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Abstract. There is much empirical evidence showing that factors other than 

the relative positions of objects in Euclidean space are important in the compre-

hension of a wide range of spatial prepositions in English and other languages. 

We first the overview the functional geometric framework (Coventry & Garrod, 

2004) which puts “what” and “where” information together to underpin the 

situation specific meaning of spatial terms. We then outline an implementation 

of this framework. The computational model for the processing of visual scenes 

and the identification of the appropriate spatial preposition consists of three 

main modules: (1) Vision Processing, (2) Elman Network, (3) Dual-Route Net-

work. Mirroring data from experiments with human participants, we show that 

the model is both able to predict what will happen to objects in a scene, and use 

these judgements to influence the appropriateness of over/under/above/below to 

describe where objects are located in the scene. Extensions of the model to other 

prepositions and quantifiers are discussed.  

 

1   Introduction 

Expressions involving spatial prepositions in English convey to a hearer where one 

object (located object) is located in relation to another object (reference object). For 

example, in the coffee is in the cup, the coffee is understood to be located with refer-

ence to the cup in the region denoted by the preposition in. Understanding the mean-

ing of such terms is important as they are among the set of closed class terms which 

are generally regarded as having the role of acting as organizing structure for further 

conceptual material (Talmy, 1983). Furthermore, from the semantic point of view 

spatial prepositions have the virtue of relating in some way to visual scenes being 

described, and therefore measurable characteristics of the world (Regier, 1996). 

Hence, it should be possible to offer more precise semantic definitions of these as 

opposed to many other expressions because the definitions can be grounded in percep-

tual representations.  



Most approaches to spatial prepositions have assumed that they only require 

coarse grained properties of the objects involved as constraints on their use (e.g., 

Herskovits, 1986; Landau and Jackendoff, 1993). Computational models too have 

made the same assumption, and have focused on mapping individual prepositions onto 

geometric computations in the scene being described (e.g., Logan & Sadler, 1996; 

Regier, 1996; Regier & Carlson, 2001; Gapp, 1995). Yet there is now much evidence 

(see Coventry & Garrod, 2004, for a comprehensive review) that “what” objects are 

influences how one talks about “where” they are. For example, Coventry, Prat-Sala 

and Richards (2001) found that acceptability ratings of sentences such as the umbrella 

is over the man were influenced by whether the objects in the scene were shown to be 

fulfilling their protection (or containment) functions. For instance, with reference to 

the scenes shown in Figure 1, sentences were rated as being significantly more appro-

priate when the umbrella was depicted as protecting the man from rain (scenes in the 

middle row), and least appropriate when the rain was falling on the man (scenes in the 

bottom row). Furthermore, extra-geometric variables came into play even when the 

prototypical geometric constraint for the use of a term holds (i.e., effects were found 

even for scenes in the first column). Additionally, Coventry et al. found that function 

has a much bigger affect on the ratings for over/under than for above/below, and con-

versely that geometry (e.g., rotation of the umbrella in Figure 1) influences the ratings 

of above/below more than over/under.  

 
Fig. 1. Example scenes used by Coventry, Prat-Sala and Richards (2001) 

 

Similar effects have been found across a wide range of prepositions and methodologies. 

For example, extra-geometric effects have been found for in and on (Coventry, Carmi-

chael & Garrod, 1994; Coventry & Prat-Sala, 2001; Garrod, Ferrier & Campbell, 1999; 

Feist & Gentner, 1998), above (Carlson, Covey & Lattanzi, 1999; Carlson & Tang, 

2000), over (Coventry & Mather, 2002), in front of and behind (Carlson-Radvansky & 

Radvansky, 1996), between (van der Zee, Watson & Fletcher, in press; Coventry & Gar-

rod, in press), and near (Ferenz, 2000). Furthermore, the effect sizes found across these 

studies indicate that these effects are not minor pragmatic add-ons to geometric formula-



tions, but rather indicate that extra-geometric variables are central to the comprehension 

and production of spatial terms.  

1.1   The Functional Geometric Framework 

Reviewing the extra-geometric evidence, Coventry and Garrod (2004, in press) clas-

sify these influences into two types; dynamic-kinematic routines, and conceptual 

knowledge regarding the specific functions associated with specific objects. Dy-

namic/kinematic routines implicate knowledge of what will happen to scenes over 

time, and the initiation of such routines is related to knowledge of what objects are in 

the scene. In particular these dynamic/kinematic routines relate to Jeannerod’s (1994, 

2001) distinction between "semantic" visual representations, usually associated with 

visual imagery, and "pragmatic" representations associated with motor imagery. Jean-

nerod assumes that motor images underlie such things as preparing for an action or 

rehearsing an action. Furthermore he argues that the two representations, the semantic 

and the pragmatic, have a neural correspondence with the what and the where systems 

described above. Whereas "semantic" representations encode relatively detailed in-

formation about objects in a scene, “pragmatic” representations encode visual proper-

ties in relation to affordances, i.e., those visual characteristics that are important in 

organizing motor programs for manipulating the objects. These include information 

about the size, weight and shape of objects, as well as special features of those objects 

that are relevant for their manipulation, such as the location of handles for grasping. 

Empirically Freyd, Pantzer and Cheng (1988; see also Schwartz, 1999) carried out 

experiments in which they observed systematic memory errors for scenes involving 

the same objects in the same geometric configurations, but with different forces acting 

on them. Thus, in a situation where a plant pot is first seen supported by a chain then 

not supported, observers tend to misjudge the position of the plant pot as being lower 

in a subsequent memory test. In the spatial language domain, Coventry (1998) and 

Garrod, Ferrier and Campbell (1999) have demonstrated similar effects for in and on. 

For example, using static scenes involving pictures of ping pong balls piled high in 

containers with a string attached to the top ping pong ball in many scenes, they found 

that ratings of the appropriateness of in to describe such scenes was directly correlated 

with independent judgments of the likelihood that the ball and container would remain 

in their same relative positions over time should the container be moved.  

In addition, a great deal of specific knowledge about objects is also required. For 

example, the same convex object labelled a dish versus a plate is clearly associated 

with the expectation of a containment versus a support relation (Coventry, Carmichael 

& Garrod, 1994). Similarly, knowing that jugs are primarily containers of liquids has 

been shown to weaken in judgements for solids piled high in a jug as compared with 

in judgements for the same pile in a bowl with the same degree of concavity (Coven-

try, Carmichael & Garrod, 1994; Coventry & Prat-Sala, 2001). 

Coventry and Garrod (2004) argue, importing terminology from Ullman (1984, 

1996), that the application of geometric and dynamic-kinematic routines underlie the 

comprehension of spatial prepositions. Furthermore, the application of such visual 

routines is driven by knowledge of the objects involved in the scene and how those 



objects typically interact in past learned interactions between those objects. Further-

more, just as objects are associated with particular routines, both geometric and dy-

namic-kinematic, prepositions themselves have weightings for these parameters. As 

we have seen above, the comprehension of over/under is better predicted by extra-

geometric relations than the comprehension of above/below, while conversely the 

comprehension of above/below is better predicted by geometric routines than the 

comprehension of over/under. In the functional geometric framework it is how these 

constraints “mesh” together (cf. Glenberg, 1997; Barsalou, 1999) that underpins the 

comprehension of spatial prepositions. The computational model we next outline 

implements the multiple constraint satisfaction in the functional geometric framework 

and maps onto new and existing datasets from human participants. The approach in-

troduces cognitive-functional constraints by extennding Ullman’s (1996) notion of 

visual routines to include operations on dynamic rather than static visual input. We 

next outline the components of the model, together with the experimental data used to 

test and validate the model.  

2   Implementing the Functional Geometric Framework 

2.1 Experimental Data 

The model we outline shortly can deal with a range of prepositions, but here we focus 

on over/under/above/below. We conducted a series of experiments (see Coventry, 

Cangelosi et al., in preparation, for more details) involving three different reference 

objects (a plate, a dish and a bowl) pre-tested in a sorting task and a rating task to be 

the prototypical dimensions of these objects, and a variety of other objects which were 

all containers (e.g., a jug). Each container was presented in each of 3 x 2 positions 

“higher” than the other objects (representing 3 levels of distance on the x axis and two 

levels on the y axis from the other object). Crucially the container was shown to pour 

liquid such that it ended up reaching the plate/dish/bowl (the functional condition), or 

missed the plate/dish/bowl (non-functional condition), or liquid was not present. Fig-

ure 2 shows some example scenes. The methodology used for these experiments in-

volved the presentation of pictures together with sentences of the form The located 

object is preposition the reference object, and the task for participants was to rate the 

appropriateness of each sentence to describe each picture using a Lickert scale (range 

from 1 = totally unacceptable to  9 = totally acceptable).  

 In Experiment 1 participants saw movies of the pouring scenes (or static scenes for 

the no liquid condition given that no movement was involved). The results showed 

effects of geometry and function together with interactions between these variables 

and over/under versus above/below, effectively replicating the results of Coventry et 

al. (2001). Experiment 2 compared the full movies with just the (single frame) end 

states, and this established that seeing the full movie makes no difference to accept-

ability ratings, it is what happens to the liquid that counts. Experiment 3 then com-

pared end states to an earlier frame in the movie showing the liquid starting to pro-



trude from the pouring container (see bottom picture in Figure 2) in order to assess 

whether participants predict what will happen to the liquid in order to make judgments 

about the appropriateness of over/under/above/below. Although acceptability ratings 

were overall lower for the predicted scenes rather than the end state scenes, effects of 

geometry, function and interactions between these variables and over/under versus 

above/below were still present, indicating that participants do predict where the liquid 

will go in order to ascertain the appropriateness of these prepositions. Experiment 4 

confirmed this by finding a correlation between judgments of how much of the liquid 

will make contact with the appropriate part of the plate/dish/bowl and acceptability 

ratings for over/under/above/below.  

 
Fig. 2 Sample scenes used in the experiments. The top six pictures represent the 6 levels of 

geometry used. All six pictures show the functional condition where the liquid was shown to 

end up in the container. Non-functional scenes involved the same relative positions of teapot 

and container, but this time the liquid was shown to miss the container. The bottom picture 

shows an example of a scene where only the start state was shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data from these experiments indicate that participants use both information 

about the geometry in the scene and information about the interaction between pouring 

container and recipient container in the scene to assess the appropriateness of 

over/under/above/below. As has been found previously (Coventry et al., 2001), the 



influence of geometry was stronger for above/below than for over/under, while the 

influence of function (whether the liquid was shown to enter or miss the recipient 

container, or was predicted to enter or miss the container) was stronger for over/under 

than for above/below.  

Data from these experiments was used as a means of testing and training the 

model, which we outline next. 

 

2.2 The Computational Model 

The computational model for the processing of visual scenes and the identification of 

the appropriate spatial preposition consists of three main modules: (1) Vision Process-

ing, (2) Elman Network, (3) Dual-Route Network (cf. Figure 3). The first module uses 

a series of Ullman-type visual routines to identify the constituent objects of a visual 

scene (reference object, located object and liquid). The Elman network module util-

ises the output information from the vision module to produce a compressed neural 

representation of the dynamics of the scene (e.g. movement of liquid flow between the 

reference and located objects). This compressed representation is given in input to the 

dual-route (vision and language) feedforward neural network to produce a judgment 

regarding the appropriate spatial terms describing the visual scene. We describe each 

of these modules and their development in turn.   

 
Fig. 3. Architecture of the computational model. The dotted arrows indicate functional connec-

tions between the three modules. The dual-route network has 30 visual input/output units be-

cause they copy the hidden activation of 3 different Elman networks (one with 20 hidden units, 

and two with 5 units each). 
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2.2.1 Vision processing module 

In our computational model for spatial language, visual object recognition, spatial 

location and motion information are functionally necessary for the cognitive task. 

Beginning with the distinction between “what” versus “where” pathways (classically 

assumed to be the functionally segregated dorsal and ventral streams after Ungerleider 

and Mishkin, 1982), we also needed to consider the integration of object, location and 

motion integration when deriving a neurocomputational model. Our novel neurocom-



putational approach to object recognition for spatial cognition represents a compro-

mise between the dynamic operation of the recurrent neurodynamical models of Deco 

and Lee (2002) for selective attention, and Edelman’s (1999) feedforward chorus 

model for object recognition, and is conceptually congruent with Ballard et al’s 

(1997) model (i.e. the output of our system is a plausible deictic pointer to objects in 

the visual scene). Image sequences (real object images composed into moving videos) 

are presented to the model, which processes them at a variety of spatial scales and 

resolutions for object form and motion features yielding a visual buffer (functionally 

analogous to processing in the striate visual cortex). In addition to the basic scale 

representation, texture, edge and region boundary features are extracted. Motion cells 

(in the magnocellular pathway) are modeled as uni-directional brightness gradient-

sensitive cells whose outputs are combined. This is outlined in Figure 4. 

 
Fig. 4. Left: Constituents of the Vision Processing Module and their relationships with known 

neural substrates. Right (Top): Snapshots of the overall saliency map after 9 fixations. Right 

(Bottom): Multiple Fragments of Teapot Object (A) Full visual buffer (B) Edges (C) Re-

gion/Boundary and (D) Texture 

 

 

     
 

 

The attentional saliency map (Figure 4, Right) is a very low resolution (reti-

notopic) array of neurons which receive bottom-up activation from the static and mo-

tion features in the visual buffer, but which can be strongly inhibited when the region 

they code for is attended to or when object recognition is strong enough to require 

little further processing of a region. This represents information integration that might 

take place involving the kinds of information processed in the posterior parietal cor-

tex. This is used to direct attention and once a region is selected (analogous to a kind 

of spotlight of attention), the higher-resolution information contained in the visual 

buffer is allowed to feedforward to the object recognition stream. Since attention se-

lects only a windowed region of the whole visual buffer for processing in IT, our sys-

tem represents a chorus of object fragments. We use Gaussian adaptive resonance 



models to learn the space of fragments for each object (Williamson, 1996), leading to 

a probabilistic implementation.   

We elaborate on the visual processing and selective attention mechanism and its 

role in a novel chorus of fragments framework for object recognition elsewhere (Joyce 

et al. 2002).  We show how this may form part of a larger system for spatial language 

comprehension and speculatively for prefrontal cortex short term visual memory and 

object-place binding (via the perirhinal – entorhinal – hippocampal network), all of 

which further ground the understanding of the visuo-spatial processing in a computa-

tional framework. 

2.2.2 Elman network module 

This module consists of a predictive, time-delay connectionist network similar to 

Elman’s (1990) simple recurrent network, which we refer to hereafter as the Connec-

tionist Perceptual Symbol System Network (CPSSN; Joyce et al., 2003).  Figure 3, 

middle image, shows the CPSSN network as an Elman SRN.  As a suitable (and plau-

sible) input representation for the CPSSN, we propose a “what+where” code (see also 

Edelman, 2002). That is, the input consists of an array of some 9x12 activations (rep-

resenting retinotopically organised and isotropic receptive fields) where each activa-

tion records some visual stimulus in that area of the visual field. This is the output 

information produced by the Vision module. In addition to the “field” representation, 

we augment a distributed object identity code. These codes were produced by an ob-

ject representation system (Joyce et al. 2002; based on Edelman’s (1999) theory) 

using the same videos.  The CPSSN is given one set of activations as input which 

feedforward to the hidden units. In addition, the previous state of the hidden units is 

fed to the hidden units simultaneously (to provide a temporal context viz. Elman’s 

(1990) SRN model). The hidden units feedforward producing an output which is a 

prediction of the next sequence item. Then, using the actual next sequence item, back 

propagation is used to modify weights (see Figure 3) to account for the error. The 

actual next sequence item is then used as the new input to predict the subsequent item 

and so on. Using the coding scheme discussed, we have a total input vector of length 

116 (where 8 of these 116 elements code for each object, e.g. liquid, bowl, cup etc.). 

The output is similarly dimensioned, and there were 20 hidden units (and 20 corre-

sponding time-delayed hidden state nodes) to represent movement of the liquid.   

The network training regime was as follows: a collection of sequences are shown 

to the network in random order (but of course, the inputs within a sequence are pre-

sented one after another). Each sequence contains a field and object code for the “liq-

uid” in the videos. Multiple CPSSN networks would be required to account for the 

other objects in the scenes.  A root-mean-square error measure is used to monitor the 

network’s performance, and the ordering of sequences is changed each time (to pre-

vent destructive interference between the storage of each sequence). Initially, the 

network is trained with a learning rate of 0.25, and after the RMS error stabilises, this 

is reduced to 0.05 to allow finer modifications to weights. For 6 sequences, a total of 

about 150 presentations are required (each sequence is therefore presented 25 times) 

to reduce RMS averaged over the whole training set from around 35 to around 0.4.   



It is quite obvious that this network is hetero-associating successive steps in the se-

quence of fields, but in addition, the network is performing compression and redun-

dancy reduction (in the hidden layer) as well as utilising the state information in the 

time-delayed state nodes. It is also coding for the changes between sequence items 

(e.g. the dynamics of how the object moves over time) rather than coding individual 

sequence items (which would be auto-association).  The model embodies the idea that 

representation is inherently dynamic (cf. Freyd, Pantzer & Cheng, 1988). The network 

should, naturally, be able to make a prediction about a sequence given any item in the 

sequence. Intuitively, the network should be capable of this in the case where a cue is 

the first item of a sequence, since the time-delayed state is irrelevant (i.e., there can be 

no temporal context accumulated in the time-delay nodes). However, we propose that 

the network is a mechanism for implementing perceptual symbols, and therefore, a 

requirement is that it can “replay” the properties of the visual episode that was 

learned. Given a cue, the network should produce a prediction, which can be fed-back 

as the next input to produce a sequence of “auto-generated” predictions about a se-

quence (viz, a perceptual symbol). Indeed, this network is able to predict the final 

outcome of the visual scenes (Joyce et al., 2003).  

2.2.3 Dual-route network 

The dual-route network is a feedforward neural network (3-layer perceptron) that 

receives in input the grounded “visual” information (hidden activations of the Elman 

networks) and linguistic data (name of located object, name of reference object, name 

of liquid  + 4 spatial prepositions over, above, below, under). In output it must repro-

duce (auto-associate) the same visual data, and produce the names of object, which are 

directly grounded in the input visual data. In addition, the four output units for the 

spatial prepositions will encode the rating values given by subjects. This architecture 

is directly inspired by dual-route networks for the grounding of language (Plunkett et 

al., 1992; Cangelosi et al., 2000; Cangelosi in press). 

This network is trained via the error backpropagation algorithm. The training and 

test sets consist of the 216 scenes. These are the same as those used in the experiment 

on the rating of over, above, under, below (Experiment 11 above). Of these stimuli, 

195 are used for the training and 21 for the generalisation test. The overall objective 

of the training is that the network must learn to produce the same average ratings for 

the four prepositions. We did not use the average ratings as the teaching input, be-

cause this was against the principle of mutual exclusivity (Markmann 1987). During 

standard backpropagation training, the use of the ratings as teaching input assumes 

that the same scene must be simultaneously associated to the use of all four preposi-

tions (each with an activation value proportional to the subjects’ average rating). In-

stead, during developmental learning subjects tend to choose only one preposition to 

describe a scene. Naturally, the probability of choosing one preposition to describe a 

spatial relation is correlated to its level of appropriateness (i.e. similar to ratings). 

Therefore, to simulate such a learning strategy better, the original ratings of each 

scene-preposition pair were converted into frequency of presentation of a stimulus 

with an associated localist teaching input (where the output unit of the chosen preposi-



tion is 1 and the other three units are 0). To obtain such a frequency, the original aver-

age ratings were scaled and normalised within each scene and also within the whole 

training set. For example, individual prepositions’ ratings of 7.08 (above), 7.12 (be-

low), 3.96 (over), 4.32 (under) respectively correspond to presentation frequencies of 

28, 28, 7 and 9. The conversion of ratings into preposition resulted in an epoch of 

2100 stimuli. 

Three networks were trained using different initial random weights and different 

random sets of 21 generalisation test stimuli1. The training parameters included a 

learning rate of 0.01 and momentum of 0.8, and a total number of training epochs of 

500. The average final error (RMS) for the 30 vision units was 0.008 for both training 

and testing data, and 0.003 for the 6 output units of the object names. More impor-

tantly, for the 4 spatial preposition output units, the error was 0.044 with training data 

and was 0.05 with generalisation data. The error values in the preposition units were 

calculated off-line by comparing the actual output of the 4 preposition units and the 

rating data (from Experiment 3 overviewed above) converted to produce the stimulus 

frequencies (the actual error values used for the weight correction are always higher 

because they use localist teaching input). These results clearly indicate that the net-

works produce rating values similar to that of experimental subjects. They also indi-

cate that the training algorithm based on presentation frequency, instead of rating 

teaching input, works well and provides a psychologically-plausible learning regime.  

2.4 Interplay between Experimental and Computational Work 

The development of the computational model has been conducted in parallel with 

experimental investigations. However, in the early part of the development of the 

model, the experimental work has mostly influenced the model design. For example, 

in the previous section we explained that the training/test stimuli and the rating values 

were directly taken from one experiment. Later on in the development of the model, it 

was the model that directed some of the directions and objectives of the experimental 

investigation. In particular, new simulations produced some predictions that were 

subsequently tested in new experiments. 

Research on the design and test of the Elman module had shown that these net-

works were able to predict and auto-generate the final outcome of the visual scenes, 

once they were given an initial cue (e.g few initial frames). The network would pro-

duce the next prediction frames, which were fed-back as the next input. To integrate 

such prediction ability in the overall spatial language model, the hidden activation 

values of these auto-generated sequences were used as visual input of the dual-route 

network. The model was then run as usual to produce the ratings of the 4 prepositions.  

To establish if the new ratings provided by the model were consistent with those 

produced by real subjects, a new experiment was conducted (Experiment 4, see 

0                                                           

1 Here we report only the data from the best simulation. Different parameters values and hidden 

layer sizes were tested. 



above). The results for this experiment, together with the results of Experiment 3, 

strongly suggest that subjects had to mentally “play” the visual scene and auto-

generate the outcome of the scene to rate the linguistic utterance. This is very similar 

to what the model does, when the Elman network autogenerates the visual scene, and 

the dual-route network uses the Elman net’s activations to produce new ratings. The 

Elman network used the first 3 out of 7 frames. This corresponds to the frames 0, 10 

and 20 (Elman networks only see a frame every 10). The comparison of the subjects’ 

rating data and the networks’ output of the 4 prepositions resulted in an RMS error of 

0.051. This is a very low error level, and confirms that the model had predicted very 

accurately the ratings. Overall, this result and those on the dual-route tests support the 

development of a psychologically-plausible model for spatial language.  

 

3   Discussion: Extension and Links 

The model we have outlined has been tested across other spatial relations as well as 

over/under/abive/below, including the importance of location control for the preposi-

tion in. Currently we are extending the model so that it can return a description of the 

number of objects in the visual input scene as well as the spatial relations between 

objects depicted. Vague quantifiers like a few and several exhibit many of the same 

context effects that have been observed for spatial prepositions. For example, relative 

size of figure and ground objects (Hormann, 1983; Newstead & Coventry, 2000) and 

expected frequency (Moxey & Sanford, 1993) have both been shown to affect the 

comprehension of quantifiers; A few cars is associated with a smaller number than a 

few crumbs, and some people in front of the cinema is associated with more people 

than some people in front of the fire station. These context effects appear very similar 

to the range of effects in evidence for spatial preposition. Therefore the issue we are 

exploring is that these context effects originate from visual processing constraints such 

that information regarding specific numbers of objects in a scene cannot be derived 

very easily from visual processing of that scene.  

From a theoretical perspective the functional geometric framework and the imple-

mentation of it are consonant with recent develops in the embodied cognition litera-

ture. The idea that meaning is constructed as a result of putting together multiple con-

straints fits with recent work by Glenberg and colleagues (e.g., Glenberg, 1997; Glen-

berg & Kaschak, 2002) and by Barsalou (e.g., Barsalou, 1999). Glenberg and col-

leagues have proposed that the meaning of a sentence is constructed by indexing 

words or phrases to real objects or perceptual analog symbols for those objects, deriv-

ing affordances from the objects and symbols and then meshing the affordances under 

the guidance of syntax. Barsalou (1999) also places similar emphasis on perceptual 

representation for objects and nouns in his perceptual symbol systems account. For 

Barsalou, words are associated with schematic memories extracted from perceptual 

states which become integrated into what Barsalou terms simulators (see also Grush, 

in press). As simulators for words develop in memory, they become associated with 

simulators for the entities and events to which they refer. Furthermore, once simula-



tors for words become linked to simulators for concepts, Barsalou argues that words 

can then control simulations. We hope to be able to extent the model further by also 

considering interaction with objects by the model more directly (e.g., through the 

addition of a robotic arm), rather than simply observing interactions between objects. 

We hope that such developments help move embodiment arguments from the theoreti-

cal arena to showing how these ideas can be realized in a working neuro-

computational model.  
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