Evolving Sound Systems

Human languages use an amazing variety of subtly different speech sounds to
convey meaning. With the exception of sign languages that are used and devel oped
by communities of deaf people, al human languages use sound as the primary
signal. The sounds, or more accurately the differences between sounds, that
humans use for distinguishing meanings can be very subtle. Two different sounds
that would be perceived as identical by a speaker of one language might make an
important distinction in meaning in another. For example, in the Bahing language
of East Nepal, the word /mara/ means “monkey”, while the word /muru/ means
“man”. Spedkers of neighboring and European languages alike ae generaly not
able to perceve this distinction, an urlimited source of funto the Bahing people.

In the UCLA Phonologicd Segment Inventory Database (UPSID), a database that
now contains 451 languages (Maddieson 1984 Maddieson & Premda 1990 921
different speed sounds occur. The language with the largest inventory of speed
sounds in the database is !Xt (Snyman, 197Q 1975, a Khoisan language of
Southwest Africa with 141 sounds, while the languages with the smallest
inventories are Rotokas (Firchow & Firchow, 1969 a East-Papuan language and
Mura-Pirahd (Sheldon 1974 Everett 1982 a South-American language, bath with
only 11 sounds. According to Maddieson (1984 usualy languages have between
20 and 37 sounds in their repertoires. However, these repertoires are not chosen
randomly. Some sounds occur much more often in the languages of the world than
others. Lindblom and Maddieson (1988 have found that languages tend to use a
set of basic aticulations first. Such basic aticulations are smple aticulations that
involve only one aticulatory gesture axd minima displacenents of the
articulators. When the repertoire beames larger, langueges tend to use what
Lindblom and Maddieson cdl ‘elaborate’ articulations, which involve larger
displacements and simultaneous adions of multiple aticulators. Finally, when a
language's repertoire becomes even larger, ‘complex’ articulations will be used.
These @mnsist of combinations of the two previous types.

There ae other patterns to be found in the sound repertoires as well. Examples of
such patterns are symmetries. In consonant systems, for example, if alanguage has
avoiced sound at a catain placeof articulation, it is very likely to have avoicdess
sound at the same placeof articulation. Comparable symmetries are found in vowel
systems.



Regularities are not just found in the repertoires of sound systems, but also in the
way sounds are mmbined into words and syllables. It is possble to make a
hierarchy of sounds with resped to whether they tend to occur close to o far from
the nucleus of a syllable. This hierarchy is cdled the sonority hierarchy
(Vennemann 1988. Some sounds, such as vowels, are very sonorous and tend to
occur at the nucleus of a syllable, while others, such as plosive @mnsonants (p, b, t
etc.) are littl e sonorous and tend to occur at the periphery of a syllable. Whenever
sounds occur in sequence, it turns out that they almost always increase in sonority
towards the nucleus of a syllable. For this reason, “play” is a posdble word in
English, while “*Ipay” is not.

Phenomena that occur in many languages are often cdl ed universals. Althoughthe
term universal implies validity for al langueges, there ae very few non-trivial
phenomena that occur in al known human languages. For this reason the term
universal is often used for phenomena that occur in a (large) majority of human
languages. All parts of languege: syntax, morphology, semantics, phonology, can
have their own universals. This paper will concentrate on universals that have to do
with sound systems.

Universals might be explained in different ways. The first possble ecplanation
would be that all langueges are historicdly related. Although there is gill some
controversy over the exad evolution of Homo sapiens, it is most likely that modern
humans came from Africa some 200000-300000 yeas ago. Genetic diversity
within the spedes Homo sapiensis © small that it is very likely that at one timein
its ealy history the spedes must have nsisted of only a few thousand
individuals. It is not unlikely that all these individuals goke diaeds of the same
language. However, given the speal with which langueges change, and given the
amount of time during which different groups of humans have been isolated from
ead other, it is highly unlikely that any traceof the origina relationship between
al human langueges remains. Tentative reconstructions of “proto-world” (Ruhlen
1994 although enthusiasticdly embraced by the popular press should be regarded
with the utmost scepsis. Another reason why deep historicd relations between
human langueges alone canot explain uriversalsisthat there ae dso universals of
languege dhange (e.g. Labov 1994. Quite different languages sem to change
along similar paths.

A seoond posgble explanation is that language universals are arefledion of innate
human cgpadties for language. Such an innate cgpadty does not only have to bein
the form of a “universal grammar” as investigated by some reseachers, but could
aso consist of more genera cognitive mechanisms that are used for using and
leaning language. The innate cgadty for language is also determined by physicd
and physiologicd fadors, such as the shape of the vocd trad, acarate wntrol over
breahing and the way the ea processes ound. Innate fadors obviously play arole
in determining unversals of human language. However, the problem of innate
fadors as explanation for language universals is that they themselves have to be
explained as the result of evolution, or passbly as exaptations of pre-existing body
parts and cogniti ve mechanisms.

This leads to the third pcsdble explanation of language universals. that they are
functional optimizations for communication over a noisy channel. Human language
seans to be optimized for communicaion in a number of respeds. The frequency



with which different vowels occur in human language can for example be
explained by the optimization of acoustic distinctiveness. If one optimizes a system
with a fixed number of vowels so that the average distance between them is
maximized, systems that occur frequently in human languages tend to appear. Now
such functional optimization could be a result of the interactions between the
speakers, listeners and learners of a language or the result of an evolutionary
process. Also, the preference for languages that are functionally optima over
languages that are not could, over along period of time, influence the mechanisms
that are used for learning language through a process that is caled the Baldwin
effect (Baldwin 1896).

Possibilities for Modeling

The role of innate properties versus the role of functional optimization and the way
by which the different human adaptations to speech have evolved can be
investigated with computer models. Traditionaly, linguists prefer to solve
theoretical disputes with linguistic data and physical, cognitive or philosophical
arguments. However, language origins and evolution can hardly be investigated by
looking at modern languages, and the complexity of theories of evolution of
populations is such that their behavior cannot be predicted by simple philosophical
argument. For this reason computer models are used more and more to test and
create hypotheses. The study of speech has a long tradition of using computer and
other electronic equipment. Due to the fact that speech works with objectively
measurable and recordable signals, it can be manipulated relatively easily. From
the nineteenfifities onwards important discoveries were made by manipulating
recorded signals and synthesizing artificial ones. Another advantage of the fact that
speech signals can be measured in arelatively objective way, is that predictions of
models can be easily compared with observations of real language data.

Different aspects of the evolution of speech can be investigated with computer
models. One can try to reconstruct the evolution of the human vocal tract, one can
use computer simulations to find out what factors (such as articulatory ease,
acoustic distinctiveness etc.) have played arole in evolution, but one can also use
computer models to investigate how much of speech islearnt and how much of it is
innate.

Different approaches to modelling speech

One interesting and important way in which computer models have been used to
study the evolution of speech (and language indirectly) is by reconstructing the
vocal tract of fossil hominids, most notable Neanderthals. These vocal tract models
can then manipulated and excited with an artificially generated glottal pulse. By
studying the resonances of the model, the range of possible vowel sounds that
could be made by the hominid under study can be estimated. Although this
technique comes closest to actually being able to listen to our hominid ancestors,
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the technique is not quite uncontroversial, mostly because important parts of the
vocd trad (tongue, pharynx, larynx) do not fosslize very well. Interesting and
exciting as these results may be, they do not quite model the origins and evolution
of speed (they only remnstruct one stage of the evolution from fossl data) so they
fall somewhat outside the scope of this chapter.

Apart from such dired modeling tedhniques, rougHy three ©mputational
paradigms have been used for investigating the evolution of speed. The first
paradigm is that of straightforward ogtimizaion of sound systems on the basis of
different criteria. The paradigm is ill ustrated in figure 1. The figures are alded for
ill ustration, but also to be &le to compare the different paradigms at a glance

The optimization criteria include fadors such as aoustic distinctiveness amustic
stability, articulatory ease or leanability. Through optimizing different
(combinations of) criteria axd chedking whether the sound systems that are
predicted conform to what is found in human languages, one ca find out what
criteria ae important for the formation of human sound systems.

Optimization is probably the technique that is least controversial in its applicaions,
as its dynamics are relatively simple: there is an optimization criterion and it
results in sound systems that look like human sound systems or not. Discusgon is
posshle on the implementation of the optimization criteria or on the interpretation
of the sound systems that are found, but the optimizaion process itself is not
controversial. The relative simplicity of optimization is also a disadvantage. It can
only be gplied to relatively simple problems. As on as multiple optimization
criteria interad, the optimization process beames more difficult and dedsions
have to be made @out which solutions to investigate. Also, the relative importance
of the different criteria and the way they interad might be controversial. However,
optimizaion is a good technique for chedking which criteria play a role in
determining the sound systems that are found in human languages. How these
criteria have become important and how the optimization process takes placein
human languege use and leaning can then be investigated with different
techniques.

The second paradigm is that of genetic dgorithms (GA’s). The genetic dgorithmis
atechnique that is based on the way evolution works in nature. The dgorithm has a
population of potential solutions, al of which are wded as artificial genes (usualy
in the form of bit strings). These genes are mnverted into pasdble solutions to the



functio
wivhAwiwa ——
— redion
wiwiwie
Population o
sets of speech sounds

Figure 2: Schematic view of a genetic dgorithm.

problem at hand (sound systems in the cae of evolution of speed) and are
evauated with a fitness function. This fitness function is a function that gives a
high value for good solutions and a low value for bad solutions. Just as in nature,
solutions with a high fithessare dlowed to creae off spring, whil e bad solutions are
removed from the population. The genes of the off spring are aeaed by combining
the genes of the parent solutions. Usually combination methods inspired by nature,
such as mutation and crosover, are used. It is clea that for the proper functioning
of a genetic dgorithm the right fitness function as well as the right coding of
solutionsin genes are esential. The GA isill ustrated in figure 2.

Basicdly, GA's adso ogtimize on the basis of an optimization criterion (the fitness
function), but they are much more flexible and robust than straightforward
optimization algorithms. They can therefore be used to model more complex
optimization problems and even problems in which the optimizetion criterion
changes over time. Also, GA’s work with a population of solutions, instead of with
asingeone. Thisis more redistic in the cae of languege, as language is typicdly
used in a group of individuals rather than by a single individual. Finally, genetic
algorithms are modeled after Darwinian evolution, and are & sich idedly suited
for modeling red evolution.

Their resemblance to red biologicd evolution is passbly the biggest advantage of
genetic dgorithms for research into the evolution of speed. But modelers who
enthusiasticdly embraces genetic dgorithms as their paradigm of choice should be
aware that there ae alarge number of design dedsions to be made in building a
GA for investigating the evolution of speed. Dedsions have to be made what to
encode & genes and how to implement the fitness function. Also, it is very
important to not confuse biologicd evolution of the human faaulty for speed and
cultural evolution of human languages. Although Hhstoricd relations between
languages and historicd change of languages are often expressed in terms smilar
to those of biologicd evolution and athough there ae definite and valid
simil arities between the processes of biologicd evolution and languege change,
one should not confuse the two processes in one’s model. The two processs are
clealy distinct and operate on totally different time scdes. They do influence eab
other, but this influence happens becaise the properties of a leaned system (the
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Figure 3: Schematic view of alanguage game.

language) influence the fitness of individuals that have to lean it, and is an
interesting subjed of investigation in itself.

The third paradigm isinspired by game theory and Wittgenstein’s (1967 ideas on
language games. Languege games as a paradigm for modeling of evolution of
language have first been used by Steds (1995 1997 In this reseach the notion of
a game is not very well defined, but language games have anumber of properties
in common. There usually is a population of agents that ead have cetain lingustic
knowledge and that can interad with ead other. The rules of the game determine
how the interadions are structured and what information is exchanged. The gents
can wpdate their linguistic knowledge on the basis of the interadions they have
taken part in. Usualy al agents follow the same strategy for updating their
knowledge. The language game paradigm is ill ustrated in figure 3.

Languege games are auseful model of linguistic interadions between humans. The
rules of the game and the strategy for updating an agent’s knowledge can be varied
to creae different types of games for investigating different parts of language. Of
course, one has to make simplifications whil e using language games. In red human
language, different parts of language influence eab other and interadions between
language users can be highly complicaed and dependent on extralingustic
context. In this resped, the languege game model is not different from other
computational models of the study of language, but it is necessary to keep in mind
what simplifications one has made and how these might influence the outcome of
the games.

Strictly spe&ing, language games cannot be used to study the evolution of
language, as the ggents do not change over time. However, language games can be
used to investigate to what extent properties of language can be explained as the
result of interadions between agents and to investigate what must be programmed
into the agent (i.e. what must be innate) so that it cen lean a cetain asped of
language. Such aspeds as have to be pre-programmed will have to be explained by
evolutionary models, such as genetic dgorithms.

As both the genetic dgorithm and the language game paradigm work with a
population of agents, it is obvious that the two can be cmbined. However, not the
sound systems would be @ded into genes, but the properties of individual agents.
In such a system it could be investigated, for example, how different leaning
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Figure 4: Combination of GA and language game.

techniques can evolve, or whether it is possible to reconstruct the evolution of the
human vocal tract on the basis that it enables speakers to produce a wider range of
possible speech sounds. The combination of the language game and the GA is
illustrated in figure 4.

The combination of these two techniques makes it possible to investigate the
interactions between biological evolution and cultural evolution, without running
the risk of confusing timescales or geneticaly and culturaly transmitted
information, as mentioned above. Although the paradigm of language games with
evolving agents is the one that comes closest to human redlity, there are still a
number of problems. All problems with respect to how agents are coded into
genes, and how the fitness function is implemented also occur here, as well as the
problems with respect to the simplification of interactions that were mentioned
with the language games. Another important problem is that the combination of the
two highly complex mechanisms might result in behavior that is hard to explain. It
might not be possible anymore to determine which mechanism caused which part
of the complete behavior, or to reconstruct how the system came up with the
solution that was found.

Another problem with systems that work with populations of agents or sets of
speech sounds and that have to simulate many iterated operations with these, is that
their running time can become prohibitively long. For example, the most realistic
speech synthesizers that exist take approximately 1000 times as long to calculate a
speech signal than the actual duration of the signal. It is not possible to smulate a
realistic number of interactions in a population of any size with such amodel. It is
therefore essential that the right simplifications be found and that reasonably
realistic, but fast models of the speech phenomena under study be used. An
important part of modeling the evolution of speech (and perhaps of any cognitive
phenomenon) is therefore the trade-off between speed and realism.



Modeling different aspects of speech

Not only are there different possble gproaches to the problem of modeling
speed, there ae dso dfferent aspeds of speed that can be modeled. Here again,
there is a trade-off between acaracy and speed. As geed sounds pronounced in
sequence influence eab other, and as this influence is of grea importance to
understand language cange, it would be desirable to have a model that is as
complete @& possble. That is, a model that is able to produce asequence of
consonants and vowels as well as an intonation contour. However, there ae a
number of problems with modeling such complex utterances. The first problem,
that was already mentioned in the previous ®dion, hasto dowith the lad of speed
of complex articulatory models. But this is not the only problem. Another problem
is that adually very little is known about how sounds in sequence ae produced,
perceived and processed.

Lingusts generally make descriptions of human languages in terms of phonemes,
the sounds that are @le to make distinctions in meaning. An example is the
distinction between English /r/ and /I/ which have many minimal pairs (words that
differ only in one sound, and that have different meanings) such as ‘rate’ and ‘late’.
However, in a language such as Japanese, this particular distinction is not used,
there ae no minimal pairs with [r] and [l], and so in that languege [r] and [I] are
said to be allophones of one phoneme/I/.

Although phonemes have grea descriptive value, it is not quite dea what their
role is in storage axd processng of speed sounds. It is quite posshle that
processng of speed is done on different levels of complexity, both on a level
higher and lower than that of the phoneme. Thisis because when people pronounce
words, they do not produce astring of nicdy distinguishable phonemes. Instead,
they produce asequence of speed gestures that influence eab other mutually, so
that different phonemes overlap and become indistinguishable. Little is known
about how this processworks in articulation, and even lessis known about how the
speed signal is converted into strings of phonemes and words by the listener. Any
model that works with complex utterances therefore has to make assumptions
about how these processes work. But such assumptions reduce the redism that was
sought by using more cwmplex speed signals.

A fina problem with modeling complex utterances with the computer is that
inevitably time sequences have to be leant. This is adually an area of machine
leaning that is very hard, and for which very few genera purpose dgorithms are
avail able.

For the time being, al attempts at modeling have tried to tadle only a subset of the
possble speed sounds and the posshble speed uriversals. Succesgul models have
been made of models and simple (abstrad) syllables, while work is in progresson
tone systems and intonation.



A short History of Modeling

Probably the first attempt at making a computer model to explain uriversals of
speedr sounds was made by Liljencrants & Lindblom (1972. This model
performed an optimizaion of randomly initialized vowel systems with a fixed
number of vowels. The optimizaion used a function that was based on the
patential energy of repelling magnets or eledricdly charged particles with equal
polarity (this potential energy is higher whenever such particles are doser
together). By shifting the individual vowels in the system, this energy function was
minimized. Liljencrants and Lindblom found that vowel systems that were
optimized in this way showed remarkable simil arities with vowel systems found in
human langueges, athough there were some discrepancies. Later re-
implementations of that used modified dstance functions (e.g. Vallée 1994
Schwartz et al. 19970 have succealed in making progressvely better
approximations of human vowel systems.

Subsequently, Lindblom et al. (1984 have tried to use an optimizing model for
explaining phonemic (that is combinatorial) coding of syllables. The syllables
consisted of a simple mnsonant followed by a vowel. Although the systems that
emerged were phonemicdly coded, their model has not had the success of the
model for vowels, becaise there ae many more parameters in it and it is much
more difficult to replicae the results.

Only in the mid-nineties did work on explaining sound systems with computer
models get a new impulse with systems that were based on populations of sound
systems and agents. The first to make an agent-based implementation to investigate
the emergence of vowel systems was Glotin (Glotin 1995 Glotin & Laboisdéere
1996 Berrah et al. 1996 of the Institut de Communicaion Parlée (ICP) in
Grenoble, the same ingtitute were Schwartz et al. (19970 do their reseach. He
made a model in which a population of talking agents tries to develop a shared
repertoire of (a fixed number) vowels. His agents have both an amustic and an
articulatory representation of the vowels, and adapt their vowel systems on the
basis of their interadions. The gyents are dso subjed to a genetic dgorithm, which
is (acording to Glotin, personal communication) not meant to be amodel of adual
biologicd evolution of the ayents, but rather of the way sound systems are
transferred from parents to children. This is a weé&k paoint of the reseach, as the
influence of the genetic dgorithm and the interadions between the ayents are
difficult to separate. Another problem with the model was that it was
computationally too involved, and that therefore only few simulations with small
populations and small numbers of vowels could be run. In a way, this work was
ahea o the computing power of the time.

It has been at the basis of a number of subsequent research eff orts, however. In the
first placethose of Berrah (1998 and myself (de Boer 1997, 200Q de Boer & Vogt
1999. Berrah's work was a dired continuation of Glotin’s reseach. Berrah's
model is a simplification of Glotin’s model, in that the agents do no longer have an
articulatory representation of the sounds they use, only an amustic one. This
reduces the computational load considerably and allows more experiments with
larger populations and larger numbers of vowelsto be run. Berrah extends Glotin's
model by investigating what he cdls the “Maximum Use of Available Fedures’.



By alowing the ayents to use an extra feaure (which could be length, nasali zaion
etc. in human langueges, but which he models as an extra éstrad dimension of the
aoustic space he shows that this is only used whenever the number of vowelsin
the gents' repertoires excedls a cetain threshold. His smulations also contain a
genetic component, which makes it sometimes hard to tell when a particular
phenomenon is due to interadions between the agents and when it is due to the
adions of the genetic dgorithm.

My own work has concentrated on predicting vowel systems from interadionsin a
population. The aents have both an articulatory as well as an amustic
representation of their vowels, but use a much simpler articulatory model than
Glotin's model. Also, the aggents do not evolve, although experiments have been
done with changing populations (de Boer & Vogt 1999. They interad through
language games (in this experiment cdled imitation games) only. It has been
shown that vowel systems of human languages, and the relative frequencies with
which they occur can be predicted quite well with this model.

More recatly reseach has garted to investigate syllable systems with genetic
algorithms and population models relating in a similar way to the optimizing
simulation used by Lindblom et al. (1984 as Glotin's, Berrah's and my own work
relates to Liljencrants and Lindblom’'s (1972 model. Redford et al. (1998 to
appear) have made amodel that is based on a genetic dgorithm. The population
consists of words, which in turn consist of a dosed set of phonemes. Redford et al.
use anumber of rules that determine how hard it is to produce axd perceive
different combinations and sequences of phonemes. On the basis of this a fithess
for all the words in the population is cdculated and seledion and recombination
take place They try out different combinations of rules and investigate which rules
are most important to predict syllables that are like those found in human
languages.

Other work on predicting properties of more mmplex utterances is underway, but
dill largely unpublished. Pierre-yves Oudeyer of the Sony computer science
laboratory in Paris, France is working on predicting repertoires of syllables using
more redistic signas. Emmanuelle Perrone of the Ingtitut des Sciences de
I"'Homme is also working on predicting consonant-vowel syllables in the
framework of imitation games. Eduardo Miranda of the Sony computer science
laboratory in Paris, France is working on modeling intonation contours, while
professor William Wang of the dedronic engineeing department of the City
University of Hong Kong and co-workers Mieko Ogura and Jinyun Ke ae working
on modelli ng tone systems within the framework of genetic dgorithms,

A case-study

In order to ill ustrate the ideas outlined above, a cae-study will now be presented.
As the work with which | am most familiar is my own, | will present my model of
the amergence of vowel systems. At every point in the description | will discuss
the design decisions that have been made. | will not present full details, as these
can be found in the references (de Boer 1997 1999 de Boer & Vogt 2000. Of
course | do not mean to imply that my work is more interesting, or more typica



than the other work mentioned above. On the ontrary, the fad that a genetic
component is laking in my system mekes it somewhat different from most
computational modeling of the origins of sound systems. However, the other work
is best studied in the original sources. As a genetic component is a very important
fador in modeling evolution and origins of languege, | will discussthe possbiliti es
of integrating my model with a genetic adgorithm, although so far this has not been
implemented.

Vowels were chosen as the subjed of research for two reasons. First of all, they are
the eaiest speed sounds to model. Typicdly, avowel signa is constant over time
and babh its articulatory and acoustic charaderistics can be described by very few
parameters: in my model threered numbers for articulation and four red numbers
for the amustic signal. Secondly, vowels are the speed signals for which most is
known about their distribution over the languages of the world. This makes it
relatively essy to compare results of simulations with what we know about red
human langueges. Easy and oljedive wmparison with human languege data
makes smulations much more convincing for alingustic audience.

It was dedded to investigate change of vowel systems from a alltural perspedive
rather than from an evolutionary perspedive, becaise vowel systems of human
languages change over time, but continue to show the same nea-universa
charaderistics. However, there ae exceptional vowel systems that do not conform
to the universals. Therefore, it would seam unlikely that a strong innate mnstraint
determines their shape. Rather, as was proposed by Steds (1995 in the context of
vocabulary, self-organization in a population might be the force that causes human
vowel systems to show universal tendencies. Of course, genetic evolution has also
played an important role in shaping the vocd trad, but this might then be
considered as a processthat is driven by cultural evolution.

Therefore, it was dedded to leave out any genetic component in the first
implementations of the model and rather to work with a population of agents
playing language games. This also makes it easier to analyze the behavior of the
system and to determine what phenomena ae caised by which processs. Of
course, genetic evolution of the agents can be introduced as well, and suggestions
will be made asto where this could be done.

The aents that make up the population were designed to be & smple & possble
while preserving the aucial charaderistics necessry for investigating the
charaderistics of human vowel systems. They were equipped with a simple
articulatory synthesizer that was based on measurements of vowel parameters
taken from (Vallée 1994). This g/nthesiser takes as input the three aticulatory
parameters necessary to describe a simple vowel: pasition, height and rounding
(Ladefoged and Maddieson, 1996 and outputs the first four formant frequencies.
These represent the center frequencies of the four most important peaks of the
vowel’s acoustic spedrum. The gyents' perception uses a distance function that is
cdculated in the space that has as dimensions the first and the so-cdled effedive
seoond formant. The dfedive second formant is the weighted sum of the three
highest formants and represents the perceptual phenomenon that multiple pegks in
the higher part of the spedrum can be replaced by one singe pes and still be
perceved as the same. The particular cdculation used is adapted from (Mantakas
et al. 1986.



The gents dore vowels in terms of both acoustic and articulatory prototypes.
There is a one-to-one asciation between the two types of prototypes. Prototypes
are centers of caegories. Whenever a signal is perceived, the distance to al the
aooustic prototypes is cdculated and the one that is closest is considered to be the
one that is recgnized. In the cae of production, an articulatory prototype is
chosen and the mrresponding acmustic signal is produced, but noise is added to this
by shifting the formant frequencies ssmewhat. During the process of learning a
repertoire of vowels, prototypes can be alded, deleted or shifted in order to match
the vowels of other agents in the population more dosely. For doing this, agents
can only base themselves on the behavior of other agents; they cannot look at the
other agents' vowel repertoires diredly. Storing phonemes in terms of prototypes
seans to be wgnitively plausible. It has been observed that different types of
speedh signals are perceved in terms of prototypes (see eg. Cooper et al. 1952
Frieda et al. 1999 and aso that other lingustic and cognitive concepts are stored
and processed in terms of prototypes as well (e.g. Lakoff 1987).

In a model of this kind, the interadions between the agents are & important as the
architedure of the ggents themselves. In human language, lingustic interadions do
not just consist of an exchange of lingustic symbols. There is always a context,
both in the form of alingustic context and the situation in which the conversation
is taking place This stuation hes a physicd asped, i.e. the ewvironment in which
the @nversation is taking place but it also has a social asped and a pragmaticd
asped (and possbly other dimensions as well). All these aspeds influence the
lingustic exchange. It is clea that modeling a complete lingustic exchange is
extremely difficult.

However, when one is only interested in the sounds of languege, one can in
principle ignore everything that has to do with meaning. Instead, one can use
interadions that are based on imitation. In imitation, the same @nstraints on sound
systems apply as in red lingustic interadions. For imitation to be succesdul,
sounds have to be eaily distinguishable, as well as easy to produce just as they
should be in a omplete mmmunication system. For this reason, the interadions
between the gents in the system under study consisted of agents trying to imitate
ead other. In analogy with the term language game, these interadions will be
cdl ed imitation games.

In an imitation game two agents are picked from the population at random. One of
these gyents is asdgned the role of initiator of the imitation game, the other is
asdgned the role of imitator. Althoughthe roles of the agents in an imitation game
are not symmetricd, al agents in the population have equal probability to play
bath roles. Although it is the cae that in human leaning of sound systems the
roles of infants and adults are not symmetricd, it was dedded not to implement
thisin the model. First of al, it would have introduced more parameters and more
arbitrary design dedsions and seandly, the am of the research was not so much to
model the way sound systems are aquired, but to investigate whether universal
tendencies of vowel systems can be explained as sf-organizaion in a population
of language users.

The initiator of the imitation game dooses arandom vowel from its repertoire, and
produces it, while alding a small amount of noise. The imitator percaves this
sound, finds the a®ustic prototype of the vowel from its repertoire that is closest to
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Figure 5: Emergence of aredistic vowel system.

it and produces the arresponding articulation, again adding roise. The initiator
then perceves this sgnal, finds its closest vowel, and chedks whether this is the
same & the one it originally produced. If it is the same, it gives a “non-verbal
feedbadk” to the imitator that the imitation was siccessul, while if it was not the
same, it gives fealbadk that it was a fail ure. These steps include the main aspeds
of alinguistic utterance using a sound: production urder constraints and with error,
analysis in terms of a finite set of caegories, and grounding of these cdegories
outside the gyent using ron-lingustic cues. Althoughit is true that infants do not
recave dired feedbadk about the quality of the sounds they produce, there must be
a mechanism to provide a onnedion between meanings in the outside world and
the sounds an infant perceives, otherwise an infant would not be @le to lean
which sounds in its language can distinguish meaning and which sounds can not.
The feadbad in the cae of human infants learning languege is probably derived
from the etralingustic context in which the utterance takes place or by the
ability to achieve agoa with a given uterance or not.

In readion to the fealbadk, and based on the success of the vowel in previous
games, the imitator can shift the vowel it used or add a new vowel. Both agents
also keep tradk of how many times the vowel was used and how many times it was
used succesdully. Also, bath agents regularly throw away vowels that have been
tested a few times and have been found to be unsuccesful most of the time, and
merge vowels that are too close together. Finaly, a random vowel can be inserted
with low probability, in order to make sure that the agents' repertoires beamme &
large & posdble. The details of the way in which the aents update their
repertoires will not be discussed here, but can be found in (de Boer 1997, 200Q de
Boer & Vogt 2000.



The gents gart out with an empty repertoire and are in principle ale to produce
al basic vowels. This means that the system is not biased towards any language in
particular, and that the results of the simulations can therefore be asumed to say
something about human language in general.

Running the simulations results in the emergence of redistic vowel systems. A
representative example is given in figure 5. The figure nsists of five frames, eat
representing a stage in the development of the vowel system. In ead frame, the
effedive second formant and the first formant of all the aoustic prototypes of all
the gents in the population are projeded. The dfedive second formant is
projeced on the horizontal axis and the first formant is projeced on the verticd
axis. The usual diredions of the axes are reversed, so that the vowels are projeded
in the way phoneticians usualy projed vowel systems, with [i] in the upper left
corner, [u] in the upper right corner and [a] below. Note that not every point in the
square can be readed by the ggents articulations. The available amustic spaceis
roughy trianguar with the tip at the bottom of the graph.

The first frame shows the situation after 50 games. The agents gart out empty, and
as there has only been littl e time for agents to interad with ead other, the most
important process ® far is random insertion of new vowels by agents that initi ated
an imitation game and dired imitation of these vowels by the agents that played the
role of imitator in an imitation game. The vowels are therefore quite widely
dispersed through the available amustic space but they do not cluster very much.
During subsequent imitation games, the agents vowels gradualy move together.
Also, due to the random insertion of new vowels, other clusters emerge, but not all
agents have prototypes that correspond to al clusters. This stuation is ill ustrated
by the second frame of figure 5, taken after 300 games. When the interadions
continue, the dusters tend to stabili ze and contrad, and become dispersed over the
available aoustic space This becomes apparent after about 1000imitation games
(frame 3) and is amost finished after 10,000 imitation games (frame 5). After
10,000 imitation games, the dusters have become @mpad, and the available
aooustic space is amost completely covered. However, the dispersion of the
clusters over the available spaceis perhaps not quite optimal, yet. The dispersion
gradually becomes better, urtil it is quite natural after 20,000 imitation games
(frame 6). The vowel system that emerges is natural, and could be found in a
human languege. It is not completely static, though Vowel prototypes can move,
so that the adual phonetic redizaions of the vowels might change alittle over
time. Also, in rare caes, clusters may approach ead other and be merged, or, if
there isroom, a new cluster might emerge.

Although a redistic vowel system emerges from the simulation illustrated in
figure 5, this does not establish that the simulation always results in redistic vowel
systems emerging. In order to investigate this, many runs of the system neeal to be
done, and the results be compared with what is known about human langueges. For
one thing it is possble to define ameasure of the dispersion of the vowels in the
population of agents. It has been found that vowels in human languages tend to be
dispersed more than in randomly creded systems, and are adually quite dose to
being optimally dispersed (Liljencrants & Lindblom, 1972. It turns out that
emerged systems, too, are dmost optimally dispersed over the available aoustic
space
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Figure 6: Classification of emerged five-vowel systems.

But it is aso pocsdble to compare energed vowel systems with human ones
diredly. This can be done by running the simulation many times, then classfying
the emerged vowel systems and comparing this clasdficaion with the
clasgficaion one can make of human vowel systems. Thisisill ustrated in figure 6.
Here five-vowel systems that emerged from the simulation for one setting of the
parameters are dassfied in three different types. The symmetrica type occurs in
88% of the caes, the type with more front vowels than badk vowels (and one
central vowel) occurs in 8% of the cases, while the type with more bad than front
vowels occurs in 4% of the caes. This compares very well with the percentages
that Schwartz et al. (19979). They have found 8% for the first type, 4% of the
seoond type and 2% of the third type (these percentages do not add up to 100%, as
they also found types that did not emerge from my simulations). Although the
match between merged systems and red human languege data is particularly good,
excdlent matches were dso found for systems of six and seven vowels. For
systems of four, eight and nine vowels, matches were good, but not as good For
threevowel systems, the right types were predicted, but the so-cdled “verticd”
threevowel system, which is quite rare in human languages, occurred relatively
frequently. However, the study has $iown that the universal tendencies of human
vowel systems can be explained as the result of self-organizaion urder constraints
of perception and production.

The model could be aigmented with a genetic dgorithm that works on the aents
in the population in several ways. One way is to let the leaning parameters of the
agents change over time in a geneticdly determined way, and seled for the agents
that imitate the best. In this way, parameters that have to be tuned by hand in the
present model could be set in a more objedive way. Another way is to let the
agent’s production or perception evolve over time. Espedally production would be
interesting as it seams that the human vocd trad is pedally adapted to language.
One wuld imagine apopulation of agents that start with a uniform tube with only a
few control parameters, which is evaluated on how well they can imitate eat other
and how many different sounds they can distinguish. It would be interesting to
investigate whether avocd trad that is $milar to that found in humans evolves.



Conclusion and future work

It has been demonstrated by different reseachers that the evolution of human
speed sounds can be investigated succesSully with computer models. Different
aspeds of speed, such as vowel systems, syllables, tone systems and intonation
have been investigated, or are being investigated. The gproaches taken have
consisted of either pure optimization, the use of genetic dgorithms, the use of a
population of language-using agents or a cwmbination of these. The most redistic
would be asystem consisting of a population of agents that lean speed from eat
other, but that are dso subjed to genetic evolution. However, such a system would
have many parameters and many points on which a (more or lesg arbitrary design
dedsion would have to be made. Also, it might turn out to be difficult to analyze
the behavior of such a system. For the time being most systems either concentrate
on population dynamics or on evolution, but in the future the two will definitely
have to be cmbined.

In future work, too, more complex utterances have to be tadkled. So far vowelsin
isolation and simple @nsonant-vowel syllables have been the main subjeds of
investigation. But for more insight into language change and evolution, longer
combinations of arbitrary sounds have to be studied. For this, more redistic and
more computation intensive models will be needed. However, computing power
avail able to the average researcher has increased so much in recent yeas that such
models have now become cmputationaly feasible. It will till be necessary,
though, to find appropriate simplifications in order to make redistic, but tradable
models.

Also, for the study of more complex sounds, machine leaning algorithms are
needed that are ale to lean temporal sequences and that are ale to extrad
patterns from such sequences. This is an areaof reseach that is gill very openin
the machine learning community. An interesting asped is that the aility to lean
sequences and to find petterns in them is also a necessary prerequisite for leaning
syntax and grammar. Perhaps an interesting exchange of ideas and models between
the investigation of the origins of syntax and the origins of speedis possble.
Speedh is the aped of language that is most concrete. It is therefore eaiest to
make an objedive comparison between red linguistic data and the outcomes of a
computer model in reseach into the evolution of speed. Also, paleontologic data
can only tell us omething about our ancestor’'s cgpadty for speed, never about
other aspeds of language. Speed is therefore ided for investigating and modeling
the evolution of language. So far, we have only scratched the surface
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