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The Naming game (NG) describes the agreement dynamics of a population of N agents interacting
locally in pairs leading to the emergence of a shared vocabulary. This model has its relevance in
the novel fields of semiotic dynamics and specifically to opinion formation and language evolution.
The application of this model ranges from wireless sensor networks as spreading algorithms, leader
election algorithms to user based social tagging systems. In this article, we introduce the concept
of overhearing (i.e., at every time step of the game, a random set of Nδ individuals are chosen
from the population who overhear the transmitted word from the speaker and accordingly reshape
their inventories). When δ = 0 one recovers the behaviour of the original NG. As one increases δ,
the population of agents reaches a faster agreement with a significantly low memory requirement.
Remarkably, the convergence time to reach global consensus scales as logN as δ approaches 1.

PACS numbers: 89.75.-k, 05.65.+b, 89.65.Ef

I. INTRODUCTION

The naming game (NG) [1] is a simple multi-agent
model that employs local communications which leads
to the emergence of shared communication scheme in a
population of agents. The game is played by a group of
agents in pairwise interactions to negotiate conventions,
i.e., associations between forms (names) and meanings
(for example individuals in the world, objects, categories,
etc.). The negotiation of conventions is a process through
which one of the agents (i.e., the speaker) tries to draw at-
tention of the other agent (the so-called hearer) towards
the external meaning by the production of a conventional
form. For example, the speaker might be interested to
make the hearer identify an object through the produc-
tion of a name. The hearer may be able to express the
proper meaning and the speaker-hearer pair meet a lo-
cal consensus in which case we call it a “success”. The
other side of the coin is the hearer producing a wrong
interpretation in which case the hearer takes lesson from
the meeting by updating its meaning-form association.
Thus, on the basis of success and failure of the hearer
in producing meaning of the name, both the interacting
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agents reshape their internal meaning-form association.
Through successive interactions, the local adjustment of
individual meaning-form association leads or should lead
to the emergence of a global consensus.

The model represents one of the simplest example lead-
ing progressively to the establishment of human-like lan-
guages. It was expressly conceived to explore the role of
self-organization in the evolution of language [2, 3] and it
has acquired, since then, a paradigmatic role in the novel
field of semiotic dynamics which studies how language
evolves through invention of new words and grammatical
constructions, adoption of new meaning for words.

Implementing the naming game with local broadcasts,
serves as a model for opinion dynamics in large-scale au-
tonomously operating wireless sensor networks. In [4], it
is pointed out that NG can be used as a leader-election
model among a group of sensors where one does not in-
tend to disclose information as to who the leader is at
the end of the agreement process. The leader is a trusted
agent having possible responsibilities ranging from rout-
ing coordination to key distribution and the NG identi-
fies the leader which is hardly predictable from outside
resulting in highly secure systems.

The creation of shared classification schemes by the
NG in a system of artificial and networked autonomous
agents can also be relevant from a system-design view-
point, e.g., for sensor networks [5, 6]. Imagine a scenario
where mobile or static sensor nodes are deployed in a
large spatially extended region exploring an unknown and
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possibly hostile environment. One of the important tasks
would be to convey information to the agents about their
discoveries, in particular they should be able to agree on
the identification of the new objects with no prior clas-
sification scheme or language to communicate regarding
detecting and sensing objects. Since subsequent efficient
operation of the sensor network inherently depends on
unique object identification, the birth of a communica-
tion system among the agents is crucial at the explo-
ration stage after network deployment. Besides artificial
systems where it is obvious that the agreement has to
take place rapidly, it concerns social dynamics too [7].
In particular, as an example, one can think of the emer-
gence of shared lexicon inside social groups and communi-
ties. When a new concept is introduced, different people
name it differently. These words spread among the pop-
ulation, competing against each other, until the choice
of one of them is taken and everybody uses the same
word [8–10]. This type of dynamics has become a broad
interest of social groups and communities with the in-
ception of user-based tagging systems (such as flickr.com
or del.icio.us) [11, 12], where users manage tags to share
and categorize information as well as the “likes” of Face-
book [13] and Twitter [14].

The minimal NG has diverse applications in many
fields [4–6, 11–14]. Here we shall reshape the model in
a “multi-party” communication framework. In particu-
lar, this involves conversations between two parties and
plays a significant role in the formation of shared mental
model [15]. Parties involved in a multi-party dialogue
can assume roles other than the speaker/addressee roles
in traditional two-party communication. One of the most
important roles is that of the overhearer. Overhearing
involves monitoring the routine conversations of agents,
who know they are being overheard, to infer information
about the agents. The overhearers might then use such
information to assist themselves, assess their progress or
suggest advice to the others. When an agent ‘overhears
an interaction’, she receives information about something
that is not primarily addressed to him. For instance, one
can listen to a conversation between two friends with-
out being part of their dialogue. Multi-party discourse
analysis shows that overhearing is a required communica-
tion type to model group interactions and consequently
reproduces them among artificial agents [16]. Various
applications are known to employ the concept of over-
hearers [17–22]. Novick and Ward [17] have employed
overhearing to model interactions between pilots and air
traffic controllers. Kaminka et al. [18] have developed
a plan-recognition approach to overhearing in order to
monitor the state of distributed agent teams. Aiello et
al. [19] and Bussetta et al. [20, 21] have investigated an
architecture that enables overhearing, so that domain ex-
perts can provide advice to problem-solving agents when
necessary. Legras [22] has examined the use of overhear-
ing for maintaining organizational awareness. Recently,
Komarova et al. [23] have studied the effect of eavesdrop-
ping in the evolution of language.

Motivated by the above literature and diverse applica-
tions of overhearer, we review the naming game for the
emergence of a communication system in the presence of
overhearers and attempt to investigate its global prop-
erties. To the best of our knowledge, NG has not been
studied in this perspective of multi-party communication.
The basic activity of the overhearers in the naming game
is as follows: when a conversation between two parties
is going on, the third party (i.e, the overhearers) may
eavesdrop the conversation and reshape their meaning-
form association. As we shall see in this article that the
introduction of the concept of overhearing leads to much
faster convergence than traditional NG [1] coupled with
a low memory requirement per agent.
An alternative but closely related approach for opinion

(rumor) spreading has been introduced in [24] where the
authors investigated the problem on a fully connected
network of N agents and showed that the rumor spread-
ing takes O(logN) rounds. The same rumor spreading
problem has been studied on networks with conductance
φ in [25] and later thoroughly investigated and made
more efficient in [26]. In particular, the authors achieve a
tight bound on the number of rounds required in spread-
ing a rumor over a connected network of N nodes and
conductance φ which is O( logN

φ ). We shall outline a de-

tailed comparison between our approach and the above
literature later in this article.
The rest of the article is organized as follows. Section

II is devoted to the description of the basic naming game
model in the presence of overhearers. In section III, we
investigate the scaling relations of some important quan-
tities and provide analytical arguments to derive the rel-
evant exponents. In section IV, we discuss the state of
the art and compare our findings with [26]. Finally, con-
clusions are drawn in section V.

II. THE MODEL DEFINITION

The model consists of an interacting population of N
artificial agents observing a single object to be named,
i.e., a set of form-meaning pairs (in this case only names
competing to name the unique object) which is empty
at the beginning of the game (t = 0) and evolves dy-
namically in time. At each time step (t = 1, 2, . . . ) two
agents are randomly selected and interact: one of them
plays the role of speaker, the other one that of hearer. In
addition, a set of N δ individuals are randomly selected
in each step who behave as overhearers. Note that δ is a
parameter of the model.
In each game the following steps are executed:

• The speaker transmits a name to the hearer. If
her inventory is empty, the speaker invents a new
name, otherwise she selects randomly one of the
names she knows.

• If the hearer has the uttered name in her inventory,
the game is a success, and both agents delete all
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FIG. 1: Naming game interaction rules in presence of over-
hearer. Each agent is described by her inventory, i.e., the
repertoire of known names or words. The speaker selects
randomly one of her names, or invents a new name if her
inventory is empty (i.e., at the beginning of the game) and
transmits it to the hearer. If the hearer does not know the
selected name, she simply adds it to her inventory, and the
interaction is a failure. If, on the other hand, the hearer
recognizes the name, the interaction is a success, and both
agents delete from their inventories all their names but the
winning one. In both the situations, the overhearers overhear
the transmitted name and in case the name is known, they
delete all names from their inventories except the transmit-
ted one otherwise they perform a failure update. The above
figure represents the names symbolically in English alphabet
and boldface signifies the name that the speaker transmits to
the hearer.

their names, but the winning one.

• If the hearer does not know the uttered name, the
game is a failure, and the hearer inserts the name
in her inventory.

• Each overhearer overhears the word uttered by the
speaker; if the word is in her inventory, she removes
all the words from her inventory except this word
(i.e., treats the event as a success) else she adds
this word in her inventory (i.e., treats the event as
a failure).

Fig. 1 shows a hypothetical example illustrating the in-
ventory update rules of the different agents in the model
of NG with overhearers.

III. RESULTS AND DISCUSSIONS

The basic quantities to be measured in the NG are
the total number of words Nw(t), defined as the sum of
the inventory sizes of all the agents at the given time in-
stance t, and the number of different words Nd(t) present
in the system at time t, telling us how many synonyms
are present in the system at that time instance. The
dynamics proceeds as illustrated in fig. 2(a) and 2(b).
At the beginning both Nw(t) and Nd(t) grow linearly as
the agents invent new words. As invention ceases, Nd(t)
reaches a plateau, i.e. a maximum number of distinct
words. On the other hand, Nw(t) keeps growing till it
reaches a maximum at time tmax. The total number of
words then decreases and the system reaches the conver-
gence state at time tconv. At convergence all the agents
share the same unique word, so that Nw(tconv) = N and
Nd(tconv) = 1. It is observed that all the global quan-
tities in the basic naming game [1] follow a power-law
scaling as a function of the population size N . In par-
ticular, tmax ∼ Nα, tconv ∼ Nβ , Nmax

w ∼ Nγ where
α ≈ β ≈ γ ≈ 1.5 for the original naming game (δ = 1)
on a fully connected graph topology.
We now focus on analytically estimating the scaling of

(i) Nmax
w , (ii) tmax and (iii) tconv with N in the presence

of N δ overhearers.

A. Scaling of Nmax
w
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FIG. 2: Evolution of (a) the total number of words Nw(t),
(b) the number of different words present in the system, with
time t when the number of overhearers is ηN (δ = 1 as in
the original NG) with η = 0.05. Data refer to a population of
N = 50000 agents. (c) Scaling of Nmax

w with N for different
values of δ. (d) The figure expresses the relation of γ vs δ.
Each point in the above curves represents the average value
obtained over 100 simulation runs.

In the original NG the maximum number of distinct
words scales as N with an average value of N/2. This
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is because at each time step only two agents can update
their inventories, inventing in particular a new word if
their inventories are empty. When N δ overhearers are
present the fraction of agents who can invent new words
is reduced by a factor N δ. In this way the number of
unique words in the system when the total number of
words is close to the maximum is ∝ N/N δ = N1−δ. Fur-
ther, let us assume that each agent has on an average
cNa words in her inventory when the total number of
words is close to the maximum. As in the original NG,
Nmax

w ∼ Nγ so that γ = a + 1 holds here also. In the
following, we shall attempt to find a relation between γ
and δ. We can write the evolution equation of Nw(t) as

dNw(t)

dt
∝

(

1−
cNa

N1−δ

)

N δ
−

cNa

N1−δ
cNaN δ (1)

where the first term is related to unsuccessful games (in-
crease in Nw is proportional to N δ times the probabil-
ity of a single failure) and the second term is for suc-
cessful games (decrease in Nw is proportional to cNaN δ

times the probability of a single success). At maximum,
dNw(tmax)

dt = 0 and therefore in the limit N → ∞ the

only relation possible is a = 1−δ
2 which implies γ = 3−δ

2 .
When δ = 0, γ = 1.5 we recover the original NG behav-
ior. In general, as one varies δ in the interval [0, 1), Nmax

w

varies as Nγ where γ ∈ [1, 1.5]. The scaling of Nmax
w with

δ for different values of N is shown in fig. 2(c). In other
words, for all values of N , Nmax

w monotonically decreases
as δ increases and in the limit δ → 1 we have Nmax

w → N .
This behaviour of γ vs δ is confirmed by the simulation
results shown in fig. 2(d).

B. Scaling of tmax

We have to analyze the behaviour of the success rate
in the beginning of the process in order to estimate the
scaling relations for tmax. At early stages, most suc-
cessful interactions involve agents which have already
met in previous games. Thus, the probability of suc-
cess is proportional to the ratio between the number
of couples that have interacted before time t, which is
∝ tN δ(N δ − 1)/2 and the total number of possible pairs
is N(N − 1)/2. Thus, in the early stages, success rate

S(t) ∝ tN2δ

N2 = tN2(δ−1). Note that if we put δ = 0,

we immediately recover S(t) ∝ t/N2 which is the case
for the original NG. If δ → 1, we have S(t) ∝ t, while
if δ = 1

2 we have S(t) ∝ t/N . Both these observations
are validated by fig. 3(a) and 3(b) respectively for differ-
ent values of N . With this information about S(t) we
can now easily estimate the value of tmax by once again
writing the evolution equation:
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FIG. 3: Success rate at the onset of the dynamics (a) Success
rate S(t) ∝ t when no. of overhearers = ηN where η =
0.05. (b) S(t) ∝ t/N when δ = 1

2
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generated averaging over 100 simulation runs.

dNw(t)

dt
∝

(

1− tN2(δ−1)
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N δ
−

tN2(δ−1)cN (1−δ)/2N δ (2)
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FIG. 4: Scaling of tmax with population size N . As one varies

δ, tmax scales as N
3(1−δ)

2

a+bN(δ−1)/2 where a and b are some con-

stants. Each data point of all the above curves represents av-
eraged value taken over 100 simulation runs. The bold lines
show the fit from the analytical results.

If we now impose dNw(tmax)
dt = 0, then in the limit

N → ∞ we have tmax ∝ N
3(1−δ)

2

a+bN−(1−δ)/2 where the de-
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nominator is precisely a correction term with a and b as
constants. Once again, for δ = 0 we have tmax ∝ N3/2

thus recovering the original NG property. On the other
hand, in the limit δ → 1, tmax approaches O(1). The
results of the scaling of tmax with N for different values
of δ are shown in fig 4.

C. Scaling of tconv

The exponent for the convergence time, β, deserves
a more intricate discussion, and we can only attempt
to provide a näıve argument here. We concentrate on
the scaling of the interval of time separating the peak of
Nw(t) and the convergence, i.e., tdiff = (tconv - tmax),
since we already have an argument for tmax. tdiff is the
time span required by the system to get rid of all the
words but the one which survives in the final state.
If we adopt the mean field assumption that at t = tmax

each agent has on average Nmax
w /N ∼ N

1−δ
2 words, we

see that, by definition, in the interval tdiff , each agent
must have won at least once. This is a necessary condi-
tion to have convergence, and it is interesting to inves-
tigate the timescale over which this happens. Assuming
that N is the number of agents who did not yet have a
successful interaction at time t, we have:

N = N(1− pspw)
t (3)

where ps is the probability of choosing a specific agent
and pw = S(t) is the probability of a success. In this
case, ps =

1
N1−δ and pw = tN2(δ−1). In order to estimate

tdiff , we require the number of agents who have not yet
had a successful interaction to be finite just before the
convergence, i.e., N ∼ O(1) and we consider pw(tmax) =

tmaxN
2(δ−1) = N−(1−δ)/2

a+bN−(1−δ)/2 . In this way one gets:

tdiff ∝ N
3(1−δ)

2 (a+ bN−(1−δ)/2) logN (4)

The above scaling relation of tdiff is well confirmed by
the simulation results in fig 5.
Thus, when δ = 0, and we ignore the correction, we

recover the original NG case: tconv ∝ N3/2 logN . On the
other hand, in the limit δ → 1, we have tconv → logN .

IV. RELATED WORK

Most previous studies in semiotic dynamics has focused
on populations of agents in which all pairwise interactions
are allowed, i.e., the agents are placed on the vertices of a
fully connected graph. In statistical mechanics, this topo-
logical structure is commonly referred to as mean-field
topology. In the original work on the minimal naming
game model [1], Baronchelli et al. studied, numerically
and analytically, the behavior of the mean-field model,
providing theoretical arguments in order to explain the
main properties of the global behavior of the population.
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FIG. 5: Scaling of tdiff with the population size
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stants. Each point represents the average value obtained from
100 simulation runs. The bold lines show the fit from the an-
alytical results.

The model is extensively studied apart from fully con-
nected network, in regular lattices [27, 28]; small world
networks [28–31]; random geometric graphs [28, 32, 33];
and static [34–36], dynamic [37], and empirical [38] com-
plex networks. The final state of the system is usually a
complete consensus [39], but stable polarized states can
be reached introducing a simple confidence/trust param-
eter [40]. NG as defined in [1] is also modified in several
ways [28, 32, 38, 40–49] and it represents the fundamental
stepping stone of more complex models in computational
cognitive sciences [50–53]. In [27], effects of topological
embedding on the naming game dynamics is reported and
it has been shown that the convergence process requires
a memory per agent scaling as N and lasts a time N1+ 2

d

in dimension d ≤ 4 (the upper critical dimension), while

in mean field both memory and time scale as N
3
2 . Thus,

low dimensional lattices require more time to reach the
consensus compared to mean-field but for a lower mem-
ory. In [34], for both the ER and BA network models,
the convergence time tconv scales as Nβ , where β ≈ 1.4.
In [31], Barrat et al. show that for small-world net-
works the convergence towards consensus is reached on a
timescale of order NβSW , with βSW ≈ 1.4± 0.1, close to
the mean-field case (N

3
2 ) and this is in strong contrast

with the N3 behavior of purely one-dimensional systems.
In particular, time to converge scales as p1.4±0.1 , which is
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consistent with the fact that for p of order 1
N one should

recover an essentially one-dimensional behavior with con-
vergence times of order N3. The small-world topology
therefore allows to combine advantages from both finite
dimensional lattices and mean-field networks.
There has been a long history in the area of rumor

spreading which closely parallels the major concepts of
the model investigated here. One of the benchmarks is
the PUSH-PULL strategy introduced in [24] and then
further extended and made incrementally more efficient
in [25, 26]. The simple PUSH-PULL mechanism is as fol-
lows: at each round, a node that knows the rumor selects
a random neighbor and forwards the rumor (PUSH), or if
the node does not know the rumor selects a neighbor uni-
formly at random and asks for the information (PULL).
This scheme informs all N agents in a fully connected
network in time log3 N + O(ln lnN) with probability at
least 1 − O(N−α) where α > 0. In [26], Chierichetti
et al. investigated the rumor spreading in a connected
network of N nodes with conductance φ. The conduc-
tance of a graph, a name borrowed from electrical net-
works, is a quantity that measures how well information
spreads in the graph, its maximum value φ = 1 being
reached for a fully connected graph. In [26] it has been
shown that the PUSH-PULL strategy broadcasts a mes-

sage within O( log
2 φ−1

φ logN) rounds with a high proba-

bility of 1 − o(1) which the authors claim to be a tight
bound. Estimates regarding the amount of memory re-
quired per agent for the purpose of spreading have not
been presented so far in the above literature. In general,
since there is usually one rumor to be spread the mem-
ory estimate becomes trivial (O(1)). However, one can
always envisage a situation where new rumors need to be
constantly invented in the population.
In our work, we theoretically as well as by means of

simulations show that opinion spreading in a fully con-
nected network (i.e., conductance φ = 1) of N nodes
takes a O(logN) time to reach the global agreement with
a maximum memory estimate of N as δ → 1 which is

comparable with the time requirement for the spread-
ing of rumor in [24, 26]. It is important to stress that
in our model the case of maximal conductance φ = 1
is obtained on a fully connected graph only in the limit
δ = 1. Further, we point out that the model of NG in
overhearing population can be recast for rumor spread-
ing when constantly new rumors can be generated that
should compete to spread in the whole population.

V. CONCLUSIONS AND FUTURE WORK

In this article, we have introduced the agreement dy-
namics of naming game to describe the convergence of
population of agents on assigning a unique name to an
object in the domain of multi-party communication. We
have investigated the basic naming game model in an
overhearing population and computed the scaling be-
haviour of the main global quantities: Nw

max ∝ Nγ where
the exponent γ = 3−δ

2 ; tmax ∝ Nα where roughly the

exponent α = 3(1−δ)
2 and tconv ∝ Nα logN . In particu-

lar, we achieve a very fast agreement in the population
with significantly low memory requirement. Moreover,
we have also suggested that this model with overhearers
can find relevant application in rumour spreading.

There could be many interesting future directions.
First of all, it will be interesting to explore the model
in a scenario where agents make their success update
probabilistically as studied in [40]. The role of agent
topology can also be one of the future perspectives. Dif-
ferent complex topologies could be studied where agents
are embedded on more realistic networks. Furthermore,
while in this article we have concentrated only on the
study of the scaling properties of the system, perform-
ing a detailed analysis of the microscopic aspects of the
dynamics could be another interesting topic for future
research. One might also extend the idea of overhearers
to the more complex tasks like categorization [50–53].

[1] Andrea Baronchelli, Maddalena Felici, Vittorio Loreto,
Emanuele Caglioti, and Luc Steels. Sharp transition to-
wards shared vocabularies in multi-agent systems. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2006(06):P06014, 2006.

[2] L. Steels. A self-organizing spatial vocabulary. Artificial
Life, 2(3):319–332, 1995.

[3] L. Steels. Self-organizing vocabularies. In Christopher G.
Langton and Katsunori Shimohara, editors, Artificial
Life V, pages 179–184, Nara, Japan, 1996.

[4] Andrea Baronchelli. Role of feedback and broadcasting
in the naming game. Phys. Rev. E, 83(4):046103, Apr
2011.

[5] Yoosook Lee, Travis C. Collier, Charles E. Taylor, and
Edward P. Stabler. The role of population structure in
language evolution. In Proceedings of the 10th Interna-

tional Symposium on Artificial Life and Robotics, 2005.
[6] Travis C. Collier and Charles Taylor. Self-organization

in sensor networks. J. Parallel Distrib. Comput., 64:866–
873, July 2004.

[7] Claudio Castellano, Santo Fortunato, and Vittorio
Loreto. Statistical physics of social dynamics. Rev. Mod.
Phys., 81:591–646, May 2009.

[8] R.Lass. Historical Linguistics and Language Change.
Cambridge University Press, 1997.

[9] E. J. Briscoe, editor. Linguistic Evolution through Lan-
guage Acquisition: Formal and Computational Models.
Cambridge University Press, 2002.

[10] J. Hurford, M. Studdert-Kennedy, and C. Knight, edi-
tors. Approaches to the Evolution of Language: Social
and Cognitive Bases. Cambridge University Press, 1998.

[11] Ciro Cattuto, Vittorio Loreto, and Luciano Pietronero.



7

Semiotic dynamics and collaborative tagging. PNAS,
104(5):1461–1464, January 2007.

[12] Scott Golder and Bernardo A. Huberman. Usage pat-
terns of collaborative tagging systems. Journal of Infor-
mation Science, 32(2):198–208, April 2006.

[13] Facebook. http://www.facebook.com/.
[14] Twitter. http://twitter.com/.
[15] Kaivan Kamali, Xiaocong Fan, and John Yen. Multi-

party proactive communication: a perspective for evolv-
ing shared mental models. In Proceedings of the 21st
national conference on Artificial intelligence - Volume 1,
pages 685–690. AAAI Press, 2006.

[16] Frank Dignum and Gerard Vreeswijk. Towards a testbed
for multi-party dialogues. In Frank Dignum, editor, Ad-
vances in Agent Communication, volume 2922 of Lecture
Notes in Computer Science, pages 1955–1955. Springer
Berlin / Heidelberg, 2004. 10.1007/978-3-540-24608-4 13.

[17] David G. Novick and Karen Ward. Mutual beliefs of
multiple conversants: a computational model of collabo-
ration in air traffic control. In Proceedings of the eleventh
national conference on Artificial intelligence, AAAI’93,
pages 196–201. AAAI Press, 1993.

[18] Gal A. Kaminka, David V. Pynadath, and Milind Tambe.
Monitoring teams by overhearing: a multi-agent plan-
recognition approach. J. Artif. Int. Res., 17:83–135, Au-
gust 2002.

[19] Marco Aiello, Paolo Busetta, Antonia Donà, and Lu-
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