
LINGUISTIC EVOLUTION
THROUGH LANGUAGE

ACQUISITION

EDITED BY

TED BRISCOE
University of Cambridge



         
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

  
The Edinburgh Building, Cambridge  , UK

 West th Street, New York,   -, USA
 Williamstown Road, Port Melbounre,  , Australia

Ruiz de Alarcón ,  Madrid, Spain
Dock House, The Waterfront, Cape Town , South Africa

http://www.cambridge.org

C© Cambridge University Press 

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 

Printed in the United Kingdom at the University Press, Cambridge

Typeface Baskerville /. pt System LATEX ε []

A catalogue record for this book is available from the British Library

     hardback



Contents

List of contributors page vii

 Introduction 
Ted Briscoe

 Learned systems of arbitrary reference: The foundation
of human linguistic uniqueness 
Michael Oliphant

 Bootstrapping grounded word semantics 
Luc Steels and Frederic Kaplan

 Linguistic structure and the evolution of words 
Robert Worden

 The negotiation and acquisition of recursive grammars as
a result of competition among exemplars 
John Batali

 Learning, bottlenecks and the evolution of recursive
syntax 
Simon Kirby

 Theories of cultural evolution and their application to
language change 
Partha Niyogi

 The learning guided evolution of natural language 
William J. Turkel

 Grammatical acquisition and linguistic selection 
Ted Briscoe

v



vi Contents

 Expression/induction models of language evolution:
dimensions and issues 
James R. Hurford

Index 



1

Introduction

Ted Briscoe
Natural Language and Information

Processing Group, Computer Laboratory,
University of Cambridge

1.1 Linguistic theory and evolutionary theory

Taking an evolutionary perspective on the origins and development of
human language, and on linguistic variation and change, is becoming
more and more common, as the papers in Hurford et al.(1998) attest.
The term ‘evolution’ now crops up regularly in work emerging from the
broadly generative tradition in linguistic theory (e.g. Jackendoff, 1997;
Steedman, 2000). The latter development is probably a more or less di-
rect consequence of several influential attempts to reconcile Chomskyan
nativism with evolutionary theory, primarily in terms of a gradualist
and adaptionist account of the origins and development of the language
faculty (e.g. Hurford, 1989; Newmeyer, 1991; Pinker and Bloom, 1990).
However, most of the contributions to this book owe more to the comple-
mentary but very different insight (e.g. Hurford, 1987, 1999) that not
only the language faculty per se, but also the origins and subsequent
development of languages themselves can be fruitfully addressed within
the framework of evolutionary theory. Under this view, languages are
evolving, not metaphorically but literally, via cultural rather than bio-
logical transmission on a historical rather than genetic timescale. This
represents a very distinct and quite narrow theme within the broader
program of integrating linguistic theory and evolutionary theory, and it
is this theme which is primarily addressed by the contributors to this
volume.
Evolutionary ideas have had a rather checkered history within linguis-

tic theory despite their close mutual influence in the nineteenth century.
McMahon (1994:ch12) provides a brief account of this history and also
discusses linguistic work influenced by evolutionary theory during the
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2 Introduction

fifties and sixties. However, the insight that languages per se can be
studied as (culturally) evolving systems, post the modern synthesis in
biology and post mathematical and computational work on dynamical
systems, does not seem to have reemerged until the eighties when Lind-
blom (1986) in phonology, Keller (1984, (1994)) in historical linguistics,
and Hurford (1987) in syntactic theory independently articulated this
view (using somewhat different terminology). The idea is an instance
of the ‘universal Darwinist’ claim (Dawkins, 1983; Dennett, 1995:343f)
that the methodology of evolutionary theory is applicable whenever any
dynamical system exhibits (random) variation, selection amongst vari-
ants, and thus differential inheritance. In the nineties, this perspective
on languages has been espoused enthusiastically and persuasively by
non-linguists (e.g. Cziko, 1995; Deacon, 1997). However, it has not
had significant impact in mainstream linguistic theory as yet, perhaps
partly because work has only recently begun to address questions seen
as central to (generative) linguistic theory.
The contributions to this volume are less concerned with questions

of linguistic origins or the development of a broad evolutionary account
of human language, than with why and how specific syntactic univer-
sals evolved (Kirby, Batali, Briscoe), why homonymy and synonymy are
present and maintained in vocabulary systems (Steels and Kaplan),
the nature of (E-) language syntactic change (Niyogi, Briscoe), the kind
of language learning mechanism required to not only acquire an exist-
ing linguistic system accurately but also impose further structure on an
emerging system (Oliphant, Kirby, Worden), and the (co)evolution of
language(s) and this learning mechanism (Turkel, Briscoe). A second
and equally important way in which the contributions here represent a
tightly circumscribed theme within evolutionary linguistic work is that
all utilize a methodology of computational implementation and simula-
tion of (more or less explicit) formal models. For this reason too, there
is a close connection with formal generative linguistic theory. Math-
ematical modeling and/or computational simulation help ensure that
theories constructed are complete and precise, and also help with their
evaluation by making the assumptions on which they rest fully explicit.
This is particularly critical in the context of largely speculative accounts
of the prehistoric development of human languages, as without such a
methodology there is little to constrain such speculation.
The rest of this introduction describes the key ideas and techniques

which underlie the contributions to this book, and, more broadly, the
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evolutionary approach to linguistic variation, change and development,
relating them to current linguistic theory and discussing critical method-
ological issues. The contribution by Hurford contains a thorough and
insightful analysis and comparison of five different computational models
of linguistic evolution, two of which are described here (Batali, Kirby), as
well as developing a more general framework for such comparisons that
could, in principle, be applied to all the work presented here. There-
fore, I limit myself here to additional, I hope complementary, remarks
and refer the reader to Hurford’s contribution for a much more detailed
exposition of the general structure of many of the models.

1.2 The formal framework

1.2.1 Generative linguistics

Chomsky (1965) defined grammatical competence in terms of the lan-
guage of (i.e. stringset generated by) an ideal speaker-hearer at a single
instant in time, abstracting away from working memory limitations,
errors of performance, and so forth. The generative research program
has been very successful, but, one legacy of the idealization to a single
speaker at a single instant has been the relative sidelining of language
variation, change and development. More recently, Chomsky (1986) has
argued that generative linguistics can offer a precise characterization
of I-language, the internalized language or grammar of an individual
speaker, but has little to say about E-language, ‘external’ language,
which is an epiphenomenon of the I-languages of the individual speakers
who comprise a speech community.
Consequently, the study of language change within the generative

tradition has largely focused on ‘I-language change’; that is, the differ-
ences between I-languages or their corresponding grammars internalized
by child language learners across generations. And within I-language
change on the (parametric) properties of internalized grammars (e.g.
Lightfoot, 1979, 1999). The generative approach to language change
treats (major) grammatical change as a consequence of children acquir-
ing different grammars from those predominant amongst the adults in
the population, perhaps as a consequence of variation in the internal-
ized grammars of these adults. However, theories of language variation,
change and development will (minimally) require an account of how the
E-language(s) of an adult population can be defined in terms of the
aggregate output of these (changing) individuals.
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1.2.2 Language agents

A language agent is a idealized model of just what is essential to under-
standing an individual’s linguistic behavior. I use the term ‘agent’, in
common with several contributors to this volume and with (one) cur-
rent usage in computer science and artificial intelligence, to emphasize
that agents are artificial, autonomous, rational and volitional, and that
agents are embedded in a decentralized, distributed system, i.e. a speech
community.
A language agent must minimally be able to learn, produce and in-

terpret a language, usually defined as a well-formed set of strings with
an associated representation of meaning, by acquiring and using lin-
guistic knowledge according to precisely specified procedures. Beyond
this, the models of language agents deployed by the contributors differ
substantially, depending on theoretical orientation and the precise ques-
tions being addressed. Oliphant, and Steels and Kaplan define linguistic
knowledge entirely in terms of word–meaning associations in a lexicon,
reflecting their focus on the acquisition of vocabulary. Niyogi, Turkel
and Briscoe focus on the acquisition of parametrically-defined genera-
tive grammars and thus define linguistic knowledge primarily in terms
of (sets of) parameter settings. Batali, Kirby and Worden all develop
broadly lexicalist models of linguistic knowledge, in which the acquisi-
tion of lexical and grammatical knowledge is closely integrated.
All the models provide some account of the acquisition, comprehen-

sion and production of (I-) language. Again the details vary consider-
ably depending on the theoretical orientation and questions being ad-
dressed. For example Niyogi and Turkel largely assume very idealized,
simple accounts of parameter setting in order to focus on the dynamics
of E-language change and the genetic assimilation of grammatical infor-
mation, respectively. The other contributors concentrate on specifying
acquisition procedures in some detail, since properties of the acquisition
procedure are at the heart of linguistic inheritance and selection. As
acquisition is closely bound up with comprehension, most of these con-
tributors also develop detailed accounts of aspects of the comprehension,
or at least parsing, of linguistic input. However, none really provide a
detailed account of language production, beyond the minimal assump-
tion that linguistic utterances are generated randomly from a usually
uniform distribution over the strings licensed by an agent’s grammar
and/or lexicon.
Additionally, language agents can have further properties, such as the
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ability to invent elements of language, the ability to reproduce further
language agents, an age determining the learning period and/or their
‘death’, and so forth. For example, the contributors on the develop-
ment of language or emergence of new traits, often endow their language
agents with the ability to ‘invent’ language in the form of new utterance–
meaning pairs, where the utterance can either be essentially an unanal-
ysed atom (‘word’) or a string with grammatical structure (‘sentence’).
Invention is again modeled very minimally as a (rare) random process
within a predefined space of possibilities, and is one method of provid-
ing the variation essential to an evolutionary model of linguistic change
and/or development.

1.2.3 Languages as dynamical systems

E-languages are the aggregate output of a population of language users.
Such a population constitutes a speech community if the internalized
grammars of the users are ‘close’ enough to support mutual comprehen-
sion most of the time. Membership of the population/speech community
changes over time as people are born, die or migrate.
Perhaps the simplest model which approximates this scenario is one

in which the population initially consists of a fixed number of ‘adult’ lan-
guage agents with predefined internalized grammars, and their output
constitutes the data from which the next generation of ‘child’ language
learning agents acquires new internalized grammars. Once the learning
agents have acquired grammars, this new generation replaces the pre-
vious one and becomes the adult generation defining the input for the
next generation of learners, and so on. We can define a dynamical model
of this form quite straightforwardly. A dynamical system is just a sys-
tem which changes over time. We represent it by a sequence of states
where each state encodes the system properties at each time step and
an update rule defines how state st+1 can be derived from state st:

st+1 = Update(st)

Time steps in this model correspond to successive non-overlapping gen-
erations in the population. Minimally, states must represent the E-
language(s) of the current generation of language agents, defining the
input for the next generation of learners. The Update rule must spec-
ify how the internalized grammars of the learners are derived from the
E-language input.
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Niyogi and Berwick (1997) develop a deterministic version of this
model in which each state is defined by a probability distribution over
triggers, a finite subset of unembedded sentences from each language
defined by each internalized grammar present in the population. The
deterministic update rule defines a new probability distribution on trig-
gers by calculating the proportions of the population which will acquire
the internalized grammars exemplified in the input data. In this vol-
ume, Niyogi describes this model in detail and develops it by exploring
the predictions of deterministic update rules which assume that differ-
ent learners will receive different input depending on their parents or
on their geographical location. Niyogi shows how this model makes
predictions about the direction and timecourse of E-language change
dependent on the learning algorithm and the precise form of the update
rule. Throughout, E-language change is modeled as a consequence of
a number of ‘instantaneous’ I-language changes across generations, in
common with standard generative assumptions about major grammati-
cal change. However, the population-level modeling demonstrates that
the consequent predictions about the trajectory and direction of change
are often surprising, very varied, and always sufficiently complex that
mathematical modeling and/or computational simulation are essential
tools in deriving them.
Niyogi’s use of deterministic update rules assumes that random in-

dividual differences in the learners’ input are an insignificant factor in
language change. In his model, learners are exposed to a finite number of
triggers randomly drawn according to a probability distribution defined
by the current adult population. Sampling variation may well mean that
learners will or will not see triggers exemplifying particular internalized
grammars present in the adult population. If the number of triggers
sampled and/or the size of the population is large, then this variation
is likely to be insignificant in defining the overall trajectory and time-
course of E-language change. Therefore, Niyogi models the behavior of
an average learner in the population. In the limit, the behavior of the
overall model will be identical to one in which the behavior of individuals
is modeled directly but the population is infinite. The great advantage
of this approach is that it is possible to analytically derive fixed points of
the resulting dynamical models, and thus prove that certain qualitative
results are guaranteed given the model assumptions.
The models utilized by the other contributors are all stochastic in

the sense that they model the behavior of individual agents directly
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and deploy stochastic or random agent interactions. Therefore, there
may be sampling variation in learner input. Time steps of the resulting
dynamical models are defined in a more fine-grained way in terms of
individual agent interactions or sets of such interactions. For example,
Batali, Kirby, Oliphant, and Steels and Kaplan all take individual lin-
guistic interactions as the basic time step, so the update rule in their
simulations is defined (implicitly) in terms of the effect on E-language
of any change in the linguistic knowledge of two interacting agents. In
these and most of the other models, language acquisition is no longer
viewed as an ‘instantaneous’ event. Rather agents interact according to
their (partial) knowledge of the E-language(s) exemplified in the envi-
ronment and continue to update this knowledge for some subset of the
total interactions allotted to them. Turkel uses a standard (stochastic)
genetic algorithm architecture with fitness-based generational replace-
ment of agents so that time steps in his system correspond to non-
overlapping generations. However, the fitness of each agent is computed
individually based on 10 learning trials between it and another randomly
chosen agent in the current population. Briscoe defines time steps in
terms of interaction cycles consisting of a set number of interactions
proportional to the current population size. Agents interact randomly
and a proportion of interactions will involve learners. Once a stochastic
model of this type is adopted it is also easy to introduce overlapping gen-
erations in which learners as well as adults may contribute utterances
to E-language. The stochastic approach provides greater flexibility and
potential realism but relies even more heavily on computational simu-
lation, as analytic mathematical techniques are only easily applicable
to the simplest such systems. For this reason, it is important that the
results of simulation runs are shown to be statistically reliable and that
the stochastic factors in the simulation are not dominating its behavior.
Interestingly, though Kirby derives his results via a stochastic simu-

lation of a single speaker providing finite input to a single learner, the
critical time steps of his model are generation changes, in which the
learner becomes the new adult speaker, and a new learner is introduced.
Therefore, it would appear that the analytic model developed by Niyogi
and Berwick could, in principle, be applied to Kirby’s simulation. The
effect of such an application would be to factor out sampling variation
in learner input. It should then be possible to prove that the qualitative
results observed are guaranteed in any run of such a simulation. In-
deed, what we might expect is that, over the predefined meaning space,
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a single optimal grammar, relative to the subsumption based grammar
compression algorithm employed, is the sole fixed point of the dynamical
system.

1.2.4 Languages as adaptive systems

Niyogi and Berwick (1997) argue that their model of E-language does
not need or utilize a notion of linguistic selection between linguistic vari-
ants. However, the specific learning algorithm they utilize is selective, in
the sense that it is parametric. They examine, in detail, the predictions
made by the Trigger Learning Algorithm (TLA, Gibson and Wexler,
1994) embedded in their dynamical model. The TLA is a parameter set-
ting algorithm based on the principles and parameters account of gram-
matical acquisition (Chomsky, 1981). The TLA selects one grammar
from the finite space of possible grammars defined by the settings of a fi-
nite number of finite valued parameters. Thus, when faced with variation
exemplifying conflicting parameter settings in the input, the TLA selects
between the variants by assigning all parameters a unique value. So, sele-
ction between variants is a direct consequence of the learning procedure.
It is possible to imagine a learning procedure which when faced with

variation simply incorporated all variants into the grammatical system
acquired. Briscoe (2000a) describes one such algorithm in some detail.
In order to claim that no selection between linguistic variants is happen-
ing in dynamical models of the type introduced in the previous section,
we would need to demonstrate that the specific learning procedure being
deployed by agents in the system was not itself selective in this sense.
However, such a learning procedure seems implausible as a model of
human language learning because it predicts that the dynamic of lan-
guage change would always involve integration of variation and construc-
tion of larger and larger ‘covering’ grammars of learner input. Loss of
constructions, competition between variants, and the very existence of
different grammatical systems would all be problematic under such an
account.
Once we adopt an account of language learning which is at least

partially selective, then it is more accurate to characterize linguistic
dynamical systems as adaptive systems; that is, as dynamical systems
which have evolved in response to environmental pressure. In this case,
to be learnable with respect to the learning algorithm deployed by child
language learners (whatever this is). The nature of the pressure depends
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on properties of the learning procedure and need not be ‘functional’ in
the conventional linguistic sense. For example, the TLA selects between
variants by either selecting the parameter setting dictated by the last
unambiguous trigger (with respect to the relevant parameter) in the
input before the end of the learning period or by making an unbiased
random guess. Therefore, the relative frequency with which variants are
exemplified in learner input is the main determinant of which variants
are culturally transmitted through successive generations of language
learning agents. However, most of the learning procedures developed by
other contributors exhibit various kinds of inductive bias which interact
with the relative frequency of variant input to create additional pressures
on learnability.
It is striking that with the exception of Turkel’s quite idealized ac-

count of learning (which is not intended as a serious model of parameter
setting), the other contributors all develop learning algorithms which,
unlike the TLA, incorporate Ockham’s Razor in some form; that is, a
broad preference for the smallest grammar and/or lexicon (‘compatible’
with the input). In addition, most of the models remain selective, in the
sense defined above with respect to the TLA, in that they bias learning
towards acquisition of unambiguous word-meaning associations and/or
syntactic means of realizing non-atomic meaning representations. Indeed
the latter bias is a direct consequence of the former, as alternative encod-
ings of the mapping from meaning to form result in larger descriptions.
All the models impose hard constraints in the form of representational
assumptions about the kind of grammars and/or lexicons which can be
acquired; that is, assumptions about the form of universal grammar.
It is in terms of such representational assumptions which incorporate
hard inviolable constraints on what can be learnt that the soft, vio-
lable constraints or inductive bias in favour of small unambiguous map-
pings can be stated. As these representational assumptions vary a good
deal between the contributions, the precise effect of the bias will also
vary. Nevertheless, very broadly, Ockham’s Razor creates an additional
selection pressure for regularity in linguistic systems, over and above the
requirement for frequent enough exemplification in learner input.
One might argue that the incorporation of such inductive biases into

these models is no more than a method of ensuring that the simula-
tions deliver the desired results. However, Ockham’s Razor has been a
central tenet of learning theory for centuries, and in the theory of infor-
mational complexity has been formally proved to provide a universally
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accurate prior or inductive bias over a universal representation language
(Rissanen, 1989). In the framework of Bayesian learning, the mini-
mum description length principle, over a given representation language
or class of grammars/models, provides a concrete, practical instantia-
tion of Ockham’s Razor, which has been used to develop learnability
proofs for non-finite classes of grammar (e.g. Muggleton, 1996) and to
develop theoretical and computational models of lexical and grammat-
ical acquisition (e.g. Brent and Cartwright, 1996; de Marcken, 1996;
Rissanen and Ristad, 1994; Osborne and Briscoe, 1997). Therefore, the
learning procedures developed here, which incorporate this principle in
some form, are not in any way unusual, controversial or surprising. In-
deed, inductive bias has been argued to be essential to successful learning
(Mitchell, 1990, 1997), this insight is central to the Bayesian framework,
and within the space of possible inductive biases, Ockham’s Razor re-
mains the single most powerful and general principle, which under the
idealized conditions of a universal representation language has been
shown to subsume all other forms of bias (e.g. Rissanen, 1989).
Kirby (this volume, 1998, 2000) extends this insight in several ways

arguing that the bias for smaller grammars is tantamount to the as-
sumption that learners generalize from data and will, therefore, be a
component of any language learning procedure. He argues that the
syntactic systems which emerge in his simulations would emerge given
many other possible learning procedures. Oliphant, in the context of
word learning, similarly argues that the only kind of learning procedure
which will impose order on random, inconsistent vocabulary systems is
one which prefers unambiguous word-meaning mappings. However, as
we have seen above, at root this follows from Ockham’s Razor, since
this is equivalent to saying that a learner prefers to retain the smallest
number of word–meaning associations.
The picture which emerges then, is that languages have adapted to

the human language learning procedure, in the sense that this procedure
incorporates inductive bias – itself virtually definitional of the concept
of learning. Inductive bias creates linguistic selection for more learnable
linguistic variants relative to this bias and thus as languages are cul-
turally transmitted from generation to generation via successive child
language learners, linguistic systems will evolve that fit, or are adapted
to, these biases. However, this picture cannot be the whole truth, for if it
were we would predict that all languages should eventually converge to a
single optimal system, that change should always be unidirectional, and
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that variation should decrease and eventually disappear, at least with
respect to these biases. However, this is not a realistic picture, variation
is maintained and increases in some social contexts (e.g. Nettle, 1999),
and unidirectional change in the form of ‘grammaticalization’ is at best
a tendency (e.g. Newmeyer, 1998).

1.2.5 Languages as complex adaptive systems

Evolution is not a process of steady improvement along a single trajec-
tory leading to a single optimal solution. Sewall Wright (1931) intro-
duced into evolutionary theory the idea of adaptive or fitness landscapes
with multiple local optima or peaks, and this idea has been consider-
ably refined since (e.g. Kauffman, 1993:33f). The modern picture of
(co)evolution is of a process of local search or hill climbing towards a local
optimum or peak in a fitness landscape which itself inevitably changes.
Conflicting selection pressures will cause the fitness landscape to contain
many locally optimal solutions, and thus the evolutionary pathways will
be more complex and the space of near optimal solutions more varied
(Kauffman, 1993:44f). A simple and well-attested example of conflicting
selection pressures from biology is the case of ‘runaway’ sexual selection
for a non-functional marker such as the peacock’s tail, counterbalanced
by natural selection for efficient movement (e.g. Dawkins, 1989:158f).
Adaptive systems which change on the basis of interactions between con-
flicting selection pressures in unpredictable ways, involving positive or
negative feedback, with no centralized control are increasingly termed
complex adaptive systems (e.g Kauffman, 1993).
The idea that there are competing motivations or conflicting pres-

sures deriving from the exigencies of production, comprehension and
acquisition has been developed by linguists working from many differ-
ent perspectives (e.g. Langacker, 1977; Fodor, 1981; Croft, 1990:192f).
However, in linguistics little progress has been made in quantifying these
pressures or exploring their interaction (Newmeyer, 1998). Computa-
tional simulation and mathematical analysis of E-languages, modeled
as dynamical systems adapting to such conflicting pressures, provides a
powerful new methodology for deriving precise, quantitative and qual-
itative predictions from the interaction of such conflicting pressures.
For example, one perhaps better understood pressure on the evolution
of grammatical systems derives from parsability (e.g. Gibson, 1998;
Hawkins, 1994; Miller and Chomsky, 1963; Rambow and Joshi, 1994).
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A number of metrics of the relative parsability of different constructions
have been proposed, both as accounts of the relative psychological com-
plexity of sentence processing and of the relative prevalence of different
construction types in attested languages. A metric of this type can be
incorporated into an evolutionary linguistic model in a number of ways.
Kirby (1999) argues, for example, that parsability equates to learnabil-
ity, as input must be parsed before it can be used by a learner to acquire
a grammar. By contrast, Hawkins (1994:83f) argues that parsability
may influence production so that more parsable variants will be used
more frequently than less parsable ones (within the space of possibili-
ties defined by a given grammar), and presents evidence concerning the
relative frequency of constructions from several languages in support of
this position. This would entail that less parsable constructions would
be less frequent in learner input, in any case. Briscoe (2000b) reports
experiments, using the same simulation model described in this volume,
which show that either approach alone or in tandem can, in principle,
account for adaptation towards more parsable typological variants.
It is also likely that production pressures, for example for economy of

expression, also play a significant role. In general, these have not been
quantified to the same extent, at least in work on syntax. However, there
are already some interesting computational models. Kirby (2000), for
example, extends the simulation and model described in this volume to
include a speaker bias towards minimal encoding of meaning representa-
tions. Once this is done the grammars in the simulations no longer evolve
so inexorably towards optimally regular encoding of the meaning–form
mapping, but unstable irregular and less compositional, but nevertheless
short mappings repeatedly emerge. If the further assumption is made,
that meanings are expressed according to a highly-skewed ‘Zipfian’ dis-
tribution, then irregular, minimal encodings of very frequent meanings
emerge and persist stably across generations.
Once we recognise that there are conflicting selection pressures, it

is easier to see why language change does not move inexorably (and
unidirectionally) towards a unique global optimum. No such optimum
may exist, and in any case, change will alway be relative to and local
with respect to the current ‘position’ in the current adaptive landscape.
For instance, a canonical SOV grammar might evolve increasingly fre-
quent extraposition because SOV clauses with long or ‘heavy’ object
phrases are relatively unparsable (e.g. Hawkins, 1994:196f). However,
SVO grammars will be less likely to do so since long object phrases will
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mostly occur postverbally anyway and will not create analogous parsing
problems. Once such a change has spread, it may in turn create further
parsability (or expressiveness or learnability) issues, altering the adap-
tive landscape; for example, by creating greater structural ambiguity,
resulting perhaps in evolution of obligatory extraposition. (It is this
locality or blindness in the search for good solutions that makes the evo-
lutionary process more like tinkering than engineering.) In the frame-
work advocated here, we can recognize that such historical pathways
can be stereotypical responses to similar pressures arising in unrelated
languages, in much the same way that eyes and wings have evolved in-
dependently in different lineages many times, without the need to posit
a substantive theory of such changes or to see them as deterministic.

1.2.6 Genetic assimilation

So far we have implicitly assumed that the learning procedure and wider
language faculty is universal and invariant across the human species.
Most of the contributors to this volume focus exclusively on the effects
of a universally shared and preadapted (language) learning procedure
on the evolution of language itself. Nevertheless, without the assump-
tion of a shared and effective learning procedure across all agents in the
population, it would not be possible to demonstrate the emergence and
development of consistent and coherent communication systems. For
example, Sharpe (1997) demonstrates that vocabulary systems of the
type investigated by Oliphant and Steels and Kaplan only emerge un-
der the assumption that all the agents are deploying the same learning
algorithm incorporating the same or very similar inductive biases.
The evolution by natural selection of the human (language) learn-

ing procedure, and of other elements of the language faculty such as
the human parsing and generation mechanisms, has been addressed in
a number of recent papers (Pinker and Bloom, 1990; Newmeyer, 1991),
and genetic assimilation (e.g. Waddington, 1942), or the so-called Bald-
win Effect (Baldwin, 1896), in which changes in a species’ behavior (the
advent of language) create new selection pressures (the need to learn
language efficiently) has been proposed as a plausible evolutionary mech-
anism through which a language faculty could have gradually evolved.
However, this view is certainly controversial; others have proposed salta-
tionist or single step scenarios (e.g. Bickerton, 1998) or argued that
preadapted general-purpose learning mechanisms suffice to account for
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language emergence and subsequent acquisition (e.g. Steels, 1998; Dea-
con, 1997; Worden, this volume).
The evolutionary perspective on language development and change

described above, and the commitment to develop an evolutionarily plau-
sible account of the emergence and subsequent evolution of any putative
language faculty, certainly provide new ways of addressing this central
issue in Chomskyan linguistic theory. Firstly, under either a gradualist
or saltationist account, the presence of (proto)language(s) in the envi-
ronment is an essential assumption to provide the necessary selection
pressure to ensure that a newly emerged faculty persists; if the ability
to learn language reliably does not enhance fitness then there would be
no selection pressure to maintain such a faculty, and fitness can only
be enhanced by it if there is an existing communicative system (e.g.
Kirby, 1998). Secondly, if (proto)language precedes the language fac-
ulty, then (proto)language must be learnable via general-purpose learn-
ing mechanisms. Thirdly, as the historical evolution of languages will be
orders of magnitude faster than the genetic evolution of such a faculty,
it is quite plausible that languages simply evolved to fit these general-
purpose learning mechanisms before these mechanisms themselves had
time to adapt to language. As Deacon (1997:109) memorably puts it:
“Languages have had to adapt to children’s spontaneous assumptions
about communication, learning, social interaction, and even symbolic
reference, because children are the only game in town . . . languages need
children more than children need languages.” On the other hand, if
the language faculty has evolved significantly subsequent to its emer-
gence, then it is of little consequence whether it emerged gradually or
by saltation. As Ridley (1990) points out, evolutionary theory tells us
more about the maintenance and refinement of traits than their emer-
gence, and the selection pressures subsequent to emergence would be
the same given either a saltationist or gradualist account. Fourthly,
Pinker and Bloom (1990) and others assume that linguistic universals
provide evidence for a language faculty, but if languages evolve to adapt
to the inductive bias in the human learning procedure, then linguistic
universals need not be genetically-encoded constraints, but instead may
just be a consequence of convergent evolution towards more learnable
grammatical systems. Again to quote Deacon (1997:116) “universal[s]...
emerged spontaneously and independently in each evolving language, in
response to universal biases in the selection processes affecting language
transmission. They are convergent features of language evolution in the
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same way that the dorsal fins of sharks, ichthyosaurs, and dolphins are
independent convergent adaptations of aquatic species.”
Worden develops this evolutionary argument against the language fac-

ulty, describing a unification-based model of language processing and ac-
quisition and suggesting that a general Bayesian learning algorithm can
be used to learn lexical entries in such a model. But the degree to which
this is an argument against the existence of or need for a language faculty
depends on exactly how domain-independent the unification-based rep-
resentation language in which linguistic knowledge is couched. Though
the representation language is partly encoding conceptual information it
is also encoding facts about morphosyntactic realization of meaning (i.e.
grammar). Within the context of this more detailed model, Worden is
able to make the argument about differential selection pressures on lan-
guages and the language faculty and the relative speed of evolution more
precise, and tentatively concludes that there would be little pressure for
natural as opposed to linguistic selection in line with Deacon’s (1997)
position.
Turkel, by contrast, simulates evolution of a principles and parame-

ters model of the language faculty and argues that the emergence of a
community of speakers endowed with such a faculty, without invoking
genetic assimilation, is implausible. The probability of compatible lan-
guage faculties emerging de nihilo in two or more individuals via natural
selection is astronomically low. Yet for such a trait to be maintained it
must be shared by members of a speech community in order to confer
any benefit in fitness. Genetic assimilation provides a mechanism by
which a (proto)language using population can gradually converge on a
shared language faculty, because individuals able to learn the existing
(proto)language slightly more effectively will be selected for over succes-
sive generations. Briscoe takes a similar position, presenting a model
which integrates Bayesian learning with a principles and parameters ac-
count of language acquisition, and arguing that this faculty would be
refined by genetic assimilation even in the face of very rapid language
change (or ‘coevolution’).

1.3 Methodological issues

The use of computational simulation and/or mathematical modeling to
derive predictions from dynamical models is a vital tool for the explo-
ration of evolutionary accounts of language variation, change and devel-
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opment, and of the development of the language faculty. The behavior of
even simple dynamical systems is notoriously complex and often unintu-
itive, therefore models or theories based entirely on verbal reasoning run
a serious danger of being incomplete or not making the predictions as-
sumed. Simulation and modeling force the theorist to be precise enough
to specify a complete model and to look at its actual rather than as-
sumed predictions. This places powerful constraints on the development
of evolutionary models since it often becomes clear in the process of cre-
ating them that some of the assumptions required to make the model
‘work’ are unrealistic, or that apparently realistic assumptions simply
do not yield plausible predictions. However, the mere existence of a
‘successful’ simulation or mathematical model does not guarantee either
the correctness of the assumptions leading to its predictions or of the
evolutionary pathway to these predictions.
Evolution is an irreducibly historical process which can be, and often

is, affected by accidents, such as population extinctions or bottlenecks,
which are beyond the purvue of any rational reconstruction (i.e. model)
of an evolutionary process. Since the precise prehistoric pathways that
were followed during the emergence and initial development of human
language are unknowable, this places a fundamental limit on what we
can learn from simulations which (exclusively) address such questions.
At the very best such argumentation is irreducibly probabilistic. On the
other hand, work in the same framework which addresses historically
attested language changes and associated demographic upheavals, such
as those occurring during language genesis, is less susceptible to this
problem.
A simulation or mathematical model rests on a set of hopefully ex-

plicit assumptions just as an argument rests on premises. Often it is
not possible to reliably assess the truth of these assumptions or their
causal relevance in a prehistoric setting. Thus the predictions made by
the model are only as strong as the assumptions behind it. The advan-
tage of models is that all and only the critical assumptions required to
derive a specific conclusion should be manifest if a good methodology
is adopted. The use of computational simulation greatly facilitates the
testing of many parameterized variants of a model to explore exactly
what is critical. However, it is also important that the initial model
adopted abstracts away from as many contingent specific details as pos-
sible in order to achieve greatest generality and to derive results from
the weakest set of assumptions possible. Ultimately, this is a matter of
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judgement and experience in the development of such models – there
is no ‘logic of discovery’ – but without such abstraction even compu-
tational simulation and exploration of such models will become rapidly
intractable.
One example of both the benefits and limits of the methodology is

provided by the issue of genetic assimilation of linguistic constraints
into the language faculty (discussed in the previous section). Deacon
(1997:322f) argues quite persuasively that language change would have
been too rapid to create the constant selection pressure on successive
generations of language users required for genetic assimilation. How-
ever, one simulation in which both language change and genetic assim-
ilation are modeled demonstrates that genetic assimilation still occurs
even when language changes are happening as fast as is compatible with
maintenance of a speech community (Briscoe, 2000b). The key implicit
assumption in Deacon’s argument is that the hypothesis space of possible
grammars defining the environment for adaptation is sufficiently small
that most grammars will be sampled in the time required for genetic as-
similation to go to fixation in a population of language users. The model
makes clear that if this hypothesis space is large enough then significant
portions of it are unlikely to be sampled during this time, so there is
constant pressure to assimilate constraints that rule out or disprefer the
unsampled grammars. On the other hand, this demonstration, though it
undermines Deacon’s specific argument, does not guarantee that genetic
assimilation of such constraints into the language faculty did, in fact,
occur. The model, in conjunction with related work on genetic assimi-
lation (Mayley, 1996) also makes it clear that one critical assumption is
that there is correlation between the neural mechanisms underlying lan-
guage learning and the genetic specification of these mechanisms which
will enable the ‘transfer’ of such constraints to the genetic level. We sim-
ply do not know, given our current understanding of both the genetic
code and relevant neural mechanisms, whether or to what degree this is
the case.
In addition to these general points, there are more specific method-

ological issues contingent on the type of model adopted. Deterministic
models based on analytic techniques, such as that of Niyogi, are method-
ologically stronger in the sense that predictions derived from them are
guaranteed to hold of any specific experimental realization of such mod-
els. However, analytic techniques are hard to apply to all but the sim-
plest models. Computational simulation – that is, the running of specific
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experiments with a model – can be used as an alternative to mathemat-
ical analysis. However, the behavior of such simulation runs needs to be
considered carefully before conclusions are drawn. If the simulation is
stochastic in any way, as most of those presented in this volume are, then
we need to be sure that predictions are reliable in the sense that they
represent high probability or typical results of such simulations. One
basic technique for achieving this is to examine the results from multiple
identically-parameterized runs. However, if the qualitative behavior of
the model over multiple runs is not absolutely clearcut, then statistical
analysis of results may also be required. The advantage of computational
simulation is that more realistic models can be explored rapidly in which,
for example, there are no fixed points or deterministic attractors in the
underlying dynamical system (i.e. no endpoint to evolution). Never-
theless, as this work grows in sophistication, careful statistical analysis
of the underlying models will become increasingly important, as is the
norm, for example, in population genetics (e.g. Maynard Smith, 1998).
It is sometimes suggested that simulations are too dangerous: “I have

resisted the temptation to utilize computer simulations, mostly for rea-
sons of clarity (in my own head – and perhaps also the reader’s). Sim-
ulations, if they are to be more than mere animations of an idea, have
hard-to-appreciate critical assumptions.” (Calvin, 1996:8). Behind such
sentiments lurks the feeling that simulations are ‘doomed to succeed’
because it is always possible to build one in which the desired result is
achieved. I hope this introduction and the contributions to this volume
will convince the reader that, though simulation without methodologi-
cal discipline is a dangerous tool, methodologically rigorous simulation
is a critical and indispensable one in the development of evolutionary
dynamical models of language.

1.4 What next?

Though the contributors to this book approach the question of the role
of language acquisition in linguistic evolution from a wide variety of
theoretical perspectives and develop superficially very different models,
there is a deep underlying unity to them all in the realization of the
centrality of acquisition to insightful accounts of language emergence,
development, variation and change. I hope the reader will recognize this
unity and agree with me that this work makes a powerful case for the
evolutionary perspective on language. Nevertheless, it should also be
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clear that much work remains to be done. Methodologically, we have
a long way to go in assimilating and evaluating techniques from fields
such as population genetics, in which a powerful set of mathematical
techniques for studying dynamical systems has been developed. Sub-
stantively, we have only begun to scratch the surface of critical issues,
such as that of conflicting selection pressures or competing motivations
in linguistic evolution, which will take us well beyond the realm of sim-
ple models/simulations with fixed points to ones with very complex and
dynamic adaptive landscapes. Despite this, I hope the reader will also
agree with me that the study of E-languages as complex adaptive sys-
tems is a potentially very productive research programme which can be
tackled in a methodologically sound way.
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