to continuous spaces. There, gradual
changes in the value function can cause split criteria based on distribution
difference to keep splitting indefinitely, reacting to minute changes in the
approximated values of different regions. The idea of taking the importance
of the difference into account, for instance by using the area between the
distributions as done here, solves this problem.

Some differences between the U-Tree method and the adaptive sub-
space method are that the former has variable length history which allows
it to overcome a certain form of hidden state, and that it uses fringes,
extensions of the split hierarchy that collect information about candidate
distinctions. The latter simultaneously performs state generalization and
action generalization, and is suited for continuous state-action spaces. It
takes into account the importance of the distinction between regions con-
sidered for a split by using a statistical test based on the area between the
two distributions.

The result of concept formation using the adaptive subspace method
is a tree representing a subdivision of the complete state-action space into
regions. In general, nodes representing sensor distinctions and action dis-
tinctions can occur at any place in the tree. Here however, the splits of these
types are kept separate such that the state space distinctions always come
first in the tree. In other words, once an action distinction is encountered,
it may be assumed only action distinction will follow. This organization
has the advantage that the resulting tree will contain a set of intermediate
nodes that correspond to aggregated states. These states are basic forms
of situations, since they imply information about the future behavior of the
environment. These concepts are formed based on the criterion of whether
the value of different experiences is different. A more general notion of sit-
uation concepts is obtained by not only considering this value, but also (or
alternatively) other aspects of the expected future state of the environment.
Furthermore, the interaction history taken into account, here the current
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experience, can be extended to form arbitrarily long interaction histories,
as in the case of the U-Tree method. Situation concepts are described in
more detail below. The point of describing this more general version of
situation concepts is that it may clarify how similar principles could play a
role in human concept formation.

2.5 Situation Concepts

A situation concept, introduced in (De Jong, 1999), is a pattern in the in-
teraction history between an agent and its environment with the property
that knowing to which situation concept the actual history of interaction
corresponds, allows the agent to predict some aspect of the future. It rep-
resents an agent specific view on the complete state of the environment.
A common aspect of situations is their predictive power. The computa-
tional definition of situation concepts given here is based on this idea. The
principles behind situation concepts may play a role in human concepts rep-
resenting situations. The situations people distinguish can be characterized
by a huge variety of properties, but they are not random.

As an example, consider the advent of a thunder storm. Both seeing a
flash of lightning and hearing a roaring sound of thunder are indicators that
in a few moments, it may start to rain. Thus, these observations may be
grouped together to form a situation which has the property that a shower
is likely to arrive within short, whereas this possible future event will be
less likely in the case of a bright blue sky. In this example, the situation
is based on observations in the recent past, and the prediction concerns
future observations. Actions of the agent or evaluative feedback played no
role.

Other examples of situation concepts are the presence of sunshine after
rain (which announces the possible advent of a rainbow), the presence of ice
(which indicate that if you are incautious, you may fall), and the condition
of being in a restaurant and having ordered lobster (which significantly
increases the probability that one will be eating lobster soon). When a
situation occurs, i.e. a situation concept applies, this yields information
about the likelihood of the environment being in certain state(s). As the
examples make clear, the predictive aspect of a situation may lie in the
environmental states the environment will adopt in the near future, but
also in the effects of the actions the agent can take.

Situation concepts can be developed by agents by observing regularities
in the interaction history with the environment. The interaction history
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is a sequence of inputs from the environment, actions of the agent, and
subsequent evaluative feedback. A particular interaction history can be
view as a point in interaction space, the space representing all possible
interaction histories, where each dimension represents a sensor value, action
component, or evaluative feedback at a particular distance in time relative
to the current moment.

In principle, all adaptive resolution methods can be used as a basis for
situation concept formation, e.g. the U-Tree method (McCallum, 1996) and
the adaptive subspace method, since they build discrete states that repre-
sent particular situations. Another method that can be used is the schema
mechanism described in (Drescher, 1991), where the context and an agent’s
action are used to predict the result of the action. In that framework, a con-
text is specified as a set of conditions and can be viewed as an instantiation
of situation concepts, since it defines a subset of the possible histories of in-
teraction (viz. the current input) and has predictive value. However, most
other generalization methods for reinforcement learning are not suitable,
either because the representation of the interaction space is not adapted to
the learning problem (e.g. plain discretization, CMAC (Albus, 1981)), or
because no distinct representations are constructed (e.g. neural networks).

In (Zwaan & Radvansky, 1998), an overview of literature on situation
models is given. In that article, a situation is a particular situation that
occurred at some point, whereas situation concepts as they are used here
by definition have some general validity that is responsible for their predic-
tive power. In the article, Zwaan et al. argue that the time has come for
researchers to address multidimensionality in situation models. Although
the situation models in that article are more complex than the model of
situation concepts, the latter are defined with much more detail, making
implementation possible, and describes how concepts may be generated
that cover multiple dimensions.

2.6 Experimental Investigation of Concept For-
mation

In this section, an experiment will be described that makes clear how sim-
ilar situation concepts can be formed by individual agents with differing
experiences. In contrast with earlier reports of this research, the problem
description will be kept abstract here in order to emphasize the general
nature of the mechanisms.



64 CHAPTER 2. AUTONOMOUS FORMATION OF CONCEPTS

situation | action 0 action 1 action 2
-1 high high high
0 high low low
1 low high low
2 low low high

Table 2.2: Success of the different actions given the situation.

2.6.1 Basic Setup of the Experiments

In the experiments, the adaptive subspace method will be used to form
situation concepts. The interaction history will consist of the current input
from the environment. The situation concepts are chosen such as to allow
prediction of the subsequent reward given an action the agent may choose.
This is achieved by using the degree of difference in distribution of the
values in a region as the split criterion.

The experiment concerns a number of agents that are present in the
same environment. Although a shared environment is viewed here as an
important force guiding the development of similar concepts, the expe-
riences of different agents in a shared environment are never ezactly the
same. In the experiments in chapter 3, the situation sensor is masked 10%
of the time. This causes uncertainty in the knowledge of agents about the
environment that can only be overcome by means of communication.

When perception of the agents is local, or when it is global but incom-
plete, different agents will receive different sensor inputs. Furthermore,
these differences in perception and stochasticity in the action selection
mechanisms of different agents are two factors that produce different be-
havior in those agents, which in turn influences the evaluative feedback that
agents may receive.

In the experimental environment, a number of different situations may
occur. The cause of these situations is not important here; what matters is
how the agents might detect these situations, and what predictive potential
the detection of a situation brings.

The sensor input has d; = 3 dimensions for each of which the agent
receives a scalar value. The agent can then select a d, = 2-dimensional
action, which yields a scalar evaluation. One of the perceptual dimensions
will indicate the situation. Thus, a useful conceptual system will allow the
agent to distinguish between the possible values this sensor can take, and
any other distinctions may be harmless but do not have any positive effect.
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St ag Tt | St+1 ai+1

-1 5 0(-1 1| 1.361 -1 4 1 -1 0
-1 4 1|-1 0} 1.214 -1 3 0 1 1
-1 3 01 1| 1.174 -1 4 1 -1 0
-1 4 1|-1 0| 0.736 0 3 0 1 1
0 3 0,1 1| 0.001 0 4 1 102
0 4 1|-1 2| 0.173 0 3 2 0 0
0 3 2| 0 0| 1.008 0 3 0 0 2
0 3 0, 0 2|-0.293 0 3 2 1 2
0 3 2,1 2| 0.200 0 4 2 1 0
0 4 2|1 0| 0.776 0 5 0 -1 0

Table 2.3: Experiences of the agent in a region that is considered for split-
ting.

In some situations, situation -1 in this experiment, the actions will
determine the behavior of the agent, but not the evaluations it receives.
For other situations however, there is only a single appropriate action which
will be evaluated highly; all of the other actions will return a low value,
as shown in table 2.2. The high and low rewards are distributed normally
around the values of zero and one.

The agent is not provided with any knowledge about the structure of its
inputs. Therefore, it doesn’t know which of the inputs indicates situations
in the environment. In fact, it doesn’t even know that this information
is contained in a single dimension, but will look for general k-dimensional
subspaces in sensor space.

Interpretation of the Experiment

First, it should be stressed that the experiment is not intended to model
an existing communication system. However, as the above description is
rather abstract, it may be useful for the reader to relate the experiment to a
known problem. The communication system that served as inspiration for
the design of this experiment is the alarm call system of Vervet monkeys,
see e.g. (Hauser, 1997).

Convincing experiments have shown that these animals have a warning
system with specific calls for different kinds of predators (Seyfarth, Cheney,
& Marler, 1980): birds of prey, large mammals, and snakes. In the experi-
ments, the calls produced by these monkeys were played back using a tape
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recorder. Following the playback of these signals, the monkeys responded as
if the corresponding predator were present, by displaying a corresponding
flight behavior. This demonstrates the principle of how situation concepts
can be useful when communicated. When a monkey does not detect the
threat of an approaching predator, successful interpretation of the alarm
calls produced by other community members may make it aware of its per-
ilous situation. Put in abstract terms, the signals an agent receives from
the other agents allow it to deduce that its situation is different from what
it had observed using ordinary perception.

The three sensors of the agents correspond to a predator sensor, a sen-
sor indicating the agent’s own horizontal position, and a sensor indicating
the agent’s vertical position. Actions correspond to moving zero or one
step to the left or right, and selecting a new vertical position. In the stan-
dard situation, no predator is present, and all actions yield a high reward.
Periodically however, a random predator arrives. For each predator, there
is only a single safe vertical position. However, if the predator is too far
from an agent, determined by their horizontal locations, the agent’s preda-
tor sensor will not detect it. In the standard experiment, this happens in
10% of the cases. The visibility of a new predator is determined at its
time of arrival for each agent and remains so during its existence, even if
the horizontal position changes again. Due to this partial perception, the
sensors do not provide sufficient information to produce optimal behavior,
and hence optimal behavior indicates that communication has been used.

2.6.2 Operation of the Adaptive Subspace Method

The adaptive subspace method for concept formation will now be described
in detail. To visualize the workings of the mechanism, the description will
make use of an example. Table 2.3 shows some (10) of the 250 experiences
that have been obtained in a particular region of the sensor-action space.
Each experience consists of the three sensor values and two action values at
the previous time step, the reward following the action, and the sensor and
action values at the next time step. The first of the three sensors indicates
the situation, but this is unknown to the agent, who has to discover this
pattern by looking for relations between the values of each of the sensors
and the effects of its actions.

The experiences are ordered chronologically, and hence the right half of
each experience equals the left half of its successor. Using formula 2.6, the
values of the experiences can be calculated. Since the actions of the agent
do not affect its future possibilities for obtaining rewards in this particular
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problem, the history factor v can be set to zero and the value equals 7y,
shown in the middle column of the table. This information is the ground
on which the decision of whether to split, and in which dimension, will be
taken.

The decision of whether to split is considered for the region in which
the current experience is located with a certain frequency. It is made as
follows. For every dimension of the sensor-action space, i.e. for every sen-
sory channel and action component, a split in the middle of the region is
considered, which would result into two subregions, both half the size of
the original region. Since the initial shape of the space is a box and each
split divides a box-shaped region into two smaller boxes, all regions will be
boxes (hyperrectangles).

The actual split criterion is a parameter of the adaptive subspace method.
Here, this criterion is chosen to measure whether there is a difference be-
tween the distributions of the values of the experiences in the two sub-
regions. The test that will be used here is related to the area between
the empirical distributions, and calculates the integrated squared distance
between the distributions.

Figure 2.2 shows the values of the complete set of experiences obtained
for the region we are examining, which includes the data in table 2.3. Each
point is a six-dimensional vector, corresponding to the first six entries of
a row in the matrix of which the table is a sample. Since six-dimensional
vectors are difficult to visualize the most important dimension, the one rep-
resenting the value, has been combined with each of the other dimensions,
yielding five different projections of the same data. The graphs also show
the plane that would separate the two subregions if a split would be decided
for.

For each graph in figure 2.2, figure 2.3 shows a corresponding graph.
Whereas 2.2 shows the values of the experiences, 2.3 shows the distributions
of those values. The two distributions concern the points to the left and
to the right of the splitting plane. The points lying on the splitting plane
in the first graph fall within the right region, which is called the upper
subregion because its coordinates in that dimension are higher than those
in the region to the left.

A common aspect in all of the graphs of figure 2.3 is that a group of ex-
periences with values around zero causes the distribution to rise somewhat,
then no values are encountered in the middle region, leaving the distribu-
tion at a plateau, and finally there is another cluster of experiences with
values around 1. This is a consequence of the structure of the environment.
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Figure 2.2: Projection of the values of experiences (3 sensor and 2 action
dimensions) in a region of the sensor-action space onto planes perpendicular
to the axes. All of the projections show the same set of experiences, but
in each graph their values are plotted against a different sensor- or action-
dimension.
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As described earlier in this section, the rewards are distributed normally
around zero and one, which explains the shape of the distributions.

The decision criterion is determined by the area between the distribu-
tions. In the first dimension, this area is larger than in any of the other
graphs. It indicates that for the given set of experiences, the lower sub-
region contained more experiences with high evaluations than the upper
subregion, since its distribution function rises most around high values of
the horizontal coordinate. Similarly, the graph in the middle shows that
there is little difference between two sides of the splitting plane when the
third sensor value is considered; hence, it would not be very useful to split
in that dimension. The integrated squared distance between the distribu-
tions is 9.17% of the maximum squared area, which was higher than the
threshold value of 2%, and hence the final result of the procedure was that
the region was split in the first sensor dimension.

Results of the Splitting Process

The initial representation of the state-action space is the root of a tree.
With each split, two new nodes are added to the tree, one for each new
subregion. These nodes are the two children of the node that represented
the region before splitting. Thus, the finest regions are always represented
by leaves of the tree.

Figure 2.4 shows the tree of an agent in the experiment after concept
formation has stabilized, i.e. when the tree is not growing anymore. As the
figure shows, the splits stored in the nodes are not ordered randomly; all
sensor distinctions occur before action distinctions. This is required to en-
sure that each situation is represented by single node; if action distinctions
were allowed to precede perception distinctions, the nodes corresponding
to different action possibilities would need to be considered. This property
is important when communication starts to play a role, as will be see in
the next chapter.

To maintain the property that sensor splits precede action splits, a
node that has already made one or more action split and is about to be
split in a perceptual dimension takes the subtree starting at the rightmost
perceptual distinction and splits it, attaching a copy of that subtree to
both of the resulting nodes. This is necessary in order to maintain all
action distinctions for the region. The experiences stored in the subtrees
are redistributed over the two subtrees according to the new perceptual
split. This is done in order to maintain correspondence between the regions
represented by the nodes and the experiences stored in them.
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Figure 2.4: The resulting tree for agent 1 after forming situation concepts.
Boxes referring to Sx constrain the space in sensor dimension x, while boxes
referring to Ay constrain the action of the sensor-action space in action di-
mension y. The agent distinguishes four situations; they are located within
the dotted frame.
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Figure 2.5: Intervals of the tree for agent 1. Each node corresponds to a
node in figure 2.4, and shows the interval of a sensor or action determined
by that node.
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The question of which actions the agent should distinguish between de-
pends on the situation. As table 2.2 showed, situations 0, 1 and 2 each
have a single good action, viz. the action with the same index. In situa-
tion -1 however, the evaluation the agent receives does not depend on the
action. In the tree, sensor distinctions in dimension 7 are shown as S;, and
action distinctions as A;. As the tree shows, the agent benefits from this
property by not making any distinction regarding its actions in situation
-1. For each of the other situations, it has created distinctions that allow
it to differentiate the successful action from the other actions, but not any
other distinctions, which would indeed be useless. This is illustrated in
figure 2.5, which represents the constraints in the tree of figure 2.4 in a
different format; here, each node shows the set of possible values given the
corresponding to the node and its ancestors.

2.6.3 Analyzing the Result of Concept Formation

A principled way of investigating is in terms of necessary and sufficient
distinctions. Whenever a distinction is necessary in order to distinguish
one situation from another, will be called a necessary distinction. If all
situations can be distinguished from each other, the set of distinctions is
called sufficient. Concept formation should at least yield a sufficient set
of distinctions, and should not contain too many unnecessary distinctions.
These notions are expressed by the concepts of distinctiveness and parsi-
mony. Distinctiveness expresses whether concept formation has made all
the necessary distinctions, and thus resulted in a sufficient set of distinc-
tions. Parsimony indicates whether no more distinctions than necessary
have been made; unnecessary distinctions slow down learning and decrease
the chances of building up useful communication. Distinctiveness and par-
simony will be examined in an example. After that, both concepts will be
captured formally in two corresponding measures. First however, a matrix
notation describing the results of concept formation will be introduced.

Matrix Notation for Concept Formation

A matrix notation describing the results of concept formation will now be
introduced. This representation will not only serve to describe the rela-
tionships between the private meanings or concepts of an agent and public
referents, but will later prove to be useful in describing systems of commu-
nication. At this point, it is important to clarify the use of referents. An
aspect of the viewpoint that lead to this research is that it is not necessary
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to assume that referents in the real world can be accurately defined. One
might be led to think this property should apply to the experimental world
as well. However, there is an important difference between the simulated
world of experiments and the real world. In the real world, it is impossible
to measure the complete state of the world accurately and monitor it over
time. In the simulated world however, all information that one might wish
to know can be extracted. Since in addition the criteria used by agents
to form concepts are known, i.e. they try to distinguish between situa-
tions that require different actions, the ideal conceptual system that allows
agents to produce successful behavior is known exactly. Thus, knowledge
of the simulation world can be used to determine the exact referents about
which the agents want to talk. Given the referents, the relation between
meanings and referents that define a conceptual system can be expressed
in matrix notation.

Meanings will be represented as u;, where 4 is an index. Likewise, ref-
erents (situations) are referred to with p;. The relationship between an
agent’s conceptual system and the world can be investigated by measuring
co-occurrence, i.e. how often meanings and referents occur together. The
co-occurrence between a meaning and a referent determines the conditional
probabilities of the referent given the meaning (P(p|u)) and the meaning
given the referent (P(u|p)). If both of these probabilities are 1 for a combi-
nation of 4 and p, then the agent activates meaning yu if and only if referent
p is present. Examples of the two matrices are given in table 2.4.

Two Criteria for Success: Distinctiveness and Parsimony

The matrix representation provides all information necessary to calculate
whether an agent has made sufficient and only necessary distinctions. Per-
fect distinctiveness has been achieved if for each meaning u there is at most
one referent p such that P(p|u) > 0. Such meanings allow the agent to
determine unambiguously, noise permitting, whether referent p is present
in the environment, i.e. whether the agent’s situation is p. Furthermore, if
every state of the environment corresponds to some referent, there has to
be at least one referent to which a meaning corresponds. Thus, by combin-
ing these properties, it follows that sufficient distinctions have been made
if for each meaning p there is exactly one referent p such that P(p|u) > 0.
Finally, since both referents and meanings cover the complete state-actions
state, the sum of P(p|u) over all referents for a given meaning p equals 1.
Thus, a conceptual systems makes sufficient distinctions if for each mean-
ing p there is precisely one referent p for which P(p|u) is one, while this
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P11 P2 P3 P4 H1 o p2 B3 M4
pr | 1 0O 0 O p1| 1 0 0 0
p2 | O 1 0 0 p2 | 0 1 0 0
ps| 0 O 1 0 p3 | 0O 0 1 0
pae| 0O 0 O 1 pe | O 0 0 1

Table 2.4: Conditional probabilities of referent given meaning P(p|u) (left)
and meaning given referent P(u|p) (right). Since all rows contain a single
one, both distinctiveness and parsimony have been achieved.

probability is zero for all other referents.

If only necessary distinctions have been made, then the number of mean-
ings that can occur given the presence of a situation p is as small as pos-
sible. Ideally, P(u|p) will be one for a single meaning p and zero for all
other meanings. Thus, whether perfect parsimony has been achieved can
be determined from the matrix P(u|p) in the same way distinctiveness can
be determined from P(p|u), i.e. by seeing whether each row contains a
single one and has zeroes at the remaining entries. It is important to no-
tice that although any good method for situation concept formation should
be able to achieve high distinctiveness if the problem allows it, this does
not hold for parsimony; whereas the structure of referents is in principle
unrestricted, and may take arbitrary shapes in sensor-action space, the
structure of meanings is restricted by the representational format of the
concept formation method. To give an example, a referent might present
itself to the agent such that one of its sensor values can be in either of two
separate intervals. In this case, the adaptive subspace method would not
be able to represent the referent in a single contiguous region, but would
need at least two meanings to represent the referent, thus diminishing par-
simony. Nonetheless, given an environment and a representation format,
the objective of the agent will always be to achieve high parsimony, even if
the maximum value it may obtain is bounded.

The situations in the tree of the experiment (see figure 2.4) all corre-
spond to a single value of the sensor S1, and thus they all identify a single
situation. This is readily seen by constructing the matrices P(p|u) and
P(p|p), as shown in table 2.4, where p; . .. ps represent the four possible sit-
uations of the environment and p; ... p4 are the four meanings constructed
by the agent in the form of nodes in the tree.
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The Distinctiveness and Parsimony Measures

The concepts of distinctiveness and parsimony can both be captured in
measures. All measures in this work take values between zero and one.
When distinctiveness and parsimony are perfect, their corresponding mea-
sures should yield a value of one. The advantage of quantitative measures
over binary ones is that when either of the criteria is not completely sat-
isfied, they provide an evaluation of the degree to which they have are
satisfied.

Intuitively, distinctiveness expresses to what degree a meaning identifies
the referent, and parsimony expresses to what degree a referent gives rise
to a unique meaning. Using the entropy concept from information theory,
this intuition can be formalized in a principled way. For distinctiveness,
what we would like to measure is the amount of information that is gained
about the current referent by knowing which meaning applies. Likewise,
parsimony refers to the extent to which the referent determines which is the
current meaning. These can almost directly be calculated from the entropy.

Entropy can be viewed as the uncertainty about a set of elements; a
high entropy means a chaotic or almost random distribution, whereas a
low entropy indicates order. In information theory, entropy is defined as
follows. Let X be a random variable with a set of possible outcomes Ax =
{ai1,... ,an}, having probabilities Px = {Py,... ,P,}, with P(z = q;) =
P;, P, < 0and > ; P, = 1. Then according to (Shannon, 1948), the
entropy H of X is defined by:

H= —ZPilogPi, (2.7)
=1

with the convention for P; = 0 that —0-log0 = 0. The information theoretic
entropy used here should not be confused with entropy in physical systems,
as in the second law of thermodynamics, although there is a relation in that
both forms of entropy measure disorder.

What we want to measure is the degree to which knowledge of one
entity X (meaning or referent) decreases the amount of uncertainty about
the other Y. This can be calculated by taking the difference between the
amount of uncertainty in Y before and after observing the entity X. This
quantity is known as the information gain.

Since in the ideal case all uncertainty is removed, the maximum decrease
in uncertainty equals the initial amount of uncertainty. Dividing the out-
come by this maximum yields a measure between zero and one. Thus, the
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distinctiveness dist(.A) of an agent A can be defined for meanings p; . .. up
and referents p; ... p,, as follows:

T

m

Hiplus) = 3 —Plpslis)logP (s ) 23)
j=1

dist(s;) = H(P)I;(JZ)(PW) _q1_ H}(IIZLM)Z) (2.9)
dist(A) = iz dist(Hs) (2.10)

'm

where the initial uncertainty H(p) equals logn,. Based on the n,xn,
matrix P(u|p), parsimony pars(A) can be defined likewise for referents
P1---Pn, and meanings pq ...t :

m*

H(ulpi) =Y —P(ujlpi)logP(ujlp:) (2.11)
7j=1
H(plpi)
pars(p;) =1 — 2.12
pars(A) = M, (2.13)
Tr
where H(u) = logn,,. If there is only a single meaning, parsimony is

defined to equal one.

In the following, the use of the newly defined measures will be exam-
ined in practice. Figure 2.6 shows the evolution of both measure over time.
Furthermore, the number of meanings is displayed, scaled onto [0,1]. The
initial number of meanings is one, as is always the case when the adap-
tive subspace method is used, since the root of its empty tree represents
the complete space. As is visible in the graph, the number of meanings
increases three times, i.e. three splits are introduced in the sensor dimen-
sions, yielding a total of four meanings. The meanings are equivalent to
those earlier depicted (figures 2.4 and 2.5).
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Figure 2.6: Distinctiveness and parsimony as a function of time.

The distinctiveness measure is equal to zero initially. This implies that
knowledge of the meaning does not yield any information about the refer-
ent; since there is only a single meaning, this meaning was already known
beforehand, and so observing that that meaning is the current meaning
does not provide any extra information. With every subsequent split, dis-
tinctiveness increases. This implies that only necessary splits are made?*.
When splitting has stabilized, just before time step 1000, the distinctive-
ness measure increases to one, indicating that sufficient splits have been
made, and thus complete distinctiveness is the result.

The parsimony measure equals one from the very beginning. It is one
initially because there is a single meaning, hence no uncertainty about
what the current meaning is, and thus the zero decrease in uncertainty
after learning what the current referent is equals the maximum decrease in
uncertainty, which by definition yields perfect parsimony. Parsimony does
not decrease because of any of the splits. This is in line with the earlier
observation that no unnecessary splits are made.

We now consider a case where the threshold that determines whether
a difference is sufficient to cause a split is set lower than necessary (0.1%).
The noise level in the feedback remains the same (o = 0.15). Figure 2.7
shows the results. The distinctiveness measure behaves similarly. After
the first few splits, it reaches its maximum of one and remains at that
value. The only difference is that it takes the agent less time to reach
complete distinctiveness. The fact that splits take place earlier is a direct
consequence of lowering the split threshold; what’s interesting is that the

4 Although the implication holds for this problem, it does not hold in general.
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Figure 2.7: Distinctiveness and parsimony as a function of time.

split procedure still selects the right distinctions in the beginning.

Parsimony however behaves rather differently. Although remaining one
during the first few splits, showing that indeed these first splits were neces-
sary, parsimony then starts to decrease. The large number of splits caused
by the low split threshold can readily seen by inspecting the parsimony
measure.

An interesting phenomenon is that parsimony decreases, but not mono-
tonically. The decreases are caused by unnecessary splits. When some
region of the sensor-action space is split in a dimension in which the refer-
ents have no distinctions, then parsimony will drop, since the knowledge of
the referent does not enable one to distinguish between the two new mean-
ings, and thus uncertainty has increased. Such a distinction is superfluous
and should cause the parsimony measure to decrease, as indeed it does.

At several points however (t = 3500 and t = 4250), increases in par-
simony can be observed. Although the increases are very small, the effect
is counterintuitive, and calls for an explanation. The effect has two man-
ifestations, one causing substantial increases in parsimony, the other only
small increases.

The larger increases are explained as follows. If the region of some
meaning corresponds to multiple referents, a new split can yield two re-
gions, both of which correspond to a unique referent. This increases the
number of possible meanings associated with both of these referents without
increasing the uncertainty H(u|p). The increase in the number of possible
meanings increases the initial uncertainty, which has a diminishing influ-
ence on the scaling fraction in formula 2.12. The effect is visualized in
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Plulp) | p1 p2 p3 Plulp) | w1 pe  p3  pa
p1 | 05 025 0.25 1 0 05 025 025
p2 |05 025 0.25 P2 0 05 025 0.25
ps |05 025 0.25 ps |05 0 025 025
ps |05 025 0.25 ps |05 0 025 025

Table 2.5: A split that increases parsimony. While the amount of uncer-

tainty remains constant, the a priori uncertainty, which depends solely on

the number of meanings, increases. The relative uncertainty decreases, so
1.5 15 _

that parsimony increases from 1 — Togs ~ 0.0536054 to 1 — Togd = 0.25.

table 2.5. Although it has been observed in other experiments, it does not
explain the increases in parsimony here, since the splits did not distinguish
between different referents; indeed, this would not be possible, since com-
plete distinctiveness has already been reached just after the beginning of
the experiment.

The above makes clear that extra distinctions can increase parsimony
when H (p|p;) remains constant while H(u) increases. Apart from this ef-
fect, smaller increases in parsimony are explained by a different but similar
phenomenon. Introducing an unnecessary distinction in a meaning with a
low contribution to H(u|p;) will increase the uncertainty in the numera-
tor H(u|pi), but this increase may be smaller than the increase of the a
priori uncertainty in the denominator H(u). Thus, the net effect is that
the fraction (i.e. the relative residual entropy) becomes smaller, and thus
parsimony increases as well. This explains the increase in parsimony at
time steps 3500 and 4250.

The Concept Fidelity Measure

The aim of concept formation is to achieve a reliable process of encoding
a referent into a meaning and decoding a meaning back into a referent
again. Distinctiveness measures whether every meaning can identify a ref-
erent, while parsimony measures to what extent every referent identifies a
meaning. A slightly different question is the combined goal of developing
meanings such that encoding a referent into a meaning and decoding it back
into a referent again yields the referent that was encoded. In this question,
the occurrence probabilities of meanings and referents play a role. This
difference is illustrated in the following.

To some extent, the distinctiveness measure already indicates whether
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Plulp) | p1 p2 p3  pa ps
m |1 0 0 0 0
m |0 1 0 0 0
P3 0 0 0.99 0 0.01
P4 0 O 0 0.99 0.01

Table 2.6: An example where distinctiveness yields too high an estimate of
concept fidelity. This table shows the conditional probabilities of obtaining
a meaning p given the presence of a referent p.

Plplp) | p1_p2 p3s  pa
i 1 0 0 0
pe |0 1 0 0
ps |0 0 1 0
pe |0 0 0 1
us |0 0 05 05

Table 2.7: Example where distinctiveness yields too high an estimate of
concept fidelity (continued). Although the uncertainty in meaning us is
large, its probability of occurring is low, limiting the effect of the uncer-
tainty.

the right referent is likely to be found; if the distinctiveness is perfect,
then no matter what the parsimony is (i.e. no matter how many different
meanings may be associated with the referents), the referent will always be
determined correctly. However, if some of the referents are not associated
with a single meaning but with multiple meanings, then distinctiveness may
give too negative a picture. This is the case when some of those meanings
have a very low probability of occurring and a low distinctiveness; for an
example of such a conceptual system, see tables 2.6 and 2.7. Also, the
picture can be too optimistic, e.g. when not all referents are represented by
a meaning, although the concept formation method that will be investigated
guarantees that every part of the space is covered by a meaning, which
prevents this.

The measure that is described in this paragraph evaluates to what ex-
tent the aim of reliable encoding and decoding of referents is achieved. This
measure will be called concept fidelity, since it expresses the fidelity with
which a conceptual system encodes and decodes referents. Concept fidelity
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is expressed by the probability of obtaining the same referent after encod-
ing and decoding. The matrix P(p|p) contains exactly this information on
its diagonal. To obtain a single measure, the concept fidelity measure is
defined as the average of P(p;|p;) over all referents i, reflecting the goal of
reliably encoding and decoding all referents. This goal differs from that of
successfully decoding the current referent as often as possible, which would
be achieved by multiplying with the probabilities P(p;). Concept fidelity
can be thus computed:

P(plp) = P(plp)P(klp) (2.14)

This can be seen as follows:

Ploilog) = 3 Plodue) Plueloy) (2.15)
k=1
fid(A) = iz Lleider) (2.16)

Lz

Calculation of the Matrices

The parsimony and distinctiveness measures are based on matrices contain-
ing the conditional probabilities P(p|u) and P(u|p). There are multiple
ways of obtaining values for these probabilities, each with their own ad-
vantages and shortcomings. In this section, the direct calculation method
is described. In chapter 3 (section 3.4.2), a method based on sampling is
described. The direct calculation method is so called because it directly
transforms the conceptual system of an agent into one of the two matrices
mentioned; no sampling over time-intervals is necessary. The conditional
probability can be computed as follows:

P(pj A pi)
P(pi)

The probability of a meaning or referent is equal to the probability of an
experience being located in a region of interaction space that corresponds
to that meaning or referent. Thus, what formula 2.17 tells us is that for
a referent p; and a meaning pu;, the probability P(u;|p;) is equal to the
probability of an experience being located in a region of the interaction

Pu; | pi) = (2.17)
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space corresponding to both p; and u; divided by the probability of it being
located in a region corresponding to p;. The probability of an experience
being located in a particular region of interaction space is obtained by
integrating the probability density of experiences over that region.

In the experiments here the referent is encoded into a separate dimen-
sion and meanings are hyperrectangles parallel to the axes of the coordinate
system. Furthermore, the actual distribution of referents is known; each
referent corresponds to an integer. This implies that the projection of the
meanings containing the integer value of the referent onto a plane perpen-
dicular to the referent axis contains all necessary information. Here, it will
be assumed that the distribution of experiences over these two dimensions
is more or less homogeneous. The validity of this assumption is dependent
on the problem however. The probability P(u;|p;) is equal to the propor-
tion of the complete projection taken up by ;. This value is equal to
the product of the fractions of the ranges occupied by the region in each
dimension:

deDNde s maz{zq|x € S} — min{zq|z € S}
where D is the set of dimensions, d,.; is the dimension encoding the refer-
ent, x4 is the coordinate of = in dimension d, and S is the complete state
space or interaction space.

This calculation method has several advantages over methods based on
sampling:

e Accuracy If the distribution of experiences over interaction space is
known, the method yields exact probabilities, in contrast with sam-
pling based methods.

e Availability The measure values are available at any point in time,
since no time dependent information needs to be gathered.

e Memory Requirements It is not necessary to keep estimates or
counts of occurrences of probabilities in memory. Although this is
not an issue in the experiment described here, it may become an
issue when the number of meanings or referents is large.

The main disadvantage of the method is its rigidity. When the for-
mation of concepts is to be compared against a different ideal conceptual
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Figure 2.8: Distribution density for three different standard deviations (0.5,
1.0, and 2.5). A broad distribution obfuscates the source of the data (0 and
1), making it difficult to distinguish between the sources.

system, and the shapes of the referents change, the procedure needs to be
adapted. Approximation of the matrices by sampling, described in chapter
3, overcomes this problem.

The Effect of Evaluation Noise on Concept Formation

The previous experiments demonstrate how situation concepts can be formed
by the adaptive subspace method. Here, the effect of several changes to the
environment on concept formation will be examined. The first change con-
cerns the evaluations the agent receives. As described, the problem assigns
two basic evaluations to the actions of the agent, which vary around zero
and around one. In the following experiments, the amount of variation will
be gradually increased, up to such an extent that the distributions have
substantial overlap, thus making it difficult to determine whether an action
was appropriate given the situation, and hence to determine what situa-
tions are to be distinguished. Evaluations are normally distributed with
kernels centered around zero and one. Variation in uncertainty is obtained
by changing the standard deviation of these normal distributions.

The effect of stochasticity in the evaluations on concept formation has
been investigated by varying the standard deviation in the evaluations be-
tween ¢ = 0 and ¢ = 2.5 with steps of 0.25. As figure 2.8 shows, the
distributions of the evaluations have some overlap for a standard deviation
of 0.5 (leftmost graph), but the larger part of the area under each curve
is separated from the area under the other curve. For higher standard de-
viations however, the distributions become increasingly similar, making it
very difficult to distinguish between high and low evaluations. The surface
under both curves is a measure for the separability of the distributions; the
larger its share in the total area, the less separable the evaluations are.
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Figure 2.9: The evolution of distinctiveness over time, averaged over ten
runs of the experiment. There is a stable trend towards high distinctiveness.

Figure 2.9 shows how distinctiveness develops over time. To get an idea
of the variance of this measure across different runs of the experiment, the
experiment has been performed 25 times with different initializations of the
random generator.

The first effect effect of evaluation noise that is considered here is that
on concept fidelity, i.e. the probability that a referent, when coded into
a meaning and subsequently decoded again, yields the original referent.
This effect is shown in the graphs of figure 2.10. The different graphs
concern different settings of the split threshold. Starting in the top left
corner, where the threshold is set to 0.1%, it gradually increases until, in
the bottom right corner, a split threshold of 5% was used. Each graph
shows the same experiment; the concept formation process is active for
10,000 time steps for different noise levels, varying from ¢ = 0 to o = 2.5.
For each combination split threshold and noise level, i.e. for each line on
the page, 25 runs have been performed. A line represents the mean of its
25 runs.

The graphs show a clear pattern. For low split thresholds, the agent
soon develops a conceptual systems that captures the situations of its en-
vironment. This is expressed by the high values of the measure. As the
split threshold increases, causing a more conservative splitting behavior,
the measure starts to drop for the higher noise levels. This process con-
tinues until, for a split threshold of 5%, only three of the original eleven
lines are higher than the chance level of 25%, determined by the number of
referents (4). Apparently, more sensitive detection is necessary when the
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patterns in the environment are augmented with evaluation noise.

Another aspect that is less obvious, but clear nonetheless, is the fact
that for intermediate and low levels of evaluation noise, the lowest split
threshold takes longer to reach high probabilities than all other thresholds.
The explanation for this is that although the agent will earlier decide to
split than in the other cases, these splits apparently are less useful, since
they cause smaller increases in the probability that the original referent
will be found.

The following set of graphs (figure 2.11) show the parsimony measure
for the same experiments. Whereas from the previous graph it would seem
that a low split threshold is desirable since it resulted in high probabilities
of finding the right referent, these graphs learn that there is a tradeoff
with parsimony. For the lowest threshold, parsimony drops in the course
of the experiments, although when no noise is added the measure ends up
rather higher than when the evaluation signal is noisy. For increasing split
thresholds, parsimony increases considerably.

Figure 2.12 shows the evolution of distinctiveness. It is readily seen
that the pattern observed here closely matches that of the graphs in figure
2.10. This should come as no surprise; as discussed before, the information
conveyed by these measures is similar, to which these graph testify.

In figure 2.13, the number of meanings is displayed. To clearly show
the influence of the split threshold, the scales of the graphs have been
equalized. The cause for the low levels of parsimony for the lowest split
threshold immediately become clear. Except for the case without noise (SD
= 0), the number of meanings grows at a steady rate even at the end of
the experiment with no clear signs of convergence. This is the price that
is paid for eager splitting. Since the number of necessary meanings is four,
an overwhelming majority of the meanings produced by the agent in the
top left graph are superfluous.

The previous graphs have yielded insight into the influence of the split
threshold on concept formation for different levels of evaluation noise. How-
ever, our initial purpose of investigating the effect of noise has been fulfilled
to a lesser extent. In order to concentrate on this issue, a different form of
presentation will now be introduced. The previous series of graphs should
serve to clarify what the data represents. The following four graphs show
the final value of each measure, i.e. the value of a measure for a fixed combi-
nation of parameters after 10,000 time steps, averaged over 25 runs. Since
each experiment only needs a single point in these graphs, the different
combinations of split threshold and noise level can be represented in one
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Figure 2.10: Concept fidelity over time for six different split thresholds. For
low split thresholds, high concept fidelity is reached across a wide range of
noise distributions. For increasing split thresholds, experiments with large
amounts of noise are the first to display a decrease in concept fidelity.
For the highest thresholds, this development also affects cases with small
amounts of noise (starting with o = 0.5 for a threshold of 5%).
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Figure 2.11: Influence of the split threshold on parsimony. For low split
thresholds, parsimony is low except in the noiseless case; this is, of course,
caused by superfluous splitting. As higher thresholds are chosen, parsimony
quickly increases, and remains high (above 0.8) for thresholds of 1% and
up for all noise levels.
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Figure 2.12: The influence of the split threshold on distinctiveness. High
distinctiveness is obtained for all noise levels when split thresholds of 0.5%
or smaller are chosen. For higher thresholds, the range of noise levels for
which high distinctiveness is reached diminishes, starting with the highest
noise levels.
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Figure 2.13: The number of meanings generated by the agent as a function
of the split threshold. For very low split thresholds (0.1%) large amounts
of meanings are generated as soon as a little noise is present. When split
thresholds are chosen only slightly higher (starting at 0.5%), this problem
is soon solved, and the number of meanings remains limited, up to a point
where, when split thresholds are chosen too high in combination with high
noise levels (bottom right), the number of meanings can fall below the
number of referents.
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Concept Fidelity
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Figure 2.14: Concept fidelity for the six different split thresholds across
different levels of noise.

graph. The graphs show the final value of a measure as a function of noise
level, and each line depicts a different split threshold, as specified in the
graphs.

Figure 2.14 shows the influence of raising the split threshold on concept
fidelity. This graph is a condensed form of figure 2.10, showing the final
outcomes of the runs. This condensed representation of the experimental
results shows more clearly how performance is influenced by noise, since the
different noise levels are represented linearly on the horizontal scale instead
of as different lines in the former graph.

For a threshold of 0.1% and lower, the concept fidelity measure is high
(above 0.9) for all levels of evaluation noise that have been investigated.
For higher thresholds the measure is high up to a certain level of noise, after
which it quickly drops. When the threshold increases, this drop takes place
earlier, i.e. at a lower level of noise. The behavior is very similar to that of
distinctiveness. This is understandable, since there is a close relationship
between distinctiveness and concept fidelity; if each meaning allows one
to identify the referent (high distinctiveness), concept fidelity will also be
high, no matter how many meanings there may be (low parsimony). When
the distinctiveness is lower, the relationship between distinctiveness and
concept fidelity depends on the occurrence frequencies of the referents and
the meanings.

Figure 2.15 shows the effect of noise on parsimony. For a very low split

threshold (0.1%), the combination with zero noise yields a much higher
parsimony than the other combinations. If there is no noise, there are
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Parsimony
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Figure 2.15: Parsimony as a function of noise level for the different split
thresholds.

less differences, and has splitting will occur less, and hence the number of
meanings remains low. Apart from this effect, the lines in the graph are
strikingly horizontal, while differences in the vertical dimension are much
more outspoken. From this, we can conclude that the split threshold is a
more important factor for parsimony than the level of evaluation noise.

This graph shows the advantage of the concentrated representation. Al-
though all information for discovering the pattern that parsimony depends
on the split threshold was present in the graphs of the time series, this
relationship is more readily from the current figure.

The similarity between distinctiveness and concept fidelity that was
observed in the time series is found back in the concentrated graph of figure
2.16; the noise level at which the measure drops decreases for increasing
split thresholds.

Finally, figure 2.17 shows the number of meanings for all combinations
of noise level and split thresholds that have been investigated. For very low
thresholds, the number of meanings grows quite high, and its final value is
constant across the different noise levels (apart from the zero noise case, as
discussed above). For higher thresholds, two effects are observed. The first
effect is that the number of meanings drops when the threshold increases,
as one would expect. The other effect is that the number of meanings after
10,000 time steps drops for increasing levels of noise, especially for higher
thresholds. Ostensibly, the variations in evaluations due to noise obfuscate
the differences in evaluations. These differences then fail to exceed the
higher thresholds, which leads to conservative configurations of concepts.
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Figure 2.16: Distinctiveness as a function of noise level for the different
split thresholds.
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Figure 2.17: Number of meanings as a function of noise level for the different
split thresholds.
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Figure 2.18: Parsimony as a function of sensor noise for the different split
thresholds.

Stability under Noisy Sensors

In the previous section, it has been shown how the adaptive subspace
method for concept formation reacts to noise in evaluations. Here, the effect
of sensor noise will be examined. The experimental procedure is analogous
to that of the previous experiments, which allows for a straightforward com-
parison of the results. In order to save space, only the condensed graphs
will be shown. The procedure by which these graphs were produced has
been explained in section 2.6.3. The graphs shown in this section corre-
spond to figures 2.15 through 2.17. In the evaluation noise experiments,
the results for the concept fidelity measure are almost identical to those
of the distinctiveness measure. This is also the case for the sensor noise
experiments, and therefore the graph has not been included here.

Figure 2.18 shows the parsimony of an agent’s conceptual system for
the specified split thresholds and noise levels. As in the evaluation noise
experiments, and in line with expectations, low split thresholds yield lower
parsimony. A difference however is that for split thresholds of 1% and more,
the parsimony is much lower as well.

Figure 2.19 shows how distinctiveness is affected by sensor noise. Com-
parison with figure 2.16 makes clear that the effect of sensor noise is dif-
ferent in nature from that of noise in the evaluations. Whereas evaluation
noise was handled best by low split thresholds, here the opposite is the
case; distinctiveness decreases for decreasing split thresholds. Apparently,
sensor noise leads to splits that are not necessary without noise. Another
difference between the two types noise is that the distinctiveness remains



2.6. EXPERIMENTAL INVESTIGATION 95

2]
%]
2 0.6 |- _
2
g
Z 04 | -
[a)

02 | -

0 | | | |
0 0.5 1 15 2 25

Standard deviation of sensor noise

Figure 2.19: Distinctiveness as a function of sensor noise for the different
split thresholds.

much higher here than under evaluation noise, where it dropped to zero for
high split thresholds.

Figure 2.20 shows the number of meanings constructed by the agent
for the different levels of sensor noise. Compared to the evaluation noise
case, the number of meanings is much higher. This fits with the results
concerning the distinctiveness measure. Whereas the number of meanings
for higher split thresholds dropped to zero in the case of evaluation noise,
here a substantial number of meanings are produced for even the highest
split thresholds. Evidently, the meanings that are created include useful
meanings, as they result in high levels of distinctiveness. The fluctuations
due to evaluation and sensor noise have the same ranges (standard devia-
tions between zero and 2.5), whereas the ranges of sensor values are larger
than those of the evaluations. It might therefore be expected that concept
formation is less disturbed by the sensor fluctuations than by the variation
in the evaluations. However, although the complete range of the situation
sensor is larger than that of the evaluations, the different values that need
to be distinguished are only a single unit apart, hence this does not explain
the effect. Therefore, a closer analysis will now be performed.

Nature of the Different Noise Sources

Although the different effects of evaluation noise and sensor noise have been
charted, the source of these differences has not yet been explained. To this
aim, a simulation experiment has been performed where a split in the range
of a fictitious sensor is considered. The sensor has a range of [0,10>, and
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Figure 2.20: Number of meanings as a function of sensor noise for the
different split thresholds.
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Figure 2.21: Effect of noise in the sensor values (left) and the evaluations
(right).

the possible split is the hyperplane x = 5. Rewards are in principle zero
in the lower half ([0,5>) and one in the upper half ([5,10>) of the sensor
range, but either the sensor values or the rewards contain noise with a
standard deviation of 1.0. Figure 2.21 shows the effects of these respective
noise sources.

The shapes of the distributions in figure 2.21 are explained as follows.
If there would be no noise at all, the distribution of the evaluations in the
lower subregion (z < 5) would rise from zero to one at R = 0, and that
of those in the upper subregion at R = 1. Thus, the graph would be a
rectangle with corners (0,0) to (1,1), which has the maximum relative area
of 1 and will therefore always lead to a split.
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When noise is added to the sensors (left graph in fig. 2.21), some of
the evaluations in the lower subregion will be one, and some in the upper
subregion will be zero. Graphically, this respectively corresponds to a low-
ering upper edge and a rising lower edge of the rectangle. The smaller the
distance between these horizontal edges, the smaller the area, up to a point
where the area does not exceed the split threshold anymore.

When noise is added to the evaluations, the result is rather different.
Instead of a vertical shift of the edge of the rectangle, the edges are de-
formed. The reason for this is that the evaluations are not limited to a
few fixed values anymore but are spread around their prototypical values,
where the amount of noise determines the extent of the spread. The edges
take the shape of the cumulative normal distribution of the noise. As the
amount of noise increases, measured in terms of its standard deviation, the
slope of the curves decreases and hence their horizontal extent increases.

The graphs suggest an explanation for the higher number of meanings in
the case of sensor noise. Whereas the area between the two distributions in
on the left side is almost equal to the maximum area (the rectangle between
(0, 0) and (1, 1)), this is not at all the case for the evaluation noise. The
maximum area, is determine by the smallest and largest evaluations that
have been observed by the agent during its life, i.e. the leftmost point where
the distribution is greater than zero (around R = -3.5) and the point where
it reaches one (around R = 3.5). Thus, the maximum area in this case is
about 7. Since the areas between the distributions is comparable to that of
the sensor noise case, the scaled area will be around 7 times smaller. This
explains the different effects of noise that have been observed.

It may be noted that the highest split thresholds yield the best results
here. This suggests that even higher thresholds might lead to still better
results. Additional experiments have been carried out for a threshold of
10%. For low noise levels, it was indeed observed that both parsimony and
distinctiveness increased. For higher noise levels however, the differences
between the values in different regions of the sensor space where not de-
tected due to the high threshold, leading to a smaller number of concepts
than required. Thus, the effect that has been observed for several of the
high thresholds in the evaluation noise case is also present here, but only
begins to play a role for higher split thresholds or, presumably, higher levels
of noise.

Finally, it is important to realize that the introduction of sensor noise
blurs the clear distinctions between the different referents. A referent that
is normally represented by a sensor value of z is perceived as = + ¢ in
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the presence of sensor noise. This changes the task with which the agent is
faced, including the optimal division of the sensor action space into regions;
if the optimal regions in the basic problem consists of intervals [z—2,z—1 >,
[x —1,z>, [z, + 1> etc., then in the presence of noise, the higher values
within the interval [z — 1,2 > are more likely to correspond to referent z
than to referent £ — 1, and hence an extra split should be made, the optimal
location of the split depending on the noise distribution.

The measures that are used to monitor the concept formation process
are based on the standard problem, where the referents correspond to fixed
sensor values. They are computed directly from the static structure of the
conceptual system, based on what referents are located within a certain
region in sensor action space. Thus, what the measures measure is to what
extent the formation of a conceptual system that is optimal for the de-
scribed problem is disturbed by noise. However, it is important to realize
that the optimal conceptual system from each individual agent’s point of
view changes when sensor noise is added. Thus, another possible experi-
ment is to investigate whether agents can construct appropriate concepts
for the problems that results when sensor noise is added. A difficulty in that
case is that the referents are not always separable anymore. The maximum
value of the measures thus drops below one, and comes to depend on the
noise level. Furthermore, a method for calculating the measures based on
sampling would be necessary. Although this experiment would also be in-
teresting, it has not been carried out, as the primary interest in this chapter
was to determine whether the agents can develop situation concepts about
the problem that will be used in the communication experiments, described
in chapter 3.

2.7 Conclusions

This chapter started out from the idea that concepts can be formed individ-
ually by agents based on interaction with the environment. The importance
of evaluative feedback has been argued for. In combination with the idea
that concepts influence behavior, this leads to a framework for concept
formation based on evaluative feedback.

Certain generalization methods from reinforcement learning can be used
to from a particular kind of concepts representing situations in the envi-
ronment. One particular method, called the adaptive subspace method,
has been described in detail, and tested in experiments. The method dis-
tinguishes itself from related methods by the fact that it performs both
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state and action generalization, and by its suitability for continuous prob-
lems. By keeping sensor and action distinctions separated, internal nodes
of the tree that the method builds come to represent situations in the en-
vironment. This renders the method especially suited as a basis for the
development of communication.

Three measures for evaluating the quality of a conceptual system have
been introduced. Distinctiveness expresses to what extent the referents of
an environment can be identified given knowledge of the meanings that
the agent associates with the recent interaction history. If these meanings
are appropriate in the agent’s environment, this will be indicated by high
distinctiveness. A second measure of a conceptual system is its parsimony.
Although an agent with many specific meanings may be able to distinguish
between all relevant situations in which it may find itself, a set of meanings
that is much larger than necessary implies a lack of generalization and
slows down learning processes, since more experiences will be necessary
to learn the same regularities. Parsimony is important in that it aids the
development of communication; if the number of meaning corresponding to
a particular referent is higher than necessary, all these meanings need to
be associated with the same word independently. Finally, concept fidelity
requires distinctiveness, and expresses the probability that coding a referent
into a meaning and subsequently decoding it back into a referent yields the
original referent.

The experiments have shown that the method for concept formation
yields useful situation concepts based on interaction with the environment.
For the particular experiment that has been carried out, high quality con-
ceptual systems resulted, in terms of distinctiveness, parsimony, and con-
cept fidelity. A further investigation was concerned with the stability of
concept formation under the influence of noise. The conclusions from these
experiments are that a substantial amount of noise on sensor readings or on
evaluative feedback is tolerated. Furthermore, a qualitative description of
the influence of noise has been given. The experiments in this chapter are
evidence in favor of the idea that evaluative feedback can be used to create
concepts that improve the behavior of the agent. In the next chapter, the
role of the concepts as a basis for the development of communication will
be investigated.






Chapter 3

Associating Concepts with
Words

The previous chapter concerned the autonomous formation of concepts
about the environment of an agent. In the current chapter, it will be inves-
tigated how agents can develop a language based on individually formed
concepts with which information can be transferred. A consequence of the
view that agents construct concepts is that information in the head of one
agent is incommensurable with another agent’s knowledge. At first sight
then, it would appear impossible to determine whether information is trans-
ferred through communication. However, when information is viewed as an
entity that decreases uncertainty, a methodology for investigating this very
question becomes available.

It should be stressed that the question addressed here is not in the realm
of information theory, see e.g. (Shannon, 1948). In information theory, a
fixed set of messages is assumed whose meaning is known. Here, the set of
messages is not fixed but open, and moreover, the meaning of the messages
is not known in advance but is to be established by the agents by means of
interaction. Successful development of communication means that relations
between messages and meanings emerge, even though it is not assumed that
the agents possess common meanings.

The structure of this chapter is as follows. First, in section 3.1, an algo-
rithm for the association of concepts with words is described. To monitor
the development of communication, several measures are defined. In section
3.2, the different components of the algorithm are taken out one at a time,
to see whether they contribute to the development of communication or
not. In section 3.3, the question is posed whether the communication that
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is developed is useful for the agents, in the sense that it improves their abil-
ity to produce behavior that is appropriate in their environment. Section
3.4 focuses on the effects of differing concepts on communication. Experi-
ments are reported where the formation of different concepts by the different
agents in the system is encouraged, and the development of communication
under these conditions is studied. Finally, in section 3.5, conclusions are
drawn.

3.1 A Mechanism for Associating Concepts with
Words

3.1.1 Production

How can private concepts formed by agents become associated with public
words? This question is the subject of the current chapter.

The results of concept formation, described in the previous chapter, can
be represented in two matrices. The probabilities that a referent p gives
rise to a meaning p in the agent are represented in the matrix P(u|p). This
determines how an agent views the world. On the other hand, an agent’s
meaning indicates the presence of one or more referents. This information
is represented in the matrix P(p|u).

In a system of communication, the agents will use signals or words o to
express their meanings. This set of signals, the lexicon, is an open set, i.e. it
is subjective to change. As their usage decreases, some words may become
obsolete. On the other hand, new words may also be introduced. At any
point in time however, the lexicon is fixed. Therefore, we can define a new
matrix Pppoq(c|p) which defines the communicative behavior of an agent.
When the environment activates meaning p in an agent, the probabilities
Pyrod(o|p) specify what words the agent might use to describe its situa-
tion. The subscript prod indicates that the word is produced; although the
matrix P(o|u) will mostly be used in the context of signal production, it is
important not to confuse this quantity with the probability of receiving a
signal.

3.1.2 Interpretation

Communication is only useful when there are one or more agents that re-
ceive a signal sent by some agent and can interpret it. Interpretation can,
like production, be captured in a probability matrix. The matrix Pjn:(u|o)
specifies the probabilities that a signal o gives rise to a meaning y.
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Figure 3.1: Example of the multiplication of matrices P(u|p) and Ppyq(c|p)
to obtain Ppq(c|p).

Together, the matrices P4(ulp), PA(p|p), Pp“‘}od(am) and PA, (ulo)
specify the communicative behavior of an agent A. If this information
is known for all agents, a complete system of communication, including the
perception of the environment by the agents, their production of signals,
and their interpretation can be captured. The set of matrices provides a
way to hide the 'private parts’ of a communication system by directly link-
ing referents to words (Pn¢(p|o)) and vice versa (Pppoq(c|p)). This can be

done by a simple matrix multiplication:

Pprod(0|p) = P(N|p) ’ Pprad(‘ﬂ:“’) (3'1)
and
Pa(pl0) = Pons(ulo) - Ploln) (32)

The validity of this matrix multiplication can easily be seen:

Pyroa(alp)lillf] = f P(ulp)[i)[k] - Pproa(a|m) (k][] (3.3)
k=1

- Zm: P(Nk'ﬂi) ’ Pprod(oj“l'k) (3.4)
k=1

= Pprod(0j|pi) (3.5)

Figure 3.1 provides an example.

3.1.3 Pointing

In order to learn to what meaning a word refers, a connection between the
meaning of the agent that produces the signal (the speaker) and the meaning



104 CHAPTER 3. ASSOCIATING CONCEPTS WITH WORDS

of the agent that receives the signal (the hearer) needs to be established.
Referents that are simultaneously recognized by speaker and hearer make
this connection possible. Such a referent will be accurately captured by
some meaning for both agents during concept formation. A referent is not
necessarily represented by a single meaning, but the number of meanings
to which it is connected is limited. Thus, when both agents are considering
the same referent, one of a limited number of meanings will be activated in
the agents, thus providing the necessary connection. Given this connection,
it becomes feasible to learn a relationship between a meaning and a word.

The situation concepts that were described in section 2.5, are a good
example of concepts for which the above condition on referents holds; if two
agents are in the same situation, the referent corresponding to this situation
will be recognized by both agents, provided their mechanisms for concept
formation are functioning properly and are similar in their workings. For
many other types of concepts however, an additional mechanism is neces-
sary to identify the subject of communication. The process that establishes
the desired connection is referred to as pointing. A prototypical example of
pointing is the well known special case where an adult wants to teach the
name of some object to a child, or to a speaker of a different language. By
pointing, the referent is fixed, and it will be understood that the words that
are subsequently produced refer, via the private meaning of each agent, to
that very referent. For communication about situations, such a mechanism
is not necessary; the fact that agents are in the same situation provides
the required correspondence between the subject of communication of the
agents.

3.1.4 Description of the Algorithm

The experiments in this chapter investigate whether individual concept
formation can serve as the basis for a system of communication. That
is, can private concepts become associated to public words, such that a
means for communicating about the environment becomes available? To
investigate this, mechanisms for associating concepts with words have been
investigated. Since one of the commitments is that concepts are internal,
a condition for the experiments is that such an association can only be
adapted by the agent that has created the concept.

Each experiment starts with the situation where no communication sys-
tem is present. Agents have no words associated with any of the situations,
and will produce a random word when present in a situation that has no as-
sociated words yet. The words received from other agents will be associated
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with the situation. Thus, during the experiment, agents interact by utter-
ing words that correspond to their situation, and the association strength
of each word that is heard has its association strength with that particu-
lar situation increased. As a result of these interactions and adaptations,
coherent systems of communication can emerge through self-organization.
A defining property of self-organization is that the organization it results
in is not caused by a central organizing force as would be the case if one
agent were to dictate the meaning of each word. It is essential that agents
speak and listen; only by the combination of these activities can situations
come to be connected to words.

Internal Structures

The agents in the experiment contain the following internal structures:

e Meanings. These are formed during the experiments by the concept
formation method described in chapter 2. For each meaning pu, the
following information is maintained:

— A list of experiences gained when the meaning was present.
These experiences are used in the concept formation process.

— For each action, an estimate of the feedback following the selec-
tion of the action given the presence of the meaning.

— A list of words that are associated with the meaning. For each
association, two values are stored: wuse and success. Use and
success are linearly combined into a single value, called asso-
ciation strength. Furthermore, an estimate of the probability
Pint(u|o) is maintained for each word o; its updates are based
on the signals the agent receives.

These structures are used as follows. The use variable measures how
often the word is received when the meaning has been observed, and hence
may be viewed as an approximation of P;,;(c|u). The success variable rep-
resents whether, given the word that was heard, the meaning corresponds
to the actual current situation (referent). Naturally, this cannot be deter-
mined directly by the agent, since agents have no knowledge about referents.
Therefore, it tries to obtain this knowledge indirectly. If the determination
of the situation based on the received word is correct, then the feedback
following the action should correspond to the estimated feedback of that
action if the estimate is accurate enough. If on the other hand there is a
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Figure 3.2: Basic cycle of the experiment. The agent receives its sensor
data, determines its sensor-situation and produces a word associated with
it. It then receives all words produced by the agents within its hearing
distance and determines the signal-situation, and selects it if it is proba-
ble enough. The action is based on the situation, and feedback from the
environment is used to adapt the success of actions and, in case the signal-
situation was used, the association between word and situation.

discrepancy between the estimate and the actual feedback, this indicates
that the determination of the situation was incorrect. This information is
used to update the success value for the used combination of meaning and
word.

Basic Cycle of the Experiment

The basic cycle of the experiment is as follows (see figure 3.2). First,
the agent receives its sensor data from the environment. Given the set of
meanings it has created, the sensor data directly and uniquely determines
the present meaning. This meaning will be called the sensor-situation, since
it follows from the sensor readings. The agent then utters a word. The word
is selected from the list of words associated with the sensor-situation. The
choice is based on the association strengths of the different words.

All agents produce a word describing their view of the situation. In gen-
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eral, an agent can hear the signals of those agents within hearing distance.
Unless otherwise specified, this hearing distance matches the size of the
environment, so that all words, including that uttered by the agent itself,
will be heard. The agent then determines the most likely situation given
the list of words it heard. This situation will be called the signal-situation.
It is the situation yp for which Pj,(u|o) - freq(o) is highest for some word
o that was received freq(o) times.

The estimated probability that the signal-situation is correct, Py,:(u|o),
is also used to choose between the sensor-situation and the signal-situation.
The latter will be selected with probability Pj,;(¢|o), and hence the former
with probability 1 — Pj,¢(u|o).

The situation thus selected is used to choose an action. In principle,
the action with the highest estimated success is selected, but sometimes,
other actions are tried as well in order to ensure exploration, as described
in chapter 2.

The feedback from the environment is used both to adapt the success of
the actions. Furthermore, in case the signal-situation was used for action
selection, the success value of the association between word and situation
is adapted. If the feedback was sufficiently close to the estimated success
of the action, this indicates that the choice of situation was correct, and
the success value is increased. If not, it is decreased. Increasing and de-
creasing are done by adapting the value v towards a goal z of one and zero
respectively:

v=(1—a)v+az (3.6)

Updates of this type will be referred to as recency-weighted average. The
basic cycle is described in pseudo code in figure 3.3.

x := receive-input();

sensor-situation := determine-situation-from-sensors(x);
produce-signal(sensor-situation);

signals := receive-signals();

signal-situation := determine-situation-from-signals(signals);

max-signal := arg_ éﬁgﬁi ls{P(signal—si’cuati0n|U) - freq(o) };

if dqvg < max-error-for-signals

and P(signal-situation | max-signal) > random(1.0)

© o N oW N

situation := signal-situation;
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else
situation := sensor-situation;
signal-situation := nil;

action := choose-action(situation);
act(action);
store-experience();
R := receive-reward();
previous-value := value;
value := value(action);
if situation = signal-situation; signal based situation determination
if step > 0 and |R - value| < max-error-for-signals
increase-association-success(signal-situation, max-signal);
for s € situations \ signal-situation
decrease-association-success(s, max-signal);
else
decrease-association-success(signal-situation, max-signal);
else
all-signals := signals(sensor-situation);
increase-association-use(sensor-situation, signals);
decrease-association-use(sensor-situation, all-signals\signals);
update(Pin(p|0));
é := R - previous-value;
update-value(d);
davg = (1.0 — @)0gpg + | 0 |;
step := step + 1.

Figure 3.3: Pseudo-code of the algorithm.

Below, the functions and variables referred to in the pseudo-code de-

scription of the algorithm are explained.

e produce-signal Select a word for production according to the as-

sociation strengths between the situation and each word in its word
list. The choice is based on the Boltzmann distribution, as will be
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discussed below. Association strength s is a combination of the wuse
and success values, and is calculated as follows:

s = asuccess + (1 — a)use (3.7)

where « is a parameter called the success-use-ratio. A standard value
for this parameter in the experiments is 0.5, which results in an equal
weighting of use and success during word production. If no word is
associated strongly enough, a random new word is produced. This
condition is operationalized by the testing whether the maximum
association strength is at least 0.25.

e determine-situation-from-sensors The situation is determined by
starting at the root of the tree formed as a result of concept forma-
tion, and following the branches that are consistent with the sensor
information, until an action distinction is encountered.

e receive-signals The agent receives the signals produced by all agents
within its hearing range.

e determine-situation-from-signals Returns

arg max Z Pini(plo) - freq(o) (3.8)

o€signals

the situation for which the probability is maximal for some word o.
freq(o) is the fraction of the signals equal to o or equivalently its
relative frequency, scaled to

e choose-action Select an action based on the action value estimates
of the situation using the e-greedy method.

® J4yg Running average of the error in the prediction of the value of the
action that was last selected.

e act Execute a given action.

e store-experience Store an experience. Experiences have the follow-
ing form: < S;_1, A;—1, Ri—1, S, Ay > where S is a situation, A an
action, and R the evaluation received from the environment. This
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operation is only performed if the previous situation S; ; was de-
termined using sensors as opposed to signals, to prevent incorrect
situation determinations from disturbing concept formation. For the
experiments here, actions do not influence rewards beyond the im-
mediate next reward. Hence there are no delayed rewards, v and A
can be zero, and the learning rule becomes equivalent to the recency-
weighted average of R. Storage is therefore not dependent on whether
the second situation determination was based on sensors or signals
here, but this condition may be necessary for problems where delayed
rewards occur.

receive-reward Receive the reward following the last selected action
from the environment.

value Gives an estimate of the value of an action in a situation.

increase-association-use Increase the use value of the association
between a situation and a list of words. For each word, the value
of the corresponding association v is updated towards the maximum
value of 1 using the recency-weighted average update (see eq. 3.6).
For words that occur multiple times, the update is executed once for
each occurrence. New words that were not associated with a meaning
yet are assigned a use and success value of 0.5.

decrease-association-use Identical to increase-association-use, but
with a target value of zero.

increase-association-success Analogous to increase-association-use.

decrease-association-success Analogous to decrease-association-
use.

update-value Update the estimate of the action values based on the
most recent experience. The learning algorithm used is SARSA()).

max-error-for-signals This parameter is a maximum threshold for
the average approximation error of the reward. It is used in two
ways. First, it is used to determine whether the determination of
the situation based on signals was correct, by comparing the most
recent approximation error to the average one. Furthermore, it is a
threshold that determines whether signals may be used to determine
the situation; if knowledge about the environment is not stable yet,
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the test of whether the determination was correct can not be expected
to function.

e P;,1(p|o) This value is approximated by updating estimates for each
combination of a meaning y and a word o. For each word o that
is received, the estimate for P;,;(u;|o) of the current meaning is in-
creased, while the estimates P (uj|o) for other meanings p; (2 # j)
are decreased.

e step A counter, used to detect whether the current cycle is the first
one.

Both use and success takes values in the interval [0...1]. When an associ-
ation between word and meaning is first introduced, both use and success
are initialized at 0.5.

Word Production

Selection of the word that an agent produces is based on the association
strengths with the current situation that the agent determined. Many
different schemes for this selection could be envisaged. One would be that
agents always selects the association with the highest strength. However,
as will be seen in chapter 4, this can lead to a sort of deadlock to due to a
lack of exploration.

Another possibility is to view the association strengths as relative prob-
abilities. The effect of this is opposite, in that the word with the highest
association strength may be selected in only a fraction of the cases; this
happens when many other words are associated with the situation, possi-
bly with much lower association strengths. To give an example, suppose
that twenty words have been heard in combination with a certain situation.
Since both use and success are initially 0.5, let’s suppose their association
strengths are 0.5 on average. Then there is one word with a very high
association strength, e.g. 0.90. When using equal probabilities, this most
strongly associated word will only be used with probability % ~ 0.08.

It would be desirable if selection of words is a little more flexible than
simply choosing the hard maximum, while maintaining a strong preference
for words with high association strengths. This is possible using a softmaz
method, such as the Boltzmann distribution. The Boltzmann distribution
is the probability distribution of the possible states of a gas at high tem-
perature. Using the Boltzmann distribution, the probability of selecting a
word o; with association strength v(o;) becomes:
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the degree to which high association strengths are preferred can be mod-
ulated by adjusting the temperature parameter. For high temperatures,
more exploration occurs, and thus strong associations are selected less often
compared to the distribution with probabilities proportional to strengths.
In the limit of increasing temperature, the distribution becomes equiprob-
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3.1.5 Measures for Association Formation

In chapter 2, two measures have been described that can be used to moni-
tor the concept formation process and to evaluate the conceptual systems
that it produces. Here, new measures will be introduced with the same
purpose, but concerning the process of forming associations between con-
cepts and words. Both measure concern the production of words, not their
interpretation. The first measure that will be introduced is specificity.
This measure is the analogue of distinctiveness. Whereas distinctiveness
expresses whether agents have specific meanings for referents, specificity
captures to what extent agents have specific words for referents. A second
measure that will be discussed is consistency. It expresses to what extent
an agent consistently uses the same word for a particular concept, and is
to be regarded as the association formation counterpart of the parsimony
measure.

Together, distinctiveness and parsimony are sufficient to evaluate the
quality of a conceptual system; if both measures are equal to one, every ref-
erent is represented by a meaning, and no superfluous meanings are in use.
Likewise, specificity and consistency are sufficient to evaluate the system of
associations between concepts and words of an individual agent, and thus
indicates whether the agent starts to speak a language. However, although
these measures are useful for the purpose of analyzing a single agent’s word
production, they don’t capture the most important aspect of association
formation, viz. whether the agents start to speak the same language. This
question can only be investigated with respect to a population of agents,
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e

A concept graph: each node represents a concept The corresponding fully connected graph:
A vertex indicates two concepts have the same word All concepts are associated with the same word

and is expressed in the coherence measure. Coherence is defined as the
proportion of the population that uses the same word for a particular con-
cept. Finally, it is interesting to know whether the words produced in a
communication system are understood. To this end, the fidelity measure
expresses the probability that a referent, when encoded by one agent via a
meaning into a word, will yield the same referent when decoded by another
agent.

Specificity Based on Preferred Words

First a measure of specificity based on preferred words will be described.
Preferred words are words which have the highest association value for some
referent.

Specificity can be computed by constructing a graph in which the nodes
represent the referents. In this graph, two referents are connected if and
only if the words primarily associated with these referents are identical.
Such referents cannot be distinguished from each other when the preferred
word is used. The optimal graph then is a graph without any edges at
all. The worst case, in which a single word is used for every situation,
results in the fully connected graph. An exception occurs when no word
is associated with a certain referent. That referent is effectively connected
to all other referents, since the agent has no word to distinguish it from
those. This exception appropriately decreases the specificity when one or
more referents lack words.

The specificity spec is inversely proportional to the connectivity of the
graph, i.e. the fraction of edges that are present in the graph:
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(3.10)

where v is the number of edges and n is the number of nodes in the graph.
For reasons of implementation, it is useful to note that the same figure
can be obtained by adding the agent-specific frequencies of the words and
computing the difference with the maximum sum relative to the maximum
value of this difference:

n? - ZZSZI fk (3 11)
nZ — ng )

spec =

The equivalence of the two calculation methods can be seen as follows.
The frequency fx of a concept’s word decreased by 1 equals the number of
other concepts associated with this word, and hence the number of outgoing
edges from this concept’s node. Accumulating these numbers and dividing
by 2 yields the total number of edges v in the graph:

_ 2=l mns 3t S (3.12)

2 2
Substituting 3.12 for v in 3.10 shows the equivalence of 3.10 and 3.11:

v

- 2 et YR fr _na —2271531 T (3.13)
n2 —ng 2 Mg = Ms
Ns s
n—ngtns =3 fe=n2=3 i (8.14)
k=1 k=1

Specificity Based on Entropy

Specificity as it was described in the previous subsection is intuitively clear,
since it can easily be depicted graphically. However, the fact that it is only
based on preferred words is an idealization that may give a distorted pic-
ture if in actual production behavior a meaning is not always expressed by
the same word. By taking the same approach as for the distinctiveness and
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| el p2|ps|pa] X f | Specificity |

ar |1 |1 |1 |1 4 1.0
a1 |3 |3 [3 |10 |05
as |1 |1 |1 |1 |4 1.0
as |1 ]2 |1 |2 ||6 0.83

Table 3.1: An example calculation of specificity based on preferred words.
The words are shown in table 3.2. For each agent, frequencies of the words
are summed. The specificity of an agent’s signals can then be calculated
using equation 3.11.

parsimony measures, a principled way for taking into account all associa-
tions is obtained. This approach is to calculate the decrease in uncertainty
that knowledge of some entity yields. For the concept formation measures,
these entities were referents and meanings. Here, they are referents and
words. The specificity of a word is thus defined as the relative decrease of
uncertainty in determining the referent given a word that was produced.

H(ploi) = 3 ~ Poroa(p3103)108Poroa(ps107) (3.15)
j=1
spec(o;) = H(p)I;(Ip{)(mUZ) =1- % (3.16)

The calculation of distinctiveness and parsimony was based on the av-
erage uncertainty over referents and meanings. Since there are no large
differences between the occurrence probabilities of the different referents,
this method of calculation is expected to be sufficiently accurate for calcu-
lating distinctiveness and parsimony. The occurrence probabilities of words
however need not be similar at all, and may also vary much over time as
words become obsolete and new words are introduced. Therefore, the cal-
culation of the measures concerning association formation, specificity and
consistency, are based on actual measures of the occurrence probabilities:

spec(A) _ Z?;l Pprod(ai)spec(ai)’ (317)

Ns
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The specificity of an agent’s lexicon is thus defined as the specificities
of the words weighted by their occurrence probabilities. The specificity of
a communication system, which always contains multiple agents, is defined
as the average specificity of the agents of that system:

spec — 2iz1 5Pec(As) (3.18)

g

It is interesting to compare the specificity and consistency measures to
the entropy based measure of communication quality introduced in (MacLen-
nan, 1991). There, a matrix linking referents to words is also used defined.
A difference is that the entries of this matrix contain co-occurrence prob-
abilities, i.e. the probability that a referent and a word occur together, as
opposed to the conditional probabilities used here. MacLennan notes that
the objective of ideal communication corresponds to matrices containing a
single nonzero values on each row and on each column. However, before
translating these criteria into operational measures, he notes that such a
matrices are very nonuniform, and then derives three measures based on
this criterion. One of these is based on entropy, and computes a scaled and
translated entropy over all entries at once. The resulting measure has the
property that it is maximal for ideal communication matrices and minimal
for maximally dispersed distributions. However, an unmentioned problem
with this measure is that it yields the same outcome for a variety of ma-
trices representing communication systems that are far from ideal. If for
instance a single row or column contains ones while the rest of the matrix
entries are zero, the agents can only understand each other in a fraction
of the cases. The measure in this case yields the same value as for ideal
communication. This is a result of taking the entropy over all entries of the
matrix at once. The shortcoming can easily be solved by computing the
entropies per row and per column and relating this to the initial entropy, as
has been seen above; the measure can then be based on the extent to which
the probability distribution over the elements of a row identifies the column
of the event, vice versa. These two measures could be combined if it seems
important to have a single measure for the quality of communication. In
the communication experiments later on in this chapter, it will however be
seen that it is often useful to distinguish between the two resulting measures
in order to understand what is happening in a simulation.
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Consistency

Specificity indicates to what degree the words an agent uses determine the
referent that is the subject of communication. Another important property
of word use is whether an agent will use the same word when describing a
referent, or whether it will use a different word every time. This is expressed
in a measure called consistency. Perfect consistency means that the agent
consistently uses the same word for a particular referent. This measure can
be viewed as the analogue of parsimony; a set of meanings is parsimonious
if a particular referent always leads to the same meaning, and a lexicon is
consistent if a particular referent will always be encoded by the same word.

Ng

H(U|pi) = Z _Pprod(aj|pi)logpprod(0j|pi) (319)
j=1

cons(p;) =1— H}(IU((LP;) (3.20)

cons(A) _ Z’zn;l Pprod(Pi)Cons(Pi)’ (321)

s

Coherence

The coherence measures to what extent agents use the same word for a
particular referent. Thus, it is a population measure, which can only be
computed for two or more agents. There is a relationship between con-
sistency. If there is no consistency, i.e. if agents use different words for
the same referent at different occasions, then it is very improbable that
these agents all happen to use the same word on each occasion. Hence,
consistency can be viewed as a necessary condition for coherence.

For each referent, the coherence is measured by computing the fraction
of agents that has a word as preferred word for that concept, and then
taking the maximum of these fractions. If no word is associated with a
concept, the frequency of that concept’s word is zero. The coherence of a
system of communication is the average of the coherence of its referents.
An example of the calculation is shown in table 3.2.



118 CHAPTER 3. ASSOCIATING CONCEPTS WITH WORDS

| Ler [p2 [ps [pa |

a PI |PA | PO | PU
as PI |PA|PA |PA
as LU |PA | PO | PU
aq PI |PA | PO | PA

Max. freq. || 3 4 3 2
Coherence || 0.75 | 1.0 | 0.75 | 0.5

Table 3.2: An example calculation of coherence for four agents (al...a4)
and four referents (pl...p4). For each referent, the highest frequency of a
word is determined, shown in the bottom row. The average of these figures
is the coherence.

Fidelity

Although coherence measures whether agents use the same word for the
same referent, a high value of this measure it does not guarantee that
agents will understand each other; if specificity is low, the agents might
be using the same word for every referent, in which case both consistency
and coherence would be perfect, but communication would convey no infor-
mation whatsoever. A straightforward measure indicating to what extent
the agents understand each other is obtained by combining production and
interpretation behavior to calculate the probability that a referent encoded
by one agent will yield that same referent when decoded by another agent.
The measure is calculated as follows. For each combination of two agents

Ai and Ajg, the matrices Pzﬁéd(dp) and Pzﬁtz (p|o) are multiplied to yield

the matrix P4142(p|p). This matrix specifies for each referent what the
probability is that agent Ao will understand the word used by A; to re-
fer to this referent. In other words, it expresses to what degree agent A,
understands agent A;. By taking the average of this matrix over all com-
binations of two agents A; and Ag, and averaging the diagonal entries of
this matrix, the average probability that two agents will understand each
other, averaged over the referents, is obtained. This value is the fidelity
measure.

Measures are Not Influenced by Partial Perception

The purpose of the measures that have been described so far (distinc-
tiveness, parsimony, specificity, consistency, and coherence) is to allow re-
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searchers in communication to analyze concept formation and communica-
tion systems. To this effect, the measures express whether meanings and
words consistently occur in combination with particular referents, not with
multiple referents, and whether referents consistently give rise to particu-
lar meanings and words. As has been described previously, the particular
experiments in this thesis include some amount of partial perception.

When implementing the calculation of the aforementioned measures, it
has to be decided whether the incorrect information caused by partial per-
ception should affect measure values or not. In this thesis, the latter has
been chosen; partial perception does not influence measures. The reason
for this choice is that the purpose of the measure is to determine the quality
of a conceptual or communication system relative to the best system the
agent can build. For example, specificity expresses whether an agent uses
different words for different referents. If partial perception were allowed
to influence its measurement, one would investigate whether the agent uses
the right word for an object its sensors cannot detect. A similar issue arises
in the calculation of fidelity, the probability that an agent will understand
another agent when that agent produces a signal to describe a referent. If
partial perception were included in the approximation of the conditional
probability matrices, this quantity would be obfuscated by the effects of
partial perception. A further argument in favor of this choice is that if one
would want to know the probability that an agent produces a word in the
context of a referent including the effects of partial perception, this quan-
tity can simply be obtained by calculation, since the occurrence frequency
of partial perception is known. On the other hand, if the calculation of
the measures would be influenced by partial perception, the effects of this
uncertainty and any inaccuracies in the communication system are mixed,
and the latter cannot be analyzed separately.

A possible argument for the alternative option would be that it is also
interesting to know what the probability of correctly determining the sit-
uation based on the signals is for an agent in the experiment. Since this
information is indeed a crucial aspect of the experiment however, it is ex-
pressed in a separate measure called correctness, which will be described
in the next section. For these reasons, the option where partial perception
does not influence measures has been selected.

The above discussed the effects of partial perception on measures. This
should not be confused with the issue of noise. An obvious variation on
the experiment is to investigate whether useful communication still arises
under the influence of noise. This question is investigated in section 3.4,
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and the calculation method used there ensures that measures reflect the
actual behavior of agents in the environment, including noise.

Correctness

If a useful system of communication has been built up, agents can reliably
communicate about their environment. The conditions for a useful system
of communication are specificity and coherence. If a communication sys-
tem possesses these properties, each agent uses different words for different
referents, and all agents use the same word each particular referent. These
properties imply that several other properties are present too; coherence
implies consistency, and specificity implies distinctiveness.

What could the use of such a system of communication be? One partic-
ularly useful property is the ability to convey information. If agents have
imperfect knowledge about their environment, then communication may
reduce this uncertainty. It is this form of benefit that will be investigated
in the current chapter.

For a description of the experiment, see section 2.6.1. In the basic setup,
partial perception plays no role. As discussed above however, some form of
uncertainty must be present in order for communication to be useful. This
is achieved by masking the situation sensor in 10% of the cases. When
masked, the situation sensor returns the same value as when the agent is
in the standard situation. However, it will receive the high feedback if and
only if it takes the action that corresponds to the actual situation of the
environment. Clearly, the sensors do not provide the necessary information
to select the right action, and there is an aim that can be achieved by
communication alone.

An important quality measure of a system of communication then, is
to what extent the information provided by it is correct. This quantity is
expressed by the correctness measure. This measure is calculated as follows:
based on the signals it receives from the other agents, an agent determines
which situation is most likely. No sensor or other information is used in this
procedure. The result is a meaning and hence internal to the agent, but
the experimenter can inspect the internals of each agent to see whether this
meaning uniquely determines the current referent, i.e. the actual situation.
If this is the case, the correctness of the determination is one; otherwise,
it is zero. The correctness measure is computed over an interval of time as
the average of this value.

Unsuccessful determinations can have several causes. A first prereq-
uisite for a successful determination is that the conceptual system of the
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agent is accurate; if certain situations are not distinguished between, but
represented by a single meaning, as is the case at the beginning of the
experiment for example, then successful situation determination may not
be possible. As an example, suppose that the agent distinguishes between
meanings 1, 2, and [3...4]. If the referent is 3 and the agent comes up with
the closest meaning, i.e. [3,4], the situation is only brought down to the
set {3,4}, and hence not uniquely determined. Given a healthy conceptual
system, unsuccessful determination indicates that the system of communi-
cation is not functioning properly. In any case, a high correctness measure,
which can only have been caused by successful determinations, implies that
communication is functioning well.

It is important to note a possible problem with the correctness measure
as it has been described so far. Suppose that a new situation arrives, but
that the agent’s signal based situation determination is incorrect. In this
case, the reward following the action will probably not correspond to the
agent’s estimate of it, in which case the agent decreases the association-
success of one of the signals it received (see algorithm, fig. 3.3). At the
next time step, the probability that the agent will select the same situation
again based on the signals is a little bit less likely, because of the drop
in association strength. Consequently, the probabilities for the remaining
situations, including the correct one, have risen.

Although this plasticity of the agent’s communication system is essen-
tial, it obfuscates measurement of the quality of communication. To avoid
this possible source of bias, measurements are only made at time steps
where a new situation has just arrived.

3.2 Experiments

The mechanism for adaptation of associations is the result of investigating
many different mechanisms. Some principles and components that have
been considered during this investigation turned out to be crucial, others
ineffective. The algorithm that has been described is the result of this
process. In the following, experiments will be reported where different
aspects of the mechanism have been left out. The effects of these omissions
will be discussed. These experiments are intended to give insight into the
complete mechanism and the function of its components. Following that,
the results of experiments with the complete mechanisms are presented.
The section titles are augmented with a code (sit,succ, etc.) that identifies
the experiment in the graphs of this section.
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3.2.1 Signal-Based Situation Determination - sit

As the algorithm shows, agents sometimes determine in which situation
they are on the basis of sensor information, while at other times this de-
cision is determined by the signals the agent received. In the sit exper-
iment, it is investigated whether the latter method, which will be termed
signal-based situation determination, is necessary for the development of
communication.

3.2.2 Success Component in Association Strength - succ

Associations consist of a success component and a use component. The pur-
pose of this experiment is to test whether the success component is essential,
or whether the use component would be sufficient by itself. The resulting
algorithm is very similar to that of the previous experiment, but there is
a subtle difference in the scaling of the association strengths; whereas in
the previous experiment the success values were not adapted, and hence
retained their initial values, in the current experiment the range for asso-
ciation strength values is devoted to the use component.

3.2.3 Use Component in Association Strength - use

Analogously to the previous experiment, it may be questioned whether it
is necessary to include a use component in the association strength. The
answer to this question is not only technical. Whereas it might well be
possible to develop a coherent system of communication based solely on
success, i.e. testing whether signal-based situation determination leads to
the expected effects of actions, this does not appear a very efficient model
for the development of communication. It is intuitively clear that a wealth
of information is discarded if the use of words is not taken into account,
especially since use information comes ’for free’ whereas success information
can be costly in cases where situation determination failed. It is interesting
to see whether these considerations can be confirmed experimentally.

3.2.4 max-error-for-signals - maxerr

This experiment investigates the need for the condition that action values
must be accurate before signal-based situation determination may be used.
Signal-based situation determination only takes place when the average
error in the action value estimate has dropped below this threshold, given
by the max-error-for-signals parameter. The idea behind this principle is
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that as long as the estimate of action values are not accurate, the deviation
of the actual action evaluation from the expected value should not be used
for determining the success of signal-based situation determination. The
need for the threshold is tested by removing this condition. The experiment
only concerns the described use of the max-error-for-signals (line 7 of
the algorithm), and not its use in comparing the received reward to its
estimate (line 20).

3.2.5 Probability of Signal-based Situation Determination -
Psit

The maz-error-for-signals parameter regulates when the signals may be
used for situation-determination. But even when the average action value
estimation error does not exceed this threshold, situation determination is
not always based on signals. Rather, as the algorithm shows, this option
is chosen with a probability equal to the conditional probability of the
situation given the signals, weighted by the frequency of each signal. In this
experiment, it is investigated whether it is necessary to use this probability,
or whether always using signal-based situation determination would also
do the job. Since the use component of the associations is not updated for
signal-based situation determination, the effect on the algorithm is similar
to that of the use variation, with the difference that the use is updated
when the average (line 7) or current (line 20) action value estimation error
exceeds the max-error-for-signals parameter.

3.2.6 Decrease Association Success - decsucc

As the algorithm shows, successful signal-based situation determination not
only causes the success value of the signal most influential in the choice to
be increased (line 21 of the algorithm), but also results in a decrease of
the success values of associations of the signal with other situations (line
23). In this experiment, the need for this mechanism is tested. This test is
performed by removing the decrease statement from the algorithm.

3.2.7 Results

This section presents the results of the experiments described above. The
experimental system is a complex dynamical system. In such systems,
it is seldom possible to identify a single cause for phenomena that are
observed. This is because the large number of interactions between the
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Figure 3.4: Correctness (left) and fidelity (right) measures for the standard
experiment and its variations.

parts of such a system allow subtle changes to propagate in ways that are
difficult to envision, possibly causing large changes in the overall behavior
of the system. For the same reason, it can be difficult to predict or explain
the effects of changes of a particular aspect of the system. In this section,
the results of the experiments will be shown, and the differences caused by
the changes to the basic algorithm will be explained where possible.

Figure 3.4 (left) shows the correctness measure for the standard version
of the algorithm and its modifications. Since correctness expresses whether
communication leads to correct determinations of the situation, it is an
important measure of the quality of the communication system. Several
of the modifications cause substantial harm to the workings of the system.
Ounly the use and Psit modifications yield results that are comparable to
the basic algorithm.

If correctness is high, this implies that agents can correctly determine
their own situation most of the time. For this to happen, it is in principle
sufficient to have one agent that always announces the correct situation,
provided that all agents understand this agent’s language and, moreover,
are able to select that agent’s signal for situation determination. A stricter
measure of quality therefore is the extent to which all agents can understand
each other, i.e. will decode the same referent that was encoded by another
agent. The fidelity measure expresses exactly this, for all pairs of agents.

Figure 3.4 (right) show the fidelity for the standard algorithm and its
modifications. This stricter evaluation of the different methods brings to
light differences between the variations that could not be detected from
the correctness measure. Specifically, the graph shows that the standard
algorithm brings about better systems of communication than all of its
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variations. This indicates that all components of the algorithm that have
been tested contribute to the development of communication. Two cautions
are in place here. First, it is necessary to determine which level of statistical
significance the differences have. Second, even if significant, the results only
hold for this particular experiment, consisting of the problem environment
and the parameter settings. It is to be expected, and has been observed in
actual experiments, that the variations have different effects for different
parameter settings. The conclusions that a component is useful or necessary
can only be made if its omission is compared to the standard algorithm for
every possible parameter settings. Since some of the parameters are real
valued and since there is a substantial number of parameters, this form of
exhaustive test is impossible to carry out both practically and theoretically.
Thus, the only type of statement that can be made is that a particular
component of the algorithm can be useful. It is these questions that we
will attempt to answer here.

3.2.8 Statistical Significance of the Results

In the above, it was mentioned that the statistical significance of the results
needs to be demonstrated before any strong claim concerning the need for
particular components can be made. The experiments all had the following
structure: a component of the algorithm is removed, and the performance
is compared to that of the basic system to determine whether it decreases.
As has been shown above, this was the case for all components. However,
the differences might be the result of random variations in the course of
the experiments. For that reason, it is important to test the statistical
significance of the results.

As the graph in figure 3.4 shows, fidelity is not a constant measure, but
rather develops over time. One possibility for testing statistical significance
of differences in the fidelity measure would be to consider its value at the
end of the experiment. However, the value at a particular point is not what
one wants to know. The desirable property of a system of communication
is not that it’s fidelity is high at some arbitrarily chosen point in time,
but that communication develops quickly and reliably. A better measure
therefore is the average fidelity of the system over time. Since this measure
takes into account the behavior of the system over the complete period of
the experiment, it is a more stable indication of how the development of
communication proceeded.

In figure 3.5, a plot is shown where at each time step the average fidelity
of the system up to the point of measurement is given. As could already
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Figure 3.5: Fidelity for the standard experiment and its variations, averaged
up to the point in time indicated by the horizontal axis.

be deduced from the time series graph of fidelity (figure 3.4), the standard
algorithm has the highest average fidelity. The question to be answered now
for each component of the algorithm is whether the final value in this graph,
which is the average fidelity over the complete experiment, is significantly
higher with the component than without it.

Each experiment has been repeated ten times. Each of the ten measure-
ments is determined by the behavior of a dynamical system under different
initial conditions. There is no good reason to assume that such a set of
measurements is normally distributed. As an the extreme example of this,
one could imagine a system that, depending on its initial conditions, either
moves towards an attractor where the measure of interest is high, or to
an attractor where it is low. The results for such a system are binomi-
ally distributed, not normally distributed. Although the system at hand
is probably not of this type, the example goes to show that the assump-
tion of normality cannot be made. Indeed, in the case of high measure
values (near 1), the limited range of the measures resulted in highly skewed
distributions, and thus tests based on this assumption can not be used here.

The Wilcoxon Rank Sum Test

Since the statistical distribution of the measurements is not known, it is
necessary to resort to a distribution-free statistical, or nonparametric tests.
In general, such tests are less powerful than tests based on some distribu-
tion, which is only logical since the latter poses a condition on the data,
although in rank-sum tests the loss is often very small. A test that is suit-
able for our purposes is the Wilcoxon rank-sum test, see e.g. (Lehmann &
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D’Abrera, 1975), also called Mann- Whitney U Test. This test determines
whether a treatment is effective. To determine the necessity of a component
of the algorithm, the test can be applied by determining whether remov-
ing the component is detrimental, i.e. the treatment has a negative effect.
Conversely, the addition of a component can be viewed as the treatment,
in which case it is tested whether the treatment has a positive effect. The
test is symmetrical after a normalizing by subtracting the minimum rank
of in(n+1), and therefore it is not necessary to distinguish between these
two views here.

The workings of the Wilcoxon rank-sum test, applied to the current
situation, are as follows. The measurements of two versions of the algorithm
are ranked, the lowest result receiving a rank of 1, and each subsequent
result having a rank that is 1 higher than its predecessor. Thus, high
ranks correspond to high performance. The ranks of one of the versions
are then summed. The result of this calculation is the rank-sum, to which
the test thanks its name. If the rank-sum of the control is low enough,
the null-hypothesis, i.e. that the distributions of the measurements of the
two versions are equal, can be rejected, and the superiority of the algorithm
with the highest rank sum is confirmed (Lehmann & D’Abrera, 1975). Text
books on nonparametric statistics contain tables of the significance level
with which the null-hypothesis can be rejected for particular combinations
of the numbers of examples in both sets and the rank-sum. For the current
investigation, the tables from (Lehmann & D’Abrera, 1975) have been used.

As the actual measurement values are discarded in the calculation of
the rank sum, the interpretation of the test can not be stated in terms
of a difference in the mean, unless the additional restriction is imposed
that the distributions are identical apart from a shift in the mean as is
sometimes done. Instead, the outcome of the Wilcoxon rank-sum test can
be interpreted in terms of pairwise comparisons between measures of the
two samples. When corrected with the above term, the rank sum of a
measurement equals the number of comparisons with the measurements
of the other sample that it would win. Under the null hypothesis of equal
distributions, these pairwise comparisons are equally likely to turn to either
side. However, if one of the algorithms performs better than the other, this
algorithm is more likely to outperform a run of the other algorithm than
not, and hence the majority of the pairwise comparisons are expected to be
won by it. It is this aspect of the algorithms that is tested by the Wilcoxon
rank-sum test.

Figure 3.6 shows the error bars (minimum and maximum values) for the
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Figure 3.6: Error bars of average fidelity for sit, succ, and maxerr varia-
tions (left) and the Psit variation.
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Figure 3.7: Error bars of average fidelity for the decsucc variation (left)
and use variation (right).
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sit, succ, and maxerr variations. An interesting phenomenon is the fact
that the height of the error bars tends to decrease over time. Apparently,
the initial differences between the different runs stabilize in the course of
the experiment.

A more important observation is that the rightmost error bar of sit,
succ, and maxerr, each showing the minimum and maximum value over
ten runs of the average fidelity over the experiment, is lower than the corre-
sponding error bar for the standard algorithm. This implies that the lowest
value for standard was higher than the highest value of sit, succ, and
maxerr. Therefore, the ranks of the standard runs are [11,20], and those
of the sit, succ, and maxerr runs are [1,10], and so the rank-sums of the
variations are all 14+2+...410 = 55. The table in (Lehmann & D’Abrera,
1975) yields a significance level of @ = 0.0000 for this case, which means
that the difference between standard and each of these three variations is
statistically significant at this level of significance.

Figure 3.6 and 3.7 show the error bars of the Psit and decsucc experi-
ments. For both of these experiments, the complete final error bar is below
that of the standard case. Even though the difference is smaller here, this
property yields the same conclusion as for the first three variations, i.e. the
difference between standard and Psit and decsucc is significant at a level
of a = 0.0000.

For the use variation, where use information plays no role in the asso-
ciation strengths, the situation is different; here the error bars overlap (see
figure 3.7). Therefore, the ranks have to be computed by sorting the values
of the 10+10 runs of standard and use. Table 3.3 shows the sorted values
and their ranks. The rank-sum of the use variation is 67. The significance
level of the statement that there is a difference between the two distribu-
tions is 0.0014, and so it may be safely said that the use component is
useful.

3.2.9 Utility of the Use Component

In the above experiment it was already demonstrated that the use compo-
nent of associations can be useful, even though its advantage in terms of
performance was small. However, the performance issue is not the only rea-
son for including it in the algorithm. An important role of use information
could be that it reduces the necessity for obtaining success information.
Since the signals are initially unreliable, signal-based situation determina-
tion involves an increased risk of selecting the wrong situation and, conse-
quently, an action that is based on the wrong situation. This possibility
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Rank | With use comp. | Rank | Without use comp.
20 0.910807 13 0.883869
19 0.91 12 0.875613
18 0.908599 10 0.873765
17 0.905289 9 0.869088
16 0.90134 7 0.851777
15 0.901281 6 0.847442
14 0.889206 4 0.819828
11 0.874593 3 0.791192
8 0.864297 2 0.790466
5 0.833662 1 0.759108
Rank-sum | 143 67

Table 3.3: Average fidelity for ten runs of the algorithm with and without
the use component. The runs have been ranked based on this measure, and
the sum of the ranks is used as a statistic for the Wilcoxon rank-sum test

(see text).
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show that the use component increases the number correct determinations
and reduces the number of incorrect determinations.
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has been investigated by determining the number of occasions on which the
agent successfully determined the situation based on signals and occasions
on which the signal-based situation determination was incorrect. By com-
paring these numbers for the standard algorithm and the use variation,
it can be determined whether use information reduces the proportion of
costly wrong signal-based situation determinations.

Figure 3.8 shows the number of correct and incorrect signal-based sit-
uation determinations for the standard and use experiments. The graphs
show that the use component not only increases the number of correct
identifications, but also decreases the number of incorrect determinations.
These numbers are not merely complementary; the total number of signal-
based situation determinations is not fixed, but is determined by the agent’s
confidence in the signal, since signal-based situation determination is se-
lected with a probability equal to the highest situation probability given a
signal.

The statistical significance of this result has been tested. The previously
described Wilcoxon rank-sum test yielded a significance level of o = 0.0177
for the higher number of correct determinations and for the lower number of
incorrect determinations even o = 0.0000, and hence the component’s role
of reducing the number of harmful situation determinations and increasing
the number of correct ones has been demonstrated.

A further argument for the use component is that the specificity, consis-
tency and coherence all develop earlier and to higher final values with the
component than without it, see figures 3.11 and 3.12. The hypothesized
reason for this, is that although the information conveyed by use is of less
value for the development of communication than success information, its
frequency is much higher, since it is available after every time step. To-
gether with the above considerations, this provides a strong enough case
for the inclusion of use information in the model.

3.2.10 Analysis of the Success Component

One of the arguments for the use component was that it reduces the need for
expensive success information. This leads to the question of why the success
component of the algorithm was found to be indispensable. A possible ex-
planation for the prominence of success information is the following. Let us
consider the bias caused by agents with respect to the occurrence frequency
of words. Each agent estimates the occurrence frequency of words for all
situations, and produces words with probabilities proportional to these fre-
quencies. Due to the soft-max choice (see section 3.1.4), this proportional



132 CHAPTER 3. ASSOCIATING CONCEPTS WITH WORDS

Lateral inhibition without using success information
1- B —

“lateral inhibition
standard -----

Average Fidelity

| ! ! ! J
10000 20000 30000 40000 50000

Timesteps

Figure 3.9: Average fidelity for the standard experiment compared to the
variation where the lateral inhibition of the success component is main-
tained, but increases are not dependent on success anymore. In combina-
tion with earlier results, the graph shows that the lateral inhibition aspect,
not the success information, is instrumental in achieving specificity.

relationship is nonlinear, with a preference for frequent words. This results
in a positive feedback loop; words that are used frequently will tend to be
used even more often, and thus one may expect convergence towards using
a consistent and coherent system of communication. However, specificity,
the property that different concepts are referred to with different words,
is not guaranteed by this setup. Indeed, the sit and succ experiments
point out that using only use information in the associations, and hence
not taking into account success values, results in communication systems
with moderate or high coherence, but very low specificity measures.

Whereas use information is biased towards words that are a little more
frequent than other words, the effect of the success component in associa-
tion strengths is different. This value is increased when a word gave rise to a
correct situation identification, and decreases for incorrect determinations.
This introduces a different kind of bias. Specifically, it reinforces words
that are strongly associated with only a single situation, since situation
determinations based on such words have a high chance of being correct.
The algorithm ties such words to the situation even stronger. On the other
hand, words that are associated with several situations are less specific and
will therefore not be selected as often. In addition, if they are selected,
they stand a high chance of yielding an incorrect situation determinations,
since only one of the situations can be correct. The success component
in association strengths thus punishes such words. The combined effect of
these processes is that the system of communication will tend towards a
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state where words are only associated with a single situation and, hence,
systems with a high specificity. Since specificity is a necessary condition
for fidelity, this effect explains why the success component is necessary in
order to bring about communication.

A close look at the algorithm shows that the success-component of the
associations fulfills two functions. First, it represents information about the
ability of a received word to distinguish between different situations. This
is achieved by determining whether the reward received after the action
was selected corresponds to its estimate. Second, it implements lateral
inhibition between one association and other associations of the same word
with other meanings. In the following, the former will be referred to as the
success information, the latter as lateral inhibition.

There is a possibility that it is not the success information itself that
is required to achieve specificity, but rather the lateral inhibition. As was
already remarked, if one situation is linked more strongly to a word than
other situations, the effect of the success component is to enlarge this differ-
ence. This effect might even persists when no distinction between correct
and incorrect situation determinations is made. This can be seen as follows.
The word leading to a situation determination must already be somewhat
more specific than other words uttered; the very fact that it was used in
the situation determination procedure indicates that this word has a high
conditional probability P(u|o). The effect of lateral inhibition is that the
success component of this association increases and that of the associations
with other meanings decreases. The effect of this on production behavior is
that the specificity of the word in identifying the situation increases. Given
time, this change then also affects reception behavior due to the changes in
reception probabilities. Hence, the increase in specificity that is necessary
for successful communication could in principle be provided by the lateral
inhibition, even if this procedure does not employ success information.

To determine whether this is the case, two experiments have been per-
formed: one where success is used without lateral inhibition, and one where
lateral inhibition is used but not success. The first of these experiments is
achieved by removing line 23 from the algorithm, which corresponds pre-
cisely to the decsucc variation. In the decsucec experiment, performance
was lower than normal, but successful communication still developed.

The other experiment is to use lateral inhibition, but not success. One
way to obtain such a system is to remove the second term of the condition
on line 20 of the algorithm; the effect is that the success component of
associations is not increased when the reward corresponds to its estimate
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and decreased when it doesn’t, but that after each signal-based situation
determination this component is increased for the selected word and mean-
ing. The accumulative average fidelity of this experiment is shown in figure
3.9. As the graph shows, the performance in this experiment is at least as
high as in the standard case, even a fraction higher.

We now move on to the interpretation of these results. What the sec-
ond experiment proves is that success information is not required under
these experimental conditions; by removing the specified condition, no in-
formation about the accuracy of the action value estimations is used in the
association adaptation mechanism, while communication still develops at
least as successfully. The implications of the first experiment are less crisp;
whereas the most obvious source of lateral inhibition between meanings
has been removed, increasing the success component of the associations
involved in the signal-based situation determination indirectly also has the
effect of enlarging existing differences between the associations, thus in-
creasing specificity. This can be seen as follows. The higher association
values cause the corresponding words to be uttered more frequently in the
corresponding situation. This decreases the relative conditional probability
of being in another situation given that word is received, and thus the suc-
cess components of these associations of other meanings with the word will
be increased less often. Therefore, this can be viewed as an indirect form
of lateral inhibition. The conclusion is that lateral inhibition, not success,
is responsible for the necessity of the success component of the algorithm.

To determine whether success information can be of use when differ-
ences between the conceptual systems of agents are stimulated by means
of noise, additional experiments have been carried out. These experiments
did not contradict the above conclusion. Furthermore, experiments have
been performed where the hearing range of the agents was decreased from
a radius of 5 to 4, 3, and 2, causing the utterances to be received by only
a subset of the agents rather than all agents as in the standard experi-
ment. Again, the results did not require a revision of the conclusions, as
the changes had hardly noticeable effects on the success of communication
in both the standard case and the case where no success information is
used.

It is interesting to compare these results to the work of Oliphant (1997).
As noted, Oliphant does not distinguish between meanings and referents,
but assumes that all agents have access to a public set of concepts. One of
his central findings was also that a bias is required to induce specificity. In
Oliphant’s Bayesian learner, this is achieved by observing the communica-
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Figure 3.10: Parsimony (left) and distinctiveness (right) measures for the
standard experiment and its variations.

tive behavior of the population and using this to set the communicative
behavior of a selected individual to a matrix which for each meaning sends
the word best understood by the population, and interprets each signal as
the meaning for which the word is produced most often. All other entries
of the matrices are set to zero. In the current context, this mechanism
would exclude stable systems of communication with agents that have mul-
tiple meanings associated with a single word. In view of the idea that
conceptual systems may differ without disabling the potential for commu-
nication, this procedure can not be used in the current context. Although
the two approaches share the objective of increasing the specificity of words,
the gradual updates of the algorithm presented here offer a potential for
shared communication based on differing conceptual systems. This idea
will be explored in detail at the end of this chapter.

3.2.11 Discussion of the Remaining Variations

Figure 3.10 shows measures describing concept formation. Parsimony is
continuously high for the standard algorithm and all of its variations. Dis-
tinctiveness quickly rises to its optimum value of one for all but one of the
experiments; for maxerr, distinctiveness remains zero. This implies that
the knowledge of which meaning is present yields no information whatso-
ever about the actual situation, and hence that no useful concepts have
been developed. The disastrous effect of not using the max-error thresh-
old can be explained by inspecting the proportion between signal-based and
sensor-based situation determinations; right from the beginning, the agent
almost solely depends on its signals in determining the situation, see figure
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coherence.
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Figure 3.12: Consistency (left) and specificity (right) measures for the stan-
dard experiment and its variations.

3.11. This prevents it from gaining experience with its sensor data, which
causes the breakdown of the concept formation process. Apparently, in this
experimental setup, it is important that the agents do not rely on commu-
nication before they have formed concepts for interpreting communication.
This result may be viewed as an example where the coupling between con-
cept formation and association formation, as depicted in the introduction
(figure 1.2), is dysfunctional. The problem is not with concept formation
nor with association formation itself, but in the interaction between these
two processes.

Figure 3.11 (right) shows the coherence of the experiments. The stan-
dard algorithm and most of its variations achieve a high coherence. One
variation however (succ) has a coherence that ends up slightly higher than
the standard algorithm. As has been explained in chapter 2 however, a high
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coherence on its own is no guarantee for good communication. The speci-
ficity graph (figure 3.12 right) shows that for the same variation, specificity
is very low. Thus, the communication systems that developed during the
runs of the succ variation is not a very useful one; it consists of agents that
agree on what words to use, but different referents are referred to with the
same word, and so their language is not successful at conveying informa-
tion. The concept formation measures shown above (figure 3.10) reveal that
this lack of distinctiveness is not caused by the concept formation process.
Apparently, the success component is crucial in obtaining good communi-
cation. Furthermore, the prevalence of the standard algorithm that was
reflected in the fidelity measure is found back in the two communication
specific measures shown here.

An interesting additional observation is that the specificity graph bears
similarities to the fidelity graph of figure 3.4. In several cases (standard,
use, and decsucc), the shapes and relative positions of the curves are very
similar. Furthermore, together with the Psit variation, these experiments
all have a high specificity whereas the other three experiments (sit, succ,
and maxerr) all result in low specificity. The fidelity graph also shows this
pattern. This suggests that specificity is a good indicator of fidelity. For the
Psit modification however, specificity is on the positive side when viewed
as a fidelity indicator. The earlier increase of the Psit modification as
compared to the standard experiment is explained by its higher fraction of
signal-based situation determinations (the left graph in figure 3.11), which
yields more success information.

An intriguing phenomenon concerning Psit is that although its commu-
nication measures (specificity, consistency and coherence) are all approxi-
mately as high as the standard experiment, its fidelity was notably lower
(fig- 3.4). The large fraction of signal-based situation determinations, and
consequently low fraction of sensor-based ones, also explains this. Since
use information is only update after sensor-based situation determinations,
this information is not updated very frequently in the Psit variation. The
low fidelity is a result of these inaccuracies. An example is provided by
agent no. 1, which had the following interpretation probabilities Py, o)
of the word fu for its four meanings: 0.2, 0.55, 0.33, and 0.1. Its own pro-
duction probabilities of the word fu for the same meanings were 0.00005,
0.998, 0.00011, and 0.00012. Clearly, its estimates of word use had not con-
verged yet, and indeed the fidelity graph is still slowly rising. Nonetheless,
it communicative behavior concerning the word is accurate; its highest in-
terpretation probability is associated with the meaning for which the word
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is most often produced, and hence it will always select that meaning for
the interpretation of the word.

For the three experiments with low specificity (sit, succ, and maxerr),
the measure is lower than fidelity. This can be explained from the different
nature of the measures. Whereas specificity measures a reduction in uncer-
tainty, fidelity measure the probability of making the right choice. Since
there is only a limited number of choices, the fidelity of a communication
system that allows almost no transmission of information will still have an
expected fidelity of at least 1 over the relative frequency of the least fre-
quently occurring referent. This explanation is only valid when the agents
have the same set of words associated with their meanings; this explains
the exception of the maxerr variation in which, as will be seen below, the
associated set of words of the agents continually changed.

The consistency graph, see figure 3.12, shows several interesting phe-
nomena. First, the high value of this measure for the succ experiment is
reminiscent of the coherence graph. In itself this should not be surprising,
since consistency is a necessary condition for coherence. An inspection of
signal production revealed that in all of the ten repetitions, all agents used
a particular word for all of their meanings with probability 1 at the end
of the experiment. This finding is consistent with the results concerning
specificity, where the experiment ranked lowest and appears to converge
towards zero. As the distinctiveness measures showed, this can not be the
result of a lack of appropriate concepts. The characteristic property of this
experiment is that no success information is used. Apparently then, the
success component is crucial for the development of specificity. This is un-
derstandable, since success values are one source of differentiation between
the word associations of different meanings.

Another striking fact concerning consistency is that for maxerr this
measure rises only very gradually; apart from the level to which it seems
to converge being rather moderate compared to most other variations, the
level continues to rise during the whole experiment, whereas other varia-
tions rise to 90% of their final level in less than a tenth of this time.

An inspection of the data showed that many words are associated with
the single meaning of an agent in the maxerr experiment, all with a low
association value, in agreement with the low consistency. Combined with
the information that choices in this experiment are almost always based on
signals, this leads to the hypothesis that unsuccessful signal-based situa-
tion determinations, a necessary consequence of the lack of distinctiveness,
bring down the success values of the associations, causing the agents to
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introduce new words when the highest association strength falls below a
threshold (0.25, see algorithm). Since the association values of the existing
words are low, the new word will have the highest association value and
be selected for production, until its association value has decreased by the
same principle, and the process repeats itself. Inspection of the associa-
tion strengths supports this hypothesis. Success values components of the
associations varied around 0.1 with only minor variations, and use compo-
nents around 0.45, which implies that whatever the success-use ratio (0.75
in these experiments), the association strength of a newly introduced word
will supersede all existing words and hence be selected for production. The
probabilities P(o|u) varied around 0.02, which indicates that the number
of words associated with a meaning was around 50. This is clearly anoma-
lous in comparison with the standard experiment, where typically four or
five different words are used. These findings explain why the signal pro-
duction of the agents in this experiment is not very consistent. Given this
information, the question why the consistency measure for maxerr keeps
rising in an unnatural manner still demands an answer. However, this is
merely an artefact. For practical reasons, the number of words for which
the probability matrices are computed is limited to 20. Since the actual
number of words exceeds this number in this anomalous case (none of the
other variations exhibited this behavior), the uncertainty corresponding to
the words not present in the matrix falls outside the calculation, yielding
a value higher than the actual consistency. This effect starts to play a role
as soon as the number of words exceeds 20 which, judging from the graph,
appears to be around 8000 time steps. It is interesting to see that the
variations in the value over time appear to have been superimposed onto
an independent smooth curve; this observation fits well with the above
explanation.

3.3 The Benefit of Communication

It has been demonstrated that communication can be used to convey in-
formation, and so it might be said that communication is useful for the
agents that use it. However, communication only has an overall benefit
if the correct situation determinations are not overshadowed by incorrect
situation determinations that could have been avoided if no communication
was used. In order to investigate whether communication as it is developed
in these experiments presents an overall benefit to the agents, an addi-
tional variation is introduced here which excludes communication from the
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Figure 3.13: The influence of communication on success. At every time
step, the graph shows the success obtained up to that point in time averaged
over agents and runs.

experiment. The measure that will be used to investigate the systems is
the success received by the agents. Figure 3.13 shows the success, averaged
up to the point in time on the horizontal axis, for the standard experiment
and its new variation. Two aspects are of interest. First and foremost,
success is higher when communication is used. In other words, the benefit
conferred by the increase in available information is not overshadowed by
errors made as a result of the signal based situation determinations that
are performed as part of the communication development process. Second,
the success of the system with communication is initially lower than that
of the non-communicative system, but supersedes it after some time. The
initial lower success is explained by the costly incorrect signal-based situa-
tion determinations that are necessary to build up communication in this
experiment. Once a good system of communication exists, its fruits can be
reaped in the form of a sustained higher success value.

The statistical significance of the results has been assessed as follows.
The basis of the test is the average success per time step obtained by all
agents up to the point in time indicated on the horizontal axis. The error
bars in the graph show the minimum and maximum of this value over the
ten runs at 50 equidistant time steps. The lines show the average of the
value over all runs. The rightmost two error bars do not have any overlap.
As noted before, for the number of runs used, this yields a significance
level of a = 0.0000 in the Wilcoxon rank test. Thus, agents that developed
successful communication in the experiments produce significantly better
behavior, as expressed by the evaluations they receive, than agents that do
not.
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3.4 Private Concepts, Public Language

A central question in this thesis is that of how agents can come to use the
same words for the same things, even though their experiences are different.
The previous chapter already suggested a partial explanation: since each
agent generalizes over its own experiences, the concepts that one agent
forms may be very similar to that of another agent. The current chapter
suggests a second part of the explanation. This complementary explanation
is the idea that even if agents have formed different meanings based on
their individual experiences in the environment, they may associate these
private concepts with words in such a way that they use the same words
in the same situation. Thus, the differences in their conceptual systems
are internal, and, although they may determine the behavior of the agent
to a large extent, the existence of such differences is not manifested in the
communicative behavior of the agents.

3.4.1 Experimental Setup

To investigate whether such a scenario is feasible in practice, the communi-
cation experiment as it has been described thus far will be slightly modified.
In the basic version of the experiment, the distinctiveness and parsimony
measures are often both equal to one, implying that the conceptual systems
of agents are ideal and (therefore) equal. To properly address the question
of whether private concepts can be the basis for public language, it is re-
quired that the agents develop different conceptual systems. Although the
sensory experiences of the agents are already different in the basic experi-
ment, these differences, the generalizing capabilities of the agents evidently
are sufficient to overcome these differences. In the following experiments,
extra differences are therefore introduced, by means of adding noise to sen-
sory inputs and evaluations.

The specific setup of the experiment is as follows. As in the basic exper-
iment, five agents are present in the environment. The sensory inputs and
evaluations of these agents are differentiated by noise as follows: the first
agent has noise added to its first sensor dimension, the second to its second
sensor dimension, and the third to its third sensor dimension. The fourth
agent has no sensor noise, but its evaluations are augmented with noise.
The fifth agent finally has no additional sensor or evaluation noise. How-
ever, like the other four agents, its information about the environment is
not always correct, because of the partial perception of the situation sensor
(10%). Furthermore, the minimum number of experiences that is required
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in the two halves of a region for a split to be considered is decreased from
50 to 25, in order to further increase the likelihood of extra distinctions.

3.4.2 Calculation of Matrices Based on Sampling

In section 2.6.3, it was explained that the concept formation measures as
they have been described so far measure to what extent the ideal conceptual
system for the basic experiment is formed. For determining the effect of
noise on the experiment, this is interesting information. In this section how-
ever, a modification of the basic experiment is investigated. The question
thus becomes to what extent the conceptual and communication systems
formed by the agents are appropriate for this modified task. To deter-
mine this, it is not sufficient anymore to map the conceptual systems onto
the ideal conceptual system and thus determine the matrices P(u|p) and
P(p|u). The reason for this is that the original referents, defined as regions
in sensor space, no longer exactly correspond to the regions where partic-
ular behaviors are appropriate. Rather, the boundaries of these regions
become blurred as a result of sensor noise, and the distinctions between
different regions become less clear as a result of evaluation noise. Because
of these effects, the ideal referents can no longer be easily identified by cor-
responding sensor values, and hence the direct calculation of the parsimony
and distinctiveness measures reflects to what extent the conceptual system
of the original problem is formed rather than to what extent ideal concepts
for the new problem are formed.

Fortunately however, the direct approach is not the only way to cal-
culate the concept formation measures. Although the referents no longer
have a one to one correspondence to sensor regions, they are known at
each point in time, because the internal state of the simulation, and hence
the environment, is accessible to the investigator. Moreover, for the same
reason, the current meaning of each agent is available at each time step.
Together, these bits of information are sufficient to dynamically estimate
the co-occurrence probability of every combination of meaning and referent.
Thus, provided that the system is observed for a sufficiently long interval
of time, accurate estimates of the probability matrices P(u|p) and P(p|u)
can be made. This procedure will be referred to as the sampling method,
and it is important to distinguish the resulting measures from their direct
counterparts.

The above distinction between the direct and sampling methods only
referred to concept formation matrices, viz. P(u|p) and P(p|u). However,
since communication measures depend on concept formation, these are also
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affected by a change in the environment. Specifically, consistency is based
on the entropy in the Pp,,4(c|p) matrix, which was calculated multiplying
P(p|p) with P|(prod)(c|p), and hence depends on P(u|p). Likewise, in
the direct calculation scheme, specificity is based on P,.4(p|o) and hence
depends on P(p|u)-

Since the contents of both of these matrices depend on whether the
direct calculation or the sampling method is used, it is necessary to distin-
guish between direct and sampling versions of consistency and specificity
as well. Accurate estimates for these measures can be obtained by directly
sampling Pp,oq(c|p) and Py,oq(plo), without using P(p|u) or P(u|p). These
matrices are still necessary for the concept formation measures though, and
for fidelity; fidelity is calculated by multiplying the P, ,4(c|p) matrices with
Pini(plo) matrices for all combinations of two agents. The latter of these
matrices is calculated by multiplication of Py (u|o) and P(p|u), since there
is no principled way to directly determine as what referent an agent inter-
prets a given word.

A final note concerns the correctness measure. Since this indicator
measures whether the current referent is determined by the agent, its exact
determination requires a one-to-one correspondence between meanings and
referents. Since this correspondence is lost by the introduction of noise,
this measure will not be used in the following experiments. Although an
approximation of correctness is possible when the estimates of P(p|u) are
used, there is a more direct way to determine whether the agent has de-
veloped the capacity to produce the right behavior in each circumstance.
This is simply to see whether it selects the right action. Particularly, we are
interested in whether communication allows the agents to overcome their
imperfect sensor information. By counting the occasions on which sensor
information was misleading but the right action was selected nonetheless,
the degree to which communication reduces uncertainty can be measured.
To avoid possible bias, as was discussed in relation with the correctness
measure (see section 3.1.5), this information must only be registered at the
first time step after the advent of a new situation.

3.4.3 Results of the Private Concepts Experiment

In this section the result of the private concepts experiment are presented.
The central question here is whether a public language can emerge when
agent have different conceptual systems. The experiment as it was de-
scribed at the beginning of this section has been repeated tenfold. For each
run, the conceptual system of every agent has been tracked over time. A
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requirement for the experiment is that agents develop different conceptual
systems. Investigation of the data made clear that this is indeed the case.
Often, several agents in an experiment developed equivalent conceptual
systems, but in no experiment did all agents develop the same conceptual
system. Figure 3.14 show some examples of conceptual systems that were
developed by the agents.

The top right system, with six distinctions in the first sensor dimension,
and several variants of it, was often developed by the first agent. This
can be explained from the distribution of noise over the agents as follows.
Without any noise, the ideal conceptual system is the upper left graph of
figure 3.14. In this system, the intervals [—1,0>, [0,1>, [1,2> and [2,3>
are distinguished. The first agent however receives noise on its first sensor
dimensions. For example, an initial value of 2 will be received by the agent
as 2 + ¢, where § is drawn from a N(0, o) distribution. For 0 < § < 1, the
sensor value falls within the interval [2,3 >, and no problems arise. If § > 1,
as happened in many of the concept formation experiments of chapter 2,
the sensors do not provide enough information to determine the referent.
Since ¢ = 0.15 in these experiments however, the probability of this event
is negligible. However, for § < 0, which happens in an expected 50% of
all cases, a similar problem arises: if the agent would have developed the
'ideal’ conceptual system, its sensors now point to the meaning [1,2 >. The
net effect of this is that most experiences in the lower halves of the integer
intervals ([—1,—0.5>, [0,0.5>, etc.) correspond to the referent of the low
end (-1, 0, etc.), whereas experiences in the upper halves occur almost solely
in the presence of the upper referent (0, 1, etc.). Apparently, the concept
formation mechanism is able to detect this correlation, which explains the
fact that in all experiments, the first agent introduced 6 distinctions in the
first dimension as opposed to the basic three.

Figure 3.15 shows the concept formation measures over time. All re-
sults reported concern the sampling version of the measures. The average
distinctiveness at the end of the experiment is 0.999, which implies that all
agents developed virtually perfectly distinctive conceptual systems in all of
the experiments. Parsimony is suboptimal. This is no surprise however; it
is a property of the experiment that agents develop different conceptual sys-
tems, and since there is only a single ideal conceptual system, suboptimal
parsimony is a necessary condition for the experiment.

In figure 3.16, the communication measures are depicted. Specificity is
very high. The fact that distinctiveness was high already fulfills a first con-
dition for high specificity. Given high distinctiveness, the requirement for
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Figure 3.14: Some examples of conceptual systems developed by agents in
the experiment. The labels (S1, S2, S3) mark the three sensor dimensions.
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Figure 3.15: Distinctiveness (left) and parsimony (right) in the private
concepts experiment.

1 1 T T T T
Specificity —

0.8 |- .
[} [
= =
g o6 1 F
[l i
2 2
§ o4 1 &
= =

0.2 - 0.2 -

1 1 1 1 0 1 1 1 1
20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Timesteps Timesteps

Figure 3.16: Specificity (left) and coherence (right) in the private concepts
experiment.
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Figure 3.17: Average number of meanings (left) and Fidelity (right) in the
private concepts experiment.

high specificity is that the meaning(s) for different referents are associated
with different words. The value of the specificity measure shows that this
is the case. Coherence is reasonably high, although not as high as possible.
This suggests that agents sometimes use several different words for one or
more referents. Nevertheless, the fidelity (figure 3.17) is high. Together,
this information indicates that although agents do not always use the same
word for the same referent, they do understand the words that are produced
in connection with each referent. Figure 3.15 shows the average number
of meanings that was developed by the agents. This number appears to
converge to a value around 5.5, a bit higher than the number of meanings
that is required when no noise is present (4).

The measures that have been reported demonstrate that indeed a good
system of communication has been developed, even though concept for-
mation is private and often resulted in different conceptual systems. In
order to gain some insight into how this is possible, a closer look will be
taken at the internals of the agents, specifically at the associations between
meanings and words that the agents have formed.

The first question to be asked is what conceptual systems are formed.
Table 3.4 represents the concept formation matrix P(u|p). The correspond-
ing graphical representation is shown in the middle graph of figure 3.14.
The distinctions in the first sensor dimension can also be read from the
headings in the table. As should be expected for the first agent (see expla-
nation above), the conceptual system contains six distinctions in the first
sensor dimension. The first interval, [—1, —0.5>, represents the first ref-
erent. Subsequent referents are represented by two regions, the lower ones
([-0.5,0>, [0.5,1>, and [1.5,2>) corresponding to experiences of which
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noise the sensor value representing the corresponding referent (0, 1, and 2)
was decreased due to the addition of noise, the higher ones corresponding
to the cases where sensor noise was positive. The last interval is not split
in half; this is because there is no referent 4 which would cause ambiguity
when the noise § would be negative. As would be expected, given that
the standard deviation of the noise is 0.15 and will therefore exceed the
value of 0.5 with very low probability, the probabilities P(u|p) are near 0.5
(rightmost 6 columns)?.

The lowest interval, [—1, —0.5 >, occurs in the three topmost rows of the
Pyrod(o|p) table. These rows represent three different meanings which all
have the same range for the first sensor dimension. They are distinguished
in the third dimension, and are visible in the figure as the three strips to the
left. As would be expected given the fact that there are three possible values
of the third sensor dimension, each bearing a one to one correspondence
with a meaning, the probabilities in the matrix vary around %

Table 3.5 shows the word production probability matrix Pp.oq(c|p) for
agent number one. A striking observation is that for the first three mean-
ings, all corresponding to the same referent, different words are produced
(ro, ra and sa respectively). The association values are all around 0.95,
implying that the agent almost always uses the particular word that is as-
sociated, and not one of the other two words that correspond to the same
referent.

For referent 0 (meanings [—0.5,0> and [0,0.5>), signal production is
not as ambiguous as in the previous case; for both meanings, the word
with the highest association (0.709 and 0.999) is ga. Referent 1 (meanings
[0.5,1> and [1,1.5>) is represented as co during production, and referent
2 finally is represented by meanings [1.5,2> and [2,3>. The agent refers
to these meanings with za and pi.

The measures reported earlier already revealed that agents start to
speak the same language. However, in order to gain more insight into
what language has been developed, it is necessary to inspect the word in-
terpretation of one or more other agents that were present during the same
run of the experiment. In particular, it is interesting to select an agent
that has a different conceptual system. Table 3.6 show this information

'The lowest interval, [~1, —0.5 >, also contains experiences with values below its
lower bound. Likewise, the relevant coordinate of experiences in the highest intervals
may exceed the upper bound of those intervals. Thus, a more accurate rendering of the
intervals would be to replace the bound by an arrow, representing the indefinite extension
of the interval. This notation is not adopted since the bound conveys useful information;
it determines at which point a possible split will be located.
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-1.-0.56 -1.-05 -1.-0.5 -0.5..0 0.0.5 0.5.1 1.15 15.2 2.3
p1 | 0338 0342 0.319 O 0 0 0 0 0
p2 |0 0 0 0.492 0.508 0 0 0 0
p3 |0 0 0 0 0 0.502 0.494 0.004 O
ps |0 0 0 0 0 0 0 0.487 0.513

Table 3.4: Table listing the probabilities P(u|p). Each column corresponds
to a meaning, the label denotes the interval in the first sensor dimension;
as splits in dimensions other than the first are also made, this interval may
be identical for different meanings (e.g. columns 1-3).

co ga pi ra ro sa za

[-1,-0.5> | 0.001 0.001 0.001 0.038 0.952 0.007 0.001
[-1,-0.5> | 0.002 0.002 0.002 0.949 0.009 0.035 0.002
[-1,-0.5> | 0.001 0.001 0.001 0.006 0.011 0.981 0.001
[-0.5,0> | 0.032 0.709 0.032 0.045 0.106 0.043 0.032

[0,0.5> 0 0.999 0 0 0 0 0

[0.5,1> 0.999 0 0 0 0 0 0
[1,1.5> 0.582 0.030 0.032 0.059 0.213 0.052 0.033
[1.5,2> 0.002 0.002 0.067 0.003 0.007 0.003 0.915
(2,3> 0 0 0.929 0 0 0 0.070

Table 3.5: Word production (Ppy.q(c|u)) for agent 1 at the end of the first
run of the experiment.
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-1.00..0.00 -1.00..0.00 0.00..1.00 1.00..2.00 2.00..3.00
co |0 0 0 1 0
ga |0 0 1 0 0
pi| O 0 0 0 1
ra | 0.137 0.863 0 0 0
ro | 0 1.00 0 0 0
sa | 0.915 0.086 0 0 0
za | 0 0 0 0 1

Table 3.6: Interpretation (Pj,;(p|o)) for agent 2 at the end of the first run
of the experiment.

pP1r P2 P33 P4
[1.00,000> |1 0 0 0
[-1.00,0.00> |1 0 0 0
[0.00,1.00> [0 1 0 0
[1.00,2.00> [0 0 1 0
[2.00,3.00> [0 0 0 1

Table 3.7: Table listing the probabilities P(p|u).

for the second agent in the same run. As the table shows, this agent has
only three distinctions in the first sensor dimension, compared to six for
the first agent. The difference between the two agents is that whereas the
first agent received noise on its fist sensor dimension, noise for the second
agent affected its second sensor dimension, thus obviating the need for ex-
tra splits in first dimension. Apart from the splits in this first dimension,
the second agent also has a split in the third dimension, displayed vertically
in the three dimensional graphs of figure 3.14. Specifically, this horizontal
plane is located at the same height as the upper horizontal plane of the
first agent’s conceptual system, but necessarily extends over the complete
region to the left of the first vertical plane, yielding the system displayed
in the lower left of figure 3.14.

By analyzing what words agent one uses for each referent and how agent
two interprets those words, the language of the agents can be investigated.
As an example, let’s consider referent p;. The meanings that agent one has
developed for different instantiations of this referent can easily be identified
on the basis of their intervals, but can also be read from the matrix 3.4.
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cO ga pl ra ro sSa Za

p1 | 0.004 0 0 0.346 0.319 0.327 0.004
p2 | 0012 0.892 0.008 0.008 0.046 0.012 0.023
ps | 0.794 0.012 0.025 0.021 0.107 0.012 0.029
ps | 0 0 0.521 0.004 0 0 0.474

Table 3.8: Production probabilities Pyroq(c|p).

In the word production table, these meanings correspond to the first three
rows and are, as noted above, referred to with the words ra, ro, and sa.
Table 3.6 shows that the latter of these words is interpreted by agent 2
as its first (leftmost) meaning, while the other two words lead this agent
to consider its second meaning as a possible situation. No other meanings
are associated with these words and no other words have associations with
these meanings. The final step in the analysis of the use of this words
when produced by agent one and interpreted by agent two, is to consider
to what referents the meanings of agent two correspond. This information
is provided by table 3.7, and shows that both meanings unambiguously
correspond to the referent pi, i.e. the same referent that was encoded by
agent one.

Instead of going through all productions and interpretations of both
agents in this manner, a more comfortable way to investigate the question is
to simply compute the probabilities that the referent found by the receiver
is the one described by the sender of a word. When this probability is
averaged for all referents, and furthermore over all combinations of two
agents, a sender and a receiver, the result is the fidelity measure.

The first step in this procedure is, as in the manual version of the
procedure just described, to determine the probability that a certain word is
produced for a certain referent. All combinations of words and referents are
needed, and this matrix, Pp,,q(c|p) is obtained by multiplying the matrices,
P(u|p) and Pproq(o|p), shown in tables 3.4 and 3.5. This operation hides
the private meanings of the agent, and yields a matrix that shows its word
production behavior.

The second step of the procedure is to determine how words are in-
terpreted by the receiving agent. Word interpretation is captured in the
Pini(p|lo) matrix. To obtain this matrix, all that has to be done is another
single matrix calculation: multiplying Pjy(u») With P(p|u) yields the de-
sired information, shown in table 3.9.
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Table 3.9: Interpretation probabilities Pi,(p|o).

Now that both the production information of agent one and the inter-
pretation information of agent two are available, all that rests is to combine
these two sources to obtain the desired result. When these two matrices of
figure 3.8 are multiplied, the words are hidden from the picture, just as the
private meanings were eliminated in the previous calculations:

Paisa2(plp) = Poea(clp) - Ping (plo) (3.22)

where sz‘ﬁd(d p) is the production matrix of agent Al and P;iZ(p|o) the in-
terpretation matrix of agent A2. In the resulting matrix P41, 42(p|p) each
row represents a referent. The values in the matrix specify the probability
that this referent, when communicated from agent one to agent two, will
be interpreted as the referent corresponding to the column. The resulting
matrix for our example is given in table 3.10.

The above showed how the matrix P41, 42(p|p), determining the inter-
pretation by agent A2 of words produced by agent A1, can be obtained. In
this manner, the communication between any two agents can be analyzed.
From this information, it is straightforward to determine the fidelity of the
communication system as a whole, by computing the average matrix for all
possible combinations of two agents:

Pi1542(plp)
Plolp) = Y Aol (3.28)
Al,A2€ A a

If a referent that is encoded by some agent is always interpreted as
that same referent for all pairs of agent in some system of communication,
the P(p|p) matrix will contain ones on its diagonal and zeroes at all other
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P1 p2 p3 P4
p1 0992 0 0.004 0.004

p2 | 0.065 0.892 0.012 0.031
p3 | 0.14  0.012 0.794 0.054
ps | 0.004 0 0 0.996

Table 3.10: Matrix containing the average probabilities that a word will be
decoded to the referent it encoded. The average over the diagonal entries
yields the fidelity measure.

entries. In this case, the fidelity of the communication system is complete,
i.e. one.

In the private concept experiment reported here, the fidelity measure is
0.92, as can be computed from the matrix in table 3.10. This implies that
in 92% of the cases, communication between two agents would be success-
ful; the agents have indeed learned to speak a common language based on
private conceptual system. In the model for communication that is used
here however, agents do not receive information from a single agent, but
from all agents within hearing distance. Fidelity can then be considered
as a lower bound for communication success, assuming that agents do not
selectively attend to signals from agents with which they have a lower than
average Pa1_, 42(p|p). In fact a positive bias due to selection is more prob-
able given the algorithm; each agent selects the signal which it estimates to
most probably yield the actual situation (see the algorithm, section 3.3).

3.4.4 Synonymy and Ambiguity

Finally, it has been investigated whether communication based on private
concepts can be used to overcome uncertainty. As explained during the
introduction of the sampling versions of the measures, the correctness mea-
sure is no longer suited to measure this aspect, but a replacement is avail-
able in counting the number of right actions that were selected upon the
advent of a new situation that remained invisible to the agent. Figure
3.18 shows this fraction for both sensor-based and signal-based situation
determinations. The sensor-based situation determinations should not sig-
nificantly exceed %, since the sensors do not provide information about the
situation, and the agent can only select one of the three actions at random.
A count of this number yielded a fraction of 0.335803, which is indeed close

to % The signal-based actions were more successful. These were correct
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Figure 3.18: Fraction of right actions for signal based and sensor based
choices in the private concepts experiment.

in more than 95% of the cases, which shows that the communication sys-
tem that has been developed on top of the private concepts of the agents
enables accurate transmission of information about the situation of the en-
vironment. It furthermore confirms the above expectation that the actual
accuracy of communication is higher than the average fidelity between two
agents, due to a selection effect; apparently, the agents pay more attention
to words they can understand.

3.5 Conclusions

This chapter has considered the question of how agents may form asso-
ciations between privately formed concepts and public words such that a
shared system of communication results. Following the commitments out-
lined in chapter 1, there is no central control mechanism to guide the process
of association adaptation, and hence an algorithm had to be found that can
be executed by individual agents that has the effect that a global of com-
munication emerges. Such an algorithm has been described in detail, and it
has been examined whether all components of the algorithm are required.

The result of the comparison is that all components of the algorithm as
it has been presented are useful in that they contribute to the development
of communication. There is no component that can be removed without a
statistically significant decrease in the quality of the communication system.

Some components are crucial to the functioning of the system, whereas
others merely result in a small drop in communication quality when re-
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moved. The sit, succ, and maxerr experiments revealed that the cor-
responding components (signal-based situation determination, the success
component in association strengths, and the max-error-for-signals thresh-
old respectively) are of the first type; without these, communication does
not build up. The experiment where the max-error-for-signals threshold
was not used showed how the coupling between the concept formation and
association formation processes may fail; in this experiment, the commu-
nication process was attempting to make use of concepts too early, and by
doing so prevented the concepts from developing.

The other two experiments were both concerned with signal-based sit-
uation determination. The function of this component is to obtain success
information. A striking result of these experiments is that this component
is necessary for the development of communication. A further analysis of
the success component of the algorithm revealed however that it is not
the success information itself that is required to achieve this specificity,
but rather the lateral inhibition between different meanings it implements.
Thus, lateral inhibition can perform the necessary function of providing a
bias towards specificity. It does this without imposing a one-to-one relation
between the words and the meanings of agents. This is an important prop-
erty given the commitments of the research, and has been demonstrated in
the private concepts experiment. In this experiment, agents developed dif-
ferent meanings but related these to words in such a way that the word used
by one agent to describe the particular meaning it observed was interpreted
by the other agent as one of its meanings corresponding to the original ref-
erent. The matrix describing the communication system demonstrated that
this was not an exception, but that reliable communication had developed
in spite of substantial differences in the conceptual system. Thus, if the
meanings of agents are different, this does not have to prevent them from
successfully communicating about their environment.

In the conceptual systems of the agents in this experiment, a single
word is often stably associated with multiple meanings. This is necessary
for successful communication, and would not be possible using a mechanism
for specificity that imposes a one-to-one relation, such as the normalization
procedure in (Oliphant, 1997). The gradual changes made by the success
component provide specificity without imposing this one-to-one relation.

Also, measures for the quality of communication have been developed.
The specificity measure expresses to what extent a word identifies a ref-
erent, while consistency indicates whether an agent consistently uses the
same word for the same referent. To measure whether the word used for
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a referent is the same for all agents, the coherence has been defined. Fi-
nally, fidelity measures the average probability that a word produced by
one agents will be interpreted by a random other agent to yield the orig-
inal referent. The specificity and consistency measures are principled in
that they are based on the decrease of uncertainty, measured as entropy in
a conditional probability matrix, and overcome a fundamental limitation
of a related measure of communication quality introduced in (MacLennan,
1991).



Chapter 4

Communication as a
Dynamical System

When language is viewed as a dynamical system, a natural question is
whether the tools that are available for analyzing such systems can offer
new insights into it. This is the question that will be investigated in the
current chapter. A central notion in the domain of dynamical systems is
that of an attractor. It will first be investigated whether the system of
communication that has been investigated possesses these. Another tool
related to the dynamical perspective is that of phase plots. Phase plots
characterize the possible states of a system. The most straightforward
use of phase plots is to show the trajectories that the system visits. This
method will be used to view the processes of association and dissociation
of words and meanings in a different way. Finally, a parameter called
temperature has been found to have a large influence on the development of
communication. To better understand the effect of this control parameter,
its effect on the development of communication is investigated.

The structure of this chapter is as follows. First, in section 4.1, some
basics of dynamical systems theory that are necessary to understand the
following investigation are described. The variables of the dynamical sys-
tem that models our communication system are determined in section 4.2.
The presence of attractors in a deterministic version of the system is in-
vestigated in section 4.3. Both experimental evidence and a theoretical
proof of the presence of attractors are provided. Although the determin-
istic version functions reasonably well, experiments in section 4.4 suggest
that stochasticity is a useful element in language evolution by demonstrat-
ing its positive effect on the development of communication. The behavior
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of the stochastic system is further explored in section 4.5. Finally, section
4.6 concludes.

4.1 Basic Dynamical Systems Theory

A dynamical system is a system that changes over time. Although the basis
for dynamical systems theory was already laid by Newton, important parts
of the field, such as chaos theory, only developed during the second half of
this century, when the advent of computers enabled researchers to quickly
perform complex simulations.

A dynamical system is characterized by a number of variables. The
systems specifies how these variables change. If the specification of the
system involves time, the system is called non-autonomous. In autonomous
systems, the changes of the variables are defined relative to one another.
Changes can either be stepwise or discrete, or continuous.

The phase space or state space of the system is a space where each
dimension represents a variable of the system. At each point in time, the
state of the system is characterized by a single point in this state space,
determined by the values of the different variables. The trajectories of a
system are the paths along which the system moves through phase space
over time. The derivative at each point in phase space specifies the direction
at that point of trajectories that pass through the point. The magnitude of
the derivative specifies the speed at which the system travels through the
point.

A central notion in dynamical systems theory is that of an attractor.
Informally, an attractor is a part of the state that appears to attract the
system, in the sense that the state of the system will move toward the
attractor when it is near. In a physical interpretation, a stable state to
which a non-conservative system tends is an attractor. Several forms of
attractors exist, such as fized points, limit cycles, and strange attractors.
Fixed points are points where the derivative of the state equals zero. Thus,
when the system is in the state that corresponds to such a fixed point,
it does not leave this state anymore, since the speed with which it moves
is zero. Three variants of such points exist: fixed point attractors, fixed
point repellers, and saddle points. A point attractor is a point where all
neighboring trajectories are directed towards the fixed point. Such a point
"attracts’ the system to itself from some neighborhood. This neighborhood
is called the attractor basin. For a repeller on the other hand, the opposite
is the case; in all points near the fixed point, trajectories head away from
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the fixed point, and thus the system will be repelled from the immediate
neighborhood of such points. A saddle point is a combination of a fixed
point attractor and a fixed point repeller. From some directions the system
is attracted towards the fixed point, while it is repelled in other parts of
the neighborhood.

Although the informal definitions of attractors may seem quite clear,
there is no consensus about a formal definition for attractor. Here, the
definition from (Strogatz, 1994) will be used. There, an attractor is defined
as a closed set Z for which the following conditions hold:

1. Z is an invariant set: any trajectory x(t) that starts in Z stays in Z
for all time.

2. Z attracts an open set of initial conditions: there is an open set U
containing Z such that if x(0) € U , then the distance from x(¢) to Z
tends to zero as ¢ — oo. This means that Z attracts all trajectories
that start sufficiently close to it. The largest such U is called the
basin of attraction of Z.

3. Z is minimal: there is no proper subset of Z that satisfies conditions
1 and 2.

Another pattern that may occur in the phase space of dynamical sys-
tems is the limit cycle. A limit cycle is a closed curve where the derivative
of the system is such that, once on the curve, the system will stay on it
forever. A well known example of a limit cycle is the oscillator used by the
Dutch scientist Balthasar van der Pol to describe the operation of an elec-
tronic valve oscillator. Another, more interesting type of attractors is the
chaotic attractors. Such attractors display sensitivity to initial conditions,
meaning that two points starting near each other will move away from each
other exponentially. Many chaotic attractors have fractal shapes, and are
therefore sometimes called strange attractors.

4.2 Determining the Phase Space

A dynamical system is characterized by a number of variables that change
over time. The space of possible configurations of the system contains all
possible combinations of admitted values for these variables, and is called
the phase space. The first thing that needs to be asked about our system of
communication in order to investigate its dynamics, is what these variables
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are. The complete state includes the state of the environment, and that
of all agents in it. However, not all aspects of this state are of interest
to this investigation. Particularly, the state relating to concept formation
and action selection will not be regarded. The experiments in the previous
chapters learned that the concept formation processes are concentrated in
the initial phase of the experiment, and that the conceptual system of the
agents does not change after the first thousand time steps under normal
conditions. On the time scale of the development of communication, the
effects of concept formation play no role of any importance. For action
selection, the situation is similar; after 10,000 time steps, the average error
in the agents’ expectation of their rewards has dropped below 10~7, which
implies that the agents can virtually always choose the right action when
situation determination is successful. For this reason, the state relating to
action selection, which consists of the estimates of the values of the action,
is not relevant to the investigation of the dynamics of communication.

The key factor determining the communicative behavior of an agent is
its set of associations between meanings and words. Like the conditional
probabilities characterizing a conceptual or communication system, these
association strengths can be written in a matrix of which the row and
column determine a meaning and a word. The produce-signal routine,
see the algorithm (figure 3.3), specifies how these associations are used by
the agents to select a signal for production. However, meanings are pri-
vate entities, and therefore analyzing the phase space of association values
is more convenient when based on the public referents. Such a matrix is
obtained by multiplying the association matrix with the P(u|p) matrix.
When association values are used directly, as opposed to their correspond-
ing production probabilities, this operation requires perfect parsimony and
distinctiveness; production probabilities depend on the association values
of a meaning with other signals, which implies that the association val-
ues of different meanings corresponding to a referent cannot be directly
compared. The conditions concerning parsimony and distinctiveness are
satisfied in the experiments', and therefore the signal-associations corre-
sponding to the referents will initially be considered as the variables of the
system.

Apart from word production, the interpretation of words can also be
viewed as being part of the communicative behavior of an agent. As the al-

'The reader may recall that in the standard experiment, these conditions were almost,
but not completely satisfied. The difference is a side effect of the removal of stochasticity
from the system, as documented in section 4.3.1.
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gorithm showed, interpretation is based directly on occurrence probabilities
of words as observed by the agents. These estimates indirectly determine
signal production since they are the basis for signal based situation de-
termination. However, if a good system of communication develops, word
interpretation corresponds closely to word production, and thus its added
value is limited. On the other hand, the costs of including interpretation
in the investigation of the state space very large; for every single state in
production space, a complete space with a size comparable to that of the
production space is added (in other words, the volume of the phase space
is squared). Given these considerations, the course of action that will be
taken is to first investigate only word production. If the behavior of the
system as viewed in this space is sufficiently stable, the interpretation state
does not have to be included in the investigation.

4.3 Presence of Attractors

When viewing language as a dynamical system, see e.g. (Steels, 1997a), an
interesting hypothesis is that in a population of language learners, good sys-
tems of communication are attractors. This could explain how a language
can emerge without central control. In the following, it will be determined
whether this is the case for the system that has been described.

4.3.1 Stochasticity and Attractors

A first observation is that the system as it has been described cannot be
said to have attractors in the strict sense. The reason is that it is stochastic.
The fact that chance is involved in signal production implies that there is
a possibility that agents do not use their preferred words, even if these are
very strongly associated, but one of the weakly associated words that are
used for other meanings. Even if this possibility decreases to a level where
it almost never occurs during a simulation of standard length, the nonzero
probability implies that the event can occur in principle. When it does,
the association strengths of the agents that receive such a signal will be
adapted accordingly, i.e. they rise. This rise increases the distance to the
candidate attractor. Since a nonzero probability implies that this event can
not only occur once, but may occur (with extremely low probability) on
any number of subsequent occasions, the distance to the candidate attractor
may increase indefinitely. Thus, the stochasticity of the system violates the
second condition of the definition of attractors. This is not so surprising, as
the theory behind the attractor definition assumes a deterministic system.
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How serious is this problem? For practical purposes, there may be
points in the phase space that can be considered as attractors if the system
behaves as if they were attractors on virtually every occasion. Mathemat-
ically thought, those points are not attractors. To keep this distinction
clear, such points will be called pseudo-attractors here. It is instructive
to see whether a deterministic system that is completely analogous to the
original system has attractors in the formal sense. This question will be
investigated in the following.

4.3.2 A Deterministic Version of the System

There are several sources of stochasticity in the system as it has been
described. These are:

1. Action selection
As noted in section 2.4.1, learning the values of actions requires ex-
ploration. Most forms of exploration, including the one adopted here,
involve stochasticity.

2. Signal production
In the basic system, the association strengths between words and
meanings are used as parameters for a Boltzmann distribution that
determines word production.

3. Situation Determination
In the basic system, signal based situation determination occurs with
a probability equal to the estimated probability of the situation.

To remove these forms of stochasticity, the following changes have been
made:

1. To remove the stochasticity in action selection, exploration is stopped
after a fixed number of time steps (10,000), when the values of the
different actions are sufficiently accurate.

2. Instead of using the association strengths to determine production
probabilities, agents always select the signal that has the highest as-
sociation strength.

3. The probability of a situation that is estimated by the agent during
situation determination is not used as a probability of selecting that
situation, but is compared against a threshold; the choice is based on
signals if and only if this value is larger than %
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The system that these modifications yield is deterministic. The reader
may not that the approach to removing stochasticity from the action selec-
tion mechanism differs from the other two cases. This is because exploration
is required to learn action values, but once these are learned, no further
adaptation of these values is necessary. Using this scheme, action selection
has no influence whatsoever on the development of communication once it
has been frozen. The other two cases are part of the communication system
itself and hence form part of the investigation. They can therefore not be
treated in this way. The next question that should be asked is whether,
apart from stochasticity, there are other properties of the system that ex-
clude the presence of attractors; if so, it would be of no use to investigate
this presence. Three such factors have been identified:

1. Convergence to an attractor requires that both the success and use
components of all associations except one preferred signal for each
meaning tend to zero. However, in the standard algorithm, the suc-
cess component of the association between a signal ¢ and a situation
1 only decreases when a signal-based determination of y based on pre-
ferred signal o is estimated to be incorrect (see algorithm), or when
a signal-based determination of a situation other than p based on
preferred signal o is estimated to be correct. This implies that once
a reasonable system of communication has developed, the association
success of words that are not the preferred word of some situation
will not be updated, and cannot tend to zero as required to move the
distance to the attractor towards zero.

2. Regarding the use components of associations, the case is similar.
When a good system of communication arises, the fraction of signal-
based situation determinations can approach one, especially with
the modification concerning signal-based situation determination that
had to be made above to ensure determinism. Since the use com-
ponent of associations is not updated after a signal-based situation
determination (see algorithm), the decrease of the use values of non-
preferred signals can stall.

3. Partial perception can in principle occur for all agents simultaneously.
In this case, the agents have no way of determining their situation.
The incorrect situation determinations that are the effect of this cause
the associations of the preferred words of the situations that were
determined by the agents to decrease, thus increasing the distance
to the nearest candidate attractor with good communication. This
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possibility is not merely theoretical; when five agents are present and
partial perception occurs once in every 10 occasions, as is the case in
the experiments, the probability of this happening simultaneously for
all agents equals 11—0 = 1075, which means that during the 10 runs of
200,000 time steps, it is expected to occur 20 times.

These factors have been addressed by the following changes:

1. The success components of the associations between a situation x4 and
a signal o; that were not the preferred signal for that situation are
decreased after a successful signal-based situation determination.

2. The use component of associations is also adapted when situation
determination is based on signals.

3. The perception of the agents is complete, i.e. the agents do not receive
misleading information as is the case in the basic experiment.

4.3.3 Determining the Location of Attractors

The purpose of the experiments that follow is to determine whether the
system has attractors that correspond to good communication. The second
condition in the definition of an attractor specified that when the system
is in a neighborhood of an attractor, the distance to this attractor must
tend to zero. Thus, the procedure for testing whether the system has
attractors requires that the location of these attractors be known, and
that a neighborhood around them be chosen within which the distance to
the attractor can be monitored to see whether it tends to zero. In the
following, the locations of possible attractors and their neighborhoods will
be determined.

The locations of which we want to know whether they are attractors of
the system, are the locations where the multi-agent system accommodates a
perfect system of communication. These locations are characterized by the
necessary and sufficient condition that for each referent, each agent has only
one word strongly associated, and this is the same word for every agent,
but different for each referent. All other associations between referents and
words must be low.

As a result of the modifications that were applied to make the system
deterministic, signal production always selects the signal with the high-
est association, and the words with lower, nonzero associations are never
produced. This implies that for the deterministic version of the system,
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Figure 4.1: Schematic representation of attractors and their neighborhoods
(see text).

there are regions in phase space, not merely dimensionless points, where
communication is perfect. Within these regions, the associations continue
to change indefinitely. The candidate attractors of the system now are the
points towards which these movements are directed. In these points, the
high associations have their maximum value of 1, and the low associations
the minimum value of zero. It may be noted that due to the recency-
weighted average update rule, these locations can never be reached exactly.
The question that has to be answered by the experiments is whether the
distance to them tends to zero.

4.3.4 Determining Neighborhoods for Attractors

The condition that the systems should tend towards attractors has to hold
within a neighborhood around these attractors. Thus, it is necessary to
define neighborhoods around the attractors within which the movement of
the system is to be monitored. Here, these neighborhoods will be deter-
mined as a region centered around each attractor where the distance to
the attractor is below a threshold. This definition yields an n-dimensional
hypersphere with a radius equal to this threshold. The figure illustrates
this for the three dimensional case. In reality, the minimal dimensionality
of the phase space is at least 80, since there are 4 referents, 5 agents, and
at least 4 words to distinguish between the referents.
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Figure 4.1 shows a schematic representation of attractors and their
neighborhoods. Each axis represents the association strength for some
word, referent, and agent. In reality the number of dimensions is much
larger (80 or more), and the radius of the sphere much smaller (0.001). The
phase space is a hypercube with edge length one that starts in the origin
and extends along the positive axes. The coordinates of an attractor repre-
senting ideal communication are either zero or one, placing it on one of the
corners of this hypercube. Only a fraction of these corners (’;—g' = ﬁ
for d = 80) are such attractors, since most corners correspond to commu-
nication systems where specificity, consistency, or coherence are low.

4.3.5 Experimental Investigation of the Presence of Attrac-
tors

In this section, experiments are reported that investigate whether states
that correspond to perfect communication are attractors of the system.
The conditions of the attractor definition will be addressed in reverse order
in the following three subsections: presence of proper subsets, open set of
initial conditions, and invariance.

Presence of Proper Subsets

The last condition states that the set of points that constitute the attrac-
tor may have no proper subset that satisfies the first two conditions. This
condition is always satisfied in the case of point attractors, since the attrac-
tor consists of a single point and hence the set has no non-empty proper
subsets.

Open Set of Initial Conditions

The second condition for attractorhood states that an attractor must have
a neighborhood such that whenever the initial condition of the system falls
within this neighborhood, the distance to the attractor must tend to zero
(see figure 4.2). This subsection starts with a description of the experi-
mental procedure to investigate this, which is based on perturbations, and
presents the results of the experiments.

The Perturbation Procedure The simulation is run until a fixed num-
ber of time steps, chosen at 50,000, to allow concept formation to settle
down and to see whether the system moves towards a state corresponding
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Neighborhood of the Attractor

Figure 4.2: Schematic rendering of an attractor in the deterministic sys-
tem. When the initial state of the system is within a neighborhood of the
attractor, it moves towards the attractor. The arrows show only one pos-
sible configuration of vectors; many vector fields, e.g. fields with spiraling
trajectories, satisfy this condition.

to good communication. The system is then perturbed. A perturbation
here signifies that the system is taken out of its current state and moved to
a random point within a distance r of the nearest corner of the hypercube
that contains the phase space (see fig. 4.1). That is, its new state is a
random point within the hypersphere with radius r and the corner as its
center. Most of the corners do not represent successful systems of commu-
nication. However, if the corner corresponds to good communication and is
a candidate attractor (see section 4.3.3), the distance of the system’s state
to this candidate attractor is monitored over time. The question that is
then investigated is whether this distance tends to zero.

Perturbations are achieved as follows. First the closest corner of the
hypercube needs to be determined. This position is found by taking the
current position of the system and moving each coordinate, i.e. each asso-
ciation between some referent and word of some agent, to either zero or
one, depending on which is closest. Next, each of the variables is moved a
random distance away from its current value. Let r be the radius of the
hypersphere within which the new location of the system has to lie. The co-
ordinates with value zero are increased, those with value one are decreased,
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both over a distance that is randomly chosen from the interval [0, 7]. This
moves the system to a point within a hypercube with edge length r whose
corner furthest from the origin coincides with the selected corner. If the
point is inside the hypercube, but outside the segment within phase space
of the hypersphere with radius r centered around the same point 2, the
state is moved in the direction of the center until it reaches a distance from
the center randomly selected from [0,7]. This procedure ensures that the
system is moved towards a point within the hypersphere with radius r, and
that all points within this hypersphere have a nonzero chance of becoming
the new location of the system in phase space.

The next question is how the desired association values thus selected are
achieved. As described in chapter 3, an association value is a linear com-
bination of a use value and a success value. The combinations of use and
success values are subject to the constraint that both use and success should
be within the interval [0,1]. Since the association values are weighted com-
binations of use and success, the intervals are further restricted depending
on the desired association value. For example, if success has a weight of
0.8, and use therefore a weight of 0.2, and the desired association value is
0.6, then the minimum success value is 0'60f80'2 = % The use and success
value are chosen randomly under these constraints, so that all possible com-
binations that yield the desired association value have a chance of being
selected.

Another issue concerning perturbations is that of the interpretation
information. As remarked above, this information is not represented in
the phase space. However, it does affect the communicative behavior of
the agents, since signal-based situation determination is based on it. This
raises the question of how the interpretation information, which does not
form part of the state vector, should be initialized. To address this issue, all
interpretation information stored by the agents is reset during a perturba-
tion. This renders the state related to interpretation neutral, and has the
result that the subsequent behavior is only determined by the production
information, which does form part of the state.

Results of the Perturbation Experiments In the experiments, a per-
turbation is performed every 10,000 time steps, starting at time step 50,000.

2This happens more often than one might think; for three dimensions, the probability
is one minus the ratio between the volume of a sphere and that of the smallest cube that
éﬂ' 3 . . . . .1 .
surrounds it, i.e. 1 — (32—55; = 0.48; for higher dimensional spaces, this probability rapidly
increases.
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In the following, an experimental investigation of the question whether the
system will tend to move towards a hypothesized attractor when placed in a
neighborhood of it is presented. Such hypothesized attractors will be called
candidate attractors, since the hypothesis is that they are attractors, but
this can only be confirmed after an investigating whether the conditions
of the attractor definition hold. The first test to be performed is whether
the deterministic system moves towards a state of good communication.
If this is the case, the question this subsection is concerned with can be
examined: does the system, when placed in a neighborhood of a candidate
attractor, move towards it? If it does, the second condition of the definition
for attractors is satisfied.

Locating Candidate Attractors Figure 4.3 shows the distance of
the state of the communication system to the nearest corner of the afore-
mentioned hypercube. The top left graph shows the complete time series.
Apart from the distance, two other lines are plotted: fidelity and indicator.
Fidelity is plotted to show the quality of communication at different points
in time. Indicator is an indicator function that tells whether the system is
in the neighborhood of a candidate attractor. It is binary, and takes the
value of one when the following conditions are met:

e The system is within a hypersphere with radius 0.001 of a corner of
the hypercube.

e This corner represents an ideal system of communication, i.e. the
fidelity measure equals one when the system is in that corner.

In figure 4.3, it is seen that during an initial period, until around time
step 5000, there are only small changes in the distance. Note that the
corner to which the distance is calculated may change during this period,
as the location of the system in phase space keeps changing. Then the
system starts to move towards a particular corner. As long as the graph
stays below 0.5, which it continues to do indefinitely, one can be sure that
the corner towards which the system is moving does not change anymore;
if it did, at least one of the coordinates would have to change from zero
to one or vice versa, and would pass the value of 0.5 in doing so, at which
point the total distance would be greater than 0.5.

The decrease of the distance to the corner is steep, and corresponds
to a rise in fidelity. After 11,000 time steps, the fidelity measure equals
one, which implies that the system is moving towards a corner with ideal
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Figure 4.3: Evolution of the distance to the attractor over time. The graphs
show the same data, but on different scales. Whereas the in the top left
graph the distance appears to have converged to zero, closer inspection
reveals that the distance keeps on diminishing at an ever slower pace.
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Figure 4.4: Distance to the attractor over time. After the perturbation
(time step 50,000), the system is moved towards a corner that does not
correspond to good communication. The result is a sharp peak, indicating
a move away from the corner, followed by convergence to a corner that does
correspond to good communication.

communication. The neighborhood of this corner is not entered until just
after time step 13,000, when the distance has dropped below 0.001.

An optical inspection of the top left graph would appear to show that
the distance quickly drops to zero. However, as can be seen from the
recency-weighted average equation 3.6, the distance will never actually
reach zero. Therefore, to get a better feeling for the shape of this curve, the
graph is shown at increasingly small scales, each subsequent graph starting
2000 time steps later. In the top left graph, the distance to the attractor
appears to have reached zero by time step 12,000. However, on the smaller
scale of the top right graph, which starts at time step 12,000, it can be seen
that it has not quite reached zero yet. The middle graph, which starts at
time step 14,000, shows that even at time step 16,000, the distance was not
zero. The distance of the graph to zero is decreasing approximately expo-
nentially, and at each point will reach a tenth of its current value within a
few thousand time steps. Similarly, whereas the distance appears to have
converged to zero in the middle graph around t=17,000, the next graph
shows that here it is still decreasing, at a very similar relative rate. The
bottom right graph shows one more magnification step, and subsequent
magnifications will continue to look very similar to those shown. The ori-
gin of this shape is the weighted average update rule, which makes steps of
exponentially decreasing size when moving towards a constant point.
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The above results were presented to illustrate how the distance to one
of the corners tends to zero. The particular corner to which the system
converges in this experiment is a location where the communication is ideal,
in the sense that both specificity, consistency, and coherence are all equal
to one; in other words, every referent corresponds to a single word that is
used by every agent, and this word is different for different referents. In five
of the ten runs, the deterministic system converged towards such a state.
In the other half of the runs, the system did not spontaneously develop
accurate communication.

Figure 4.4 shows a typical example of a run where accurate communi-
cation did not develop spontaneously. The distance to a corner also drops
substantially in the beginning, but not as far as in the previous case. Then,
instead of converging exponentially to the corner, it keeps varying at an in-
termediate level. As the graph shows, the fidelity of communication during
this period is only 0.5. Then, at time step 50,000, the first perturbation
takes place. The system is moved to a random location within 0.001 dis-
tance of the closest corner, visible as a quick drop in the distance value.
However, this closest corner does not correspond to good communication.
This can be seen from the fact that the fidelity measure does not immedi-
ately rise to one. An examination of word production showed that a single
word was consistently used for three different meanings by all agents. Only
the remaining meaning had its own, unambiguous word. This ambiguity
is the result of the deterministic selection mechanism that governs word
production; if one word happens to be slightly stronger associated to sev-
eral meanings at one point by many agents, the agents continue to use this
word for these meanings.

It is interesting to see that the system itself moves away from this corner,
and the distance to the corner rises again with a sharp peak just after time
step 50,000. Then, the system manages to find a region in phase space with
good communication; the distance to the corner gradually decreases, and
the fidelity measure reaches one. When the movement towards this corner
has decreased the distance below the radius of 0.001, the neighborhood of
a candidate attractor is reached, as is seen from the value of the indicator
function.

Course of the Distance to Candidate Attractors The experiments
above illustrated two ways for the system to reach corners of the hyper-
cube where communication is ideal: spontaneously, or as the result of a
perturbation. In all of the ten runs the system arrived at such a corner
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Figure 4.5: Results of one of the perturbation experiments. After every
single perturbation, visible as a sharp peak, the system reacts with a steep
descent towards the candidate attractor.

after one or two perturbations or, in five of the cases, without requiring
any perturbation at all. This situation enables us to investigate the actual
question that needs to be answered: once placed within the neighborhood
of a candidate attractor, does the distance to the candidate attractor tend
to zero?

Since the location of these corners is known by the experimenter, it
would be possible to place the system in such a location directly. The
present procedure was preferred both for implementation reasons and be-
cause it demonstrates that attractors are found by the system from random
initial conditions, which indicates the attractor basin is not so small that
reaching an attractor is merely a theoretical possibility.

In the following experiment, the candidate attractors found using the
procedure described above are used as a starting point. At fixed intervals,
a perturbation is performed, which consists of moving the location of the
system in phase space towards a point within the neighborhood of the
nearest candidate attractor. The evolution of the distance to this candidate
attractor is then monitored over time. For the candidate attractor to be
a real attractor, this distance must tend to zero. In this experimental
investigation, this criterion is examined in two ways.

First, the evolution of the distance to the candidate attractor after the
perturbations is inspected visually. Figure 4.5 shows this evolution for the
15 perturbations of the first run of the experiment. Every 10,000 time
steps, the system is perturbed. These events are seen as steep peaks in the
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graph, with values that can vary between zero and 0.001, the boundary
of the hypersphere that has been selected as a neighborhood within which
convergence is experimentally investigated. After every single perturbation,
in all of the runs, the system reacted with a steep descent towards the
candidate attractor.

Second, it has been investigated whether the descents towards the at-
tractors are monotonic by calculating the differences between every pair
of subsequent distances. A descent is monotonic if at every time step the
distance to the attractor either decreases or remains at the same level; if
it increases on one or more of the time steps, the monotony property is
not satisfied. If all descents are monotonic, this is an indication that the
distance to the attractor tends to zero. This examination showed that after
every single perturbation, in all of the runs, the distance to the attractor
decreased monotonically.

In summary, all of the candidate attractors that were encountered had
the property that the system, when having its initial condition in a neigh-
borhood of such an attractor, tends to move towards it. This concludes the
experimental investigation of the middle condition of the attractor defini-
tion.

Invariance

The final part of the experimental evidence required to investigate the
presence of attractors is the condition that attractors must be invariant sets;
any trajectory that starts in Z stays in Z for all time. This question has
been examined for all of the attractors that were found in the perturbation
experiment. The procedure was as follows. At the end of each of the
perturbation experiments described in the previous subsection, at time step
200,000, the system is always at close distance of a candidate attractor.
Since the weighted average update rule never really converges to equal the
goal value, this distance will never be zero, save for the very unlikely case
where the initial state of the system happens to be an attractor. At time
step 200,000 then, the system is moved to the location of the candidate
attractor. Subsequently, the experiment is continued as usual, without any
perturbations. If the location of the system in phase space remains exactly
equal for a substantial number of steps, this is experimental evidence that
the candidate attractor is an invariant set.

Figure 4.6 shows the distance to the attractor over time, in units of
10~™. Apart from the evolution of this distance before time step 200,000,
the only event that is visible is the perturbation onto the attractor. From
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Figure 4.6: Distance to the attractor over time. At time step 200,000,
the system is moved to the nearest attractor. From then on, the system
remains in the attractor state, as required in the definition of attractors.

time step 200,000 on, the system has a zero distance to the candidate
attractor. Inspection of the data showed that the distances do indeed equal
zero, i.e. there are no fluctuations at a scale that escapes visual detection.
This result was identical for all of the runs.

4.3.6 Theoretical Proof of the Presence of Attractors

After this experimental demonstration of the presence of attractors in the
deterministic version of the system, a theoretical proof will now be given.
The following assumptions about the initial conditions are made:

e For each agent, there is a one-to-one correspondence between referents
and meanings. In the deterministic version of the system, this was
always the case.

e For each agent, there is a one-to-one correspondence between mean-
ings and their strongest associated words. Furthermore, for each ref-
erent, the word that is most strongly associated with each agent’s
corresponding meaning is the same. This assumption defines the at-
tractor neighborhood within which the system is placed. As the ex-
periments showed, this condition is not always reached spontaneously
by the deterministic version of the system, but in all of the runs, the
condition was satisfied after one or two perturbations. The condition
is equivalent to the condition that the fidelity measure must equal
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one. In the deterministic version, there are large regions where this
condition is satisfied, due to the different word production mecha-
nism. In the stochastic version of the system however, this condition
is only satisfied in a finite number of points towards which the system
can converge in the limit, but which can never be actually reached.

e The estimates of the action values have converged to a point where
the difference between the estimate and the actual value does not
exceed the threshold max-error-for-signals. The first time step at
which convergence to the attractor is investigated is chosen such that
this condition is satisfied. This guarantees that the evaluation of the
correctness of signal based situation determinations by the agents is
correct.

For convenient notation, it will be assumed, without loss of general-
ity, that the referents, meanings, and words that correspond to each other
have the same index. The number of meanings equals the number of ref-
erents. The number of words however is in principle unlimited. Thus, o;
corresponds to a referent if j < n,.

First, the tendency towards zero of the distance to the attractor is con-
sidered. Let the word produced by the agents in connection with a referent
pi be referred to with ;. The above conditions guarantee that such words
exist and are unique, i.e. 0; # o;fori # j. The procedure parallels that
of the experimental investigation, i.e. the system is placed at a random
position within the neighborhood of an attractor, and the agents’ reception
information, consisting of estimates of Pj,;(p|o), is removed.

‘Word Production

Let ¢ be chosen such that p; is the current referent. During signal produc-
tion, each agent will select the corresponding word o;.

Association Updates

Since each agent produced the word o;, all agents will receive this same
word ng4y times. At the first time step after a perturbation, no reception
information is present, and hence the agents will select sensor based situ-
ation determination. Since there is a one-to-one correspondence between
referents and meanings, the agents will all arrive at their own corresponding
meaning ,ug“.
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Let a”(p;,0;) be the association strength between an agent’s meaning
for referent p; and the word o;. The use and success components of an
association a”(p;,0;) are referred to with a;!(u;,0;) and a(ui,0;), re-
spectively.

After a sensor-based situation determination, the following association
updates take place. For each agent A the use component of the association
strength between the received word o; and the situation ug‘t is increased.
The recency-weighted average update rule causes a weight update for each
occurrence of a word in the input of:

ant1 = aa, + (1 —a)z (4.1)

where z is the goal value. It can easily be seen that the result of repeated
application of this update rule is given by:

ptr =2 —a"(z — ap) (4.2)

Thus, the association strength updates after receiving the word o; n,
times (once for every agent) are governed by the following rule, which will
be referred to as update rule I:

1—a" (1 —ay(pf,o;) for j=i
0— (0 — ayy(ut,05)) for j#i

The success components of the associations are not updated after a sensor
based situation determination. At subsequent time steps, i.e. two or more
time steps after the perturbation, there are two possibilities: if the referent
has not been encountered yet, as was the case above, its corresponding
word has not been produced yet, and hence the interpretation information
estimates that the probability of being in the corresponding situation given
the received word is zero. On these occasions, which after a perturbation
occur once for every referent, a sensor based situation determination is
performed by each agent, with the association updates given in equation
4.3.

After a signal based situation determination, the association success
components are updated. The assumptions specified that the agents all
produce the same word o; after a referent p;. The fact that signal based
situation determination was selected, implies that for each agent A this
situation ,ug“ has occurred before, and therefore the only word for which

auper (4 05) = { (43)
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the interpretation information of this meaning P(p*|0;) contains nonzero
estimates is 0;. This ensures that the signal based situation determina-
tion can only yield uZA, if the estimate exceeds 0.5, or revert to sensor
based determination, in which case the updates of eq. 4.3 are applied. For
the signal based determination, the absence of partial perception and the
assumed convergence of the action value estimates ensure that the determi-
nation will be correct. Hence, update rule 2 specifies the following success
component updates:

1—a(1—as,t(u3-4,ai)) for j=1
0— (0 —as(ps'00)) for j#i

Furthermore, since this analysis concerns the deterministic version of the
system, the success components of associations between the current mean-
ing and signals other than the preferred one are decreased by update rule
3

aser1(pf,0i) = { (4.4)

Gs,t+1(/l§4a Uj) =0- a(O - Gs,t(llea Uj)) for j#1 (4-5)

Finally, also specific to the deterministic system, the association use up-
dates of equation 4.3 are performed.

The Influence of Association Updates on the Distance to the At-
tractor

Now that the association updates have been specified for all possible cases,
it is time to investigate their effect on the distance to the nearest candidate
attractor. The reader will remember that in a candidate attractor, all
association strengths are either zero and one, there is only one word per
referent for which this value is one, and this word is the same for every
agent. The assumptions of this analysis specify that there is only one
word per referent that is produced by the agents, and that this word is
the same for every agent. Given the workings of the deterministic word
production mechanism, this implies that the preferred word of a meaning
has a higher association value than the other words associated with it.
Therefore, the closest attractor is that for which these highest associations
all have a strength of one, and all other associations have zero strength.
This allows us to specify the distance to the nearest attractor for n, agents,
n, meanings, and n,, words thus:
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dist = \/d; (4.6)
:iii’w:{ ]-_a/t Hpk70Q))2 for b=4q (47)
0 — ag(upt,04))? for p+#gq

k=1p=1q=1

where

at(u;)‘tk ) Uq) = /Bas,t(/j‘;;lka Uq) + (1 - ﬂ)au,t(lu’;;tkao-q) (48)

[ €<0,1> is the success-use ratio parameter. It will be shown that
all updates decrease this distance. The first update rule (eq. 4.3), has two
parts, the active part depending on whether the update concerns the word
that was uttered by the agents (o;) or another word. The distance function
also contains two parts. For each agent, the first part of the association
update rule only affects the first part of the distance term, and only for the
index ¢ of the current referent (and meaning and word). The effect of the
first update on the distance function is the following:

Na

dafter - dbefore = Z(l — Q41 (M;Akaai)y - (1 - at(,u.zfétkao'i))2 (49)
k=1

The first part of the update rule can be written as

a1 (%, 03) = 1+ @ (ayy(u*, 05) — 1) (4.10)

Since the success components of the association are not affected by the up-
date, and using eq. 4.8, a;1 (u;‘t’“, 0;) can be written in terms of at(uf"“ ,0):

Apg

a1 (U, 00) = a(u*, o)+

(1 = B) (a1 (1%, 05) — ans(u*, 04)) (4.11)
S 44

where

Ura = (1= B) (" — 1)(@us(u;*, 05) — 1) (4.12)
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It can now be seen that for every agent Ay, the difference in eq. 4.9 is below
Zero:

(1= a1 (5%,02))” — (1 — ay(uf™, 0))> < 0 (4.13)

This is true if

(1= aprr (', 09)? < (1 — ar(u™, 07))? (4.14)

Since a €< 0..1 >, this holds whenever

“t+1(ﬁ‘§4ka‘7i) > at(HzAk,Ui)
at(Mfk,Uz') +Uia > at(u;‘tk ,03) (4.15)
Ua > 0

U1 4 contains three terms, two of which are negative, and is therefore posi-
tive, which proves that the first part of the first update rule (eq. 4.3) causes
the distance to the attractor to decrease. The second part of the same rule
specifies that for j # 4

A A
a1 (p; *,05) = 0—a(0—ay(u; ™, 05)) (4.16)
_ Ag .
= aay(p;*,05)
Thus,
au,t+1(l£§4’°,0j) = a'u,t(,ul;'Ak,O'j) +Uin (4.17)
where
Uip = (1 = B)(a = Dau(pi*, ;) (4.18)

For j # i, the increase in the distance to the attractor (eq. 4.6) is negative
if

A A
(a1 (4 kj“’j))2 < (—atﬁﬂi kan))z
Zt+1(,“i 05) < a(pyt, o) (4.19)
ay(p; *,05) +Uip < ai(p;*,04)
U < 0
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Uip contains two positive and one negative term, and therefore satisfies
this condition, which together with the above result shows that the first
update rule strictly decreases the distance to the attractor.

The analysis of the second update rule is very similar to that of the first
one. The equivalent of Uy 4 in eq. 4.11 is

Upa = @™ —1)(ass (1™, 05) — 1) (4.20)

Uz 4 has a positive sign. Thus, substituting it for Uy 4 in eq. 4.15 gives the
same result, i.e. the distance to the attractor is decreased as a result of the
update. The equivalent of Uy p is:

Uzp = B(a — 1)%,7:(#34’“,0@) (4.21)

Usp, like Uy g, has a negative sign, and therefore does not affect the outcome
when substituted in eq. 4.19. Finally, the third update rule also parallels
the second part of update rule one, but with the following term substituted
fOI‘ UlBI

Uz = Bla — 1)Gs,t(H§4ka0j) (4.22)

Once more, the change does not affect the sign, and the effect of the third
update rule also is to decrease the distance to the attractor. This result con-
cludes the theoretical investigation of the second condition of the attractor
definition.

The first condition of this definition requires that when the system is
in the attractor, it must remain there forever. This is equivalent to the
requirement that U4, Uig, Usa, Usp, and Us are all equal to zero. This
condition is indeed satisfied, which can be seen as follows. Ui4 and Usy
both contain a term a(u;,0;) — 1, where the subscript in Uy 4 indicates the
use component and that in Us4 points to the success component. In the
attractor, the associations a(u;,0;) must all equal 1, and since association
strength are a linear combination of use and success components, both of
which are limited to the interval [0..1], both these components must equal
one. Thus, the a(u;,0;) — 1 terms in Uy 4 and Uz 4 equal zero, bringing the
result of both expressions to zero.

For Uip, Uazp, and Us, the situation is analogous; these expressions
all contain a term a(up,0,), where p # ¢. Given the precondition that
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the system is located in the attractor, all such association strengths must
equal zero, which implies that the remaining three expressions also yield
zero. Together with the previous result, this establishes that none of the
association update rules alters the location of the system in phase space
when this location is an attractor.

In summary, in this section it has been shown theoretically that all as-
sociation strength updates cause the distance of the system to the nearest
attractor to decrease, except when the system is located in the attrac-
tor, in which case the updates do not affect the location in phase space.
Together with the third condition of the attractor definition, which was
shown trivially true, this constitutes a theoretical proof of the statement
that the deterministic version of the system of communication that has
been described has point attractors that correspond to perfect systems of
communication.

4.4 Stochastic Version of the System

The basic concepts from dynamical systems theory assume that the dy-
namical system is deterministic. For that reason, the above investigation
of attractors in the communication system was based on a deterministic
variant of the system. However, as was noted, this deterministic version of
the system differs from the basic, stochastic system in that communication
does not always develop spontaneously; in half of the runs of the experi-
ment that was reported, high fidelity was only reached after a perturbation
that put the system near the nearest corner of the phase space. When these
perturbations are not performed, the phase of the system keeps wandering
indefinitely, without any further development of communication. The re-
sults of this modified experiment, which only differs from that in section
4.3.5 in that no perturbations are performed, are shown in figure 4.7. The
graph also shows that the sudden drop in the distance to the attractor of
figure 4.4 was indeed due to the perturbation at time step 50,000, since the
corresponding line in figure 4.7 continues to vary around a distance of just
above 1.

A logical question to ask given the problematic development of commu-
nication in the deterministic system, is which of the modifications caused
the problems. The most fundamental change to the basic system was the
removal of stochasticity in word production. Therefore, the hypothesis that
will be tested in the following is that the stochasticity in the original sys-
tem actually played a valuable role in bringing about communication. To
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Figure 4.7: Distance of the deterministic systems’ state to the nearest hy-
percube corner over time for ten different runs. Only in half of the cases the
system spontaneously develops ideal communication and moves towards an
attractor, as verified by the average indicator.

test this hypothesis, a system will be used that is in principle equal to the
deterministic system, except that the modifications that were made to en-
sure determinism are reversed. This concerns the first three modifications
of section 4.3.2:

e Action Selection
e Signal Production

e Situation Determination

The other modifications of section 4.3.2 are maintained.

4.4.1 Choice of the State Variables

In the deterministic system, the variables were the association strengths be-
tween meanings and words; since communicative behavior does not change
as long as the word which has the highest association strength remains the
same for each referent, this yields more information about the system than
the production probabilities. For example, if the association strengths of
the words associated with a referent of a particular agent are 0.01, 0,05,
0.03, and 0.89, the communicative behavior of this agent is much more
stable than when they are 0.25, 0.24, 0,25, and 0.26 respectively. In the
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Figure 4.8: Fidelity averaged over ten runs for six different values of the
max-last-error-for-signals parameter for the deterministic (left) and
stochastic (right) system.

deterministic system, this information would not be visible if the produc-
tion probabilities (0, 0, 0, and 1 respectively) would be used as the state
variables.

In the stochastic system however, the case is different; here, changes
in the magnitudes of the association strengths do influence communicative
behavior when the system is in the neighborhood of a pseudo-attractor.
Therefore, the production probabilities will be used as the variables deter-
mining the state of the stochastic system.

4.4.2 Comparison Between the Deterministic and the Stochas-
tic System

The only remaining parameter that needs to be tuned differently for the
two systems is the max-last-error-for-signals parameter. To gain insight
into the behavior of both systems, experiments have been conducted for
the following parameter values: 0.005, 0.01, 0.02, 0.05, 0.1, 0.2. For each
parameter value, data has been gathered for ten runs with both systems.
The principal measure indicating communication quality, fidelity, is shown
for all experiments in figure 4.8.

The graph shows that for the stochastic system (on the right), the
development of communication is consequently observed over the whole
range of parameter values that has been examined. Only for the very lowest
value of 0.005 is the average fidelity substantially lower than one. For this
parameter setting, one of the ten runs reached a fidelity of 0.75, while
the fidelity of the other nine runs all exceeded 0.99. For the deterministic
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system on the other hand (on the left), the average fidelity exceeded 0.8 in
only one of the experiments. This was the case for a parameter value of 0.01,
the value that was used in the experiments with the deterministic system
that have been presented in this chapter. In summary, these experiments
show that indeed stochasticity appears to be a useful characteristic of the
system that is of positive influence on the development of communication.

This is in line with the findings reported in (Steels & Kaplan, 1998).
There, the effect of stochasticity on concept formation, word production,
and word interpretation has been investigated. It was found that there is
an upper bound to the amount of stochasticity that can be tolerated, and
that stochasticity causes and maintains language variation.

It was remarked at the beginning of this section that the basic concepts
of dynamical systems theory that have been described assume a determin-
istic system. However, as the stochastic system evidently is more likely
to develop good systems of communication, the question of what the dy-
namics of this stochastic version are like suggests itself. In figure 4.8, the
distance to the nearest hypercube corner is plotted for both the determin-
istic (left) and stochastic (right) system and over the same set of values for
the max-last-error-for-signals parameter.

In the left graph, none of the parameter values causes the system to
consistently move towards an attractor spontaneously; if this were the case
at least one of the lines would converge to zero. The lowest line corresponds
to parameter value 0.01, and hence displays the average of the ten distances
in figure 4.7, five of which converged to an attractor.

To the right, the corresponding plot for the stochastic system is shown.
The experiment with the highest average distance is, as was to be expected,
that with parameter value 0.005. In this experiment, the average distance
remains below 0.2 once converged, while in the deterministic experiment
even the most successful experiment has an average distance of around 0.5.

4.4.3 Pseudo-Attractors in the Stochastic System

Given the improvement in the development of communication induced by
the introduction of stochasticity, a natural question is whether the stochas-
tic system also has points towards which the state of the system is drawn
when approaching these points. In the deterministic system, these points
were called attractors. A condition of the definition of attractors was that
the distance from the system to an attractor tends to zero for initial condi-
tions within some neighborhood of the attractor. In the stochastic system,
this can not be guaranteed; if the system is not in the pseudo-attractor but
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Figure 4.9: Distance to the nearest hypercube corner averaged over ten
runs for six different values of the max-last-error-for-signals parameter
for the deterministic (left) and stochastic (right) system.

very near to it, associations must exist whose probability of being selected
for production is almost zero, but not quite. Thus, the corresponding words
have a nonzero change of being produced. If the coordinate of the pseudo-
attractor corresponding to the word has a value near zero, this implies that
the associations strengths of the agents that receive this word will be in-
creased, which increases the distance to the pseudo-attractor. In short, it
cannot be guaranteed that the distance to the pseudo-attractor will tend to
zero; there may always be an unlucky combination of random values that
prevents the system from moving towards the pseudo-attractor.

The theoretical argument that has been given implies that the behavior
of the stochastic system around pseudo-attractors will not be mathemati-
cally equivalent to that of a deterministic system near attractors. However,
the behavior may well be very similar. This is suggested by graph 4.9,
which shows that the stochastic system is strongly attracted to corners of
the hypercube, even more so than the deterministic system. To test this hy-
pothesis an experimental investigation of the presence of pseudo-attractors
will be performed, analogous to that of the deterministic system reported
in section 4.3.5.

For stochastic systems, the distance to an attractor continues to fluc-
tuate, and cannot be proved to converge to zero from some neighborhood
of initial conditions. However, it may well be the case that such a sys-
tem is attracted by a point, quickly moves towards it, and stays within a
small neighborhood of the point. If this operational test is satisfied, this
neighborhood may be viewed as a pseudo-attractor. To test whether a
neighborhood acts as a pseudo-attractor, tests analogous to that of section
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Neighborhood of the Attractor

Figure 4.10: Schematic rendering of a pseudo-attractor in the stochastic
system. When the initial state of the system is within some neighborhood
of the pseudo-attractor (outer sphere) its state moves into a smaller neigh-
borhood of it (inner circle). Once within the pseudo-attractor, the system
remains within it.

4.3.5 may be carried out; the system should, when placed within a larger
neighborhood of the pseudo-attractor, with high probability move into the
smaller neighborhood determining the pseudo-attractor, and it should, once
within this neighborhood, with high probability stay within it, see figure
4.10. If these two conditions hold, the small neighborhood may be viewed
as a pseudo-attractor.

For the successful parameter values (0.1 and 0.2), the distances of the
individual runs stay well below 0.02 once converged. Therefore, this value
will be used as the radius defining the pseudo-attractors of the stochastic
system. In the following experiments, a value of 0.1 will be selected for
the max-last-error-for-signals parameter, since the system reaches low
distances earliest for this parameter value. A perturbation is performed by
putting the system outside the neighborhood determined by the pseudo-
attractor, but within a larger neighborhood of the center of the pseudo-
attractor. For the radius of this larger hypersphere, a value of 0.1 will be
used. Thus, the experiments should test whether the system, when within a
radius of 0.1 of the center of the pseudo-attractor, moves into the pseudo-
attractor (radius 0.02), and whether the system, once within this radius
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Figure 4.11: Distance of the stochastic system’s state to a pseudo-attractor
over time for one of the runs. After every perturbation, the system quickly
recovers and reenters the pseudo-attractor.

of 0.02, remains there. These two conditions are the counterparts for the
stochastic system of conditions one and two of the deterministic attractor
definition.

Figure 4.11 shows a run of the first perturbation experiment. At time
step 5900, the distance of the system first drops below 0.02. Until time
step 20,000, the distance to the center of the pseudo-attractor continues
to vary, but does not exceed 0.02, i.e. system remains within the pseudo-
attractor. Starting with time step 20,000, and repeated at every multiple
of 10,000 time steps, a perturbation is performed. The system is moved
to a location outside the pseudo-attractor, but within a neighborhood with
radius 0.1. As the graph shows for one of the runs, the system quickly
recovers from each perturbation, and reenters the pseudo-attractor within
several hundreds of time steps. The graph is typical for the ten runs.

As has been explained, the stochastic nature of the system implies that
sometimes the behavior will differ from what is generally observed. This
was indeed observed on one occasion during the ten runs, see figure 4.12. In
that case, the system did not immediately reenter the pseudo-attractor after
a perturbation, but first moved outside the neighborhood of the pseudo-
attractor. However, before the next perturbation, the system has already
reentered the neighborhood of the pseudo-attractor again. Since all words
have nonzero production probabilities, such exceptions necessarily exist for
any neighborhood, and hence limiting the neighborhood to a smaller region
would not make a structural difference, apart perhaps from prolonging the
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Figure 4.12: Distance of the stochastic system’s state to a pseudo-attractor
over time for one of the runs. At each perturbation, where the system
is taken out of the pseudo-attractor (indicated by the ticks), it quickly
recovers and reenters the pseudo-attractor.

time required to discover such exceptions.

Figure 4.13 shows a run of the second perturbation experiment, where
the system is moved to a random location within the pseudo-attractor.
After every perturbation in every run the system remained in the pseudo-
attractor, with (again) one exception where the system temporarily escaped
from the pseudo-attractor, but after 1000 time steps, long before the next
perturbation, it had reentered the pseudo-attractor again.

Together, the two perturbation experiments that were described are an
experimental demonstration of the hypothesis that the stochastic system
has pseudo-attractors that correspond to good systems of communication.

4.5 Behavior of the Stochastic System

The development of communication has been viewed as a dynamical system.
A relevant question then is how the behavior of a system of communication
changes under the influence of control parameters. A very influential control
parameter is the temperature 7', which controls the amount of exploration
in signal production (see the description of the algorithm in section 3.3).
In the following experiment, its influence on fidelity will be determined.
Fidelity characterizes the quality of communication in a single measure;
such measures are sometimes called order parameters in dynamical systems
research.
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Figure 4.13: Distance of the stochastic system’s state to a pseudo-attractor
over time for one of the runs. At each perturbation, where the system is
moved to a random position within the pseudo-attractor (indicated by the

ticks), it remains within the pseudo-attractor.

When the relationship between temperature and the development of
communication has been clarified, it will be interesting to see how this
relationship manifests itself in phase space. In order to better appreciate
the phase space behavior of communication systems, it will be useful to
first consider the phase space behavior of the standard stochastic system
of communication. Some insight into this behavior has been provided by
the perturbation experiments in the previous section. In the next section,
a typology of phase plots for communication systems will be introduced,
and examples of the different types of phase plots are given to provide
insight into the phase space behavior of the system under normal conditions.
Finally, in section 4.5.3, the influence of temperature on the phase space
behavior of a communication system is examined.

4.5.1 The Effect of Temperature on the Fidelity of Commu-
nication

In this section, the effect of temperature on fidelity is investigated. The
form of the experiment that allows this is straightforward; for each data
point within a chosen range, a number of simulations are performed, each
with different random seeds. With the results of these experiments, the
average fidelity and the variance, measured using the sample standard de-
viation, can be determined as a function of temperature. Although the
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Figure 4.14: The effect of temperature of the fidelity of communication.
The error bars show the minimum and maximum values of ten runs; the
line shows the average value over these runs.

procedure is simple, the experiment is computationally intensive, since for
each temperature, ten complete experimental runs are carried out. The
results are shown in figure 4.14.

As the graph shows, the temperature can be too low and too high. For
temperatures below 0.1, specificity drops, while consistency remains high.
This means that some words are used in combination with multiple mean-
ings. Low temperatures have the effect that words that occur slightly more
often than other words have a much higher probability of being selected
for production. Since this may happen for some word in combination with
several meanings, words may become associated with multiple meanings,
which implies low specificity. The fact that words that become slightly
stronger associated than other words will be selected much more often and
hence become associated even stronger results in consistent selection of one
word for each meaning, which explains why consistency is high.

For temperatures higher than 0.25, specificity is also low, but consis-
tency is low as well. This is precisely what would be expected for high
temperatures; since word production becomes more explorative, meanings
will be expressed by different words at different times, which implies low
consistency and low specificity. For temperatures between these values,
i.e. within the interval [0.1,0.25], the fidelity of communication is high, and
remarkably stable; as the error bars indicate, there is only a very small
difference between the minimum and maximum values measured.

An interesting interpretation of these results arises once it is realized
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that stochastic signal production with very low temperatures approaches
deterministic signal production; the loss of exploration as temperature de-
creases results in a greedy selection of words that is identical in the limit
to the behavior of the deterministic system. Therefore, the shape of the
curve depicting fidelity as a function of temperature is not only useful
for determining suitable values of this control parameter of the stochas-
tic system. Moreover, it provides an explanation of why the deterministic
system is less effective in developing communication, namely that it lacks
exploration. When some word is the preferred (most strongly associated)
word for multiple referents, as was observed in the experiments with the
deterministic system, greedy selection results in a deadlock. The success
components of this word’s associations with each meaning are increased in
some interactions, but, due to its association with the other meanings, de-
creased in others. Indeed, in the deterministic system, success components
of such ambiguous words have been observed to remain at intermediate
values (between 0.2 and 0.6), while the use components of these same asso-
ciations had already converged to 1.In such cases, exploration allows new
words to be used sporadically, and since these are not restrained by their
associations with other meanings, their association values can increase and
surpass those of the ambiguous word.

4.5.2 Typology of Phase Plots

Phase plots of the following combinations of associations will be distin-
guished:

1. The associations of two different words o; and o; with one meaning
p: s(oj, 1) against s(o;, ).

2. The associations of one word o with two different meanings u; and
pi: s(o, p;) against s(o, pj).

3. The associations between one word ¢ and one meaning y of two dif-
ferent agents A; and Aj;: s4,(0, 1) against s, (o, p).

Different combinations are possible (e.g. plotting the association be-
tween one word and one meaning of one agent against the association be-
tween a different word and a different meaning of another agent), but will
not be used.

It will be noted that type 3 plots require the notion of a corresponding
meaning for pairs of agents. This notion is only relevant when concept
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Figure 4.15: Left: type 1 phase plot. The diagram shows combinations (su-
perimposed) of association strengths that occurred during the experiment,
where one word (horizontal) ends up to be a preferred word, and the other
word is any word associated with the same meaning. Right: time series of
the same data.

formation yields conceptual systems of which both distinctiveness and par-
simony are one. This is the case in all of the following experiments. The
term preferred word here refers to a word that becomes most strongly as-
sociated during an experiment; in each of the experiments reported here,
there is a single word for each referent (and therefore meaning) for which
this applies.

The type of a phase plot is not determined by its construction; all
depict the combinations of two association strengths that occurred during
an experiment. Rather, it is determined by the role that the particular
associations that are represented take in the course of the experiment.

Figure 4.15 (left) shows a phase plot of type 1. For each of the curves,
the horizontal dimension corresponds to the preferred word of one of the
meanings, and the vertical dimension corresponds to another word that is
associated with the same meaning. Technically, each curve is a projection
of the complete state of the system onto two dimensions, and the plot shows
a superposition of four of these projections. The phase plot reveals that the
behavior of the system in these four different projections is similar once the
preferred word has become strongly associated (for horizontal coordinate
> 0.65). This implies that the association strengths of the non-preferred
words decrease with increasing association strength of the preferred word
in a similar manner.

The dotted line shows the line y = x, where the association strength of
the horizontal and vertical word are equal. The largest amount of variation
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Figure 4.16: Left: type 1 phase plot. The diagram shows combinations (su-
perimposed) of the association strength of a non-preferred word for a par-
ticular meaning and the association strengths between other non-preferred
words and the same meaning. Right: time series of the same data.

in productive behavior is to be expected in the vicinity of this line, since it
represents states where the different words are equiprobable and will there-
fore both be selected regularly. The graph shows that once the distance
to this line has reached a certain threshold (around x = 0.65), mostly due
to the decrease of the strength of the vertical association, the horizontal
association increases until it reaches one, while the association strengths of
the other words simultaneously decrease.

The right side of the figure shows the corresponding time series for one
of the meanings; the other meanings have been left out, in order to show
the competition between the different words. This type of diagram is called
a form-meaning competition diagram. In all of the following phase plots,
each data point in the left graph corresponds to two data points at a par-
ticular time step in the right graph. The vertical position of one of these
points determines the horizontal position of the point in the phase plot,
while that of the other determines the vertical position. Thus, the time
dependence of the data is not visible in a phase plot, apart from the re-
lation between successive points, which is represented by connection lines.
What is gained is among other things that similar phenomena, determined
as transitions from combinations of association strengths to other combi-
nations of association strengths, are all represented at the same region in
a phase plot, and allow one to see what transitions occur and which do
not. Also, when the set of initial conditions of the system is constrained, it
may be observed that particular regions of the phase space, e.g. here those
where several words are strongly associated with a particular meaning, or
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Figure 4.17: Left: type 2 phase plot. The diagram shows combinations
(superimposed) of association strengths that occurred during the experi-
ment, where one word (horizontal) ends up to be a preferred word, and
the associations concern the same word but another meaning of the same
agent. Right: time series of the same data.

one word with several meanings, are not visited in practice. It is important
to realize however that this is only a result of a limited set of initial condi-
tions, since any point in phase space lies on some trajectory. The behavior
in phase space of a system does not yield information that is not present in
the corresponding time series, but rather gives a different view of the same
processes, which can sometimes be enlightening.

Figure 4.16 (left) shows all combinations (superimposed) of the associa-
tion strength of a non-preferred word for a particular meaning and the asso-
ciation strengths between other non-preferred words and the same meaning.
There appears to be a relation between the different association strengths
depicted, since the curves only occupy a restricted region of the phase plot
(around the line y = z). However, this relation is not a direct effect of the
interaction between the associations that are depicted. Rather, it is a result
of the relation between each non-preferred word and the preferred word for
the same meaning; as the association strength of the preferred word in-
creases, the strengths of all other associations decrease, as was seen in the
previous type 1 plot. These simultaneous decreases cause the apparent
relation between the non-preferred associations.

Figure 4.17 (left) shows a phase plot of type 2. For each of the curves,
the horizontal dimension corresponds to the preferred word of one of the
meanings, and the vertical dimension corresponds to associations of the
word with the other meanings. The right side of the figure shows the
corresponding time series. Again, the line y = x is drawn. Once the
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Figure 4.18: Left: type 3 phase plot. The diagram shows combinations
(superimposed) of the association strength of the preferred word for a par-
ticular meaning for an agent ¢ and the association strength between the
same word and corresponding meaning for an agent j, for all combinations
of i and j. Right: time series of the same data.

distance to the line y = = grows, the word comes to be the preferred
word for the horizontal meaning, and the association with other meanings
decrease.

Figure 4.18 (left) shows a preferred association, i.e. an association be-
tween one of the meanings and the word that comes to be its preferred
word, for all combinations of two different agents. Since there are n, =5
agents, there are (n,2 —n,)/2 = 10 such combinations. The corresponding
time series (right) shows how the associations develop over time for each
agent.

4.5.3 The Influence of Temperature on Phase Space Behav-
ior

Now that the behavior of the communication system in phase space under
normal conditions has been visualized, the effect of changes to the normal
conditions can be examined. Because of its strong influence on the behav-
ior of communication systems, the parameter whose phase space behavior
will be investigated is the temperature. A high temperature means that
signals with a high association strength will be produced more frequently,
but signals with lower association strengths will also be produced, albeit
less frequently. For increasingly low temperatures, the strongly associated
signals are increasingly preferred, up to a point where, for the lowest tem-
peratures, signals other than the most strongly associated ones are hardly
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produced anymore. The decrease in variation associated with a decreasing
temperature relates to a technique known as simulated annealing, where a
system initially has a high temperature and ’cools down’ over time. Here
however, the temperature of each single experiment is constant over time;
the subject of investigation is the effect of temperature as a given control
parameter of the system, rather than as a time-varying quantity.

In each phase plot, all combinations between the first five words have
been plotted for all four meanings. This gives (g) = 10 word combinations
times 4 meanings = 40 trajectories, all of which are superimposed. If
communication develops successfully, some of the combinations will concern
one preferred word and one non-preferred word; these combinations have
data points in the lower right or upper left corner, where one dimension is
high (near one) and the other one low (near zero). In the upper right corner
no points should be expected. Furthermore, since there should only be one
word per meaning (out of a total of five words) that is strongly associated,
the majority of the combinations will concern two non-preferred words,
which show in the phase plot as points near the origin.

Figures 4.19 through 4.22 show type 1 phase plots for temperatures
varying from 0.02 to 0.4. For the lowest temperature of 0.02, communica-
tion did not develop successfully. This can also be seen from graph 4.19
(left), since neither the lower right corner nor the upper left corner con-
tain any points. For the slightly higher temperature of 0.05, the situation
is different; here, a good system of communication develops, and indeed
figure 4.19 (right) contains trajectories in both the lower right and upper
left corners. The development of communication occurs for temperatures
up to 0.3. In plots 4.19 through 4.21, corresponding to temperatures 0.05
to 0.3, a gradual process is visible: the trajectories that extend towards the
corners of the figure gradually retract. When the temperature increases
even more, corresponding to less greedy and more random word produc-
tion, this process of retraction controls the system to such an extent that it
remains within a restricted area between the origin and the middle of the
plot; the trajectories to the upper left and lower right corners disappear,
which shows that no words become strongly associated anymore. Indeed,
the fidelity of communication was low for these temperatures (0.39 and 0.26
respectively, after 50,000 games).
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(right).

Figure 4.20: Phase space behavior for a temperature of 0.1 (left) and 0.2
(right).

Figure 4.21: Phase space behavior for a temperature of 0.25 (left) and 0.3
(right).
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Figure 4.22: Phase space behavior for a temperature of 0.35 (left) and 0.4
(right)

4.6 Conclusions

The investigation has shown that a deterministic version of the communi-
cation system contains point attractors that correspond to ideal commu-
nication. This property has been shown both mathematically, by showing
that all association updates decrease the distance to the attractors and that
attractors are fixed points, and experimentally, by demonstrating that the
system moves monotonically towards the attractor and that it remains in
the attractor when placed there.

In itself, the deterministic system is of limited interest; the commu-
nicative behavior of its agents is constant near the attractor. The value
of the deterministic system is in demonstrating the presence of attractors
in a system otherwise completely analogous to the stochastic system. Al-
though the stochastic system does not have attractors in the mathematical
sense, it was demonstrated that it does contain points that play a similar
role, called pseudo-attractors. Experiments analogous to those performed
to prove the existence of attractors in the deterministic system have been
performed for the stochastic case, and confirmed this similarity. The in-
creased fraction of instances on which the system spontaneously finds a
pseudo-attractor suggests that stochasticity may have a positive effect on
language evolution. An investigation of the influence of the temperature
parameter showed that low temperature values, corresponding to little ex-
ploration, impede the development of communication. The greedy selection
mechanism of the deterministic system can be viewed as selection with zero
temperature. This view explains the lower effectiveness in developing com-
munication of the deterministic system; the rigid selection mechanism lacks
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exploration, which can lead to a deadlock situation. The superiority of the
stochastic system was confirmed in an investigation of the max-last-error-
for-signals parameter, for which it developed communication systems of
higher quality across a wide range of parameter settings. Furthermore, a
typology of phase plots was described, and the influence of temperature in
phase space has been visualized.

The demonstration of the presence of attractors in a communication
system should be viewed as an important first step towards a better under-
standing of the dynamics in such systems, and may hopefully inspire further
research. It would be of particular interest to gain a better understanding
of the attractor basins, i.e. the regions from which the system converges to
an attractor. Since the stochastic system is the more productive version
of the two systems that have been described in this chapter, the standard
notion of attractor basin can not be applied directly, as this notion assumes
determinism; due to the stochastic nature of the system, convergence to an
attractor can in general not be guaranteed because stochasticity may always
cause the state of the system to follow an unlikely course. This points to
the more general issue of the stochasticity of the system. Since the basic no-
tions of dynamical systems theory were not designed for stochastic systems,
a possible step forward would be to model the system using mathematics
that describe such systems more naturally. A concept called convergence
of measures would be the proper technique for this. However, it is ques-
tionable whether this would really yield more insight into the system than
has been gained from the operational criterion that was used to determine
the presence of pseudo-attractors. In general, care should be taken here,
as the analysis of artificial models is not a goal in itself, and aspects of
the behavior of such systems are not of inherent interest. Rather, analysis
should be used to gain a better understanding of the systems under study
so that it may guide the development of more advanced ones.



Chapter 5

Conclusions

The research in this thesis has addressed the question of how autonomous
agents can develop concepts about their environment and develop a system
of communication that allows them to exchange information about this
environment based on those concepts. An central tenet has been the idea
that since agents construct concepts based on experience, agents may not
be assumed to possess the same conceptual systems, even if they speak the
same language.

In chapter 2, the construction of concepts by autonomous agents has
been considered. It was argued that such agents may be assumed to receive
evaluative feedback about their behavior. It is clear that such feedback can
be used by the agent to adapt its behavior. However, once it is realized that
the concepts an agent possesses influence its behavior, a principle for the
construction of concepts suggests itself, viz. the use of evaluative feedback
as a criterion for concept formation. This idea can be operationalized by
determining whether the introduction of a new concept improves the ability
of the agent to select appropriate actions.

Several existing methods qualify to be used as concept formation meth-
ods following this scheme. One such method has been described in detail
and tested in experiments. An interesting aspect of the method is that
it simultaneously performs state and action generalization in continuous
sensor-action spaces. The effect of noise on evaluative feedback and on sen-
sor information on concept formation has been investigated for various split
thresholds. The method was consistently found to construct concepts that
capture the different situations of the experimental environment, and hence
provides a useful basis for the development of a communication system.

Following related work by Steels (Steels, 1999), the concepts developed
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by agents are called meanings, whereas the objective concepts given by
the environment are termed referents. An important remark was that this
distinction does not imply that referents can always be identified; the ob-
servable entities in a population of communicating agents are words, and
since some mental representation of their meanings must be present, the
meanings must also play a role in an account of communication. The third
element, referent, is hypothetical however, and could only play such a sub-
stantial role in the analysis because of the nature of the concepts. Since
these correspond to situations in the environment, a criterion for ideal con-
cepts is available. In combination with the ease with which simulation
experiments can be analyzed, this allowed for determining the referents in
the experiments.

The result of concept formation can be expressed as a conditional prob-
ability matrix relating meanings to referents. The entropy in the rows and
columns of this matrix can be used to calculate measures of the quality
of the conceptual system. The distinctiveness measure expresses the de-
gree to which a meaning identifies a referent, while the parsimony measure
indicates to what extent a referent gives rise to a unique meaning (and
implicitly whether superfluous meanings have been generated, hence its
name).

Given a group of agents that have developed concepts capturing the
different situations in their environment, the question facing them is how
they can develop a system of communication to share their knowledge.
This question has been explored by investigating an algorithm used by each
individual agent for updating associations between the situation concepts
it has developed and an open set of words. A first important result is
that even under the strong commitments that were made, including the
inability of agents to pass meanings to other agents and the possibility
that the meanings of different agents may be different, coherent systems
of communication are formed that allow the agents to share information
about their environment.

The algorithm has been described in detail, and its different components
have been tested for utility. The tests demonstrated that all components
of the algorithm are useful, in the sense that removing any one component
decreases the accuracy of communication with statistical significance. The
success component is crucial for the development of communication. How-
ever, further analysis showed that it is not the success information itself
that is crucial, but the lateral inhibition between competing associations.
The algorithm achieves this specificity without imposing a one-to-one rela-
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tion between meanings and words. This property is important, as it was
seen to play a role in the development of communication by agents with
differing conceptual systems. The feasibility of developing shared commu-
nication under those circumstances was demonstrated in an experiment.
In this experiment, the algorithm led to a situation where multiple mean-
ings were stably associated with the same word and different words were
associated with a single meaning. This took place in such a way that the
differences in the conceptual systems were compensated for, and successful
communication was highly probable.

In analogy with the treatment of conceptual systems, a communication
system can be represented by conditional probability matrices. Based on
the entropy in these matrices, principled measures for the quality of the
communication system have been derived. The specificity measure indicates
to what extent a word identifies a referent, while consistency measures the
consistency with which agents produce a single word for each referent. The
measures were found to be useful in analyzing the communication systems
that form in experiments, and overcome a fundamental problem with a
related measure. Apart from these agent-based measures, the coherence
and fidelity measures of the communicative behavior of a population of
agents were described.

The development of communication can be viewed as the behavior of
a dynamical system. In this system, each dimension or variable represents
the strength of an association between a word and a referent of some agent.
Since various entities of each type are involved, this system will usually
have a high number of dimensions. Nonetheless, its behavior can be an-
alyzed. A central question is whether such a system has attractors that
correspond to perfect communication. Since standard dynamical systems
theory deals with deterministic systems, elements of the system that intro-
duced stochasticity were removed for this analysis.

Based on the association update formulas, a mathematical proof of the
existence of point attractors has been provided. This finding has been
confirmed in perturbation experiments where the system was taken out of
the attractor; in all cases, the distance between the state of the system and
the nearest attractor decreased monotonically after such a perturbation.
Furthermore, when the system is placed exactly in the point attractor, it
remains there, thus satisfying the additional criterion for attractors of the
definition used.

In itself, the presence of attractors in the deterministic system is of
limited interest; once inside the defined neighborhood, the communication
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behavior of the system is constant. However, the analysis does provide a
basis for a better understanding of the stochastic system. This system is
more interesting as it develops communication under a wider variety of con-
ditions than the deterministic system and with a higher average accuracy.
In order to examine the idea that this system has points playing a similar
role, called pseudo-attractors, an operational criterion was used that allows
the system to remain within a neighborhood of a pseudo-attractor instead
of converging completely towards it. The same experimental procedure
showed that the behavior of the stochastic system with respect to these
points was analogous to that of the attractors in the deterministic system.
Finally, the effect of an important control parameter on communication,
the temperature governing the exploration factor in word production, has
been investigated. The experiment showed that a low temperature resulted
in communication systems with low fidelity. This provides an explanation
for the advantage of the stochastic system in developing communication.
The greedy selection as it is used in the deterministic system corresponds to
low temperatures. For low temperatures, exploration is lacking, which can
result in a deadlock situation where several referents are associated with the
same word. Such deadlock situations were experimentally observed, and the
role of exploration in overcoming such situations explains the more stable
development of communication in the stochastic system. Furthermore, the
temperature has been related to the phase space behavior of the system.
Although the communication measures are sufficient to determine the effect
of temperature on communication, the phase plots show a complementary
view of this effect that improves understanding of these findings. These
analyses provide evidence for the idea that it may be useful to view the
development of communication as the behavior of a dynamical system.

5.1 Perspective

These final remarks concern possible extensions of this research. Given that
the idea of using situation concepts as a basis for communication has been
found to work well, more complex variants of the idea may now be consid-
ered. A strong limitation in the current work is the form of the concepts
and regions representing action-values. These are both solid regions, the
latter associated with a single approximation of the value function. One
interesting development that would be important for more continuous en-
vironments is to use the experiences stored in the action-value nodes to
give more local estimates of the value function by using only the points



5.1. PERSPECTIVE 205

nearest to the query; this would have the additional effect that the result-
ing function would be smooth instead rather than crisp. Other promising
extensions would be to make better use of the interaction history by con-
sidering not merely the most recent sensor values, but also sensor values,
actions, and rewards of earlier time steps. In this case it is probably a good
idea not to consider all of this information as additional features, but to
develop features that capture relevant aspects of an interaction history, per-
haps based on interaction with the environment. Finally, it is clear that to
arrive at more complex concepts, the possible shapes of the concepts must
be extended beyond the current hyperrectangles. However, this has the
effect of increasing the search space. Once this is realized, it becomes clear
that the real question is what bias may be usefully employed to search in
such large spaces. Although this broad observation does not directly point
to particular mechanisms that are promising to investigate, it does suggest
a guiding principle for future research.

In accordance with the bottom up principle, the focus with respect to
communication has also been on the most basic requirement, being a mecha-
nism that leads to a shared system relating concepts to words. One possible
extensions would be to allow communication to influence the concepts; as
has been argued, this principle can be very powerful as it allows concepts
to spread through a population, allowing agents to benefit from the ex-
perience of others. Furthermore, in order to arrive at more sophisticated
communication systems, the development of coding schemes or grammars
will have to be addressed. This form of communication, where the meaning
of an utterance depends on the order of its elements, necessarily addresses
an important open issue in adaptive behavior research: the development of
internal state. Work in this direction is beginning to emerge, and appears
a promising avenue for research.






Summary

The research in this thesis addresses the question of how autonomous agents
may develop concepts about their environment and develop a system of
communication that allows them to exchange information about this envi-
ronment based on those concepts. An autonomous agent is a system, in
software or in hardware, that receives sensor input from the environment,
selects actions, and may receive evaluative feedback reflecting the appro-
priateness of its actions. Communication is viewed as the transfer of infor-
mation, in the sense that when a sender sends a message to a receiver, the
amount of uncertainty in the receiver’s knowledge about its environment
decreases as a result of receiving the message. When agents have incom-
plete knowledge about their environment, communication can be valuable
as a means to reduce this uncertainty by sharing information, and can be
used to coordinate the actions of agents. Communication is learned during
the life time of the agents, and the research concerns the question of how
agents may cooperate to arrive at a shared system of communication.

Features of the information available to an agent through its sensors
can be used to construct concepts, also called meanings. Constructing
concepts based on the requirements posed by the environment is a more
flexible approach than fixing the concepts of agents at design time, and
may be necessary when the agents are to function in unknown or changing
environments.

In this thesis, a particular type of concepts is described, called situation
concepts. Situation concepts consist of features in the history of interac-
tion between the agent and its environment, which consists of sensor data,
actions, and subsequent evaluative feedback. A defining criterion of a situ-
ation concept is that it predicts some aspect of the future evolution of the
state of the environment, possibly conditioned on the actions the agent may
take. Several existing methods, particularly from the field of reinforcement
learning, can be viewed as constructing a form of situation concepts. A par-
ticular method for constructing a specific type of situation concepts, called
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the adaptive subspace method, is described. The method uses the current
sensor values of an agent as features and develops concepts that specify
an interval for each sensor. These concept predict the value of actions the
agent can take when its current sensor values are within the specified in-
tervals. The meanings thus formed represent situations, and are especially
appropriate for use in communication, since they convey information about
the environment.

The development of communication is viewed as the formation of asso-
ciations between words and the meanings formed by the agents in a pop-
ulation, in such a way that agents tend to use the same word in the same
situation. When agents autonomously construct concepts, a consequence is
that they may not possess identical concepts. Additional constraints that
are respected, such as the commitment that agents have no direct access to
the meanings formed by other agents (they can not "look inside each other’s
head’), and that no single agent may decide on the system of communica-
tion, further complicate the problem of how such a system of associations
may come about.

Rather than viewing communication as fixed, it is viewed as a dynamical
system. A dynamical system is a mathematical model of a system that
changes over time. The variables of this system are the strengths of the
associations between words and the meanings of the agents in a population.
An algorithm is described in detail that, when used by each individual agent
to adapt its associations between words and the situation concepts it has
formed, leads to a shared system of communication.

The necessity of different components of the algorithm is shown with
statistical significance. Associations are linear combinations of use (the
frequency with which a word is observed in a situation) and success (the
degree to which the word correctly indicates that its associated situation is
the current situation in the environment). Analysis of the success compo-
nent of the algorithm showed that not the success information itself, but
the lateral inhibition between competing associations is crucial for the de-
velopment of communication. It is experimentally demonstrated how the
development of communication can compensate for differences in concep-
tual systems.

Systematic measures have been introduced to determine the quality of
conceptual systems and communication systems. The measures require
knowledge of the ideal concepts, called referents; although such knowledge
is not available in general, simulation experiments often do provide the
opportunity for such referents to be determined.
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The specificity measure for communication is based on the principle
that knowledge of a word should yield information (i.e. reduce uncertainty)
about the referent (the current situation in the environment), and vice versa
for the consistency measure. In cases of maximal specificity, the informa-
tion a word yields is complete, and thus identifies the situation, whereas in
the worst case, the word does not yield any information at all. The mea-
sure quantifies these and all intermediate cases. The consistency measure
is computed as the extent to which a referent identifies a word, and thus
expresses whether for each a referent the agent consistently uses the same
word. If both specificity and consistency are high, each agent consistently
uses a unique word for each referent. A population measure called coher-
ence is used to determine whether different agents use the same words.
In combination with the specificity and consistency measures, the experi-
menter can determine to what degree a perfect system of communication,
consistently linking each referent to a unique word, is approximated.

Interestingly, the same principle can be used to evaluate the quality of
a conceptual system. Ideally, each concept an agent has formed identifies a
single referent in the environment; this is expressed by the distinctiveness
measure, calculated as the degree to which the meanings an agent possesses
distinguish between the different referents. Conversely, parsimony expresses
the degree to which a referent identifies a meaning. It thus reflects whether
the agent has not generated more meanings than necessary. Together, high
distinctiveness and high parsimony imply that a conceptual system is ideal
in the sense that it approximates a one-to-one relation between meanings
and referents.

A contribution is made to the viewpoint of communication as a dy-
namical system by considering the attractors in the communication system
that has been described. A deterministic version of the system is proved
mathematically and demonstrated experimentally to have point attractors
that correspond to perfect communication. An operational definition of
pseudo-attractors is used to demonstrate that the stochastic system has
points that play a similar role. Stochasticity is found to be a useful in-
gredient in the development of communication, in that it avoids deadlocks
and results in communication more consistently and under a wider variety
of parameter settings. This finding is confirmed by a systematic investi-
gation of the effect of different amounts of stochasticity, regulated by the
temperature parameter that governs word production. The analysis pro-
vides evidence that a dynamical systems perspective on the development
of communication is valuable.






Samenvatting

Het onderzoek in dit proefschrift stelt zich de vraag hoe autonomous agents
concepten kunnen ontwikkelen over hun omgeving en een communicatiesys-
teem kunnen ontwikkelen dat ze toestaat informatie over hun omgeving uit
te wisselen op basis van deze concepten. Een autonomous agent is een sys-
teem, in software of in hardware, dat informatie uit zijn omgeving ontvangt
via sensoren, acties kan kiezen, en numerieke beoordelingen van de kwaliteit
van zijn gedrag ontvangt. Communicatie wordt gezien als het overbrengen
van informatie, in de zin dat wanneer een zender een boodschap naar een
ontvanger stuurt, de onzekerheid in de kennis van de ontvanger over zijn
omgeving afneemt als gevolg van het ontvangen van de boodschap. Als
agents onvolledige informatie hebben over hun omgeving kan communi-
catie waardevol zijn als middel om deze onzekerheid te verminderen door
informatie te delen, en kan het gebruikt worden om de acties van de agents
te coordineren. Communicatie wordt geleerd tijdens het bestaan van de
agents, en het onderzoek betreft de vraag hoe agents samen kunnen werken
om een gemeenschappelijk communicatiesysteem te bewerkstelligen.

Kenmerken van de informatie waarover een agent beschikt via zijn sen-
soren kunnen gebruikt worden om concepten te construeren, ook betekenis-
sen genoemd. Concepten construeren op basis van de eisen die gesteld
worden door de omgeving is een flexibelere benadering dan de concepten
vastleggen op het moment van ontwerpen, en kan noodzakelijk zijn indien
de agents dienen te functioneren in een onbekende of veranderende omgev-
ing.

In dit proefschrift wordt een bepaald soort concepten, genaamd situatie
concepten, beschreven. Situatie concepten bestaan uit kenmerken in de
geschiedenis van de interactie tussen de agent en zijn omgeving, die bestaat
uit sensor gegevens, acties, en daaropvolgende beoordelingen. Kenmerkend
voor een situatie concept is dat het een aspect van de toekomstige ontwikke-
ling van de toestand van de omgeving voorspelt, mogelijk afhankelijk van
de acties die de agent kan kiezen. Verscheidene bestaande methoden, in het

211



212 SAMENVATTING

bijzonder uit het veld van de reinforcement learning, construeren concepten
die gezien kunnen worden als situatie concepten. Een specifiecke methode
om een bepaald soort situatie concepten te construeren, genaamd de adap-
tive subspace methode, wordt beschreven. De methode gebruikt de huidige
sensor waarden van de agent als kenmerken en ontwikkelt concepten die
een interval voor elke sensor vastleggen. Deze concepten voorspellen de
waarde van de acties die de agent kan kiezen wanneer zijn huidige sen-
sor waarden binnen die intervallen liggen. De betekenissen die zo worden
gevormd stellen situaties voor, en zijn speciaal geschikt om in communicatie
te worden gebruikt, aangezien ze informatie over de omgeving voorstellen.

De ontwikkeling van communicatie wordt gezien als de vorming van
associaties tussen woorden en betekenissen die gevormd zijn door de agents
in een populatie, zodanig dat de agents hetzelfde woord plegen te gebruiken
in dezelfde situatie. Een gevolg van het feit dat agents zelfstandig concepten
vormen is dat ze niet noodzakelijkerwijs dezelfde concepten bezitten.

Bijkomende beperkingen die in acht worden genomen, zoals de beperk-
ing dat agents geen directe toegangen hebben tot de betekenissen die andere
agents gevormd hebben (de agents kunnen niet ’in elkaars hoofd kijken’),
en dat het communicatie systeem niet bepaald mag worden door één enkele
agent, compliceren de vraag hoe een dergelijk systeem van associaties kan
ontstaan.

Communicatie wordt niet gezien als iets wat vast ligt, maar als een dy-
namisch systeem. Een dynamisch systeem is een wiskundig model van een
systeem dat verandert in de loop van de tijd. De variabelen van dit systeem
zijn de sterkten van de associaties tussen de woorden en de betekenissen van
de agents in een populatie. Er wordt een algorithme in detail beschreven
dat, wanneer het door elke individuele agent wordt gebruikt om zijn asso-
ciaties tussen woorden en de sitatie concepten die het gevormd heeft aan
te passen, leidt tot een gemeenschappelijk communicatiesysteem.

De noodzakelijkheid van de verschillende componenten van het algo-
rithme wordt statistisch significant aangetoond. Associaties zijn lineaire
combinaties van gebruik (de frequentie waarmee een woord gedbserveerd
wordt in een sitatie) en succes (de mate waarin het woord correct aangeeft
dat de geassocieerde situatie de huidige situatie in de omgeving is). Een
analyse van de succes component van het algorithme toonde aan dat niet de
succes informatie zelf, maar de laterale inhibitie tussen associaties cruciaal
is voor de ontwikkeling van communicatie. Er wordt experimenteel aange-
toond hoe de ontwikkeling van communicatie verschillen tussen conceptuele
systemen kan compenseren.



SAMENVATTING 213

Er worden systematische maten voor het meten van de kwaliteit van
conceptuele systemen en communicatiesystemen geintroduceerd. De maten
vereisen kennis van de ideale concepten, de zogenaamde referenten; hoewel
deze kennis in het algemeen niet beschikbaar is, kunnen dergelijke refer-
enten in simulatie-experimenten vaak juist wel worden bepaald.

De specificity maat is gebaseerd op het principe dat kennis over een
woord informatie op moet leveren (d.w.z. de onzekerheid inperken) over
de referent (de huidige situatie in de omgeving), en wice versa voor de
consistency maat. Bij maximale specificiteit geeft een woord complete in-
formatie, en legt het dus de situatie vast, terwijl in het in het slechtste geval
helemaal geen informatie geeft. De maat quantificeert deze en alle tussen-
liggende gevallen. De consistency maat wordt berekend als de mate waarin
een referent een woord bepaalt, en drukt dus uit in hoeverre een agent voor
iedere referent consistent hetzelfde woord gebruikt. Indien zowel specificity
als consistency hoog zijn, gebruikt elke agent een uniek woord voor elke
referent. Een populatie-maat genaamd coherence wordt gebruikt om te
bepalen in hoeverre verschillende agents wel dezelfde woorden gebruiken.
In combinatie met de specificity en consistency maten kan de onderzoeker
bepalen in welke mate een perfect communicatie-systeem, dat elke referent
consistent aan een uniek woord koppelt, wordt benaderd.

Verrassenderwijs kan hetzelfde principe gebruikt worden om de kwaliteit
van een conceptueel systeem te bepalen. In het ideale geval zou elk con-
cept dat een agent gevormd heeft een enkele referent in de omgeving moeten
aanduiden; dit wordt uitgedrukt door de distinctiveness maat, die berek-
end wordt als de mate waarin de betekenissen die een agent gevormd heeft
onderscheid maken tussen de verschillende referenten. Parsimony daar-
entegen geeft aan in hoeverre een referent een betekenis identificeert. Deze
maat geeft dus aan of de agent niet meer betekenissen dan nodig heeft
gegenereerd. Samen geven hoge distinctiveness en parsimony maten aan
dat een ideaal conceptueel systeem wordt benaderd in de zin van een een-
op-een verhouding tussen betekenissen en referenten.

Er wordt een bijdrage geleverd aan het gezichtspunt waarbij communi-
catie als dynamisch systeem wordt gezien door attractoren te beschouwen
in het beschreven communicatiesysteem. Van een deterministische versie
van het systeem wordt wiskundig bewezen en experimenteel aangetoond
dat het punt-attractoren heeft die corresponderen met perfecte communi-
catie. Er wordt experimenteel aangetoond dat het stochastische systeem
pseudo-attractoren heeft die een vergelijkbare rol spelen. Stochasticiteit
wordt nuttig bevonden als ingrediént bij de ontwikkeling van communicatie,
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aangezien het stagnatie vermijdt en consistenter en onder een grotere ver-
scheidenheid aan parameter instellingen resulteert in communicatie. Deze
bevinding wordt bevestigd door een systematisch onderzoek naar de in-
vloed van verschillende hoeveelheden stochasticiteit die geregeld kan wor-
den met behulp van de temperatuur parameter, die de productie van woor-
den reguleert. De analyse verschaft bewijsmateriaal voor het idee dat een
dynamisch systemen perspectief op communicatie waardevol is.
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e-greedy policy, 56

Adaptive Resolution methods, 59
Adaptive Subspace method, 18, 52,
59, 66
Arbitrary signals, 5
Association formation, 19, 21, 101
Algorithm for, 106
Attractor, 159
Basin, 158
Fixed point, 158
Pseudo, 162, 184, 185
Stochastic, 186
Strange, 158
Autonomous Agent, 1, 13, 41

Behaviorism, 46
Bellman equation, 55
Bias, 10, 57, 131, 205
Of the adaptive Subspace method,
18
Procedural, 12
Representational, 12
Bias/Variance dilemma, 57
Boltzmann distribution, 108, 111
Bottom-up approach, 33
Brittleness, 33

Coherence, see Measures
Communication

Analog, 4

Animal, 2

Benefit of, 139
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Evolved, 2
Graded, 5
Learned, 2
Concept(s), 6, 36
Autonomous formation of, 41
Criteria for formation, 12
Formation and bias, 10
Formation of, 6
Learning, 9
Private, 102, 141
Public, 8
Situation, 16, 62
Universal, 6
Consistency, see Measures
Counstructivism, 15
Coordination, 35
Costly signals, 2
Coupled Dynamics, 19
Cultural evolution, 49

Discrimination Game, 14, 22
Distinctiveness, see Measures
Dopaminergic neurons, 47
Dynamic programming, 53
Dynamic time warping, 15
Dynamical system, 20, 158
Language as a, 20, 157

Entropy, 24, 32, 38, 76, 114, 116
European Blackbird, 5

Exploration/exploitation tradeoff,
56
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Feature maps, 14

Feedback, 12, 44
Adaptation and, 42
Direct, 27
Evaluative, 13, 47
Instructive, 13
On behavior, 43

Fixed point, 158
Repeller, 158

G algorithm, 59
Generalization, 57
Grammar, 5

Homeostasis, 44

Influence of concepts on behavior,
42

Interaction history, 16, 62

Interaction space, 63

Kolmogorov-Smirnov Test, 61

Language, 37
Human, 1
Public, 141
Lateral inhibition, 133, 155
Learning
Observational, 22
Reinforcement, 10, 13, 14, 47,
52
Stimulus-Response, 46
Supervised, 9, 13, 48
Trial-and-error, 22
Unsupervised, 13
Limit cycle, 158
Linguistic Relativity (Principle of),
43

Mann-Whitney U Test, 127
Markov property, 53

INDEX

Matrix
Conditional probability, 24, 36,
82
Notation, 36, 73
Sampling method for calcula-
tion, 142
MDP, 52
Meaning, 6, 7, 22, 35, 73
Measures, 23
Coherence, 25, 113, 117, 136
Consistency, 24, 112, 117, 138
Correctness, 119, 120, 124, 143,
153
Distinctiveness, 25, 73, 76, 77
Fidelity of communication sys-
tems, 118
Fidelity of conceptual systems,
80
Parsimony, 25, 73, 75-78
Specificity, 24, 112
Specificity (based on entropy),
114
Specificity (based on preferred
words), 113

Naming Game, 22
Noise
Evaluation, 38, 84
Sensor, 38, 94

Oct-tree, 60
Ontology (shared), 33

Parsimony, see Measures
Parti-Game algorithm, 59
Perturbation, 166

Phase plot, 192

Phase space, 158

Piaget, 15

Pointing, 103

Policy, 53
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POMDP, 53
Quad-tree, 59

Recency-weighted average, 107
Referent, 6, 23, 35, 73, 104
Reinforcement learning, 54, 56
Roles in communication, 27

Saddle point, 158
Sapir-Whorf hypothesis, 43
SARSA, 55

Selectionism, 49
Self-organization, 20

Sensor space, 11

Sensor-action space, 38, 66, 67

Situation Concepts, see Concept(s),

Situation
Situation Determination
Sensor Based, 109

Signal Based, 109, 121, 123,

140, 176, 177
Situation models, 63
Skinner, 46
Specificity, see Measures
State transition function, 53
Stochasticity, 84, 190

Attractors and, 161
Subspace, 18
Success component, 122, 131
Symbol, 5

Tabula rasa, 57
Temperature, 111, 190
Thorndike’s Law of Effect, 45
Trajectory, 158

U-Tree method, 13, 47, 60
Use component, 122, 129

Value function, 55
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Variance, 57
Vervet monkey alarm calls, 65

Wilcoxon Rank Sum Test, 126
Word interpretation, 102
Word Production, 102, 111



