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Abstract

How did language come to have its characteristic structure? Many argue that by
understanding those parts of our biological machinery relevant to language, we can
explain why language is the way it is. If the hallmarks of language are simply
properties of our biological machinery, elicited through the process of language

acquisition, then such an explanatory route is adequate.

As soon as we admit the possibility that knowledge of language is learned, in the
sense that language acquisition is a process involving inductive generalisations, then
an explanatory inadequacy arises. Any thorough explanation of the characteristic
structure of language must now explain why the input to the language acquisition
process has certain properties and not others. This thesis builds on recent work that
proposes that the linguistic stimulus has certain structural properties that arise as
a result of linguistic evolution. Here, languages themselves adapt to fit the task
of learning: they reflect an accumulated structural residue laid down by previous

generations of language users.

Using computational models of linguistic evolution I explore the relationship be-
tween language induction and generalisation based on a simplicity principle, and
the linguistic evolution of compositional structures. The two main contributions of
this thesis are as follows. Firstly, using a model of induction based on the minimum
description length principle, I address the question of linguistic evolution resulting
from a bias towards compression. Secondly, I carry out a thorough examination of
the parameter space affecting the cultural transmission of language, and note that
the conditions for linguistic evolution towards compositional structure correspond
to (1) specific levels of semantic complexity, and (2), induction based on sparse

language exposure.

ii



Ultimately, the story of the evolution of language in humans must depend on an
account, of the genetic evolution of the biological machinery underlying language.
Rather than explicitly encoding the observed constraints on language, I argue that
any explanation based on biological evolution should instead aim to explain how

the conditions for linguistic evolution, outlined above, came about.
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CHAPTER 1

Introduction

1.1 Language as an expression of the genes

Traditionally, knowledge of language is regarded as an innate biological predis-
position. Languages may vary, but the fundamental structure of language is an
expression of the genes. Accordingly, humans possess a faculty of language, or a

language organ:

It is hard to avoid the conclusion that a part of the human biological
endowment is a specialized “language organ,” the faculty of language
(FL). Its initial state is an expression of the genes, comparable to the
initial state of the human visual system, and it appears to be a common

human possession to close approximation.” (Chomsky 2002:85)

To support this view, we can note that children master complex features of lan-
guage on the basis of surprisingly little evidence. In fact, what is often termed
the argument from the poverty of the stimulus, is a conjecture stipulating that the
knowledge of language children attain is surprising precisely because it cannot be
derived solely from information made available by the environment (Chomsky 1965;
Wexler 1991). This view can be traced back to Plato (427Bc-347BC), who noted
that humans come to know more than that suggested by the evidence they en-
counter, with language being just one example of this general phenomenon. John
Locke (1632-1704) was perhaps the first to then ask the question: If knowledge of
language is innate, then why does language exhibit so much variation? The modern

debate on the innateness of language attempts to resolve this problem by noting



that the framework for linguistic development is innate, with the linguistic envi-
ronment serving to supply information that steers an internally directed course of

development:

[the environment| provides primary linguistic data that enable the lin-
guistic system to develop, just as it provides light and food that enable
the visual and motor systems to develop. This sort of reasoning implies
that the linguistic system is profoundly abstract. (Uriagereka 1998:523)

In this sense, languages themselves are not encoded entirely in the genes, but the
fundamental, abstract properties of language are. How can we gain an understand-
ing of these innately specified hallmarks of language? Linguistics, by proceeding to
conduct a thorough analysis of the world’s languages, proposes a set of fundamental
properties common to all languages termed language universals. Linguistic univer-
sals define the dimensions of variation in language. Modern linguistic theory rests

on the assertion that it is these dimensions of variation that are innately specified.

1.2 Linguistic evolution

The traditional view is based on an assumption: Children acquire knowledge that
cannot be learned. One logical conclusion is to argue that language acquisition
is therefore not a process of learning, but rather one of eliciting pre-defined, ge-
netically determined properties of language. Now, is this conjecture entirely jus-
tified? Many argue that it is not. First of all, we can focus on the scientific
status of the argument from the poverty of stimulus, and note that no rigorously
attained body of evidence exists that lends strong support to it: the argument
from the poverty of the stimulus is a prima facie explanation for linguistic na-
tivism (Pullum & Scholz 2002). We can also conduct computational experiments
to show that certain fundamental properties of language can be learned from the
linguistic evidence available to the child. Here, techniques from machine learn-
ing are used to investigate the precise nature of the knowledge that can be in-
duced from plausible bodies of linguistic evidence (Elman 1993; Elman et al. 1996;
Christiansen & Devlin 1997).

The debate concerning the precise nature of the language acquisition process con-
tinues. But, if, for a moment, we accept a retreat from the position characterised

by the argument from the poverty of stimulus, a fundamental problem arises for



linguistics. By questioning the assertion that the fundamental properties of lan-
guage are solely an expression of the genes, then we require an explanation for why
language exhibits certain hallmarks and not others. The only alternative is that
they are somehow present in, or partly determined by, properties of the language
learning environment. By re-addressing Plato’s problem, the quandary of explain-
ing why language is the way it is can be shifted from an explanation of properties
of the child to an explanation of properties of the environment. Importantly, the
problem still persists: Why does the language learning environment exhibit certain
properties and not others? This question reveals a shortcoming in the explanatory

practices of linguistics.

In this thesis I will investigate a solution to this explanatory shortcoming. The
solution is reached by extending the current explanatory framework that we invoke
when trying to understanding how and where the hallmarks of language are speci-
fied. The idea is simple: languages themselves adapt as a result of being repeatedly
transmitted from one generation to another through the processes of production
and induction (Christiansen 1994; Deacon 1997; Kirby 1999). The changes to a
language that occur as result of this cultural transmission force language to have
certain fundamental structural characteristics. It is these characteristics that we
observed in the worlds languages. So rather than the hallmarks of language resid-
ing in biological structure that is an expression of the genes, they are taken to be
artifacts reflecting the accumulated residue of language transmission. Accordingly,
we can regard at least some of the universal properties of language as frozen acci-
dents that persist because they are easily learned by children during the process of

language acquisition.

1.2.1 Advances in the theory of linguistic evolution

The process by which languages themselves evolve is termed linguistic evolution
(Briscoe 2002). This process should be contrasted with the process of biological
evolution, which provides an explanation for the evolution of the biological ma-
chinery that supports the processing of language. In this thesis, I will investigate
computational models of linguistic evolution. On the basis of these models, I will

present several novel contributions to the theory of linguistic evolution:

Chapter 2. The problem of explaining why language has certain structural charac-
teristics is a central concern of cognitive science. I will analyse Chomsky’s view that

language is not learned but specified by genetically determined cognitive structures.



I will note that this view is characterised by what I term the principle of detach-
ment, which in turn has a far-reaching influence in the explanatory practices of the
cognitive sciences. Alternatives to this view are considered, and I will relate the
issue of explaining linguistic universals to recent advances in cognitive science that
question the principle of detachment. In order to engage directly with current lin-
guistic theory, I will outline three hypotheses that underly the view that language
adapts to be learnable. The three hypotheses define an explanatory framework.
This thesis will present evidence in support of the hypotheses. In short, I will
seek to consolidate previous work by proposing a step towards a canonical set of

hypotheses.

Chapter 3. To understand the process of cultural adaptation I will introduce the
notion of iterated learning, where the learning process is situated by considering
the impact that other learners have in constructing the environment for learning.
Iterated learning models will be used throughout this thesis to test theories of
linguistic evolution. On route to the development of more sophisticated models,
Chapter 2 will outline two basic models that serve as illustrative examples. The
second model I will develop addresses the issue of compositonality in language. The

analysis of this model will reveal some foundation results.

Chapter 4. 'The major contribution made by this thesis will be the development
of a model of linguistic evolution based on a simplicity principle. Iterated learning
models revolve around the process of arriving at inductive generalisations from
data. A rigorous model of induction can be approached by considering the theory of
Kolmogorov complexity — a branch of information theory. I will present an argument
for treating Kolmogorov complexity as a valid concept in investigating the role of
simplicity principles in cognitive science. In particular, I will discuss the role of
simplicity in Chomsky’s minimalist program, as well as its role in the problem of
language acquisition. This Chapter will close with the development of an iterated
learning model driven by a computational approach to induction derived from the
theory Kolmogorov complexity. This model will be analysed and developed in the

next two Chapters.

Chapter 5. Rather than analysing the behaviour of iterated learning models through
computational simulation, this Chapter will derive some foundation results. By em-
ploying mathematical and monte carlo models, I will conduct a wide-scale mapping
of the parameter space of the iterated learning model developed in Chapter 4. In

doing so, those parts of the parameters space that are computationally intractable



to map through simulation modelling can be understood such that general claims
can be made about the behaviour of iterated learning models. These results relate
directly to the issue of the argument from the poverty of the stimulus, which I will
argue is a strong determinant of the linguistic evolution of structured language. In
short, I will shed light on the range of conditions that must be met for linguistic

evolution to converge on one of the hallmarks of language, compositionality.

Chapter 6. By finalising the model of linguistic evolution developed in Chapters
4 and 5, I will be in a position to conduct a set of full simulations. In doing so,
induction from data based on a simplicity principle is modelled explicitly. T will
show how linguistic evolution toward compositional language structure is possible
given such a rigorous model of induction. These experiments will support and justify
the results of previous models. Furthermore, by explicitly modelling the process of
linguistic evolution, I will shown how structured languages exhibiting redundancy
and sub-optimal properties are an inevitable result of linguistic evolution. These
issues relate directly to Chomsky’s minimalist program, where the imperfections in
language are viewed as artifacts arising from internal constraints of the genetically

determined language faculty.

Chapter 7. Finally, I will relate the conditions for linguistic evolution suggested by
these models to the wider question of language evolution. In particular, by invoking
an iterated learning model of linguistic evolution, the issue of which aspects of the
cognitive system are (possibly innate) prerequisites for the emergence of language

can be refined and recast.

In short, this thesis extends existing work suggesting that the universal properties
of language need not be explained exclusively as genetically determined proper-
ties. Language is a complex system of relating sound to meaning that exhibits
both structural elegance and structural redundancy. Considerations of the role of
simplicity in linguistic evolution can shed light on explaining both these structural

characteristics.






CHAPTER 2

Explaining linguistic structure

2.1 Introduction

Language universals are significant to the cognitive sciences. But what can the
universal properties of language tell us about those parts of human cognitive sys-
tem responsible for language? One possibility is that language universals offer an
unparallelled insight into the mechanisms underlying those aspects of the cognitive
system relevant to language — they can be taken as a reflection of a biologically
determined linguistic competence (Chomsky 1965). Here, the implication is that
the relation between linguistic universals and cognitive machinery is transparent.
Using this insight, the question of how language evolved in humans is reduced to
the problem of explaining how the biological machinery supporting the processing
of language evolved. It is this reverse implication, that of explaining how the hall-
marks of language came to be by explaining how the linguistic machinery came to

be, that I will focus on in the discussion that follows.

The fundamental question is the following: Why does language have the structure
that it does? At its root, this question concerns the degree to which an under-
standing of the cognitive structures underlying language amounts to a thorough
explanation of the properties of language. If this explanation is to be adequate,
then we have circumscribed the explanatory framework to include, firstly, a theory
of the cognitive mechanisms relevant to processing language and, secondly, a theory
of the role that the linguistic data available to a language learner plays in deter-
mining how these cognitive structures ultimately represent knowledge of language.
Such an explanatory framework is characterised by what I will term the principle
of detachment.



This explanatory framework accommodates substantial variation in the role played
by the linguistic data. If the hallmarks of language are a direct consequence of
the properties of the cognitive machinery alone, then the principle of detachment is
wholly justifiable. But if the basic properties — universal linguistic characteristics —
of the cognitive system are partly specified by the properties of the linguistic data,
then a problem arises. The principle of detachment can offer no theory explaining

why the linguistic stimulus has the form that it does.

The purpose of this chapter is threefold. Firstly, I will identify the assumptions
made in the traditional approach to explaining universal properties of language.
In line with the above argument, I will argue that this explanatory framework is
inadequate. Furthermore, its assumptions are echoed in the traditional explanatory
practices of the cognitive sciences. Secondly, I will sketch a candidate conceptual
framework that can be used to combat this explanatory inadequacy. This approach,
which I have termed iterated learning, has its roots in evolutionary linguistics. I
draw parallels between this approach and that of situated cognitive science: both
deem it necessary to explain the precise nature of the environment of cognition.
These concepts need to be clarified, and this objective is the motivation for the third
purpose of this chapter, and the most influential contribution to the progression of
this thesis. I will outline three hypotheses that underly the theory that language
adapts to be learnable. This theory offers a candidate explanation for why the

linguistic stimulus has the form that it does.

Above, I noted the possibility that language universals offer an unparallelled insight
into the workings of those aspects of the cognitive system relevant to language.
This Chapter, then, considers an alternative: language universals are artifacts of
a little-understood interaction between a cognitive system and an environment of
adaptation. The relationship between language universals and the cognitive system
is therefore opaque. This view has its roots in the work of, among others, Morten
Christiansen, Terrence Deacon, and Simon Kirby (Christiansen 1994; Deacon 1997;
Kirby 1999). Before investigating this position, I will place it in the context of the
cognitive sciences, and make explicit its assumptions by postulating three hypothe-
ses that underly the view that language adapts to be learnable. The fundamentals
of this chapter can also be found in two forthcoming articles (Brighton et al. 2003b;
Brighton et al. 2003a).



2.2 From description to explanation

Take all the world’s languages and note the structural features they have in com-
mon. Now, on the basis of these universal features of language, we can propose
a uniersal grammar (UG), a hypothesis circumscribing the core features of all
human languages (Chomsky 1965). On its own, this hypothesis acts only as a
description. But far from being an inert taxonomy, universal grammar sets the
target for an explanatory theory. The kind of entities contained in UG that I will
allude to consist of absolute and statistical language universals (Matthews 1997;
O’Grady et al. 1997). Absolute universals are properties present in all languages.
Statistical universals are properties present in a significant number of languages.
Several further distinctions naturally arise when describing constraints in cross-
linguistic variation, but in the interests of clarity I will restrict this discussion to
one of absolute and statistical universals. In short, however we choose to describe
the universal structural features of language, the impact of this descriptive the-
ory is hugely important to the cognitive sciences, including linguistics. Indeed, for
Chomsky:

Real progress in linguistics consists in the discovery that certain fea-
tures of given languages can be reduced to universal properties of lan-
guage, and explained in terms of these deeper aspects of linguistic form.
(Chomsky 1965:35)

But how can this progress in descriptive linguistics translate into real progress in
those branches of the cognitive sciences concerned with explaining the cognitive
structures underlying language? Precisely how UG is used to move from a purely
descriptive theory to one offering an explanation for why languages are the way they
are is worthy of some thought. Firstly, and quite naturally, UG can be employed
as the backbone for a predictive theory of languages not just observed, but also
for those languages that are possible. In addition, by adopting the uniformitarian
assumption, we also postulate that past languages, for which we have no knowledge,
also conform to the present conception of UG (Croft 1994; Newmeyer 2002). That is,
the evidence that observed languages provide can be used to tell us about language
in general. Such a theory, on the basis of induction, now becomes a putative theory
of human language in the wider sense. Secondly, and more importantly in the
discussion that follows, UG is taken as a plausible object to be explained by the
cognitive sciences. For a cognitive scientist, this explanatory route naturally invites

the question: Why is linguistic form subject to this set of universal properties? More



precisely, we seek an explanation for how and where this restricted set of linguistic
features is specified. The outcome of such an enterprise would, ideally, be a theory
detailing the cognitive structures responsible for the constraints on languages we

observe.

In the following discussion I will analyse the possible routes we can take when
forming such an explanation. UG can therefore be taken as shedding light on
cognition. In essence, language is the result of a cognitive system; fundamental
properties of language are then taken as reflecting fundamental properties of the
cognitive system. This is the transparency that I referred to in my introductory

remarks.

2.2.1 Chomsky and the cognitive sciences

An explanation for the universal features of language is traditionally reliant on an
argument that universal grammar is an innate biological predisposition. So rather
than a descriptive object, UG is invoked as a model of a state of the human cognitive

system. More precisely, Chomsky states:

the language organ is the faculty of language (FL); the theory of the
initial state of FL, an expression of the genes, is universal grammar
(UG); theories of states attained are particular grammars; the states
themselves are internal languages, “languages” for short. (Chomsky
2002:64)

Universal grammar is therefore a model of a genetically determined state from
which a transition occurs. On postulating UG as representing the features common
to all languages, a theory of how the cognitive system proceeds through a series of
transitions, ending in knowledge of a specific language, is required. Chomsky goes

on to describe the processes that determine this transition:

The initial state changes under the triggering and shaping effect of expe-
rience, and internally determined processes of maturation, yielding later
stages that seem to stabilize at several stages, finally at about puberty.
(Chomsky 2002:85)

So the linguistic stimulus a child faces, whichever language it is drawn from, in

conjunction with “internally determined processes of maturation”, is responsible

10



for an end-state corresponding to knowledge of language. With respect to an expla-
nation for the universal features of language, the initial state — universal grammar
— specifies these features of language. Those aspects of language that vary must
therefore vary as a result of acquisition: the environment elicits internally specified
structures. It is important to understand how exactly Chomsky imagines outside
influences impacting on the yield of the acquisition process. Knowledge of language,
for Chomsky, is taken to go “far beyond the presented primary linguistic data and

is in no sense an ‘inductive generalisation’ from these data.” (Chomsky 1965:33)

In line with this explanation, linguistic stimuli serve to provide a set of triggers
that activate one of many possible states, or hypotheses. Chomsky has a tendency
to avoid the term learning altogether. Language is not viewed as being learned in
the sense that it is instructed by a teacher. Moreover, language acquisition is not
generally regarded as a learning process at all, for example, language learning, or

acquisition, for Chomsky, is:

better understood as the growth of cognitive structures along an inter-
nally directed course under the triggering and partially shaping effect of
the environment. (Chomsky 1980:34)

Whether or not language acquisition can accurately be thought of as learning causes
a great deal of controversy. Chomsky’s position is an extreme; his observation that
acquisition “in no sense an ‘inductive generalization’” is questioned by many. There

are two broadly defined perspectives from which this statement is questionable.

First, the use of the term learning in the cognitive sciences, and especially in com-
putational learning theory, relates to hypothesis selection in light of observed data.
Knowledge of a specific language is a hypothesis selected on the basis of primary
linguistic data. Language acquisition, at this level, can therefore accurately be seen
as the result of generalisation, if for no other reason than that knowledge of lan-
guage describes an infinite number of utterances, and this knowledge was acquired
in light of a finite set of experiences. However, it is likely that Chomsky’s reticence
in using the term is based on a wish to avoid confusion. Language is not learned in

the everyday sense of the word:

although you would normally say that an athlete learns how to throw
a javelin, you wouldn’t generally say that she learns how to grow her
biceps. Language acquisition a process more like biceps growing than
javelin throwing. (Uriagereka 1998:12)
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The second perspective relating to language acquisition and generalisation is far
more important. Taken to an extreme, the linguistic stimulus provides triggers
that elicit biologically pre-configured linguistic forms (Gibson & Wexler 1994). Spe-
cialised acquisition processes spot these triggers, and the result is that the param-
eters of UG are set. In contrast, the role of the linguistic stimulus with respect
to the opposite extreme is quite different. Here, relatively domain-general learning
procedures induce the basic properties of language from the rich structure available
to the learner. The intricacies of the structure of language are therefore induced by
the learner, rather than specified as part of the machinery supporting acquisition.
From a Chomskian perspective, this view of acquisition is controversial due to its
failure to recognise the poverty of the linguistic stimulus: The chief complaint is that
“linguistic structure is much more complex than the average empiricist supposes”
(Wagner 2001). Nevertheless, before discussing the importance of this debate, I will
briefly mention some convincing work in support of the view that generalisation does
play a role in the acquisition of linguistic structure.

Christiansen & Devlin (1997) examine the learning of recursive structure in simple
recurrent neural networks. After constructing 32 test grammars, which represent all
combinations of head order, they found that grammars exhibiting consistent head
ordering were easier to learn. Christiansen & Devlin go on to argue that word order
universals can therefore be explained in terms of an acquisition procedure “without
linguistic biases, demonstrating that recursive inconsistencies directly affect the
learnability of a language” (Christiansen & Devlin 1997:113). Furthermore, these
results are consistent with typological language data (Dryer 1992), suggesting that
infrequently observed word ordering constraints are infrequent precisely because
they are hard to learn. Christiansen & Devlin conclude that “innate linguistic

knowledge may not be necessary to explain word order universals”.

The acquisition of words themselves has also been shown to rely on non-linguistic
learning biases. Saffran et al. (1996) examine the segmentation of words from
fluent speech by infants. At precisely the point that infants are widely observed to
acquire words — around 8 months old — Saffran ef al. investigate the mechanisms
infants use to isolate these words. They show that as a result of only 2 minutes of
exposure, infants can exploit the statistical regularities in nonsense syllables they

were presented with. Saffran et al. (1996) go on argue:

that a fundamental task of language acquisition, segmentation of words

from fluent speech, can be accomplished by 8-month-old infants based
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solely on the statistical relationships between neighbouring speech sounds.
(Saffran et al. 1996)

If the infants are exploiting statistical regularities in the data, then we must question

the view that generalisation plays no role in language acquisition.

How do these findings relate to the biological specification of a language-specific
UG? The most extreme response is that language is learned without any language-
specific constraints on the learning process, ie., there is no UG. I will interpret these
results from a less extreme angle, and simply note that generalisation forms a central
part of the language acquisition process. This position does not require a total
rejection of the role of language-specific constraints. Indeed, it should be noted that
nobody is proposing that language is learned from a tabula rasa. The fundamental
point is this: Chomsky’s argument — the argument from the poverty of the stimulus —
is a prima facie explanation for innate linguistic knowledge (Pullum & Scholz 2002;
Cowie 1999). The resolution of the debate is surely one of the most important
outstanding questions in linguistics and the cognitive sciences in general. It is an
empirical question for which no rigorously attained body of evidence has yet been
presented. Just how influential the learning process is in arriving at knowledge of
language remains frustratingly unclear. I will therefore leave this issue as an open
question, and note that the only sensible position is one articulated by, for example,

the prominent linguist Ray Jackendofft:

I agree that learning which makes more effective use of the input cer-
tainly helps the child, and it certainly takes some of the load off the
Universal Grammar. But I do not think it takes all the load off. It may
allow Universal Grammar to be less rich, but it does not allow UG to
be dispensed with altogether. (Jackendoff 2002:82)

2.2.2 The principle of detachment

In order to take stock, I will now set aside the issue of how much of language is
innately specified and how much is learned. Whichever stance one takes, I will argue
that the set of explanatory mechanisms adopted is essentially the same; further

empirical findings will only narrow distinctions rather than open up alternatives.

It is important to reflect on the original question: How and where are the universal
features of language specified? On accepting the above means of explanation it

is vitally important to note that an explanation for the universal features of a
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population level phenomenon — language — has been reduced to the problem of the
knowledge of language acquired by individuals. Of course, languages vary greatly
across populations, but we are specifically interested in the features common to
all languages. Universal properties of language, to a greater or lesser extent, are
specified innately in each human. But are we really justified in narrowing our
explanatory vocabulary so quickly? Before doing so, it is surely useful to be aware
of what kind of explanations are being discounted. The de-emphasis of context,
culture and history is a recurring theme in the cognitive sciences, as Howard Gardner

notes:

Though mainstream cognitive scientists do not necessarily bear any ani-
mus |...] against historical or cultural analyses, in practice they attempt
to factor out these elements to the maximum extent possible. (Gardner
1985:41)

Now, taking this standpoint is understandable and perhaps necessary when embark-
ing on any practical investigation into cognition. The result of this line of explana-
tion is that we consider universal features of language to be strongly correlated with
an individual’s act of cognition, which is taken to be biologically determined. The
advantages of such an orientation are clear: we have isolated the object of study.
Understanding the innate linguistic knowledge possessed by humans will lead us
to an understanding of why universal features of language are the way they are.
Chomsky is clearly confident that an explanation for language universals turns on

an explanation of UG as the initial state of the language faculty:

it must be that the basic structure of language is essentially uniform

and is coming from inside, not from outside. (Chomsky 2002:93)

For the purposes of this study, I will characterise this position as the Principle of

Detachment:

Definition 1 (Principle of detachment) A thorough explanation of the cogni-
tive processes relevant to language, coupled with an understanding of how these
processes mediate between input (primary linguistic data) and output (knowledge of
language), would be sufficient for a thorough explanation of the universal properties

of language.

In other words, an explanation for the universal features of language amounts to

an explanation of the possible states of the biological machinery elicited by the
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linguistic input. This explanatory orientation is characterised by circumscribing the
objects of study: biological machinery, and structural changes to that machinery
that arise as a result of the linguistic stimulus. To be absolutely clear on this point,
Chomsky states that the language acquisition device (LAD) — a piece of biological
machinery — on the basis of linguistic stimulus, maps this stimulus to a system of

grammatical rules. He states:

An engineer faced with the problem of designing a device for meeting the
given input-output conditions would naturally conclude that the basic
properties of the output are a consequence of the design of the device.
Nor is there any plausible alternative to this assumption, so far as I can
see. (Chomsky 1967)

In other words, if we want to know how and where the universal features of language
are specified, we need look no further than an individual’s competence derived
from primary linguistic data via the LAD. This position, which I have termed the
principle of detachment, runs right through the cognitive sciences and amounts to a
general approach to studying competence as a cognitive process. For example, in his
classic work on vision, Marr makes a convincing case for examining visual processing
as a competence understood entirely by considering a series of transformations of
visual stimulus (Marr 1977; Marr 1982).

The important point here is that by highlighting the principle of detachment, the
explanatory framework for explaining why language is the way it is is made explicit.
This framework is tuned to the assumption that basic properties of language are a
direct consequence of a piece of biological machinery. Now, if the result of language
acquisition is simply to elicit properties of the machinery, then the principle of
detachment is entirely justified. But if language acquisition is regarded as the
process of learning — such that generalisation does play a role — then by definition
properties of the state of the machinery and its output reside in the linguistic
stimulus as well. This must be the case, as the possible states of the machinery
are strongly determined by the properties contained in the linguistic stimulus. The
first point to note is that the principle of detachment acknowledges this possibility:
it requires an understanding of the primary linguistic data. Now here is the point
at which the explanatory inadequacy creeps in: the principle of detachment cannot
offer an explanation for why the linguistic stimulus contains the information it does.
In short, if we are interested in a thorough explanation of linguistic structure, then

there is a gaping hole in the explanatory vocabulary. All theories subscribing to
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the principle of detachment can explain nothing about the source of the structure

of the stimulus.

2.3 The nature of explanation in the cognitive sciences

The principle of detachment is questionable. An adequate explanation of why lan-
guage exhibits the structure it does will require breaching this principle. The next
step is to recognise that the principle of detachment, in a number of guises, has

influenced the explanatory vocabulary of the cognitive sciences:

It is probably no overstatement to suggest that much of cognitive science
is still dominated by Chomsky’s nativist view of the mind. (Quartz &
Sejnowski 1997)

I will discuss two bodies of work that suggest how the current explanatory inade-
quacy can be resolved. First, I will focus on cognitive science, and in particular,
artificial intelligence. I will note how both have historically adopted a conceptual
framework influenced heavily by the Chomskian perspective. Recent work in artifi-
cial intelligence — and the cognitive sciences in general — has suggested an alternative
orientation to address the deficiencies in artificial intelligence and cognitive mod-
elling. Under this alternative approach, cognition is seen as a situated act, such
that a full understanding of the environment of cognition is central to understanding
its function and mechanisms. This orientation ultimately relates to how intelligent
agents are built, but also informs the explanatory vocabulary used to understand

intelligent action.

The second body of work, which will prove more relevant to the remainder of the
thesis, is that of evolutionary linguistics. To understand how language evolved,
we must be clear on what has evolved. The principle of detachment suggests that
the biological machinery underlying the processing and understanding of language
is the principal object of study. Biological evolution therefore lies at the root of
the explanation of why language is the way it is. The principle of detachment
is implicit in such an account: the evolution of the language faculty amounts to
an explanation of the evolution of the characteristic structure of languages. Once
again, this assumption has recently been questioned, and the insights motivating

these questions will form the backbone of this thesis.

16



2.3.1 Artificial intelligence: Explaining by building

One of the aims of cognitive science, and in particular, Artificial Intelligence (Al), is
to explain human and animal cognition by building working computational models.
Some of the overarching principles that have guided Al research over the past half-
century were laid down in an intellectual climate influenced by Chomsky’s attack on
behaviourism. The principle of detachment shares some of the assumptions made
by what has now come to be termed Good Old Fashioned AI (GOFAI) (Haugeland
1997). Two characteristics of GOFAI are relevant to this discussion:

Disembodiment: Issues arising from the physical instantiation of the agent are
not taken to be theoretically significant. A desirable theory of cognition is
taken to be invariant over physical manifestation, and can therefore be inves-
tigated by designing abstract disembodied agents.

Detachment: Cognition is abstracted to a degree that makes the precise nature
of the environment insignificant. In this sense, cognition is investigated out

of context, and frequently detached from the issues of perception and action.

A conceptual framework adopting a disembodied and detached view of cognition
makes building models a lot easier by focusing on abstracted and general expla-
nations of cognition. It is worth noting that, traditionally, the goals of AI differ
from the goals of this discussion. Al seeks to build models, and generally speaking,
the model is taken as an explanation. In contrast, this discussion aims to draw
up an acceptable explanatory framework for understanding the universal properties
of language. These aims are quite separate, but related. Al is in line with the
principle of detachment, as the machinery is seen as the focus of the explanation.
Understand the cognitive machinery, and we can understand the workings of the

cognitive system.

Disembodiment and detachment assume that the characteristic properties of the
machinery are elicited, rather than partially determined by, the role of the environ-
ment. Therefore, by building the machinery, we assume that the basic properties of
the device can be explained. Now, the key point I will make is that, over the course
of AI’s development, both these principles have been cast into doubt. Recent devel-
opments in the cognitive sciences provide a source of alternatives when questioning
the principle of detachment. Can these developments shed light on an explanation
for the universal properties of language? I will argue that they can: the conceptual

framework for studying cognition has undergone significant revision. As Markman
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and Dietrich note: “there is a revolution in the air in cognitive science” (Markman
& Dietrich 2000:470).

Situated and embodied cognition

The fact is that after half a century of research, Al has failed to measure up to ex-
pectation, and as Jerry Fodor noted, “Al has walked into a game of 3-dimensional
chess, thinking it was tic-tack-toe” (Dreyfus & Dreyfus 1990). For many, the hall-
marks of this failure are: lack of scalability, where systems that operate with respect
to micro-worlds are proven hopelessly inadequate when placed in more complex en-
vironments; lack of robustness, where systems fail to deal with unforeseen circum-
stances; failure to operate in real-time, where the information processing load of a
system is so great as to be intractable as a valid theory (Pfeifer & Scheier 1999:59-
78). Those who have sought to re-orientate Al, in one form or another, cite situat-
edness and embodiment as design maxims (Dreyfus 1972; Winograd & Flores 1986;
Clancy 1997; Brooks 1999; Pfeifer & Scheier 1999).

Adopting the property of situatedness in an explanation implies that the precise na-
ture of the environment is a theoretically significant consideration. In the limit, the
property of situatedness means that an understanding of cognition cannot be sepa-
rated from intricacies of the environment. For example, some environmental states
may be persistent, in which case an agent need not represent them in the traditional
sense, where a significant part of the processing load of the agent is to keep inter-
nal representations in synch with the outside world. Instead, the knowledge that
the information will be there when it is required is sufficient. Without examining
an act of cognition in this context, one might incorrectly attribute such persistent
and detailed representations to the agent. In essence, as soon as one admits the
possibility of a cognitive architecture exploiting the structure in its environment,
then an abstract, detached treatment of cognition can become inaccurate. These
inaccuracies relate directly to the perceived problems with GOFAI: systems may
fail to operate in real time because exploitation of the environment is not possible
if the precise nature of the environment is not considered; systems are not scal-
able precisely because cognitive structures are tuned to very specific environmental

properties.

Embodiment refers to the importance of the nature of the physical instantiation of
the agent. The sensory surfaces used by an agent define the nature and range of
stimuli that can be exploited. Taking embodiment to its limit requires us to build

physically instantiated biological agents. Without this physical grounding, and an
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understanding of the perceptual and motor capacities that grounding requires, it is
impossible to grasp an accurate reflection of the environment. Embodiment, then,
is a property that is closely tied to the issue of situatedness, as an accurate picture
of situatedness requires an accurate picture of the phenomenal world the agent
inhabits.

The property of situatedness is most relevant to the present discussion. But how
exactly does situatedness relate to an explanation of the universal properties of
language? The explanatory inadequacy resulting from the principle of detachment —
the lack of an explanation for the nature of the linguistic stimulus — occurs as a result
of the assumption that situatedness is not a theoretically significant consideration.
An explanation for the universal properties of languages requires an explanation
of the situated nature of language acquisition. If language learning is possible as
a result of the nature of the data — and learners are exploiting this input — then
a large part of the explanation for the universal features of language will be an

explanation for why the data is as it is. A fully situated account would explain this.

2.3.2 The evolutionary explanation

Only humans have language. The communication systems used by animals do not
even approach the sophistication of human language, so the evolution of language
must concern the evolution of the human line over the past 5 million years, since
our last common ancestor with a non-linguistic species (Jones et al. 1992). Conse-
quently, examining fossil evidence offers a source of insights into the evolution of
language in humans. For example, we can analyse the evolution of the vocal tract,
or examine skulls and trace a path through the skeletal evolution of hominids,
but the kinds of conclusions we can draw from such evidence are severely limited
(Lieberman 1984; Wilkins & Wakefield 1995).

One route to explaining the evolution of language in humans, which we can dub
functional nativism, turns on the idea that language evolved in humans due to
the functional advantages gained by linguistically competent humans. Language,
therefore, was a trait selected for by biological evolution (Pinker & Bloom 1990;
Nowak & Komarova 2001). Here, we can imagine an evolutionary trajectory starting
from some biological predisposition present in proto-humans for using some set of
communication systems Cp,q,. From this starting point, biological evolution led to
the occurrence of the set of communication systems Cy g, which includes all human
languages. The story of language evolution can then unfold by claiming that the
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Figure 2.1: Functional nativism. From the set of all communication systems C,
the communication systems of proto-humans, Cp,4t0, €volved under some functional
pressure towards Cyg.

biological machinery supporting Cproto €volved to support Cye due to functional
pressures (see Figure 2.1). Implicit in this account is the principle of detachment.
The biological evolution of cognitive capacities supporting language are equated

with the evolution of languages themselves.

Over the past 15 years computational evolutionary linguistics has emerged as a
source for testing such hypotheses. This approach employs computational models
to try and shed light on the problem of the evolution of language in humans (Hurford
1989; Kirby 2002b; Briscoe 2000). One source of complexity in understanding the
evolution of language is the interaction between three complex adaptive systems,
each one operating on a different time-scale. Linguistic information is transmitted
on two evolutionary substrates: the biological and the cultural. For example, you
are born with some innate predisposition for language which evolved over millions
of years. The linguistic forms you inherit from your culture have evolved over hun-
dreds of years. In addition to these evolutionary systems, your linguistic competence
emerges over tens of years. Much of the work in computational modelling has anal-
ysed this interaction. By modelling linguistic agents as learners and producers of
language, and then investigating how communication systems evolve in the presence
of both biological and cultural transmission, computational evolutionary linguistics
attempts to shed light on how language can evolve in initially non-linguistic com-
munities. This approach draws on disciplines such as cognitive science, artificial life,
complexity, and theoretical biology. Recent work in this field has focused on how
certain hallmarks of human language can arise in the absence of biological change.

This observation must lead us to consider how far a neo-Darwinian explanation for
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language can take us. For example, the very possibility of trademark features of lan-
guage not being fully explained in terms of an individual’s (biologically determined)

cognitive capacity raises important questions.

I will detail this work in the next section, but I mention it here as it impacts on
the current discussion. In explaining how and why language has its characteristic
structure, the evolutionary approach, by investigating the interaction between bi-
ological and cultural substrates, is in line with the claims made by proponents of
embodied cognitive science. Because languages themselves can adapt, independent
of the biological substrate, certain features of language cannot be explained in terms

of detached cognitive mechanisms alone.

2.4 Iterated learning

The previous section introduced the idea that linguistic evolution can occur on a
cultural substrate. To clarify this point, it is worthwile noting that linguistic in-
formation is transmitted on two substrates. Firstly, biological evolution relies on a
genetic substrate: information relevant to language is encoded in the genes. Sec-
ondly, cultural transmission and adaptation allows information relevant to language
to be encoded within languages themselves. That is, language itself supports a sub-
strate for the transmission of information relevant to language. In short, linguistic
forms are determined not only by the underlying biological machinery, but also as a
result of cultural adaptation. In this section I will flesh these ideas out, and relate

them to an explanation of linguistic structure in more concrete terms.

An iterated learning model (ILM) is a framework for testing theories of linguistic
evolution. Within an ILM agents act as a conduit for an evolving language — the
language itself changes or evolves rather than the agents themselves. An ILM is a
generational model: after members of one generation learn a language, their pro-
duction becomes the input to learning in the next generation. Within this model of
linguistic transmission, providing that the transfer of knowledge of language from
one generation to the next is not entirely accurate or reliable, will result in di-
achronic change. Importantly, certain linguistic structure will survive transmission,
while other forms may disappear. The precise nature of the information being trans-
mitted depends on the theory in question. Here, I will discuss two broad categories
of theory: those of language change and language evolution. The investigation of
language change, although relying on an iterated learning framework, can only have

a limited impact on our discussion of the principle of detachment: recall that the
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Figure 2.2: Language change. An example trajectory of language change through
languages [y, I3, I3, and 4.

principle of detachment, according to its definition, requires an explanation of abso-
lute language universals. Absolute universals are typically preconfigured in models
of language change: an explanation of how these hallmarks came about is there-
fore outside the explanatory reach of such models. However, theories of language
change, by explaining aspects of language which are observed to vary, can impact

on an explanation of, for example, statistical universals.

2.4.1 Language change

In studying language change we often consider the trajectory of language through
possible grammars. Any resulting explanation is therefore orientated neutrally with
respect to explaining certain forms of absolute universal: the very possibility of a
grammar presupposes compositional and recursive structure. From one grammar
to the next, we presume many of the hallmarks of language to be ever-present (see
Figure 2.2). Models of language change must invoke a situated component. A
model must tackle the problem of language acquisition: a learner will deviate from
the grammar of its teachers when the primary linguistic data fails to unambigu-
ously represent the grammar from which it is derived. Knowledge of language is
therefore not transmitted directly from mind to mind: some external correlate — lin-
guistic performance — must stand proxy for knowledge of language (Hurford 1990).
Modelling language change must therefore consider some environment allowing the
transmission of language competence via language performance. This environment,

importantly, is constructed by others.

Using iterated learning, we can construct computational models of language change.

These studies are motivated by the observation that language change is driven by
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considerations arising from language acquisition (Clark & Roberts 1993; Niyogi
& Berwick 1997; Briscoe 2002). For example, using a principles and parameters
approach to language description, Niyogi & Berwick (1997) develop a population
model with which they investigate the dynamics of language change. In particu-
lar, they use a probabilistic model of grammar induction to focus on the loss of
Verb-second position in the transition from Old French to Modern French, which
results directly from misconvergences arising during language acquisition. In con-
trast, Hare and Elman address the problem of morphological change by looking at
connectionist simulations of language learning, which, when placed in the context
of iterated learning, can be used explain morphological changes such as verb inflec-
tion in Modern English arising from the inflectional system of Old English (Hare
& Elman 1995). Importantly, the linguistic phenomena these models attempt to
explain is relatively well documented: the historical accuracy of models of language

change can be tested.

2.4.2 Language evolution

These studies of language change tell us that the learnability of languages, over the
course of cultural transmission, has a bearing on the distribution of languages we
observe. Now I will discuss extending the range of explanation offered by models of
iterated learning to include the possibility of explaining hallmarks of language. The
dynamics of iterated learning can make certain properties of communication systems
ubiquitous. This must lead us to consider the fact that, just as the dimensions of
variation can be explored via iterated learning, the undeviating features of language

may also depend on issues of learnability.

The possibility that iterated learning models can shed light on an explanation of
these properties will make a convincing case for questioning the principle of detach-
ment. If the unvarying features of language can be explained in the same way as
those that vary, then issues of innateness become problematic and less clear cut.
For example, both Christiansen, Deacon, and Kirby have claimed previously that
universals should, at least in part, be seen as arising from repeated transmission

through learning:

In short, my view amounts to the claim that most — if not all — lin-
guistic universals will turn out to be terminological artifacts referring to
mere side-effects of the processing and learning of language in humans
(Christiansen 1994:127)
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Grammatical universals exist, but I want to suggest that their existence
does not imply that they are prefigured in the brain like frozen evo-
lutionary accidents. In fact, I suspect that universal rules or implicit
axioms of grammar aren’t really stored or located anywhere, and in an
important sense, they are not determined at all. Instead, I want to sug-
gest the radical possibility that they have emerged spontaneously and
independently in each evolving language, in response to universal bi-
ases in the selection processes affecting language transmission. (Deacon
1997:115-116)

The problem is that there are now two candidate explanations for the
same observed fit between universals and processing — a glossogenetic
one in which languages themselves adapt to the pressures of transmission
through the arena of use, and a phylogenetic one in which the LAD
adapts to the pressures of survival in an environment where successful

communication is advantageous. (Kirby 1999:132)

These arguments place an explanation for the universal features of language well
and truly outside the framework of explanation suggested by the principle of de-
tachment. In the context of cultural transmission, I will term the process by which
certain linguistic forms are adaptive and therefore evolve and persist cultural selec-

tion for learnability. More precisely:

Definition 2 (Cultural adaptation) By cultural adaptation, I mean the occur-

rence of changes in the language due to the effects of cultural transmaission.

It is important to contrast the notion of cultural adaptation to that of genetic
adaptation, where genetic changes occur as a result of natural selection. The notion
of cultural adaptation refers to the language adapting, rather than the users of
language. Next, I will define cultural selection for learnability:

Definition 3 (Cultural Selection for Learnability) In order for linguistic forms
to persist from one generation to the next, they must repeatedly survive the pro-
cesses of expression and induction. That is, the output of one generation must be
successfully learned by the next if these linguistic forms are to survive. Those forms
that repeatedly survive cultural transmission are adaptive in the context of cultural
transmission: they will be selected for due to the combined pressures of cultural

transmission and learning.
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In this context, the terms adaptive and selection only loosely relate to the equivalent
terms used in the theory of biological evolution. The idea that languages themselves
adapt to be learnable, and in doing so organise themselves subject to a set of
recurring structural properties, has been the subject of computational models that
make explicit these assumptions. In particular, the experiments of Kirby (2002a)
and Batali (2002) demonstrate that a collection of learners with the ability to
perform grammar induction will, from an initially holistic communication system,
spontaneously arrive at compositional and recursive communication systems. These
experiments will be discussed more thoroughly in Chapter 3, but a general reading
is as follows. Because language is ostensibly infinite, and cultural transmission can
only result in the production of a finite series of utterances, generalisable forms will

have a tendency to survive.

These experiments suggest that certain hallmarks of language are culturally adap-
tive: pressures arising from transmission from one agent to another cause these
hallmarks to emerge and persist. For example, adaptive properties such as compo-
sitionality and recursion, which we can consider absolute language universals, are
defining characteristics of stable systems. These models suggest that extending and
enriching the explanatory framework suggested by the principle of detachment is a
fruitful line of research. In particular, if the precise nature of the environment of
language adaptation is to play a pivotal role, as suggested by situated theories of
cognition, then further modelling may shed light on a wider range of linguistic forms.
For example, Kirby (2001) demonstrates that by elaborating the environment by
imposing a non-uniform distribution over the set of communicatively relevant sit-
uations, irregular forms emerge. By skewing the relative frequency of utterances,
irregular forms can exist by virtue of the fact they are frequently used, and there-
fore are subject to a reduced pressure to be structured. Similarly, Smith et al.
(forthcoming) show how clustering effects in the space of communicatively relevant

situations leads to a stronger pressure for compositionality.

These studies demonstrate that the precise nature of the factors underlying language
adaptation impacts on the resulting language structure. By understanding the
import of environmental considerations on the evolved languages, in tandem with
an investigation into plausible models of language acquisition, the aim is to shed
further light on the relationship between cultural selection and the structure of
evolved languages. In Chapter 5, I will conduct a large-scale exploration of such

environmental considerations.
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In this section I have discussed how models of language evolution and change based
on a cultural, situated model of linguistic transmission can shed light on the oc-
currence of hallmarks of language. I will enter into more thorough discussions as
the thesis unfolds. At this point, I am now in a position to present the theoretical

foundations that will motivate and guide the remainder of the thesis.

2.5 Three hypotheses underlying the view that language adapts to

be learnable

I began this discussion by considering the manner in which language universals
should be explained. I now aim to make clear the principles that underly the view
that language universals are, at least in part, the result of cultural selection for
learnability. It is useful to distinguish two mutually supporting streams of discus-
sion. First, the status of the notion of cultural selection in linguistic theory. For
example, how does cultural selection for learnability impact on the theory of lin-
guistic nativism? This stream of inquiry will, I hope, be clarified by the immediate
discussion. The second stream of inquiry concerns the use of modelling to sup-
port and inform the theoretical claims. Before I focus on the latter, the theoretical

foundations and claims need to be made explicit.

2.5.1 Innateness hypothesis

I will start by noting that any conclusions we draw will be contingent on an innate-

ness hypothesis:

Hypothesis 1 (Innateness hypothesis) Humans must have a biologically deter-
maned set of predispositions that impact on our ability to learn and produce language.

The degree to which these capacities are language-specific is not known.

Here I am stating the obvious: the ability to process language must have a biological
basis. However, the degree to which this basis is specific to language is unclear. As I
have noted, linguistics lacks a solid theory, based on empirical findings, that details
which aspects of language can be learned, and which must be innate (Pullum &
Scholz 2002). Next, I will consider the innateness hypothesis with respect to two
positions. Firstly, assuming the principle of detachment, the innateness hypothesis
must lead us to believe that there is a clear relation between patterns we observe
in language and some biological correlate. Secondly, if we extend the framework of

explanation by rejecting the principle of detachment, then the question of innateness
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is less clear cut. We can now talk of a biological basis for a feature of language, but
with respect to a cultural dynamic. Here, a cultural process will mediate between

a biological basis and the occurrence of that feature in language.

2.5.2 Situatedness hypothesis

This discussion now centres around recasting the question of innateness. Further-
more, this observation, because it relates to a cultural dynamic, leads us to accepting

that situatedness plays a role:

Hypothesis 2 (Situatedness hypothesis) A thorough understanding of the cog-
nitive basis for language would not amount to a total explanation of universal lan-
guage structure. However, a thorough understanding of the cognitive basis for lan-
guage in conjunction with an understanding of the trajectory of language adapta-
tion through cultural transmission would amount to a total explanation of language

structure.

Of course, the degree of correlation between a piece of biological machinery sup-
porting some aspect of language and the resulting language universal is hard to
quantify. But in general, some biological basis for language will admit the possi-
bility of some set of communication systems Cp,ssinie. A detached understanding of
language can tell us little about which members of Cpyssine Will be culturally adap-
tive and therefore observed. The situatedness hypothesis changes the state of play
by considering those communication systems that are adaptive, Cydaptive, On a cul-
tural substrate, and therefore observed. In short, cultural selection for learnability
occurs with respect to constraints on cultural transmission. These constraints de-
termine which members of Cpogsine are culturally adaptive, observed, and therefore
become members of the set Cogaptive-

By conjecturing an opaque relationship between some biological basis for language
and some observed language universal, the notion of UG becomes problematic.
Universal grammar is often taken to mean one of two things. First, the term UG is
sometimes used to refer to the set of features that all languages have in common®.
Secondly, and perhaps more frequently, UG has been defined as the initial state
of the language-learning child (Chomsky 1975). Figure 2.3 depicts how these two

definitions relate to our discussion of the biological basis for language, the set of

IFor a discussion on the historical use of the term universal grammar, see Jackendoff (2002:69-
70).
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Cadaptive= Cue

Cadaptive

(b)

Figure 2.3: Of the set of possible human communication systems Cpossipe, S0me set
Cladaptive are adaptive in the context of cultural transmission, and therefore observed.
Depending on how we define UG, the set of communication systems characterised by
UG, Cyg, is either precisely those we observe (Cyaaptive), Or those that are possible,
but not necessarily observed (Cpossibie)-

possible communication systems, and the set of observed communication systems.
The set of communication systems that conform to the definition of UG are denoted
as Cyg. Depending on which definition of UG we adopt, this set will be equivalent

to either Chossipte OF Cudaptive- These two alternatives are now explored:

1. UG as the set features common to all languages. If we take UG as the set of
features common to all observed languages, then Cy¢, the set of communica-
tion systems conforming to UG, is identical to our set of culturally adaptive
communication systems, Cyggptive- This must be the case, as only members of
Cladaptive are observed and can therefore contribute to a theory of UG under
this reading. This position is represented in Figure 2.3(a).

2. UG as the initial state of the language-learning child. The alternative defini-
tion of UG, where UG defines the initial state of the learner, must encompass
those communication systems which are possible, but not necessarily adap-

tive: Cpossibie- Because humans are equipped with the biological basis for using
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members of Cpyssipie, their initial state must account for them. Hence, under
this second reading of UG, Cpossine = Cug. As before, only some members
of Cpossivie Will be culturally adaptive and therefore observed. Figure 2.3(b)

reflects this relationship.

Irrespective of our definition of UG, an acceptance of the situatedness hypothesis
allows us to explain a feature of language in terms of a biological trait realised as a
bias which, in combination with the adaptive properties of this bias over repeated
cultural transmission, leads to that feature being observed. However, if one accepts
cultural transmission as playing a pivotal role in determining language structure,
then one must also consider the impact of other factors resulting in adaptive proper-

ties emerging, for example, issues relating to communication and effective signalling.

2.5.8 Function independence hypothesis

As a first approximation, we need to understand how much can be explained without
appealing to any functional properties of language. By functional, I mean relating

to communicative function.

Hypothesis 3 (Function independence hypothesis) Some aspects of language

structure can be explained independently of language function.

A defence of this hypothesis is less clear cut. Without doubt language is used for
communication, but whether issues of communication determine all forms of lan-
guage structure is by no means clear (Newmeyer 1998). The function independence

hypothesis should be contasted with a functionalist stance, which

analyzes grammatical structure [...] but it also analyzes the entire com-
municative situation: the purpose of the speech event, its participants,
its discourse context. Functionalists maintain that the communicative
situation motivates, constains, explains, or otherwise determines gram-
matical structure (Nichols 1984:97)

The orientation suggested by the function independence hypothesis is best summed

up by Chomsky’s statement that:

language is not properly regarded as a system of communication. It

is a system of expressing thought, something quite different. It can of
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course be used for communication, as can anything people do — manner
of walking or style of clothes or hair, for example. But in any useful
sense of the term, communication is not the function of language, and
may even be of no unique significance for understanding the functions

and nature of language. (Chomsky 2002:76)

The picture I am developing here suggests that constraints on learning and repeated
cultural transmission play an important part in determining linguistic structure.
The models I will discuss make no claims about, nor explicitly model, any notion

of communicative function.

2.6 Chapter Summary

Absolute universals are hallmarks adhered to by every user of language. We might
then take the individual as the locus of study when seeking an explanation for why
absolute language universals take the form that they do. In line with this intuition,
practitioners of cognitive science will often make the simplifying assumption that
the behaviour of individuals can be understood by examining the internal cogni-
tive processes of detached agents. The principle of detachment characterises this

position.

In attempting to understand how and where language universals are specified, this
discussion has focused on questioning the principle of detachment. I have explored
two sources of insights that suggest that an explanation of the characteristic struc-
ture of language could benefit from breaching the principle of detachment. Firstly,
advocates of situated cognitive science claim that the property of situatedness, a
full understanding of the interaction between agent and environment, is theoreti-
cally significant. Secondly, recent work in the field of computational evolutionary
linguistics suggests that cultural dynamics are fundamental to understanding why
linguistic structure evolves and persists. I should stress here that in one respect
languages are not stable, they are constantly changing. But in contrast, absolute
language universals are entirely stable, or at least they have been over the duration

of modern linguistic inquiry?.

Taking these two sources as evidence, I introduced the notion of iterated learning

as a means to explore the relation between absolute language universals and those

2See Newmeyer (2002) for discussion of this and other issues that relate to “uniformitarianism”
in linguistics.
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linguistic features that are adaptive in the context of cultural transmission. On the
basis of this concept, I claim that cultural selection for learnability must form part of
any explanation relating to how and where the hallmarks of language are specified.
I also claim that, due to constraints on cultural transmission, languages adapt to
reflect the biases present in language learners and producers. The relationship
between these biases and the observed hallmarks of language is therefore opaque:

a cultural dynamic mediates between the two.

Here is the message I wish to convey: Selection for learnability is an important de-
terminant of language universals, and as such should be understood independently
of any particular computational model. The aim is to outline the theoretical foun-
dations of cultural selection for learnability. I have done this by proposing three
hypotheses. First, the Innateness Hypothesis (Hypothesis 1) states that there must
be a biological basis for our language-learning abilities, but the degree to which these
abilities are language-specific is unclear. The second hypothesis, the Situatedness
Hypothesis (Hypothesis 2), states that language universals cannot be explained
through an understanding of the cognitive basis for language alone. I claim that
certain properties of language are adaptive in the context of cultural transmission.
The third hypothesis, the Function Independence Hypothesis (Hypothesis 3), makes
clear that the communicative functions of language are not necessarily determinants
of language structure. I note that an explanation for some absolute universals, such
as compositional syntax, need not appeal to any notion of language function. In

short, I seek an afunctional explanation for certain aspects of linguistic structure.

By questioning the principle of detachment and pursuing a line of enquiry guided by
Hypotheses 1-3, I have argued that the concept of cultural selection for learnabil-
ity can provide important insights into some fundamental questions in linguistics
and cognitive science. This motivation for this Chapter is, first, to question the
explanatory framework used in explaining the the universal characteristics of lan-
guage, and second, to make explicit a set of hypotheses that can be used to engage
with current linguistic theory. These hypotheses set the scene for exploring the
role of learning in linguistic transmission. It is the role learning as a vehicle for

information transmission that I will turn to next.
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CHAPTER 3

[terated Learning

3.1 Introduction

Iterated learning is a candidate explanatory framework for understanding why lan-
guage exhibits certain hallmarks and not others. The following discussion will start
by framing the process of iterated learning in the context of more general theories of
cultural evolution. The main point of discussion, however, will be the development
of iterated learning models. The foundational models of Batali (2002) and Kirby
(2002a) are taken as the starting point in examining how iterated learning models
can be used to explore the effects of repeated cultural transmission. These models
make claims about the evolution of hallmarks of language — absolute universals —
through linguistic evolution. A number of issues are raised by these experiments,
and these questions suggest a programme for future research into iterated learning
models. The motivation underlying this discussion is the need to introduce the
key concepts in iterated learning. I will do this by way of examples. In Section
3.3, I will develop an illustrative example of iterated learning, where classification
competence is subject to constrained cultural transmission. Then, in Section 3.4, I
will extend this model and tackle the question of compositionality in language. In
doing so, many of the fundamental issues and methods in iterated learning models
will be set out. The contribution of this chapter is therefore twofold. First, it will
act as an introduction to the key concepts in iterated learning as both a process and
as a modelling framework. Second, foundation results concerning the emergence of

compositional structure will be developed.
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3.2 Foundations and context of iterated learning

Rather than simply eliciting pre-defined biologically determined linguistic proper-
ties, language acquisition may play a far more important role. If this is the case,
then the linguistic stimulus may encode basic properties of language. As soon as
we entertain the possibility that hallmarks of language are partly determined by
the content of the linguistic stimulus, then, as I have argued, any acceptable ex-
planation for these hallmarks must also explain the origin of the stimulus. It is
clear that such an explanation requires a situated account of language learning; one
that requires breaching the principle of detachment. In Figure 3.1(a) the detached
account underlying the traditional explanation of knowledge of language is schema-
tised: knowledge of language can be understood in terms of the causal properties
of the linguistic stimulus in determining configurations of the biological machinery
relevant to language. If the linguistic stimulus contains significant information, and
this information determines what we trying to explain, then the source and nature
of this information must be understood. An extension to the principle of detach-
ment, such that this source is made explicit, is schematised in Figure 3.1(b): the
linguistic stimulus is constructed by the behaviour of other agents. The situated
account leads us to acknowledge that understanding knowledge of language requires

an understanding of the role preceding language learners play in constructing the

linguistic
stimulus biological
basis
S | ———————- linguistic
| ! stimulus biological
eoeo - > REREEEE > s
i ; ! i basis

Figure 3.1: Detached versus situated accounts. In (a), an explanation consists
of an understanding of the biological machinery in conjunction with the role of
the linguistic stimulus. In (b), the explanatory range is widened to account for
the origin of the linguistic stimulus by acknowledging the role of previous language
users.

linguistic stimulus.

Iterated learning, where learners learn from the output of other learners, uncovers
a set of issues that will impact on an explanation of why language is the way it
is. Iterated learning leads to a form of information transmission in which linguis-

tic information is continually translated between, using Chomsky’s terminology,
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I-Language and E-Language. I-language is the internal configuration of cognitive
structures relevant to knowledge of language. E-Language is the externalised lin-
guistic performance derived from internal linguistic competence, that is, I-language.
Iterated learning therefore hinges on the observation that linguistic transmission is
meditated by repeated translations between I-Language and E-Language. This idea
is not new. Although it is implicit in the statements of Christiansen (1994), Deacon
(1997), and Kirby (1999), cited in the previous Chapter, it has also been discussed,
for example, by Andersen (1973) and Hurford (1990). The crux of the issue is that,
across generations of language users, I-language is translated into E-language and
then reverse-translated back into I-language. This process is repeated generation
after generation, and, due to the imperfect nature of the processes of translation
and reverse translation, results in linguistic change. Just how important this pro-
cess is in determining hallmarks of language, however, is another issue entirely.
The working assumption of this discussion is that, due to the effects of repeated
language expression and language induction, the linguistic stimulus will contain
structural properties introduced by language users many generations before: lan-
guage reflects the accumulated residue of the effects of learning and production of

preceding agents.

3.2.1 Clltural processes and models

In broad terms, iterated learning is an ongoing process in which learning agents
take their input from the output of other learners. The example discussed above
focuses on the specific case where learners are learning language. It is worth pointing
out that iterated learning could be regarded as part of a more general information
processing problem relevant to not just language, but other learned capacities found
in the natural world. For the sake of terminological accuracy, we should regard
iterated learning as a domain-general information processing problem. Language is
a specific domain of learned behaviour, found in nature, for which the process of

iterated learning is relevant.

Looking beyond language, iterated learning, broadly construed, is identical to the
process of cultural transmission and evolution described by Tomasello (1999), and
one half of the dual inheritance model discussed by Boyd & Richerson (1985). At a
more general level, iterated learning can also be parallelled with Dawkins’ notion of
cultural evolution, but for the time being, it is far from clear to what extent iterated
learning should be regarded as an evolutionary process in the usual sense (Dawkins

1982). In this context, culture is used to refer to those behavioural practices that
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persist across generations as a result of being learned, rather than being innate. 1
will focus on Tomasello’s discussion. Tomasello’s argument addresses a paradox.
A wide range of cognitive skills are exhibited by humans that are absent in other
species. Furthermore, because humans share 99% of their genetic material with
chimpanzees, biological evolution, Tomasello argues, cannot be invoked as the sole
explanation for these differences. The time-scale over which these differences could
have developed through biological evolution, Tomasello goes on to argue, is simply

too small:

The fact is, there simply has not been enough time for normal processes
of biological evolution involving genetic variation and natural selection
to have created, one by one, each of the cognitive skills necessary for
modern humans to invent and maintain complex tool-use industries and
technologies, complex forms of symbolic communication and represen-
tation, and complex social organizations and institutions. (Tomasello
1999:2)

Many species learn from observing the behaviour of others, and can therefore ex-
ploit the behaviour of conspecifics to make surviving in an environment less risky;
rats, for example, learn from the feeding practices from their parents (Mundinger
1980). Importantly, as Boyd and Richerson point out, being the recipient of set of
culturally inherited practices allows organisms to gain from the behaviour of genet-
ically unrelated conspecifics; their maxim “inheritance as a shortcut to individual
learning” therefore applies beyond inheritance from an organism’s forebears (Boyd
& Richerson 1985:14). But, as Tomasello argues, humans populations support a far
more powerful notion of cultural evolution than any animals. This unique mode of
cultural transmission supports ratcheting, where not only are cultural constructions
successfully and repeatedly transmitted from generation to generation, but cultural
evolution is possible due to variation and improvements. The ratchet effect is a

property that gives rise to cumulative evolution:

The process of cumulative cultural evolution requires not only creative
invention but also, and just as importantly, faithful social transmission
that can work as a ratchet to prevent slippage backward — so that the
newly invented artifact or practice preserves its new and improved form
at least somewhat faithfully until a further modification or improvement

comes along. (Tomasello 1999:2)
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Importantly, humans are unique in supporting such a cumulative evolution, and this
uniqueness is a result of the human ability to “understand conspecifics as beings
like themselves who have intentional and mental likes like their own.” (Tomasello
1999). The notion of the ratchet effect is parallelled in Deacon’s concept of linguis-
tic evolution, where he discusses a “self-sustaining core, consisting of a grammar
and syntax and a sufficient number of words to determine all critical word classes”
(Deacon 1997:113). As I discussed in the previous Chapter, this core is sustained
because it is easily learnable, with any variations arising from “transmission er-
rors... [or] by the active creativity of its users” (Deacon 1997:114). It is clear that
Tomasello’s work on cultural evolution bears many parallels with the process of
iterated learning. The view that significant explanatory purchase can be gained by

considering cultural transmission is also mirrored in Tomasello’s work:

my central argument [...] is that it is these processes, not any special-
ized biological adaptations directly, that have done the actual work in
creating many, if not all, of the most distinctive and important cogni-
tive products and processes of the species Homo sapiens. (Tomasello
1999:11)

Now there is a danger of considerable overlap in terminology: iterated learning,
in its widest sense, and cultural evolution refer to the same process. Nevertheless,
those studies that invoke the term iterated learning have, so far, specifically con-
cerned explanations of general linguistic properties. These properties are culturally
transmitted and learned through observation rather than, for example, instruction.
In this respect, iterated learning is a broadly defined process in which information
is transmitted through observational learning. This discussion concerns models of

iterated learning, and applies these models to explaining linguistic evolution.

3.2.2 Foundational models

The computational models of language change mentioned in Chapter 2 employ
iterated learning models to investigate the impact of language acquisition on likely
trajectories through the space of possible human languages (Clark & Roberts 1993;
Hare & Elman 1995; Niyogi & Berwick 1997). Although these studies represent
the first use of what we now term iterated learning models, they are of limited
importance to the current question of the evolution of the hallmarks of language.
The existence of absolute universals are an assumption in these models, rather than

the target of explanation.
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Of more importance to this discussion are the pioneering models of linguistic evolu-
tion through iterated learning (Batali 1998; Batali 2002; Kirby 2000; Kirby 2002a;
Hurford 2000b). I will refer to four of these models which have been developed,
independently, by John Batali and Simon Kirby. The early models of Batali (1998)
and Kirby (2000) focus on the emergence of compositionality. Batali’s model uses
recurrent neural networks to map signals to meanings. In a fixed population with-
out any turnover, Batali shows how repeated inter-agent production and learning of
meaning/form pairs results in structured signals emerging, where signal structure
reflects the structure present in the meanings. These pre-structured meanings are
loosely interpreted by Batali as representing predicate-argument structure. Batali’s
conclusion is that such rudimentary syntactic structure, which must be a precursor
to more complex syntactic forms, can be explained through repeated linguistic ex-
pression and induction. Kirby (2000) focuses more explicitly on the general property
of compositionality, and presents a very different model, but obtains comparable
results. Kirby’s meanings are triplets representing predicate-argument relations.
Unlike Batali’s model, Kirby models a collection of agents subject to a turnover.
After a number of rounds of communication, a random agent is removed and re-
placed by a new blank agent. In doing so, Kirby’s model engages more directly with
the question of language evolution through cultural transmission over generations
of agents. Furthermore, this transmission is explicitly presented in terms of the
translation between I-language and E-language. Once again, the outcome of the
model is that, from an initially holistic relation between meanings and signals, a
compositional relation emerges as the result of the evolution of the signals. Both
these models therefore make a claim about the emergence of compositionality from
initially holistic systems. The driving force for this linguistic evolution is iterated

learning: learners learn from the output of other learners.

To strengthen the range of linguistic structure that iterated learning models can ac-
count for, both Batali (2002) and Kirby (2002a) present further models which claim
not only to account for the emergence of compositionality, but also recursive struc-
ture. I will briefly focus on Kirby’s model, as it has been subject to a further critical
analysis which I will discuss shortly. Kirby’s second model makes two important
contributions. Firstly, the range of linguistic structure to be explained is extended
to include recursive syntax. Agents in the model are grammar inducers. By enrich-
ing the structure of meanings in the model to include nested predicate-argument
structure, agents are open to the possibility of processing structured signals that
reflect this hierarchical structure. Secondly, the processes driving linguistic evo-

lution are more clearly articulated. Agents are organised into generations. Each
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generation contains only one agent. As the simulation proceeds, an agent will pro-
duce utterances that are observed by the agent in the next generation. Language is
transmitted down the generations by the translation of I-language (grammar) into
E-language (utterances). This model is therefore tuned more to an explanation
of linguistic evolution across generations, rather than linguistic evolution within a
single generation — which is the situation addressed in both of Batali’s studies. For

Kirby, the driving force for linguistic evolution is the transmission bottleneck:

We can think of the transformations between I- and E-language as a
bottleneck on the transmission of language over time... Since the num-
ber of meanings that the learners are exposed to is always lower than
the total number of meanings, a totally idiosyncratic language cannot
survive. (Kirby 2002a:194)

In short, the generalisable parts of the language are more likely to survive than
idiosyncratic parts of the language. This dynamic leads the system towards fully
generalisable languages, and these are syntactic languages. In effect, the bottleneck
is restricting the set of stable languages to be those that are structured. These
languages are those where the meaning structure is reflected in the signal struc-
ture: recursive and compositional syntax is the inevitable outcome of linguistic
transmission under these conditions. These conclusions, reached using computa-
tional simulation, correspond to those proposed by Christiansen and Deacon. In
this sense, models of iterated learning go some way to verifying their theoretical

intuitions.

Outstanding questions

The computational simulations discussed above add weight to the view that hall-
marks of language should, at least in part, be explained relative to a cultural dy-
namic. But rather than telling a complete story, these computational models de-
mand an entirely new set of questions. For example, Kirby’s model can be regarded
as monolithic — it is hard to tease out the critical components. Similarly, the condi-
tions that are critical to emergence are little understood. These concerns are raised
by Tonkes & Wiles (2002):

For computational models such as Kirby’s, it is important to establish

the features of the abstraction that lead to the observed results. That is,
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we should strive to understand the parts of the abstractions that are re-
quired, those which are superfluous, and those that must be constrained

to a critical range of values. (Tonkes & Wiles 2002)

Tonkes and Wiles go on to single out the role of learning in Kirby’s model as a

source of doubt:

It seems to us that the chosen induction algorithm is highly biased
towards language-like, compositional structures, which is perhaps not
surprising given that the algorithm was originally developed for compu-
tation linguistics. (Tonkes & Wiles 2002)

In order to fully understand the import of these foundational models, the questions
raised by Tonkes and Wiles need to be explored. The issues raised by Tonkes
and Wiles, in the most part, will be addressed by the next three chapters of this
thesis. Firstly, the remainder of this chapter will proceed by incrementally building
a model of the emergence of compositionality. In contrast to the models discussed
above, I will describe several experimental models that fail to lead to the emergence
of structure. The hope is to build assumptions layer upon layer before reaching
a model of any explanatory weight. In doing so, we can gain a firmer grasp of
the essential abstractions that Tonkes and Wiles mention. Secondly, the issue of
learning is tackled in Chapters 4, 5, and 6, where I develop a model of learning
based on a solid theory of induction. The impact of this model in the iterated
learning framework is explored using mathematical and monte carlo models. In
doing so, large regions of the parameter space of the iterated learning model can
be explored. In short, the issues I will address are in line with the questions raised
by Tonkes and Wiles. Before confronting these key issues, it is important to begin
asking some basic questions about iterated learning. It is this issue I will now turn

to.

3.3 [Iterated learning: An illustrative example

With a view to shedding light on the three hypotheses proposed in Chapter 2, I will
work towards developing an iterated learning model of linguistic evolution. This
model is covered in Chapters 4, 5, and 6. Before introducing this model, several
key concepts need to be established first. I will start by introducing a basic iterated
learning model that will serve as an illustrative example. This model will set the

scene for exploring a number of issues, and although the model is far removed from
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a plausible model of linguistic transmission, it will highlight several fundamental

issues related to modelling linguistic transmission.

This basic example of iterated learning concerns the transmission of classification
competence. Each agent in the experiment will therefore be a concept learner, and
each concept learner will learn concepts on the basis of the output of other concept
learners. Here, then, is the first parallel with language that we can draw: knowledge
of particular task — a competence — is transmitted down generations of agents by
each agent externalising behaviour derived from its competence. This behaviour

corresponds to the notion of performance in language.

3.3.1 Concept learning agents

In the context of machine learning, concept learning is the problem of forming a
hypothesis in light of observed instances, where each instance is drawn from one
of a number of classes. The success of a concept learner is measured by the accu-
racy with which it correctly classifies novel unclassified instances (Michalski 1992;
Mitchell 1997). The classic example of concept learning concerns the classification
of Iris plants found on the Gaspe peninsula. Here, three classes of Iris exist: Setosa,
Versicolor, and Virginica. The problem is to formulate a decision process for de-
termining the class of an Iris when the only information available is the height and
width of the petal and stem (Fisher 1936). A concept learner is a computational

description of such a decision process.

Typically, instances are represented by n-place feature vectors. Each feature rep-
resents some measurement, for example, colour or shape. Feature vectors have the
general form (vy,vs,...,v,) where each feature is represented by a value drawn
from some set of values specific to that feature. Feature vectors have an optional
class label drawn from some finite set C'. The problem is then as follows. First,
during the training phase, a series of instances are presented to the learner, with
each instance labelled with a class label. After the training phase is complete, the
learner is expected to have derived a competence — some hypothesis — enabling it to
classify instances which it had not encountered during learning. That is, the task
requires the learner to postulate an appropriate class, by the process of induction,
for some set of novel unclassified cases. Machine learning is generally interested in
the resulting classification accuracy: the principal concern is how well the induced

hypothesis generalises to novel instances. In contrast, we will only be interested in
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how the bias present in the learner impacts on the evolution of the system in the

context of iterated learning.

Instance-based learning

A wide range of approaches exist for modelling the process of concept learning. I
will use instance-based learning algorithms (Aha et al. 1991). Broadly speaking, an
instance-based learning algorithm classifies novel instances by drawing an analogy
with previously encountered examples which are similar to the query instance. More
precisely, the class of the novel instance is predicted by retrieving the most similar
previously observed instances. Instance-based learners therefore rely on the nearest-
neighbour decision rule, which postulates the majority class of these neighbours.
Instance-based learning is a very simple, elegant, and highly effective approach to

concept learning (King et al. 1995).

The key operational feature of an instance-based learner is that observed instances
are stored, as is, without any further processing, in a set termed the concept descrip-
tion. The concept description is simply a database of observed instances. Contrast
this with, say, a neural network, where the concept description is reflected by a set
of activation units interconnected by a web of weighted connections. Only when
called to classify a novel (unclassified) instance will a instance-based learner carry
out any processing. In contrast, a neural network performs a great deal of process-
ing when updating the concept description in light of new evidence. To classify a
novel query case, the standard instance-based learning algorithm simply locates the
k nearest instances to the novel instance and predicts the majority class (Cover &
Hart 1969).

Competence and performance

By using an instance-based learner, the competence of an agent is defined by the
concept description in conjunction with the nearest neighbour decision rule. These
two components specify how novel instances are classified. The competence of the
learner refers to a hypothesis — a general rule — that explains the observed data.
The hypothesis, on the basis of induction, will also explain more than the observed
data; the explanation extends beyond the observed set of instances to also describe
unseen instances by using the nearest neighbour decision rule. The performance of
an agent corresponds to some set of classification decisions. The precise form of
the performance (the set of classified instances), unlike the notion of competence, is

independent of the mechanisms an agent employs to solve the problem. The notion
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of performance of a concept learner will be identical whichever concept learning

algorithm we use.

3.3.2  Iterated instance-based learning

Agents in an iterated learning model transmit their internally defined competence
to other agents via external performance. Because competence is always induced
from the behaviour of other agents, an agent can be thought of as a mapping from
performance to performance. The role of an agent is therefore well defined. How
multiple agents are organised to construct an agent-based iterated learning model,
on the other hand, is open to a significant degree of variation. I will focus on one
possibility: a single agent generational model. This generational model is identical
to that adopted by Kirby (2002a). Here, agents are arranged in a chain. The
classification performance of the first agent in the chain is the input to the second
agent in the chain. This classification performance of the first agent is obtained by
calling the agent to classify a number of random instances. This second agent will
then derive a hypothesis. Using this hypothesis, the second agent will be prompted
to make classification decisions, and this performance will form the input to the
third agent in the chain. This process is repeated for a number of generations. The
result is that the agents will transmit their classification competence to the next

generation. Internal competence is always transmitted via external performance.

A classified set of instances defines an instance space. This space will often be
divided into regions such that these sub-spaces contain instances that share a class.
The space therefore represents a set of concepts. Now, if a particular instance space
is fed to the first generation agent in the iterated learning model, will this instance
space change down the generations? That is, will the hypotheses induced by sub-
sequent agents accurately reflect the initial set of concepts? Another possibility is
that, rather like the parlour game Chinese whispers, the concepts will change as a
result of transmission. Before focusing on these questions, a few more details are

required before the experiment is fully defined.

In the following experiment, instances are drawn from a bounded two-dimensional
space: instances are pairs (z,y) such that z,y € ® and 0 < z,y < 100. Despite
the instance space being bounded by the above restrictions, the set of possible
instances is infinitely large because the coordinates are drawn from a real-valued
number space. Distance between instances is measured using Euclidean distance.
The class labels are drawn from the set C = {0, 1,2, 3,4}. The five classes contained
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in C are nominal: class 1 is in no way more similar to class 2 that it is to class 4.
Letters could just as well be used to label the classes. These details define the
concept learning problem: two dimensional instances are classified using one of five

class labels.

Details of how the individual agents interact with each other are now required. The
first agent, Ay, learns its concept description from an instance space composed of 100
instances. These instances are drawn at random from the space, and each instance
is assigned a random class drawn from C. A minor observation worth noting is that,
because the instance space is constructed randomly, it will not necessarily represent
all the class labels found in C. By chance, some classes may not be represented at
all.

Starting with Ag, each generation leads to the current agent being called to perform
classification decisions on the basis of its competence. These classification decisions
require the classification of novel instances drawn from the instance space. Impor-
tantly, these query instances do not contain a class label. The result of a single
classification decision will be class label. Let the set C' be the set of classes present
in the concept description at some point in the simulation. C’ is dynamic. It can
change over the course of the experiment. Importantly, the cardinality of this set

can only ever decrease. Classes are never invented.

Now, after a learner is presented with the 100 instances required for training, and
it has induced a hypothesis, it is called into action by being queried with 100 un-
classified instances. These query instances are classified using 1-nearest neighbour
classification. This decision rule, in conjunction with the observed training in-
stances, defines a space composed of decision surfaces. These surfaces sit between
clusters of instances that share a class, and define how query instances are classi-
fied. The result of the queries will therefore be 100 classified instances, and these
instances represent the performance of the agent. This performance behaviour is
then observed by the learner in the next generation. Now the cycle of arriving at
a competence in light of observed performance, and then transmitting this compe-
tence by producing further performance has been defined. Figure 3.2 depicts this

process.

We now have an example of an iterated learning model where classification compe-
tence is transmitted between agents by examples of performance that are derived
from the competence. The model is generational. The degree to which the compe-

tence is transmitted successfully down the generations is the next question.
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Figure 3.2: Iterated instance-based learning. An agent receives a set of query
instance to be classified. The result of these classification decisions — newly classified
instances — constitutes the performance of the agent. This performance is then
observed by the agent in the next generation.

3.3.8 An illustration of state change

Because instances are points in a two dimensional space, and each instance has an
associated class drawn from small finite set, visualising the changing state of the
iterated learning model is straightforward. Figure 3.3 depicts a typical trajectory of
change in the agents performance over 60 iterations. The concept description of the
first classifier is composed of 100 randomly labelled instances. This state of affairs
does not last long. By the third iteration, a number of distinct regions emerge that
represent four classes. Some of the classes are divided into spatially distinct frag-
ments. This initial phase represents a transition from a state of maximum entropy,
where classes are equi-probable in all parts of the instance space, to one where ho-
mogeneous regions of instances that share a class emerge. Maximum entropy is a
situation at odds with the assumption underpinning the nearest neighbour decision
rule, where an arbitrary instance is assumed to have the class of its neighbours. For
this reason, class regions become established within 3-4 generations as the bias in

the concept learning agents begin to introduce non-random effects in the data.

As the simulation progresses, the homogeneous regions in the instance space appear
to float aimlessly, perhaps expanding one generation and then contracting in the
next. Over time, a pattern emerges, as the larger regions defining a class fragment
become larger, and the smaller regions become smaller. This is what one would
expect. For a region of the instance space to be represented in the performance of

the agent, some of the random query points used to derive the performance data
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Figure 3.3: The class belonging to each point in the instance space if shown using
various shades of grey. From one iteration to the next, the instance-space changes
to reflect two biases. First, a bias for homogeneous class definitions, and second, a
one-to-many bias from points in the instance space to one of a finite set of classes.

will have to occupy that region. The probability of a region being sampled at all,

and therefore surviving by being represented to the next generation, will depend on

the size of its area. This observation must follow, as sample points are constructed

randomly, and therefore have a higher probability of lying in the larger regions

of instance-space. As Figure 3.3 illustrates, after 20 iterations there are only two

classes remaining. The larger one (black) continues to grow, and the smaller one

(dark grey) shrinks and disappears. The other classes have disappeared because,

for each disappearance, the class had become so small that a random sample of

the instance space failed to represent it. The only steady state achievable in this

model is therefore total dominance by one class, which we see occurring at the 60th

generation.
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3.3.4 The determinants of state change

If the whole instance space were to be sampled at each iteration, rather than just
100 random points, then whichever instance space we used to train the first concept
learner would be transmitted perfectly at each iteration. Because only a subset of
the instance space is sampled, certain parts of the instance space have to be ap-
proximated using the inductive properties of the learner. This is an example of a
transmission bottleneck. Bottlenecks will be a recurring theme throughout this the-
sis. Bottlenecks represent limitations on transmission. They are motivated by the
situation faced by language users. Our knowledge of language relates to an infinite
number of utterances, yet we learn language from finite data. The number of utter-
ances we produce over our lifetime is also finite. When considering the transmission
of knowledge of language via language performance, we must therefore face the fact
that transmission can never spell out knowledge of language explicitly. Performance
can only ever be an impoverished subset of the set of possible instances derivable
from an agent’s competence. In the model, the transmission bottleneck captures
this situation. Without a transmission bottleneck, performance in this model would
be a point-to-point model of competence. However, because the instance space is
infinitely large, it is impossible to avoid the transmission bottleneck; performance
can only consist of a finite number of instances. In contrast, the competence of the
learner extends to an infinite number of instances; it can classify all instances in

the instance space.

The presence of a bottleneck brings the bias of the learner into play. Because certain
parts of the instance space will not be explicit represented, induction is required to
yield an appropriate class. This is why, as the simulation proceeds, we see the accu-
mulated residue of past classification decisions. The iterated learning model can be
thought of as revealing the bias of the agents. This particular experiment illustrates
that instance-based learners have a prior expectation that instances share the class
of their neighbours. This is why, as the simulation proceeds, we do not see the in-
troduction of non-homogeneous regions of class definitions. This observation echoes
findings that show instance-based learners perform badly on non-homogeneous class
definitions (Brighton & Mellish 2002).

The purpose of this discussion is to understand why, by looking at a particular
example, the translation between performance and competence, and then back to
performance, results in state change. This change is driven by a combination of a

transmission bottleneck and the bias present in the learners.
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3.3.5 FExplaining trajectories through state space

Understanding the behaviour of an iterated learning model will often require un-
derstanding, independent of the initial state of the model, why the system enters
certain states and not others. Such an explanation can act as explanation for the
origin of certain states. Ultimately, as the models become more plausible models of
language evolution, these states will correspond to particular languages. Iterated

learning models can therefore shed light on linguistic evolution.

Iterated learning models are complex adaptive systems. Two arbitrarily close sets
of initial conditions are highly likely to result in different end states. The important
point is that these end-states, although entirely different, will often occupy similar
regions of the state space. So our analysis concerns an evolving ILM, or more more
precisely, a series of state transitions. Rather than considering each individual state
in turn our analysis will concern the trajectory, defined by a series of states, through
regions of the state space. This practice is necessary as often an experiment will
comprise thousands of generations. Any insightful explanation of the trajectory of
state change will therefore revolve around an understanding of the topology of the

state space.

To accurately discuss state transitions, I will employ a vocabulary borrowed from
complex systems theory. Imagine two different systems that change over time. The
first system is random; from one state to the next the probability of the system
entering any one of the states is equi-probable. The state trajectory will therefore
skitter around, and never remain in any one state. The second system is not random
but ordered. Certain states are attractors — once the system enters such a state, it
will remain there. For the first system, we cannot explain the state space trajectory
in any principled way. For the second system we can: a rich descriptive vocabulary

is available.

Attractors need not be single states, they may be a local set of states to which
the system converges and then remains. The volume of states that reliably lead
to a trajectory ending in an attractor is termed a basin of attraction (Kauffman
1993:176). A state space is best imagined as a landscape composed of features like
basins, ridges, and peaks. State change is characterised by a movement downhill.
So, as a result of this landscape, states will occupy points from which only certain
trajectories are likely. We will frequently be interested in attractors. In the context
of an ILM, these will be often be steady states. It is therefore worth marking out

some clear terminology.
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Within a state space Liapounov stability refers to the property of some point in the

state-space: if we start near that point, then we stay near it.

Definition 4 (Liapounov stability) A point x is Liapounov stable if there ezists
some € > 0 such that all points within the neighbourhood of x bounded by € remain

within a distance of € from x for all t > 0.

Therefore, remaining in the neighbourhood of z, which is bounded by ¢, is all that
is required for states within the neighbourhood to be Liapounov stable. This defi-
nition says nothing about whether the system will reach x, however. This definition
is illustrated in Figure 3.4(a), where the hypersphere in state space centred on z
and bounded by radius €, B(z,€), contains all trajectories starting within the hy-
persphere B(z,¢). Liapounov stability concerns bounding the behaviour of states

surrounding a point in state space.

B(x, €)

(a) B(x. &) (b)

(c) B(x. €)

Figure 3.4: Three kinds of stability. (a) Liapounov stability, or “start near, stay
near” stability. (b) quasi-asymptotic stability, where the point z is stable as ¢t — oo,
but has undefined behaviour otherwise. (c¢) Asymptotic stability, which is defined
as both Liapounov stable and quasi-asymptotically stable.

In contrast, a quasi-asymptotically stable point is one for which points within the

neighbourhood bounded by € tend to x eventually as ¢ — oo.

Definition 5 (Quasi-asymptotic stability) A point x is quasi-asymptotically sta-
ble if for some €, all points in the neighbourhood of x bounded by € tend to x as

t — oo.

That is, a quasi-asymptotically stable point concerns the behaviour of the system
in the limit, as ¢ — oo. States starting within the state space surrounding z,

bounded by €, end up at x eventually. Importantly, this definition says nothing
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about the intermediate states: they could be anywhere. Figure 3.4(b) illustrates

this behaviour. A further definition naturally proceeds as follows:

Definition 6 (Asymptotic stability) A point x is asymptotically stable if it is

both Liapounov stable and quasi-asymptotically stable.

This Definition, in contrast to that of Definition 5, makes a claim about the locality
of the states visited, starting from the initial state, before it homes in on z: They
must lie within the neighbourhood bounded by e. Figure 3.4(c) illustrates this
behaviour. Relating the definition of asymptotic stability to attractors, we can say
that the largest region surrounding z for which points are asymptotically stable
is precisely the basin of attraction mentioned above. Furthermore, if this region
extends to the whole state space, then the point z is termed globally asymptotically
stable (Glendinning 1994:30).

Attractors in instance-space

This model of iterated instance-based learning leads to a relatively simple state
space topology. In general, if C is the set of possible classes, then there are |C|
point attractors, or stable states. Each of these attractors represents dominance of
a single class. Furthermore, these attractors are global asymptotic stable points.
This statement can be justified by noting two properties. Firstly, imagine dividing
up the space of all concept descriptions into regions, where each region contains
concept descriptions with, say, n classes. Such a region will also contain concept
descriptions with less than n classes. Now, these regions are Liapounov stable.
Because classes can never be introduced, future states must remain within the
region from which they started. Secondly, for a similar reason, the state space
trajectory will tend to one of the point attractors over time. The point attractors
are regions containing just one class. These observations justify the claim that C

globally asymptotically stable points exist in this model.

This kind of behaviour is not an inevitable outcome of the iterated learning model.
Firstly, because the classifier cannot invent new classes, once a class is no longer
represented by any instances, the class cannot reappear. A pressure therefore exists
for the number of classes to decrease. Secondly, due to the nature of the classification
problem, there is a many-to-one bias in the mapping between instances and classes.
In other words, when viewing a concept learner as a function, many instances in

the domain are represented by a single class in the range. These two observations
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explain why a single-class instance-space is the only steady state. First, the many-
to-one bias is a bias away from diversity in the mapping from instances to classes.

The classification bias leads to a pressure for fewer and fewer classes.

3.3.6 Steps towards a linguistic model

This experiment tells us little about language. Language is not a classification
problem. Any attempt to draw a parallel between this model and a plausible no-
tion of language must break down, as the mapping from instances to classes bears
no relation to any linguistic property. This model does, however, demonstrate two
fundamental properties of iterated learning models of linguistic evolution. Firstly,
the transmission of competence via the expression of performance leads to state
change across generations of agents. Secondly, the interaction between the trans-
mission bottleneck and the learning bias of the agents determine the kind of state
changes that occur. Whatever the initial state of the above model, the same kind
of behaviour results. This experiment has also served to introduce iterated learning
models as complex adaptive systems. I have introduced some initial concepts in
explaining such systems, and these concepts will crop up in the explanations of

future models.

3.4 Language as a structured mapping

We can imagine language as an infinitely large mapping from meanings to signals.
Given a meaning to express, this mapping defines which signal is appropriate. Sim-
ilarly, given a signal, the mapping defines which meaning the signal refers to. In
this section, I will extend the model of iterated instance-based learning such that
the competence of each learner represents a mapping between an infinitely large

meaning space and an infinitely large signal space.

Human language, when viewed as a mapping from meanings to signals, has a prop-
erty that is extremely rare in the world of natural communication systems. Human
languages are compositional: the mapping from meanings to signals is structured
in such a way that the meaning of a signal is a function of the meaning of its con-
stituent parts (Krifka 2001). For example, the words in a sentence carry meaning
themselves, and the meaning of the whole sentence is a derived from these meanings.
In contrast, the communication systems used by, for example, vervet monkeys is not
compositional: their signals refer to whole meanings and are regarded as holistic

(Cheney & Seyfarth 1990). The mapping from meanings to signals used by vervet
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monkeys is not structured in the same way that human languages are. Perhaps the
only example of a non-human compositional communication system is the dance of
the honey bee, where food location is communicated through a structured dance
(von Frisch 1974). Importantly, the food location itself is a structured entity, com-
posed of direction and distance. This communication system should be contrasted
non-compositional communication system of bird song, where structured signals are

used to refer to atomic, unstructured meanings (Hauser 1996).

It is the property of compositionality that I will explore in the following experiment.
In order to do so, I will use an abstract model of language that can accommodate
the properties of compositional language and holistic communication systems. In
fact, this model of language is only a slight modification from the notion of an
instance space discussed in the previous section. Instead of a mapping from a
two-dimensional real valued number space to a set of classes, I will use a mapping
from one two-dimensional number space, M, to another two-dimensional number
space, S. These two spaces will correspond to the meaning space and signal space
used by natural languages. Rather than investigating plausible models detailing the
structure of these spaces, I will instead focus on the nature of mapping between the
two spaces. Ultimately, this section will aim to explain how compositional mappings

can emerge in iterated learning models.

A mapping that defines a compositional language will have neighbourhood preserv-
ing properties. This means that similar meanings will map to similar signals. This
fact follows from the observation that, firstly, in order for meanings to be similar,
they must share components. Secondly, because these meaning components are
common to both meanings, parts of their corresponding signals must also share
components. The signals will occupy neighbouring parts of the signal space, just
as the meanings do. Compositional mappings can therefore be considered exam-
ples of topographic mappings (Van Hulle 2000). Topographic mappings possess the
property of neighbourhood preservation; neighbouring elements in the domain map
to neighbouring points in the range. This kind of mapping is ubiquitous in neuro-
logical systems. For example, many organisms possess a vision system that relies
on retinotopic mapping: the retinal image is mapped to the visual cortex such that
neighbourhood relations hold true (Van Essen et al. 1981).

Figure 3.5 depicts three mappings. Figure 3.5(a) is an example of holistic mapping,
where points in meaning space map randomly to points in the signal space. In
holistic mappings, neighbouring points in the meaning space provide no informa-

tion about where a meaning maps to in the signal space. Figures 3.5(b-c) depict
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Figure 3.5: Example mappings. The mapping shown in (a) is random. The
neighbours surrounding a point in the meaning space suggest nothing about the
location of the corresponding signal. In (b-c), similar meanings map to similar
signals.

compositional mappings, where a clear relation exists between neighbourhoods in
the meaning space and neighbourhoods in the signal space. In the following exper-
iments, meanings and signals are drawn from two-dimensional real valued number
spaces, denoted by M and S, respectively. More precisely, some meaning m € M
is the pair (x,y) where x,y € R such that both 0 < z < 100 and 0 < y < 100.

3.4.1 Linguistic competence and performance

The experiment discussed in Section 3.3 revolved around the classification of points.
In this experiment, the competence of an agent relates to its ability to propose
appropriate signals for given meanings. Just as before, an agent learns from input
representing another agent’s performance. Much of the details of the previous
experiment carry over into the present discussion, but we now need to interpret
them slightly differently. First, an agent’s performance is obtained by prompting
it to express meanings. The result is a set of meaning/signal pairs — instances
of the mapping between meanings and signals. The agent in the next generation
takes these instances as input, and forms its own concept description which is also

a mapping between meanings and signals.

Figure 3.6 illustrates this process in more detail. The first generation agent A is
presented with examples of some initial mapping. For the experiments outlined
here, this initial mapping is random. On the basis of this evidence, Ay constructs a
hypothesis Hy which accounts for the performance it has observed. This hypothesis
not only defines the regions of the infinitely large mapping it has observed, but also,
with the aid of an associative memory, a competence that relates all meanings to
an appropriate signal. There is no distinction between the notion of a hypothesis

and that of competence; I will use the terms interchangeably. Now, A is prompted
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Figure 3.6: Iterated learning using a mapping between meanings and signals. From
an initially random mapping, each agent is prompted with a random subset of the
meaning space. The production decisions for these meanings represent linguistic
performance, and form the input to the agent the next generation.

with some random subset of the meaning space, My, C M. Appropriate signals
for each element in M; are found, and these meaning/signal pairs constitute the
performance of Ay, which will in turn form the input to the next generation agent

Aj. As before, this process is repeated generation after generation.

Simplifying assumptions

Now that explanations of linguistic issues such as compositionality are being pro-
posed, and the model is interpreted as a basic model of linguistic transmission, two

important assumptions should be made explicit.

1. Agents in the model have the ability to “mind read”. When an agent observes
a signal, the intended meaning of that signal is also provided. This simplifica-
tion avoids the problem of modelling the ascription of a meaning to a signal.
An agent must associate a signal with a meaning somehow, but I regard
this as a separate, non-trivial problem (Steels 1997; Steels 1998; Smith 2001;
Smith 2003a). In short, I will assume that meaning transmission occurs over
a noiseless channel.

2. Issues of communication are not considered. For example, communicative ac-
curacy, the agents intentions, or any model of success or failure in language use
is not considered. How much of the structure of language is due to pressures
on learning? To begin to answer this question, we must strip the model of any
assumptions about the functional aspects of communication. This assumption

is in line with the function independence hypothesis I introduced in Chapter
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2. In short, part of the argument I am developing assumes that issues relating

to communication are not the principal determinants of language structure.
3. Population effects are not considered. Each agent learns from the output of

only one other agent. Similarly, utterances produced by an agent are only

observed by a single learner.

From a modelling perspective, these simplifications are crucial. Ultimately, we
should seek the minimal set of assumptions and hypotheses with which linguistic

structure can be explained.

3.4.2  An instance-based associative memory

Due to the simplicity of the instance-based learning model, learning the mapping
simply requires the learner to memorise each meanings/signal pair it has observed.
Moving beyond the learning process, these learners will differ substantially to those
of Section 3.3 in how they produce performance. Instead of carrying out a classifi-
cation task, the learner must instead postulate a signal for any given meaning such
that this signal is in some sense appropriate. Unlike classification, this process can
introduce new signals, as the range is no longer a finite set of classes, but an infinite
set of signals represented as points in a two-dimensional space. In order to place
this modified form of instance-based learning into the iterated learning framework,
we need a model of production. Production performs a comparable function to that

of classification in the previous model.

Since both the meaning and the signal spaces are infinitely large, when an agent
is required to produce an appropriate signal for a given meaning m, it is highly
unlikely that m will have been observed in the performance the agent is learning
from. The process of production will therefore often require the agent to somehow
deduce an appropriate signal for m. A solution to this problem is suggested by the
nearest neighbour decision rule. Instance-based learners classify unseen instances by
exploiting the solutions offered by nearby instances. Translating this approach into
the problem of production, an instance-based approach proceeds by finding nearby
meanings for which the appropriate signal is known. Using these examples drawn
from the existing mapping, an appropriate signal should depend on the manner in

which the neighbouring meanings map to the signal space.

The most obvious production scheme is the following. Given the meaning m,
the three nearest neighbours of m are found, along with their corresponding sig-

nals. Now, using these three observed examples of the mapping, given by (m;, s1),
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(ma, s9), and (mgs, s3), we can say that the relationship between m and its neighbours
in meanings space mi, my, and mgs should somehow be reflected in the relationship
between s, the signal to be produced for m, and the signals si, s9, and s3. That is,
any local relationship between meanings and signals should guide our choice of s.
This relationship is illustrated in Figure 3.7. The problem of production, charac-
terised in this way, is in line with the motivation behind instance-based learning®.
To exploit the relationship suggested by this approach, we can first represent m as
linear combination of two vectors, denoted as p and ¢, derived from mq, ms, and

ms:

p=mg—my (3.1)

g=m3—m (3.2)

Representing m as linear combination of p and ¢ we use two scalar constants A and
B:

m=A-p+B-q (3.3)

MEANING SPACE SIGNAL SPACE

Figure 3.7: To find an appropriate signal s for the meaning m, the relationship
between the three nearest neighbours of m is used to postulate the location of s in
the signal space.

! This approach is also closely related to the problem of case-based reasoning in which similar
stored solutions to a problem are adapted for solving the new problem (Kolodner 1993).
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Now, A and B represent the multiplicative factors of the vectors p and ¢ that give

m when added together. Rewriting equation 3.3 we have:

()= () (2) o0
my Dy dy

Rearranging, we get:

My — g;m

A= BT Z 0y (3.5)
pchy - prw

B = Py"Ma — Pallly (3.6)
pry - Qypac

Next, we perform a similar operation in the signal space. Using s;, so, and s3 we
construct another two vectors v and w which mirror the vectors p and ¢ used in the

meaning space.

V=89 — 81 (3.7)

w = S3 — 81 (3.8)

The process of induction used to postulate the signal s proceeds by using A and
B in the signal space. Because A and B capture the relationship between m and
its neighbours, by the process of induction, we assume the same relationship holds

between s and the corresponding signals of m’s neighbours:

s=A-v+B-w (3.9)

Any structured relationship between m and its neighbours will now be reflected
in the relationship between s and its neighbours. This procedure for finding an
appropriate signal given a meaning represents a bias toward structure preservation.
Any existing relationship between the meaning space and the signal space is used

to inform the choice of new signals. With the production mechanism in place,
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the cycle of observation, induction and production is fully defined. The iterated

learning model can now be analysed.

3.4.8 Analysing the evolving map

As the model cycles through the processes of production and induction, structural
changes in the mapping are the primary concern. More precisely, I will attempt
to shed light on the possibility of compositionality emerging in the mapping. If
a compositional mapping consistently emerges, independent of the initial language
structure, then the adaptive properties of the learning algorithm must form part
of an explanation for compositional structure in the model. Agents in the model
perform two processes: learning and production. First, the ability to recall previ-
ously encountered instances of the problem is itself a bias introduced by the model
of learning I have employed. The second part of the process relates to how these
nearby examples will be used, which will depend on the mechanisms underlying
the production process, developed above. I will term the impact of this production

process the production bias.

Ultimately, any explanation of the resulting mapping between meanings and signals
must be related to these biases. Recall that the key measurement is the degree of
compositionality. Specifically, compositionality is measured as the degree of correla-
tion between inter-meaning distances and the distances between the corresponding
signals. That is, we measure to what degree the distance between two meanings cor-
relates with the distance between the two signals these meanings map to. A highly
correlated mapping will be one where, for example, nearby meanings will map to
nearby signals. The degree of correlation in a mapping containing / meaning pairs
is measured by taking all pairs of meanings (m;, m;) (with ¢ # j) where both ¢ and
j range from 1 to [. For each of these pairs, we find the corresponding pairs of
signals (s;, s;) where si is the signal for the kth meaning. We then calculate the
correlation between Am = distance(m;, m;) and As = distance(s;, s;) for all ¢ and
j such that ¢ # j. The correlation is computed using Pearson’s product moment
correlation? and is denoted by r. A fully distance correlated mapping will have a
high r, but it is not necessarily the case that » ~ 1.0. The reason for this will be

discussed below. Random mappings will be those where r ~ 0.0.

2The r value is computed using the following expression:
_ i (Am; — Am)(As; — As)
VI (Ame - Bmy L (As; — Bo)?]

, (3.10)
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3.4.4 Adaptive properties of the learning and production bias

To fully understand the consequences of the learning and production bias, I will
trace the trajectory of the evolving mapping from different starting positions in the
state-space. I will examine the behaviour of the system from two extreme starting
positions. Firstly, to gain an understanding of the global behaviour of the system I
will start the simulation from a random mapping. Secondly, an understanding of the
local behaviour around regions of the state-space containing structured mappings
will be achieved by starting the simulation from perfectly compositional mappings.
These mappings have a correlation value of » = 1.0, and are constructed so that
some random set, of points in the meaning space map to identical points in the signal
space. These two initial states correspond to the issues of constructing structure

and maintaining structure, respectively (Smith 2002).

Evolving structure

Figure 3.8(a) illustrates the extent to which the learning and production biases
discussed so far result in the evolution of a compositional mapping. These results
present compositionality, or distance correlation, as a function of time. Both the
average behaviour over 30 independent runs and an individual run are shown in

these plots.

The first observations is that, however long the system is allowed to cycle through
the twin processes of production and induction, the learning and production bi-
ases alone cannot un-tangle the messy relationship between meanings and signals.
The distance correlation in the mapping fluctuate about a mean value of r = 0.3.
Notice that this mean value is higher than r = 0 reflected in random mappings:
the learning and production bias guide the system away from the initial state of
randomness. The initial random state of the system is best thought of as a set of
multiple sub-mappings that compete for transmission. This is an important obser-
vation because the production mechanism does favour a neighbourhood preserving
relationship between meanings and signals. Yet this preference does not in itself
lead to the evolution of structure. Before discussing this observation further, it is

worth considering whether the biases presented so far can maintain structure.

Maintaining structure

Figure 3.8(b) plots the distance correlation of the evolving map from an fully com-

positional initial mapping. This mapping is not stable, and any initial structure
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Figure 3.8: 'The production bias alone does not lead to highly correlated maps. The
dashed line represents the average distance correlation over 20 independent runs.
The full line represents an individual run. With a bottleneck of 100 instances, we
see, in (a), the evolution of the system from a random initial mapping. In (b), the
initial state of the system is a perfect topology-preserving mapping. Any structure
degrades rapidly, and the system enters a state comparable with that shown in (a).
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rapidly decays and the mapping starts to fluctuates around a mean distance cor-
relation of r = 0.3, which is precisely the behaviour found when starting from
an initially random state. At first sight, the degradation of structure from an ini-
tially structured mapping is a counter-intuitive result. If the production mechanism
faultlessly captures its geometric motivation, then this result should not occur. An
arbitrary meaning m has three nearest neighbours. In the perfectly compositional
initial system, these neighbours map to exactly the same points in the signal space.
Providing the relation between m and its neighbours is faultlessly parallelled in
the signal space, as it should be, production for m should lead to a point in the
signal space with exactly the same coordinates as m itself. This, however, does not

happen.

The reason behind the disparity between the geometric theory and the model itself
is that the arithmetic operations carried out by the production mechanism can in-
troduce very slight arithmetic errors. Meanings and signals are represented by pairs
of coordinates realised as floating point numbers. Rounding errors are inevitable
when computing with floating point numbers. In many situations this does not pose
a problem, but the production mechanism is particularly sensitive to these errors.
Furthermore, when applying the production mechanism hundreds of times during

each of many iterations, the errors are magnified iteration after iteration.

Apart from highlighting the problems associated with manipulating floating point
numbers accurately, this observation suggests that the system is brittle in a wider
sense. For example, natural systems robustly deal with noise. The instability of
a perfectly compositional system suggests that if the transmission of information
was subject to even slight degrees of noise, the same effect would occur: the system
would pass into an unstable state. Maintaining structure under in a noise free
system does not mean a great deal if the system cannot recover from perturbations.
Consider the structure of the state space suggested by these results. In a noise free
system, perfectly compositional mappings will be stable points. However, they will
not be a Liapounov stable points, nor asymptotically stable. Instead, these stable
points will be region of stability occupying just a single point, surrounded by regions
of instability. In short, compositional structure in this model does not occupy a

robust stable region of the state space; it is a region with no basin of attraction.
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3.4.5 Production memory

If two subsequent agents agree on the mapping between meanings and signals then
the system is in a stable state. Between two subsequent agents, the arithmetic
errors discussed above, however small, introduce a disagreement between the two
agents. To clarify this position, consider the function that defines the mapping.
A perfectly compositional system is describable by a simple function. As soon
as slight deviations from this mapping are introduced, then the simplest function
describing the mapping increases in complexity. In short, for stability to result in
the face of less than perfect transmission we must increase the probability that two
subsequent learners agree on the mapping between meanings and signals. Using

this observation, I will next aim to strengthen the bias toward compositionality.

One problem arising from the production bias concerns the production decisions
made over an agent’s lifetime. If two meanings which are local to one other are
expressed, it does not necessarily follow that the two signals derived will be similar.
For example, two meanings m; and ms, however close they are to each other,
may posses different nearest neighbours, and therefore could map to very different
parts of the signal space. For example, this situation will occur when a production
decision is sought for a meaning located at the boundary of two competing sub-
mappings. To alleviate this problem, I will employ a production memory. The
production memory requires that learners update their own competence in light of
production decisions they make over their lifetime. The production memory will
have the effect of, firstly, smoothing the differences between adjacent regions of the
meaning space that map to non-adjacent regions of the signal space, and secondly,
increasing consistency between learners. A production decision made by an agent,
after all, is guaranteed to form part of the competence of the agent receiving the
utterance. As well as making production more consistent over the lifetime of the
learner, the production memory also increases the probability that two subsequent

learners are in agreement over the mapping between meanings and signals.

Figure 3.9(a) illustrates the importance of this observation: it shows composition-
ality as a function of iterations for simulations containing agents armed with a
production memory. By increasing the consistency between learners, and therefore
stability, the production memory increases the degree to which structure emerges
in the mapping over time. From an initially random mapping, a mean distance
correlation of r &~ 0.5 is achieved. At times the mapping contains a significant de-

gree of distance correlation: for approximately 50 generations the system achieves
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Figure 3.9: The production bias in conjunction with the production memory,
where we observe an increase in the distance correlation to that obtained without a
production memory. In (a), the initial state of the simulation is a random mapping.
In (b), the initial compositional mapping degrades slower that observed without a
production memory. The asymptotic behaviour of both systems is identical.
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a distance correlation as high as r ~ 0.8. Starting with a perfectly compositional
mapping, Figure 3.9(b) illustrates that structural decay occurs far slower than that
demonstrated in Figure 3.8(b), where a production memory is not used. A produc-
tion memory therefore aids in maintaining structure as well as evolving it. Never-
theless, irrespective of the initial conditions, the system is still unstable and suffers

from high variation in the distance correlation.

3.4.6 Modelling the reception behaviour of others

Independent of the initial conditions, the production memory leads to an increase
in the distance correlation contained in the mapping. This observations hints at the
importance of deploying mechanisms to increase the degree of agreement between
two subsequent learners. At this point it is useful to relate this observation to work
focusing on the cultural evolution of communication systems. In contrast to the
language model I have introduced, a communication system is regarded as a map-
ping between meaning and signals where both sets of comprise unordered atomic
elements (Oliphant & Batali 1997; Oliphant 1999; Smith 2002). Such a commu-
nication system is parallelled by vervet monkeys, for example (Cheney & Seyfarth
1990), and corresponds to the notion of a vocabulary (Smith 2002). Rather than
attempting to explain linguistic properties such as compositionality, computational
simulations of the cultural evolution of communication systems seek to explain how

coordinated mappings emerge and persist in populations of agents.

Oliphant and Batali model the process of communication with respect to a send
function and a receive function (Oliphant & Batali 1997). They note that in order
for maximally coordinated systems to emerge, the manner in which the mapping
between meanings and signals is determined — the send function — needs to be in-
formed by what they term the obverter procedure. The obverter procedure requires
a learner to model its mapping from meanings to signals on the basis of the recep-
tion behaviour of the surrounding population. This reception behaviour represents
the manner in which other agents map signals to meanings. For example, to find an
appropriate signal for a meaning m, the obverter procedure would use a knowledge
of which signal leads others to infer that the meaning m has been transmitted. Such
knowledge might be gleaned from observing how others react to signals, and then
somehow working out the intended meaning of these signals from this behaviour of
others. Accordingly, if an agent could always read the mind of the other agents,
then this procedure would be straightforward. One approach for an agent to ap-

proximate this strategy is to use its own reception behaviour as a model of the
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reception behaviour of others. Here, to produce a signal for a meaning m, the agent
would work out which signal, if received by itself, would maximise the probability

of inferring the meaning m.

An obverter procedure therefore informs the process of production by maximising
the likelihood of the proposed signal correctly being interpreted as carrying the
intended meaning. Ideally, one should guide this process using a knowledge of how

others perform the reverse process of translating signals to meanings.

An instance-based learning parallel of the obverter procedure

The increase in the distance correlation achieved using the production memory sug-
gests that increasing the degree to which two adjacent agents agree on the mapping
between meanings signals will lead to further stability and compositionality in the
mapping. Using Oliphant and Batali’s work on basic communication systems as a
starting point, I will address this issue by constructing an instance-based learning

equivalent of the obverter procedure.

The obverter procedure relates to how production decisions are made. Given a
meaning m, we find m’s 3 nearest neighbours. These meanings, my, ms, and mg,
map to signals s;, sy, and s3. The basic production mechanism exploits the geo-
metric relationship between m and m,, ms, and m3. The relationship is then used
to postulate a signal s such that the same geometrical relationship holds between
s, s1, S92, and s3. Now, the obverter procedure requires that this signal s would be
interpreted as referring to m, if we heard s ourselves. The obverter procedure is
best thought of as a check for the legitimacy of s as an appropriate signal for m.

The instance-based learning parallel of such a check is as follows.

Take the proposed signal s and find its 3-nearest neighbours in signal space. Note
that these signals will not necessarily be s;, s, and s3. Denote these neighbours
of s as s, sb, and s5. The procedure for testing the legitimacy of s now depends
on the meanings that map onto the signals s}, s, and s}. If these meanings, in
turn denoted by m/, m), and m/ are identical to the set {m;, mg, ms} then we can
confident that s would be the interpreted as meaning m. In short, the obverter

procedure restricts production to the case when:

{m15m2am3} = {mllamgamg} (311)
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Where the set {m;, my, ms} represents the nearest neighbours of m and the set
{m/, ml, my} represents the meanings that the nearest neighbours of s map to.
The obverter procedure acts as a filter on production. Only those signals that are
in line with the reception behaviour of the agent are used. This procedure is perhaps

best understood geometrically. Figure 3.10 illustrates the procedure.

It is interesting to note that the obverter procedure I have defined above has a
parallel in the wider context of nearest-neighbour pattern recognition, where several
extensions to the nearest neighbour decision rule have been proposed (Dasarathy
1991; Toussaint 2002). In particular, there are two previous studies where the
nearest neighbour decision rule has been extended to allow a reject option. Of
these two studies, Hellman (1970) is worth noting for fact that the asymptotic
behaviour of such a system reduces the error rate in classification to be at most

equal to the Bayes optimal error.

The adaptive consequences of the obverter procedure

Figure 3.11(a) plots compositionality as a function of iterations for a random initial
language. Both the production memory and the obverter procedure were used in
these simulation runs. This result is striking. Highly compositional stable mappings
emerge quickly and remain highly compositional and stable. An average distance
correlation of r & 0.92 is achieved. Similarly, for simulation runs initialised with a
compositional mapping, the initial mappings remain highly correlated, as depicted
in Figure 3.10(b). Starting from a perfectly compositional mapping with maximum
distance correlation, the initial correlation of r = 1.0 degrades a little to level out at
the r ~ 0.92 level discussed above. The fact that the distance correlation falls short
of r = 1.0 is of no significance. This slight deviance from a perfectly correlated
mapping is due to the nature of the transformation from M to §. For example, if
the transformation is slightly stretched in one dimension, this will have the effect of
reducing the distance correlation. That is, a correlation of 7 = 1.0 occurs when the
mapping transforms points to exactly the same points in the meaning space. The
only time this occurs is when we inject such a mapping into the model as an initial

state.

66



m 2 3-NEAREST NEIGHBOURS OF S
P . ,fgf’\'/
m - - N

MEANING SPACE

g ° s’ 3-NEAREST NEIGHBOURS OF S
m - S
\\p /,“ .._ o
. S m ,
ey / .
- ; \:
\ //l S"'
[ ]
.S,
MEANING SPACE SIGNAL SPACE

Figure 3.10: A geometrical interpretation of the obverter procedure. The topmost
mapping is an example of a failed production decision because the three nearest
neighbours of s do not map back to the three nearest neighbours of m. In lower
mapping depicts an example of a successful production decision. Here, s’s three
nearest neighbours map directly back to m’s three nearest neighbours.
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Figure 3.11:  Distance correlation in the evolving map for agents armed with
a production memory and the obverter procedure. In (a), from random initial
mappings, a high degree of distance correlation emerges and remains. In (b), from
initially compositional mappings, the same behaviour occurs. The variance in the
individual simulation runs is also lower than that observed in runs without the
obverter procedure.
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A clearer understanding of such a transformation, as well as how the correlated map
evolves over time, can be gained by studying Figure 3.13. Using a test image, we
can visualise the mapping from meanings to signals by associating the test image
point-to-point to the meaning space. Then, by mapping these points to the signal
space, the test image is projected into the signal space. This process is clarified
by Figure 3.12. The images shown in Figure 3.13 depict this projection for a test
image composed of a grid and an arrow pointing from the top right corner to the

bottom left corner.

Test Image Mapping Projected Image

Figure 3.12: Visualising the evolving map. Points in the test image are associated
with points in the meaning space. The test image is then transformed using the
mapping between meanings and signals.

From an initially random state, the evolving map, depicted by the projected images,
clearly illustrates that early on in the simulation multiple sub-mappings exist. After
10 iterations, the projected image contains subs-spaces of the test image projected
by different transformations. Some are rotated and contracted, while others are
stretched and enlarged. After 60 iterations it becomes evident that certain sub-
mappings grow to such an extent that the mapping coherently projects half of the
test image. The next 100 iterations lead to the merging of competing sub-mappings
until they appear to merge completely after 140 iterations. By 220 iterations a near
perfect representation of the test image results, albeit rotated and contracted.

3.4.7 Summary of results

Learning biases leading to the emergence of structure

The experiment I have described aims to explain how compositional structure can
emerge through the interaction of learning and cultural transmission. If compo-
sitional structure in the mapping between meanings and signals is the inevitable
outcome of a model, and this outcome is independent of the initial state of the map-
ping, then the model can inform an explanation for the origin of the compositional

structure.
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Figure 3.13: By using the mapping between meanings and signals to project the
test image, we can visualise the evolving map.
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By building layer upon of layer of production bias, this experiment has shown that
very specific biases are required for the emergence of compositional structure. The
key question relates to how the biases present in each learner have a cumulative
effect on the evolving mapping. This discussion has centred around four biases, each
one pulling the mapping toward certain regions of the language space. The biases
themselves are best described as mechanisms, but their evolutionary impact is best
explained in terms of the trajectories through the state space that they introduce.

To re-cap, the mechanisms that define the biases are as follows:

Nearest-Neighbour Decision Rule. Generalisation, which enables unobserved
meanings to be expressed, is achieved by recalling similar previously observed
instances of production. These instances are recalled in exactly the same form
as they were observed, and due to their similarity, are presumed to contain
information relevant to solving the new problem.

Production Mechanism. The production mechanism takes the relevant informa-
tion found by the decision rule and uses it to synthesise a new signal. The
production scheme assumes that nearby production decisions should inform a
novel production decision.

Production Memory. The production memory records the production behaviour
of an individual over its lifetime. During an agent’s lifetime, production deci-
sions will therefore be partially informed by previous production behaviour.

Obverter Procedure. The obverter procedure introduces a reject option for the
process of production. If the production process results in a signal which
would be incorrectly interpreted by the agent itself, then, rather than proceed-

ing with this production behaviour, the learner instead declines to produce.

The first two biases are a requirement for a learner to function within the iter-
ated learning model. They define how observations are processed in order to yield
the concept description, and how the concept description is interrogated to yield
appropriate signals for meanings. Although these two biases together push the
mapping away from maximum entropy, towards regions with a distance correlation
of r =~ 0.3, they fail to result in the evolution of stable structured mappings, nor

can they sustain such mappings when injected into the iterated learning model.

In contrast, the production memory is an additional mechanism. It increases the
degree of consistency in production over the lifetime of an agent. By memorising
production decisions, production for nearby meanings are more likely to be sim-

ilar. This might not be the case if the nearby meanings have slightly different
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nearest neighbours; their production could be guided by a different competing sub-
mappings. By learning from production decisions the differences between adjacent
sub-mappings is smoothed. The production memory leads to an average distance
correlation of r = 0.5, for both initial states of randomness and those that are

perfectly correlated.

The obverter procedure is a mechanism that excludes the possibility of homonymy in
the mapping between meanings and signals. Here, the obverter procedure is trans-
lated into a bias leading to the rejection of certain production decisions. Only those
production decisions consistent with the reverse mapping from signals to meanings
are carried out and therefore produced. From another perspective, the obverter
procedure leads to ensuring the production of signals which occupy a region of the
signal space that is not projected onto by other parts of the meaning space. This
is clearly a bias away from homonymy, as it decreases the probability of different
meanings sharing the same signal. In relation to this bias, the model also contains
a pressure to exclude synonymy. Due to, what Hurford terms, the production bot-
tleneck, it can never be the case that a single meaning is mapped to two different
signals (Hurford 2002:306-307). In general, the production bottleneck acts to block
certain production decisions by restricting the production mechanism to only ever
express one signal where in fact there could be many appropriate signals. The pro-
duction mechanism used in this model, as a result of its geometrical motivation,
assumes that a meaning can only ever map to a single signal. In mathematical
terms, there is only one solution to the set of equations defining the production

process.

In short, the obverter procedure represents a bias that leads to a drastic increase
in the emergent distance correlation between meanings and signals. Correlations
of r ~ 0.92 consistently emerge from both random and perfectly correlated initial
states. Examining Figure 3.10 also suggests that the obverter bias leads to reduced
variation in the correlation. This observation suggests that an increase in stability
occurs: the emergent mapping is restricted to an area in state space consisting of
similarly correlated mappings.

The importance of the obverter procedure can be related to studies of the emer-
gence of culturally transmitted communication systems (Oliphant & Batali 1997;
Oliphant 1999; Smith 2002). In this context, Smith (2003b) conducts a thorough
study of the obverter procedure using associative neural networks. His conclusion
is that the obverter procedure should more accurately be thought of as a bias to-

ward a one-to-one mapping between meanings and signals. Such a bias deters the
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emergence of homonyms and synonyms, and as a result, leads to coordinated and
unambiguous communication systems. Exactly the same process is at work here.
The bias away from synonymy is implicit in the production mechanism, and the bias
away from homonymy is introduced by the obverter procedure. In ongoing work,
Smith notes that a bias toward one-to-one mappings pervades all known studies
on the cultural evolution of both communication systems and models of linguistic
evolution (Smith 2003c). The model presented here supports this conclusion, and
acts as supportive evidence for a general statement on the learner biases required

for cultural emergence of coordinated mappings between meanings and signals.

Stability in the emergent mapping

We can differentiate two interpretations of stability: firstly, stability in the distance
correlation of the mappings, and secondly, stability in the mapping itself. For
example, two subsequent iterations in the model might exhibit exactly the same
degree of distance correlation in the mapping, yet these two mappings might be
entirely different; they could map meanings to totally different signals. Stability
in correlation is one measurement, stability in the mapping itself is quite another.
Although the possibility of this kind of disparity is unlikely, especially after close
inspection of Figure 3.13, a more rigorous test for stability is worthwhile. In short,
we need to be sure that stability in the distance correlation is in fact a reflection of

stability in the mapping.

The definitive test for such a question must relate to showing that subsequent
mappings occupy the same region of state space. The state space is the space of
all functions mapping points in M to points in §. Any test for locality in this
space between two states is difficult to formulate. Instead, one can employ a what
I will define as a centre-point trace. Here, the central point in the meaning space is
projected onto the signal space. The position of this point is then plotted iteration
after iteration. Stability in the state space will be reflected by the trace occupying
a local region. Figure 3.14 depicts three pertinent traces. Figure 3.14(a) traces the
position of the centre point for a simulation initialised with a random mapping,
without a production memory or the obverter procedure. This trace depicts a
semi-random walk: the variance in the correlation evident in Figure 3.8(a) is a
reflection of instability in the mapping. Next, the same experiment carried out
with a production memory results in a trace shown in Figure 3.14(b). The trace is
considerably less erratic and occupies a local region. This behaviour is increasingly

evident in Figure 3.14(c), which shows the trace for the same experiment augmented

73



with the obverter procedure. This strongly localised trace is a reflection of the stable
mapping depicted in Figure 3.13. In short, the highly correlated mappings resulting

from the use of the obverter procedure are stable.

Trajectories through state space

The state space under consideration is the space of all functions mappings M to
S. Since both M and § are infinitely large, the state space is also infinitely large.
The simulation runs discussed above show that the learning and production biases
featured in the experiments determine which parts of the space are visited. Crudely
speaking, we can section the space into regions that reflect the degree of distance
correlation in the mapping. As we have seen, deployment of the obverter procedure
consistently directs the state towards regions rarely visited, if at all, without the
obverter procedure in place. Complete stability is never achieved. That is, point
attractors are not a feature of these systems, in contrast to the evolving classifier
discussed earlier. So the occurrence of variance in the mapping suggests that stable
regions of the state space are not point attractors. They must be Liapounov stable
points. The three biases mentioned previously therefore lay a probability distribu-
tion over regions of the state space marked out by degree of distance correlation.
That is, the three biases explored lead to behaviour occupying three overlapping
regions of the state space. These regions are arrived at independent of the initial

state.

3.5 Chapter summary and discussion

I started this Chapter with the assumption that the adaptive properties of cultural
transmission are a necessary component of an adequate explanation for hallmarks of
language. Iterated learning is a broadly defined explanatory framework for reason-
ing about this assumption: I drew parallels between iterated learning and theories
of cultural transmission and evolution developed by, for example, Tomasello (1999).
The computational modelling of iterated learning is one route to exploring these
theories. The foundational models of Batali (2002) and Kirby (2002a) stand as a
starting point for a more thorough investigation of the role of learning and con-
straints on transmission on linguistic evolution. The qualms vocalised by Tonkes
& Wiles (2002) raise real issues that future computational models must address in

order to make such models more convincing vehicles for explanation.
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CENTRE-POINT TRACE
CENTRE-POINT TRACE FROM RANDOM FROM RANDOM WITH PRODUCTION MEMORY

CENTRE-POINT TRACE
FROM RANDOM WITH PRODUCTION MEMORY AND OBVERTER

(c)
Figure 3.14: Centre-point traces for, (a), production only, (b), production and

production memory, and (c), production, production memory, and the obverter
procedure.

75



With one eye on addressing these outstanding questions, I have presented an in-
cremental study of the emergence of compositional structure. As a starting point,
the general question of transmission of internal competence via external perfor-
mance has been investigated by exploring the effect of the cultural transmission of
classification competence. This simulation illustrates the effect of a transmission
bottleneck, and how learning biases impact on the evolved system. Quite deliber-
ately, this model is far removed from any plausible model of linguistic evolution.
Redressing this deficit, I expanded the model to account for mappings between two
infinitely large structured spaces; this extension permitted an investigation into the
emergence of compositionality. Although the notion of compositionality used in
these experiments is a highly abstracted parallel of compositionality in language,
some interesting outcomes can be identified. First, a biased learner alone is not
enough to account for linguistic evolution: structured mappings do not emerge eas-
ily. Second, two categories of additional bias where required to account for the
evolution of structured mappings. A production memory acts to increase the con-
sistency of production decisions over an agent’s lifetime, and ensures, to a limited
degree, that subsequent agents agree of the mappings between meanings and sig-
nals. In addition, I developed an instance-based learning parallel of the obverter
procedure identified by Oliphant & Batali (1997). This procedure acts as a filter
on production. Only those signals which would correctly be interpreted by the
agent itself are sent by the agent. The result of these additional biases is that

compositional structure emerges independent of the initial conditions of the model.

These experiments have also introduced a set of explanatory mechanisms borrowed
from complexity theory; state change in the models are viewed as trajectories
through a state space. I have shown that structured mappings occupy stable regions
of this state space under certain configurations of constraints on transmission and

learning bias. These concepts will be used in remainder of the thesis.

3.5.1 Relating models to hypotheses

It is useful at this point to relate the preceeding discussion to the three hypotheses
I identified in Chapter 2. The approach I have taken is in conformity with these
hypotheses. Starting with the function independence hypothesis (Hypothesis 3),
the experiments I have developed make no assumptions about the communicative
value of language. Of course, agents in the model emit performance derived from
their competence, but the purpose of this behaviour is in no way significant to the

workings or interpretation of the model. One might object to this claim and argue
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that the obverter procedure rests on the assumption of communicative accuracy: the
potential effectiveness of the transmitted signal is taken into account. On the other
hand, this procedure can also be regarded as device for maintaining a structured
relation; this second interpretation is quite different to the one invoking a model of

communicative function.

The innateness hypothesis (Hypothesis 1) is clearly the most problematic hypothesis
to relate to these models. The agents approach the task hard-wired to deal with
similarity between meanings and a capacity to relate meanings to signals. The
nearest neighbour decision rule can justifiably be regarded as part of a general ability
to learn. The point is this: the agents are not hard wired to produce compositional

output. This is subtle issue, and I will defer a more thorough discussion until later.

The situatedness hypothesis, I argue, is given support by these experiments. The
explanatory mechanisms required to explain why compositional structure emerges
in these models comprises concepts such as the transmission bottleneck, cultural
transmission, and learner biases. Only an understanding of the combination of
these mechanisms can lead to an explanation of the emergence of structure. An
explanation for the results of the models therefore lies outwith an explanation of

the performance/competence interaction of a single agent.
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CHAPTER 4

Towards a Model of Linguistic Evolution Based on

a Simplicity Principle

4.1 Introduction

On route to developing a more plausible model of linguistic evolution, this Chapter
will examine the role of simplicity in linguistic and non-linguistic cognition. Before
discussing issues of simplicity, Section 4.2 proposes a model of meanings and signals.
On the basis of these modelling decisions, the range of explanation of future models
will be restricted. I justify this position, and focus the range of explanation to the
issue of compositionality in language. Next, in Section 4.3, I will motivate an inves-
tigation into simplicity by outlining the role of simplicity in Chomsky’s minimalist
program, as well as the role in general issues of language acquisition. To place
the discussion on a firmer footing, I will also introduce the theory of Kolmogorov
complexity. Kolmogorov complexity will used as a model of simplicity throughout
the thesis. Encapsulated in this theory is the minimum description length princi-
ple. This principle provides a rigorous approach to determining justifiable inductive

generalisation.

Armed with a solid definition of simplicity, Section 4.4 offers a discussion of sim-
plicity principles in human and animal cognition. I will then narrow the focus,
and examine the notion of simplicity in the context of linguistic theory. Here, I
will relate Chomsky’s minimalist program to the theory of Kolmogorov complexity.
This approach is then contrasted with theories of language acquisition based on
compression and the minimum description length principle. Finally, in Section 4.5,
I will lay the foundations of a model of language based on the minimum description

length principle. This model will be central to the progression of the thesis.
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4.2 Language as a mapping

In the last Chapter, I presented language as an abstract mapping between meanings
and signals, and paid little attention to the precise nature of the domain and range of
this mapping. In this Chapter I will elaborate on the language model by introducing
an additional level of abstraction. The intention is to bring the model of language
further in line with the notion that language is, in Chomsky’s terms, “a particu-
lar relationship between sounds and meaning” (Chomsky 1972:17). For Chomsky,
the faculty of language is a self-contained cognitive system interfacing with other
cognitive systems external to language: one interface bridges a linguistic repre-
sentation, termed Phonetic Form (PF), with “sensory-motor” systems responsible
for producing and perceiving external signals; the other interface bridges another
linguistic representation, termed Logical Form (LF), with those parts of the cogni-
tive system related to “conceptual-intentional” aspects of cognition, ie., “meaning”
and “thought” (Uriagereka 1998; Hauser et al. 2002). Figure 4.1 illustrates these

relationships!.

——————————————————————————————————
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Figure 4.1: The mapping between meanings and signals in detail. PF and LF
are linguistic representations, internal to the abstract computational system defin-
ing knowledge of language. They both interface with external cognitive systems.
PF interfaces with cognitive systems concerning motor articulation and auditory
perception, and ultimately, the production of external signals. LF interfaces with
cognitive systems concerning, broadly speaking, “thought” and “meaning”.

The significance of any particular linguistic representation detailed by theories of
PF and LF will not be considered. When I refer to a model of language, I will be
referring to the mapping between meanings and signals in an abstract sense; the
model is an abstraction because only the inputs and outputs of the linguistic system
are considered. Such a model will concern the structure of signals and the structure

of meanings, and any structural relationship between the two. The computational

!Borrowed and adapted from Uriagereka (1998:93)
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system responsible for the instantiation of this mapping will be treated as an entirely
different issue. The model of language introduced in the last Chapter, where both
meanings and signals where represented as points in a real-valued number space,
is clearly unsatisfactory with respect to the relationship between meanings and
signals realised by the linguistic system. Rather than mapping between two identical
structures, the purpose of language is to map between two very different structures.

For example, Pinker and Bloom state:

language is a complex system of many parts, each tailored to mapping
a characteristic kind of semantic or pragmatic function onto a charac-
teristic kind of symbol sequence (Pinker & Bloom 1990:713)

In order to capture this property of language, a more accurate model of mean-
ings and signals is required. However, this increase in accuracy will be limited to
considering meanings as multi-dimensional propositional structures, and signals as
sequences of symbols. Such a model of language captures the basic input-output

relationship of the computational system underlying language.

4.2.1 Meaning structure and signal structure

Meanings are defined as feature vectors representing points in a meaning space.
Throughout the remainder of this thesis, meaning spaces will be defined by two pa-
rameters, F' and V. The parameter F' defines the number of features each meaning
will have. The parameter V' defines how many values each of these features can
accommodate. As a result, each feature will have the same number of values. Such
a stipulation will prove useful, as many of the analyses to come will be made simpler
as a result. It should be pointed out that this approach to specifying a meaning
space using just two parameters is of no intrinsic importance; it serves only to sim-
plify notation. I could just as well define a meaning space using the parameter F,
along with an extra V' parameters detailing the number of values each individual

feature can take.

A meaning space defined by the parameters F' and V' can be thought of as an F-
dimensional space. Each dimension will have V' discrete points along its axis. For
example, a meaning space M specified by F' = 2 and V = 2 would represent the

set:
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M= {(17 1), (1’2)7 (27 1)7 (27 2)}

Meanings represent structured objects of a fixed length. The values associated with
each feature are drawn from a set; no notion of similarity applies to these elements,
they are unordered. Similarly, the values in one feature are in no way related to
values in another. Within a single feature, the only means by which values are

related is through equality.

Signals are represented as a finite string of symbols drawn from some alphabet
Y. Signals can be of variable length. For example a signal space S, defined by
¥ ={a, b, c,d}, might be the set:

S = {ba,ccad, acda,c, ...}

4.2.2  Structured relations between meanings and signals

The structure of meanings and signals has been defined. Of greater importance to
following discussion will be the structure of the mapping between meanings and sig-
nals. It is the kind relationship existing between meanings and signals that makes
human language so distinctive. Accordingly, it is crucial to be aware that the struc-
ture in the meanings and signals will restrict the set of mappings that are possible.
As it stands, the model of language presented above allows both compositional
mappings and non-compositional mappings. Importantly, it also disallows other
aspects of the mappings between meanings and signals found in natural language.

These restrictions need to be made clear and justified.

Compositionality

Compositionality is a property of the mapping between meanings and signals, rather
than a property of a set of meanings, or a set of signals. A compositional mapping
is one where the meaning of a signal is a function of the meaning of its parts (Krifka
2001). Such a mapping is possible given the model of language developed so far.

Consider the language Lcompositional:

Lcompositional = {({la 2, 2}a adf>a <{17 17 1}) ace)a <{2a 2a 2}a bdf)a
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({2,1,1}, bee), ({1, 2,1}, ade), ({1,1, 2}, acf) }

This language has compositional structure because each meaning is mapped to a
signal such that parts of the signal (some sub-string) correspond to parts of the
meaning (a feature value). The symbol a, for example, represents feature value 1
for the first feature. The precise relationship between meanings and signals can
vary substantially. For example, one feature value can map to two separate parts
of the signal, these parts of the signal can be of variable length, and some parts
of the signal can correspond to no part of the meaning. But importantly, the
property of compositionality is independent of such characteristics of the mapping.
Compositionality is an abstract property capturing the fact that some function

determines how parts of the signal correspond to parts of the meaning.

As T noted in the previous Chapter, human language is compositional. Those lan-
guages with no compositional structure whatsoever I will term holistic languages?:
the whole signal maps to a whole meaning, such that no relationship exists between
parts of the signal and parts of the meaning. Here is an example of a holistic

language Lholistic:

Lyoistic = {{{1,2,2},sghs), ({1,1, 1}, ppold), ({2, 2,2}, monkey),
({2,1,1},9),({1,2,1},rcd), ({1, 1, 2}, esox) }

From holistic language to compositional language

Animal communication systems are generally regarded as holistic mappings be-
tween meanings and signals, with bees and ants standing as notable exceptions
(von Frisch 1974; Reznikova & Ryabko 1986; Hauser 1996). By invoking the term
linguistic evolution 1 am implying that at some point hominids, too, had some
holistic protolanguage. In the context of the transition from protolanguage to mod-
ern syntactic language, two broadly defined scenarios must be considered (Hurford
2000a). First, consider the possibility that the meanings associated with signals
were initially atomic in nature, with more complex semantic and syntactic struc-

tures emerging as a result of combining pre-existing utterances (Bickerton 1998;

2Strictly speaking, I should use the term holistic communication system since one of the defining
features of language is compositionality. Nevertheless, I will continue to abuse the term language
in this way in the interest of clarity.
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Bickerton 2000; Hurford 2000b). This scenario corresponds to a synthetic move
from protolanguage to full language. Contrast this situation with an analytic
transition, where pre-existing complex semantic structures where associated non-
compositionally with signals. These signals were then broken down or elabo-
rated on to introduce compositional syntax (Wray 1998; Wray 2000; Kirby 2002a;
Brighton 2002).

It should be noted that the language model I am developing here implies an an-
alytic move from a holistic language to compositional language. This assumption
follows from the observation that meanings always have some semantic structure:
the possibility of communicating under-specified meanings or sub-components of
fully specified meanings is not considered. The analytic approach I am assuming is
common among models of linguistic evolution. For example, both Batali’s (1998)
and Kirby’s (2002a) models assumes an analytic transition. In contrast, Hurford’s
(2000b) model is an exception in modelling a synthetic transition.

This analytic approach is closely related to an explanation for why human language
contains both compositional and holistic relationships between meanings and sig-
nals. That is, in-between these two extremes I have outlined, a language can be
partly compositional and partly holistic. There are many possible gradations be-
tween the two. Human language is most accurately thought of as a representing
such a gradation (Wray 1998; Wray 2000). Some of our utterances exhibit composi-
tionality. For instance, the English signal “large olive pike” has meaning by virtue
of a compositional relation between the parts of the signal that carry meaning.
In contrast, the English signal “jump the gun” has a holistic interpretation — the
meaning is not derived from the meaning of any of the sub-signals. Of course, we
can identify meaning with each of the constituents of the signal, but in English the
most likely reading of this signal will not rely on such a relationship. In short, with
regard to human language, a more plausible structured mapping between meanings

and signals, using the language model developed above, might be Lizeq:

Liizea = {{{1,2,2,1},sghs), ({1,1,1,1}, ppold), ({2, 2, 2, 1}, monkey),
({2,1,1,1},q), ({1,2,1, 1}, red), ({1, 1,2, 1}, esox),
({1,2,2,2},adf), ({1,1,1, 2}, ace), ({2, 2,2, 2}, bdf),
({2,1,1,2},bce), ({1,2,1,2},ade), ({1,1, 2,2}, acf) }
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This language is sSimply L¢ompostional U Lnotistic; With an extra feature in each meaning
differentiating between the two. Half of the utterances represent a compositional
relation and half represent a holistic relation. Why does human language contain
both holistic and compositional relationships? One plausible explanation for this
situation, which draws heavily on the notion of an analytic transition, is that posited
by Alison Wray (Wray 1998; Wray 2000). Firstly, the reason why holistic utterances
are rife in natural language is due to the fact that they serve an important purpose:

that of providing an efficient mechanism for producing frequent everyday utterances:

It seems that holistic language may be picking up a shortfall between
what we want to say and what we have the processing power to compute
from scratch, by removing the burden of the everyday, pragmatically
determined and communicably predictable, leaving the way clear for
the more demanding analytic system to achieve the goals that only it
can. (Wray 1998:63)

Secondly, Wray goes on to argue that this approach to forming utterances is still

utilised for efficiency reasons, and represents a residue left by protolanguage:

We can hypothesise, then, that although full human language was de-
veloping out of the older protolanguage system, it operated alongside it,
not instead of it. (Wray 1998:57)

The model of linguistic evolution I am developing will assume such a transition:
structured relationships between meanings and signals will arise due to the evolution
of the signal, rather than the meanings and the signals. Agents form utterances for
communicatively relevant situations which are not assumed to increase in semantic
complexity over the course of linguistic evolution. Linguistic evolution occurs as
a result of the signals being interpreted analytically. The biological evolution of
semantic complexity is therefore an assumption of this model. It is in agreement
with the view that syntax emerged partly as a result of the evolution of semantic

complexity (Schoenemann 1999).

Beyond compositionality

Human language is clearly more complex than the basic compositional mapping
between meanings and signals that I have outlined. Notably, language has recur-

sive structure where utterances contain embedded and repeated sub-structures. In
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contrast to the models of Kirby (2002a) and Batali (2002) discussed in the previ-
ous Chapter, I will not consider such aspects of language. Before furthering the

discussion, this position needs to be justified.

By focusing on an explanation of the linguistic evolution of compositional struc-
ture, it is first necessary to strip the model of as many assumptions as possible. By
proceeding to build and analyse a model that can also account for recursive struc-
ture, then any conclusion we draw concerning compositionality may be affected by
assumptions made in modelling recursive structure. It is clear that any rigorous
approach to modelling must proceed incrementally. Of course, it may turn out that
modelling recursive structure does not impact on a study of compositionality in this
way. But we must exclude this possibility by first focusing on an understanding of
the linguistic evolution of compositionality. By building the picture piece-by-piece
in this way, we can approach a more thorough understanding. The development of
the models in the previous Chapter illustrates this process.

First I investigated a basic model of the transmission of classification competence.
As a result of this experiment, it became clear that for structured states to be stable,
the mapping being transmitted requires structured entities in both the domain and
range. Without these basic models, which are inadequate with regard to explaining
the big issues, we would lack a clear understanding of the basic issues. Second, I then
extended the model to account for the evolution of a compositional relation between
two abstract structured spaces. The refinements introduced above now extend the
model further by taking a step toward more plausible meaning and signal spaces.
To suddenly jump to a model capable of representing recursive structure would be

a methodological oversight.

4.3 Simplicity: Motivation and foundations

On route to developing a more plausible and principled model of language, I have
outlined a definition of a meaning space and a signal space. With a view to ex-
plaining the linguistic evolution of compositional structure, I have also discussed
the explanatory limits imposed by these modelling decisions. For example, the
model of meaning spaces adopted above excludes the study of recursive structure
in language. But so far, I have not detailed how the relationship between meanings
and signals is realised, or how knowledge of this relationship is acquired in light of

linguistic evidence. These are fundamental problem for linguistics.
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I will approach these issues from the perspective of simplicity. First, what I will refer
to as explanatory simplicity relates to seeking the most economical explanation. For
example, models developed with less parameters are preferred to those with more,
and less ornate representations and process models are preferred to any others.
This objective is widely appreciated and sought. In contrast, what I will refer to
as cognitive simplicity relates to an assumption that cognitive structures fulfilling
some function are consistently organised such that they are minimal in some sense.
This is a vague definition which I will flesh out during the following discussion.
Are these two applications of the notion of simplicity related? Not necessarily, as
we can seek the most simple explanation of an inherently complex and baroque
system. Explanatory simplicity is an a priori property of desirable explanations.
The possibility of cognitive simplicity is a conjecture relating to the nature of the

object being studied.

I have already put the notion of explanatory simplicity into practice: the incremen-
tal building of models is a prime example. An incremental development necessarily
implies the primacy of simple explanation. The notion of cognitive simplicity needs
further exploration, and its relevance to the cognitive systems underlying language
needs to established. Before focusing on cognitive simplicity I will introduce the
theory of Kolmogorov complexity, which provides a wide ranging and rigorous def-
inition of simplicity. Kolmogorov complexity allows us to gain a firm grasp on
concepts such as induction and information transformation from the perspective of
simplicity. Using these insights, I will ask the following question: Why should we
consider cognitive simplicity as a concept relevant to the study of language? At
first sight, language is far from a simple system. With respect to the ostensibly ba-
sic task of relating meanings to signals, human language exhibits the hallmarks of
complexity: imperfections such as redundancy and ambiguity are rife. I will argue
that these complexities are actually artifacts arising from the principle of cognitive
simplicity. There are two broadly defined scenarios in which simplicity can act as

a driving force in determining the complexities of linguistic structure:

1. Simplicity as the driving force for the internal transformation of representa-
tions. The language faculty serves to mediate between LF and PF, and as such
solves a problem defined by the boundary conditions imposed by cognitive de-
mands external to language. Chomsky’s minimalist program conjectures that
the language faculty is a perfect solution to this task. This perfection relates

to “considerations of economy and computational simplicity” (Lasnik 2002).
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The imperfections of language are then conjectured to occur a result of the
underlying drive toward internally defined perfection.

2. Simplicity as the driving force behind induction from external linguistic stim-
uli. The induction of linguistic knowledge from linguistic input is driven by a
cognitive demand for the smallest consistent description of this external lin-
guistic input. Compression of the observed data leads to generalisation, and
this acquired knowledge is therefore partly determined by the form of the lin-
guistic input. Iterated learning, in conjunction with this simplicity principle,
can, as [ will argue, result in the linguistic input containing residue arising
from the historic use of language. This residue contains imperfections. But
crucially, this residue does not have a detrimental effect on learnability, and

therefore survives.

This discussion has outlined the motivation for investigating the role of simplicity in
the cognitive mechanisms underlying language. Before furthering this discussion, we
need a firmer grasp on the concept of simplicity. So far I have not defined precisely
what I mean by simplicity. In order to do so, I will approach a fundamental and
objective measure of simplicity: Kolmogorov Complexity. To place Kolmogorov
complexity in context, a slight historical detour is required.

4.8.1 Simplicity and induction

Given data, induction is the process by which a hypothesis — some general law — is
chosen to act as description for that data. In general, we entertain the possibility
of some set of hypotheses H = {H;, Hy,...}, and then given some data D, we
choose an “appropriate” hypothesis H; € H. In light of the observed data, some
number of the hypotheses are typically inconsistent, the descriptions they represent
will contradict the evidence represented by the data. The result of induction is
therefore likely to result in the exclusion of some hypotheses in #, leaving a set of
candidate hypotheses C C H. The process of induction, which reduces to selecting
one of these candidate hypotheses in a principled way, is an age-old and fundamental
problem. The scientific process can be seen as the choice of a hypothesis in light of
observations. Learning, too, can be regarded as the process of choosing a hypothesis
on the basis of observations. Given that induction is such a weighty and deep
problem, it is unsurprising that generations of scholars have attempted to find a

general solution.
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Any serious approach toward a general solution must start with the Principle of
Multiple Explanations attributed to the Greek philosopher Epicurus, which states
that one must entertain all consistent hypotheses, as rejecting a hypothesis that is
consistent with what one has observed is unscientific — it is nothing more than a
leap of faith. In one form or another, this principle resonates with all subsequent
attempts at thinking about induction. First, it highlights the fact that there will
often be a choice of hypothesis. Second, any preference in this choice must deviate
from what the data alone suggests. In many respects, all subsequent attempts to
solve the problem of induction relate to justifying a preference between consistent

hypotheses.

Occam’s Razor Principle, attributed to William of Ockham, is an appealing candi-
date preference: when there is a choice, always opt for the simplest hypothesis. The
appeal of this principle is that overly complicated hypotheses should be rejected in
favour of simpler, more elegant hypotheses. But this principle introduces a new
problem: which measure of simplicity should we employ? Any measure we opt for

will necessarily bias our choice of hypothesis, as no measure is theory-neutral.

Thomas Bayes offered an important insight by taking a probabilistic approach to
the problem of induction. Rather than discarding inconsistent hypotheses and leav-
ing a set of candidate hypotheses, the probabilistic approach assigns probabilities
to the members of the hypothesis space, be they consistent or inconsistent. Hy-
potheses, therefore, are ranked according to their likelihood. These probabilities
can be thought of as degrees of belief. Bayes’s rule is subtle. In essence, the rule
relates prior probability to posterior probability. The prior probability distribution
over the hypotheses represents our initial a priori belief in each hypothesis, that
is, the degree of belief before any evidence has been seen. In terms of probability
theory, we say that P(H) defines this probability distribution over hypotheses; ev-
ery hypothesis has a probability, and the sum off all probabilities is unity. Now, in
light of observed data and this prior distribution, Bayes’s rule provides the poste-
rior probability: the probability, or degree of belief, in a hypothesis H given D has
been observed. More formally, Bayes’s rule gives us the the posterior probability
P(H;|D), the probability of H; in light of D:

P(D|H;)P(H;)
P(D)

P(H;|D) =
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If all hypotheses are a priori equiprobable, then the most probable hypothesis given
D will be the one that maximises P(D|H;). This hypothesis will be the one that
describes the data and only the data. This observation highlights the fact that
prior bias is required for generalisation beyond the observed data. Bayes’s rule
and Occam’s razor principle offer approaches to alleviating the problem posed by
the principle of multiple explanations. But neither approach offers a satisfactory
solution to the problem. We can object to Occam’s razor principle on the grounds
that there is no theory-independent criterion of simplicity: whichever notion of
simplicity one employs must represent some kind of bias. Similarly, how can the
prior probabilities of the candidate hypotheses, used by Bayes’s rule, be determined?
It is perfectly possible to assign prior probabilities to hypotheses, but how to do so in
some principled and independent way is far from clear. These objections clarify an
unavoidable conclusion: there must be some bias present in the hypothesis selection

process.

4.3.2  Induction and universal computation

The principle of Occam’s razor seeks the simplest consistent hypothesis. One mea-
sure of simplicity is suggested by the theory of Kolmogorov Complexrity. Given an
abstract object z, the Kolmogorov complexity, K (x), is the length of the shortest
computable description of z (Li & Vitanyi 1997). So here, simplicity is measured
relative to the shortest program capable of outputting the object in question. If the
object is, for example, a random series of digits with no intrinsic regularity then the
series cannot be compressed in any way: the Kolmogorov complexity will be iden-
tical to the length of series itself, or more precisely, the length of the program that
outputs each digit in turn. But what about an object such as 7, which is ostensibly
a random sequence of digits? The Kolmogorov complexity of 7 is significantly lower
than the series itself as a program that computes 7 is itself a description of 7. This
must be the case as a finite computational procedure can approximate the infinite
series 7 to an arbitrary precision. The function K (x) suggests a universal measure
of simplicity across all computable objects. Is Kolmogorov complexity the objective
measure of simplicity we seek? Given the conclusions of the above, we should ask:
What kind of bias does the function K (x) introduce?

An important result from the theory of Kolmogorov complexity is the invariance
theorem (Li & Vitdnyi 1997:96). This theorem answers an understandable query
one might have that arises from the definition of Kolmogorov complexity: The

value of K (x) for some z will depend entirely on the details of the manner in which
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we form algorithmic descriptions. For example, different computer languages will
favour certain kinds of algorithmic problem, and therefore yield different values
of K(z) for some fixed x. In short, our choice of description method will bias
K(z) in some fundamental way. This is where the depth and allure of the theory
of Kolmogorov complexity strikes. The invariance theorem proves that whichever
way the algorithmic description is formed, the Kolmogorov complexity is invariant
within a constant factor. In other words, given any object z, K(z) differs across
two description methods ¢; and ¢5 by some constant factor c¢. Crucially, the value
c is independent of x. It is worth pointing out that we assume both ¢; and ¢
are models of universal computation (Hopcroft & Ullman 1979), and therefore,
the theory of Kolmogorov complexity is restricted to apply to computable objects.
Furthermore, the function K(z) is not computable. Kolmogorov complexity, in its

ideal and universal form presented here, is hard to deploy in any practical sense.

Despite its impracticality, Kolmogorov complexity is a useful concept when dis-
cussing the general issue of simplicity. There are several routes to relating the the-
ory of Kolmogorov complexity to the issue of induction?®, for example, Kolmogorov
complexity could serve as the measure of simplicity required to apply Occam’s razor

principle.
Rissanen’s MDL principle

If our discussion on induction were to stop now, as a result of the gulf between
theoretical elegance and practicality, we would be left in a frustrating position.
We have deep and elegant theories that cannot be applied. Fortunately, we can
approximate some of the intuitions of the theory of Kolmogorov complexity in such
a way that they become computable. Such an approximation is realised through
the Minimum Description Length (MDL) principle (Rissanen 1978; Rissanen 1989;
Wallace & Boulton 1968). The MDL principle states that the best hypothesis
for some observed data D is the one that minimises the sum of (a) the encoding
length of the hypothesis, and (b), the encoding length of the data, when represented
in terms of this hypothesis. These encoding lengths are measured in bits. More
formally, for some hypothesis space H = {H1, Hs, ...} we have an optimal scheme
for encoding hypotheses denoted by C;. Such a scheme must uniquely code each
hypothesis. Then, the encoding length of a hypothesis H is defined as L¢, (H).
Next, the data must be encoded with respect to this hypothesis. Depending on

3The principal means of relating the theory of Kolmogorov complexity to induction is via
Solomonoff prediction, but I will omit a discussion of this branch algorithmic complexity for
reasons of brevity. See, for example, Li & Vitanyi (1997:324)
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the structure of the hypothesis, different codes will specify different data items.
The coding scheme denoted by C5 defines how data is represented in terms of the
hypothesis, that is, L¢,(D|H) is the length in bits of encoding the data using H.
Note that coding schemes C; and C, are general coding schemes — they must apply
across all hypotheses in ‘H and all bodies of data that members of H can encode.

We can now define the MDL principle:

Definition 7 (Minimum Description Length Principle) Given the hypothe-
sis space H = {Hy, Ho, ...}, and optimal coding schemes Cy and Cs, the best hy-
pothesis, Hypr € H, is defined as:

Hypr = min{Le, (H) + Le, (D|H)} (4.1)

This principle is appealing on several grounds due to its generality, simplicity, and
roots in the theory of Kolmogorov complexity. Importantly, it has also been applied
to countless engineering problems (Quinlan & Rivest 1989; Cameron-Jones 1992;
Gao et al. 2000; Schmidhuber 1997). The details of how the principle is applied
to a specific problem will be discussed below. But in general, applying the MDL
principle requires one to construct a hypothesis space, encoding schemes, and some
search strategy to locate Hy py in the hypothesis space given some data. It is worth

spending time in understanding how and why the principle works.

The MDL principle relies on the use of a two-part code to represent the hypothesis
chosen and the effect that this hypothesis has in representing the observed data.
A description composed of a two-part code is recurring theme in the theory of
Kolmogorov complexity. It has a natural reading. In basic terms, given some data

D, two contrasting ways of encoding D exist:

1. We could encode D as is. That is, D is considered a description of itself.
2. We could encode D as the conjunction of (a), a general description, G, that
also describes observations not found in D, and (b) a code C' that precisely

identifies each observation found in D in terms of G.

Both these approaches to encoding describe the observed data perfectly, and nothing
else. Now, if D is completely random then the first approach yields the smallest
possible encoding length of D. This result follows because there can no general
description of random data. But if D contains regularities, then the shortest possible

encoding of D may be achieved by using the second description scheme. Here, any
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regularity in the data is encoded in compressed form in GG, a general description.
As a result of this compression, the cost of encoding G' may be significantly smaller
than the cost of encoding D. But on its own, GG is incapable of describing the data
and only the data. To combat this deficit, the code C is used to identify each and
every item in D in terms of G. Importantly, the combined cost of encoding both
G and C' may be smaller than the cost of encoding D. As a result, we have a
compressed description of D. So, providing that enough regularity is present in D,
then this second encoding method yields a shorter description of D. MDL uses this
intuition to select a hypothesis. The hypothesis chosen by MDL corresponds to the
general description GG, and therefore may describe more data than that which was
observed. This is how MDL can result in generalisation through induction. This is
the intuition behind MDL.

The MDL hypothesis selection process has been defined in terms of a set of hy-
potheses H and optimal coding schemes L, and L¢,. The fact that the MDL of
some data D is an approximation to the Kolmogorov complexity of D can now be
understood by noting that the bias introduced by our choice of H and the coding
schemes may deviate from the bias present in the function K(z). To tie up this
discussion, it is worth pointing out the concept of Ideal MDL (Vitanyi & Li 2000).
Ideal MDL is a reformulation MDL that stipulates that:

Hupr = glel%{K(H) + K(D|H)} (4.2)

That is, when considering the encoding lengths of the hypothesis and the data given
the hypothesis, then the encoding lengths are precisely the Kolmogorov complexity
of these constituents. In other words, with the standard definition of MDL, the
coding schemes L¢, and L, are not required to yield identical lengths to those
reflecting the Kolmogorov complexity of the objects being encoded. This discrep-
ancy is a result of the practical casting of MDL: computing K(H) + K(D|H) is
an undecidable problem. Deviating from the theoretical clarity and universality of
ideal MDL is therefore a fact of life when applying MDL to practical problems. This

discrepancy will introduce some kind of bias, an issue that I will return to later.

4.4 Simplicity: Cognition and language

The theory of Kolmogorov complexity is an abstract one concerning simplicity,

compression, and induction from data. But is this theory relevant to the notions of
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simplicity and induction we find useful to invoke when explaining aspects of cogni-
tion? It seems a basic fact that much of cognition involves compression. Perception,
for example, requires complex and continuous stimuli to be filtered and understood.
We don’t act on the basis of the whole body of information arriving at our sensory
surfaces. Some process of compression or filtration must be occurring. Another
example is the problem of language acquisition. As soon as we entertain the idea
that the acquisition process involves induction and generalisation, then the question
of choosing between multiple consistent hypotheses must be answered. So, can we
justifiably carry the notion of Kolmogorov complexity, and the related insights into

the problem of induction, into a study of cognition?

One problem is that the concepts I have introduced have clear theoretical founda-
tions, yet suffer from practical limitations such as the non-computable nature of the
function K where K (z) is the Kolmogorov complexity of the object . Furthermore,
even if the required calculations of K were both computable and tractable, its util-
ity as a tool for the explanation of cognitive systems is by no means self-evident.
In this section I will build the case for using the concepts developed above in a
study of cognition. Firstly, through restricting its applicability, I will argue that a
model of simplicity based on the theory of Kolmogorov complexity need not inherit
all the theoretical restrictions. Secondly, I will discuss evidence that suggests that

organisms behave in line with the concepts discussed above.

4.4.1 Simplicity and cognition

Chater and Vitanyi (2003b) and Chater (1999) argue that simplicity is a relevant
and widely applicable principle in the cognitive sciences. Stressing the importance of
Kolmogorov complexity as a measure of simplicity, they present a convincing case for
simplicity and information complexity being a unifying principle by citing examples
ranging from low-level vision to high-level cognitive functions such as similarity and
categorisation. Far from being a post hoc justification for the relevance of simplicity,
Chater and Vitanyi cite examples of research that have been driven by issues of

simplicity and make novel predictions as a result (Feldman 2000; Hahn et al. 2003).

To illustrate the relation between simplicity and cognition, I will discuss two studies.
The first study reports theoretical work done in extending Shepard’s universal law of
generalisation. This work suggests the theory of Kolmogorov complexity as a valid
approach to investigating high level cognitive function. The second study analyses
the communication system of ants, and demonstrates that these superficially basic
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organisms are in fact capable of compression. So here, the theory of Kolmogorov
complexity is used to shed light on models of both human and animal non-linguistic

cognition.
Simplicity and compression applied to high-level cognition

In order to arrive at a general measure of psychological distance, Chater and Vitanyi
(2003a) apply the theory of Kolmogorov complexity. They aim to generalise Shep-
ard’s Universal Law of Generalisation, which states that the perception of similarity
between objects is a negative exponential function of the distance between the items
in psychological space (Shepard 1987). That is, according to some objective measure
of similarity between physically measurable stimuli such as, for example, phonemes,
the corresponding distance in psychological space is negatively correlated with the

degree of perceived similarity.

Leaving aside the details of how this Law is tested empirically, a fundamental ques-
tion relates to how distance is measured in psychological, or “mental” space. The
notion of Euclidean space is frequently used as a model of psychological space, yet
this practice restricts the applicability of Shepard’s Law. Chater and Vitanyi at-
tempt to combat this problem by proposing a universal measure of distance between
two objects z and y. The measure they propose is the length of shortest program
that transforms x to y. This program could, for example, execute a representational

distortion of x such that y is the result.

The key point here is that the notion of “shortest program” and therefore Kol-
mogorov complexity, is presumed to be psychologically real in some sense. That is,
the theory of Kolmogorov complexity is a valid means of explanation for an act of
cognition. In functional terms, similarity is reduced to the problem of finding the
shortest (computational) procedure that relates one entity to another. Aware of
the problems that this proposal introduces, specifically the issue of arriving at such

a shortest program, Chater and Vitanyi note:

If we are interested in gaining insight into some complex system, it is
common to attempt to formulate a radical (and knowingly unrealistic)
idealization, that one hopes capture the minimal assumptions needed to

make theoretical progress. (Chater & Vitanyi 2003a)

The point is this: due to the non-computable nature of the function K(z), a skeptic

might, quite rightly, argue that humans cannot possibly arrive at measures derived
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from Kolmogorov complexity. At a practical level, the skeptic is missing the point.
Undoubtedly, humans cannot solve the general problem of computing K (z), but
it is perfectly possible that, given constraints on z, we can approximate K(z).
Adopting this stance, Chater and Vitanyi go on to show that Shepard’s Law can be
derived when psychological distance is measured in this way. In doing so, the aim
is to expand the applicability of Shepard’s law. The important point here is that
the theory of Kolmogorov complexity can usefully be translated into an explanatory
framework one might use in explaining cognition. Applying Kolmogorov complexity
in its purest and general form is not possible due to theoretical limitations. This
does not exclude the use of Kolmogorov complexity, in a restricted form, informing

a computationally tractable model of some cognitive processes.

Simplicity and compression in basic animals

In analysing the communication systems of ants, Ryabko and Reznikova (1996)
demonstrate that organisms far more basic than humans can compress information
(see also Reznikova & Ryabko (1996)). The fact that Kolmogorov complexity offers
explanatory force in explaining cognition in animals must suggest that humans are

capable of similar cognitive processes.

In these experiments, ants are placed in an environment configured so that the
communication of food location between ants can be studied. Communication be-
tween ants is achieved using contact — the experiment is organised in such a way
that the laying of pheromone trails can be ruled out as a means of communication.
The environment consists of a tree-structured maze, with each junction in the maze
presenting two possible paths, left (L) and right (R). A scout ant enters the maze
at the root of the tree. Food is left at the end of one of the paths through the
maze. The experiment then centres on the scout ant, aware of the food location
after searching the maze, informing the other ants of the food location. That is, the
scout ant finds the food itself by travelling through the maze, taking L/R decisions

at each junction it encounters.

On returning, the experiment is orchestrated so that the scout ant transmits infor-
mation detailing the food location to a stationary team of foragers through contact.
The duration of this contact is timed. Assuming that the communicative act con-
sists of a series of messages drawn from the set {L, R}, Ryabko and Reznikova
showed how the compressibility of the path is negatively correlated with the time
required for the message to be transmitted. That is, apparently random paths such

as LRLLRL (for a 32 leaf maze) took longer to transmit than compressible paths
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such as LLLLLR: transmission duration correlates with message complexity. The
ants must therefore be compressing the information required for informing the for-
agers of food location. Note also that this is an example of an innate compositional

communication system.

4.4.2  Simplicity and the language faculty

The work discussed in the previous section suggests that simplicity is an appropriate
concept to invoke when explaining non-linguistic cognition. I will now focus on
language. Before focusing on the role of compression and generalisation during
language acquisition, I will discuss how the concept of simplicity can shed light on

theories of the language faculty.

The minimalist program

When considering Chomsky’s minimalist program it is first useful to distinguish
methodological minimalism and the substantive thesis (Chomsky 1995; Chomsky
2002; Lasnik 2002). Methodological minimalism refers to the practice of seeking
explanations in such a way that the range of phenomena explained is of secondary
importance to the depth of understanding one obtains of some core set of salient

phenomena*. This practice has a long history, and is not specific to linguistics:

Well, all of this is part of what you might call the “Galilean style”:
the dedication to finding understanding, not just coverage. (Chomsky
2002:103)

The substantive thesis, in contrast, concerns the computational processes of the
faculty of language itself. The minimalist program sets out to investigate the possi-
bility that the language faculty is an example of a perfect design. Of course, such a
statement requires qualification: what is the linguistic system perfect for? It would
seem that language is not a perfect communication system, as natural language
exhibits ambiguity. Instead, the proposed perfection relates to the fact “that the
human language faculty might be a computationally perfect solution to the problem

of relating sound and meaning” (Lasnik 2002:434).

4Epstein & Hornstein (1999) also cite methodological economy as a characteristic of the mini-
malist program. This means, for example, applying principles such as Occam’s razor. My interpre-
tation of methodological minimalism is the one I discuss in the main text, and the one articulated
by Chomsky (2002). Methodological economy, so defined, is hard to argue against. In contrast,
what Chomsky terms methodological minimalism constitutes a more controversial claim.
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The language faculty represents a solution to a problem that is specified by the
boundary conditions imposed by interfaces with non-linguistic cognitive systems.
On the one hand LF interfaces with conceptual-intentional aspects of non-linguistic
cognition. On the other, PF interfaces with sensory motor systems capable of con-
structing and perceiving signals. These constraints are external to the faculty of
language. So, if the language faculty is “well designed for interaction with the sys-
tems that are internal to the mind” (Chomsky 2002:107), then why does language
exhibit imperfections and redundancy? What we might call the minimalist assump-
tion leads to the conjecture that these external imperfections are artifacts caused by
considerations of simplicity internal to the language faculty. For example, Chomsky

states:

This is the research direction: try to show that the apparent imperfec-
tions in fact have some computational function, some optimal compu-
tational function. (Chomsky 2002:118)

Given that the imperfections of language are a result of the interaction between
internal boundary conditions and a pressure for cognitive simplicity, then given al-
ternative boundary conditions, language, as well as the language faculty, might have
been “perfect”, and lack the imperfections we see now. This hypothetical observa-
tion, in conjunction with the preceding discussion, illustrates clearly the principle
of detachment discussed in Chapter 2: the determinants of language structure and
form can be understood entirely from the perspective of internal cognitive pressures

and considerations.

The precise nature of the proposed perfection of the language faculty is frustratingly
unclear. Advocates of the minimalist program are far from providing a concrete def-
inition of perfection, but terms such as “computational simplicity” with respect to
“general properties of organic systems” (Lasnik 2002:432) go some way to clarifying
the issue, in contrast to general statements about “economy principles” (Marantz
1995:351), and the fact that the language faculty represents grammars that are
“organised frugally to maximise resources” (Epstein & Hornstein 1999:xi), or that

these grammars are “optimally economical” (Uriagereka 1998:523).

Although there is no a priori reason to presume Kolmogorov complexity is relevant
to the minimalist program, or language in general, Lasnik’s comments certainly sug-
gest Kolmogorov complexity might be a plausible notion of simplicity with respect

to minimalist theorising. Putting into use the theory of Kolmogorov complexity
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would suggest that the language faculty might be the smallest piece of biologi-
cal machinery that meets the requirements of the interface conditions mentioned
above. In particular, and in a similar vein to Chater and Vitdnyi’s (2003a) pro-
posal of transformational distance, this situation suggests that the language faculty
could be the shortest program capable of transforming between PF and LF. Such
a proposal may go some way to explain the imperfections of language by appeal-
ing to the two-part code discussed earlier. Here the shortest description of the
transformation is composed of, first, an elegant, simple, and regular transformation
relating certain aspects of LF and PF, in conjunction with, second, corrections to

this transformation that introduce the observed imperfections of language.

In short, the adoption of simplicity considerations by the minimalist program is far
from an idle desire to seek more economical explanations. It makes a claim about the
driving force behind imperfections in language: Can the underlying considerations
of cognitive simplicity lead to these observed imperfections?

If you are interested in the minimalist questions, what you’ll ask is ex-
actly that: why are they there? 1 think there is at least a plausible
suggestion: they are there as perhaps an optimal method of implement-
ing something else that must be there (Chomsky 2002:113)

Because Chomsky is at pains to stress the irrelevance of inductive generalisations
during language acquisition, simplicity must relate to solving an internally defined
problem — one specified by interface conditions will other cognitive sub-systems.
As soon as we entertain the idea of inductive generalisation playing a role in the
acquisition of language, then the impact of simplicity considerations may be very

different. Before turning to this issue, I will clarify a possible source of confusion.

The simplicity measure for grammars

It worth pointing out that the “simplicity measure” used in Chomsky’s early work
on transformation grammar is an entirely different issue to that of simplicity in
the minimalist program. Given primary linguistic data D, there may be several
consistent hypotheses — grammars — permitted by a linguistic theory. Part of an
explanatory theory of acquisition must therefore contain a procedure for ordering

mutually consistent hypotheses:

Two grammars for the same language might be equally complete and

correct, and we wish our general theory to provide a criterion of choice
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between them. Of two theories that cover the same facts, it is usual to

choose that one which is simpler (or more economical). (Bach 1964:178)

A number of criteria with which to measure grammatical simplicity exist. For
example, among several possibilities, Bach considers the number of tokens used
in the description of the grammar (Bach 1964:178). But importantly, the precise
nature of the simplicity measure is an empirical question. Both Bach and Chomsky
are at pains to point out that we cannot assume that some a priori measure of
simplicity exists. The simplicity measure for a particular theory must be found by
further linguistic enquiry, rather than by some independent and absolute measure
such as, for example, Kolmogorov complexity. To avoid such confusion, the term
evaluation procedure was adopted (Chomsky 1965; Chomsky & Halle 1968). The
evaluation procedure is required to achieve explanatory adequacy for some theory
of language — such a theory must explain why particular grammars are chosen over
others for particular primary linguistic data. The evaluation procedure is specific
to a particular grammatical theory; it is not intended to be employed as a criterion
with which to judge competing theories of language. This early use of simplicity in
Chomsky’s writings is therefore of limited relevance to the current discussion. In
direct contrast to this position, I will now discuss grammar acquisition as a process

directed by a simplicity bias.

4.4.8 Simplicity and language acquisition
Compression and generalisation

I have discussed work that relates simplicity principles to cognition. So far, none
of these studies have shed light on the issue of generalisation through induction, an
issue suggested by the MDL principle. In contrast, Wolff (1982) focuses on precisely
this problem but draws no parallel between his work and the theory of Kolmogorov
complexity, or MDL®. Noting that the result of language acquisition is an intricate
knowledge of a complex linguistic system, Wolff argues that simplicity consider-
ations, or to use Wolff’s terminology, “cognitive economy”, should be invoked to

explain this complexity:

By exploring the properties of simple mechanisms which have complex
implications and by relating these properties to known features of lan-

guage development we may, in the interests of theoretical parsimony,

5For related work on using simplicity and MDL in grammar induction see Langley & Stromsten
(2000) and Griinwald (1996).
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hope to find simplicity behind the apparent complexity of language ac-
quisition. (Wolff 1982:58)

For Wolff, simplicity means compression: syntactic forms are derived from data as a
result of generalisations arising from a preference for compact representations. But
beyond simply the interests of theoretical parsimony, Wolff believes that simplicity
has a cognitive reality, and constitutes a broadly applicable principle. On issues of

simplicity, Wolff notes:

They have an obvious relevance to information storage, but their im-
pact can be at least as great on information transmission — from one
person to another or from one part of the nervous system to another.
So great are the potential advantages of data compression principles in
increasing the volume of data that may be handled by a given system,
or in reducing costs for a given body of data, that it is hard to imagine
how any biological information processing system could evolve without
incorporating at least some of the principles in one form or another.
(Wolff 1982:61)

Wolff seeks to build a computational model of the language acquisition process.
Given some text generated from a grammar G, the system induces some grammar
G'. The fundamental question Wolff investigates is the degree to which general-
isations made by G’ mirror those made by G. Noting that young children often
over-generalise to forms like goed and mouses, the issue of the extent of generalisa-
tion is the principal concern. Wolff identifies the degree of grammar compression to
be the determiner of the extent of generalisation. Accordingly, acquisition effects

such as overgeneralisation are best investigated from the perspective of compression.

Two measures are employed to track the effect of compression. Given some data D,
S, defines the size, in bits, of the grammar induced from D. The degree of compres-
sion of the data achieved using the grammar is denoted as C'C. This measurement
is crucial; it is calculated on the basis of, (a), the the number of bits required to
encode the data in terms of the induced grammar, v, and (b), the number of bits
required to encode the data in unprocessed form, V. The measurements S, and
CC' are but a short step from corresponding directly to the two factors used by the

minimum description length principle.

With respect to Equation 4.3, Wolff’s S, is identical to L¢, (H), the length in bits
of encoding the hypothesis. Furthermore, Wolff’s CC' is a function of L¢,(D|H).
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Because C'C is represents a compression rate, rather than a number of bits, Wolff’s
scheme departs from the MDL principle as the sum of these two quantities lacks a
clear interpretation. Nevertheless, Wolff remarks on the utility of considering these

two expressions:

A trade-off exists such that an improvement in C'C' may be achieved at
the expense of a larger grammar and vice versa. In these circumstances
it would seem necessary to assign weights to CC' and S, representing
their relative importance biologically, so that an optimum balance may
be found between the two. A priori, however, we do not know what
these weights should be. (Wolff 1982:65)

The elegance of the MDL principle is a result of its simplicity: there is no need to
specify weights, as the trade-off is achieved by minimising the sum of the two key
quantities. In short, Wolff uses the same measurements of the MDL principle, but
stops short of a thorough reconstruction of MDL by failing to consider the total
cost of encoding the data in terms of the hypothesis and the encoding length of the
hypothesis itself.

Recall that Wolff is interested in the processes causing overgeneralisation. What
Wolff terms the range of the grammar is the variety of terminal strings it can
generate. The key insight that Wolff makes is that by restricting the degree of
compression of the grammar by considering the trade-off between C'C and §,, the
range, or degree of generalisation, can be regulated. Such regulation, determined
by the degree of grammar compression, can be used to explain overgeneralisations

made during acquisition.

During language acquisition from a text, the system builds a grammar incremen-
tally. Starting with the most frequently represented components, words, the system
induces increasingly more complex (but less frequent) structure represented in the
text. Overgeneralisations occur as a result of the initial phase of the induction of
syntactic patterns which, when first discovered, result in the grammar overgeneral-
ising. As more complex patterns are induced, the range of the grammar is regulated
due to the increased cost of representing the data in terms of the hypothesis: small
grammars no longer lead to maximum compression. Wolff claims that this interme-
diate phase, where overgeneralisation occurs, is observed in infants over the course

of their linguistic development.
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In relation to this issue, Clark (2001) notes that the frequency of structures occur-
ring in an input text is inversely proportional to their complexity. As a result, this
observation must place a bound the degree of complexity of “witnesses” to syntactic
parameters. That is, certain structures in the input text must provide evidence that
suggest an appropriate setting of a parameter value — these structures act as wit-
nesses. If a target grammar is to be reliably learned in finite time from a finite text,
then there must be a bound on the complexity of the structures acting as witnesses.

Similarly, this bound must inform any theory of variation across languages:

If parameter values must be expressed on extremely compact structure,
then the set of parameters we can incorporate into our theory of UG
will be tightly constrained, thus placing a limit on the kind of linguistic

variation we can observe in principle. (Clark 2001:136)

Clark goes on to propose that the notion of the complexity of a parameter can be
regarded as the Kolmogorov complexity of the simplest structure that expresses that
parameter — its witness. Simple parameter values will therefore be more frequent in
the input text, and be set early on in the language acquisition process. Similarly,
complex parameters will be set later in the acquisition process. This ordering of
acquired complexity is mirrored in Wolff’s theory: smaller (less complex) grammars,
with a wide range, are acquired before more complex grammars with a narrower

range.

In the discussion that follows, I will draw on these insights, which correspond di-
rectly to those suggested by the MDL principle, to justify a model of language
induction developed below. It should be noted, however, that the work of Wolff
and Clark deal only with inducing grammars from sets of signals, or strings. Their
work therefore has little direct relationship with the model of language I have been

developing, which requires us to also consider the role of meanings.

4.4.4 Language, simplicity, and evolution

Some of the fundamental problems in linguistics can be informed by simplicity prin-
ciples. Now is a useful point at which ask the following: Are the simplicity principles
discussed so far a unifying theme in the study of language, or do they refer to un-
related, mutually exclusive, questions? In particular, is the notion of simplicity in
the minimalist program related to the notion of simplicity with respect to language

acquisition? This is a significant question. Due to the reticence of Chomsky in
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accepting the role of inductive generalisations in language acquisition, these inter-
pretations of the role of simplicity appear quite disparate. The minimalist program
adopts the notion of simplicity to make a claim about the relationship between
pressures determining the structure of the faculty of language, and imperfections in
language. Simplicity guides internally directed pressures on cognitive organisation
that lead to external complexities. By internal, I mean internal to the language

faculty, and by external, I mean external to the language faculty.

In contrast, if language acquisition is driven by the pressures of simplicity, specifi-
cally the compression of representations, then simplicity guides cognitive organisa-
tion on the basis of externally defined structures found in the environment, that is,
the linguistic input. The artifacts of this process, as we have seen, correspond to
degrees of generalisation which are not necessarily a reflection of the smallest gram-
mar consistent with the input: generalisations are a result of grammar exhibiting
far from optimal design, due to the underlying pressure to represent the observed
data minimally. The minimalist position can claim to account for the observed
imperfections of language. Can this alternative application of simplicity principles
do the same? In Chapters 6 and 7, I will argue that it can, when placed in the
context of iterated learning. One conclusion arising from this theory is that the two
applications of the notion of simplicity can in fact be regarded as the same process,
but only if generalisation is accepted as part of the process of language acquisition.
Both perspectives assume that the cognitive structures relevant to language are
optimal. One perspective proposes that the task is determined by an expression of
the genes. The other proposes that this task is (at least partly) specified by the

linguistic input.

Before discussing the details of the model I will use to investigate this possibility, it
is worth considering some recent work tackling many of the issues I have raised. In
the context of iterated learning, compression, and language evolution, Teal & Taylor
(2000) investigate change in regular languages as a result of repeated cultural trans-
mission. These regular languages are represented by finite state automata (FSA)
(Hopcroft & Ullman 1979). At each iteration in the model, the “smoothness” of the
language is tracked by measuring the average string-edit distance between words
contained in the language. Using the minimum description length principle, the
FSAs are compressed at each iteration. Teal and Taylor note that the degree of
generalisation achieved at each iteration increases as a result of compression: more
strings can be generated by the induced FSAs as the experiment progresses. Con-

trary to their expectation, they also found that the average string edit distance
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did not change as a result of linguistic evolution. Linguistic evolution in no sense
leads to smoother string spaces. Teal and Taylor’s main finding was that languages
change more rapidly when they are incompressible. Therefore, as linguistic evolu-
tion proceeds, the compressibility of the languages increases. This observations will

tally with results obtained later in the thesis.

Although Teal and Taylor’s work focuses on the key issues I will be investigating,
their work has little impact on the discussion that follows. Rather than treating
language as a set of signals, I will be treating language as mapping between meanings
and signals. As a result, very different structural properties will be of interest. For
example, compositionality is property of a mapping, rather than a string space. In
this respect, the conjecture I have made regarding imperfections arising as a result
of simplicity bias in language learning cannot be investigated in a model such as
that presented by Teal and Taylor. In order to progress, I will have to develop a

new model.

4.5 Towards a model of linguistic evolution

Within an iterated learning model, agents act as a conduit for language. An agent
observes a subset of the language of the previous generation. The process of learn-
ing from this subset, and then producing utterances for the next generation, is a
complex one. At one level an agent simply maps one language onto another. At
a more detailed level, the function which defines this mapping is composed of a
learning mechanism and a production mechanism. Learning, in this context, is the
process of arriving at a hypothesis which explains the observed language. Produc-
tion is the process that, given a hypothesis, completes the mapping from meanings
to signals. The production mechanism defines how the hypothesis is interrogated

to yield signals.

In Section 4.2, I introduced the rudimentary aspects of a model of language by
detailing a model of meanings and a model of signals. But how should the rela-
tionship between meanings and signals be realised? And how is knowledge of this
relationship acquired in light of linguistic evidence? Informed by the discussion
of simplicity in Sections 4.3 and 4.4, I will now lay the foundations of a model
of linguistic evolution driven by a simplicity principle. The motivation for devel-
oping this model relates to the question of justifiable generalisation. How biased
do linguistic agents have to be in order to effect a cumulative evolution towards

structure? Such questions are hard to answer because the degree of inductive bias
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of a learner is hard to quantify. I will use the minimum description length principle
as the selection criterion when choosing a hypothesis in the light of linguistic data.
In doing so, the range of possible generalisations derivable from the data will not
always be represented by the hypothesis. Instead, generalisation is only performed
when the induced regularity in hypothesis contributes to the smallest description
of the observed data, and nothing else. By using the MDL principle, the issue of
overgeneralisation can be addressed. If models of linguistic evolution are to carry

any explanatory weight, then issues of justifiable induction must be tackled.

To construct such a model based on MDL, two widely recognised problems need to
be overcome (Chater & Vitanyi 2003a):

1. The representation problem requires designing a representation capable of ac-
counting for possible hypotheses in some principled way. As MDL selection is
in part determined by the structure of the hypothesis space, then this choice
is important and needs to be justified.

2. The search problem requires a procedure for finding the hypothesis with the
minimum description length. The hypothesis space, in conjunction with a
coding scheme, defines which hypothesis leads to the minimum description
length of some data D. But finding this hypothesis is an entirely different
issue, requiring a search strategy. If the search space is infinitely large, then

heuristics may have to be employed.

Overcoming these two problems will mean that we have an effective induction algo-
rithm. In order to place an agent in an iterated learning model, several other issues
need to be resolved: How are signals derived for meanings which have never been
observed in conjunction with a signal? What happens when the hypothesis cannot

express a novel meaning?

The remainder of this section introduces an approach to hypothesis selection us-
ing the MDL principle, and formulates an initial attempt to answer these further
questions concerning the use of the model in an iterated learning framework. Many
of the details of this model, however, will be developed and analysed as the thesis

unfolds.

4.5.1 Hypothesis selection by minimum description length

To re-cap, in order to deploy the MDL principle the following components need to
be defined:
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A hypothesis space H. Given some data D, the most appropriate hypothesis
needs to be drawn from a set of possible hypotheses.

Coding schemes C; and (5. The coding schemes tell us how many bits are re-
quired to uniquely encode a particular hypothesis (L¢,), and how many bits
are required to encode each observed data item in terms of the hypothesis
(LC2)'

Hypothesis selection rule. The selection rule underlying the MDL principle was

discussed earlier. Recall that it is defined as follows:
Hypr = min{Le,(H) + Le,(D|H)} (4.3)

The precise form of the data D is totally defined by the meaning and signal spaces
introduced in Section 4.2. Therefore, the data will always be a finite set of mean-

ing/signal pairs D € M x §. I will now tackle the remaining issues in turn.

The hypothesis space

I will introduce a novel model for mapping strings of symbols to meanings, which
I term a Finite State Unification Transducer (FSUT) (Brighton & Kirby 2001;
Brighton 2002). An FSUT is a variation on the basic notion of a finite state trans-
ducer. A finite state transducer maps one regular language to another by attaching
output symbols to each state transition within the transducer. An FSUT extends
this mechanism by mapping meanings to signals, where meanings and signals take
the form discussed at the beginning of this Chapter. A finite state unification trans-
ducer is therefore an augmented Mealy machine (Hopcroft & Ullman 1979:42). This
model can also be considered an extension to the scheme used by Teal & Taylor
(2000); the extensions accommodate variable length signals and, more importantly,
meanings. Given some observed data, the hypothesis space consists of all FSUTs
that are consistent with the observed data. Observed examples of meaning/signal
associations are never discarded. Both compositional and non-compositional lan-

guages can be represented using the FSUT model.

A FSUT is specified by a 7-tuple (@, %, F,V,d, qo, qr) where @ is the set of states
used by the transducer, and ¥ is the alphabet from which symbols are drawn.
F and V define the structure of the meaning space. The transition function §
maps state/symbol pairs to a new state, along with the (possibly under-specified)
meaning corresponding to that part of the transducer. Two states, ¢y and ¢z need

to be specified; they are the initial and final state, respectively. Consider an agent
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A, which receives a set of meaning/signal pairs during language acquisition. For

example, an observed language might be the set:

Leomp = {({1,2,2},adf), ({1,1, 1}, ace), ({2, 2, 2}, bdf),
({2,1,1}, beey, ({1,2,1}, ade), ({1, 1,2}, acf) }

This language is compositional. It was constructed using the following lookup table,

which relates feature values to the corresponding substrings in the signal:

value 1 value 2
feature 1 a b
feature 2 c d
feature 3 e f

So for example, the sub-signal corresponding to feature value 2 for the first feature
is “b”. Figure 4.2(a) depicts a FSUT which models L¢om,. We term this transducer
the Prefiz Tree Transducer — the observed language and only the observed language

is represented by the prefix tree transducer.

4.5.2  Compression

The power of the FSUT model only becomes apparent when we consider possible

generalisations made by merging states and edges:

1. State Merge. Two states ¢; and ¢ can be merged to form a new state if the
transducer remains consistent. All edges that mention ¢; or ¢ now mention
the new state.

2. Edge merge. Two edges e; and e; can be merged if they share the same source
and target states and accept the same symbol. The result of merging the two
edges is a new edge with a new meaning label. Meanings are merged by finding
the intersection of the two component meanings. Those features which do not
have values in common take the value “?” — a wild-card that matches all
values. As fragments of the meanings may be lost, a check for transducer
consistency is also required. Without this consistency check, some observed

meaning/signal pairs will not be accounted for by the resulting transducer.

The check for consistency ensures that compression of the transducer is not “lossy”:

compression can only ever lead the transducer to explain more than the observed
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L= {{{1,2,2},adf), ({1,1,1}, ace), ({2, 2, 2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1,1, 2}, acf) }

diz2y e {122}

N\
————— di2 2 2}

. Oi—»

leq2 1 1),

di12 1))

c{112} c{112}

cA111}

Figure 4.2: Given the compositional language L, the Prefix Tree Transducer shown
in (a) is constructed. By performing edge and state merge operations, outlined in
(b) and (c), the transducer can be compressed. The transducer shown in (d) is
compressed, but does not lead to any generalisations.
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data, it can never explain less than the observed data. Information is never thrown
away or filtered. Figure 4.2(b) and (c) illustrate some possible state and edge
merge operations. The transducer resulting from these merge operations is show
in in Figure 4.2(d). Figure 4.3 depicts the fully compressed transducer, which
is found by performing additional state and edge merge operations. Note that
further compression operations are possible, but they lead the transducer to express
meanings in such a way that they are inconsistent with the observed language. For
example, all the states could be merged into a single state that could act as both the
start state and the accepting state. But by performing these merge operations, the
ordering of the symbols is lost, and as a result, a signal can generated for a meaning
that differs from the signal observed with that meaning. Transducer behaviour must

always be consistent with the observed data.

Prefix tree transducers are compressed by applying the merge operators described
above. For the time being, the details of how these operators are applied is not
important. I will return to the issue in Chapter 6. In short, the search problem one
must confront when deploying MDL is now cast as series of merge operators that

lead from a prefix tree transducer to a compressed transducer.

4.5.8 Production and Invention

To express a meaning, a search through the transducer is performed such that an
appropriate series of edge transitions are found. These edges represent a set of
meaning fragments — some of the meanings may contain wildcard feature values,
and will be under-specified. If the unification of the set of meanings yields the
meaning to be expressed, then the meaning can be expressed, and the resulting
signal is formed by concatenating the symbols attached to each edge. The ordering
of the symbols in the signal reflects the ordering of the edge traversals when passing
through the transducer. The fully compressed transducer can potentially express
meanings which are not present in L.yy,,. The language Lg;mp, shown in Figure
4.3, contains all the meaning/signal pairs which can be expressed by the fully com-
pressed transducer. By compressing the Prefix Tree Transducer, the structure in
the compositional language has been made explicit, and as result, generalisation

Can occur.

Generalisation can lead to a transducer expressing meanings it has not observed
in conjunction with a signal. Thus, within the context of iterated learning, any

structured relation between meanings and signals will have a chance of surviving to
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LcoMp = {<{1a 2, 2}7 adf), <{1’ L 1}’ ace>’ <{27 2, 2}abdf>7
({2,1,1}, bee), ({1,2,1}, ade), ({1, 1,2}, acf) }

af{l?7?} c{?17?} el{? ? 1}
b/2 ? 2} di? 2% f{? ? 2}

Limp = {{1,2,2},adf), ({1,1,1}, ace), ({2, 2, 2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1, 1, 2}, acf),
({2,1,2},bcf), ({2,2,1}, bde) }

Figure 4.3: Given the compositional language L a series of state and edge merge
operations, beginning with those shown in Figure 4.2, result in the compressed
transducer shown above. As a result of compression, the transducer can express
more meanings than those contained in L. All members of language Lt can be
expressed.

the next generation. When structure is lacking in the observed data generalisation
will not be possible, and the result will be that some meanings cannot be expressed.
Furthermore, even if generalisation is possible, the set of meanings that can be
expressed may still be a subset of the meanings the transducer is called to produce

utterances for.

For an agent to be fully functional within the iterated learning model, some inven-
tion procedure is required. Invention is the process by which an agent produces an
utterance containing a meaning which cannot be produced using the usual method.
The process of invention is necessarily unprincipled, and more often than not will
require random signals or sub-signals to be constructed. For the time being this
issue is not important, but it will be of fundamental interest in the discussion of
Chapter 6.

4.5.4 FEncoding Lengths

In order to apply the MDL principle we need an appropriate coding scheme for:
(a) encoding the hypotheses, and (b) encoding the data using the given hypothesis.
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These schemes correspond to C; and C introduced in Equation 4.3. The require-
ment for the coding scheme (' is that some machine can take the encoding of the hy-
pothesis and decode it in such a way that a unique transducer results. Similarly, the
coding of the data with respect to the transducer must describe the data uniquely.
To encode a transducer T' = (Q, X, F, V, §, v, gr) containing n states and e edges we
must calculate the space required, in bits, of encoding a state (Ssqte = loge(n)), a
symbol (Ssymbar = [0g2(|2])), and a feature value (Sfyame = l0g2(V')). The number
of bits required to encode a meaning relies not only on Sfyaue, but also the cost of
encoding the wildcard specifier. The number of bits used to encode an arbitrary

meaning m = {fi,..., fr} is given by:

Smeaning(m) = Z Z(fz)
where f; denotes the value of the ith feature, and

1 : when f; =7
Z(f;) = .

1+ Stpawe : otherwise
That is, Z(f;) represents the number of bits required to encode either a feature
value or the wildcard specifier. The initial bit is used to differentiate between these
two possibilities. Denoting the meaning associated with the ith edge by m;, the

encoding length of the transducer is then:
e
ST = Z{sttate + Ssymbol + Smeaning (mz)} + Sstate
i=1

which corresponds to encoding the transition function § along with the identity of
the accepting state. For the transducer 7' to be uniquely decoded, we must also
specify the lengths of constituent parts of the transducer. We term this part of the
encoding the prefix block:

Sprefi:c = Sstate +1+ Ssymbol +1+ vaalue +1+ SF +1

Where S is the encoding length, in bits, required to define the number of features

in a meaning: Sr = log(F). To calculate L¢, (h) we then use the expression:

LC1 (h) = Sprefiz + ST (44)
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Recall that L¢, (h) defines the length of the encoding of the hypothesis h using
the coding scheme C). This quantity is termed the Grammar Encoding Length
(GEL) (Teal & Taylor 2000). Similarly, the length of the encoding of the data, in
terms of the hypothesis h, L¢,(D|h), is termed the Data Encoding Length (DEL).
The DEL is far simpler to calculate than the GEL. For some string s composed of
symbols wyws . . . w|s) we need to detail the transition we choose after accepting each
symbol with respect to the given transducer. The list of choices made describes
a unique path through the transducer. Additional information is required when
the transducer enters an accepting state as the transducer could either accept the
string or continue parsing characters, as the accepting state might contain a loop
transition. Given some data D composed of p meaning/signal pairs, L, (D|h) is

calculated by:
P |sil

L, (Dlh) = >~ > {log, zi; + F(si5)} (4.5)

i=1j=1
where s; is the signal of the ith meaning/signal pair, and z; is the number of
outward transitions from the state reached after parsing j symbols of the signal of
the ith meaning/signal pair. The state reached after parsing j symbols of the signal
of the ith meaning/signal pair is denoted by s;;. The function F' handles the extra

information for accepting states:

1 : when the transducer is in gp
F(sij) = {

0 : otherwise

4.5.5 Bottlenecks and the problem of learning from incomplete data

The transmission bottleneck is a crucial parameter in many iterated learning mod-
els. In Chapter 3, both models relied on a transmission bottleneck. Until now, the
precise nature of the bottleneck was of limited importance; the resulting behaviour
of the models presented is contingent on the presence of a bottleneck, but invariant
over the severity of the bottleneck. Both semantic and production bottlenecks will

be used in the iterated learning model I am developing here (Hurford 2002).

Semantic bottleneck. The semantic bottleneck refers to the degree of exposure
of the meaning space represented in the data an agent learns from. Often, the
bottleneck severity is defined by the number of utterances, R, a learner is exposed to.
Because the utterances are formed from a random sampling of the meaning space,
the number of individual meanings observed will be less than R. Another approach
to specifying the severity of the bottleneck is meaning space coverage (Brighton
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2002). Coverage refers to the proportion of the meaning space an agent can expect
to observe. If utterances are constructed by randomly sampling a meaning space

containing m meanings, then coverage, c, is related to R and n as follows:

c=1—(1->)F 4.6

(1--) (46)
So when sampling from n meanings R times with replacement, we will on average
see a proportion of the meaning space ¢ (0 < ¢ < 1). Rearranging, we can also say
the following:

_ loga(1=¢)

R= logs(1 — %)

(4.7)

Both these equations assume that the meaning space is finite, which is the case
given the language model I have defined. In Chapters 5 and 6, I will investigate the
significance of bottleneck size. The bottleneck size will be discussed in terms of the

value c or the value R, depending on the context.

Production bottleneck. A production bottleneck is also employed in the model.
Recall that a production bottleneck refers to the situation where a single signal is
expressed when several candidate signals may exist. Hurford claims that such a

bottleneck is required in any plausible model of production:

Note that it would in fact be unrealistic not to implement a production
bottleneck. Communication in real societies involves singular speech
events, in which a speaker finds a single way of expressing a particu-
lar meaning. There is no natural communicative situation in which a

speaker rehearses all her forms for a given meaning. (Hurford 2002:306)

The production bottleneck in this model is implemented by the production mech-
anism selecting the first successful path through the transducer for expressing the
given meaning. Importantly, this modelling decision excludes the possibility of

synonymy.

4.5.6 A summary of modelling decisions made so far

It is worth consolidating the key modelling decisions made so far:
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Meanings and signals. At the beginning of this Chapter I defined the notions
of meaning space and a signal space. Meanings are feature vectors defined
by two parameters F' and V. Signals are variable length strings of symbols
drawn from an alphabet .

Representing the mapping. Finite state unification transducers represent the
mapping between meanings and signals. They define how meanings are trans-
formed into signals.

Hypothesis selection. Given a series of observed meaning/signal pairs, the prefix
tree transducer represents this data exactly as it was presented. The set of
possible hypotheses is the set of all FSUT's consistent with the observed mean-
ing/signal pairs. Hypothesis selection is performed by compressing the prefix
tree transducer. The most appropriate transducer is the one that results in
the smallest description length of the data. As a result, compression is guided
and limited by considerations of simplicity: we seek the smallest description
of the observed data, and only the observed data. This description tells us
which hypothesis to use. This hypothesis may explain more than the observed
data.

Mapping novel meanings to signals. In order for the model to function within
the iterated learning framework, the process of relating previously unseen
meanings to appropriate signals must be well defined. Two mechanisms have
been introduced. First, when generalisation is possible, novel meanings can
be assigned an appropriate signal through a principled use of the induced
hypothesis. When the hypothesis cannot inform the production of the novel
meaning, then some kind of random invention must be performed. Invention,

at this stage of the analysis, need not be fully defined.

Further details will be discussed later, but as I will show in the next Chapter, some
fundamental insights into linguistic evolution can be gleaned from the model as it

stands.

4.6 Chapter summary

This Chapter has resulted in the development of a model. The motivation behind
this model stems from a discussion of the role of simplicity, Kolmogorov complexity,
and induction in cognition. In particular, I have focused on the role of the minimum
description length principle in language learning. Before investigating this model

further, it is worth reflecting on how I have arrived at certain modelling decisions.
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First of all, I have restricted the range of explanation by formulating a basic model
of meanings and signals. Meanings are represented as feature vectors, and therefore
exclude the possibility of recursive structure. Signals are strings of symbols. The
model is therefore well placed to investigate compositionality. I have also adopted
the view that the emergence of compositionality must arise through an analytic
transition, where structured meanings are first associated non-compositionally with
signals. Linguistic evolution will result in the signals becoming structured in relation

to the meanings.

I have discussed the role of simplicity in both linguistic and non-linguistic cognition.
Engaging with the theory of Kolmogorov complexity, I then considered the role
of simplicity in language. Both Chomsky’s minimalist program, and theories of
language acquisition based on inductive generalisation, relate directly to the theory
of Kolmogorov complexity. Motivated by these issues, I have formulated a model
of language acquisition based on the minimum description length principle. This
model realises the mapping between meanings and signals. In light of observed
data, the model also suggests the most appropriate hypothesis according to the
minimum description principle. In this way, the process of generalisation is guided
by a rigorous application of a simplicity principle: the observed data is represented

in compressed form, and this representation suggests an appropriate hypothesis.

The model T have developed will prove central to the progression of the thesis.
When required, I will build on the existing model. However, as it stands, several

fundamental results can be established.
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CHAPTER 5

Stability Conditions through Static Analysis

5.1 Introduction

A model capable of representing the mapping between meanings and signals is in
place. In addition, I have introduced a selection criterion detailing which mapping
is appropriate in the light of some arbitrary body of data. Now several interesting
questions arise. Within the context of iterated learning, which set of model pa-
rameters consistently lead to the evolution of structured mappings? And what do
these structured mappings look like? Rather than proceed by building a detailed
iterated learning model, this Chapter will attempt a short-cut. Instead of modelling
the dynamics of change explicitly, the regions of state-space that interest us will be
analysed first. At this stage of the discussion, the arrival of stable and structured
mappings is only an assumption. The purpose of this analysis is therefore, first, to
see whether this assumption can be justified, and second, to derive the conditions
for stability. Recall that some fleeting occurrence of a structured language is of no
real interest; a random walk through the state space will guarantee such a state of
affairs. Rather, the issue of interest concerns consistent linguistic evolution towards

stable linguistic structure.

The following analysis depends on two abstractions. The first abstraction intro-
duces the possibility of simplifying the learning process to a degree that permits
us to draw bounds on the generalisation process. 1 will introduce the notion of op-
timal generalisation which captures the most powerful generalisation bias possible
given certain compositional language structure. That is, under the assumption of
compositional input, the highest degree of generalisation to unseen utterances con-

sistent with the input. The only restriction on the range of compositional languages
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covered by this abstraction is the stipulation that synonymy is not present in the
language. Given the presence of the production bottleneck discussed in the last

Chapter, this simplification is consistent with the model being developed.

The notion of optimal generalisation rests on the MDL principle in conjunction with
certain assumptions about the probability distribution in the data. The second
abstraction leads us to consider only two language types. The FSUT model can
account for holistic language, compositional language, and all gradations between
these two extremes. But by only considering these extremes, we can gain a general
insight into the issue of stability. In doing so, general results concerning the stability
payoff gained by structured language can be found. By introducing these two
abstractions, I will show how a substantial part of the parameter space of the ILM
can be mapped and understood. In short, the conditions determining stable states
can be understood without invoking a full-blown agent based model. Furthermore,
these shortcuts will allow us to understand regions of the parameter space that are

computationally intractable to explore through simulation modelling.

5.2 The parameter space, linguistic structure, and stability

Only under certain conditions will structured languages be adaptive and therefore
consistently observed. The lack of a transmission bottleneck, for example, will
weaken the pressures causing language adaptation. The absence of any structure in
the meaning space will also rule out any kind of structured mapping between mean-
ings and signals. We can intuit such conditions quite easily; but other conditions are
more subtle and cannot be arrived at without thoroughly mapping the parameter
space. For a rigorous understanding of the process of iterated learning, knowledge
of the behaviour of the system under a wide range of conditions is required. In

doing this, general statements can be made, rather than specific observations.

The parameter space, sketched in Figure 5.1, represents every possible configuration
of parameters for a particular model. This space can be divided into regions that
reflect the degree of structure present in the languages that are observed to occur
under those conditions. I have depicted three such regions, the first characterising
random mappings. Part of this region must contain those parameter combinations
in which no transmission bottleneck is present. It must also contain those parame-
ter conditions that define meaning spaces with only one feature, as these conditions
represent structureless meanings. But what kind of parameter combinations charac-

terise the set of conditions that lead to structured languages being observed? This
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HIGHLY STABLE

SEMI-STRUCTURED

STRUCTURED RELATIVELY STABLE

PARAMETER SPACE

Figure 5.1:  Key regions of the parameter space. The space of all parameter
combinations can be divided into three distinct regions. First, those regions that
consistently lead to structured mappings. Second, those regions that lead to random
mappings. And third, an intermediate level, where mixed systems emerge. Within
each region, stability can vary.

is the question I will answer in this Chapter. Of the three regions identified, the
region comprising structured languages is the most salient region in the context of
this discussion. Ultimately, we aim for a firm understanding of the conditions for

compositional structure.

I have broken up the space of parameter combinations, and noted the kind of the
languages that are likely to be observed in the context of iterated learning. What
exactly does this mean? The statement suggests that after multiple runs of the iter-
ated learning model, certain kinds of languages are observed more often than others,
and it is these frequently observed languages that characterise that part of the pa-
rameter space. By frequency of observation, I mean the behaviour of the system
after each iteration. Within the regions defined above, another set of sub-divisions
is possible. Parts of the region characterised by structured languages will repre-
sent the case when structured languages are always observed. Similarly, another
part may just represent the parameter combinations which lead to compositional
structure being observed with greater than chance likelihood. A more accurate and
insightful way of labelling regions of the parameter space is to consider the degree
of stability in the mappings. To see a certain language structure often implies that

the structure is more stable than the ones we don’t see.

Now we can rephrase the question. The parameter conditions that steer the system
to compositional regions of the language space are best thought of as the parameter
conditions that maximise the stability of compositional structure. It is interesting

to note that the region of the parameter space for which we expect to observe
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random mappings occur can also be subdivided in this way. For example, imagine
the case when no transmission bottleneck is in place. If we injected a random
mapping into the mind of one agent, then this mapping would be stable through
the duration of the experiment. Because every subsequent agent would observe the
whole language, no deviation from the original mapping would occur. Other parts
of the region where we expect to see random mappings may be very unstable: a
new random mapping is observed after each iteration. This point is this: different
degrees of stability can occur irrespective of the degree of structure in the mapping.
We are interested in the conditions for stable structured mappings, because these

conditions may shed light on how and why linguistic structure emerges.

There are two routes to understanding the parameter space of the iterated learning
model. We can run simulation models with various parameter combinations, or we
can carry out an analytic exploration. For the remainder of this chapter, I will
choose the analytic path. An analytic examination of the parameter space, when
possible, offers several advantages over simulation modelling. Certain parameter
combinations will prove computationally intractable to explore by simulation. In
addition, the analytic path naturally yields a solid explanation. With a set of
simulation results, a post hoc explanation is required that is often hard to formulate
and can lack the rigour of analytic explanation. The first step in the analytic
exploration of the parameter space will require abstracting the process of learning. 1
will now describe such an abstraction which I term optimal generalisation. Crucially,
this abstraction can be related directly to twin concepts of hypothesis selection via

MDL, and the space of all finite state unification transducers.

5.3 Optimal generalisation

The notion of optimal generalisation is a simple one. A learner capable of optimal
generalisation can generalise correctly to all utterances in a language, and only ut-
terances in the language, given the minimum amount of evidence. But what does
the minimum amount of evidence mean? We can say that given less than the mini-
mum amount of evidence, then generalisation to all utterances becomes impossible
for an arbitrary compositional language, whatever bias the learner brings to the
learning process. This definition is a first approximation to optimal generalisation;
a more precise and general one will follow. This definition is also an empirical defi-
nition contingent on us knowing about all possible learning biases. In this section, I
will define more precisely what I mean by the minimal degree of evidence. Further-

more, there is one part of puzzle missing: Is optimal generalisation applicable in
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any practical sense? Is there some learning algorithm that represents the notion of
optimal generalisation? I will show that optimal generalisation is precisely a degree
of generalisation suggested by MDL hypothesis selection under certain conditions,

and fortunately these conditions are precisely the ones we are interested in.

5.3.1 Definition

Recall that from the last Chapter that a compositional language is partially de-
fined by the lookup table used to construct it. A lookup table relates each feature
value with a single sub-signal, and therefore defines how the signal is built. A sim-
plifying assumption is implicitly introduced when using a lookup table to define
a compositional language. The possibility of synonymy is excluded, as the table
can only define a single signal for a given meaning. As I noted above, the model
I am developing discounts the presence of synonmy through the application of a
production bottleneck, so this simplifying assumption is consistent with the model.
Now, given the expectation of a compositional language, what degree of exposure
to the language is required before the lookup table can be filled? The earliest point
at which the lookup table could be constructed is when all feature values have been
observed. Disregarding the details of the procedure for reconstructing the lookup
table, this is the minimum degree of exposure before reconstruction is possible at
all. Optimal generalisation is the ability to express all the meanings for which all
the feature values have been observed. It is worth pointing out that optimal gen-
eralisation achieves the best degree of generalisation given the available data. This
data will not necessarily lead to the derivation of the whole lookup-table; the data
may be sparse, in which case optimal generalisation will achieve the highest degree

of generalisation given the data available.

In a trivial sense, the strongest possible generalisation bias is one which results in
some fixed compositional language L being induced, whatever the input. But any
such scheme would be inconsistent with all observed languages other than L¢. I will
consider only hypotheses that are consistent with the observed data. Compositional
languages, for our purposes, are those where a feature value appearing in a meaning
is associated with a single sub-signal. A lookup table relating every feature value to a
sub-signal totally defines the compositional language. This is a slight simplification,
as the lookup table does not define the order in which sub-signals are assembled.
In the following discussion, I will assume that the ordering of the feature values in
the meaning is reflected in the construction of the signal. To express a meaning,

the sub-signal corresponding to each feature value in the meaning is located in
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the lookup table. The signal is formed by concatenating these sub-signals. Now,
if an insufficient body of evidence to build the whole lookup table is observed,
expressivity will be sub-optimal. Some meanings that need to be expressed will be
meanings which contain unobserved feature values: the entry in the lookup table
will be missing. In short, optimal generalisation is the ability to express all meanings

which are built from observed feature values.

For the purposes of a more formal definition, consider some compositional language,
L¢, as a mapping between a meaning space M and a signal space §. Within the
meaning space M, I will define v, , as the xth value of the yth feature. In other
words, each feature has an associated set of possible values; the expression v,
serves to identify one of these values. The corresponding sub-signal, s, ,, for this
feature value is denoted by w(v,,). The function of a lookup table is to define the
association between each feature value and each sub-signal; it therefore represents
the function w. In general, a learner observes a series of R meaning/signal pairs:
{p1,pa, - ..pr}. Each pair, p;, is made up of a meaning m; and a signal s;, that is,

pi = (my, s;). We can now formally define optimal generalisation:

Definition 8 (Optimal Generalisation) An arbitrary meaning my € M, where
Mk = (Vay,15,Vas,2y - - - » Vap, ), Can be expressed providing each feature value Vq;,; has
been observed at least once. More precisely, w(vaj,j) is defined providing that v,

is observed in one of {p1,pe,...DPR}

The defining characteristic of optimal generalisation is the assumption that the
signal corresponding to each observed feature value can always be deduced. Optimal
generalisation therefore serves as an upper bound on the degree of inductive bias
over arbitrary compositional language. No algorithm exists that can construct
the function w with fewer examples. Optimal generalisation defines a theoretical
possibility; a lower bound on the amount of exposure required before generalisation
is at all possible. The possibility of realising optimal generalisation in any practical

sense is an entirely different issue.

5.4 Preliminary abstractions

Recall the general question: When is linguistic structure most likely to emerge and
remain stable? We can approach a preliminary understanding by examining the
relationship between compositional languages and the resulting hypothesis structure
induced by MDL. Then, by contrasting this hypothesis structure with that induced
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for holistic language, a tentative claim can be made about the relative stability
of compositional language over languages in general. Figure 5.2 illustrates this
approach: an understanding of the whole parameter space is approached from an
understanding of the parameters effecting the two extreme language types. The
angle of attack is therefore to draw a coarse-grained map of the parameter space.

If needed, this map can then be understood further through simulation.

Figure 5.2: A simplified view of the parameter space. By comparing the stability of
compositional language with holistic language, a tentative claim about the stability
of compositional language with respect to all languages can be made.

The analysis has the following structure. Firstly, the relationship between language
structure and induced hypotheses is outlined. MDL hypothesis selection completely
defines this mapping between language space and hypothesis space. Secondly, a
model of generalisation can be developed by examining the structure of the induced
hypotheses. As result of these two observations, we can deduce a clear relationship
between language type and resultant degree of expressivity. The major hurdle
in making headway into such an understanding is an argument supporting the
relationship between optimal generalisation and MDL induction for compositional
languages. This argument rests on two assumptions: (1) meaning are observed with
equal probability, and (2), a situation resembling the poverty of the stimulus is in

place.

5.4.1 Relating language structure to induced hypothesis

I will consider two classes of language structure. These two classes occupy the
extremes of the scale between structure and randomness. At one extreme is compo-
sitional language structure, and at the other is holistic language. The compositional
languages occupy some subset Lo, of the language space £. Similarly, holistic lan-
guages occupy a subspace denoted by Ljqstic. Hypothesis selection is the process

that maps examples of language, utterances, to hypotheses that described these
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examples. Faced with members of Lmp, hypothesis selection via MDL will induce
hypotheses of a certain structure. Of the set of all hypotheses, that is, all FSUTs
denoted by #, these induced hypotheses occupy a subspace denoted by H omp. Sim-
ilarly, faced with holistic languages drawn from Lp;stic, MDL hypothesis selection
will induce hypotheses occupying some subset of H denoted by Hpostic- Figure 5.3
illustrates this relationship between the language space and the hypothesis space.
Ultimately, the aim of this section is to deduce the extent to which members of
Heomp and Hpoiistic generalise to novel utterances. That is, to what degree do the

induced hypotheses explain more than that which was observed.

Leomp Hcomp
- A
MDL Hnolisti
holistic
L o g
hOlIStIC/'
LANGUAGE SPACE HYPOTHESIS SPACE (FSUTSs)

Figure 5.3: Hypothesis selection maps languages to hypotheses. Here, we only
consider two language classes: Leomp and Lpgpistic. The aim is to understand the
structure of the corresponding induced hypotheses, Hcomp and Hpopistic, respectively.

We can arrive at such an understanding by analysing the structure of the transducers
that make up the sets Heomp and Hpoiistic- In order to arrive at this understanding,
we need to consider the smallest encoding lengths of transducers in A that are

consistent with the bodies of data drawn from L.omp and Lhpeistic-

Transducer structure and expressivity for compositional languages

Compositional languages represent a structured mapping between meanings and
signals. This structure in the mapping permits compression. So, not surprisingly,
the structure present in compositional languages results in structured transducers
being induced. As I discussed in Chapter 4, the transducer structure depicted in
Figure 5.4(a) represents, given certain assumptions about the distribution of ut-
terances, the hypothesis with the smallest encoding length given the compositional

language L comp:
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Leomp = {{{1,2,2},adf), {{1,1,1}, ace), ({2, 2,2}, bdf),
({2,1,1}, bee), ({1,2,1},ade), ({1,1,2}, acf)}

a1 ? 7} c{? 172} el{? ? 1}

(a) b2 2 2} dH? 22 f{? 2 2}

¢ VALUE 1% ¢ VALUE 1% ¢ VALUE 1%

# VALUE 2 < # VALUE2 # VALUE2

[ ] [ ] )
[ ] [ J )
[ J [ ] °
VALUE V, VALUE V, VALUE V,
(b) FEATURE 1 FEATURE 2 FEATURE F

Figure 5.4: Maximally compressed transducers. (a) The smallest consistent trans-
ducer given the compositional language Lcomp- (b) The general structure of a max-
imally compressed transducer. Each feature is coded as separate region of the
transducer. A traversal through the transducer passes through each feature.

Leomp = {{{1,2,2},adf), ({1,1, 1}, ace), ({2, 2, 2}, bdf),
({2,1,1}, bee), ({1,2,1},ade), ({1,1, 2}, acf) }

Smaller hypotheses exist, but they will fail to maintain the structure of the observed
signals — they will lead to production decisions becoming inconsistent with the ob-
served data. Recall from the last Chapter that one of the conditions of compression
is that consistency with the observed data must be maintained. For this reason,
further compression will never occur. The general transducer structure for a com-
positional languages, show in Figure 5.4(b), leads to optimal generalisation. This
fact becomes clear when we note that this general structure corresponds directly
to the notion of a lookup table. Recall that a lookup table is used to construct a
compositional language; it defines, for each feature value, the sub-signal to use when
constructing the signal. In one sense the lookup table acts as a hypothesis used to
generate the language. Accordingly, this same hypothesis can be used to describe

the language. The set of compressed transducers is therefore identical to the space
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of lookup tables. In short, compressed transducers are the FSUT equivalent of a

lookup table.

An important result, used throughout this chapter, is that the degree of generalisa-
tion achieved by compressed FSUTs is precisely that of optimal generalisation. Due
to the equivalence between compressed FSUTs and lookup tables, those meanings
that have signals defined by the lookup table are also expressible by the compressed
FSUT. As we have seen, these meaning are those for which all feature values have
been observed. The expressivity of a compressed FSUT is therefore a function of

the number of feature values observed.

Transducer structure and expressivity for holistic languages

Holistic languages contain no structure in the mapping between meanings and sig-
nals. For this reason, they cannot be compressed'. Figure 5.5(a) depicts a hy-
pothesis induced for the holistic language Lmp. This hypothesis is the prefix tree
transducer, and represents the data verbatim. Figure 5.5(b) illustrates the general
structure of a prefix tree transducer. A non-branching path through the transducer
encodes each utterance. The result of this structure is that generalisation cannot
occur: the transducer can only produce signals for meanings it has observed in

conjunction with a signal — it acts as a basic memory.

In contrast to compressed transducers, where optimal generalisation is possible,
prefix tree transducers can express only those meanings that have been observed.
The expressivity of a holistic transducer is therefore linearly related to the number
of distinct observations. The expressivity of compressed transducers, as function of

the number of utterances, is super-linear.

5.4.2  Justification for the proposed MDL hypothesis selection

So far I have simplified the range of languages we are interested in. This simplifi-
cation has a knock-on effect: the range hypotheses selected, given these languages,
results in a simplification of our treatment of the hypothesis space. Importantly,
the simplified treatment of the hypothesis space rests on two assumptions about
the distribution of meanings and the amount of evidence available before hypothe-

sis selection is carried out. Until now, I have given no justification for simplifying

I This is not strictly true. Compression can occur, but the result of compression will not lead
to generalisation. At least, the probability of generalisation is small. For example, a randomly
constructed holistic language could contain compositional structure by chance.
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Figure 5.5: Prefix tree transducers. (a) The prefix tree transducer for the language
L. Each distinct observation is represent by separate path through the transducer:
the data is represented exactly as it was seen. (b) The general structure of a prefix
tree transducer.

the hypothesis space in this way. This section provides such a justification. The
impatient reader can skip to Section 5.5, and avoid the details of this justification

without losing track of the central argument.

Recall that the process of MDL hypothesis selection seeks the smallest combined
cost of, (1), encoding the hypothesis, and (2), encoding the data in terms of this
hypothesis. The calculation therefore divides naturally into the grammar encod-
ing length (GEL) and the data encoding length (DEL). The choice of transducer
provides us with the GEL, and the structure of this transducer dictates the cost
of encoding the data, and therefore the DEL. At this point, it is worth noting the
precise manner in which the DEL is calculated. Each individual utterance needs
to be represented in the encoding of the data. If an utterance is observed n times,
then the calculation of the DEL must take into account the cost of specifying the
path through the transducer, for that utterance, n times. This is why the relative

frequency of utterance observation impacts on MDL selection.
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GEL and DEL for compositional language

Given a compositional mapping between meanings and signals, the smallest possi-
ble GEL obtainable is that suggested by the general compressed transducer. Any
further reduction in the GEL, through compression, will result in the transducer
becoming inconsistent with the data. This conclusion is intuitive. A compressed
transducer structure is such that each feature is encoded, and within the coding of
each feature, each feature value is explicitly coded precisely once. This structure
corresponds to that of a lookup table. If one doubts that compressed transducers
are not of the minimum size, one must also doubt that there is a more efficient
method of specifying a compositional language than that achieved using a lookup
table. Given that the minimum GEL is achieved by a compressed transducer, the
effect of the DEL will be important in selecting the MDL transducer. If we were
to neglect this part of the calculation, our hypothesis selection procedure would re-
duce to Occam’s razor — pick the smallest consistent hypothesis — and our argument

would be complete.

I will now consider the data encoding length. In contrast to the GEL for compressed
transducer, the DEL of a compressed transducer is not the smallest possible. As-
suming every feature value for each feature has been observed then the cost of
specifying a path through the transducer is F - logy(V) = logo(FY). This fact fol-
lows by noting that each section of the transducer representing a feature contains V'
possible paths. Specifying this path requires logs(V') bits of information. As there
are F' such choices to made, the cost is F - logs(V'). Now, this cost of encoding an
individual utterance is larger than the minimum because a compressed transducer
also accounts for unseen utterances: induction explains more than what was ob-
served, and these extra utterances require the number of possible routes through
the transducer to increase. This fact is reflected in the increased cost of encoding
the data. We will see, however, that this increase in DEL is in fact quite small with
respect to the GEL.

GFEL and DEL for holistic language

The GEL of a prefix tree transducer is, in contrast to that of the compressed trans-
ducer, the largest possible transducer considered. Each distinct observation — a
meaning/signal pair — is represented by a unique path through the transducer. Any
relationship with other observed meaning/signal pairs, however similar, is not rep-

resented or exploited: no compression is carried out. Multiple observations of the
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same distinct pairing, however, are compressed: despite multiple observations of the
meaning/signal occurring in the input data, the pair is represented by a single path
in the transducer?. The GEL can only decrease as a result of compression. Because
our notional holistic language is assumed to represent a random mapping, compres-
sion cannot occur. However, the DEL resulting from a prefix tree transducer is the
smallest possible. Given that p distinct meaning/signal pairs have been observed,
there will be p possible paths through the transducer. The cost of specifying a single
route through the transducer is therefore logs(p) bits. Such a code is optimal; it
leads to the smallest average path specification length, as each meaning is assumed
to be equiprobable (Shannon & Weaver 1949:6-24). If the probability distribution
over meanings is non-uniform, such that some meanings are highly probable, then
the most efficient code, or Shannon-Fano code, would be a variable length code
(Li & Vitanyi 1997). Fortunately, given our assumption of a uniform probability
distribution over meanings, the most efficient code is one where paths through the
transducer are represented by bit-strings of the same length.

Towards a general result

To recap, an argument for relating language structure to transducer structure is
required. This argument falls into two parts. First, it is clear that a randomly con-
structed holistic language can only ever lead to an uncompressed (prefix) transducer
being induced. But can we be so sure about the fact that a compressed transducer,
say 1., will always selected by MDL given compositional input? That is, given a
compositional language, under what circumstances would some other, hitherto un-
considered transducer structure, say T, be preferred by the MDL selection process?

For MDL to prefer 7" over 7., we can say that two conditions must be met:

1. The alternative transducer, T, must lead to an increase in the GEL of T, by,
say, b bits.

2. This increase in GEL, providing a decrease in degree generalisation occurs,
must result in the DEL of 7 being smaller than that of T, by at least b bits.

That is, due to our observation that compressed transducers have the minimum
GEL, the alternative transducer T must, by definition, require more bits to encode.

This increase in grammar encoding length must therefore be matched by a larger

2 As the pairing is stored only once, repeated observations do not affect the GEL. These multiple
observations do affect the DEL as ultimately the description of the data must describe the data
perfectly. That is, the total DEL of distinct meaning/signal pair will be proportional to the
number of times it was observed.
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decrease in the cost encoding the data in terms of 7. Under our two assumptions,
this situation cannot arise.

(a)
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Figure 5.6: Encoding lengths, in bits, as a function of observations. (a) As R
increases, so does the grammar encoding length of both prefix and compressed
transducers. A large difference in encoding exists between the two transducer types.
(b) The increase in data encoding length as a function of observations. These results
were extracted from a simulation, described in more detail in the next Chapter.

First, note Figure 5.6(a-b). These graphs clarify the relationship between DEL and
GEL for compressed versus prefix tree transducers. Here, the GEL and DEL are
shown for compressed and prefix tree transducers as a function of the number of
observations. The most striking fact is that the magnitude of the GEL is much
larger than that of the DEL. In fact, there is little difference between the DEL of
the compressed transducer and the DEL of the prefix transducer. This observation
supports the view that compressed transducers offer the smallest encoding length:
they have the minimum GEL, and have a DEL that is only just larger than the

minimum DEL.
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Continuing the discussion of the hypothetical transducer T, note that for 7' to
preferred over 7., a small increase in the size of the transducer, b bits, must be
accompanied by a larger decrease in the cost of encoding the data. Figure 5.6(a)
hints at the fact that the magnitude of changes in the GEL will dwarf any changes
in magnitude in the DEL. Given two assumptions, there are a number of grounds on
which to argue that such a circumstance will always occur. These two assumptions

are the following:

1. All meanings are equiprobable.

2. Not all meanings are observed.

The most immediate proof of the non-existence of the hypothetical 7 follows by
noting that any increase in the grammar encoding length — which is essential if
we are to investigate any other transducer than the compressed transducer — can
be made arbitrarily large by increasing the size of the signals. The longer the
signal, the larger the number of states required to encode the signal, and hence
the larger the grammar encoding length. This increase in size of the signals, in
contrast, does not effect the data encoding length at all. The data encoding length
is reflection of the number of choices made when traversing the transducer. The
signal length has no bearing on this branching factor. Therefore, any increase
in the grammar encoding length can, assuming sufficiently large signals, be larger
than any decrease in data encoding length. Such a set of circumstances are perfectly
feasible. It would simply require, for a given meaning space, that signals have some
minimum length. In practice, the restrictive conditions suggested by this proof are
not required: large signals are not required for our simplified exploration of the
hypothesis space. Later on, a more thorough treatment of the hypothesis space
will support this observation. But for now, the argument given above serves the
purpose of justifying our simplifications. How general is this result? It worth noting
that this argument follows as result of the nature of the hypothesis space. If T had

chosen some other model of language, then the result may not hold true.

5.4.3 Breaching the assumptions

It is important to consider just how dependent on our assumptions the previous
result is. In this section I will consider probability distributions over meanings for
which the above results do not hold. Recall that the difference between the DEL
of a prefix transducer, DE Ly, i;, and that of a compressed transducer, DE Loy,

is usually much smaller than the difference between the corresponding grammar
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encoding lengths GELp,cfi; and GE Lgypp. As I have shown, this disparity is due to
transducer compression resulting in the removal of many transducer states, but the
degree to which this loss of states increases the cost of encoding the data is usually

small.

Rather than compare the encoding length of 7, with T, as we did above, I now
compare T, with T},, a prefix tree transducer. Given a compositional language, for
a prefix tree transducer to be preferred over a compressed transducer, the number
of occurrences of each meaning/signal pair, K (i), for 1 < i < p, must be large. In
other words, a large amount of data can lead to the data encoding length swamping
any changes in the grammar encoding length. Assuming a uniform distribution over
meanings, this situation will not occur unless each meaning signal /pair is observed
many times. For this to happen, meaning space coverage, ¢, must approach 1, i.e.,
we expect the whole language to be observed. Notice that for this situation to occur,
an infinite number of observations would be required. Obviously, this situation is
not modelled here, as I assume there is a transmission bottleneck, and therefore a

limited coverage of the language is expected.

It is interesting to reflect on why MDL would pick a prefix tree transducer in
the face of such a large body of evidence. In terms of MDL, the justification for
this relationship rests on the belief that the more evidence we have for a set of
observations, the less likely novel observations are to occur. In the limit, MDL will
disallow any induction: a huge amount of data containing little variation is precisely

the grounds on which to expect no further variation.

Figure 5.7 illustrates how, for a compositional language, hypothesis selection de-
pends on the probability distribution over meanings. First, given a transmission
bottleneck (¢ < 1.0) and a uniform distribution over meanings, compressed ma-
chines are always chosen. If we define ELp,.fiy as DELpcfiz + GELprefiz and
ELcomp as DELomp + GE Leomp, then ELp,.criz — E Loy > 0 holds irrespective of
coverage. Contrast this with situation where we fix K (i) = 100 for 1 < i < p, also
shown in Figure 5.7. For low coverage values, the inequality E Lprefiz — E Lcomp > 0
no longer holds — prefix tree transducers are preferred for low coverage values. In
practice, given a uniform distribution over meanings, this situation cannot occur

unless ¢ — 1.0.

However, if we consider a distribution such as that resulting from Zipf’s law, then
this situation can occur when ¢ < 1.0. A Zipfian distribution, in this context,

would mean that the frequency of meanings decay as a power function of their
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Figure 5.7: When ELp,cfiz—FE Leomp < 0, prefix transducers are chosen by MDL for
compositional language. With a uniform distribution and a transmission bottleneck,
this does not occur. Only when, for example, we fix K (i) = 100 will prefix tree
transducers be chosen over compressed machines.

rank (Zipf 1936; Kirby 2001). In this case, as ¢ increases K (i), for some values of
1, will become huge. In this situation, the rule that compressed transducers are
always selected for compositional language no longer holds. By introducing strong
statistical effects into the data, hypothesis selection by MDL begins to diverge from
that of Occam’s Razor. The occurrence of communicatively relevant situations
are unlikely to conform to a uniform distribution (Bullock & Todd 1999). The
assumption of a uniform distribution made in this analysis therefore restricts the
structure of languages we consider. The introduction of a non-uniform distribution

would be an important extension to the model.

5.5 Conditions for language stability

The analytic route to understanding the ILM taken in this chapter will now begin
to provide fundamental insights into the iterated learning model. By calculating
the expected behaviour of agents over a wide, and previously intractable range of
parameter combinations, general statements can be made about the emergence of

structured languages in the iterated learning model. So far, I have detailed the
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manner in which a simplified view of the language space, in conjunction with as-
sumptions about the distribution of meanings in the meaning space, allows a simpli-
fied treatment of MDL hypothesis selection. In turn, by simplifying the hypothesis
selection process, those parts of the hypothesis space in question have been iden-
tified and the resulting expressivity quantified. In this section, I use these results
to develop mathematical and monte carlo models. These models allow us to get
a grasp on the expected behaviour of the agents in the ILM over a wide range of
parameter combinations. At this point, the key parameters of the iterated learning

model used in the following analysis are worth noting:

e The number of features in the meaning space, F'.

e The number of values per feature, V.

e The number of utterances on which the hypothesis selection process is based.
This parameter represents the severity of the transmission bottleneck. It can
either be measured in terms of the number of utterance observations, R, or the
proportion of the meaning space we expect to be observed, termed coverage,

and denoted by c.

Many of these results rely on drawing a parallel between the degree of generalisation
achievable given a certain language structure and the resultant stability of that
language structure. Recall that stability is, ultimately, the measurement we are
interested in. Language stability tells us about the frequency of observation of

particular language types within the context of iterated learning.

5.5.1 Relating transducer structure to expressivity

The relationship between learning data and the induced hypothesis structure has
been tackled at a general level; given data that is assumed to contain a certain struc-
ture, the structure of the induced hypothesis, and the resulting degree of expressiv-
ity, has been established. In order to model this process explicitly, an algorithm is
required such that data defined by the parameters F' and V is observed subject to
the restrictions imposed by the parameter c¢. For the two extreme language struc-
tures, we then require a measure of expressivity, Eom, for compositional languages
and Fjostic for holistic languages. That is, the expressivity resulting from the gen-
eralisation process will depend on the structure of the input language. Next, I will
formalise this process, and present a mathematical model relating the parameters
F,V and c, to the measures E .y, and Ejgpstic- In short, the argument so far needs

to be formalised and investigated.
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Calculating Ecomp

The learning task begins with a learner observing a series of R meaning/signal
pairs (p1,p2, P3,---,Pr)- Each of these meaning/signal pairs are drawn from the
set {p; : pi € M x S}. The observed set of meaning/signal pairs is denoted as A.
Notice that |A| < R is highly likely to hold true, as observations of the language are
random with replacement, and therefore some pairs will be observed more than once.
For this reason, even though the parameter R defines the number of observations,
we will frequently measure the amount of evidence on which the learning process
is based in terms of meaning space coverage c. The ¢ value occupies the range
0 < ¢ < 1, and represents the proportion of the meaning space observed. As
meaning/signal pairs are observed at random and with replacement, the parameter
R tells us little about the diversity, or coverage, of the observed data. Now, our
objective, given this problem, is to find the number of meanings in M that can be
expressed: that is, the number of meanings for which a signal can be constructed.
The minimum number of expressible meanings will be ¢ | M| as this is the number
of meanings observed in conjunction with a signal. As a result of generalisation,
the learner will be able to express more than this minimum number. The resulting
expressivity will depend on generalisation, and therefore on the structure of the

language observed.

First I will describe how the set of expressible meanings can be calculated, given
a compositional language. Recall that the degree of expressivity, given a composi-
tional language, is that defined by optimal generalisation. The degree of expressiv-
ity is therefore calculated by constructing a lookup table detailing how each feature
value is to be expressed. This table is simply a F' x V matrix denoted as O. As
each meaning/signal pair a; is observed, F' elements of the O matrix can be filled
in. Assuming a maximally favourable series of observations, the matrix can be com-
pletely filled with as little as V' observations. However, this situation is unlikely. In
determining the degree of expressivity, rather than being concerned with building
signals, we will be concerned more with simply determining if they can be built.
The actual signals are of no consequence. Hence, some entry O;; in the matrix will

either true or false:

(5.1)

{ true : if the jth value for the ith feature is observed
6y =

false : otherwise
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When the entry O;; is true, the sub-signal for the jth value of the ¢th feature
is known. When O, ; is false, we can say that no meaning/signal pair has been
observed that had the jth feature value present in the ¢th feature. On receiving
some observation a; = (m, s) the matrix is updated as follows. The feature values

contained in the observed meaning are logged as present in the O matrix. More

formally, if m = (v1,ve,...,vr), then the O matrix is updated as follows.
Oip; =true fori=1to F (5.2)
To determine if some arbitrary meaning m = (v1,vs,...,vr) can be expressed, the

O matrix is interrogated; the O matrix defines the set of expressible meanings,

denoted as M y,,. More formally, members of M, have the following property:

F
Meomp ={m e M : \ O;,,} (5.3)

i=1

Notice that the criterion AL, O;,, will always be true for a meaning that has been
observed, and therefore logged using the update rule. But induction is made possible
because this expressivity criterion also permits other meanings, which have not
been observed, to be expressed providing the appropriate sub-signals are known.
The cardinality of Meomp, | Meomp|, defines the expressivity achieved by the learner.
That is,

Ecomp = |Mcomp| (54)

Calculating Eyopistic

Next, the set My, istic Needs to be constructed. This task is substantially simpler.
Rather than constructing an O matrix, the observed meanings are just stored along
with their associated signals. Only meanings which have been observed, and there-

fore stored, will be expressible.

Mholistic = {m €eM: <ma 5> € A} (55)

This result implies:
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Ehoiistic = \Mholistic\ =c-M (5-6)

To recap, given a series of R observations of meaning/signal pairs, two sets of mean-
ings, Mcomp and Mpeiistic, are constructed. My, is the set of meanings that can
be expressed assuming the language is compositional; it is constructed using the O
matrix in conjunction with the decision procedure defined in Equation 5.3. Mpistic
is the set of meanings that can be expressed assuming that the meaning/signal pairs
are drawn from a holistic language. Recall that the aim of this model is to relate

the parameters F', V, and R (or ¢) to the resulting degree of expressivity Eomp and

Eholistic-
Ezxpected behaviour: A probabilistic model

The meaning/signal pairs that make up the input to the learning process are drawn
at random from the space of possible meanings. In the case of a compositional
language, the signals are constructed for the random meanings using a lookup table.
For a holistic language, the signals are constructed at random. As we have seen,
however, the signals are of no consequence in this model. The task is split into two:
processing compositional language and processing holistic language. By employing
a separate model of learning for each case, the signal structure is assumed in the
model, and therefore does not need to be explicitly modelled. Because the input
to the learning process is drawn at random, the resulting expressivity values will
differ across specific instances of iterated learning. To gain an understanding of the
expected behaviour of the models, I will present a probabilistic model from which

expected values can be calculated.

Holistic language Let Lpg;sc be a holistic language where every meaning is drawn
from a meaning space with F' features and V' values per feature. In total, there will
be VI possible meanings, denoted by M. Given a holistic system, the number
of features and values are not of any consequence; instead the value M, derived
from F' and V, proves relevant. Given that there are M distinct meanings, and R
observations with replacement of these meanings, then the probability that some

meaning m will be a member of the observed set of meanings O,, is the following:

Pr(m € O,) =1— (1 — )%
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The number of observed meanings, and therefore, the expected expressivity achieved,

Eoiistic, is this probability multiplied by the total number of meanings M:

Eholistic = Pr(m € Om) - M (57)

Notice that, because we are sampling with replacement, then the inequality E}oistic <

R always holds.

Compositional language Now, for a compositional language Lcomp, @ similar anal-
ysis follows but now F' and V' are relevant. Take an arbitrary feature, and note
the V' possible values. Let O, be the set of these values actually observed after R
meaning/signal pair observations. After each meaning observation, for this single
feature value, there is a % chance of it being observed. For an arbitrary feature
value, the probability that this value is observed after R meaning observations is

therefore:

1
Pr(v;€0,)=1—(1- )%
r(v; € O,) ( V)

Using this observation, the number of feature values we expect to observe will be:

Vs = Pr(v; € O,) -V

The number of meanings that can be expressed, assuming the model of learning
discussed above, is precisely the number of combinations of picking a value for each
feature in the meaning. We know, from the above equation, that for each feature
we have observed V,,, different values. The total number of distinct meanings we

can express will therefore be:

Fcomp = (Vobs)F (58)

Another way of thinking about this equation is as follows. Using the O matrix, how
many different meanings can we construct? Because this mathematical model deals
in expected values, the expected number of feature values observed for each feature
is identical. Contrast this observation with a particular O matrix; the number
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of feature values for each feature will not necessarily be the same. The preceding
analysis provides us with the expected values of the general model developed above.
The basic model relates F', V and R to Ecomp and Epepstic, and the probabilistic
analysis relates F, V, and R t0 Eomp and Epgisric- In the discussion that follows,
references to expressivity values will refer to the expected values Ewmp and Eopistics

rather than values of individual runs.

Parameters affecting expressivity

The model developed above reveals some fundamental insights into how expressivity
increases as a function of the number of observations. That is, our choice of F
and V are strong determinants of the degree of expressivity given R observations.
First, Figure 5.8 illustrates the rate at which expressivity increases as a function of
the number of observations, both in the case of compositional language and holistic
language. In this example, a meaning space defined by F' = 3 and V = 3 is used. As
one would expect, through learning, the expressivity achieved with holistic language,
FEhoistic, as input increases asymptotically to 27. That is, there are 27 possible
meanings, and the number of observations before we expect to see all of them
is infinitely large. After 150 observations, as Figure 5.8 suggests, the expressivity
approaches 27. To guarantee an expressivity of 27 meanings, however, would require
an infinite amount of evidence. For a compositional language, the relationship
between expressivity and the number of observations differs substantially. The
maximum expressivity of 27 meanings is approached after 20 observations; the rate
at which expressivity increases is significantly faster in the case of compositional

input.

The rate of increase in expressivity is dependent on the language type (composi-
tional or holistic). The structure in the compressed language allows generalisation.
Importantly, the rate of increase in expressivity can differ substantially between
compositional languages too. To illustrate this point, I will consider two meaning
spaces, both of which contain 256 meanings; M, is constructed using 8 features
with each feature taking 2 values (F' = 8,V = 2), and M, is built using 2 features
with 16 values per feature (F' =2,V = 16).

The rate of growth of expressivity as function of observations for M; and M, is
significantly different. Figure 5.9(a-b) illustrates this difference. Using 8 features
leads to maximum expressivity occurring before 20 observations. In contrast, some-
where in the region of 140 observations are required when only 2 features are used.

Given the problem of representing 256 meanings, we have a choice between using
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EXPRESSIVITY AS A FUNCTION OF
OBSERVATIONS
3 FEATURES, 3 VALUES, M=27
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prefix -
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R (OBSERVATIONS)

Figure 5.8: Expressivity growth as a function of observations for compressed and
holistic languages. Maximum expressivity is achieved with fewer observations given
a compositional language.

fewer features and more feature values, or more features and fewer feature values.
There is a trade-off. The meaning spaces M; and M represent the two extremes
in describing 256 meanings. Of course, a single feature with 256 values could be
used, but this situation does not permit compositional structure: each meaning is
discriminated purely on the basis of a single value. These results show that prefer-
ring more features and fewer feature values leads to a faster growth in expressivity.
This phenomenon can be explained by noting that with each observation of a mean-
ing/signal pair, F' feature values are observed. As a result, preferring the position
in the trade-off reflecting the case that more features are preferred to more feature
values will result in the O matrix filling at a faster rate. In short, the feature values

are observed at a faster rate when a rich feature structure is used.

These expected values were computed using the mathematical model described
above. As observations are drawn at random, deviation from these expected val-
ues is inevitable. Figure 5.10 depicts two scatter plots detailing the results of 20
individual runs of the simulation described at the beginning of this section (Equa-
tions 5.1 to 5.8). Before maximum expressivity is consistently reached, a window
of variation occurs. For M, the window of variation is narrow, it occurs in the
first 20 observations. The degree of variation within this period is great, because a
single missing value will have a large impact on the resulting degree of expressivity.
There are only 16 feature values (two for each of the 8 features). Contrast this

observation with that of My, which has 32 feature values. The degree of variation
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Figure 5.9: Expressivity growth as a function of observations for compositional
and holistic languages. In representing 256 meanings, there are several choices in
meaning space structure. In (a), the meaning space contains the maximum number
of features, and as a result, the expressivity growth is faster than that observed for
a meaning space using fewer features, shown in (b).

is less extreme, but occurs over a longer period. After 140 observations maximum

expressivity is consistently achieved.

5.5.2  Relating expressivity to stability

Expressivity growth in itself can tell us little about the behaviour of an iterated
learning model. But clearly expressivity does play a pivotal role in linguistic evo-
lution in the ILM. If meanings can always be expressed in some principled way,
then randomness cannot enter the system. To draw an analogy with simulated
annealing, the temperature of the evolutionary system can never increase when ex-
pressivity is high. Expressivity is therefore related to stability. If meanings cannot
be expressed, then invention of some form is required. With a necessarily random
component, invention must make the system less stable due to the introduction of

random, unstructured regions of the mapping between meanings and signals.

Between two agents, the stability of the mapping between meanings and signals
is the degree to which these agents agree on the mapping between meanings and
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VARIANCE IN EXPRESSIVITY (F=8, V=2)
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Figure 5.10: Variation in expressivity achieved, for 20 independent runs, as function
of observations. For the same meaning spaces shown in Figure 5.9, we see variation
in expressivity occurring over periods of contrasting length. In (a), where the
maximum number of features are used to differentiate 256 meanings, high variation
occurs over a small period. In (b), where the minimum number of features are used,
less variation occurs, but for a longer period.

signals. Stability, in this static analysis, must therefore be proportional to expres-
sivity. In the following analysis I make this assumption in defining the pairwise

stability of compositional language, Scompressed, and holistic language, Spoiistic:

Scompressed X Ecompressed (59)

Sholz'stic X Eholistic (510)

Pairwise stability differs from the property of stability used elsewhere. Two subse-
quent states may lead to the same, or similar, hypothesis being induced. But this
may be a temporary state of affairs precipitated by a fortunate series of random ob-

servations. Any rigorous treatment of stability will depend on the dynamics of the
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system. Here, I will carry out a static analysis. Given this restrictive perspective,
the concept of pairwise stability is justifiable. It should be noted, however, that
properties of pairwise stability will prove to translate perfectly well into a dynamic

analysis.

To recap, I have equated the degree to which a language confers expressivity when
learned, to the degree to which the language is stable over generations. As each
agent is physically identical, and agents differ only by virtue of the observations
they experience, assuming that the degree of expressivity we predict is achievable
consistently and irrespective of the distribution of utterances, then stability must

indeed be highly correlated with expressivity.

Now the key question can be asked. Under what conditions is compositional lan-
guage more stable than holistic language? This question relates to the probability
of some language L passing through an agent unscathed to the next generation. In
the presence of a transmission bottleneck, a holistic language is highly unlikely to

survive intact. In general, there are two cases when a holistic language can survive:

1. When two subsequent agents are called to express the same set of meanings.
This situation is extremely unlikely as it requires two random samples of the
meaning space to be identical.

2. By chance, random invention maintains the mapping between meanings and

signals. Similarly, this situation is possible, but highly improbable.

So both these cases are highly unlikely. Rather, at each iteration a holistic language
Ly will change. Only ¢ - M of a possible M meanings in the mapping between
meanings and signals will persist at each generation. The further introduction of
meaning/signal pairs, via invention, will lead to a new language L}, being generated
by the next generation, where, on average, ¢+ M of the pairs in L;, will also exist in
L} . In contrast, depending on ¢, and the degree of feature structure in the meaning
space, a compositional language can survive from one generation to the next. That

is, through generalisation, the mapping between meanings and signals will persist.

I will term the degree to which compositional language is more stable than holistic
language as the relative stability of compositional language over holistic language,
denoted by S. S is defined as:

S = Scompressed (511)
Scomp'ressed + Sholistz'c
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This expression tells us how much larger Scompressed 1 than Shepistic- In turn, relative
stability measures the degree to which compositional language, as a result of gener-
alisation, results in higher expressivity than holistic language. Note that, assuming
a holistic language can never lead to a higher degree of expressivity than that of a

compositional language, the inequality 0.5 < S < 1.0 holds.

RELATIVE STABILITY AS A FUNCTION OF OBSERVATIONS
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Figure 5.11: Relative stability of compositional language over holistic language for
the two meaning spaces M; and M,.

Figure 5.11 plots S (relative stability) as a function of R (number of observations) for
the meaning spaces M; and M, each capable of coding 256 meanings. First we see
that S is largest for small R, which translates into low meaning space coverage (c).
This is when compositionality begins to allow generalisation from few observations.
These few observations result in low expressivity for holistic language. As a result,
compositional language is far more likely to be stable at low meaning space coverage,
where the bottleneck is tight. As more observations become available to the learner,
holistic language asymptotically approaches the degree of expressivity conferred
through generalisation. That is, as R — oo, then S — 0.5, and compositional
language structure fails to offer any advantage. In the limit, the whole language is

observed, and instability cannot occur.

Relative stability allows us understand the point at which the stability advantage
gained through generalisation is maximal. If we consider language stability as an
issue of survival, with languages competing to be transmitted, then low ¢ and high
meaning space structure provides the the most favourable conditions for composi-

tional language to survive: they lead to high expressivity at precisely the time that
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holistic languages lead to low expressivity. This relationship is explored further in

the next section.

5.5.8 Mapping the parameter space

At this point it is worth stepping back from the above experiments to reconsider the
assumptions, and question how much has been learned. The preceding experiments
assume that every meaning in the meaning space represents a communicatively
relevant situation. An agent has an internal meaning space which is used to label
events occurring in an external environment. In a very general sense, this labelling
can be related to the issue of categorical perception. The environment prompts the
agent with communicatively relevant situations which are represented internally by
the agent as structured representations. These representations are then externalised
as signals. In one sense, the number of features and the number of values per
feature define the problem by defining the structures that need to be signalled. An
unfortunate side-effect of this assumption is that our choice of F' and V' determine
the problem to be solved. Yet, at the same time, we seek to vary F' and V to
determine their relationship with other parameters. The two meaning spaces M/
and M, defined earlier were chosen precisely because they contain the same number
meanings, and therefore permit direct comparison; they solve the same problem,
that of representing 256 events. Finding combinations of F and V such that V¥ is

constant is restrictive.

For this reason, an extension to the model will be presented in which a subtle
change to the notion of the environment allows a valid comparison between any
combination of F' and V. So far, two issues have been rolled into one. I will now

separate them.

Objects

At a general level, agents must solve the problem of communicating a signal for
some set of N objects {wi,ws, ..., wn}, and these objects are labelled with a mean-
ing drawn from a meaning space defined by F' and V. This situation is depicted
in Figure 5.12. Previously, I have only considered the case when V¥ = N. In
the following analysis, I will breach this restriction. In doing so, the relationship
between meaning space structure, the number observations on which learning is
based, and the relative stability of the language types, will be further understood.

By teasing apart these two issues, the environment in which the agent operates
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becomes clearer. Agents are presented with an environment containing N objects.
These objects represent communicatively relevant situations: they define the space
of possible linguistic events. Each of these objects is labelled with meaning drawn
from a meaning space defined by F' and V. Depending on the values of F' and
V, the meaning space will contain M possible meanings (M = VI'). Notice that
if M > N then some of the meanings will not be used — they will never be used
to label the objects in the environment. Now consider the other extreme, where
M < N. Here, some of the objects will have the same meaning, the upshot being
that a competence in expressing one object will enable the agent to express another.

The fact that fewer objects can be discriminated is not important.

F
Environment - |..---—Meaning Space
Agent

Figure 5.12: Agents are required to conceptualise a set of n objects in the en-
vironment. These objects map to an internal meaning space. This mapping is
pre-determined — the agents play no role in constructing it. Furthermore, this map-
ping does change over time, and each agent in the model is subject to the same

mapping.

Each agent conceptualises the objects in the environment as meanings. The meaning
space should therefore be regarded as a way of constructing labels for these objects.
It is wrong infer that this relationship models the act of perception, although it
is a useful to imagine the relationship between agent and environment as follows:
The meanings are internal to the agent, and are used to represent the objects
existing in the environment. Neither the environment nor the meanings used to label
objects in the environment change over time, and each agent is subject to the same
mapping between objects and meanings. Meanings are monotonically consistent
labels for objects. Signals are non-monotonic and evolving labels for meanings. By
introducing an environment, F' and V' can be varied without restriction. Armed
with this ability, along with the understanding of the parameter space already

developed, we are now in a position to map the parameter space more thoroughly.
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Monte Carlo simulation

In an environment, the n objects are first assigned a meaning drawn randomly from
the meaning space. The mapping between objects and meanings remains true for
the duration of the experiment. The transmission bottleneck is then applied with
respect to the objects, rather than directly to points in the meaning space. That
is, an agent arrives at its knowledge of language after R observations where each
observation is an observation of a single object. As before, observations are drawn at
random — objects are equiprobable. On the basis of these observations, the method
described earlier (Equations 5.1 to 5.8) is employed to calculate the expressivity
achieved for the two language types. The results presented below reflect the average
over 1000 independent runs. The introduction of the environment therefore only
changes the manner in which meanings are observed. How the learner uses these

meanings is precisely as described above.

In the following analysis, the advantage of introducing an environment becomes
apparent when we consider that varying meaning spaces can be used to solve the
same problem. The four surfaces shown in Figure 5.13 and Figure 5.14 cover a
significant part of the parameter space. For a given bottleneck size, each surface
shows the relative stability (S) of compositionality for different meaning spaces given
100 objects. In Figure 5.13(a) a relatively wide bottleneck represented by a coverage
of ¢ = 0.8 is imposed. Here, 80% of the objects are expected to be observed. This
translates into 160 observations. The S values are low for all meaning spaces. In
Figures 5.14(a-b) the surfaces illustrate how, for certain meaning spaces, the relative
stability increases significantly as the bottleneck is tightened. Notice that relative
stability is at a maximum value S = 0.91 when ¢ = 0.1 (11 observations), but only

for certain combinations of F' and V.

The parameters F' and V are critical in determining S. As we saw earlier, every
observation made by a learner leads to the acquisition of F' feature values, as every
object has F' components in its meaning label. The larger F' is, the faster the rate
at which feature values are observed. Furthermore, the larger F'is, the smaller V'
needs to be in order to represent a given number of objects. For this reason, features
with binary values will always lead to higher R than any other combination of F
and V.

Achieving a high S value also requires a tight bottleneck. With fewer observations,
a compositional language can be generalised from, and therefore outstrip the ex-

pressivity achieved given a holistic language. In short, for a holistic language, fewer
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Figure 5.13:

Relative stability of compositional language over holistic language.
For 400 meaning spaces, (a) shows S for a bottleneck coverage of 0.8, and (b)
shows S for a bottleneck coverage of 0.5. Low relative stability is a feature of wide
bottlenecks.
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observations means that fewer objects can be expressed. This is not necessarily the
case with a compositional language: few observations can lead to high expressiv-
ity through generalisation. It is in precisely this region of parameter space that

compositional language is maximally stable in comparison to holistic language.

With few features and few values, S is low. In the limit, we can label each object

differentiated on the basis of the feature values: the structure in the meaning labels
reduces to an unstructured set. Compositionality is therefore not possible and we
attain S = 0.5. However, as the feature complexity increases, so does S, due to
generalisation becoming possible. This increase does not continue indefinitely. Both

high F' and high V lead to a decrease in S. The reason for this is simple. Such
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Figure 5.14:

Ezpressivity

Relative stability of compositional language over holistic language.
For 400 meaning spaces, (a) shows S for a bottleneck coverage of 0.8, and (b) shows
S for a bottleneck coverage of 0.5. High relative stability occurs as the bottleneck
is tightened.
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parameter combinations create vast meaning spaces. If only 100 objects need to be
labelled, and the meaning labels are drawn from a space containing 20?° meanings,
then the probability that observed objects will be labelled such that they share
feature values becomes very small. Quite simply, compositionality cannot function

if the co-occurrence of meaning components is negligible.

I have identified the regions of parameter space that lead to high relative stability.
Using this information, we would like to conjecture that it is precisely these regions

in which compositional language is most likely to emerge and remain stable. The
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Figure 5.15: For 1000 independent runs of the model, these plots depict the corre-
lation between expressivity of the compressed transducer and the relative stability
of the compositional language over holistic language. For sparse language exposure
— a tight bottleneck — high expressivity correlates with high relative stability.

pairwise stability argument, ideally, should carry over to stability in the dynamic

sense.

Before this argument can be developed, we need to reconsider these results in light
of the following possibility. High relative stability does not necessarily result in
stability in a meaningful way if the absolute expressivity is low. A compositional
language may lead to maximally improved expressivity over a holistic language, but

unless that expressivity is high, then it is hard to argue for stability.

For four different bottleneck sizes, Figure 5.15(a~d) depicts the relationship be-
tween the expressivity achieved from compositional input and relative stability. To
strengthen our interpretation of the results presented in Figure 5.13 and Figure
5.14, we would like high expressivity for compositional language to be related with
high relative stability. That is, when compositional language confers increased ex-
pressivity in relation to holistic language, the degree of this increased expressivity
should be at a maximum. For compositional language, if high S occurs with less
than maximum expressivity, then maximum stability for compositional language

will not occur when relative stability is at a maximum.
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The relationships depicted in Figure 5.15(a-d) represent each of the 400 meaning
spaces analysed in Figures 5.13 and 5.14. Notice that that the expressivity derived
from compositional language is scaled to occupy the range 0 < Eppp < 1. Two
patterns need to be explained. First, data points sitting on the x-axis (S = 0.5)
correspond to the case when the number of features is 1. Here, maximum expres-
sivity can be achieved, but the language cannot have any structure. As a result,
relative stability can never be greater than 0.5. Second, the data points sitting on

the y-axis (Ecomp = 1.0) correspond to maximum expressivity when V = 2.

In each plot, the highest S values corresponds to situation when Eqp, = 1.0. This
observation indicates that maximum expressivity does indeed relate to maximum
relative stability, for certain meaning spaces. The remainder of the scatter plots
illustrate a general trend. For a tight bottleneck, which corresponds to values of
¢ = 0.1 and ¢ = 0.2, there is a clear relation between high expressivity and high
relative stability. For a wide bottleneck, which corresponds to values of ¢ = 0.5 and
¢ = 0.8, this relationship is less clear. High relative stability, S, cannot occur for
these bottleneck values. In this situation, stability is a feature of a wider range of

language structures.

5.5.4  Summary of results

Two models have been developed. As a function of the number of utterance obser-
vations, the probabilistic mathematical model highlighted some preliminary insights
into the rate of increase in expressivity between holistic language and compositional
language. Depending on the choice of F' and V', the mathematical model also illus-
trates that expressivity growth differs between compositional languages. Then, by
invoking the concept of objects, and therefore refining the notion of the environ-
ment, I used the monte carlo model to conduct a more thorough exploration of the
parameter space. Relative stability is a measure introduced to reflect the increase
in stability conferred by compositional language with respect to holistic language.
Several important results have been identified, and these results are best grouped

as follows:

Ezxpressivity growth In these experiments, learning always occurs with respect to
an impoverished body of data: a bottleneck is always in place. The proportion of the
whole language that can be expressed, either through generalisation or as a result of
observation, will depend on the sparsity of the observed data. Due to the structure

in the mapping from meanings and signals, compositional language structure is
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required for generalisation to occur. In contrast, holistic language contains no
structure, and therefore generalisation is not possible. As the body of data available
to the learning process increases, so does the expressivity of the learner. As one
might expect, the rate of expressivity growth will depend on the language structure,
with compositional language leading to a higher degree of expressivity than holistic
language given the same amount of evidence. Importantly, different degrees of

expressivity growth occur between compositional languages too.

Meaning space complexity For the purposes of this discussion, individual composi-
tional languages are defined by a meaning space. How the signals are configured is
not relevant: all we need to know is that the language has compositional structure.
For two compositional languages, the rate of expressivity growth will depend on the
structure of their meaning spaces, defined by the parameters F' and V. Different
combinations of F' and V' will lead to expressivity growing, as a function of the
number of observations, at different rates. If the environment contains N objects,
then several choices of F' and V will be available. By preferring the number of
features over the number of values per feature, generalisation leads to expressivity
increasing at a faster rate; every observation confers information about F' features.
Expressivity increase is most rapid when binary feature values are used; in such a

situation F'is maximised.

Structural extremes When representing N objects, too much structure in the
meaning space (high F" and V') will lead to the generalisation ability of the learner
to suffer. In this situation, due to a huge meaning space, the likelihood of observing
co-occurring feature values will be low. In such a situation, generalisation becomes
impossible: the set of observations fail to contain enough similarity. The other
extreme, one where F' and V are too low, will result in too little structure being
present in the meaning space for generalisation to confer significant advantage. For
example, when F' = 1, compositionality is not possible as objects are differentiated
solely in terms of feature values. There is only one dimension of variation. When
considering meaning spaces, structural extremes tend to result in low relative sta-
bility.

Stimulus poverty The most striking result concerns the conditions under which
compositional structure offers the maximum degree of expressivity relative to holis-
tic language. With a low degree of language exposure, a situation corresponding to
a tight transmission bottleneck, high expressivity can be achieved from composi-

tional input. In contrast, for holistic language, limited language exposure leads to
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low expressivity. So rather than sparsity in the data resulting in instability, a tight
bottleneck is precisely the condition under which compositional language attains

maximum relative stability.

5.6 Chapter summary and discussion

Language is a mapping between meanings and signals. The FSUT model allows us
to represent a series of meaning/signals pairs derived from some language. These
FSUTs stand as hypotheses that describe the linguistic input. The process of hy-
pothesis selection, through compression, makes generalisation beyond the observed
data possible. This is the learning process: a competence is derived on the basis of
evidence, and this competence can capture the ability to handle situations not nec-
essarily explicitly observed. The learning process therefore maps bodies of linguistic
evidence to hypotheses. In this Chapter I have concentrated on just two classes of
language, compositional and holistic language, and related these two language types
to a notion of stability within the ILM.

This analysis pits structured mappings against random mappings within the ILM
and aims to understand the regions of the parameter space that determine the
emergence and persistence of structure. In one sense this analysis is a short-cut.
If structured language is to emerge and remain stable, then an understanding of
the conditions for stability will inform any wider understanding. This discussion is
therefore a static analysis of a dynamic process, or in the vocabulary of Chapter 2,
represents a detached understanding of a situated process.

The relationship between observed utterances and induced hypothesis is defined by
the MDL hypothesis selection process, which operates over the space of FSUTs.
The degree of generalisation achievable by certain regions of the hypothesis space
can be modelled in terms of three parameters: F', V', and R. In the case of holistic
language, generalisation cannot occur, and the set of expressible meanings derived
from the induced hypothesis is identical to the set of observed meanings. In the
case of compositional language, I introduce the notion of optimal generalisation
and show that the FSUTSs selected by MDL, subject to certain assumptions, yield

a degree of generalisation identical to optimal generalisation.

The upshot of this short-cut is a model relating F', V' and R to the degree of expres-
sivity. Although the space of FSUTSs in conjunction with the MDL principle, too,

offers a model compression and expressivity, such simulation models are complex
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and make mapping some parts of the parameter space computationally intractable.
Using this short-cut, in conjunction with the derived models, I have shown how
much of the parameter space can be mapped, and the relation between model pa-

rameters and expressivity can be understood in comparatively simple terms.

The utility of the models developed here is dependent on the relation between
expressivity and stability. Stability occurs when subsequent agents in the ILM
induce the same, or similar, hypotheses. For this to happen, enough of the mapping
must be externalised such that generalisation to the remainder of the mapping is
possible. Of course, if the whole mapping is externalised, then stability is guaranteed
and occurs independent of language structure. But here I have concentrated on
stability in the presence of a transmission bottleneck. High expressivity through
generalisation is required for stability to occur in this situation. The higher the
expressivity, therefore, the greater the degree of stability. In this respect, the notion
of stability I am referring to is Liapounov stability: from a state of high expressivity,

subsequent states are also likely to have high expressivity, and therefore stability.

By noting this relationship between expressivity and stability, the conditions for
stability must be related to the conditions for expressivity. In the context of the
dynamics imposed by the ILM, languages compete for survival. The transmis-
sion bottleneck radically alters the conditions for survival. As I have noted, with-
out a bottleneck, all languages are equally likely to survive. As the severity of
transmission bottleneck increases, so does the pressure for structured, generalisable
languages. The measure of relative stability, developed above, captures this fact.
Relative stability indicates how much more stable compositional structure is than
holistic language. It therefore tells us the degree to which compositional language is
likely to survive transmission in comparison to holistic language. The fundamental

insight gained in this chapter is the range of conditions for high relative stability.

The determinants of high relative expressivity are meaning space structure and
severity of the transmission bottleneck. Sufficient structure is required for generali-
sation to occur, and too much structure results in the co-occurrence of feature values
being improbable; the result is that generalisation cannot begin to function. A high
degree of severity of the transmission bottleneck leads to randomness becoming less
and less stable. Strikingly, it is precisely under these conditions that compositional
language starts to become generalisable, and the combination of these two effects
makes compositional structure maximally advantageous for low bottleneck values.
These results are striking because they are analogous to the situation on which

the argument from the poverty of stimulus is based. This situation is discussed
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further in Chapter in 7. So before relating these results more firmly to the context
of linguistic evolution, I will use them to inform an investigation into the dynamic

properties of the FSUT hypothesis space and MDL hypothesis selection.
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CHAPTER 6

Dynamic Analysis

6.1 Introduction

Several assumptions underly the model of linguistic evolution developed in the pre-
vious two Chapters. Perhaps the most fundamental assumption is that linguis-
tic evolution is possible at all, given that hypothesis selection is governed by the
minimum description length principle. Under certain conditions, the minimum de-
scription length principle diverges from Occam’s razor, and fails to suggest the
hypothesis that leads to the greatest degree of generalisation. In this Chapter I
will present a full simulation model of linguistic evolution based on the minimum
description length principle. In order to apply the mechanisms developed so far,
several assumptions must be realised in practice. This Chapter, therefore, presents

a practical casting of the the theory developed in the previous two Chapters.

Section 6.2 details the remaining aspects of the model, such as hypothesis selection,
signal production, and signal invention. In Section 6.3 I discuss an unsuccessful
model of linguistic evolution that highlights the importance of bias in the invention
algorithm. After developing an invention algorithm based on a simplicity principle,
Section 6.4 discusses a model that results in successful linguistic evolution, where
compositional language consistently evolves. This model relies on pre-existing signal
diversity. To strengthen the model, Section 6.5 develops the model further, such
that linguistic evolution toward compositionality is possible from an initial blank
hypothesis. This model relies on a mixture of random and non-random invention.
The precise structure of the evolved systems is discussed in Section 6.6, where I note
that linguistic evolution consistently results in sub-optimal transducers containing

redundant transitions. To relate these results to the intuitions of the previous two
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Chapters, Section 6.7 examines the role of bottleneck size, and as such confirms the
results of Chapter 5. Finally, I will discuss the results of this Chapter with respect
to models of linguistic evolution in general. In short, the intuitions developed so far
will prove accurate. But as well confirming existing results, the simulation models
that follow bring to the fore some fundamental issues relating to the evolution of

compositionality.

6.2 Iterated Learning and MDL in practice

I have used the FSUT model to represent the relationship between meanings and
signals. Then, from the space of possible FSUTs, the minimum description length
principle has been used to determine which FSUT is chosen to act as a hypothesis
given some observed data. On the basis of these modelling decisions, I have pre-
sented some foundational results that rely on a number of assumptions. First, given
some data D, I have assumed that the transducer with the minimum description
length can be found. Second, I argued that under certain assumptions about the
underlying probability distribution of the data, that the expressivity of the induced
transducer can be straightforwardly determined. Third, I justified why expressivity
is in some sense proportional to stability in the iterated learning model. Fourth,
I made the simplifying assumption that the conditions under which compositional
structure offers increased stability with respect to holistic structure can act as gen-
eral conditions that shed light on the emergence and stability of compositional

language.

During the course of the last Chapter, I presented arguments justifying each of
these abstractions. In order for the intuitions of the last Chapter to be considered
solid, faith in the conjunction of the assumptions is required. In this Chapter I
will present a full simulation model that strengthens the conclusions of the last
Chapter, as well as uncovering several new questions. The purpose of this Section
is to fill in the remaining details of the existing model such that it can be tested
through simulation. The outstanding issues concern the details of how one lan-
guage is mapped onto another by an agent. Figure 6.1 illustrates these issues, and
makes clear the components in need of thorough explanation. In particular, how
exactly is the FSUT with the minimum description length found? How exactly is
generalisation achieved? What happens when an agent needs to invent a signal?
By answering these questions, the key questions regarding the possibility of, and

the conditions for, the linguistic evolution of compositionality can be addressed.
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Figure 6.1: The key components of an agent. In order to place the existing
model into a full simulation model, the processes of hypothesis selection and signal
production need to be fully defined.

6.2.1 Hypothesis selection

Given a hypothesis space H, the MDL principle can be thought of as a function that
maps the data onto some hypothesis, Hy/pr,, found in H. Until now, examples of
this mapping have been derived analytically. That is, given assumptions about the
structure of the data, along with a knowledge of the probability distribution over
this data, the FSUT chosen (which corresponds to Hypr) can be derived through
analysis. In general, we would like a mechanism for finding H,,p; automatically
without placing restrictions on the kind of languages we can consider, nor on the
underlying probability distribution over utterances. As I have noted previously, this
is practical problem. I have not needed to tackle this issue until now. By solving
this problem, a considerable part of the information processing task of an agent will

be fully realised (see Figure 6.2).

LANGUAGE hypotheSI s
’ selection

N

H

Figure 6.2: Hypothesis selection. Given linguistic data, MDL tells us which hy-
pothesis is appropriate , Hy/pr, but it does not tell us how to find this hypothesis.

Given some data D and the hypothesis space H, the process of automatically locat-
ing Hyrpr reduces to a search problem. The brute force approach would proceed
by checking each member of H in turn and noting, with respect to the hypothesis
being checked, the description length of D. When I refer to the description length
of D, I will be referring to the sum of both the data encoding length and grammar
encoding length. The hypothesis chosen would then be the one that results in the
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smallest description length of D. Unfortunately, checking every hypothesis in H is

intractable, as ‘H is too large. A more refined search strategy is required.

The solution I will employ proceeds by first constructing the prefix transducer
in light of the data, D. By applying compression operators, this transducer is

incrementally compressed until one of two situations occur:

1. The transducer cannot be compressed further.

2. The description length begins to increase.

A transducer is maximally compressed when any further removal or modification
of the edges results in the transducer becoming inconsistent with the observed
data; the data can no longer be represented using the hypothesis. When further
compression leads to the description length of D increasing, then this event is
an indication that additional compression will result in the data encoding length
becoming too high with respect to the grammar encoding length: the sweet-spot in
the trade-off between data encoding length and grammar encoding length has been
overshot. This is the general picture: compression of the prefix tree transducer

progresses until some stopping criterion is met.

This general picture, however, masks several problems. A traversal of the search
space, which is achieved through the application of compression operators, does not
necessarily present a smooth path to Hypr; the description length of the data does
not monotonically decrease as a result of applying the compression operators. The
search space contains many local minima. For example, imagine merging two states
which in turn introduce the possibility of applying edge merge operators. These
edge merging operations may not be possible without merging the states first. This
two-step procedure — a state merge followed by several edge merges — may result
in a substantial decrease in the description length of the data. This decrease in
encoding length reflects the introduction of structure into the transducer. The
problem is that the initial state merge operation will often lead to an increase in
the data encoding length, and this increase dwarfs any decrease in the grammar
encoding length. That is, in order to get closer to Hy/pr, a temporary increase in
the description length is required. This is an example of a local minima occurring
between two compression operators. Frustratingly, this phenomena also occurs
across relatively long series of compression operator applications. To combat this
situation, I will employ two mechanisms: (1) a less brittle search strategy, and (2),

compound compression operators.
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Searching the hypothesis space using a beam search

Rather like a genetic algorithm, a beam search maintains a population, or set, of
hypotheses subject to a turnover (Mitchell 1997:250). T will apply the concept of
a beam search by maintaining a set of hypotheses that change over time. As the
search progresses, members of the set are replaced with new hypotheses derived
from the application of the compression operators. More formally, the procedure
BEAM-SEARCH is a function that maps the prefix tree transducer Hp,. iz, the size of

the beam n, and the set of compression operators O, to the hypothesis Hy/pr, € H:

BEAM-SEARCH(Hpyefiz, 7, O) = Hypr,

The procedure BEAM-SEARCH begins the search for Hy,py by first constructing
the beam, B, which consists of n hypotheses {Hi, Ha, ..., H,}. Initially, the beam
contains n copies of the prefix tree transducer. As the search proceeds, three items
of information are maintained: (1) the mapping DEAD-ENDs defines those mem-
bers of the beam that cannot be compressed any further; (2) the variable MIN-
TRANSDUCER details which member of the beam represents the hypothesis found
so far that yields the smallest description length of the data; (3) the variable M AX-
TRANSDUCER details which member of the beam leads to the largest description
length of the data. At each step in the search, a random member of the beam,
H, 4,4, is chosen and then each merge operator is applied at random until one of
them is successful. If none of the compression operators can be applied, then H, 4,4
is flagged as a dead-end. Otherwise, after a successful application of a compres-

sion operator, the resulting transducer H!_ , replaces the transducer in the beam

rand
represented by MAX-TRANSDUCER, so long as the description length of the data
achieved using H,,, is less than that achieved using MAX-TRANSDUCER. By do-
ing this, H,,,q may still be present in the beam, and therefore other compression

operators can be applied if H,,,4 is chosen again.

The beam search is complete when all beam members are marked as dead-ends,
or when all compression operators lead to an increase in the description length.
The hypothesis represented by MIN-TRANSDUCER is then chosen, and offered as
a candidate solution, Hypr. Because the process is stochastic — operators are
applied at random to random members of the beam— there is no guarantee that the

hypothesis returned is in fact Hypr:
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Hypr ~ Hypr = Il}leiqf_l[{Lcl (H) + L¢,(D|H)} (6.1)

In Chapter 5 it was assumed that H,;ps, could always be found. Here, then, is an
example of an assumption made in Chapter 5 that will not necessarily be realised

in practice.

Compression operators

There are two fundamental compression operators: the edge merge operator and

the state merge operator.

Edge merging Two edges can be merged providing that they have the same source
and target states, they accept the same symbol, and the intersection of their
meanings is non-empty. That is, the meanings on each edge to be merged
must have some feature values in common. Figure 6.3(a) depicts the result
of the edge merge operator. The result of such an edge merge is one less
edge, and therefore the grammar encoding length is guaranteed to decrease.
Also, by merging edges a decision that before needed to be encoded for each
item traversing these edges no longer needs to be encoded: that branch in
the transducer no longer exists. For this reason, edge merging always leads to
a decrease in data encoding length. An edge merge operation can, however,
result in the transducer no longer being consistent with the data. Such a
situation can occur when the subsumption of the two meanings introduces
a wildcard specifier, and the feature values lost by introducing this wildcard
are not specified elsewhere in the transducer. For this reason, an edge merge
is only considered applicable when the resulting transducer can continue to
parse all observed utterances.

State merging When two states s; and s, are merged and replaced by a new state
s, all edges that either begin or end in either s; or s now begin or end in
s. Figure 6.3(b) depicts this operator in action. As as result, the grammar
encoding length will decrease as one less state needs to be encoded. The data
encoding length, in contrast, will usually increase because the new state may
have more outward edges than therefore. In this case, more bits are required

to describe paths through the transducer traversing s.

Compression is achieved by applying a succession of compression operators. The

order in which these operators are applied is subject to restriction. Given a prefix
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Figure 6.3: Compression operators. In (a), the result of an edge merge is shown.
Similarly, in (b), the state merge operator is shown. In (c), an example of compound
merge operator shows how multiple merging decisions are carried out in one operator
application. Compound merge operators increase the efficiency of the search by
deferring the calculation of encoding lengths until the several operators have been
applied.

tree transducer, state merge operations must be applied before edge merging be-
comes an option. This pattern of operator application is a recurring theme during
the compression process. So far, the basic edge merge operator and state merge
operator have been described. By extending the collection of operators, the com-
pression process can be made more reliable and efficient An extension to the set of
compression operators becomes apparent when we note that the operators shown
in Figure 6.3(a-b), from a focus state, only operate in one direction: forward. By
adding operators that apply backwards as well, the number of possible focus states
to which a compression operator can apply is increased. The second extension to
the set of operators arises from the observation that more than two edges can be
merged as a result of state merge. For this reason, compound operators are required.
A compound operator performs a local search through the hypothesis space, and
picks the set of edge merging decisions that maximise the degree of compression. A
compound merge operator is just a series of state and edge merge operators, only
the order in which they are performed is optimised such that the encoding lengths
are not computed after each operator application. As with state and edge merge

operators, two directions of compound operators are possible: inward and outward.
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Compound merge Given a focus state f, and a set of outward edges, the com-
pound merge operator chooses the best, in terms of MDL, set of edge merge
operations. For example, five edges accepting the symbol w could be merged,
and the result of this merge will lead to a generalised meaning. At first sight,
this may be an appealing compression operation. On the other hand, the en-
coding length may be minimised further by only merging three of these edges.
The compound merge operator attempts all permutations of edge merge op-
erations, and the resulting state merge operations that become possible as a
result. Figure 6.3(c) illustrates a basic example of this process. The sequence

of operator applications that minimise the description length are chosen.

To recap, the basic edge and state merge operators are all that is required to
compress a transducer. The problem is, they introduce local minima into the search
space. To alleviate this problem, compound merge operators are used to jump the
local minima by carrying a local subspace search, rather than taking the chance of
a fortunate series of explorations occurring during the beam search. In this way, a

trade-off between local intelligent search and wider stochastic search is achieved.

6.2.2 Production

Production is the process that, given a hypothesis H and meaning m, yields an
appropriate signal, s, for m. At this point, MDL no longer plays a role. That
is, the process of interrogating the hypothesis, and the notion of an appropriate
interrogation, is outside the remit of the MDL principle. The hypothesis chosen
by MDL may suggest a set of appropriate generalisations that can be made on the
basis of the hypothesis, but it is important to note that some bias will necessarily

be introduced into the production process.

One of three mechanisms can be used to express a meaning. First, if a meaning m
has been observed in conjunction with a signal then m will always be expressible;
production is always consistent with observation. Observed meaning signal pairs
are therefore, in the sense that they can always be expressed, memorised. Second,
providing there is compositional structure in the observed language, then it may
be possible to derive a signal for a meaning on the basis of the induced transducer
structure. That is, some meanings can be expressed as a result of induction. Third,
in the absence of compositional structure, the signal for an unobserved meaning
cannot be derived. In this case, the agent can either invent a signal, or decline to

produce at all. When called to express a meaning, an agent can therefore invoke
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one of three mechanisms: memorisation, derivation, or invention. Even though
the processes of memorisation and derivation are made possible through different
circumstances, they are, in practice, implemented using a single mechanism. Both

require a search through the transducer.

Production as depth-first search

Given a hypothesis H and a meaning to express, m, a path through the transducer
is sought such that the unification of the meanings encountered along the path
uniquely specify the meaning m. Accordingly, each meaning fragment should be
consistent with m, and when unified, fully specify m. The consistency criterion
requires that the meaning fragments do not contain feature values that differ from
the value of that feature found in m. To fully specify m, the result of unification
should not leave any feature values unspecified. While the meanings encountered
along the path determine the validity of the path, the symbols encountered impose
no such restriction. These symbols are simply concatenated. For example, to
express the meaning {2 1 2}, using the hypothesis represented by the transducer

shown in figure 6.4, the following series of operations are invoked:

(27?7b w {212c w {??2})f = {212}/bcf

where W is an operator denoting meaning unification and symbol concatenation.
Note that all other paths through the transducer shown in Figure 6.4 will result in
inconsistency with {2 1 2}. This need not be the case; there is no restriction on
FSUTSs such that each meaning has a unique path though the transducer. That
is, synonymy is possible, but ruled out as a result of the production bottleneck

discussed earlier.

Finding an appropriate path through the transducer, that is, one satisfying the
criterion discussed above, is achieved by performing a depth first search. Beginning
with the start state, each consistent path is followed until the meaning is fully
specified and the accepting state is reached. The search is depth-first as a single path
is explored until it is proven to lead to either success or failure. It is worth noting
when the language is random, and the induced hypothesis resembles the prefix tree
transducer, then no choices will exist along the paths through the transducer used
for production. For compositional languages, where a fully compressed transducer

is induced, then, as we seen in Figure 6.4, a choice is available at each step through

165



(a) L= {{{1,2,2},adf), ({1,1,1},ace), ({2,2,2}, bdf),
({2,1,1}, bee), ({1,2,1}, ade), ({1,1, 2}, acf) }

al{1 ? 7} c{? 17} ef? 21}

(b) b2 ? 2} di? 2 2 {2 2 2}

Figure 6.4: Given the language L, shown in (a), the transducer shown in (b) is
induced. The meaning {2 1 2}, even though it was not observed, can be expressed
as a result of the induced structure.

the path. It is only when choices exist, and sufficient structure is present in the

language, that production through depth first search will lead to generalisation.

6.2.3 Invention

The issue of invention will prove a very important mechanism in the iterated learning
models that I will explore. Until now, the issue of invention has been pushed aside.
The simplicity of the models developed in Chapter 3 was partly a result of the
twin processes of production and invention being rolled into a single mechanism.
The mapping between the two spaces was well defined, and as a result, basic vector
geometry solved both problems. In Chapter 5, the issue of invention was not invoked
at all.

Before concentrating on the details of invention, the role of invention in an iterated
learning model is worthy of some discussion. In general, unstructured languages lead
to a high rate of invention. For the notion of iterated learning to have any degree of
explanatory purchase, the rate of invention must decrease over time. This decrease
is indicative of linguistic evolution toward structure. In this sense, invention drives
linguistic evolution, just as mutation drives biological evolution. The intuition is
that invention will, by chance, introduce structure where it was previously absent.
The learning process latches onto these chance events, and provides the traction
required to effect cumulative evolution. This is a general argument highlighting the

processes driving state change in an iterated learning model.

Given the above argument, we might propose the following basic invention mech-

anism: when a meaning m cannot be expressed via any principled means, then
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propose a random signal. Unfortunately, a successful invention mechanism, as I
will show, is unlikely to be as straightforward as this. Such an invention scheme
is extremely unlikely to lead to the chance introduction of structure. Even if the
symbols used to construct the signal are picked selectively so that, for example, only
symbols used in expressing similar meanings are chosen, then the chance introduc-
tion of structure will still be very low. In the following discussion I will discuss
alternative approaches to invention. After investigating several candidate invention
schemes, it will become apparent that the general motivation behind invention in
the iterated learning model, discussed above, needs to be revised. A single chance
invention, although in theory sufficient to introduce structure, is unlikely to be
sufficient in practice. A more accurate scenario is one where a series of chance
events are required for invented structure to be induced by a learner. Given the
assumption of a totally random invention scheme, a series of chance events is less
probable than a single chance event. As a result, in order for invention to func-
tion in any practical sense, and consistently direct evolution toward structure, an

invention scheme cannot be entirely random. Biased invention is required.

Partially random invention

How can invention be biased? What I will term partially random invention attempts
to exploit any existing structure in the hypothesis when suggesting an appropriate
signal. For invention to be required, the usual means of expressing some meaning,
say, m, must fail to apply. Now, given the meaning m, the most similar meaning
that can be expressed, m,,, is found. The similarity between two meanings is defined
as the inverse of the Hamming distance between them. The production of the signal
for m,, is represented by a series of edge traversals, each one detailing, a symbol
at a time, how the signal is built using the transducer. Partially random invention
exploits this information by assuming that the production of m should follow a
similar path. The series of edge transitions used to produce a signal for m will be
identical to those used to produce a signal m,,, but for those transitions which carry
a meaning inconsistent with m. For those symbols in m,,’s signal built using these
inconsistent transitions, a random symbol is used in constructing the signal for m.
The result is that m’s signal will be the same m,,’s signal where the transitions are

consistent with m, and random otherwise.

Partially random invention is motivated by the need to retain as much structure in
the language as possible. If the meaning m was expressed using a totally random

signal, then any structural relationship existing between similar meanings and their
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signals is unlikely to be reflected. Introducing randomness into the system should
be a last resort as it is likely to destroy any existing structural relationship between
meanings and signals. Such a policy will surely increase the likelihood of the system
occupying trajectories toward structure: structured parts of the language will be

used whenever possible, and are therefore likely to survive to the next generation.

In the models I will develop, invention is regulated. Rather than swamping the
evolving language with random signals, invention is only performed with a prob-
ability of 0.5. This value represents the invention rate (Kirby 2002a). All the
simulations described below have an invention rate of 0.5. When invention is not
performed, the agent will not produce any signal for the given meaning. The number

of utterances produced by an agent will therefore vary.

6.2.4 A full simulation model

I have now finalised the specification of a full iterated learning model. The agents are
capable of hypothesis selection, production, and invention. A practical investigation
of the issues raised in Chapter 5 is now possible. Before exploring the consequences

of this simulation model, it is important to point out some practical limitations.

Unlike the static analysis of Chapter 5, certain parts of the parameter space will
prove to be computationally intractable to explore. Although the simulation model
will prove to offer considerable insight, it should be noted that many of the exper-
iments I will present take in the order of weeks to complete. The combination of
calculating encoding lengths, testing for transducer consistency, and searching the
hypothesis space require a great deal of time. This is why the analysis of Chap-
ter 5 is so important; issues such as average case behaviour across multiple runs,
and the exploration of high dimensional meaning spaces is not possible, and are
in some sense not the purpose of the simulation model. Instead, the simulation
model should be seen as, first, validating the conclusions of Chapter 5, and second,

shedding light on the nature of the evolved systems.

6.3 Simulating linguistic evolution

Now all the model components required for a full-blown simulation run are in place.
An agent induces a hypothesis by applying MDL hypothesis selection over the
space of FSUTs; production is achieved by searching the transducer for a successful

production path; partially random invention is invoked when production is not
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possible. In order to apply the model, a number of parameters need to be chosen.

The following parameter settings will be used:

Parameter Value
MaxStringLength ({,,02) 15
BottleneckSize (R) 32

NumberOfFeatures (F) 3
NumberOfValues (V)

AlphabetSize (|X|) 20
Maxlterations 200
BeamSize 30

It is worth dwelling on the significance of these parameters. The majority of the
parameters define the language the first agent will learn from. Specifically, the first
agent in the simulation is passed R utterances drawn from a random language L,4p4-
This language is constructed by associating R random meanings with signals of a
random length between 1 and /,,,,. Each symbol in the signal is drawn randomly
from the alphabet X, which contains 20 distinct symbols. By initialising the simu-
lation in this way, an agent is presented with linguistic input it may never actually
generate itself. For example, because the language L,4,q is totally random, syn-
onymy in the mapping between meanings and signals is likely: the same meaning
may be given different random signals. The meaning space contains 64 meanings.
The bottleneck is set at 32 (random) observations of the meaning space. As a result,
the expected proportion of the meaning space to be observed, the coverage, will be

0.396, which corresponds to 25.344 distinct meanings.

6.3.1 Linguistic evolution

Initialised with the random language L,q,q, the simulation is run for 200 itera-
tions. Figure 6.5(a) aids an understanding of the evolving system: the minimum
description length of the evolving language is plotted against the expressivity of
the resulting transducer. Expressivity is defined as the number of meanings in the
meaning space that can be expressed through production, but not invention. Figure

6.5(a) represents a vector plot detailing the transitions made in this subspace.

Two observations need to be made here. First, the initial state of the system
(point A) changes significantly after the first iteration. Initially, because utterances
are drawn from the language L,q,q, the first agent is guaranteed to observe 32
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Figure 6.5: Linguistic evolution resulting from partially random invention. In
(a), the fact that the system is limited to large relatively inexpressive hypotheses
is illustrated. The size of the induced hypotheses is comparable to the prefix tree
transducer, a fact illustrated in (b), where the compression rate is shown to be
consistently very low. In plot (c) the production mechanisms driving state change
are shown. As the system evolves, three production mechanisms drive state change.
Memorisation, invention, and no invention.
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meaning/signal pairs. In contrast, the hypothesis induced from this data, due to
the data being random, will be unlikely to associate each of the 32 randomly sampled
meanings with a signal. In short, the language generated by the first agent in the
simulation will be abbreviated due to the occurrence of non-invention decisions.
This is why the initial jump from point A occurs. Point A represents the case when
the transducer associates 32 random meanings with signals. Due to the option of

not inventing at all, this state can only occur at the first generation.

After the first iteration, the system begins a semi-random walk through the space
of possible languages. This fact illustrated by Figure 6.5(b), where the compres-
sion rate achieved as result of the induced hypotheses is plotted as a function of
iterations. An average compression rate of approximately 0.06 occurs across all
200 iterations. Figure 6.5(c) illustrates the production mechanisms underlying this
behaviour. At each iteration, this graph plots the number of times each production
method is used during the expression of the 32 observed meanings. Across all 200
iterations, meanings are expressed using a combination of memory, invention, and
no invention. For reasons that will shortly become evident, compositional languages
are stable when injected into the model as it stands. The key point here is that
these languages cannot be constructed from an initial state of randomness: the
invention bias is not strong enough. Of course, if the simulation were to be run for
an infinite number of iterations, then a compositional language would crop up and
persist. Such a situation is of no real interest to this discussion: we are interested
in the consistent emergence of compositional structure in finite time. To further
our understanding of linguistic evolution, we must now focus on the issue of the
invention bias. This experiment has highlighted the fact that learning is just one

component of an iterated learning model.

Recall that in developing the iterated instance-based learning experiment detailed
in Chapter 3, a similar problem was faced. The solution was the obverter procedure,
which went some way to ensuring that production bias reflected the learning bias.

To progress the experiment, I will consider a similar approach to invention.

6.3.2 Rethinking invention

The best invention decisions are those that cause additional production paths to be
induced in the transducer of another agent. Ideally, these paths, which would oth-
erwise be absent, will present hitherto unavailable routes leading to generalisation.

By focusing on this scenario, we can say that such invention decisions must alter
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the existing mapping between meanings and signals in such a way that compression
is more likely. This must be the case, as generalisation is only possible as a result
of a significant degree of compression. It is this observation which will motivate the

following invention procedure.

The Compressor Scheme

The fundamental question is as follows: Given a meaning m that cannot be ex-
pressed, which signal should be invented for m such that the probability of com-
pression is maximised? This issue should be contrasted with the objective of inven-
tion maintaining structure, which was investigated above. In this respect, invention
should really be performing the opposite, it should be introducing opportunities for

compression.

First of all, in order to progress, we need to make the production competence of
the transducer explicit: all utterances expressible through memory and derivation
are found. That is, for each meaning in the meaning space, the production decision
of the transducer is sought; the vocabulary is defined as this set of E expressible
meanings. Of course, some of the meanings, including m, will not be expressible; for
invention to be required at all implies expressivity is sub-optimal. The vocabulary

is therefore a set of meaning/signal pairs:

V= {<m1,31>; <m27 82>a ) <mEa 8E>}

Expressible meanings are enumerated such that m; and s; denote the meaning and
signal of the ith member of V. The part of the mapping, defined by the transducer,
that relates m; to s; is determined by a path through the transducer, which is
defined as a series of edge traversals. If |s;| = [ then mapping m; to s; requires a
path containing | edges, where an edge takes the general form f/c such that f is
a (possibly under-specified) meaning consistent with the meaning being expressed,
and c is a symbol to be concatenated with the previously parsed symbols. In
general, using the f/c notation, we can represent how the meaning m; is mapped
to the signal s;, at each stage in the path through the transducer, in the following

way:

M1y Sy ~ Moy /82y ~ -0~ My /g
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Where m, ; is the meaning fragment contained in the edge traversed after generating
the jth symbol of the signal s;. The invention scheme I am about to define is most
easily understood by viewing the transducer as a series of transducer paths for all

the expressible meanings.

The reason for representing the transducer competence in this way can be under-
stood by noting that segments of transducer paths represented by the vocabulary
will be selected to form the path for the signal to be invented. More precisely,
fragments of paths found in the vocabulary can be chosen even though they are not
linked by a path in the transducer itself. That is, certain configurations of path
fragments cannot be arrived at by performing, say, a depth first search through the
transducer. Figure 6.6(a) illustrates the general layout of the paths through the

transducer using this scheme.

To understand how this representation of the transducer competence is used to
invent a signal for an inexpressible meaning, consider the following question: In
expressing m, which initial edge, located in the vocabulary, should be chosen?
First, the policy of choosing an ezisting edge needs to be justified, and second, some

criterion for edge selection, from the possible candidates, needs to be developed.

The justification for using existing edges is motivated by a simplicity principle.
From the perspective of compression, introducing random symbols into the lan-
guage is likely to be detrimental. To maximise compression, the assumption that
the transducer already contains a sufficiently diverse set of symbols makes more
sense. This assumption can be related to a simplicity principle: we wish to avoid

multiplying the complexity of the hypothesis beyond that which is required.

The second problem that needs to be addressed concerns edge selection. Given a set
of candidate edges, which one should be chosen? This choice is partly determined
by the depth, within the transducer, of the edges to be considered. If the result
of invention is to be an increased tendency for compression, then the point in the
transducer where compression is to occur needs to aligned in relation to edges used
to form the invented signal. By aligned, I mean, for example, that the first symbol
in the invented signal must be chosen relative to existing edges that encode the
first symbol in other signals. The edge representing the first symbol in the invented

signal must therefore be chosen from the same, or similar, depth in the transducer.

The edge selection process therefore revolves around narrowing the set of candidate

edges to those that appear at the same depth as the symbol to be generated. Given
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the meaning m to express, the first symbol used in expressing m is therefore chosen
from those edges at depth 1. This candidate set is of edges at depth 1, D, is
represented by:

D, = {m{1,1}/8{1,1}, m{2,1}/8{2,1}, .- am{E,l}/S{E,l}}

Figure 6.6(b) shows how the set D, is extracted from the edge layout discussed
above. Choosing an edge from the candidate set requires a ranking over these
candidate edges. The lowest ranked edges will be those that have no feature values
in common with the meaning to express, m, as these edges cannot introduce a
generalisation involving m — the intersection between the two meanings will be a
fully unspecified meaning composed only of wildcards. An unspecified meaning can
only occur as a result of compression, but it can never lead to generalisation. The
highest ranked edges will be those that maximise the probability of introducing the
possibility of compression. These edges will be those that are fully specified — they
will contain no wildcards. An edge with a meaning fragment containing wildcards
can only exist as a result of compression. The key idea is to avoid these edges, as it
is more fruitful to attempt to introduce compression into points in the transducer
where compression has not occurred previously, rather than reinforce the result of
existing compression. Compressed regions of the transducer will already be more

likely to survive transmission.

To choose a single edge from the set of candidates we need to consider how edges
can be ranked. Here, the idea is to prefer those edges with the smallest intersection

with m, the meaning to expressed. The ranking function is defined as:

rank(m, mg; j3) = n : where n feature values of my; j; match with m

Importantly, feature values match only when specified; wildcards never count as
a matching feature value. This ranking prefers a minimal intersection between
meanings. Those meaning fragments scoring zero are filtered out as an empty in-
tersection between meanings cannot lead to generalisation, for the reason described
above. Among edges with the same rank, the winner is chosen at random. To re-
cap, given a depth d in the transducer, candidate edges D, are chosen, and ranked

according the ranking function. The symbol of the highest ranked edge is then
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(a) Meaning Transducer path Signal
mi {mpay/spy ~ My /sy~ My /Spys ) St

My {My2,1}/8(2,1) ~ M22}/8(22) ™ ==~ Mp2so}/ 82,0} 52

Me  {M{e1}/S{e,1) ~ Mie2}/S{e2} ~ ==~ Mye s}/ Stellsel} )} Se
D1 Dz Do
(b) my My /sgy ~ Maey/spy o~ My /Syt S

ma  {Myz,1}/8(2,1) ~ Mi22}/S(22) ~ "~ Mz s}/ S{2,55}} 2

Me  {Mie1)/Sien) ~ Mieay/S(eay ™ -~ Mefsel}/Stese}} Se

(c) Dy = {mgyy/spasmeay/seay, - mipay/sea}
51 = Siming,, ep, {rank(mmy)#£0},1}

Figure 6.6: Steps toward inventing a signal that is likely to lead to compression. For
each expressible meaning, the mapping generated by the transducer is represented
as a series of paths. The set of all such paths is termed the vocabulary, and shown
in (a). The invented signal is built a symbol at a time. Each such symbol is
drawn from candidates occupying a certain depth in the transducer, shown in (b).
For a given depth, the symbol chosen depends on the result of applying a ranking
function, shown in (c).

chosen as the dth symbol of the invented signal. Figure 6.6(c) illustrates how this
symbol is derived from the edge layout.

Finally, two possibilities need to be considered. First, signals in the vocabulary may
be of varying length, so the size of the sets D;, Dy, ... may be variable. Second,
what happens if none of the meanings attached to the edges in Dy are consistent
with m? The first observation is not important, as the length of an invented signal
will be determined by the length of the series of the edges at varying depths that
inform the production of m. The result is that similar meanings will tend to have
signals of a similar length. The second problem, too, can be alleviated simply by

not proposing a symbol at depths that contain no relevant information about m.
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Invention as self-organisation

The invention procedure I have described is based on a simplicity principle. When
called to produce a signal for meaning that cannot be expressed, instead of intro-
ducing randomness into the system, existing segments of the transducer are utilised.
The assumption is that the alphabet of symbols present in the initial random lan-
guage is sufficient to construct signals for a structured language: introducing new
symbols, according to this assumption, would be multiplying the complexity of
the hypothesis beyond that which is required. Rather than looking beyond the
hypothesis, we look within it. The prior bias guiding invention therefore resides,
as we would wish, in the hypothesis. In this respect, linguistic evolution is best
thought of as the self-organisation of a pre-existing set of basic elements (symbols).
To conclude this section, it is worth consolidating the processes underlying signal

production. Four processes define how a meaning is mapped to a signal:

1. Memorisation. If the meaning to be expressed has been observed in conjunc-
tion with a signal, then this signal is used to express the meaning.

2. Derivation. The transducer may contain a path that, through the process of
generalisation, enables an unobserved meaning to be expressed.

3. Invention. Using the compressor scheme described above, a signal is invented
that will be likely to introduce further transducer compression.

4. No invention. With a certain probability, the invention scheme is bypassed,

and no signal is proposed. The result is that production is not performed.

The effect on linguistic evolution of the compressor scheme has not yet been exam-

ined. It is this issue I will now turn to.

6.4 Linguistic evolution as self-organisation

To move forward, the effect of introducing a bias toward compression when in-
venting signals needs to be understood. Given that the bias toward compression
introduced above differs substantially to the partially random invention investigated
earlier, one would expect linguistic evolution to follow very different trajectories.
In the following experiments, precisely the same parameters setting are used to
those defined in the previous Section. Furthermore, Figure 6.7 illustrates the same
measurements as those shown in Figure 6.5. Strikingly, Figure 6.7 reveals that

very different states are achieved as a result of the newly developed invention bias.
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Figure 6.7(a) illustrates an entirely different trajectory, one where a series of tran-
sitions lead to small, stable, and expressive hypotheses. Starting at an expected
expressivity of approximately 22 meanings (point A), the system makes two distinct
jumps to a stable state where we find small hypotheses capable of expressing all 64
meanings. The compressor scheme consistently directs linguistic evolution toward

compositional systems.

The first major transition through the state space takes the system to point B,
where expressivity increases slightly, but the minimum description length of the
language decreases by a factor of 3. From requiring approximately 6000 bits to en-
code the evolving language, linguistic evolution results in transducers being induced
with an MDL of approximately 2000 bits. The lack of increase in expressivity is
a reflection of the transducers organising themselves in such a way that significant
compression results, but an increase in expressivity is not achieved. The second
transition, from point B to point C, is very different in nature. Here, for a small
decrease in the MDL of the emergent language, a significant increase in expressivity
occurs. This is an important transition, as it results in the system entering a stable
region of the state space. Although a few deviations away from this stable region
occur early on (to point D), the system settles into a steady state characterised
by high expressivity. Figure 6.7(b) reflects these transitions. The compression rate

rises in two stages, mirroring the points B and C.

Figure 6.7(c) illustrates the production mechanisms underlying these transitions.
The first 20-30 iterations correspond to the transition from point A to point B.
During this period meanings are expressed on the basis of production from memory
and production through invention. The transition is driven by the introduction of
generalisation during production. For the remainder of the simulation, production
from memory and production through generalisation keep the system in a stable
state; only occasionally is invention used, and this is a result of a highly skewed
sample of the meaning space leading to the induction of transducer that is not fully

generalised.

Invention using the compressor scheme causes a fundamental change in dynamics.
First, the induced transducers become increasingly compressible directly as result
of invention — as one might expect from the motivation underlying the compressor
scheme. Once transducers become compressible, the emergence of paths through
the transducer that share states with other paths begin to appear. From such a

situation, only a small step is required to make inductive generalisations. Before
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LARGE INEXPRESSIVE HYPOTHESES DATA COMPRESSION RATE
TO SMALL EXPRESSIVE HYPOTHESES AS A FUNCTION OF ITERATIONS
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Figure 6.7:  Linguistic evolution arising from the application of the compressor
scheme. Plot (a) illustrates how the minimum description length of the emergent
language is related to expressivity. Plot (b) illustrates how the compression rate
increases over time. Plot (c) details which production mechanisms are used as the
language evolves.
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examining in detail the emergent transducers, it is worth sketching an interpretation

of the state space depicted in Figure 6.7(a).

6.4.1 Possible trajectories

It is clear that when analysing the model of linguistic evolution developed so far,
only certain regions of the state space are visited. In this section, I will divide up
the state space into distinct regions, discuss the kind of languages and transducers
that characterise each region, and explain why certain regions are visited and not

others.

POSSIBLE TRAJECTORIES

EXPRESSIVITY

B R | 1--"" | !
0 1000 2000 3000 4000 5000 6000 7000 8000
MINIMUM DESCRIPTION LENGTH (BITS)

——

Figure 6.8: Regions of the state space. The language L,.,q places the system at
point A. Depending on the invention scheme used, the system either moves toward
region D, or begins a series of transitions leading to region E. The system never
enters region C or region B.

Figure 6.8 depicts several distinct regions of the state space. Both the trajectories
achieved using partially random invention and invention through the compressor
scheme are included in this map. Both these trajectories share a starting point,
point A. Region B is not visited by either trajectory. Why is this? Region B
represents the presence of large expressive transducers. Large expressive transduc-

ers are perfectly possible. However, when a transmission bottleneck is in place,
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as is the case here, to achieve maximum expressivity requires a compressed trans-
ducer structure of kind discussed in the previous Chapter. It is possible that these
transducers could be elaborated on and expanded without loss of expressivity, but
these modifications will not be found in the hypothesis chosen by the minimum
description length principle. In short, the presence of a bottleneck restricts the set
of transducers capable of maximum expressivity to be those transducers that can

be compressed to a significant degree.

Like region B, both trajectories fail to enter region C'. Region C represents the
occurrence of very small hypotheses with low expressivity. States in this region
are not possible, but for a different reason to that of region B. Small expressive
hypotheses are possible, so why not small inexpressive hypotheses? For example,
we could imagine constructing a small inexpressive transducer by doctoring a com-
pressed transducer such that its ability to generalise is crippled in some way. Such a
modification is not possible when we consider the requirement of data consistency:
the small transducer we imagine must be consistent with the observed data. There
must be a lower bound on the size of transducers consistent with the observed data,
and region C' represents the case where this lower bound is breached. In short,
region C' represents states corresponding to inconsistent compressed transducers.
Trajectories will not enter this region because the data consistency criterion must
be met by all induced hypotheses.

The regions of key interest — those that are visited — are regions D and E. Region
D represents unstructured and therefore incompressible languages. The initial lan-
guage L,q,q puts the system into the fringes of region D, with a thorough exploration
of region D requiring partially random invention. Invention using the compressor
scheme quickly moves the system away from region D, as each invention decision is
likely to introduce structure to the language, and therefore make compression more
likely. Once compression occurs, a path toward region E is inevitable. The area
between region D and region E represents a smooth transition between a decrease

in minimum description length and an increase in expressivity.

6.4.2 Analysing the major transitions in linguistic evolution

With a clearer understanding of the range of transitions that occur, it worth looking
in detail at the various stages of linguistic evolution. The starting position for both

the trajectories discussed so far is point A shown in Figure 6.8.
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Figure 6.9: The transducer corresponding to point A. This transducer represents
the hypothesis induced from the initial, randomly constructed language.

Figure 6.9 depicts the transducer representing point A. This transducer is the
one induced from the initial language, L,4,q- Some compression is evident, but not
nearly enough for generalisation to function. It is quite normal for a slight degree of
compression to occur when faced with a random language, as all meanings will have
some symbols in common. This compression may appear significant, but it should
be stressed that constructing a language that leads to absolutely no compression is
in fact quite hard. In contrast, for compression to lead to generalisation requires
very specific and highly improbable structural relationships between signals and

meanings.

From point A, I will trace the effects of linguistic evolution toward region E by
examining the series of induced transducers. Figure 6.10 depicts the transduc-
ers at various stages of evolution toward region E. Figure 6.10(a) represents the
transducer corresponding to point F'. In this transducer, we see the beginnings of
significant structure emerging. The first symbol in each signal appears to discrimi-
nate between feature values in the second feature. This structural relationship acts

as a seed for further discrimination, which will ultimately result in generalisation.

Between point F' and region F, the self-organisation of the emerging language be-
comes increasingly more evident. In 6.10(b) additional discrimination within the
transducer occurs, and certain meanings can be expressed even though they were
not observed — significant generalisation is occurring. Figures 6.10(c-d) illustrate the
occurrence of further discrimination and generalisation, as the state of the system

climbs up and skitters around region E. Figure 6.10(e) represent the final stable
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(e)

Figure 6.10:  Steps toward stability. The transducer in (a) corresponds to the
point F' in the state space. The states occurring along the transition from point
F to region E are represented the transducers in (b-d). The final stable state is
represented by transducer in (e).

state, characterised by a fully compressed and maximally expressive transducer.
Although this transducer exhibits a large amount of redundancy, this redundancy
does not effect its ability to be induced generation after generation. Initially, as
the state approaches region E, some variation occurs across iterations before the
steady state is arrived at. This suggests the stable regions of the state space are
Liapounov stable: if the system were to start in this region, it would stay in that

region.

This Section has shown how the compressor scheme, used during invention, results
in the self-organisation of the initial language. The assumption underlying this
approach is that enough signal diversity exists in the initial language. On the basis
of this assumption, a simplicity principle is justified: never diversify the language
beyond that which is required. To strengthen the results so far, I will now briefly
investigate an alternative approach to initialising the system. Here, the compressor
scheme will be tested by starting small: T will fix the initial state of the system such

that the required signal diversity is not present to begin with.
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6.5 Starting small

The preceding experiments start with the first agent in the simulation observing
utterances from a randomly constructed language. In doing so, the first agent
differs from all other agents in that its input originates from a non-biased source.
All subsequent agents in the simulation receive their input from the output of other
learners. I have shown how the resulting evolutionary trajectory soon begins to
fall into a path partially determined by an array of adaptive pressures present
in the model, such as bottleneck size, hypothesis selection criterion, and the like.
For this reason, a random initial state serves to illuminate how certain parts of
the state space are masked by constraints imposed by the model. The diversity of
symbols contained in the randomly constructed initial language of the first iteration

is sufficient for the linguistic evolution to proceed through self-organisation.

A model in which the linguistic evolution of structure is invariant over initial con-
ditions is stronger than one that relies on specific properties being present in the
initial conditions. So far, the model has presupposed signal diversity. An alterna-
tive to this approach is motivated by the need to start a simulation from a blank
slate. This situation is modelled by adding a random invention mechanism to the
existing invention mechanism. In this way, when an agent is called to express a
meaning, and no principled production decision is possible, invention will proceed
as defined but for an occasional randomly invented signal. Agents themselves intro-
duce signal diversity, and the language is constructed from scratch. In contrast to
the existing experiments, every learner in the model receives output from another
learner. The first iteration will now start with a learner represented by an empty
transducer — a blank hypothesis. When called to express meanings, the random

invention mechanism will emit random signals.

6.5.1 Introducing signal diversity

Introducing random invention poses a problem. An empty transducer containing
no transitions will obviously have no option but to invent random signals. But
once the language grows from these invention decisions, a choice in which invention
scheme to apply is introduced. The solution I will adopt proceeds by invoking ran-
dom invention with a probability 0.1. That is, when invention is required, random
invention is occasionally performed. The signal invented is totally random, and will

be of length between 1 and /,,,,. The symbols used to construct the signals are
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drawn from a pre-defined alphabet containing the first 20 lowercase letters of the

alphabet. In this respect, symbol diversity is built into the model.

6.5.2 Three phases

The introduction of random signals during linguistic evolution may, in the first in-
stance, seem foolhardy. Any evolved structure will, one might presume, be destroyed
by the introduction of randomness. But contrary to this intuition, the introduction
of random signals has no such corruptive influence. The insertion of signals with
a (random) structure, at odds with the existing signals, is only temporary due to
higher frequency application of the compressor scheme. Those random signals in-
troduced into the language soon decay as a result of the invention decisions of the
compressor scheme. The result of random invention serves precisely the purpose we

intended: to introduce signal diversity.

In short, the compressor scheme drowns out the corruptive influence of random
invention. The result is that emergent languages initially grow to a certain size,
before a period of self-organisation occurs, and linguistic evolution proceeds as
described in the previous Section. The initial growth of the language is due to
the first agent in the simulation uttering the random signals. As the simulation
progresses, and the compressor scheme comes into play, the occasional random

inventions have little effect. Consistent linguistic evolution results.

Figure 6.11 illustrates the key transitions from the initial iteration, represented
by a blank hypothesis, through large inexpressive hypothesis, and finally at small
expressive hypotheses. These state transitions mirror those found in the previous
experiments, but for the initial phase, where the evolving language increases in size
due to random invention. In contrast to the discussion of the state space in Section
6.4.1, the region representing small inexpressive hypotheses is fundamental. Rather
than representing an unobtainable region of the state space, this region is now the

initial state made possible by starting with a blank hypothesis.

Figure 6.12 represents a different experiment where a meaning space of F' = 3 and
V = 3 is used. Here, the description length of the emergent language is shown as
a function of iterations. The three phases leading to compositionality are clearly
evident. At each phase, an example transducer is shown to illustrate the state of
the system.
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FROM SCRATCH: SMALL EXPRESSIVE HYPOTHESES
VIA LARGE INEXPRESSIVE HYPOTHESES
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Figure 6.11: Starting small. From a blank hypothesis, random invention leads
to the construction of signals for each observed meaning. Once signal diversity is
present, the compressor scheme introduces structure into the signals. Compositional
languages emerge as a result.

These experiments have shown that the robust linguistic evolution of compositional

structure occurs under two contrasting circumstances:

1. Self-organisation of a predefined signal space. Given a randomly determined
diversity of signals, can linguistic evolution untangle this structureless signal
space?

2. Construction and self-organisation of signal space. Starting from an empty
mapping between meanings and signals, can linguistic evolution construct a
compositional language through an interaction of the contrasting pressures to

introduce randomness, and introduce compressible signals?

As T have shown, both these question are answered affirmatively. Furthermore,
these experiments demonstrate that compositional structure can emerge under the
constraints applied by the minimum description length principle. These results
are important, and validate the conclusions of Chapter 5, an issue I will return
to shortly. At this point in the discussion, it is worthwhile examining the precise

nature of the evolved languages.
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EVOLUTION THROUGH INVENTION
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Figure 6.12: Three phases in linguistic evolution. This plot shows how minimum
description length rises as random signals are introduced. Self-organisation then
results, and compression leads to structured language emerging. Three transducers
are shown that illustrate these transitions.

6.6 Analysing evolved languages

Stable languages must pass through each agent unscathed; the agents act as a
conduit, compressing the language they encounter and reconstructing it through
production. The hypothesis induced must faithfully represent the whole language,
even though only a subset of the language has been observed. Compression occurs
as a result of applying the minimum description length principle: a bias exists for
selecting the smallest hypothesis while at the same time taking the cost of encod-
ing the observed data into account. We might then conclude that the languages
that evolve are optimal, and represent the most efficient way of forming signals for
the meanings. The results so far suggest a quite different scenario: the evolved
languages are far from optimal. These results are in contrast to the assumptions
of Chapter 5, which took an analytic and idealised view of linguistic evolution.
Although valuable results can be gleaned from such static analysis, fundamental

complexities arise as a result of full blown simulation modelling. In this section I
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will examine the evolved systems, and discuss the complexities that arise from the

simplicity principle.

6.6.1 Optimality and redundancy in evolved systems

As the static analysis suggests, the optimally compressed transducer, T,;,, given
the parameters F', V, and c is one where each signal is F' characters long. If the
signals were any shorter, then they would be incapable of being related to all F
features individually. If the signals were any longer, then some features would be
represented by more than one symbol, and would therefore be sub-optimal. Fur-
thermore, to minimise the size of the alphabet, only V characters are required.
Given such an alphabet, each feature value can be discriminated within the signal.
There is no reason to stipulate different sub-signals are required for different fea-
tures: homonymy between features plays no role in the ability of MDL to induce a
compressed transducer. The structure of the notional T;,;, is therefore well defined.

It is the smallest transducer possible given the parameters F' and V.

None of the evolved systems resulting from the simulation model are in harmony
with the idealised 7T},;,. All evolved systems exhibit redundancy. Figure 6.13 depicts
some representative examples of transducers that define stable evolved languages.
These transducers represent a diverse set of structural characteristics. Focusing on

a single feature, the following structural characteristics are observed:

Optimal coding. A single symbol is used to refer to a single feature value for
every feature value within the feature. This, as noted above, is the defining
characteristic of the optimal transducer T,,;,. For example, the first feature
of the transducer depicted in Figure 6.13(a).

Sub-optimal coding. As many as four symbols are used to represent each feature
value. Feature value coding is therefore sub-optimal. Cases where both sub-
optimal and optimal feature value encodings also exist. That is, variable
length feature coding for a single feature. Figure 6.13(c) shows a transducer
containing a sub-optimal coding of the second feature, and Figure 6.13(d)
illustrates a coding for the second feature containing both sub-optimal and
optimal coding.

Intra-feature redundancy A subset of the feature values are prefixed or suffixed
by signal fragments carrying no meaning. These signal fragments appear to
offer no help in discriminating between feature values. In this respect, they are

truly redundant. Evidence of a prefix signal fragment, for the third feature, is
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Figure 6.13: Example transducers representing stable compositional languages.




shown in Figure 6.13(d). A signal fragment representing a suffix is also shown

in Figure 6.13(d), in the first feature value encoding.

As well as redundancy within a feature specification, redundancy also occurs between

regions of the transducers representing features:

Inter-feature redundancy. Where signal fragments carrying no meaning lie be-
tween two sections of the transducer, each one describing a feature. Examples

of inter-feature redundancy can be seen in Figure 6.13(b) and (e).

After examining these transducers, it should also be evident that the ordering of
features within the transducer is arbitrary. Until now, for the sake of brevity, this
possibility has not been considered; the representation of feature values within the
transducer has been assumed to be mirror the feature ordering in the meanings. Al-
ternative orderings have not been discussed, but the model accommodates them. In

an abstract sense, this variation reflects word order variability in natural language.

Transducers as grammars

Transducers represent grammars. Perhaps a clearer insight is gained when consider-
ing such models of the evolved languages. I will consider two transducers, depicted
in Figure 6.14(a-b), and their grammars G and G, respectively. The grammar G,
represents the mapping between meanings and signals for a meaning space defined
by F=3and V =2:

Gi: S/[xy,2] = A/y B/z C/x

A/1 — tomt B/2 = q
A/2 — btps C/1 > w
B/1 - w C/2 — mmsf

The third feature in the meaning, z, is coded optimally using a single symbol for
each feature value. The second feature, y, exhibits sub-optimal coding as four sym-
bols are used to represent each feature value. The first feature, z, is also coded
sub-optimally, with variable length codes being used. Apart from these observa-
tions, however, the transducer conforms to the general structure of the compressed

transducers introduced in Chapter 5.

The grammar G5 represent a language for a meaning space defined by F' = 3,V = 3:
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Figure 6.14: Two evolved languages. (a) Shows a transducer, and the corresponding grammar, containing redundant
transitions, variable length signals, and several syntactic categories. (b) shows a language with variable length substrings.
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Here, as before, both optimal and sub-optimal codings are used to represent feature
values. Both intra- and inter-feature redundancy is also present. Consider the parse

tree for the meaning [1, 3, 3]:

S/x=1,y=3,2=3

T

A/x=1 d B/y=3 C/z=3
| | |

r Js sgc

Inter-feature redundancy is illustrated by the presence of the d symbol in-between
the categories A and B. All signals will therefore contain this redundant signal
fragment; it contributes absolutely nothing to the mapping between meanings and
signals. In contrast, only some meanings will exhibit intra-feature redundancy.

Consider the parse tree for the meaning [1,1, 1]

S/x=1,y=1,z=1

N

A/x=1 d B/y=1 C/z=1
| N
r D/y=1 sb b E/z=1
| |
J q

This parse tree illustrates the presence of intra-feature redundancy, where both the

second and third feature are coded using extra symbols.

6.6.2 FErtending the language taxonomy

The evolved languages, those languages we observe to be stable, are adaptive within

the context of iterated learning. In Chapter 2, when discussing the iterated learning
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process, rather than a specific model, T defined the set of observed communication
system, Cydaptive, t0 be those we observe as a result of adaptive pressures introduced
by iterated learning. I noted that these systems are a subset of the set of possible
communication systems Cp,ssivie, defined by the biological machinery supporting

language.

In the context of this model, the set of transducers we observe, say, Todqptive, COTTE-
sponds to the set Cogqptive: they are adaptive in the model of iterated learning I have
developed. At this point, it is worth considering the set Tj,ossine, the set of possible
transducers. To do so, imagine all possible compositional language structures. Cer-
tain structural designs have already been seen, and reside in T} 4qprive: these consist
of the basic optimal transducer T,,;,, defined above, in conjunction with certain
augmentations such as variable length signals, and redundancy occurring between
features and within features. I will now consider the set Tpossiste — Tadaptive, Which
requires us to ask: Which compositional language designs are not adaptive within
the model?

Consider the transducer Tyoupe depicted in Figure 6.15(a). This transducer rep-
resents a compositional mapping between a two dimensional meaning space and
signal space, but it differs from all previously discussed transducer structures. The
first feature is represented twice in the signal, which means that two regions of the
transducer must agree when expressing each meaning. The language represented

by this transducer is shown in Figure 6.15(b).

In order for this transducer to emerge, it must be stable. This means that given
the language Lgoupie; Taounie must be induced. But this is not the case, rather the
transducer 77,4 1 induced, which is shown in Figure 6.15(c). Unlike Tyoupie; Lioupie
has failed to generalise from the input, and therefore will not be stable. Why is
this? T} .. represents a local minimum in the space of FSUTs consistent with
Lgoupie- The fact that T}, is not induced is therefore a failure on the part of the
search strategy. According to the MDL principle, Tyoune should be induced, but the
bias present in the search strategy represents a constraint on the set of hypotheses
that can be learned. In particular, in order for 7},,,,. to be further compressed,
a long series of compression operators need to be applied with the intermediate

transducers all leading to a greater MDL than that of T Only at the end of

ouble*

this series of operator applications will Ty, be arrived at.

A further exploration of the set Tpossise — Tadaptive yields transducers of the form

shown in Figure 6.16(a). The structure of this hitherto unconsidered transducer,
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(a) Tdouble:

(b) Laoubie = {<{1’ 1}a aaddgg), <{15 Q}a aaeegg), <{1a 3}, aangg)
({2, 1}, bbddhh), ({2, 2}, bbeehh), ({2, 3}, bbffhh),

({3, 1}, ccddii), ({3, 2}, cceeii), ({3, 3}, ccffii) }

(C) Tcllouble:

Figure 6.15: Non-adaptive transducers. In (a), Tyoupie is shown, which is a member
of Thossivie — Ladaptive- In (b) the language generated by Tyoupe is depicted, and
denoted by Lgoupe. Rather than Lg,ype leading to the induction of Ty, it instead
leads to the induction of T}, ;. shown in (c). This is why Tyoune is not adaptive.
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Tunordered, 18 curious: the stipulation that distinct parts of the transducer code dis-
tinct features is breached. Relying on transitions with unspecified meanings, feature
values for each feature are located in different parts of the transducer. Several tran-
sitions with unspecified meanings need to introduced in order for the transducer to
express all meanings in the meaning space. As a result of these extra transitions,
the transducer can express an infinite number of signals for a given meaning. Figure
6.16(b) shows the beginning of the infinitely large language generated by Ty pordered

denoted as Lynordered-

(a) Tunordered:

?1/b 2?/c

(b) Lunorderea = {({1,1},azbw), ({1, 2}, ad), ({1, 3}, pcnbw) ({2, 1}, pcqd), . ..}

(©) Linorderea = {({1, 1}, azbw), {{1,2},ad), ({1,3}, pcnbw){{2, 1}, pcqd) }

(d) T,

unordered*

Figure 6.16: A non-adaptive transducer. The language generated by the transducer
Tunorderea 18 not stable under the conditions of a transmission bottleneck.

Tunordered 18 unstable for a two reasons. First, the transducer cannot be induced from
impoverished data, several examples of signals for each meaning need to seen before
the empty transitions are induced. Second, this situation requires that language on
which the transducer is induced exhibits a high degree of synonymy. This is not
possible due to the production bottleneck. For example, Figure 6.16(d) is induced

. . ,
from an impoverished sample of the language Lynordereds Linordered:
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Determinants of Tpessivie — Tadaptive

In general context of human linguistic evolution, a number of factors will deter-
mine the set Cpossibie — Cadaptive- In these simulations, two categories of constraint
influence the membership of Tp,ssive — Tadaptive- First, constraints on learning. De-
ficiencies in the search of the hypothesis space exclude transducers such as Tyoupe.
Second, constraints on transmission such as the presence of semantic and produc-
tion bottlenecks. T, ordered 1S an example of a transducer excluded by transmission

constraints.

6.7 Stability conditions and linguistic evolution

This Chapter has progressed the model of linguistic evolution developed in Chapters
4 and 5. Rather than an analytic argument based on abstractions, intuitions about
linguistic evolution have been explored through computational modelling. The key
advance is to show, through a practical casting of the model developed so far,
that linguistic evolution is possible given the MDL model of induction. Before
closing this Chapter with a discussion, I will investigate the degree to which the
computational simulation model agrees with the analysis of Chapter 5. Given the
set, of assumptions underlying the the stability conditions developed in Chapter 5,
one pertinent question is the following: Do these stability considerations hold true

in the full simulation model?

First of all, consider the parameters used in Section 6.4, where I first demonstrated
the linguistic evolution of compositionality. These experiments were based on a
meaning space defined by F' = 3 and V = 4. The transmission bottleneck (R) was
set at 32 observations, which translates to an expected meaning space coverage of
0.396. Using the results developed so far I will now show how one of the fundamental
results of Chapter 5 holds true. To do so, I will run an experiment with a slightly less
complex meaning space. Using a meaning space defined by F' =3 and V = 3, I will
conduct an otherwise identical simulation. Critical to the coming argument, both
experiments have the same expected meaning space coverage. The key observation
will be that, under these revised conditions, linguistic evolution fails to converge on a
stable compositional language. This result will illustrate the importance of meaning
space structure. The greater the degree of complexity in the meaning space, the
higher the rate of feature value coverage, given the same degree of meaning space
coverage. What does this mean? It means that for a given meaning space coverage,

we should expect linguistic evolution toward compositionality to be more likely in
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the presence of a rich meaning space structure. This result is fundamental, and was

motivated by the discussion of optimal generalisation.

So, to recap, the next experiment illustrates the importance of meaning space com-
plexity by performing an experiment with the same expected meaning space cov-
erage to experiment in Section 6.4, but with a less complex meaning space. These
two results will represent points either side of the minimal conditions required for

robust linguistic evolution.

6.7.1 Narrow bottlenecks, low coverage

With a meaning space defined F' = 3 and V = 3, 27 meanings are possible. To
achieve an expected meaning space coverage of 0.4, which is slightly higher than
that expected in the experiments detailed in Section 6.4, a bottleneck of 14 random

observations is required.

In this experiment, the simulation will start from a blank slate. Both the compressor
scheme and random invention will therefore be used at each generation. Over 1000
iterations, Figure 6.17(a) traces the degree of expressivity achieved by the trans-
ducer at each iteration. The expected minimum expressivity value of (0.4-27) =~ 11
(representing the expression ¢ - V¥'), which is the degree of expressivity one would
expect in the absence of generalisation, represents the average expressivity achieved
for the first 950 iterations. Compositional language has not evolved. However, on
the 954th iteration, maximum expressivity is achieved: a jump from an expressiv-
ity level of approximately 11 to an expressivity level of 27 occurs. The linguistic
evolution of compositionality has taken place. At this point, Figure 6.17(b) illus-
trates how the MDL of the emerging language has bottomed-out: a fully compressed
transducer has been induced. Soon after this occurrence, the compositional system

degrades.

To understand why this has happened, consider the vertical dashed lines in both
plots occupying Figure 6.17. These points in the simulation represent events where
the feature value coverage sinks below 1. Such an event represents the fact that
the set of meanings contained in the observed utterances have failed to represent
every feature value. The occurrence of this event indicates that the bottleneck is
set too low for consistent linguistic evolution to function. During 1000 iterations,
the feature value coverage dips below 1 five times. Point E represents such an
event, and this event has the effect of retracting the transition to compositionality

occurring just before it. Notice that this situation does not occur (or at least it is

196



LOW BOTTLENECK (F=3, V=3, ¢=0.4)

EXPRESSIVITY

. iy . .
0 200 400 600 800 1000
(a) ITERATIONS

LOW BOTTLENECK (F=3, V=3, ¢=0.4)
2000

el
wop MM D

1600 £
1400
1200 £
1000
800 £

600 £

MINIMUM DESCRIPTION LENGTH (BITS)

L Lo L L L
0 200 400 600 800 1000
(b) ITERATIONS

Figure 6.17: Linguistic evolution on the cusp of instability. At low bottleneck
values, plot (a) shows that linguistic evolution may occur, but retaining the evolved
system may be unlikely. The degradation of evolved systems occurs as a result of
the occasional skewing of the observed coverage of feature values. In plot (b), the
dashed lines mark out the points where feature value coverage dips below 1. The
result, in the case of the event labelled E, is that any evolved compositionality
degrades.

very unlikely), in the experiments of Section 6.4, where the same meaning space

coverage is expected, but a meaning space of higher complexity exists.

While this observation serves to back up the intuitions of Chapter 5, namely the
importance of meaning space structure, it also illustrates a shortcoming. In Chapter
5, conclusions were made on the basis of expected values. Over long simulations, the
expected behaviour of the system will deviate occasionally. Linguistic evolution at
low bottleneck values can therefore place the system on the cusp of instability. Of
course, for meaning spaces more complex than those investigated here, the problem
will be less severe. The key point is that expected behaviour can be misleading

with respect to robust and consistent cumulative evolution.
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6.7.2 Wide bottlenecks, high coverage

I have shown how a narrow bottleneck, represented by low expected meaning space
coverage, highlights the importance of meaning space complexity. Setting the bot-
tleneck too tight can reverse any progress toward the linguistic evolution of com-
positional structure. Another fundamental condition for the emergence of composi-
tionality is the very presence of a bottleneck: without a bottleneck, production can
function solely on the basis of recalling observed meaning/signal associations, and

as result, no state change or evolution will occur.
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Figure 6.18: Linguistic evolution under conditions of high meaning space coverage.
With an expected coverage of 0.99, representing a wide transmission bottleneck,
invention will occur infrequently. This fact is highlighted in (a), where high expres-
sivity suggests a low rate of invention. In (b), actual meaning space coverage is
shown to be variable, and as a result, invention is called into play. Plot (¢) shows
a lack of cumulative linguistic evolution, where the minimum description length of
the emerging language fluctuates.
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The conclusions of Chapter 5 suggest that for large coverage values, composition-
ality offers a decreased stability advantage over holistic language. How does this
observation relate to the models of linguistic evolution in this Chapter? The intu-
ition is confirmed, and Figure 6.18 highlights this fact. With an expected meaning
space coverage of 0.99, little cumulative evolution occurs over the course of 1000
iterations. Examining Figure 6.18(a) illustrates that expressivity is consistently
reaching the maximum of 27. Figure 6.18(b) illustrates why: meaning space cov-
erage is, as we would expect, consistently high. But as meaning space coverage
is occasionally below 1.0, invention will occur. As a result, we would expect that
linguistic evolution will take place, only at a much slower rate than previously ob-
served. An interesting observation is revealed by Figure 6.18(c), where over the
course of 1000 iterations, the minimum description length of the evolving language
does not decrease monotonically, but fluctuates. If the simulation were run indef-
initely, however, then we would expect compositionality to emerge eventually. In
one sense this is a trivial observation, as compositionality is the inevitable result of

evolution over a sufficiently long period, so long as a bottleneck is in place.

These simulation results suggest that a wide bottleneck acts to lengthen the in-
evitable trajectory toward compositionality. That is, for the rapid linguistic evolu-
tion of compositional structure to occur, then the invention pressure imposed by the
bottleneck must be high — coverage must be low. Invention introduces a bias toward
compression, and therefore compositionality. As long as invention is guaranteed to
occur, then a compositional language can be the only stable state. This statement,
however, makes a strong assumption. Given a compositional language as input, I
have assumed that a compressed transducer will be chosen by MDL, and as a result,
generalisation will occur and stability will result. Drawing on the analysis of Chap-
ter 5, there are circumstances in which this will not happen. In the limit, given
enough data, MDL will refrain from recommending compressed transducers as the
data encoding length will dominate the grammar encoding length. The power of
the model developed in this Chapter has therefore only been touched on. With a
non-uniform, statistically skewed source of utterances, the results of this Chapter
may be different. Although this model has not been explored fully in this respect,
it has, however, helped to establish some fundamental results that strengthen the
impact of existing models of linguistic evolution. At this point, any further progress

toward understanding the process of linguistic evolution requires some discussion.
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6.8 Discussion

6.8.1 Occam’s razor and MDL

Previous models focusing on the linguistic evolution of compositional structure
stress the importance of induction from data. In his introduction to a recent edited
volume of computational models, Briscoe notes that “contributors all develop learn-
ing algorithms which |[...] incorporate Ockham’s Razor in some form; that is, a broad
preference for the smallest grammar and/or lexicon” (Briscoe 2002:9). This obser-
vation is consistent with computational models of linguistic evolution in general.
The model developed here is important because it relies on a learning algorithm
that does not necessarily conform to Occam’s razor. By invoking the minimum
description length principle, the hypothesis chosen will not a prior: be the smallest.
The fact that, during the previous discussion, the hypothesis chosen has been the
smallest hypothesis consistent with the data does not detract from the model. In-
stead, the results presented so far serve to bolster the validity of previous models.
With the exception of the simulation by Kirby (2001), previous models of linguistic
evolution have assumed a uniform distribution over communicatively relevant mean-
ings. The vast majority also assume the presence of a transmission bottleneck. In
light of these observations, the experiment I have developed justifies the widespread
deployment of Occam’s razor. The discussion in Chapter 5 suggests that the pol-
icy of Occam’s razor is cast into doubt when meanings are observed subject to a
non-uniform distribution. But is this situation worthy of consideration? The work
of Alison Wray, mentioned in Chapter 4, suggests that it is. If holistic utterances
are also the most frequent utterances, then the relationship between the frequency
of meanings and the structure of the resulting utterances is likely to linked. Fre-
quency effects may be a strong determiner of the pressures leading human language

to contain both holistic and compositional utterances.

6.8.2 Degrees of bias

When considering models of linguistic evolution, a common concern is that agents
are heavily biased toward compositional structure: the emergence of composition-
ality is therefore unsurprising and not particularly illuminating. When analysing
the model of Kirby (2002a), as I noted in Chapter 3, Tonkes and Wiles observe “[i]t
seems to us that the chosen induction algorithm is highly biased towards language-
like, compositional structures” (Tonkes & Wiles 2002). Of course, it is a basic fact

that learning requires bias. Any criticism, as Tonkes and Wiles readily accept, must
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focus on the degree of bias. But how can this debate enlighten our understanding of
linguistic evolution? The implication of such criticisms is that we should be willing
to accept certain learning algorithms and reject others as implausible as a result of
being too biased. On what basis acceptability should be judged is not clear. Nev-
ertheless it is worth spending some time discussing the extent of the bias present

in the model I have developed. Broadly speaking, three issues are relevant here:

1. Bias in the hypothesis space: By using the minimum description length princi-
ple, the choice of hypothesis space becomes critical. In the limit, it is possible
to smuggle in any kind of bias we wish through engineering the hypothesis
space. This should not be considered a weakness in the model, but rather a
point of clarification. To argue the model I have developed is “heavily biased”
requires making a claim about the implausibility of the hypothesis space.

2. Bias in hypothesis selection: Without bias, a learning algorithm can only in-
duce the hypothesis that describes the observed data and only the observed
data. Under certain circumstances, however regular the observed data, MDL
will recommend such a hypothesis. For this reason, MDL can be consid-
ered less biased than a hypothesis selection principle such as Occam’s razor.
Occam’s razor, given highly structured and compressible data, will always
propose the smallest hypothesis. The result of this policy, when given struc-
tured data, is generalisation whatever the circumstances. In this respect, the
model I have presented will, all things being equal, be less biased than an
algorithm that adopts Occam’s razor principle.

3. Consistency bias: Should the result of learning always be consistent with the
observed data? What we might term lossy learning occurs when a generalisa-
tion is made that explicitly contradicts the observed data. The model I have
developed is always consistent, unlike, for example, the models developed by
Batali (2002) and Smith (2003c). Whether or not lossy learning is a more
plausible model of language learning in humans is another issue. The point
here is that lossy learning must, all other things being equal, be more biased

than consistent learning.

These points are not meant to amount to a claim for lack of bias in the model I
have developed. Rather, they relate to presenting a convincing case that the issue
of bias has been transfered, primarily, to a consideration of the hypothesis space.
One of the aims of the model I have developed is to make any bias explicit, and

therefore readily understandable.
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The issue of lossy learning, in contrast to consistent learning, is a problematic one.
Humans undoubtedly indulge in deviating from what the the linguistic evidence they
observe suggests. The model of consistent learning I have developed, on the other
hand, is not meant as a plausible model of human linguistic behaviour. Rather, the
model acts to explain the adaptive properties of a well-understood and rigorously
justified model of learning, namely MDL hypothesis selection. One result of this
approach is that residue is likely to persist, rather than be filtered by a biased and

lossy learner. This issue is worthy of further discussion.

6.8.3 Imperfection and frozen accidents

Directly as a result of the introduction of randomness, either through the process of
random invention, or the initial random state of the system, the stable compositional
systems that emerge from these models contain the residue of the randomness. Sub-
optimal coding of feature values, and redundant transitions seem to occur without
fail. How significant is this observation? It is not clear how these “imperfections”
relate to the imperfections Chomsky seeks to explain through the minimalist pro-
gram. In relation to this observation, it should be noted that I am not claiming that
all the perceived imperfections of language are the result of residue. For example,
Chomsky’s minimalist explanation may tell part of the story. Disregarding this
important open question, these experiments do highlight the fact that simplicity in
induction does not imply simplicity in the evolved states. The model of linguistic
evolution I have presented does, however, illustrate that justifiable and consistent

learning will not wash out remnents of randomness.

This observation is related to the concept of a frozen accident, often invoked in com-
plexity theory (Gell-Mann 1992; Kauffman 1993). The fact is that these experiments
consistently lead to evolved systems containing imperfections that can properly be
regarded as frozen accidents. To be absolutely clear on this point, imperfections in
language may be partly explained as frozen accidents, but it is unlikely they are
solely explainable in these terms. It is useful at this point to distinguish between
imperfections in language in the sense used by Chomsky, which generally suggests
some superfluous structural role (that, nevertheless, fulfils some function), and the
imperfections we observe in the simulation model. The imperfections evident in
the evolved compositional language of the model I will term imperfections in the

narrow sense.
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Interestingly, compositional structure is suggested by these models to be a prime
example of a frozen accident. Or, more accurately, the result of a series of frozen
accidents; each one building on a cumulative base of structure that precipitates
generalisation. Accordingly, two forms of frozen accident are present in the evolved
systems I have discussed. First, frozen accidents that contribute to compressibility,
and second, frozen accidents that do not. Compositional structure is an example

of the first kind, imperfections (in the narrow sense) are an example of the second.

6.8.4 Future developments

Before closing this Chapter, it is worth contemplating possible extensions to the

model. Four areas of future development immediately suggest themselves:

1. Non-uniform distributions: As I have discussed previously, the probability
distribution over the set of meanings is likely to have a profound effect on the
hypothesis selection process. It is hard to argue against the fact that users
of language communicate some meanings more often than others. Will the
frequent utterances be those lacking compositional structure? Is Alison Wray
correct in her assertion that holistic language results in “removing the burden
of the everyday, pragmatically determined and communicably predictable,
leaving the way clear for the more demanding analytic system to achieve the
goals that only it can?” (Wray 1998:63). The model developed is poised to
investigate these questions.

2. The effect of alphabet size: The size of the alphabet from which symbols
are drawn has not been the target of investigation. It is quite reasonable to
imagine that the diversity available from the choice of alphabet could have an
influential impact on the evolved systems.

3. Invention bias: As the progression of this Chapter suggests, the nature of
the evolved systems is heavily determined by the invention scheme adopted. I
have investigated the impact of one successful invention scheme. Undoubtedly
there are others, and further investigation needs to be carried out.

4. Awvoiding local minima: Section 6.6 highlighted the fact that deficiencies in
the hypothesis selection procedure can be rule out certain kinds of language
structure. I have assumed that, for example, features associated with disjoint
sub-signals would be adaptive if the search procedure mirrored MDL hypoth-
esis selection precisely. These assumptions need to be tested to assess the

adaptive properties of varying language structures.
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6.9 Chapter Summary

This Chapter has seen the application of the model developed in Chapters 4 and 5.
Rather than a static analysis, full dynamic simulations have been carried out. First
of all, the insights suggested by the static analysis have been verified. On top of this
strengthening the results of Chapter 5, the computational simulations have resulted
in evolved systems that are sub-optimal, and contain varying forms of redundancy.
In order to construct a full simulation model, several of the assumptions of Chapter

5 have been addressed and tested.

First, MDL hypothesis selection, rather being applied precisely as theory dictates,
has been carried out automatically and subject to approximation. This required a
search through the hypothesis space. Using compression operators in conjunction
with a beam search, MDL hypothesis selection has been approximated. The search
is not perfect, and this fact is borne out by the fact that certain compositional

structures cannot be induced.

Second, invention, an issue skirted around until now, has been discussed and inves-
tigated. The partially random invention scheme I considered initially failed to lead
to the evolution of compositional structure. To address this problem, I have de-
veloped an invention scheme that maximises the probability of introducing signals
that facilitate compression. Given an initial state of randomness, this invention
scheme leads to the linguistic evolution of compositional structure. One deficit in
the invention scheme is its reliance on an initial state containing sufficient signal
diversity. To combat this problem, I deployed both random invention and the com-
pressor scheme together. The problems found previously with the random invention
scheme were alleviated when used in conjunction with the compressor scheme, and
the result was the consistent evolution of compositional structure from an initially

blank hypothesis.

Third, T have analysed the evolved systems and found that the simplicity principles
underlying both induction and invention led to compositional systems which contain
sub-optimal feature codings and redundant transitions. I have explained these
anomalies as frozen accidents, and noted that this is one possibility in explaining

imperfections in language.

Fourth, I briefly related the simulation model to issues of a bottleneck size. 1
demonstrated that for consistent evolution, the assumptions of Chapter 5 had to

be weakened slightly, as small deviations from expected values can block linguistic
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evolution. Large bottlenecks lead to slowing down of the evolution process. The

absence of a transmission bottleneck excludes the possibility of linguistic evolution.

To conclude, the impact of this model in a wider context is to show that Occam’s
razor is entirely justifiable and in line with hypothesis selection by minimum de-
scription length when certain conditions are met. These conditions are those that
are widely modelled, such as the presence of bottleneck and a uniform distribution
over communicatively relevant meanings. The future development of the model,
however, can shed light on the linguistic evolution in non-uniform environments.
Of the several avenues of further investigation, this is possibly the most important,

and one for which the model is well poised.
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CHAPTER 7

Conclusions

7.1 Introduction

It is important to relate the insights suggested by the models I have developed to
the process of iterated in learning in a wider sense. First, I will interpret the key
results of this thesis and frame them in a plausible evolutionary context. Second, in
light of the results I have outlined, I will revisit the three hypotheses introduced in
Chapter 2. This concluding discussion will aim to justify the claim that simplicity

can be considered a fundamental driving force in linguistic evolution.

7.2 Summary of results

The models I have developed suggest several conditions that must met in order for
linguistic evolution to occur. If these results are to carry any explanatory force,
then they must be related to existing explanations for the emergence of linguistic
structure. The aim of this Section is to strengthen the results developed so far by
considering these results in light of related work. In doing so, the three hypotheses
outlined in Chapter 2 can be approached in a more concrete fashion. Ultimately,
the aim is to relate the models to the issue of linguistic universals and linguistic

nativism.
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7.2.1 Stability conditions
Semantic complexity

It would seem a basic fact that in order for an organism to process a compositional
language, it must possess some minimal degree of semantic structure. This is both
a requirement of the definition of compositionality, and an observation that the
models I have developed imply. Furthermore, beyond the requirement of some basic
level of semantic structure, the results of Chapter 5 suggest that certain degrees of
semantic complexity make the linguistic evolution of compositional structure more
likely.

When considering the linguistic evolution of compositionality, within certain bounds,
more semantic structure is better than less semantic structure. A general justifi-
cation for this statement runs as follows. Because generalisation functions on the
basis of observed regularities in the data, then the more likely that these regu-
larities have been fully observed, the more likely generalisation is to occur. With
increased semantic structure, more regularity will be observed for some fixed set of
observations. On this basis, we can argue that generalisation thrives on regularity,
so more regularity leads to increased degrees of generalisation. In the experiments
I have conducted, this argument has been presented as one where, given a certain
degree of coverage of the meaning space, generalisation will be greater in the case

of increased semantic complexity.

One consequence of this observation is that some level of semantic complexity must
pre-exist the conditions under which cumulative linguistic evolution occurs. This
is not to say that semantic complexity evolved and then linguistic evolution began,
but rather in order for cumulative linguistic evolution to occur, some base of se-
mantic complexity must be present. Whether or not this base has evolved in any
way subsequently or co-evolved alongside linguistic evolution is another issue. In
short, the results require the pre-existence of a semantic base. This conclusion is
closely related to the work of Schoenemann, where he states: “I would argue that
most cognitive categories are independent of, and exist prior to, language itself.”
(Schoenemann 1999:319). It is this semantic complexity that the parameters F
and V attempt to model. The abstract environment that the agents “perceive” is
divided up according to the number of number channels — or features — and the
acuity of these channels is determined by the number of feature values per feature.

It is clear this is the kind semantic complexity that Schoenemann imagines:
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Different organisms will divide up the world differently, in accordance
with their unique evolved neural systems, but they all divide up the
world in some way. These “divisions” are what I mean by “cognitive

" or “semantic units.” Increasing semantic complexity there-

categories,’
fore refers to an increase in the number of divisions of reality which a
particular organism is aware of and can respond to in some meaningful

way. (Schoenemann 1999:318)

Furthermore, Schoenemann’s argument leads to the conclusion that “syntax is more
properly understood as an emergent characteristic of the explosion of semantic com-
plexity that occurred during hominid evolution.” (Schoenemann 1999:309). This
argument requires us to consider why humans have language and, for example, other
primates do not. Schoenemann believes that humans are alone in their possession

of a sufficiently high degree of semantic complexity:

Humans are by far the most highly encephalized of all primates, which
would suggest that we also have the most complex and varied recon-
struction of external reality. This is simply another way of saying that
hominids experienced a massive increase in semantic complexity begin-
ning at least 2.5 million years ago with the first unequivocal increases

in hominid encephalization. (Schoenemann 1999:321)

The reason for this increase may not be related to language, for example, an argu-
ment along the lines proposed by Dunbar proceeds by noting that hominids began
to form large groups sizes that in turn lead to a requirement for comprehending

complex social relationships (Dunbar 1996).

The predictions made the models I have developed relate directly to Schoenemann’s
argument. One side-effect of this increase in semantic complexity is the increased
likelihood that the set of possible meanings an organism can accommodate, or treat
as communicatively relevant, will increase at an alarming rate. This observation
is directly related to the next condition identified by the models for the linguistic

evolution of compositional structure.

Stimulus poverty

What we might term stimulus poverty is controlled in the models by the severity of
the transmission bottleneck. The meaning space defines a range of distinct mean-

ings that an agent could be called to produce a signal for. In all the experiments
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I have conducted, this range exceeds the number of meaning/signal pairs on which
the learning process is based. The results of Chapter 5 indicate that compositional
language is more likely to be observed than holistic language under precisely these
conditions. In Chapter 6, this result was confirmed. Moreover, because the like-
lihood of compositionality is greater than that of holistic language, compositional
languages will, in the limit, emerge and remain stable. In short, the increased sta-
bility payoff of compositional language translates into the eventual emergence and

retention of compositional systems.

In terms of an evolutionary scenario, these conditions, where the number of possible
meanings is far greater than the number of meanings that can feasibly be observed,
occur as a result of an increase in semantic complexity. Relatively small increases in
semantic complexity, such as an extra feature, or an extra value per feature, will lead
to a large increase in the number of possible meanings. This increase is necessarily
a super-linear function of the number features or values added. Schoenemann’s
discussion of the increase in semantic complexity therefore implies the introduction
of a situation resembling the poverty of the stimulus, especially if we consider his

claim that hominids experienced a massive increase in semantic complexity.

The models discussed in Chapters 3, 5 and 6 all suggest that stimulus poverty
is a driving force for linguistic evolution. Stimulus poverty places an agent in a
situation in which it is likely that certain meanings are required to be expressed,
and these meanings are likely to not have been observed in conjunction with a
signal. So far from representing a problem, the poverty of the stimulus could be a
fundamental determinant of the linguistic evolution of compositional structure, that
is, as Zuidema (2003) points out, “the poverty of the stimulus solves the poverty of

stimulus”.

But is the situation represented by the presence of a transmission bottleneck really
the phenomenon widely termed as the poverty of the stimulus? In other words, is
this adoption of this term in the context of linguistic evolution a provocative abuse
of the term first introduced by Chomsky?

There are many arguments for the innateness hypothesis. But the most
significant one in Chomsky’s writings, and the one that has most affected
the field, is the argument from the poverty of the stimulus. (Wexler
2001)
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Two broad interpretations of the term exist. First, it refers to the situation in which
a learner is faced with the problem of acquiring some grammar G, in light of some
body of data D. This first interpretation we can label the strong interpretation,
as it characterises the situation as one where no learner can recover G solely on
the basis of D (Wexler 1991; Wexler 2001). Under this strong interpretation of the
term poverty of the stimulus, the term has been misused in this thesis, as learners
patently can recover hypotheses in light of the sparse data available to them. Of
course, as [ have noted earlier, whether this strong interpretation is at all likely with

respect to human language learning is a currently unresolved empirical question.

Second, the weak interpretation of the term discussed by, for example, Marcus
(2001), is simply the problem of induction discussed in Chapter 4, applied to the
problem of acquiring language. In this weak sense, it is quite justifiable to talk of
stimulus poverty in the context of these models. So, by adopting the weak use of
the term the poverty of the stimulus, I am referring to a situation imposed by (1)
an increase in semantic complexity, and (2), a restriction on the size of the body
of data available to a learner during language acquisition. In order to induce a
hypothesis that allows generalisation, which is a requirement to “solve” the poverty

of the stimulus, some inductive bias is required.

7.2.2 Inductive bias, compression, and linguistic evolution

A number of modelling decisions I have made suggest that the bias toward composi-
tional language is less likely than previous models of linguistic evolution. The con-
sistency criterion I have imposed is important. This restriction limits the changes
that can be made to an evolving language by the agents in the model. Further-
more, by employing the minimum description length principle, two issues have been

addressed.

First, inductive generalisations have in one sense been restricted to those that are
“justifiable”. The MDL hypothesis selection criterion can fail to lead to gener-
alisation, even if strong regularities exist in the data. Before carrying out these
experiments, the occurrence of linguistic evolution under these restrictions was an
open question. I have demonstrated that linguistic evolution does occur, although
this is partly a result of (1) a uniform distribution over meanings, and (2), the fact
that learning is based on sparse data. Setting aside the issue of the probability dis-
tribution over utterances, the fact remains that, within a particular simulation run,

statistical effects can occur as a result of the random sampling of meanings. We
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have seen this situation in practice: low bottlenecks highlight the fact that unrep-
resentative samples of the meaning space do occur. In relation to this observation,
we can conclude that occasionally the data will contain deviation from the uniform
distribution. The experiments I have conducted show that MDL is not sensitive
to these issues, and cumulative linguistic evolution occurs regardless. In short, it
is not entirely correct to argue that a uniform distribution over meanings justifies
the deployment of Occam’s razor principles, as a uniform distribution cannot be

guaranteed.

Second, I have appealed to the process of compression as cognitively plausible strat-
egy. Arguably, such a strategy is is ubiquitous is neurological systems. The argu-

ment presented in Chapter 4 justifies this claim.

7.3 Three hypotheses revisited

7.3.1 Innateness hypothesis

The innateness hypothesis asserts that humans have a biologically determined set of
predispositions that impact on our ability to learn and produce language. Broadly
speaking, those aspects of the model that are not culturally transmitted are candi-
date innate mechanisms. For example, each agent has a meaning space supporting
the structured encodings of communicatively relevant situations, a hypothesis space
containing the set of possible representations that relate meanings to signals, and

the ability to compress representations.

A natural question to ask is the following: Which mechanisms contained in an agent
are innate, and are these innate mechanisms language-specific? These are problem-
atic questions. In one respect, they are outside the range of this thesis. The principal
concern is the degree to which hallmarks of language can be ezxplained as adaptive
in the context of linguistic evolution. Nevertheless, one can make a strong case for
arguing that the restrictions imposed by the hypothesis space are innate, as is the
ability to form signals on the basis of this representation, for example. Although
compression, as | have discussed, is likely to be rife in non-linguistic cognition, it
does not follow that the ability to compress is domain-general. For this reason, the
compression of a specific linguistic representation may be an innately specified com-
petence. In short, these questions are fundamental, requiring further investigation.

This is why I have been cautious in my criticism of Chomsky’s minimalist program.
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Although, clearly, this thesis is at odds with Chomsky’s view that language acquisi-
tion is not a process of inductive generalisation, it is in some respects in agreement
with the view that the computational system responsible for transforming between
meaning and form is optimal in some sense. Accordingly, I consider there to be
some overlap in the notion of simplicity driving linguistic evolution and the notion
of simplicity invoked in minimalist theorising. In short, the innateness hypothesis I
have defined can only be refined through a substantial amount of further research:
we simply do not know whether the required representations and processes under-
lying compression are language-specific or not. But on the other hand, the results
of this thesis could be interpreted as a small step toward to justifying the claim

that linguistic processing is guided by domain-general cognitive processes.

7.8.2  Situatedness hypothesis

The Situatedness hypothesis claims that some language universals cannot be ex-
plained on the basis of an understanding of the biological basis for language. I have
argued that compositionality — an absolute universal — is an example that serves to
support this hypothesis. Now, this assertion can be criticised by arguing that this
is precisely what this thesis achieves: in essence I have argued that signal structure
reflects the structure of the meaning space. If the meaning space is biologically
determined, then the observed features of language will simply reflect variation in
how these meanings can be mapped to signals. A detached understanding of the
biological basis for language therefore can tell us about absolute universals. This
conclusion is tempting, but it fails to appreciate that we need an explanation of
how signals come to be structured in this way. This is the motivation behind the
situatedness hypothesis.

Beyond the conclusions of this thesis, the situatedness hypothesis makes a claim
about the nature of explanations of universals in general. Support for this hypothe-
sis requires elaborating the models developed here to include, for example, recursive
structure, a consideration of processing constraints, and changes to the language
learning environment such as non-uniform distributions over the set of communica-
tively relevant situations. Another possible source of constraints may come from

consideration of language function.
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7.8.83 Function independence hypothesis

The function independence hypothesis claims that some language universals can be
explained independent of the communicative function of language. Agents in the
models I have developed aquire knowledge of language on the basis of the linguistic
performance of other agents. One could argue that the very act of constructing
performance is a communicative act. However, any measure of the utility or ef-
fectiveness of this performance is not modelled. In this respect, communicative
function is not modelled. It is important to note that I am not claiming that com-
municative function plays no role in determining the structure of language, but to
establish this fact is outside the remit of this thesis.

7.4 Key contribution

Finally, the key contribution made by this thesis relates to strengthening the view
that language adapts to be learnable, and this pressure restricts language to exhibit
certain structural properties and not others. It is these structural properties, pos-
sibly among others, that we consistently observe, and as a result, treat as universal

properties of language.

I have strengthened this view by invoking a simplicity principle — the minium de-
scription length principle — that approximates the notion of Kolmogorov complexity.
This contribution is significant as it frames the generalisations made learners as jus-
tifiable. The simplicity principle also relates to the general ability of organisms to
compress representation. On this basis, I have argued that simplicity should be

regarded as a driving force in linguistic evolution.
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