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Abstract

Research in language evolution is concerned with the question of how complex linguistic structures
can emerge from the interactions between many communicating individuals. As such it complements
psycholinguistics which investigates the processes involved in individual adult language processing, and
child language development studies, investigating how children learn a given (fixed) language. We focus on
the framework of language games and argue that they offer a fresh and formal perspective on many current
debates in cognitive science, including those on the synchronic vs. diachronic perspective on language, the
embodiment and situatedness of language and cognition, and the self-organization of linguistic patterns.
We present a measure for the quality of a lexicon in a population, and derive four characteristics of the
“optimal lexicon”: specificity, coherence, distinctiveness and regularity. We present a model of lexical
dynamics that shows the spontaneous emergence of these characteristics in a distributed population
of individuals that incorporate embodiment constraints. Finally, we discuss how research in cognitive
science could contribute to improving existing language game models.
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1 Introduction

There exists a long tradition of formulating and studying formal models of language processing and language
learning. These models have generally focused on the linguistic competence of a single individual. They have
proven to be appealing because such formalisms offer precision and clarity, have led to successful technology,
and have allowed for extensive theoretical research to complement empirical work.

However, these competence models have abstracted away many arguably crucial characteristics of lan-
guage. These abstractions are viewed with growing uneasiness by cognitive scientists, linguists and other
researchers. Some of their concerns are well-known: competence theories lack an appreciation of linguistic
“performance” and of the communicative function of language, and they place a strong emphasis on symbolic
processing and innateness (see e.g. [8, 33, 17] for criticisms).

Here we focus on a particular criticism: traditional models fail to acknowledge how much of linguistic
structure emerges from communication and embodiment. Recent research on natural language pragmatics,
for instance, has focused on language as a cooperative phenomenon where communication is viewed as a
joint action between the participants [4]. This view is in contrast to the traditional approach in which
speaking and hearing are investigated in isolation as individual actions. Researchers in the framework of
“emergentism” have argued that the structure of language should be explained as the emergent result of
the many interactions between known processes in evolution, development, speaking, listening, and language
change over time [17].
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This type of work emphasizes the role of (i) the function of language for communication between in-
dividuals (“cooperativity”), and (ii) the biophysical constraints of the human body and its environment
(“embodiment”) in the explanation for the origin and development of linguistic structure. We are sympa-
thetic to these arguments and share the criticism of a tradition that in some sense equates the formalisms
of the researcher with the mechanisms of the real brain. However, we regret that this general criticism goes
hand in hand with a reluctance to use formal models at all. Many researchers have focused instead uniquely
on empirical or philosophical approaches [e.g. 17], or on building “embodied” robots [e.g. 32].

The goal of this paper is to argue that formal models can deal in a meaningful way with embodiment,
situatedness and self-organization. They can help to define these concepts and elucidate the role they play
in the development of complex language. Language games, such as studied in recent years in the field of
artificial life (see e.g. [29, 15] for reviews), are a prime candidate for this purpose. Language games are
models of language change and language evolution in populations of communicating individuals. Although
in most of these models “cooperativity” and “embodiment” have not played much of a role, we believe they
can be successfully extended to incorporate these important aspects.

The notion of embodiment comes in different flavors. On the one hand, a learning system can be
incorporated into an actual robotic body, highlighting the necessity of the system to cope with sensory
limitations [32] and allowing it to manipulate its environment and to develop representations based on sensori-
motor interactions with this environment [22]. On the other hand, and more in line with the notion adopted
here, embodiment can mean incorporating constraints from sensory, brain and psychological processing into
models without explicitly constructing an artificial body. These approaches are complementary and neither
presents a fully embodied system. In this paper we argue that the latter notion of embodiment can be studied
with formal models, by incorporating sensory constraints (in the form of noise on the signals) and brain and
cognitive processing constraints (by assuming limited processing resources and topological relations between
meanings and between signals) into such models.

The models of language evolution that we will consider are multi-agent models. They define a population
of individuals that talk to each other and learn from each other, using a language that as a result changes
over time. Individuals in the models have limited production, memory and perception abilities, and they
have limited access to the knowledge of other individuals. The models evaluate the complex relationship
between (i) acoustic, cognitive and articulatory constraints, (ii) learning and development, (iii) cultural
transmission and interaction, (iv) biological evolution and (v) the complex patterns that are to be explained:
the phonology, morphology, syntax and semantics that are observed in human languages.

The type of language games we examine here is concerned with how a common lexicon can develop
in a population of individuals (often called agents in this context). In these games, agents can either act
as a speaker or hearer. The purpose of a communicative act is the transmission of a meaning from the
speaker to the hearer. Meanings cannot be transmitted directly but are encoded by linguistic forms. We can
investigate how, based on a great number of such linguistic exchanges under different constraints, a shared
lexicon develops so that different speakers use the same word for the same meaning and hearers interpret
words with intended meanings. In our models we restrict ourselves to the development of a common lexicon,
thus skipping the much more complex and controversial issues in syntax. Nevertheless, we hope to make
the point that language games offer an appealing framework to study other aspects of language as well. For
language games that do incorporate grammar, we refer to the extensive review of Kirby [15].

From the perspective of language games, the development of a shared lexicon simply cannot be studied
in isolation within one individual, because it depends on the interactions between individuals. As such it is
a prime example of an aspect of language that escapes study in traditional approaches.

In the rest of this paper we will discuss the general framework of these models and present a measure
for the quality of a lexicon. We will then study a model that is simple, but is nevertheless novel and serves
well to illustrate our approach. Finally, we will discuss how simple language games can be extended to
incorporate realistic aspects of cognition, embodiment, and communication.

2 The Optimal Lexicon

The communicative success of a population depends on the organization of the linguistic forms in that
population’s language, and on how these forms relate to different meanings: how uniquely does one form
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refer to one meaning? How likely is a speaker to choose a specific linguistic form for a meaning, and how
likely is a listener to attribute a certain meaning to a received form? To what extent do individuals agree
on the meaning–form mappings? How easily can different forms be confused when communication is noisy?

In this section we will first derive a formal description of what would be the “optimal lexicon”, i.e., the
lexicon that leads to the highest communicative success in the population. To do so, we need a measure
for communicative success. Such a measure is presented next. Similar formalisms were used in [11, 21] and
other papers, but our measure is chosen so that we can incorporate some real-world constraints on noise in
signaling [like 18] and different values for different meanings ([14, 19] incorporate in their models the related
idea of different frequencies for different meanings).

Speakers can express what they want to say in different ways. Likewise, hearers can interpret spoken
forms in different ways. Communicative success is high when the hearer’s interpretation of a received form
matches with the intention of the speaker. We assume a set of N agents that communicate by forms F to
convey meanings M . In a given interaction, a speaker chooses a form f for a meaning m, and the hearer
interprets the heard form f∗ (that might differ from f if transmission is noisy) and assigns it the meaning
m∗. Communication is optimal if speakers and hearers always agree on the meaning for an exchanged form,
i.e., if m = m∗ for any choice of m.

We denote with Si(f |m) the probability that an agent i uses the form f to express the meaning m.
Similarly, Ri(m|f) is the probability that agent i as a hearer interprets the form f as the meaning m. We
assume that there is a finite number |M | of relevant meanings and a finite number |F | of used forms. Further,
we assume that similarity between different forms and between different meanings can be measured [e.g. 16].

We also assume that communication is noisy, that is, the hearer might misperceive a certain form, and
more similar forms are more easily confused. We denote with U(f∗|f) the probability that an agent perceives
the form f as the form f∗ (f can be equal to f∗, indicating that the hearer has perceived the form correctly).

Finally, we assume that the communication is successful if the hearer’s interpretation is close to the
sender’s intention. The probability of successfully conveying a certain meaning thus depends on the proba-
bilities of the sender using certain forms and the probabilities of the hearer perceiving and interpreting these
forms correctly. We denote with V (m∗,m) the value (or reward) for the hearer understanding m∗ when
the speaker intended m. V is thus a measure of communication quality. It should express both the relative
importance of a certain meaning, and the relations between alternative meanings. For example, we could
assume that interpreting a signal with a meaning that is wrong but similar is better than interpreting it with
just a random meaning, or that being able to express frequent meanings is more important that expressing
infrequent ones.

From these observations, we derive a simple equation that describes the probability P (m∗|m) of any
hearer j having an interpretation m∗ when the speaker i intended m:

P (m∗|m) =
1

N(N − 1)

∑
i

∑
j 6=i

∑
f∈F

∑
f∗∈F

(
Si (f |m) · U (f∗|f) ·Rj (m∗|f∗)

)
(1)

This equation says that the probability of the meaning m being perceived as m∗ (“understanding m as
m∗”) is the probability of agent i using the form f to encode meaning m, the hearer perceiving form f∗ and
then interpreting it as m∗. Because we sum over all N agents as speakers and all but one as hearers (N − 1;
agents do not talk to themselves), we divide the whole expression by N(N − 1).

From here it is only a small step to define the communicative success C of the whole population of N
agents talking about all |M | meanings:

C =
1
|M |

∑
m∈M

∑
m∗∈M

(P (m∗|m) · V (m∗,m)) (2)

That is, overall communicative success is the sum of the probabilities for all meaning transmissions
weighted by their values (assuming that all meanings are equally frequent). This measure is normalized with
the number of meanings.

Because S, R, U and V can all be described as matrices, we can in fact summarize equation (1) and (2)
as follows:
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C =
1

|M |N(N − 1)

∑
i

∑
j 6=i

(
Si ×

(
U ×Rj

))
· V (3)

where the ‘×’ indicates usual matrix multiplication, and the ‘·’ indicates the summation of multiplying
every element in one matrix with its corresponding element in the other matrix (dot-multiplication).

Equation 3 constitutes a very general quality measure for a communication system between individuals
(described by the matrices S and R), under some “embodied” constraints of articulation and perception
(described by U) and semantic/pragmatic constraints on how useful an interpretation is given a certain
intention (described by V ). By choosing the proper U and V , a wide range of different noise and reward
functions can be modeled. However, these matrices can of course not capture all aspects of the embodiment
and environment. For instance, the development of conceptual and articulatory abilities and the dependencies
of rewards and confusion probabilities on specific contexts cannot be modeled directly with our four matrices.
However, the formalism is easily extendable to incorporate such aspects. Moreover, even if not all aspects
of animal [e.g. 24], human or robotic communication [e.g. 32] are modeled, the formalism gives a principled
way to abstract out those aspects of embodiment that are non-essential for the emerging language.

With equation 3 in hand we can now investigate under which conditions communicative success is max-
imized. We will not provide analytical results for any specific choice of U and V . Instead, we will present
numerical results for a variety of choices of U and V with a simple hill-climbing algorithm. The algorithm
used throughout this section is the following:

1. Initialize a population of P individuals, each with a |M | × |F | S matrix (a production lexicon) and a
|F | × |M | R matrix (a reception lexicon) set with random values and columns normalized;

2. Measure C according to equation (3);

3. Apply a random change (from a Gaussian distribution with mean 0 and standard deviation n = 0.1)
to a random entry in a random matrix of a random individual, and normalize the column;

4. Measure C ′ according to equation (3);

5. If C > C ′ revert the change; otherwise C := C ′;

6. If maximum steps are reached stop; otherwise goto 3.

Note that in the simulations that use this algorithm an individual’s lexicon is not changed as a direct
consequence of communication, but is changed randomly. However, this random change might lead to higher
communicative success, in which case the change is retained. We use this simple global optimization procedure
to analyze what the optimal lexicon will look like for different choices for U and V . In section 3 we will look
at the more realistic situation where agents optimize their individual communicative success, that is, where
optimization is local and distributed.

2.1 Categorical meanings, noise-free signaling

Let us first consider the simplest case of categorical, noise-free communication. That is, we assume that every
meaning is unique and has no relation with other meanings. Further we assume that forms are perceived
as they are uttered. In short, both U and V are unit matrices (matrices with 1’s on the diagonal, and 0’s
everywhere else).

If we optimize a population’s lexicon under these conditions using the hill-climbing algorithm described
above, we obtain results as in figure 1. The C value increases steadily and reaches the optimal value (1.0).
The S matrices in the population have maximal probability (= 1.0) for a specific form (horizontal) for each
of the meanings (vertical), and probability 0 for all other forms. In the R matrix these forms (vertical) are
interpreted as the “correct” meanings. Because there are more possible forms than meanings, some forms
are never used and have arbitrary interpretations.

From this simple simulation we can derive two properties of the optimal lexicon: Specificity, “one unique
form for every intention, and one unique interpretation for every used form”, if |M | ≤ |F |, and coherence,
“everyone in a population uses the same form for the same meaning”.
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(a) Development of communicative success
over 25000 iterations
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(b) S matrix of a random
individual, showing for each
meaning (vertical) the prob-
ability that she will use any
of the forms (horizontal) to
express it.

m1 m2 m3 m4 m5 m6 m7 m8

f12

f11
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f8

f7

f6

f5
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(c) R matrix of the same indi-
vidual, showing for each form
(vertical) the probability that
she will choose any of the
meanings (horizontal) as its
interpretation.

Figure 1: The optimal lexicon in a population under categorical, noise-free conditions. The size of circles is
proportional to the value of the corresponding entry; entries with value 0 are plotted as a small dot. (V and
U are unit matrices, |M | = 8, |F | = 12, N = 3, n = 0.1).

2.2 Categorical meanings, noisy signaling

If there is noise on the signal (due to a noisy environment and sensory limitations of the hearer), we can
expect the hearer to sometimes hear a different form than the speaker uttered. We can model this by
introducing non-zero, off-diagonal entries in the matrix U . Here, we consider only the simplest case, where
forms vary on one axis, determined by their index, and we set the values of U depending on the distance
from the “correct” form (and subsequently normalize every row of U):

U(f∗|f) =
1

1 + (f − f∗)2
(4)

We expect a lower optimal value of C. Moreover, for optimized C, we also expect to find matrices
that somehow minimize the chance of mis-interpretation. Figure 2 shows that this is indeed what happens.
The S matrix shows that for every meaning, there is a prototype form that individuals use. For these
prototype forms and their direct neighbors, the interpretation is the “correct” meaning. Thus, little clusters
of neighboring forms are all interpreted in the same way, such that prototype forms are maximally distinct
from each other. Thus, in addition to specificity and coherence, distinctiveness is a property of the optimal
lexicon when the signaling is noisy. Note that, even though there are many more forms than meanings, all
forms have a specific “best” interpretation. We can obtain similar results with form spaces that have more
dimensions [36], or continuous values [37].

2.3 Semantic similarities & noisy signaling

If we include in the model the assumption that not only forms have similarity relations, but also meanings
relate to each other, we can identify a fourth criterion of the optimal lexicon: regularity. Figure 3 shows
results that are obtained by running the hill-climbing algorithm of section 2, with U as in equation 4 and,
similarly, V as follows (and rows subsequently normalized):

V (m∗,m) =
1

1 + (m−m∗)2
(5)
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(a) Development of communicative success
over 100000 iterations
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Figure 2: A local optimum of the lexicon in a population under categorical, noisy conditions (V: unit matrix,
U: as in equation (4), |M | = 10, |F | = 30, N = 3, n = 0.1).

Here, V is maximal when intended meaning m and understood meaning m∗ are the same and decreases
with increasing distance between m and m∗.
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over 100000 iterations
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Figure 3: Local optima for S and R under semantic similarities, noisy signaling conditions (V: as in equa-
tion (5), U: as in equation (4), |M | = 10, |F | = 30, N = 3, n = 0.1).

The local optima found by the hill-climbing algorithm show not only specificity, coherence and distinctive-
ness, but also partial regularity : “similar forms tend to have similar meanings”, such that misinterpretations
are still better than a random interpretation. The found solution is a local optimum; the globally optimal
lexicon is maximally regular: with the parameters of the simulations in figure 3, meaning m1 would be
expressed with form f1, and forms f2 to f3 are interpreted as m1; m2 is expressed with f5, and f4 to f6

are interpreted as m2 etc. This optimum is not found in this simulation; however, in the local optimum of
figure 3 neighboring clusters of forms are, with only a few exceptions, associated with neighboring meanings.
In related work (author?) [36] we found that with a slightly different representation the optimum can easily
be found as well. Measuring the degree of regularity (as the correlation between the distances between each
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pair of meanings, and the distances between their associated forms) shows that it is consistently higher under
conditions with semantic similarities than without.

2.4 Properties of the Optimal Lexicon

From these experiments we can conclude that the optimal lexicon must have the following properties (pro-
vided that |M | ≤ |F |, and that the off-diagonal U and V values are relatively low):

specificity: every meaning has exactly one form to express it and vice versa (i.e. no homonyms, and no
real synonyms: if different forms have the same meaning they are very similar to each other).

coherence: all agents agree on which forms to use for which meanings, and vice versa.

distinctiveness: the used forms are maximally dissimilar to each other, so that they can be easily distin-
guished.

regularity: in the mapping between meanings and forms there is a preservation of topology, i.e., similar
forms tend to have similar meanings.

3 Language Games

After establishing the properties of an optimal lexicon, we can now turn to “language games”, where there
is no global optimization, but rather, every individual tries to optimize its own communicative success.
Language game models can be viewed as an extension of the basic communication model that consists of
a sender, a message and a receiver. Language games consider a population of individuals (“agents”) that
can both send and receive. A language game then is a linguistic interaction between 2 or more agents that
follows a specific protocol and has varying degrees of success. The types of models that we will consider have
the following components: (i) a linguistic representation, (ii) an interaction protocol, and (iii) a learning
algorithm. In this section we will discuss the choices we have made for each of these components based on
a review of existing models.

3.1 Linguistic Representation

With “representation” we mean here a formalism to represent the linguistic abilities of agents, ranging from
recurrent neural networks [1] or rewriting grammars [13, 35] to a simple “associative memory” [11, 21, 28,
20, 6, 12, 26], representing the strength of associations between meanings and forms.

In the model of this section, we use the same S and R matrices as in section 2. Forms and meanings
thus remain abstract. Other researchers [e.g. 30, 3] have chosen more concrete representations such as
random concatenations of consonants and vowels for the forms, or positions in a psychophysically motivated
color-space for meanings. However, these models do not have similarity relations between both forms and
meanings. Instead, forms and/or meanings are categorical and, as a result, the form–meaning associations
in the emerging languages are completely arbitrary (as in our first model, sections 2.1 and 2.2). A possible
exception is the model in [31]; however, in that paper it is not clear whether the stochasticity in the meaning
space is dependent on the assumed topology (i.e. whether a wrong but close interpretation is more valuable
than a far-off interpretation), and “regularity” and “distinctiveness” are not measured or analyzed.

In contrast to these models, we assume here that there are varying degrees of similarity between forms
and between meanings, i.e., there is a topological space of meanings, and a topological space of forms. In that
respect, our model is more similar to models of the evolution of grammatical language, where associations
between structured meanings and structured forms are not arbitrary [e.g. 14, 2]. For the sake of simplicity,
we report here results from simulations where forms and meanings each vary on a 1-dimensional axis. As in
section 2, we interpret the index of meanings and forms in the S and R matrices as their position on these
axes. Even such a similarity metric, which is only a first step toward more cognitive plausibility, brings
fundamentally new behaviors.
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3.2 Interaction Protocol

The agents in language game models interact following simple protocols. In most models two agents—a
speaker (initiator) and a hearer (imitator)—are chosen at random. Three types of games can be distinguished.
In the imitation game [5], in contrast to the present models, meanings play no role. However, like in our
model and in contrast to most other language game models, the imitation game assumes noise and similarities
in the form space and studies the emergent maximization of the distance between them.

In the imitation game, the initiator chooses a random form from its repertoire and utters it. The imitator
then chooses the form from its own repertoire that is closest to the received form and utters it. If the initiator
finds that the closest match to this (heard) form is the form that it originally used, the game is successful.
Otherwise the game is a failure.

In the naming game [28], meanings do play a role. The speaker chooses a meaning and a form to express
that meaning, and the hearer makes, based on the perceived form, a guess of what is meant. The hearer then
receives feedback from the speaker on the intended meaning, i.e., whether its guess was correct. The game
is a success if the speaker’s intention and the hearer’s interpretation are the same, and a failure otherwise.
The naming game serves as a model system for studying the emergence of conventional form–meaning
associations.

In the observational game, the meaning of the expressed form is immediately available to the hearer
(such as in situations where the speakers points at the object that is the topic of a conversation). This
simplification has been used in most language game models studied so far [e.g. 11, 28, 21, 1, 13, 12].

In the model described here, we make another simplifying assumption. We pick two random agents
from the population. The first agent learns from the other, and is randomly assigned the role of either
speaker or hearer. We then assume that the first agent is able to assess the overall communicative success
in communicating with the other agent, and learns through a form of hill-climbing as described below. The
effect of one interaction in our model can thus be seen as the average effect of many interactions in the
naming game. In section 4 we will discuss the consequences of relaxing this assumption.

3.3 Learning Algorithm

In most models, the learning algorithm that agents use to improve their linguistic abilities is very simple (see
[27] for a discussion of the required biases of these learning algorithms and how these biases can evolve). In
all of the language games models mentioned above a mechanism is implemented to keep track of the success
of each form or form-meaning association. Whether or not a specific association is used depends on this
score. Such algorithms can be considered variants of a hill-climbing process: given a present state of the
system, a random variation is tried out. If the performance is better than before, this variation is kept and
otherwise it is discarded.

The difference with a standard hill-climbing algorithm (such as in section 2) is that optimization is local
(every agent optimizes its individual success) and many variants are tried out at the same time. That is, at
any one time we can view associations with a high score as constituting the present state of the system. For
the other associations, the (low) scores are estimates of how much communication would improve by adopting
it. If adopting it would improve communication at this point, the scores will go up and the association will
eventually become part of the system.

In the language game model of this section, we will simply use a local hill-climbing variant. After picking
two random agents, the learning agent makes a random change in its S matrix (if it’s assigned the role of
speaker) or R matrix (if it is the hearer). The learner checks if that change improves the communicative
success in communicating with the other agent according to the following equation (which is almost identical
to equation 3, but now for one specific speaker and hearer):

Cij =
1
|M |

(
Si ×

(
U ×Rj

))
· V (6)

If Cij
before > Cij

after, the change is kept, if not the change is reversed. Note that in this distributed hill-
climbing at every interaction the target of the hill-climbing process can be different, because each interaction
is with a random other agent in the population and because other agents are learning at the same time.
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3.4 Self-organization of the optimal lexicon

The main result that we present here is that close approximations of each of the properties of the optimal
lexicon emerge from the local interactions that we have defined above. Figure 4 shows results from a
simulation with the same parameters as in figure 3, just with a larger population (N = 40) and a higher
noise-level (the random change in the hill-climbing algorithm is from a Gaussian distribution with mean 0
and standard deviation n = 1.0). The figure shows S and R matrices from one random individual at three
points in the simulation: after 5 × 106 and 2 × 107 iterations, and in the stable equilibrium configuration
(after almost 1× 108 iterations).

t q qr t pv qq ur q q qt r p ps q rt p pu qp v
(a) S matrix, t = 5× 106

t q rp p vr p s pq u pt q qv t s q v r up q q s
(b) S matrix, t = 2× 107

yyy y yyy y yy
(c) S matrix, t =∞

q p r p p p pq q r q r p p s q p q rq q r q p r r q q q p r r q p rq p r r r p s r q p q qq p q p p s q q q q q p q pq s r p r t p p q p q q qr s q q q q p q r p p q p qp p p q p q p t q p q q p uq q q q r q q s qp q q q p r q q q s q q p
(d) RT matrix, t = 5× 106

yr sq p q q qr s u u v xu u sq s t v s t s r qr r s r r r q qs q t p qp xxs r q qr w q u s u s p rq s s w v s xrv t q s q r q
(e) RT matrix, t = 2× 107

yyyyyyyyy yyy yyyyyyyy yyyyyyyyyy
(f) RT matrix, t =∞

Figure 4: Development of specificity, coherence, distinctiveness and regularity in the lexicon of a population
under semantic similarities, noisy signaling conditions. At each time-step a random speaker interacts with a
random hearer and one of them performs a single hill-climbing step to improve the communication. In this
graph, R matrices are transposed, such that in both S and RT matrices meanings are on the vertical axis
and forms on the horizontal axis. The size of circles is proportional to the value of the corresponding entry;
entries with value 0 are not plotted. t = ∞ indicates any time after the simulation has converged (from
around t = 108) to the stable equilibrium. (V: as in equation (5), U: as in equation (4), |M | = 10, |F | = 30,
N = 40, n = 1.0)

The lexicon that develops shows all 4 characteristics. In the S matrix at equilibrium (labeled t = ∞)
every meaning is always expressed by one unique form; in the R matrix, that form is always interpreted with
the correct meaning (specificity). At equilibrium, all agents have the same S and R matrices (coherence).
In the S matrix, the total distance between all preferred forms is (almost) maximal; in the R matrix, each
of these preferred forms (except at the edges) is the center of a little cluster of forms that are all interpreted
with the same meaning (distinctiveness). Finally, with 3 exceptions, all form-clusters have neighboring
form-clusters that express a neighboring meaning (regularity).

The degree of regularity in this simulation is only small (the correlation between the distance between each
pair of meanings and the distance between their corresponding forms is around 0.2). In general, regularity
can be difficult to obtain because to go from a irregular to a regular lexicon many changes to the lexicon
are required. Moreover, its contribution to the communicative success is small in comparison to the other
three properties. In [36] we show results with a different representation, where the entries in the S and R
matrices are always 1 or 0, and random changes move a 1 to a different position in the matrix. In this set-up
regularity can much more easily emerge, both in the global and in the distributed hill-climbing condition.
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4 Toward more cognitive plausibility

Our results show that there is no necessity for explicit and innately specified “principles” that guarantee
specificity, distinctiveness, coherence and regularity. It is possible in principle that these basic characteristics
emerge from simple interactions between agents, a generic learning algorithm and topological meaning and
form spaces. That is, they emerge from the embodiment (i.e., general perceptual and processing constraints)
and situatedness (i.e., interactions between individuals) of the simulated agents.

Of course, the biophysical constraints of real humans are different from the ones implemented in this
model. The next step in our research is therefore to evaluate if more realistic constraints lead – through
similar dynamics – to an emergent language with more realistic characteristics. Here we consider three
possible extensions of the model.

4.1 Limited feedback

In the distributed hill-climbing simulations we assumed that an agent makes a random change in one of its
matrices, and then evaluates if that change increases the success in communicating with one other individual.
In reality, that information might not be available. It is therefore worth examining if the same results can
be obtained with the minimal assumptions of feedback on whether or not a communication about a single
meaning has been successful (as in the naming game, [28]), or shared contexts between speaker and hearer
(as in the observational game, [25]).

Figure 5: Local interactions: emergence of distinctiveness, coherence and specificity. Dispersed forms in
form space, obtained through local interactions between communicating agents. Each of the 9 clusters in
this figure shows associations from both agents for one particular meaning. Large dots are strong association.
(Parameters: N = 2, |M | = 9, form space continuous – i.e. |F | = ∞, perceptual noise 10%)

We have done some experiments that show that at least specificity, coherence and distinctiveness can
easily emerge in a naming game set-up [37]. Figure 5 shows one of the emerging languages from these
experiments. It shows a pattern formed through local interactions between two communicating agents,
expressing 9 different meanings with forms from a 2-dimensional form space. Each of the 9 clusters in this
figure show strong associations from two agents for one particular meaning.

4.2 Cooperativity

An important principle in line with the “joint action” view of human communication has been formulated
by Grice [9] as the Principle of Cooperation: In a conversation, the speaker makes certain assumptions
about the expectations of the hearer, and she uses these assumptions to communicate her intended message
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effectively. This principle involves the provision of enough, but not too much information in a message, the
relevance of the message to the current conversation topic, and the truthfulness of the information provided.
In interpreting the message, the hearer relies on the speaker to have obeyed these principles.

In the context of language game models, we can extend this principle to the cooperative creation of new
words: a speaker that is interested in communicative success should only generate a new form if no form
for the intended meaning already exists in the language. For example, a speaker who wants to talk about a
duck-billed platypus but has forgotten the name for it (or never knew it), would not make up a random word
and thus confuse the hearer. Instead, she would either circumscribe the term or describe the animal, and
somehow prompt the hearer to give the name. By querying the hearer for a possible form, the speaker allows
herself to make assumptions about the beliefs of the hearer and therefore to engage in a cooperative language
game (as opposed to merely interactive language games that are traditionally studied). Such an extension
of the language game framework is plausible because it views language as a cooperative phenomenon and as
a means to maximize the efficiency of communicating intended meanings. It will prevent the creation of an
excess of new forms, thereby reducing the number of synonyms and the cognitive load.

4.3 Analogy

When an agent creates a new form in a language game it usually randomly assembles phonemes [e.g., 28].
This mechanism is in line with the claim of the “arbitrariness of the sign” [7]: the structure of the form
has no relationship to the meaning conveyed by it. While this is true for many forms in today’s existing
languages, there is evidence suggesting that, in the creation of new forms, the intended meaning should
be taken into account. First of all, when new words are created in, for example, English, they are often
compounded and derived from existing words to ease their understanding. Thus, someone who eats bananas
will be called a “banana-eater” rather than a “manslo”, to indicate the semantic relationship with bananas
and eaters. While such a process cannot be applied to simple language games directly, it does show a
structural relationship between words that reflects a semantic relationship between their meanings.

Second, there is growing evidence for the hypothesis that the sound of a word can suggest its meaning
(“sound symbolism”). This idea was first mentioned by Plato and has been pursued since then, e.g., by
Von Humboldt [34]. Subsequent psycholinguistic research has shown that in the formation of words, certain
sounds can represent certain meanings. For example, in assigning the two words Mil and Mal to images
of big and small tables, 80% of subjects chose Mal to stand for the larger table and Mil for the smaller
table, indicating that /a/ suggests big size and /i/ small size [23]. These results have been reproduced and
extended by numerous researchers [see e.g., 10].

A less controversial version than such “absolute” sound symbolism (where sounds carry meaning), is a
“relative” sound symbolism that can be directly applied to the creation of new forms in naming games. It
is described by Von Humboldt [34, p. 74] as “Words whose meanings lie close to one another, are likewise
accorded similar sounds”, while the sounds themselves bear no direct semantic content. In section 2 and 3
we presented results where such relative sound symbolism (“regularity”) emerges as a optimal solution in
noisy conditions. However, we can also imagine that agents actively exploit a form of topology preservation
when creating new forms. In a language game the decoding of the form by the hearer could then work as
follows:

Find a meaning for the form f:
for the nearest neighbor f’ of f according to the similarity metric,

find the best meaning m’
associate f with a meaning which is closest to m’

This approach can help to reduce ambiguity in the hearer’s lexicon. Preliminary results suggest faster con-
vergence of the language than in the original model, due to the emergence of regularities in the form–meaning
mapping. Further, we found several examples of parameter settings that would not lead to convergence un-
der the classical settings, but did converge under these topological settings. Finally, we find an unexpected
delay in the convergence in the final stage, due to “conflicts” between competing partial regularities. This
delay indicates that lexicon creation is subject to the opposing pressures of topological preservation and
distinctiveness maximization. We could assume that in the evolution of vocabularies of human languages,
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words with similar meanings might have developed to be as similar as possible (and thus predictive of their
meaning) while at the same time being distinctive as possible (to facilitate communication with already
known words). A new form that is created to be similar to another in order to facilitate understanding of
its meaning, would then undergo variation (historical change) to become more arbitrary as it becomes more
established and a prediction of its meaning becomes less important than its distinctiveness from other forms.
While we have not incorporated these constraints in our current simulations we believe that they present
a promising direction in the endeavor to integrate language game formalisms with cognitive approaches to
language.

5 Conclusions

We have discussed the relevance of language evolution models for the study of embodiment and self-
organization of language, and presented a formalism for describing language games. Language game models
are complementary to work that studies language processing and language acquisition. The models we dis-
cussed are simple; their value is that they make the roles of diachrony, embodiment and self-organization in
emerging linguistic structure explicit and testable.

We have argued that the environment and embodiment of communicating agents in the real world impose
a topology on both the meaning and the form space of their communication system. We have shown that
with these topologies the optimal lexicon has four characteristics: specificity, coherence, distinctiveness and
regularity. We have further shown that in a distributed population of agents that each have generic learning
capabilities, a lexicon can be established that shows each of these four characteristics.

Our results on distinctiveness and regularity follow naturally from the framework that we have described
in this paper. Nevertheless, they have not been reported in the extensive literature on the modeling of
language evolution. We believe that this fact in itself is support for our approach to embodiment, where we
try to incorporate constraints from sensory, brain and psychological processing into formal models without
explicitly constructing an artificial body. However, much work remains on explaining the role of these
constraints in the evolution of language. In the final part of the paper, we have therefore raised issues where
cognitive science can inform language game modeling, and eventually lead to a detailed understanding of
how complex language has emerged from many simple interactions.
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