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“It is astonishing what language can do. With a few syllables it can express an incalculable
number of thought, so that even a thought grasped by a terrestrial being for the very first time
can be put into a form of words which will be understood by someone to whom the thought is
entirely new. This would be impossible, were we not able to distinguish parts in the thoughts
corresponding to the parts of a sentence, so that the structure of the sentence serves as the

image of the structure of the thoughts.” (Frege, 1923)

“A struggle for life is constantly going on amongst the words and grammatical forms in each
language. The better, the shorter, the easier forms are constantly gaining the upper hand, and
they owe their success to their own inherent virtue.” (Darwin, 1871, p. 91)

“Humans and chimpanzees are nevertheless very similar in their proteins, on the average, but
vastly different in the sizes of their brains and their ability to write books about each other.”
(Lewontin, 1998, p. 117)



Abstract

The origins of human language, with its extraordinarily complex structure and multitude of functions, re-
mains among the most challenging problems for evolutionary biology and the cognitive sciences. Although
many will agree progress on this issue would have important consequences for linguistic theory, many re-
main sceptical about whether the topic is amenable to rigorous, scientific research at all. Complementing
recent developments toward better empirical validation, this thesis explores how formal models from both
linguistics and evolutionary biology can help to constrain the many theories and scenarios in this field.

I first review a number of foundational mathematical models from three branches of evolutionary biol-
ogy — population genetics, evolutionary game theory and social evolution theory — and discuss the relation
between them. This discussion yields a list of ten requirements on evolutionary scenarios for language, and
highlights the assumptions implicit in the various formalisms. I then look in more details at one specific
step-by-step scenario, proposed by Ray Jackendoff, and consider the linguistic formalisms that could be
used to characterise the evolutionary transitions from one stage to the next. I conclude from this review
that the main challenges in evolutionary linguistics are to explain how three major linguistic innovations —
combinatorial phonology, compositional semantics and hierarchical phrase-structure — could have spread
through a population where they are initially rare.

In the second part of the thesis, I critically evaluate some existing formal models of each of these major
transitions and present three novel alternatives. In an abstract model of the evolution of speech sounds
(viewed as trajectories through an acoustic space), I show that combinatorial phonology is a solution for
robustness against noise and the only evolutionary stable strategy (ESS). In a model of the evolution of
simple lexicons in a noisy environment, I show that the optimal lexicon uses a structured mapping from
meanings to sounds, providing a rudimentary compositional semantics. Lexicons with this property are
also ESS’s. Finally, in a model of the evolution and acquisition of context-free grammars, I evaluate the
conditions under which hierarchical phrase-structure will be favoured by natural selection, or will be the
outcome of a process of cultural evolution.

In the last chapter of the thesis, I discuss the implications of these models for the debates in linguistics
on innateness and learnability, and on the nature of language universals. A mainly negative point to make
is that formal learnability results cannot be used as evidence for an innate, language-specific specialisation
for language. A positive point is that with the evolutionary models of language, we can begin to under-
stand how universal properties and tendencies in natural languages can result from the intricate interaction

between innate learning biases and a process of cultural evolution over many generations.
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CHAPTER 1

General Introduction

1.1  Why Study the Evolution of Language?

Language evolution is a booming field, there can be no doubt about it. Christiansen & Kirby (2003c)
counted 94 published papers per year in the period 1990-2002 in the on-line database “IST Web of Sci-
ence”. Science, Nature and other high-profile journals publish many papers per year on the topic. There is
a biennial conference, which had its fifth edition in March 2004, numerous workshops, and a book-series
by Oxford University Press. Each year, collections of academic papers on language evolution are pub-
lished (Hurford, Studdert-Kennedy & Knight, 1998; Knight, Hurford & Studdert-Kennedy, 2000; Briscoe,
2002b; Wray, 2002; Cangelosi & Parisi, 2002; Christiansen & Kirby, 2003a; Tallerman, 2004), as well
as numerous popular science articles and books. There are funding opportunities earmarked for language
evolution research, specialised research groups, and a large number of university courses.

This surge in interest followed — coincidence or not — the publication of the most cited! paper from
the field, Steven Pinker and Paul Bloom’s position paper Natural Language and Natural Selection (1990),
and Pinker’s bestselling popular science book The language instinct (1994) expanding the argument from
that paper. Pinker and Bloom argued that there is every reason to believe the human “language instinct”
originates in a process of classical, Darwinian evolution, and their argument apparently hit a chord.

It is not difficult to understand why so many researchers are interested in the origins of language. After
all, language is a defining characteristic of our own species, and a sine qua non for human society, religion,
culture, technology and, indeed, science. Its origins are fascinating in their own right and, moreover, a
better understanding of language origins is likely to have major implications for theories of the nature,
use and acquisition of language and, perhaps, for the study of animal communication. Pinker & Bloom
(1990) argued that human language’s unique features can be understood as having evolved for the purpose
of conveying an unbounded number of messages over a limited, linear channel.

However, Pinker and Bloom’s paper — although important in countering an anti-evolutionary stance of
many linguists at the time — is a peculiar paper to be at the heart of the field. The paper does not present
a real theory, other than the proposal that we should think about language as an “adaptation”. Crucial
components of evolutionary explanations — the variation available for evolution, the intermediate steps, the
selection pressures moving our ancestors from one stage to the next — are missing. Rather, as evolutionary
biologist Richard Lewontin (1990) points out, the paper adopts an argument that is most popular with critics

of the theory of Natural Selection: the Argument from Design. Because language is too complex to have

IISI Web of Science lists 257 citing articles, more than any other citation hit in language evolution I know about; the on-line
Language Evolution and Computation Bibliography and Resources (Wang, 2004) has 79 citing papers in its database, more than any
of the other 757 papers in the database.
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arisen as a side-effect, Pinker & Bloom argue, there are no coherent alternatives to a classical Darwinian
explanation. Except for a sketchy survey of factors that could have played a role — information sharing,
sexual selection, the Baldwin effect — the paper does not even start with providing a candidate evolutionary
scenario.

Many others in the field have presented more substantive theories of language evolution. However, in
the hundreds of papers that have appeared since 1990, no real consensus has emerged about the fundamen-
tal questions of the field. Christiansen & Kirby (2003b), in a review of consensus and controversies, list
only methodological issues as points of emerging consensus: the need for interdisciplinary research, the
need for formal modelling and the need to investigate possible precursors of the language faculty in non-
human animals and prelinguistic hominids. Controversies, in contrast, abound. Researchers in language
evolution are sharply critical of each other’s work. Almost all chapters in the recent collection edited by
Christiansen & Kirby (2003a) start with criticising fundamental misunderstandings and omissions in the

field as a whole. For instance:

e Newmeyer (2003) complains about the limited involvement of linguists and linguistic theory in the-
orising about language origins;

e Bickerton (2003b) agrees, but adds that ignorance of linguistics is a special case “of a much more
widespread tendency [...]. All too often, a writer whose home is in one or other of [the relevant]
disciplines will make a proposal that is unacceptable in terms of one or more of the other relevant
disciplines”. Bickerton is particularly concerned about the lack of interest in the evolution of com-
plex syntax, and in relating linguistic innovations with major cultural changes in hominid evolution;

e Lieberman (2003), on the other hand, complains about the lack of interest in the articulatory and
acoustic constraints on reaching the very high rate of information transfer in human speech. With
Hauser & Fitch (2003), Lieberman argues for more focus on comparative data;

e Dunbar (2003) complains about lack of attention for social function of language;

e Komarova & Nowak (2003) identify two popular misconceptions: the view of language as a unde-
composable unit, and the idea that language evolved from scratch when the human lineage diverged

from the chimpanzee lineage some 5 million years ago.

If scholars within the language evolution field are critical of each other, the criticism of the field —
and more broadly of the whole Darwinian approach to explaining human cognition and behaviour — from
researchers outside language evolution can be withering. Linguist Noam Chomsky (quoted in Pinker &
Bloom, 1990) writes:

“It is perfectly safe to attribute this development [of innate mental structure] to “natural se-
lection”, so long as we realize that there is no substance to this assertion, that it amounts to
nothing more than a belief that there is some naturalistic explanation for these phenomena.”
(Chomsky, 1972, p.97).

Chomsky (2002), 30 years later, made similar remarks. Evolutionary biologist Richard Lewontin is

even less respectful:

“Finally, I must say that the best lesson our readers can learn is to give up the childish notion
that everything that is interesting about nature can be understood. History, and evolution is a
form of history, simply does not leave sufficient traces, especially when it is the forces that are
at issue. Form and even behavior may leave fossil remains, but forces like natural selection
do not. It might be interesting to know how cognition (whatever that is) arose and spread and
changed, but we cannot know. Tough luck.” (Lewontin, 1998, p.130)
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Are Chomsky, Lewontin and other critics overly pessimistic about the feasibility of thorough, scientific
investigation of language origins? Perhaps not; it could be that there really is a paucity of data, and that
ultimately there will be multiple scenarios of the evolutionary history of language that are coherent and
consistent with the empirical facts. However, I believe these critics are premature with their assessment.
Evolutionary biology has, from the days of the “modern synthesis” (Fisher, 1930; Wright, 1931; Haldane,
1932; Dobzhansky, 1937), used two main sources of empirical evidence — genetic and comparative — and
made extensive use of mathematical modelling. For language, genetic studies have only recently started to
play arole (Lai, Fisher, Hurst, Vargha-Khadem & Monaco, 2001). Comparative claims have been central to
language evolution research, but so far often based on surprisingly little solid empirical research (as Hauser,
Chomsky & Fitch, 2002, argue). Mathematical — and computational — modelling of both the biological and
cultural evolution of language has only recently started to be seriously undertaken (Grafen, 1990; Kirby,
2002b).

1.2 How to Study the Evolution of Language

Language evolution is of course not the only field where it is difficult to find empirical evidence: in cos-
mology, general relativity, paleontology, origins of life and many other fields researchers have struggled
to find ways to test the coherence of their theories, and to test the sometimes very indirect predictions that
follow from them. The solution in these fields has not been to abandon the interesting questions, but to
formalise the theories, and to work out testable consequences, even if it requires many intermediate steps.
For the evolution of language this requires the development of complete and formal scenarios that explain
the evolution of the unique features of human language (which are testable in modern humans) from a
plausible precursor state in the human lineage that is not unique in nature (and hence, open to empirical
investigation through comparative research).

Only when we have precise scenarios of the evolution of language and worked out ways to test empir-
ically the plausibility of one scenario against another, can we conclude — if that turns out to be the case
— that there are too many alternative scenarios consistent with the available data. In my view, we have
certainly not reached this stage yet. In this thesis I work out a number of formal requirements for theories
of language evolution, and argue that existing models and theories — including models presented in this
thesis — do not yet meet all requirements. The thesis is complementary to interesting work arguing that
much more empirical data can and should be gathered, and reporting results from such studies (Hauser,
1996; Hauser et al., 2002; Fitch & Hauser, 2004).

Of course, many other researchers have emphasised the need for scenarios of language evolution to be
(i) testable (for instance, Lieberman, 1984), (ii) complete (for instance Botha, 2003; Bickerton, 2003b) and
(iii) formal (for instance, Batali, 1998; Steels, 1997; Nowak et al., 2002). Of those features, formalisation is
perhaps most controversial, at least in the way this has been worked out in current models. Derek Bickerton,
for instance, has been vocal in his criticism of the oversimplifications in mathematical and computational
models (e.g. Bickerton, 2003b). There are two responses to such criticism, formulated nicely by Cavalli-
Sforza & Feldman (1981) and Batali (1998). The first emphasises the precision that comes with formal
models:

“Our position, however, is that a mathematical theory is always more precise than a verbal
one, in that it must spell out precisely the variables and parameters involved, and the relations
between them. Theories couched in nonmathematical language may confound interactions
and gloss over subtle differences in meaning. They avoid the charge of oversimplification at

the expense of ambiguity.” (Cavalli-Sforza & Feldman, 1981, p. vi).
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The second response emphasises the heuristic value of formal models, that helps the researcher to
explore consequences of a set of assumptions that might me overlooked in verbal theorising:

“Mathematical and computational models provide a way to explore alternative accounts of the
emergence of systems of communication. If the consequences of a model are consistent with
expectations based on intuitions or speculation, they might obtain a small measure of support.
But more interestingly (and, as it happens, more often), the consequences of a model may
deviate from expectations. In working out the reasons for the differences, one can potentially
develop a richer set of intuitions. Models are thus valuable to the degree that they explicitly
illustrate the consequences of the set of assumptions they embody. This may be even more
important than whether those assumptions are correct.” (Batali, 1998, p.406).

Both the precision and the exploration aspect of formal modelling will play a role in this thesis.

1.3 Related Approaches

The goal of this thesis is to contribute to formal, testable and complete scenarios of the evolution of human
language. One can identify at least three research traditions with similar goals.

The first is the work of Luc Steels (since 1995) and his students and colleagues at the Free University
Brussels and the Sony Computer Science Laboratory in Paris (Steels, 1995, 1998; Steels, Kaplan, Mcln-
tyre & Van Looveren, 2002; de Boer, 1999; De Jong, 2000; Kaplan, 2000; Vogt, 2000; Belpaeme, 2001;
De Beule, Van Looveren & Zuidema, 2002; Oudeyer, 2003). This work is based on the conviction that very
little about human language is innate, language-specific and shaped by natural selection. Rather, language —
with all its complex features — is the result of the cultural negotiation of a communication system between
agents with the communicative intentions and the cognitive, perceptual and motor abilities of humans.
Much emphasis is put on the biophysical constraints of “embodiment”, and the spontaneous emergence
of structure in “self-organisation”. The methodology is described as “understanding by building” (Pfeifer
& Scheier, 1999). In this work researchers try to simulate in as much detail as technically possible the
emergence of the features of natural language semantics, phonology, pragmatics and syntax. The ultimate
goal of this line of research is the simulation of the birth of a complete language in a population of talking
robots.

The approach I will take in this thesis differs in two important ways from the research in this tradition.
The first difference is methodological: 1 will not try to simulate reality but rather try to design simple
models, that deliberately abstract out those aspects of reality that are seen as non-essential for the phe-
nomenon under study. I believe the value of modelling is to aid understanding, and that “to substitute an
ill-understood model of the world for the ill-understood world is not progress” (Boyd & Richerson, 1985,
p-25). The second difference is about the role of Natural Selection, as will be emphasised several times
in this thesis. I share the belief of Steels and colleagues that “cultural evolution” and “self-organisation”
play a crucial role in creating the structure of languages. However, I see a complementary role for natural
selection in tinkering with the parameters of self-organising processes?.

The second tradition is the work of Martin Nowak (since 1999) and co-workers (Nowak & Krakauer,
1999; Nowak, Krakauer & Dress, 1999; Plotkin & Nowak, 2000; Nowak, Plotkin & Jansen, 2000; Trapa
& Nowak, 2000; Nowak, Komarova & Niyogi, 2001; Komarova & Nowak, 2001; Komarova, Niyogi &
Nowak, 2001; Nowak, Komarova & Niyogi, 2002; Mitchener & Nowak, 2002; Komarova & Nowak, 2003).
These authors present mathematical models — some very simple, some rather complex — to clarify the
major steps in the evolution of language: discrete repertoires of speech sounds, word formation, sentence

formation, Universal Grammar. The similarity in ambition to the work in this thesis manifests itself even

2De Boer (p.c.) and Oudeyer (2003) do express similar views.
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in the choice of titles, such as Major transitions in language evolution (Plotkin & Nowak, 2001) and
Evolutionary biology of language (Nowak, 2000). The major differences are technical, as will become
clear from the quite detailed critique of some of these models in chapters 4, 5 and 6. A recurring theme is
that these models keep the representation of language very abstract, whereas I will — using more concrete
representations of language and simulation models — argue that the assumed sets of strategies available for
evolution are often unrealistic.

The third tradition is the work of Jim Hurford (since 1989), Simon Kirby (since 1994) and John
Batali (since 1994) and their students (Hurford, 1989; Batali, 1994; Kirby, 1994; Oliphant & Batali, 1996;
Kirby & Hurford, 1997; Yamauchi, 2001; Smith, 2003b; Brighton, 2003; Smith, 2003a). These models
cover a range of topics, in particular the biological evolution of lexical learning, the cultural evolution
of syntax and the “learning guided evolution” of syntax (the Baldwin effect). The focus is on detailed
analysis of specific simulation models, with a shift from evolutionary game-theoretic models in 1989 to
mainly cultural evolution models later®>. The models I will present differ from this tradition in that they
focus much more on the role of natural selection, and on a complete scenario that includes the evolution of

phonology.

1.4 Plan of the Thesis

In this thesis I will discuss theories, models and results from fields ranging from population genetics to
comparative linguistics. In the interest of readability, I will avoid as much as possible the technical jargon
from particular fields, limit mathematical details to a fairly basic level, and provide wherever I can a
summary in words of given equations, or the intuition behind a given formalism or simulation.

In chapter 2 T will review foundational models from evolutionary biology, to arrive at a list of formal
criteria for evolutionary scenarios. These criteria, and some of the terminology introduced, will play a role
in the rest of the thesis in evaluating existing work and designing new models.

In chapter 3 I introduce a gradual scenario for the evolution of language proposed by Jackendoff
(1999, 2002). Although by no means uncontroversial, this scenario is an example of the kind of complete
scenarios I have in mind. I introduce a number of formalisms to characterise the various stages in the
scenario, and list three transitions that need further investigation.

In chapter 4 1 study the first of these transitions, the evolution of combinatorial phonology. I will use
the requirements from chapter 2 to critically evaluate existing models. I then present a new model of the
evolution of this fundamental feature of speech, where speech signals are modelled as trajectories through
an acoustic space. The model uses a hill-climbing heuristic to minimise confusion probabilities, and I will
consider both optimal configurations and “evolutionary stable states”.

Chapter 5 is very similarly structured, but considers the evolution of compositional semantics. I
evaluate existing models and present a new model that is also based on a hill-climbing heuristic and uses a
matrix representation for describing the mapping from meanings to signals. I show that in both the optimal
configurations and the evolutionary stable states similar meanings will be expressed by similar signals, and
discuss the relevance for the evolution of compositionality.

Chapter 6 considers the most difficult topic, the evolution of recursive, hierarchical phrase-structure. I
review some existing approaches that are based on mathematically convenient simplifications. I argue that
these simplifications wrongly exclude the effects of cultural evolution. I illustrate these points with a new
model of the learning and cultural evolution of phrase-structure, and consider the requirements for a model
of the biological evolution of learning strategies for phrase-structure.

3Kirby & Hurford (1997) and Smith (2003b) combine biological and cultural evolution.
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Finally, in chapter 7 T discuss the implications of the models in this thesis for the debate between
empiricists and nativists, and for the status of language universals. Moreover, I will argue that the formal
requirements from evolutionary theory and linguistics do constrain scenarios of the evolution of language.

The search for the first formal, complete, coherent and testable scenario is still open, but some steps towards

such a scenario were taken.



CHAPTER 2

The evolutionary biology of language

What are the requirements for scenarios of the biological evolution of
language? In this chapter I survey a number of simple but fundamental
models from population genetics, evolutionary game-theory and social
evolution theory. This review yields a list of required elements of evo-
lutionary explanations in general, and of explanations for language and

communication in particular.
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2.1 Introduction

There are two distinct ways in which the study of evolution and the study of natural language overlap.
First, they overlap in the search for an evolutionary explanation for why humans, and humans alone, are
capable of acquiring and using natural languages. Second, the process of evolution in biology and the
historical process of language change bear many similarities, and these parallels have played a role in the
development of theories in both fields since the time of Darwin. I will throughout this thesis refer to these
issues as the biological evolution of language (or “the language faculty”) and the cultural evolution of
language(s) respectively.

Both issues have received a great deal of attention in recent years, leading to a plethora of theories and
models (Hurford et al., 1998; Christiansen & Kirby, 2003a). Many proposals involve a single mechanism
or factor responsible for the emergence of modern natural languages. In some cases, extensive scenarios
for the evolution of language are proposed. Although this enormous body of work contains a great number
of interesting ideas and findings, there are also a number methodological problems. First, it is extremely
difficult to relate separate proposals to each other, because of a lack of consensus on terminology and basic
assumptions. Second, it is extremely difficult to evaluate the internal consistency and empirical validity of
proposed theories, because of a lack of formal rigor.

In some ways this situation is reminiscent of the state of the whole field of evolutionary biology before
the establishment of theoretical population genetics by Fisher, Wright, Haldane and others in the 1920s and
30s. Their mathematical models, and the subsequent informal “modern synthesis”, convinced biologists
of the central role of natural selection in evolution. Confusion remained about the units of selection, but
with the settling of the group selection debate by Maynard Smith (1964) and Williams (1966) a relative
consensus emerged about the minimum requirements for evolutionary explanations, as well as a common
vocabulary in which disagreements can be phrased. In the interdisciplinary field of language evolution, this
clarity is yet lacking. In this chapter, I will review some simple mathematical models from evolutionary
biology, and evaluate how they can be applied to both the biological and the cultural evolution of language.

I will start with some classical results from population genetics, about the way gene frequencies in
a population change as a result of mutation and selection, and then discuss the case for viewing natural
selection as optimisation, as well as the problems with this view. This optimisation view then provides a
natural bridge to evolutionary game theory, where the targets of optimisation shift because the opponents
in the game evolve as well. Finally, extensions to social evolution models that deal with kin selection, will
lead us to the issue of levels of selection, and clarify the relation of cultural evolution models — with the
dynamics happening at the level of cultural replicators — to evolutionary biology generally.

2.2 Adaptation for Language

When chimpanzees, our closest living relatives, are taught human language, they acquire several hundreds
of signals (Gardner & Gardner, 1969; Savage-Rumbaugh et al., 1986). They fail, however, to produce
speech sounds themselves, to acquire the many tens of thousands of words in natural languages, and to
grasp the use of even the most basic rules of grammar (Terrace, 1979). Human infants, in contrast, acquire
their native language rapidly. They produce speech sounds and comprehend simple words before the age
of 1, produce their first words soon after their first birthday and the first grammatical constructions before
their second birthday (Tomasello & Bates, 2001).

Why? Clearly there is something special about humans that makes them extra-ordinarily apt to acquire
and use natural languages. Among other things, the anatomy of the vocal tract, the control mechanism in
the brain for complex articulation and the cognitive ability to analyse and produce hierarchically structured

sentences appear to be qualitatively different in humans than in other apes. But not only humans are special;
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there is also something special about natural languages that makes them extra-ordinarily apt to be acquired
and used by humans.

How did this tight fit come about? One possibility is that the human capacity for language has emerged
purely as a side-effect of the many changes in anatomy and cognition that occurred in the hominid lin-
eage. The tight fit itself, in such a scenario, doesn’t need to be accidental, because a cultural evolution
scenario predicts that language will adapt to the peculiar biophysical and cognitive features of humans that
themselves have evolved for other reasons.

Although this possibility cannot be dismissed, from a biological point of view it does not appear very
likely. Humans spend around 3 hours a day or over 20% of their awake time talking (Dunbar, 1998,
and references therein), verbal abilities play a significant role in social status and, it seems, in both the
reproductive success of individuals and the success of our species as a whole. Such a salient characteristic
of any organism would require a Darwinian, evolutionary explanation. Hence, although the side-effect
option is a possibility, it can only be the conclusion of an elaborate investigation, and not serve as null
hypothesis. In chapter 6 I will argue that although language as a whole might be considered a biological
adaptation, many specifics about language (language universals) are better understood as the outcome of
cultural evolution. In this view, the complex results of cultural evolution and social learning have had
indirect consequences for biological evolution.

If we want to investigate specific hypotheses on adaptations for language, what form should such
hypotheses take? The early formal models in population genetics are a useful starting point. But first, it
should be clear that any statement about biological evolution is a statement about how genes mutate and
spread in a population through random drift and selection. That statement in no way reflects the form of
genetic determinism or naivety about “language genes” that have made some evolutionary linguists wary
to talk about genes at all. But if properties of language are to be explained by some biological endowment,
which in turn is to be explained as an adaptation for language, then we need to be explicit and postulate
a series of altered genes that influence the ability for language. Such genes can have many additional
non-linguistic effects (an illustrative example is the recently discovered FOXP2 gene, that, when mutated,
causes a range of problems in language processing as well as in sequencing orofacial movements, Lai et al.
2001). We can phrase this requirement' as follows:

Criterion 1 (Heritability) Evolutionary explanations for the origins of a trait need to postulate genetic
changes required for that trait.

2.3 Evolution as Gene Frequency Change

A formal model of evolution as gene frequency change can be built-up in the following way. Consider first
that in humans, as in almost all multicellular organisms, every individual inherits two sets of genes, one
from the father and one from the mother. If there is to be any change, we need to consider at least two
different variants, alleles, for each gene locus, and monitor the increase in frequency of one allele at the
expense of the other. In figure 2.1 the Mendelian model of inheritance of two alleles — A and «a at a single
locus — is depicted. Adults (top row) have a genome that is of any of the three possible types AA, Aa or
aa (Aa and a A are equivalent). These adults produce sperm and egg-cells (second row) with just a single
copy of the gene under consideration. In sexual reproduction, a sperm-cell and an egg-cell fuse, and grow
out to a new individual (third row). Evolution, in this simple scheme, concerns the change in frequencies

of the genotypes AA, Aa or aa, or the change in frequencies of the alleles A and a.

10f course, one can sensibly study the evolution of traits for which the genetic component has not been identified. The point here is
to emphasise that biological evolution implies genetic changes. The “requirements” in this chapter concern the ultimate evolutionary
explanation for a trait; of course, not every evolutionary model study will be able to meet all requirements, and neither will the studies
presented later in this thesis.
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p=p*+pg=p ¢=¢+pi=¢

Figure 2.1: Mendel’s model of inheritance, and the Hardy-Weinberg model of allele and genome frequencies
under Mendelian inheritance with no selection nor drift.

The Hardy-Weinberg model (developed independently by British mathematician Godfrey Harold Hardy,
1908 and German physician Wilhelm Weinberg, 1908; see Crow, 1999) describes the gene frequencies if
there is no mutation or selection. Consider the frequencies of the three genotypes (top row) at any partic-
ular point in time, and call these frequencies D, H and R. The frequencies of the alleles A and a in the

sperm and egg-cells are simply:

1
frequency of A: p = D+ §H
1
frequency of a: ¢ = R+ §H, (2.1)

because individuals with genotype A A or aa will always pass on an A or a respectively to their sperm and
egg-cells, but individuals with genotype Aa only half of the time.

Under a number simplifying assumptions (including random mating and meiosis, an infinite population
and no sex differences at the relevant locus), the frequencies of the three genotypes in the offspring are
simply D’ = p?, H = 2pq and R’ = ¢, because you need two A’s or a’s to make an AA or aa
respectively, and you need an A from either the father or the mother and an a from the other parent to make
an Aa. When this offspring then starts producing sperm- and egg-cells, the frequencies of the alleles A

and q are:

1
D'+ SH =p*+pq

new frequency of A: p' 3

1
new frequency of a: ¢ = R + §H/ =q¢° +pq. 2.2)

Hardy and Weinberg’s simple but fundamental observation is that because p+q = 1 (the total frequency
of all alleles must be 1, and thus ¢ = 1 — p), it follows that p and ¢ are constant under this model of
inheritance:

p=p"+pe=p"+pl—p) =p>+p—p°=p. (2.3)
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This result shows that under Mendelian inheritance existing variation in gene frequencies is maintained.
This is in contrast with “blending inheritance” (the assumed model of inheritance before the rediscovery
of Mendel’s laws around 1900), where a child’s trait values are the average of the parents’ and variation
quickly dissipates over time. The result played a crucial role in reconciling Mendelian genetics with Dar-
winian evolutionary theory, because it showed that under reasonably low mutation rates enough variation
can be built up for natural selection to operate (Fisher, 1930, chapter 1).

The Hardy-Weinberg model can be extended in a straightforward manner to include the effects of
selection. Natural selection, in Darwin’s theory, is the consequence of differences in survival rates to the
age of reproduction and the differences in reproductive success. These effects can be summarised with a
fitness coefficient for each of the possible genotypes, which gives the expected number of offspring. A
high coefficient w4 4 means that individuals of genotype AA live long and reproduce successfully, such
that their genes are well represented in the next generation. In terms of the equations, this just requires
weighting the contributions of parents of each genotype with the relevant fitness coefficient:

r_ p2wAA + Pquw Aq

w

2.4)
where w is the average fitness and given by:
w = p2wAA + 2pquaa + q2waa 2.5)

(this term is needed to account for changes in population size due to reproduction and selection).
Equation (2.4) gives us a first handle on the requirements for evolutionary innovation, and, hence,

evolutionary explanations. First of all, natural selection operates on genotypic and phenotypic variation.

Second, natural selection favours fitter genes and individuals over less fit ones. Both the variation and the

fitness differences need to be made explicit:

Criterion 2 (Strategy set) Evolutionary explanations need to postulate a set of possible genotypes and
phenotypes, as well as the mutations that can move an organism from one genotype—phenotype to another.

Criterion 3 (Payoff function) Evolutionary explanations need to postulate a function that relates the pos-
sible genotypes—phenotypes in a given environment (that may include other evolving individuals) to fitness.

If we are interested in a specific biological innovation — that is, a mutation — that was relevant for
learning or using language, we need to consider the situations before and after that mutation. In the simplest
case, a is the preexisting gene that is initially shared by the whole population, and A is the mutated version
of a that has arisen in a single individual. Hence, initially ¢ ~ 1 and p = 0. If A is to play a role in an
evolutionary scenario, we need to establish that allele A did start to spread in the population (as sketched

in figure 2.2); in other words, that p increases. We can formulate this requirement as follows:

Criterion 4 (Invasibility) Innovations in an evolutionary scenario need to be able to invade a population;
that is, an innovation should spread in a population where it is extremely rare.

If we know all fitness coefficients, it is straightforward to work out what happens to the frequency of the
new mutation. As it turns out A will spread if wa, > wqq, and it will get fixed (p = 1) if waa > waq. In
other words, the fitness of the new gene must be greater than that of the old one, and the new gene must, to
some extent, be dominant over the old one such that its effects are noticed in individuals that inherit copies
of both genes from each of the parents. In fact, the difference in fitness between the two variants must be
significant, at least large enough for the new gene not to get lost by chance fluctuations (Fisher, 1922) and

to get established after a reasonable number of generations (Haldane, 1932). Note that these results depend
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on some strong assumptions, including an infinite population with randomly interacting individuals. In

small populations with non-random interactions different dynamics can occur.

/
A

- ~

—

Figure 2.2: The spread of new genes in a population

2.4 Evolution as Optimisation

Since Darwin (1859), the notion of “adaptation” has played a major role in evolutionary thinking. His
work offered a coherent framework to study the traits of organisms in terms of their function for survival
and reproduction. Even before the mechanisms of genetic inheritance were unravelled, Darwin thus trans-
formed biology from a descriptive to an explanatory science. In the early 1920s the “founding fathers™ of
population genetics — Fisher, Wright and Haldane — worked out what happens to a single new gene when it
appears in a population. But do the dynamics described by equation (2.4) constitute “adaptation”? In other
words, does the predicted change in gene frequencies also mean the population will get better adapted to
its environment, i.e. improve its average fitness?

Both Fisher and Wright set out to work out a more general result. I will discuss Fisher’s “fundamental
theorem of natural selection” (Fisher, 1930) in section 2.8. Here I will follow Wright’s analysis of the
average fitness in a population, in particular Roughgarden’s (1979) version of these equations. Most math-
ematical details are in appendix A, but it is useful to look at a couple of Wright’s equations. First, it is
convenient to look at the change in the frequency p at every timestep. This is, using equation (2.4), given
by:

Ap = p'—p

2
WAA + PQW Aq
_ Puaatpgwas 2.6)

w

This equation can, with a bit of algebra (see equations (A.4) and (A.5) in appendix A), be rewritten as

follows:

Ap = % (p(wasa —waq) — q (Waq — WAa)) 2.7

This equation tells us nothing new; it is essentially equation (2.4) in a different form. However, the
new form will prove useful when we have worked out the next equation. We are interested in what happens
to the average fitness when the frequency (p) of the innovation changes. Mathematically, that question
directly translates into the derivative of w with respect to p. The expression for average fitness is given in
equation (2.5). Its derivative, if we assume the fitness coefficients are independent of p and ¢ (that is, no

frequency-dependence) turns out to be (as is worked out in equation (A.2) and (A.3) of appendix A):

dw
% =2 (p (wAA - wAa) —q (waa - wAa)) (28)
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When we note that equations (2.7) and (2.8) are very similar, it is clear that we can replace a large part

of (2.7) with half of (2.8), and get:
pq (1) dw
ap="1 <§) =z (2.9)

This is a fundamental result for evolutionary biology. The equation says that the change in the fre-
quency of a new gene, will be in the direction of the derivative of fitness with respect to that gene’s fre-
quency. That means that only if the average fitness increases with increasing p, will the new gene spread.
Moreover, the spread will be fastest at intermediate frequencies (high variance) and low average fitness. In
other words, evolution — under the assumption mentioned — will act to optimise the average fitness in the
population: it will lead to adaptation.

However, the mathematical derivation of this intuitive result also tells us about its limitations. First of
all, evolution is shortsighted. We saw a simple example at the end of the previous section: if wa, < Waq
(there is “heterozygous disadvantage”), then the new allele A will not spread in the population, even
though at fixation it might improve the mean fitness in the population. Second, evolution needs (heritable)
variation. If pg = 0, nothing will change. Thirdly, the equation is only valid if the fitness coefficients
are independent of p and ¢. That is, whatever the traits are that allele A influences, the usefulness of the
innovation should not depend on how many others in the population share it. This condition is obviously
violated in the evolution of communication, because the usefulness of a signal will always depend on
the presence of others that can perceive and understand it. Fourthly, the original Hardy-Weinberg model
brought quite a lot of assumptions, including the independence of the single locus we looked at from other
loci, random mating, discrete generations and infinite populations. Some of the consequences of relaxing
these and the frequency independence assumptions will be evaluated in the next section.

Finally, as Fisher (1930) emphasised, these calculations deal only with the direct effects of natural
selection. They predict the direction of change, but it is unwarranted to conclude that the average fitness
in a population will increase. Environmental conditions might have changed in the mean time and, even if
the environment is constant, all individuals in the population are better adapted to it such that competition
is fiercer. These effects — not modelled by Wright and Fisher’s equations — were collectively labelled
“deterioration of the environment” by Fisher.

In addition to these quantitative results, Wright made a much more qualitative contribution relating evo-
lution and optimisation. In a paper without any mathematics (Wright, 1932) he introduced an extremely
influential metaphor: the adaptive landscape. The adaptive landscape is a landscape of 3 or more dimen-
sions, with the plane (or hyperplane) representing the space of possible genotypes, and the height of every
point representing fitness (see figure 2.3). On such a landscape, a population is a collection of points. Mu-
tations correspond to steps in the landscape; selection corresponds to the selective removal of individuals
that are lower down. The process of evolution involves the population to climb up-hill, following a local
gradient to a local peak.

I will discuss some problems with the concept below. However, the adaptive landscape representation
in this form does illustrate Darwin’s (1859) insight that for a process of continuing evolution, we need a
path of ever increasing fitness from the hypothesised initial point in genotype space to the end result. (In
finite populations, stochastic drift can bridge fitness barriers in the adaptive landscape, but only if they
are relatively shallow.) For complex traits, such as language, it seems reasonable to postulate a series of
many genetic changes. Wright’s metaphor highlights the fact that each of these changes needs to confer an
adaptive advantage:

Criterion 5 (Fit intermediates) Explanations for complex traits, that involve a series of genetic changes,
need to show a path of fit intermediates, from the hypothesised initial state to the desired end state.
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gene combinations

(b) A computer-generated 3d adaptive landscape

Figure 2.3: The adaptive landscape of fitness as a function of genotype. The graphs illustrate hypothetical
examples in which two genes have a continuous range of effects. Real organisms have, in contrast, a
discrete set of possible genotypes involving many more than two genes. Thus, mutations can take them
in very many directions. This high dimensionality makes it more likely that there is some path uphill
to the “adaptive peak” (see Provine (1986), chapter 9). (a) is a graph from Wright (1932). The original
caption is: “Diagrammatic representation of the field of gene combinations in two dimensions instead of
many thousands. Dotted lines represent contours with respect to adaptiveness.” (b) is taken from Barton &
Zuidema (2003).
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This requirement is important, but it might not be as problematic as it looks at first sight. First, al-
though evolution will generally lead uphill, there is some room for random processes as well. Wright used
the adaptive landscape metaphor to explain the effects of increases or decreases of the rate of mutation and
the strength of selection. He also discussed at some length the effects of small population sizes, where in-
breeding will lead to the non-selective process of genetic drift: random deviations from the locally optimal
genotype due to accumulation of mutations and a lack of variation for selection to operate on. Wright’s
shifting balance theory (or at least one version of it) argues that the additional variation inherent in subdi-
vided and inbreeding populations could help the population as a whole bridge fitness barriers. Although
the shifting balance theory has little empirical support (Coyne, Barton & Turelli, 2000), the basic idea that,
under some conditions, genetic drift could help bridge a fitness barrier remains.

Second, one of the basic tenets of evolutionary biology is that all life originates from the same source.
If that is true, all complex traits of all organisms are connected through paths of fit intermediates. Thus,
if we wonder if there is a path on the adaptive landscape through which humans could evolve wings,
the answer must be yes. Humans, bats and birds have a common ancestor, so there must be at least one
series of environments (including other species) that would yield a path that leads from humans back to
the common ancestor with bats, and again forward to modern bats (ignoring some difficulties such as
frequency-dependent fitness).

Third, intuitions about getting stuck in local peaks based on the three-dimensional representation as
in figure 2.3 must be treated with care. There are, in fact, a great number of problems with the concept
(Provine, 1986, in his biography of Wright, gives a thoughtful critique). First of all, as Wright indicated,
an actual genome consists of many (tens of) thousands of genes. Hence, the adaptive landscape has tens of
thousands of dimensions, rather than just 3. That makes a big difference, because whereas local peaks seem
extremely likely in 3 dimensions, they are in fact increasingly less likely with more and more dimensions.
But, perhaps more importantly, the genotype space in Wright’s graph is continuous, whereas the genotypes
of actual organisms are discrete. Wright’s landscapes, as drawn here, can in fact never be constructed for a
real example.

Wright and others have looked at other versions of the adaptive landscape that are, in contrast, rigor-
ously defined. One approach is to choose the gene frequencies and population average fitness as axes. A
population, in this representation, is then a single point in the landscape. The advantage of this represen-
tation is that it ties in nicely with the mathematical model of equation (2.9). However, the disadvantage is
that in such a landscape one cannot visualise the effects of selection, mutation, genetic drift and subdivision
of the population, which was the whole point of introducing the metaphor.

Alternatively, one can choose to use phenotypic, continuous traits against individual fitness as the axes
of the landscape. The disadvantage of this approach is that mutations, which define what a genotype’s
“neighbours” are, are of course defined genotypically. Therefore, the random variation that builds up by
mutation, will not generally be centred around a single population mean in phenotypic space. In cases
where very little is known about the genetics anyway, such as language, that might not really matter, but,
as we will see, there the landscape cannot be constructed anyway because of frequency dependence.

Nevertheless, the view of evolution as optimisation yields a powerful approach for deriving predictions
about an evolving system, or for understanding an evolved system as adapted for a specific purpose. Parker
& Maynard Smith (1990) present a methodology for evolutionary reasoning based on this view which they
call “optimality theory”?. They first emphasise that every evolutionary study must start with identifying a
clear biological question. Step 2 is to identify a set of strategies that are available for evolution to choose

from. Step 3 is to identify a pay-off function, which evolution is supposed to optimise, and to show that

2Parker & Maynard Smith’s (1990) Optimality Theory is completely unrelated to Optimality Theory (Prince & Smolensky, 2004)
in linguistics.
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the observed biological phenomenon tends towards the optimum. Step 4 is to relate pay-off, which is
an indirect measure for fitness, to actual fitness. Finally, step 5 is to derive predictions and test them
empirically.

This scheme provides a coherent framework for thinking about the evolution of language, and it is
essentially the approach I have taken in this chapter and the rest of the thesis, although I have and will
put some extra emphasis on specific implications of the approach relevant for language evolution. Note
however, that the mathematical models discussed so-far concerned changes in gene frequencies, whereas
Optimality Theory and language evolution research are concerned with phenotypic traits that typically
involve many, often unknown genes. I will first discuss some limitations of the optimality view that apply
even when we look at traits controlled by a single gene, and then discuss the more difficult issue of going

from single-gene models to the evolution of complex phenotypic, traits such as language.

2.5 Limits to Optimality

“Natural selection tends only to make each organic being as perfect as, or slightly more perfect
than, the other inhabitants of the same country with which it comes into competition. And we
see that this is the standard of perfection attained under nature” (Darwin, 1872, p 163; quoted
in Provine 1986, p209).

As Darwin was well aware, the fact that evolution can be understood as optimisation does not imply that
the features of organisms are optimal or perfectly adapted to their environment. The most obvious evidence
for the existence of limits to optimality, are the many examples of indigenous species that are rapidly driven
to extinction after humans introduced a foreign competing species. There is a whole tradition of listing the
limitations of natural selection (e.g. Dawkins, 1982; Barton & Partridge, 2000). These can be roughly
classified in four classes: (i) biophysical and genetic constraints, (ii) the speed of evolution, (iii) mutational
load and (iv) fluctuating fitness.

With regard to biophysical constraints, it is clear that all of the complexities of biological organ-
isms need to grow out of a single cell. Throughout its development, an organism needs to maintain its
metabolism, to selectively take up chemicals from its environment and to autonomously build-up all of its
complex features. That process of biological pattern formation is constrained by what is possible at all
with the materials available in a biotic environment, by what can be coded for by genes, and by which pos-
sibilities are reachable for evolution. It is obvious that these constraints are at work, given for instance the
limitations in speed of both a prey and a predator trying to outrun each other. It is also obvious, however,
that these limitations have not prevented evolution from building exquisitely complex and well-adapted
organs such as, for instance, the human ear (see chapter 3, section 3).

Population and molecular genetics make some specific predictions on genetic constraints. Natural
selection can often not optimise all different phenotypic traits independently from each other, because of
the following features of genes:

o A single gene typically has an effect on many different phenotypic traits (pleiotropy);

o The effect of a gene on a trait depends on the presence or absence of other genes (epistasis);

e Genes are physically linked to each other in a chromosome (linkage).

The little that is known about human genetics relevant for language (e.g. Lai et al., 2001) suggests,
unsurprisingly, that all these general observations hold for language as well. The general observation
have played a role in a debate about whether or not the Baldwin effect — where initial learnt traits are
“assimilated” by genetic evolution — is likely to have played a role in the evolution of complex language
(Hinton & Nowlan, 1987; Briscoe, 2000b; Yamauchi, 2001; Briscoe, 2003) Nevertheless, it seems too little
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is known about human genetics to inform specific models of the evolution of language, so they will not
play a role in the rest of this thesis.

Most of these biophysical and genetic constraints are reflected in the choice of the strategy set, which
contains all strategies/trait values that are available to evolution, and excludes those that cannot be instanti-
ated. The physical linkage between genes, however, is — in the long term — not one of these hard constraints
on what can evolve, because recombination will eventually break the linkage such that one gene can occur
without the other. Linkage does constrain how fast things can evolve, which is also crucial for the course
of evolution.

More generally, the speed of evolution is constrained by the available genetic variation at every step
(including effects from linkage) and the strength of selection. Considerations about evolutionary time

should be included in evolutionary explanations:

Criterion 6 (Sufficient time) Evolutionary explanations need to establish that there has been enough time
for favourable alleles to get established in the population.

Evolution needs variation to operate on, and mutation is the source of this variation. However, because
mutation is indiscriminate and random, it will also constantly create individuals that are worse than average,
or even unviable. This is called mutational load. In the adaptive landscape metaphor, whereas selection
will push a population to the top of an adaptive peak, mutation will pull the population down-hill. The
dynamic equilibrium is called mutation—selection balance. For specific cases, such as the evolution of
RNA molecules, the constraints on optimisation posed by mutational load can be worked out. For the case
of language, again too little is known of its genetic basis to derive any specific limitations. However, since
a series of formal models of the cultural transmission of language have been proposed (Nowak et al., 2001;
Komarova et al., 2001; Mitchener & Nowak, 2002) that are based on the concept of mutational load, it is
worth looking in a bit more detail at how this concept has been formalised.

Eigen (1971) and colleagues generalised the Fisher-Wright equations for evolution with mutation and
selection at a single locus, to dynamics with an arbitrary number of loci. Using notation loosely based on

Maynard Smith & Szathmadry (1995) and Nowak et al. (2001), we can write Eigen’s equation as follows:

M

Ax; = Z (xjw;Qji) — Wy, (2.10)

j=1

where 4 and j are indices for all the M distinct possible genotypes. Ax; stands for the changes of the
frequencies of all genotypes 7 (hence, the expression (2.10) defines a system of equations, all the same
form and one for each possible ¢). z; is the frequency of genotype ¢ and wj its fitness. Q; is the probability
that a given child will have genotype i if her parent has genotype j. Hence, Q is an extremely large matrix
of size M x M that describes the effects of mutation. Finally, w is the average fitness in the population;
the last term ensures that the effects of selection are relative to the population average fitness.

Eigen looked at a very specific choice of parameters. Suppose that there is a single genotype with a
high fitness, and all other genotypes have the same, low fitness. That is, the adaptive landscape is flat,
except for a single high peak. Now suppose there is a constant probability 1 of mutation per gene, and
no cross-over. The probability ¢ that an individual (here: an RNA-molecule) when it reproduces produces

identical offspring is now:
g=(1-p', Q.11)

where [ is the genome length. ¢ is called the “copying fidelity”. With a bit of algebra one can work out
where the mutation—selection balance is for different mutation probabilities, and thus different copying

fidelities. Eigen’s exciting result is that there is a precise value of ¢ where the mutation—selection balance



18 CHAPTER 2. THE EVOLUTIONARY BIOLOGY OF LANGUAGE

suddenly drops to vanishingly small quantities of each possible genotype. That is, if the mutation proba-
bility is above a threshold value — the error threshold — selection ceases to play any role, and individuals

have essentially random genotypes:

Criterion 7 (Mutational load) Evolutionary explanations need to postulate a mutation rate high enough
to generate the variation needed, but low enough to not suffer from an extreme mutational load (to cross
the error threshold).

A final category of limits on optimality comes from fluctuating fitness, that is, from the fact that
the fitness regime of organisms is constantly changing. First of all, there are temporal fluctuations in the
environmental conditions on many different timescales, both regular and irregular: from the day and night
cycle to climate changes. Similarly, there are geographic differences, such that migrating organisms might
find themselves in very different habitats. Organisms adapted to one set of conditions, are not necessarily
adapted to other conditions. A language that evolved for communication between hunter-gatherers on the
savannah, is not necessarily adaptive in a modern city environment.

But perhaps more interesting is the situation where the fitness regime of a particular species changes due
to evolutionary changes of the species itself (frequency dependent selection) or of any of the other species
it interacts with (co-evolution). The evolution of language and communication is frequency-dependent,
because linguistic innovations are unlikely to pay off if there is no one to talk to. The fitness coefficients in
language evolution are therefore not constants, as in equation (2.8), but will depend on the frequencies of
the different alleles in the population. Evolutionary game theory is the general framework for addressing
frequency-dependent selection, and will be discussed in the next section. Because natural languages are
transmitted culturally, there can also be a process of cultural evolution, such that we can perhaps sensibly
speak about the coevolution of language and the brain (Deacon, 1997; similar ideas were explored earlier
in e.g. Christiansen, 1994; Kirby, 1994). This will be explored a bit further in section 2.10 in general terms,
and with a specific model of the learning and evolution of grammar in chapter 6.

A related phenomenon is sexual selection, where selection is not on the ability to survive to reproduc-
tive age or the ability to reproduce per se, but on the ability to beat rivals of the same sex in the competition
for a mate, or on the ability to persuade potential sexual partners to choose one as a mate (Darwin, 1859,
p.94). Here, the fitness of a given genotype (defining e.g. a male trait) is not fixed, but also dependent on
the frequency of all the possible genotypes (regulating e.g. female preferences) in the population. Exotic,
maladaptive traits that are due to sexual selection, such as the ornate peacock-tale or the violent and some-
times lethal love darts in hermaphrodite snails, are nice examples of the suboptimal traits that can result
from frequency dependent selection. In the evolution of speech, sexual selection seems to have played a
role in shaping the secondary sexual traits, such as the lower pitch in human male voices, which results
from larger larynx and vocal folds, and a change in formant frequencies at puberty, which makes males
appear larger and results from a second descent of the larynx. More controversial are ideas about the role of
sexual selection in the evolution of the first descent of the larynx (that happens in both males and females in
the first few months after birth, Lieberman, 1984; Hauser & Fitch, 2003), and in the evolution of complex
syntax (Pinker & Bloom, 1990).

2.6 Phenotypic Evolution

‘We have seen that evolution can be understood as a process of optimisation, but under a range of constraints
and with continuously shifting targets. The constraints and trade-offs are all crucial elements of adaptive
explanations. In fact, without such constraints, the notion of “adaptation” would be meaningless: without
constraints and trade-offs, only almighty beings would exist. The more precise we can be about constraints

and trade-offs, including about genetic details, the more convincing demonstrations of optimality within
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these constraints are as evolutionary explanations. However, even without a complete understanding of the
genetic constraints, we can make progress in understanding evolution at the phenotypic level, by incorpo-
rating likely constraints in formal models and deriving testable predictions.

As an example of the structure of such optimality arguments, consider the evolution of hearing and
suppose that it can be described with a single variable: the threshold value 6 for signal detection. Pre-
sumably, the benefit is maximal when this 6 approaches 0 (assuming the brain can select and process the
information it needs), and the benefit approaches 0 when @ is infinitely large. The cost of an infinitely
small @ is infinitely big, however, because biophysical constraints dictate that infinitely small 6 requires
infinitely large ears. With very large € we could do away with ears all together and have a cost approaching
0. When we subtract the cost from the benefit, we get the payoff function. If the cost and benefit function
adequately describe the selection pressures and constraints, we expect the evolutionary dynamics to lead to
the optimum of the payoff function, shown qualitatively in figure 2.4. Now, if we could find a combination
of benefit and cost functions, and empirical observations of € in nature that match the predicted optimum,
that would constitute strong evidence for either the hypothesis that 8 evolved for the function described
by the payoff function, or — if we are already confident of the adaptive function — that the hypothesised
constraints, described by the cost function, were the right ones.
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Figure 2.4: Evolutionary optimisation under biophysical constraints. The graph sketches the benefits (top
curve) and costs (bottom curve) for a continuous range of detection thresholds 6 (x-axis) in the evolution
of hearing. An extremely low threshold (left end) is very useful, but also very costly; an extremely high
threshold (right end) is very cheap, but not of much use. The optimum of the payoff function (middle
curve) is therefore at an intermediate value of 6.

Can we make a similar analysis of the evolution of key features of natural language? That is, can we
identify the payoff function and its optimum under relevant constraints and show that natural language
corresponds to that optimum? Unfortunately, we know relatively little about the biophysical and genetic
constraints, the relevant mutations in the evolution of language and the neural implementation of our lin-
guistic abilities. It is therefore difficult to make precise what strategy set was available for evolution. The
best examples of trade-offs in language are probably in the physical properties of speech. Liljencrants and
Lindblom’s (1972) demonstration that the vowel systems in human language appear to be optimised for
reliable recognition under noisy conditions and under constraints on perception and articulation, is sugges-
tive (see chapter 4). Lieberman (1984) has argued that the human larynx has descended deeper down the

throat in order to allow more flexibility of the articulatory organs. This allows us to make many different
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speech sounds, at the expense of an increased propensity to choke. Although controversial (Hauser &
Fitch, 2003), this theory on the evolution of language does illustrate the role of evolutionary trade-offs that
result from the physiological constraints in speech production.

For other components of human language, such as its semantics or syntax, it is extremely difficult to
derive biophysical constraints. What sort of grammars can or cannot be encoded by genes and implemented
in neuronal tissue? The only solid results relevant to this question, suggest that quite a variety of networks
of interacting cells are Turing equivalent. That is, they can — if sufficiently large, given sufficient time
and properly initialised and interpreted — compute any computable function (Siegelmann & Sontag, 1991;
Wolfram, 2002). This is not to say that any grammar can be easily encoded by genes or acquired by a
neural net; but without better models of the neural implementation of language, we cannot start to make
sensible assumptions about the actual architectural constraints on natural language syntax that were at work
during human evolution. This is how I interpret Chomsky’s well-known reservations about the feasibility
of scientific explanations of the evolution of language, such as expressed in this famous quote:

“We know very little about what happens when 109 neurons are crammed into something
the size of a basketball, with further conditions imposed by the specific manner in which this
system developed over time. It would be a serious error to suppose that all properties, or
the interesting properties of the structures that evolved, can be ’explained’ in terms of natural
selection.” (Chomsky, 1975, p.59).

However, it would be overly pessimistic to conclude — as Chomsky seems to do — that we can therefore
not say anything sensible about how language evolved. There are two categories of constraints in language
evolution that can be made precise. First of all, we have good “mentalist” models of syntax that describe
its fundamental computational properties, and the computational constraints that any implementation
will face. For instance, we know there exist constructions in natural languages that cannot be modelled by
weaker formalisms (in terms of the extended Chomsky Hierarchy) than (mildly) context-sensitive rewriting
grammars (Joshi et al., 1991); we know that the whole class of context-sensitive rewriting grammars is not
identifiable in the limit from positive samples alone (Gold, 1967); and we know that grammars of that type
have a worst-case time-complexity of O(n®) in parsing (Barton & Berwick, 1987). Such computational
constraints on representation, learning and processing, and the formalisms they are expressed in, allow us to
at least make a start with testing the internal consistency of an evolutionary scenario, and with formulating a
sensible strategy set for evolution. Formalisms that we can use to describe key features of human language
and to derive computational constraints are discussed in the next chapter (3).

Second, there are constraints that follow from the social, communicative function of language. Hu-
mans use natural language to communicate with others, on the average for many hours a day per person.
This requires a shared code, such that both speakers and hearers understand the meanings of utterances.
Moreover, it requires the willingness of the speaker to give away information and, at least in general, to be
truthful, as well as a willingness from the hearer to listen and interpret the message received. These issues

can be addressed in the framework of evolutionary game theory, which will be discussed next.

2.7 Evolutionary Game Theory

The evolutionary history of human language can be viewed as a process of phenotypic optimisation, under
(largely unknown) biophysical and cognitive constraints that determined which communication systems
were possible at all, and in a social-communicative context that determined which systems were better
than others, but that continuously shifted the evolutionary targets because the frequency of a linguistic trait

in the population influences its usefulness.
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The formal framework to describe the consequences of multiple agents optimising their own payoff in
a social context is the Theory of Games. Game theory conceptualises the interaction between agents, the
“players”, as a game where all players choose from a set of available strategies. Crucially, the outcome
of a game for each player, its payoff, depends on the strategies of other players. Unlike the example in
figure 2.4, where payoff is a function of the player’s own strategy alone (the trait value, ¢), in game theory
the payoff is a function of both the player’s strategy and the strategies played by other players.

The following example is derived from Maynard Smith & Price (1973). Imagine a conflict between
two birds competing for a single food source, each with the choice between three strategies: “dove” (re-
treat immediately if the other player is aggressive), “hawk” (always be aggressive) and “prober” (start off
aggressive, but share the food source peacefully if the other player does not give up, but does not escalate
either, and continue aggressively if the other player does give up). If the value of the food source is b = 10,
and the expected cost of an escalated fight ¢ = 100, the possible payoffs for player 1, given her and player
2’s decisions, are given in figure 2.5(a). For 2 players and a small number of discrete strategies, this can be

conveniently summarised with a payoff matrix, as in figure 2.5(b).

Dove, Hawk, Prober;

Dove,  Hawky Probers
| | | Doves Hawko Prober,

b=5 0 b=5 | | \ _' L 1 |_
b=10 —c=-100 —c=—100 0=10 —c=-100 3b=5

Dove, Hawko Prober,

[N

1
2

(a) extensive representation

player 2’s strategy
player 1’s strategy | | Dove Hawk Prober

Dove 5 0 5

Hawk 10 -100 -100

Prober 10 -100 5
(b) payoff matrix player 1

Figure 2.5: Extensive and matrix representations of games

We can postulate a decision mechanism for each player, and study how the outcome of the game
changes with players adapting their strategies based on what the other players do. The dynamics of such
games, with all players making their own decisions, are often extremely difficult to describe. Often, how-
ever, it is possible to derive the conditions under which a game is stable. In non-cooperative game-theory
— where “selfish” players each try to optimise their own payoff — the crucial concept is that of a Nash
equilibrium (Nash, 1950)°. This equilibrium is defined as the situation where no player can increase her
payoff by unilaterally changing her strategy. Thus, for any n-tuple of pure strategies (one for each player)
the Nash equilibrium requires that each player’s strategy maximises her expected payoff against all other

n — 1 strategies.

3Grafen (2003) attributes the discovery of the Nash equilibrium to William Waldegrave, 1713, and refers to A. Hald (1990), “A
History of Probability and Statistics and Their Applications before 17507, New York: Wiley Interscience.
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The Nash Equilibrium plays a major role in modern economic theory, as rational players are assumed
to maximise their payoff, and games will therefore typically evolve toward a Nash equilibrium. Other
branches of economic game theory make different assumptions on what is optimised, and sometimes use
different stability concepts. For instance, cooperative game-theory — where players are assumed to try to
optimise the average payoff of all players in the game — uses the concept of “Pareto optimum”, where no
player can increase her payoff without decreasing the payoff of another player. In the theory of bounded
rationality (Simon, 1955, 1969), the consequences of limitations in knowledge are investigated, where
players are not necessarily maximising, but rather satisficing their payoffs.

In evolutionary biology (after some pioneering work by R.C. Lewontin and W.D. Hamilton, as is dis-
cussed in Maynard Smith, 1982) the use of game theory took off with the work of Maynard Smith & Price
(1973) and Maynard Smith (1982). Maynard Smith & Price introduced the concept of Evolutionarily
Stable Strategy (ESS) in an analysis of the evolutionary advantages of “limited war” strategies in animal
conflicts, such as the prober strategy introduced above. An ESS is a strategy that cannot be invaded by
any other strategy, because all other strategies get either a lower payoff when playing against the ESS, or
if their payoff is equal, they get a lower payoff when playing against themselves. That is, if F'(i, j) gives
the payoff for a player playing strategy 7 against an opponent playing strategy 7, then ¢ is an ESS if for
every strategy j either F'(i,i) > F(i,j) or F(i,i) = F(i,j) > F(j,7). Every ESS also defines a Nash
Equilibrium, but the stability criterion is stricter, because it implies that every alternative strategy will be
selected against if it occurs at small but non-zero frequency in the population.

In the example of figure 2.5, we can see that the dove-strategy is not an ESS, because the hawk-strategy
has a higher payoff when playing against it. In a populations of doves, the hawk strategy thus enjoys
an initial selective advantage and will increase in frequency. The hawk-strategy is not an ESS either. A
population consisting of just hawks can in turn be invaded by the dove-strategy, which has a higher payoff
in a population of hawks, or by the prober-strategy, which has equal payoff against hawk but a higher
payoff against itself. Only the prober strategy, in the present simple model, is an ESS: both doves and
hawks fare worse than the prober in a population of probers®.

If we exclude the prober-strategy from the strategy set, the resulting hawk-dove game has no ESS,
i.e. a population of individuals all playing one pure strategy, can be invaded by the other strategy. In
such games there might still be a stable distribution of phenotype frequencies in a population — called an
Evolutionarily Stable State. In such a situation, there are distinct, genetically different players in the
population (“polymorphism”), and this polymorphism is maintained by selection. Interestingly, such a
stable distribution with p doves and 1 — p hawks is equivalent to a population where each individual plays
the dove-strategy with probability p and the hawk-strategy with probability 1 — p. If such mixed strategies
are included in the strategy set (that is, allowed according to the hypothesised constraints), it is an ESS>
and there is no polymorphism maintained.

The techniques and formalisms from evolutionary game theory immediately lead to some fundamental
observations on the evolution of communication. Consider the evolution of an alarm call system similar to
the calls that, for instance, ground squirrels (Sherman, 1977) or vervet-monkeys (Seyfarth et al., 1980) use
to inform conspecifics of the presence of predators. If we focus on just two signals, 1 and 2, and just two
types of predators, aerial (£, e.g. eagles) and terrestrial predators (L, e.g. leopards), we can postulate the

following strategy set:

“In the original paper (Maynard Smith & Price, 1973), this game was introduced with “dove” labeled “mouse” and “prober”
labeled “prober-retaliator”. Incidentally, an unfortunate choice of parameters resulted in there being in fact no ESS at all, even though
a fourth strategy “retaliator” was erroneously identified as such.

SGrafen (1979) points out that mixed strategy ESS’s and pure strategy evolutionary stable states are not equivalent in kin selection
models.
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Sender A:  send 1 when observing F; send 2 when observing L.
strategies B:  send 2 when observing F; send 1 when observing L.
C:  never send anything.
Receiver ~ A’:  actasif observing E when hearing 1; act as if observing L when hearing 2.
strategies B’: act as if observing E when hearing 2; act as if observing L when hearing 1.

C’:  ignore all received calls.

In the case of alarm calls, the payoffs for sender and receiver are very different. The sender will suffer a
cost, because by calling she alerts the predator of her presence and location. Evidence of the existence of a
real cost in nature comes from the fact that alarm calls typically have very high pitch, which makes it more
difficult for predators to locate the caller (Maynard Smith, 1982). The payoff matrix for the sender will
therefore have all negative entries (parameter c) for strategies A and B, and (by definition) O for strategy
C.

The receiver, on the other hand, will profit from a call if and only if she correctly interprets it. That
benefit is quantified with parameter b. If the actual predator is a leopard, acting as if an eagle is observed
can be a costly mistake: monkeys flee into the bushes to escape from an eagle attack, but that is in fact
exactly where leopards hide (Seyfarth & Cheney, 1997). The cost of mis-interpretation is quantified as
parameter m. If the receiver ignores all calls, her payoff is 0 (again, by definition). The payoff matrices in

this simple example will thus look as in figure 2.6.

receiver strategy receiver strategy
sender strategy | | A’ B’ (C’  senderstrategy | | A B ('
A —c —c —c A +b —-m 0
B —-c —c —c B -m +b 0
C 0 0 0 c 0 0 0
(a) sender’s payoff (b) receiver’s payoff

Figure 2.6: Payoff matrices in a simple alarm call system

It is clear that neither A nor B can be the stable strategy for the speaker; if the cost of calling, ¢, is
non-negligible, the strategy of not communicating at all, C, is always optimal. In explaining the evolution
of communication, we thus face a problem of cooperation: if the benefits of communication are for the
hearer, the sender has no incentive to give away her information, or even put herself at risk. Dawkins
& Krebs (1978) pointed out this problem with what they call the “classical ethological” view on animal
communication, which takes communication as existing for the benefit of the group. Dawkins and Krebs
have therefore suggested that communication should be understood as a form of manipulation, with the
benefits of successful manipulation with the sender.

Others (e.g. Maynard Smith, 1965; Sherman, 1977; Cavalli-Sforza & Feldman, 1983) have argued
that “altruistic” communication can evolve through kin selection. However, the appropriateness of kin
selection for human language — where communication is typically with non-kin — has been called into
question (Dessalles, 1998). Dessalles has instead argued for a form of “reciprocal altruism”, where there is
a real benefit for the sender, because it is rewarded with status in the population. Fitch (2004) reviews his
and other arguments, but concludes that they are not convincing. He posits the “mother tongue” hypothesis

— that human language developed primarily in a context of kin communication — as one of a number of
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factors that shaped human language in its evolution, and calls for further exploration of the role of kin
selection in language evolution.

In many circumstances, for instance sexual signaling, the problem is not so much in the willingness
to send signals, because the senders benefit, but in the honesty of the signals. A large amount of work
on the evolution of animal and human communication has been concerned with this problem, leading to
what is now called “honest signaling theory” (the handicap principle, Zahavi, 1975, 1977; Grafen, 1990).
Hence, the problem of cooperation is pervasive in work on the evolution of communication, although its
instantiations differ with different assumptions on the costs and benefits of communication, for both sender
and receiver. Although the problem of cooperation is a consequence of careful considerations of payoff,
strategy sets and invasibility, I will, because of its importance, add it as a separate point to the list of
requirements of evolutionary explanations:

Criterion 8 (Problem of cooperation) Evolutionary explanations of the evolution of language need to
address the problem of cooperation, and demonstrate that senders will be willing to send honest signals,
and that hearers will be willing to receive and believe the signal.

Even if we find a scenario where successful communication is in the interest of both the speaker and
the hearer, there is another problem that arises from the frequency-dependence of language evolution. We
could call this the problem of coordination. If we ignore the non-cooperative strategies C' and C”’, how
does a population of players coordinate their behaviours such that they play either A and A’, or B and B’?
That is, how do they agree on a shared code? This problem seems particularly difficult when we consider
a series of innovations, as in Jackendoff’s (2002) scenario of the evolution of human language (chapter 3).
Each of these innovations needs to confer a fitness advantage if it is to spread the population, but it is
difficult to see how a genuine innovation can be advantageous to the individual if it is not shared by the rest
of the population (Zuidema & Hogeweg, 2000; Zuidema & de Boer, 2003, see appendix C of this thesis).

Lewis (1969) showed that only “perfect” communication systems are “separating equilibria”, which, if
the role of “rationality” of the players is replaced by natural selection, corresponds to evolutionary stable
states (Skyrms, 1996; Trapa & Nowak, 2000; van Rooij, 2004). Models in this tradition make the following

assumptions:

e There is no cost to communication;

e The interests of sender and receiver are perfectly aligned;

e There is a discrete set of signals and a discrete set of meanings, and the number of signals equals the
number of meanings;

e All meanings are equally frequent and valuable;

e Every “perfect” mapping from meanings to signals is equally good (which implies that meanings
have no relation to each other, signals have no relation to each other, and meanings have no natural
relation to signals);

e The meaning—signal associations are innate and inherited from parent to child.

It is easy to see why perfect communication systems are the only ESS’s under these assumptions: if
a communication system is sub-optimal, there must be synonymy: multiple signals are used for the same
meaning. For the sender, however, it is always best to express a meaning m with the single signal s that has
the highest chance of being understood, i.e. to avoid synonymy. The alternative signal(s) will thus not be
used to express m anymore, and becomes available (through drift) for meanings that cannot be expressed
yet. Hence, only “perfect” systems are stable against selection and drift.

It is clear, however, that all of these assumptions are violated in reality. Signals do have a cost, interests
are not perfectly aligned, meanings and signals are not discrete, symbolic entities, but have similarity

relations with themselves and each other, and, at least in human language, meaning—signal mappings are
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learnt and not innate. The problem of coordination thus remains a major open issue in the evolution of

language, which we can add to the list of requirements:

Criterion 9 (Problem of coordination) Explanations for the evolution of language need to deal with the
problem of coordination, that is, show how, after each innovation, a shared code can be established and
maintained.

Much of the work on the evolution of language can be seen as dealing with this problem. A number
of models, for instance, relax the innateness assumption above, and study, in computer simulations, the
evolutionary success of a number of different strategies in word learning (Hurford, 1989; Oliphant, 1999;
Smith, 2004). The payoff function in Hurford’s model is the expected success in communication between a
sender and a receiver (i.e. the game is cooperative; both sender and receiver benefit from success). Sender
behaviour is characterised by a probabilistic mapping from a set of M meanings to a set of F' signals;
receiver behaviour by a probabilistic mapping from the signals to the meanings.

Hurford was interested in how these functions were learnt, and in the evolution of different learning
strategies. The strategy set Hurford considered consisted of three strategies, termed imitator (that imitates
the observed average sending and receiving behaviour in the population), calculator (that estimates the
best send and receive functions based on observations of the population’s receive and send behaviour
respectively) and Saussurean learner (that chooses the same receive function as the calculator, but derives
the send function from that receive function rather than from the receiving behaviour in the population).
Hurford showed that Saussurean learners outcompete the other two learning strategies. These results were
extended by Oliphant & Batali (1996), Oliphant (1999) and Smith (2004), among others. From these
studies it emerged that learning strategies can evolve that give rise to “perfect” communication systems in
a population.

The model I will study in chapter 5 and related work (e.g. Nowak & Krakauer, 1999), does not model
such explicit learning rules, but does relax some of the other assumptions mentioned. I report results where
the number of signals is larger than the number of meanings, where there is noise on signals, where some
meanings are more valuable than others and where there are similarity relations between meanings and
between signals. More work is needed to study whether these results hold when learning is modelled
explicitly. An encouraging result in this respect is due to Calvin Harley (1981). He studies the evolution
of learning rules and showed that evolution will favour rules that Iearn the evolutionary stable strategy.
Hence, results on Evolutionary Stable Strategies in innate communication systems, in principle carry over

to situations where the same strategies are acquired in a learning process (Maynard Smith, 1982, chapter 4).

2.8 Levels of Selection

I have discussed some basic concepts from population genetics, which describes the change in frequencies
of genes, and from evolutionary game theory, which describes the invasion and replacement of phenotypic
strategies of individuals. The two approaches are obviously related, because the fitnesses of genes are
dependent on the phenotypes they code for, and a strategy will only replace another strategy if all the
genes necessary for that strategy are selected for and get established in a population. But the description of
the evolutionary process in population genetics and evolutionary game theory are set at entirely different
levels.

In Dawkins’ (Dawkins, 1976) terminology, genes are replicators: they are the bits of information that
get copied and transmitted — more or less intact — to the next generation. Individuals are vehicles (Dawkins,
1976) or reproducers (Szathmary, 1999). In sexual species, such as humans, a child is radically different
from any one parent, because she inherits only 50% of the genes. Individuals, therefore, are not replicators,

even though they are the obvious level of description when we talk about fitnesses and strategies.
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If replicators and reproducers were the same objects, evolutionary dynamics would be relatively easy
to describe. But in general, especially in sexual species, they are not. Genes are “packaged” — contained
within the structured genome of an individual that lives within a structured population. That packaging
makes the fate of a specific gene depend on the other genes it is associated with (genes that occur together
more often or less often than would be expected on the basis of their frequencies alone, are said to be in
linkage disequilibrium). If a gene a happens to be associated with a gene b that is under strong positive
selection, gene a will increase in frequency even though it does not itself contribute to the fitness of its
carrier (“genetic hitch-hiking”, Hill & Robertson, 1966; Maynard Smith & Haigh, 1974). To predict the
fate of a specific gene, we therefore need to know the statistical associations with other genes.

To make things even more complicated, not just the gene frequencies change; also the associations
themselves change in evolution. The physical linkage between genes on a chromosome tends to keep these
genes together, but recombination breaks up these associations; sexual selection generates associations
between for instance, the preferences of the females and the selected traits of the males; finally, epistasis
also generates linkage equilibrium, because if genes are much better in combination than they are apart,
natural selection itself will make the combination more frequent than expected by chance. Barton & Turelli
(1991) and Kirkpatrick, Johnson & Barton (2002) have developed a mathematical framework to describe
the dynamics of such multi-locus evolution; however, they take fitnesses as given and do not yet provide a
bridge to the fitness concept in phenotypic models.

Hence, the relation between gene frequency change and adaptation at the level of the individual (such
as language) is not at all trivial. The problem with the gene as the level of description is that we don’t know
the relevant fitness coefficients, because our knowledge of life, death and reproduction is almost entirely
specified at the level of the individual. But the problem with the individual as level of description, is that
we are not necessarily justified in assuming that natural selection corresponds to optimisation. Do the re-
sults from game-theoretic analyses translate to fitness coefficients of the genes that underlie the strategies?
How do we relate the fitness coefficients, and the fundamental results about evolution as optimisation by
Fisher and Wright, to adaptation on the level of individuals? Grafen (2003), in a discussion of Fisher’s
“fundamental theorem of natural selection” (Fisher, 1930) observes that (too) few researchers in evolution
worry about these issues:

“the theorem was fundamental in 1930 because it isolated the adaptive engine in evolution
and made an extraordinary link between gene frequencies and adaptive change. It really did
show how Darwinian natural selection worked simply and consistently and persistently amid
the maelstrom of complexities of population genetics. The theorem is just as important today
for that reason. This is not popularly realised by biologists because most take for granted an
informal sense that natural selection leads to organisms maximizing their fitness, but they do
not ask how that sense can be justified.” (Grafen, 2003, p.327)

Grafen lists three assumptions that are made in the original version of Fisher’s theorem, and apply
equally to Wright’s equations discussed in section 2.4:

o It assumes the fitnesses of genes are frequency independent. That is, the fitness of a given genotype
is not dependent on which other genotypes are present and at which frequencies in the population.
Consequences of frequency dependence are studied in evolutionary game-theory (Maynard Smith &
Price, 1973; Maynard Smith, 1982).

e It assumes that all individuals interact with all other individuals with equal probability. That is, it
assumes the fitness of a given genotype is not dependent on the genotypes which are potentially cor-
related with it. Consequences of such correlations are studied in social evolution theory (Hamilton,
1964a,b; Frank, 1998).
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e [t assumes fitnesses are fixed; Grafen himself has worked on the consequences of natural selection

under uncertainty.

For the purposes of this chapter, it would take too far to investigate the contributions of Grafen and
others to relate population genetics and evolutionary game theory. However, a few important implications
for language evolution research from the discussion so-far are worth making explicit. First, a “strategy” in
a game-theoretic analysis will typically be coded for by many genes (pleiotropy). So if alleles a1, a2 . . . ay,
at loci 1 to n are needed for an evolutionarily stable strategy A, we need each of these alleles to represent
a step in the right direction. In technical terms, we need additive genetic variance; Maynard Smith (1982)
argues that additive genetic variance is common in nature, and that this is therefore a reasonable assumption
to make in game-theoretic analyses. We need to be aware, however, that we ignore all the phenomena of

multi-locus evolution in game-theoretic analyses of language.

Criterion 10 (Levels of selection) Explanations for the evolution of language need to relate selection at
the level of individuals or groups to changes in gene frequencies. That is, they need to specify and relate
the assumed levels of description for selection and heritability.

Second, an important (methodological) observation is that there is no single best level of description;
researchers make a heuristic choice about the level at which they will describe the evolutionary dynamics.
Every model will only be an approximation, and it depends on the phenomenon of interest at which level
the evolutionary process is most adequately described. Below, I will briefly discuss kin selection, and show,
using the Price equation, why for the phenomena of social evolution the population structure is a crucial

level of description that is left out in standard game-theoretic models.

2.9 Social Evolution & Kin Selection

The techniques from social evolution theory will not play much of a role in this thesis, and I will therefore
keep the discussion brief. One fundamental equation, the Price equation (Price, 1970), is useful, however,
to highlight a silent assumption in game theory models, and to illustrate the issue of multiple levels of
selection. The Price equation is easily derived; I will follow here Frank (1998) and Andy Gardner (p.c.).
Like Wright’s equation (2.9), it can be interpreted as describing the change in the frequency of a gene, but
more generally it describes the change in the value of any trait z.

Price introduces his equation as follows:

“Gene frequency change is the basic event in biological evolution. The following equation |[...],
which gives frequency change under selection from one generation to the next for a single gene
or for any linear function of any number of genes at any number of loci, holds for any sort of
dominance or epistasis, for sexual or asexual reproduction, for random or nonrandom mating,
for diploid, haploid or polyploid species, and even for imaginary species with more than two
sexes” (Price, 1970, p.520)
We are interested in the change in frequency of a specific trait z in the population between the present
(%) and the next generation (Z’). If we divide up the population in M units q; .. .qs (these units are, for
instance, individuals or groups, depending on the level of selection the equation is meant to describe), and

we know their fitnesses wy . .. wys and trait values z; . .. z)s, then the change of the trait’s frequency in the
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whole population is given by:

Az = 7/-z
= Y dz-%
= Y Gime(zi+ Az) — % 2.12)
- w

Multiplying both sides of this equation with w, and rearranging gives:
wAZ = Z qiw;z; + Z qGwiAz; —WZ

= Z%’wizi *W§+Zqz'wiﬁzi (2.13)

Coviw,z] FElwaz]

As indicated, the terms in equation (2.13) correspond, by definition, to the covariance between fitness
and trait value, and expected value®. Hence, the process of evolution can be elegantly summarised in the
Price equation, as follows:

wWAZ = Covw, z] + E[wAz] (2.14)
—— N——
selection  transmission

The Price equation partitions the process of evolution into a term that describes the effects of selection
(traits that are associated strongly with fitness will be selected for most effectively), and a term that de-
scribes the effects of (biased) transmission (the index i is the index of the parent; hence Az; describes the
change in the trait value — from a particular parent to all its offspring — regardless of selection).

Observe that the transmission term in the Price equation looks very similar to the left-hand side of that
equation. This fact allows us to relate different levels of selection. As an illustration, I will here derive
Hamilton’s (Hamilton, 1964a,b) famous result on kin selection, which says that an altruistic trait can evolve

if the benefit b times the relatedness r is larger than the cost c:
br > c. (2.15)

The derivation using the Price equation highlights the correct interpretation of relatedness and suggests
applications for language evolution. The derivation concerns the evolution of an altruistic trait, such as the
alarm calls discussed in the previous section. For simplicity, assume an individual either does or does not
have this trait. We indicate this with the variable z, thatis, z = 1 or z = 0. We can ask: under which
circumstances will this trait evolve?

Consider a population, subdivided (at random) in N groups GG; ...G, each of size M individuals.
In each group G;, individuals benefit from the amount of altruism in that group, labelled as z;; the total
benefit is bz;. The jth individual in that group, however, also suffers a cost from being altruistic, indicated

with c; the cost is thus cz;;. The fitness of the jth individual in the ith group is now given by:

Wij = & + bZZ — CzZij, (216)

The covariance between two variables z and v is defined as Cov(z;, y;) = % Zf\le (z; — %) (ys — 9)) =Ty — T Y, i.e. the
product of the means minus the mean of the products. Expected value of a variable x is defined as E(z) = Ei\]:l Pz = x;)z;, ie.
the sum of all possible values weighted by the probability of each value. Covariance is the most obvious way of measuring a departure
from statistical independence. If = and y vary independently from each other, then E(xy) = E(x)E(y), and the covariance is 0.
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where « is a baseline fitness (not dependent on the presence or absence of the altruistic trait). The fitness
of the ¢th group is given by:
w; =a+ (b—c)z. 2.17)

Hence, an individual’s fitness (her relative contribution to the total offspring of the group) depends
on the amount of altruism received and the amount of altruism given. Obviously, if the cost ¢ of being
altruistic is larger than 0, it is always best for an individual to be selfish. The group’s fitness’ (the relative
contribution of this group’s offspring in the total offspring of the whole population) depends on the total
amount of altruism given. If the cost c of altruism is lower than the benefit b, it is always best for the group
if all individuals are altruistic.

The evolutionary process within each group 7 can be described with a Price equation, as in equa-

tion (2.14). If we assume there is no transmission bias, the equation simplifies to:
w_UA% = wlAzl = COVj [wij, ZU] (218)

The evolutionary process at the level of the whole population is also described with a Price equation,

where the transmission term concerns the within-group dynamics of equation (2.18):

w;AzZ; = Cov; [’LUZ', Zi] + E; [wlAzl]
= COVZ' [wi, Zz] + Ez [COVj [wij, Z”]] (219)

The covariance in above equation can be replaced by a regression and variance term, because (by

definition) Cov(z, y) = [(z,y)Var(y). This gives the following equation:
w; AZ; = ﬁ(wi, zi)Vari [Zl] + E; [B(wij , zz-j)Varj [ZU]] (2.20)

These regression terms 3 can be read off directly from equations (2.16) and (2.17), because they corre-
spond to the slope of the fitness functions, i.e. 5(w;, z;) = b — ¢ and G(w;j, z;;) = —c. Substituting these

values into equation (2.20) and rearranging gives:

w;AZ; = (b— c)Var;[z] + E;[—cVar;[z;]]
= (b— c¢)Var;[z;] — cE;[Varj[z;]]
= bVar[z] — c(Var;[z;] + E;[Varj[z;]])
= bVari[z;] — cVaryyg

Varz- [Zz] )

= b————— —¢| Var (2.21)

total’
( Varia] o

where Vary;.| is the total variance. This establishes a derivation of Hamilton’s rule from the Price equation,
because the average relatedness between two individuals in a population, equals the between group variance

as a proportion of the total variance. That is, r = %. If the benefits of trait z, weighted with the

total
relatedness within a group, are larger than the costs, i.e. rb > ¢, then AZ will be positive, i.e. evolution

will favour the trait even if it harms the individual.
It is important to note that Hamilton’s rule is widely misinterpreted. As this derivation shows, the re-

latedness term 7 is not the fraction of genes two individuals share (identity by descent), as is commonly

7Note that, although parent groups are of fixed size M, some groups produce more offspring than others.
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assumed (e.g. Okasha, 2003). Rather, it is a statistical association between the trait of interest in one indi-
vidual and the trait in the individual she interacts with. Therefore, the relatedness between two individuals
can even be negative. This simply means that the individuals are less related to each other than to a ran-
dom third individual in the population (Hamilton, 1970). If the association is high enough, altruistic traits
can be favoured by natural selection®. That is, if (for whatever reason) altruists are surrounded by other
altruists, they benefit more from the altruism received than from the altruism offered (and conversely, if it
is low enough, natural selection can favour spite — behaviours that harm both the actor and the recipient;
Hamilton, 1970; Gardner & West, 2004).

Interactions within kin-groups (and kin recognition) are an important mechanism for this association
to arise (hence the Maynard Smith’s term “kin selection”), but not the only one. Subdivision of a popu-
lation in groups is another mechanism (such “group selection” is thus a form of kin selection). Hamilton
himself suggested a third mechanism, that of “green beards”. If the same gene complex that codes for
an altruistic trait, also codes for an external marker (i.e. a green beard), altruists can choose to interact
preferentially with each other. This is of interest for language evolution, because language itself could be
such a green beard, if individuals with a linguistic innovation can recognise each other based on features in
their language. Finally, reciprocal altruism (Trivers, 1971), where players remember the interaction history
with other players and play altruistically only against players that have been altruistic in the past, can be
understood in the same framework.

Kin selection seems the most promising solution for the problem of cooperation that I introduced in
section 2.7. It would certainly be worthwhile to study formal models of kin selection, that take into account
the details of human communication. In this thesis, however, I will no further address kin selection or the
problem of cooperation. Instead, I will assume the willingness to cooperate exists in modeled populations,

and focus on the problem of coordination.

2.10  Cultural Evolution

Dawkins (1976) emphasised that the principle of natural selection is not restricted to genes or individuals
(as Fisher, Wright, Haldane, Price, Hamilton and others were well aware). In every situation where one can
identify replicators, heritable variation and natural selection, a process of adaptation can take place. For
instance, cultural inventions (or “memes”, Dawkins, 1976) — religion, technology, fashion or indeed words
and grammatical rules — undergo evolution if there are mechanisms for cultural transmission and cultural
selection.

Since Dawkin’s book, many wildly speculative theories have been launched under the heading “memet-
ics”, which have given this new field a bad reputation. Nevertheless, the basic idea is sound and open to
serious investigation (Mesoudi et al., 2004). For a start, all mathematical models and requirements dis-
cussed in this chapter apply, mutatis mutandis, to cultural evolution as well. The idea of viewing historical
language change as a form of evolution is particularly attractive because, on the one hand, it makes the
extensive mathematical toolkit of evolutionary biology available to linguistics, and on the other hand, is
presents evolutionists with an enormous body of new data. In chapter 7 I will briefly come back to some
possible implications for linguistics and biology.

8Darwin already understood the essence of kin selection when he wrote: “’[...] selection may be applied to the family, as well
as to the individual, and may thus gain the desired end. Thus, a well-flavoured vegetable is cooked, and the individual is destroyed;
but the horticulturist sows seeds of the same stock, and confidently expects to get nearly the same variety; breeders of cattle wish the
flesh and fat to be well marbled together; the animal has been slaughtered, but the breeder goes with confidence to the same family.
[...] Thus I believe it has been with social insects: a slight modification of structure, or instinct, correlated with the sterile condition
of certain members of the community, has been advantageous to the community: consequently the fertile males and females of the
community flourished, and transmitted to their fertile offspring a tendency to produce sterile members having the same modification.”
(Darwin, 1859, p.258-259)
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We need formal models of the cultural evolution of language, in which we can deal with all the con-
straints on evolutionary models that I listed in this chapter. Although many authors have noted the parallels
between biological evolution and language change, including Darwin (1871, p.91), only recently have peo-
ple starting to study the cultural evolution of language in such a formal framework. Some relevant math-
ematical models are those of Cavalli-Sforza & Feldman (1981), Niyogi (2002) and Yang (2000). These
authors look at the competition between two or more languages, with no qualitative differences between
languages. Simulation models such as those of Kirby (1998) and Batali (2002) look at more open-ended
systems, with more explicit formalisms for grammar and learning.

One problem is that is not so easy to decide on the appropriate units of selection. For instance, Kirby
(2000) described the dynamics in his simulation model (which will be discussed in detail in chapters 5
and 6) with context-free grammar rules as replicators under selection for more reliable replication. In
later papers, however, he argued that the analogy between biological and cultural evolution in this case
breaks down (Kirby, 2002b). This is because the grammatical rules are induced from observable language,
whereas in biological evolution genes are inherited, with no feedback from phenotype to genotype (other
than through the effects of selection). This is known as the “central dogma of molecular biology”. This
observation is correct, of course, but it does not mean we cannot describe the dynamics in models such
as Kirby’s using the tools from evolutionary biology. The effects of induction in language change are a
form of “directed mutation”, and can be included, for instance, in the Price Equation in the transmission
term. More work is needed to work this out with concrete examples; chapter 6 will attempt to make a small
contribution to this end.

2.11 Conclusions

In this chapter I have discussed a variety of models from population genetics, evolutionary game-theory
and social evolution theory. I have used these models to make a list of requirements for evolutionary
scenarios of the biological and cultural evolution of language. These requirements correspond to the fol-
lowing questions we should ask when confronted with a scenario for the biological or cultural evolution of

language:

e What are the units of inheritance the scenario assumes? Genes? Memes?

e What is the scope of variation in these genes or memes? That is, what is the assumed set of possible
traits/strategies available for evolution?

e What are the selection pressures? That is, what is the assumed payoff for each of these possible traits
in each possible context?

e For every innovation in the scenario, will it indeed be favoured by selection when extremely rare?
If not, is there a non-negligible chance it could get established by stochastic effects, or get frequent
enough to be favoured by selection?

e Does the assumed series of changes in the scenario indeed constitute a path of ever-increasing fitness?
That is, is there a path of fit intermediates from start to finish?

e How much time will each of the innovations take to get established?

e [s there for every transition sufficient variation, but not too much?

e How does the scenario explain that speakers maintain the willingness to speak honestly, and that
hearers continue to listen and believe the information received? That is, how does it solve the prob-
lem of cooperation?

e How does the scenario explain that speakers and hearers, after every innovation, agree on which

signals refer to which meanings? That is, how does it solve the problem of coordination?
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e How does the scenario relate dynamics at different levels of description — genes, strategies, individ-
uals, groups, languages?

With these questions in mind, the next chapter will discuss a possible scenario for the evolution of

language, proposed by linguist Ray Jackendoff (2002). I will identify the transitions in the scenario that

can be addressed in this framework, and study these transitions in the rest of the thesis.



CHAPTER 3

The major stages in the evolution of language

What are the “design principles” of human language that need to be
explained? In this chapter I will discuss Jackendoff’s scenario for the
evolution of language, and argue that the transitions between stages are
the crucial challenges for evolutionary biology. I will review a num-
ber of formalisms for meaning, sound and the mapping between them,
and describe and evaluate the differences between each of Jackendoff’s
stages in terms of these formalisms. I conclude from this discussion
that the transitions to combinatorial phonology, compositional seman-
tics and hierarchical phrase-structure can be formally characterised.
Modelling these transitions is a major challenge for language evolu-

tion modelling.

33
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3.1

Human languages are unique communication systems in nature because of their enormous expressiveness

Introduction

and flexibility. They accomplish this by using combinatorial principles in phonology, morphology, syn-
tax and semantics (Chomsky, 1955; Studdert-Kennedy, 1998; Jackendoff, 2002), which impose important
requirements on the cognitive abilities of language users. Explaining the origins of the structure of lan-
guage and the human capacity for learning and using it, are challenging and controversial problems for
linguistics, cognitive science and evolutionary biology. Major disagreements concentrate on whether or
not this capacity has been subject to natural selection or not, whether it evolved in a single, in few or in
many steps, and whether articulation, perception or cognitive processing formed the crucial bottleneck (see
Christiansen & Kirby, 2003a, for a representative overview of current positions).

Jackendoff (2002) has laid out a scenario for the various stages in the evolution of human language from
primate-like communication. Unlike many other theories, Jackendoff’s scenario assumes many such inter-
mediate stages, as summarised in figure 3.1. Jackendoff’s proposal is useful for structuring the discussion

in this thesis for a number of reasons:

1. Use of symbols in a non-situation-specific fashion

7

2. Use of an open, unlimited
class of symbols

1
3. Development of a phono-
logical combinatorial system to
enlarge open, unlimited class

N

4. Concatenation of symbols

!

5. Use of symbol position to
convey basic semantic relation-
ships

of symbols (possibly syllables
first, then phonemes)

N\ v
(Protolanguage about here)
1
6. Hierarchical phrase-structure
7 N\
7. Symbols that explicitly en-
code abstract semantic relation- 8. Grammatical categories
ships
7 \

9. System of inflections
to convey semantic relation-
ships
N\ 1
(Modern language)

10. System of grammatical
functions to convey semantic
relations

7

Figure 3.1: Incremental evolutionary steps in Jackendoff’s scenario for the evolution of human language
(from Jackendoff 2002). Independ steps appear side by side; dependencies among steps are indicated
vertically.

o Jackendoff’s scenario is a gradualist account, with many intermediate steps. Scenarios proposed by
other scholars can be seen as variants of Jackendoff’s, where two or more of the stages Jackendoff
proposes are collapsed into one. Jackendoff’s scenario can thus be seen as a generalisation of many
other scenarios.

e It grounds the scenario for the evolution of language in a testable theory of how modern humans

acquire, represent and process language. Although Jackendoff’s account is not very formal, his
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partitioning of the problem is useful for identifying the relevant formalisms from modern linguistics
and applying them to issues in language evolution.

Jackendoff hypothesises that modern languages still contain elements that correspond to the type of
elements that characterised earlier stages in the evolution of human language. For instance, he views the
compound noun construction in English as a fossil of an earlier stage where strings are concatenated to
express a compound meaning, but without recursive phrase-structure. Thus, the meaning of compounds
like “dog house” and “house dog” is deducible (but not completely specified) from the meaning of the
component words and the order in which they are put.

Although an incremental, step-by-step scenario is a crucial component of an evolutionary theory, Jack-
endoff’s scenario does not address the other crucial component: the transitions from each stage to the
next. Jackendoff admits: “I will not inquire as to the details of how increased expressive power came to
spread through a population [...]. nor how the genome and the morphogenesis of the brain accomplished
these changes. Accepted practice in evolutionary psychology [...] generally finds it convenient to ignore
these problems; I see no need at the moment to hold myself to a higher standard than the rest of the field.”
(Jackendoff 2002, p. 237)

Presumably, all transitions have greatly increased the number of distinct “signs” (signal-meaning pairs)
that can be expressed, transmitted, memorised and learnt. However, that observation in itself is not suffi-
cient. As I have argued in the previous chapter, good evolutionary explanations must specify the selection
pressures that lead from one stage to the next (the payoff function), and the variation that natural selection
can act upon (the strategy set). Understanding how innovations can spread in a population is the essence
of any evolutionary explanation, and, crucially, a better end-result is neither a sufficient nor a necessary
condition for the spread of innovations.

In the following I will briefly sketch each of the stages that Jackendoff proposes, and relate his proposal
to those of some other researchers. I will then introduce some formalisms for meaning, sound and the
mapping between the two (including formalisms for syntax). The goal of this chapter is to find out how
to describe the similarities and differences between Jackendoff’s stages, and to identify the transitions that
can be formally characterised. In the other chapters of this thesis I will then address possible solutions to

the more difficult problems of how to get from one stage to the next.

3.2 Jackendoff’s Scenario

The starting point of Jackendoff’s scenario is pre-existing primate conceptual structure — that is, the kind
of cognitive abilities that modern primatology has found in other great apes. The first innovation is the use
of symbols in a non-situation specific fashion. Jackendoff recognises that for instance chimpanzees have a
sophisticated conceptual apparatus, that is adequate to deal with navigation, problem-solving and complex
social interaction. But he believes that primates are incapable of symbolic vocalisation, that is, of referring
to objects, properties, or events independent from the present situation. Deacon (1997), Donald (1991)
and others have argued that the use of symbols is the crucial biological innovation that has made modern
human language possible.

A second innovation is the ability to use and acquire an open, unlimited class of symbols. Whereas
primate call systems contain a few dozen different calls at most (as far as we know) and language-trained
apes can be taught at most several hundred symbols, humans know tens of thousands of different words.
An open class of symbols must be learnt rather than be innate; Oliphant (1999) and others have argued that
a learnt vocabulary was a crucial step in the evolution of language.

To keep such large numbers of symbols distinct in perception, memory and articulation, a third in-

novation has been crucial: a generative, combinatoral phonological system. All human languages are
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combinatorial, in that the many basic meaningful units (words, morphemes) are built up from a relatively
small repertoire of basic speech sounds (phonemes, syllables). Jackendoff endorses the view that the syl-
lable is the basic unit of combination. The evolution of combinatorial phonology is seen by a number
of researchers as the crucial innovation in the evolution of language (Lindblom, MacNeilage & Studdert-
Kennedy, 1984; Studdert-Kennedy, 1998).

Jackendoff’s fourth innovation is the concatenation of symbols to build larger utterances. He imagines
concatenations of symbols analogous to “Fred apple”, which might refer to any of a number of connections
between Fred and apples. Although simple concatenation does not fully specify the intended meaning, it
is nevertheless, Jackendoff argues, more useful than single symbols in isolation.

The fifth innovation, however, using linear position to signal semantic relations, does introduce a
systematic compositionality. In this stage of the scenario, simple principles such as “agent first”, “focus
last” and “grouping” could structure utterances analogous to “dog brown eat mouse”, such that it is clear
that the brownness applies to the dog, the dog eats and the mouse is being eaten. In the terminology of
Hurford (2000), the route from holistic to compositional language in this scenario is “synthetic”, because
compounds are synthesised from pre-existing meaningful signals (rather than that pre-existing holistic
signals are re-analysed as being built-up from component parts).

Jackendoff sees the fourth and fifth innovations as independent from the second and third, and he
does not decide which should come first (see figure 3.1). Together, they constitute something similar to
the (single) intermediate stage of “protolanguage” in the scenario of (Bickerton, 1990) and others, and
to pidgin (the limited language spoken by adults with different native languages, Bickerton, 1990) and to
“Basic Variety” (the limited language acquired by adult second language learners, Klein & Perdue, 1997).

The sixth innovation is the invention of hierarchical phrase-structure. Phrase-structure has been
recognised since Chomsky (1955, 1957) as a crucial design feature of human language. Jackendoff argues
that phrase-structure allows the principles of word order, as emerged in stage 5, to be elaborated into
principles of phrase order. Hence, from stage 6 a systematic relation has existed between sentences like
“dog chase mouse”, where “dog” and “mouse” are single word noun phrases, and the similarly structured
but more elaborate “big dog with floppy ears and long scraggly tail chase little frightened mouse”.

The seventh innovation is a vocabulary for relational concepts, introducing words analogous to up,
on, behind, before, after, often, because, however and so forth. These words all describe relations between
different phrases in a sentence, and thus require phrase structure, Jackendoff argues, but not yet syntactic
categories. Jackendoff imagines that the phrase order and use of relational words are still completely guided
by semantically defined notions. That is, there are no subjects, objects, nouns, verbs or mechanisms for
case, agreement or long-distance dependencies. There are just semantic categories such as agent, patient,
objects and actions.

Grammatical categories are the eighth innovation, creating syntactic notions such as “subject” that
are correlated but not equal to the semantic notion of agent (as for instance in the passive construction),
or even a syntactic notion like “sentence” which makes that “a storm last night” cannot stand on its own,
whereas “There was a storm last night”, with dummy subject there, can. The final two innovations, inflec-
tional morphology and grammatical functions (in no particular order) complete the extensive toolkit that
modern languages make use of. This list of gradual innovations is consistent with the gradualist approach
championed by Pinker & Bloom (1990) and others.

In summary, Jackendoff breaks down linguistic competence into a number of different skills, and pro-
poses a gradual scenario in which new skills are added to the existing system, each step increasing the
expressivity of the language used. The first innovation, of symbol use, is about the sort of meanings early

hominids had available for communication. The third, about combinatorial phonology, is about the kind of
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sounds they could produce and perceive. All the other innovations, from an open, learnt vocabulary and the
concatenation of symbols to inflectional morphology, are about the way meanings are mapped onto sound
and vice versa. In the next sections I will discuss some observations about and formalisms for the meaning,
sound and meaning—sound mappings in animal and human communication. Where possible I will evaluate
—in terms of those formalisms — whether Jackendoff’s stages indeed capture the relevant innovations in the
evolution of language. But as it turns out, it is often not straightforward to adapt the formalisms developed
for describing modern, human languages to a different use, that is, to describing the differences between

modern human communication and that of other species.

3.3 Modelling Meaning

Animals and humans categorise their environment, and use calls, words or grammatical sentences to ex-
press aspects of that environment. Typically, the same utterances are used on many different occasions to
express common features. It is therefore reasonable to postulate an “internal state”, a representation in the
brain, that mediates between perceptual and motor abilities, memory, and linguistic forms. I will call these
representations “meanings”. Modelling the meaning of natural language utterances is difficult, because
we have only very indirect access to the representations in the brain and, crucially, much of that indirect
access is modulated through language (Hurford, 2003). The common framework for modelling meaning
(that is, for formal semantics), is that of symbolic logic. Many different logics exists, with different levels
of expressive power as well as different computational properties.

According to Jackendoff and others, the kind of meanings available for communication to modern
humans are qualitatively different from those available to other primates, including our prelinguistic ances-
tors. Jackendoff believes that the “use of symbols” was the first major innovation; other researchers have
argued that a “theory of mind” was a crucial innovation (Dunbar, 1998). It would be very useful if we could
characterise such conceptual differences in formal terms, using the apparatus of formal semantics (that was
developed with other purposes in mind). In the following I will briefly sketch a well-known hierarchy of
logics (Chierchia & McConnell-Ginet, 1990; Gamut, 1991) — propositional, predicate and modal logic — to
see if it can be used for such purposes.

Any discussion of logic, must start with propositional logic (or “Boolean algebra™), which provides

s

a number of operators (such as negation ‘—’, logical AND °‘A’, logical OR ‘V’, implication ‘" and
bi-implication ‘) and inference rules that one can use to derive new true statements from other true
statements (statements that can be true or false are called “propositions”). For instance, we can define
the symbol p as denoting the statement “Socrates is a man”, and ¢ as denoting “Socrates is mortal”. In
propositional logic, the inference that ¢ follows from p can then be described with the rule p — ¢. Using
this rule, someone who is unsure whether Socrates is a real man or an imaginary figure (that is, the truth
value of p), needs only confirmation that he is a man (p is true) to also infer that he is mortal (g is true).

Crucially, propositional logic does not have access to information “inside” a proposition. Thus, when
we add r: “Aristotle is a man”, we have no way of generalising from Socrates’ fate to Aristotle’s and derive
that “Aristotle is mortal”. Predicate logic does capture this generalisation, by introducing the notions
of “predicates”, “arguments” and “quantifiers” (such as the universal quantifier ‘V’: “for all”, and the
existential quantifier ‘3’: “there is”’). Hence, we can introduce the terms s for Socrates, and a for Aristotle,
and the predicates H for being human, and M for being mortal. The fates of both wise men can now be
inferred from two facts H (s) and H (a), and just one general inference rule Va (H (z) — M (z)), which is
interpreted as “All men are mortal.” That is, predicate logic can describe (and productively use) similarities
between propositions that propositional logic has no access to.

Predicate logic is a powerful formal system that is used to model a good part of the semantics of natural

languages as well as many other reasoning tasks in artificial intelligence. However, natural languages



38 CHAPTER 3. THE MAJOR STAGES IN THE EVOLUTION OF LANGUAGE

do contain many words and constructions with meanings that are difficult to model in predicate logic,
such as modal constructions (“can”, “may”, “must”, “perhaps”, “certain’), tense (“I will survive”) and
intentionality (“I think that I am”, where the content of the thought need not be true for the act of thinking
it to be true).

It might appear that by introducing the right variables and predicates, predicate logic would be able to
deal with such expressions. For instance, Kirby (2002a) uses (higher order) predicate logic notation for
expressions such as believes(pete,knows(gavin, hates(pete,heather))) for “Pete believes that Gavin knows
that he hates Heather”. Similarly, in the “flat” notation used by Batali (2002) and De Beule, Van Looveren
& Zuidema (2002, see appendix C of this thesis) and advocated by Hurford (2003), we could introduce
variables for events or situations, and predicates that define properties of these events such as necessary,

likely or possible. “John will always love Mary” is then represented as something like:
Je (loves(e, x,y), john(x), mary(y), always(e)) .

Such abuse of predicate logic notation might be useful for evolutionary simulations where the semantics
is not really relevant. However, for characterising representational abilities it is not a real solution because
it does not suggest a systematic way to evaluate the truth of expressions. David Lewis (1972, quoted in
Abbott, 1999) makes this point as follows in a critique of the semantic representation of Katz & Postal
(1964) which he calls “Markerese’:

we can know the Markerese translation of an English sentence without knowing the first thing
about the meaning of the English sentence: namely, the conditions under which it would be

true. Semantics with no treatment of truth conditions is not semantics (Lewis, 1972, p. 169).

That is, semantics is not complete without a model that provides a way to evaluate logic expressions,
in such a way that there is a systematic relationship between different usages of the same entities and
predicates'. That is, a model for the expressions in Kirby (2002a), as discussed above, needs to recognise
that the Peter that believes is the same person as the person that is known to hate. In predicate logic
we can of course define a model that treats believesthatgavinknowsthatpetehatesheather(x) as a single
predicate that might be true for Peter. But such a model would not do justice to the intended structure of
the expression, that is, it would not capture the relation between the statements “Pete hates Heather” and
“Gavin knows that Pete hates Heather”.

For such constructions, modal logic provides a more satisfactory framework. A modal logic postulates
a set of “possible worlds”, each of which has its own set of facts and rules of inference (expressible as,
for instance, a predicate logic). For instance, yesterday, today and tomorrow can be seen as three possible
worlds. The statement “it rains” can have different truth values in each of them. Some statements, however,
are true for all worlds (such as “if it rains, the streets are wet”). A modal logic, as a minimum, contains the
modal operators for necessity ‘CJ° and possibility ‘C’, and a model of the possible worlds. If R denotes “it
rains”, and W “the streets are wet”, then the statement O(R — W) says “if it rains, the streets are always
wet”. That statement is true today, if R — W is true in all worlds that the possible world model gives us
access to (in this case, all other worlds, i.e. yesterday and tomorrow).

In particular, a variant of modal logic termed intensional predicate logic (IPL) allows us to model
the meaning of expressions that describe the content of thoughts, assertions, statements etc. In such a
treatment, the beliefs of a person form a possible world, with its own truths. Many problems remain, both
internal to IPL (such as the so-called problem of omniscience) and with its relation to natural language

constructs (such as so-called donkey-conditionals). For the present purposes, however, it is sufficient to

'In fact, many semanticists now go further and argue that semantics is not complete without a procedure to evaluate the expression
(Woods, 1968).
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note that there in this hierarchy of logics, more powerful representations like IPL are able to model relations
between statements that less powerful representations cannot.

It would be attractive if we could relate these different logics to the assumed differences between the
conceptual structures available for communication to modern humans, and those available to their prelin-
guistic ancestors and modern higher primates. For instance, Jackendoff joins other cognitive scientists in
claiming that symbol use is the first major innovation. He does however make clear that he does not believe

apes have no symbolic thought:

I take it as established by decades of primate research [references omitted] that chimpanzees
have a combinatorial system of conceptual structure in place [...]. (Jackendoft, 2002, p. 238)
The crucial difference, for Jackendoff, is the use of symbolic vocalisations:

[Even] single-symbol utterances in young children go beyond primate calls in important re-
spects that are crucial in the evolution of language. Perhaps the most important difference is
the non-situation-specificity of human words. The word kitty may be uttered by a baby to
draw attention to a cat, to inquire about the whereabouts of a cat, to summon the cat, to remark
that something resembles a cat, and so forth. Other primates’ calls do not have this property.
A food call is used when food is discovered (or imminently anticipated) but not to suggest that
food be sought. A leopard alarm call can report the sighting of a leopard, but cannot be used
to ask if anyone has seen a leopard lately [references omitted]. (Jackendoff, 2002, p. 239)

Can we express this intuitive difference between humans and other primates as a difference in represen-
tational capacity similar to the difference between propositional and predicate logic? We can, of course,
conjecture that humans have words for predicates and other words for objects (the arguments of those
predicates), which can thus be used in all situations where the conceptual system uses that predicate or
that object. Primates, on the other hand, can only vocalise complete propositions, even though they, as
Jackendoff states, do have a “combinatorial system of conceptual structure”.

The problem with such a proposal is that it is not clear a priori what constitutes a predicate or an object,
and thus what constitutes situation-specificity in formal terms. How can we be sure that the word Kkitty in
an infant’s one-word stage does not mean a complete proposition such as “There is a kitty involved”? How
do we know the child does not simply categorise situations as those that involve kitties, and those that do
not, much like a monkey that categorises situations as those that require running into a tree and those that
do not? If so, the difference is categorisation, not representational ability. The fact that two different animal
species — with different anatomy, and evolved for different habitats — categorise the world differently is no
surprise, of course.

Conversely, how can we be sure that the meaning of a primate alarm call for leopards is not the predicate
“being a leopard”? The point here is that with regard to “meanings available for communication” the
difference between propositional and predicate logic only shows itself through the rules of combination,
that is, through the generalisations they allow. Of course, it is likely that there is something special about
the way humans categorise their environment which was crucial for the evolution of language. But the
tools of formal semantics do not appear to be useful for characterising that difference.

That leaves us with the conclusion that in terms of formal semantics, use of symbols, Jackendoff’s
first innovation cannot be recognised (or perhaps even exist) independent from the fourth innovation (con-
catenation of symbols). In this thesis, I will therefore not address this transition. Perhaps the distinction
between predicate and modal logic will prove more useful for characterising the difference between hu-
man and non-human thought. A debate exists about whether great apes have thoughts about the thoughts
of others, that is, have a theory of mind (Heyes, 1998). Such embedded meanings cannot be modelled

with predicate logic. An interesting question is whether the ability for embedded meanings (I think that
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she heard that he said...) is a prerequisite for hierarchical phrase-structure (Dunbar, 1998; Worden, 1998).
However, because it plays no role in Jackendoff’s scenario, this question will not be addressed in this thesis

either.

3.4 Modelling Sound

The mechanisms of sound production and perception in primate and human communication are fortunately
more amenable to empirical observation, and there is therefore more of a consensus about the fundamental
principles. Sounds are patterns of vibrations, travelling through air from a source (i.e. the speaker) to
the hearer. A sound can be represented with a graph that shows the movements of a membrane (i.e. in
a microphone), and hence the variation in sound pressure over time. This graph is referred to as the
waveform.

For some artificially generated sounds, such as the tone generated by a tuning-fork, the waveform is
a simple, easily interpreted, periodic pattern. For natural calls and utterances, however, the waveform is
typically a complex mesh of aperiodic and periodic vibrations of many different frequencies. The analysis
of these complex sounds is greatly facilitated by a technique called Fourier Analysis. In Fourier Analysis,
the observed waveform is decomposed into (infinitely) many sine-waves of different frequencies, each
with a particular amplitude, such that when all these sine-waves are added together the original signal is
recovered. A graph that shows for a range of frequencies the amplitude of the corresponding sine-waves is
called the frequency spectrum.

For both the production and the perception of sounds, the frequency spectrum has a natural interpreta-
tion. Sound production, both in humans (as worked out by Johannes Mueller in 19th century; see Coren
et al., 1979/1994) and many other mammals (Hauser & Fitch, 2003) can be seen as a two-staged process
with a vibration source and subsequent filtering (the source-filter model, Chiba & Kajiyama, 1958; Fant,
1960; Titze, 1994). The vibrations are produced by the air flow from the lungs passing the larynx. This
sound then propagates through the throat, mouth and nose (the vocal tract), where specific frequencies are
reinforced through resonance. The dominant frequency of the source is called the fundamental frequency,
while resonance frequencies are termed formants. Formants can be modified by changing the shape of the
vocal tract (opening and closing the jaw, moving the tongue, etc.), thus creating the elementary sounds of a
language or call system. In the frequency spectrum, formants show up as distinct peaks in the distribution.

The frequency spectrum also maps in an important way on sound perception. When a sound-wave
reaches the ear, it sets in motion a cascade of vibrations of the eardrum, hammer, anvil & stirrup, oval
window and finally the endolymph fluid in the cochlea. These vibrations cause mechanical waves to travel
through the cochlea’s fluid. Because of the special shape of the cochlea, the travelling waves reach their
maxima at different places along the cochlea’s membrane (the “basilar membrane”) for each different
sound frequency (von Bekesy, 1960; Coren et al., 1979/1994). These differences in wave-form are then
translated into different neural activation patterns in the organ of Corti. This way, the mammalian auditory
system decomposes an incoming sound-wave in its component frequencies, not unlike the Fourier Analysis
performed by phoneticians.

The frequency spectrum is thus a representation of speech sounds that is meaningful for analysing both
production and perception. However, the frequency spectrum representation abstracts out the time dimen-
sion. Temporal changes in the frequency distribution are crucial for encoding and decoding information
into sound in both human and animal communication. A variety of representations of such changes have
been developed, including cascade diagrams (where frequency distributions are measured in a number of
intervals, and plotted with a small vertical transposition for every subsequent interval) and spectrograms

(where frequencies above a specific threshold value are plotted against time). In chapter 4 I will represent
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such temporal changes as a (discretised) trajectory through an acoustic space (where the coordinates of
each point on the trajectory are for instance the peaks in the frequency distribution — the formants — of each
small time interval in the waveform).

On the articulatory side, changes in the frequency distribution correspond to movements of articulators
in the vocal tract. For example, by abruptly closing the vocal tract and releasing again, an existing sonorous
sound is interrupted and a burst of noise is produced (containing many frequencies at low amplitude). In
human speech, such movements are perceived as stop consonants (plosives): /p,b,t,d,k,g/, depending on
where in the vocal tract the stream of air is interrupted. Similarly, fricatives (e.g. /f,v,s,z/), approximants
(/l,,j,w,h/) and nasal consonants (e.g. /m,n/) are produced by complete or partial blockage, and quick or
delayed release. Finally, diphtongs (such as /e1/ in bait) are produced by a shift in the harmonic quality of
the vocal tract without an intermediate consonant.

From a comparative perspective, the basic principles of sound perception and production (at least at
the level of physiology of articulators) appear to be very similar across humans and other mammals. In
contradiction to the “speech is special” hypothesis (Liberman et al., 1967), recent evidence points at the
conclusion that human speech perception is not fundamentally different from non-speech and non-human
perception (Hauser & Fitch, 2003; Hauser, 2001). The fact that humans are extra-ordinarily good at per-
ceiving speech sounds appears to be better explained by the observation that, unlike many animal commu-
nication systems, human language phonology is learnt and imitated (Nottebohm, 1976; Studdert-Kennedy,
1983); in the cultural transmission from one generation to the next, languages themselves have evolved to
exploit the peaks in performance of the human auditory (and articulatory) systems. I will come back to this
point in chapter 7.

However, when analysing the temporal structure of a repertoire of signals, a crucial difference between
human and non-human primate communication is noted: human speech is combinatorial, that is, the basic
meaningful units in human language (words, morphemes) can be analysed as combinations of segments
from a small set of basic speech sounds. Semantic animal communication (in the sense of Seyfarth et al.,
1980), in contrast, seems to be holistic, that is, the basic meaningful units (calls) cannot generally be
decomposed in segments that are reused in other calls. There is some controversy about what the basic
segments of human speech are (phonemes, syllables or articulatory gestures), and there are many examples
of combinatorial songs in primates, birds, and cetaceans (that are used as sexual display, or for identifica-
tion; see chapter 4). To my knowledge, no quantitative comparison of the degree of re-use in human and
non-human sounds exists. Nevertheless, the intuition that human language exploits this mechanism to an
unparallelled degree is widely shared and uncontroversial. This is the third innovation in Jackendoft’s list.

At this point it is important to make a distinction between “E-language”, the externally observable
utterances, and “I-language”, the system internal to the language user that underlies the E-language. Com-
binatoriality in the I-language can be characterised by defining the basic units and the rules of combination;
combinatoriality in the E-language is best characterised by giving a combinatorial I-language that could
underlie it. However, the fact that an outside observer can analyse a set of signals as combinatorial, does
not necessarily imply that the language user actually exploits that combinatorial potential. Hence, a reper-
toire of sounds might superficially look combinatorial, but in fact not be productively combinatorial?. For
instance, if we accept that the syllable, and not the phoneme, is the unit of productive combination in
human speech, then the I-language is characterised by a set of syllables and the rules of combining them.

Phonemes, in such a view, are patterns in the E-language that look as if there is a combinatorial system

2Jackendoff (2002), as do many other linguists, makes the same type of distinction between productive and semi-productive
morphology, but he does not generalise this distinction to the other combinatorial systems in language, nor does he discuss its
relevance for evolution.
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underlying it; they are only superficially combinatorial. This distinction is relevant for the evolution of lan-
guage, because a superficially combinatorial stage might precede and facilitate the evolution of productive
combination (as will be explored in chapter 4 and 5).

Note that for characterising the difference combinatorial and holistic phonology, the basic tools and
formalisms from linguistic phonology do not seem to be of much use. In chapter 4 I will describe signals
as continuous trajectories through an abstract acoustic space (borrowing a concept from phonetics). In this
representation I can model both holistic and combinatorial signals; for the distinction I will rely on visual
inspection of the corresponding graphs.

The evolutionary origins of combinatorial phonology are still a largely open question. A widely shared
intuition is that the way to encode a maximum of information in a given time-frame such that it can be
reliably recovered under noisy conditions, is by means of a digital code. Hence, phonemic coding could be
the result of selection for perceptual distinctiveness. However, this argument has, to my knowledge, never
been worked out decisively for human speech (see chapter 4 for a critique of existing formal models, such
as the one of Nowak & Krakauer, 1999, and for an alternative proposal).

Alternatively, combinatorial coding could be the result of articulatory constraints. Studdert-Kennedy
(1998, 2000) has argued that speech sounds are in fact difficult to produce, and that there is a hierarchy of
difficulty of producing speech sounds. This hierarchy is revealed in development. For instance, children
master syllables like “ba” much earlier than syllables like “through”. The reason is that through requires
a large number of carefully coordinated articulatory movements (gestures). Studdert-Kennedy speculates
that the ability to produce such complex sounds is a relatively recent evolutionary innovation, and that the
inherent difficulty makes the re-use of motor programs unavoidable. Hence, the combinatorial nature of
speech follows from the difficulty of production and the large repertoire of words in human languages.

Consistent with Studdert-Kennedy’s scenario is the neurological evidence discussed by Deacon (1997,
2000) that he believes shows intense selection for “the coupling of precisely timed phonation with rapid

articulatory movements of tongue, lips and jaw.”:

Speech, and particularly singing abilities, clearly demonstrate unprecedented forebrain con-
trol of the human larynx. In this regard, we are not just divergent from other mammals but
also from all other vertebrates — perhaps the only one with significant forebrain control of
laryngeal muscles. This is evidence of prolonged intense selection favoring increased vocal
abilities in our ancestors. (Deacon, 2000, p.283)

If Studdert-Kennedy and Deacon are right, Jackendoff’s third innovation is characterised by radical
changes in articulatory motor control. Nevertheless, this innovation is driven by the need for a large
repertoire of perceptually distinct signals, albeit under stringent articulatory constraints. It is possible,
as Studdert-Kennedy suggests, that the articulatory constraints already impose a form of combinatorial
phonology. In chapter 4, however, I will not make that assumption and instead study its evolution as the
result of selection for perceptual distinctiveness alone.

3.5 Modelling Simple Sound—Meaning Mappings

The other transitions in Jackendoff’s scenario (nrs. 2 and 4-10 in figure 3.1) all concern the way mean-
ings are mapped on signals. Most existing formalisms in linguistics already assume the innovations that
Jackendoff proposes: word order, compositionality, phrase-structure, grammatical categories. They are
therefore not of much use in characterising the early transitions. Here I will first develop a simple formal-
ism that describes meaning to form mappings without any assumptions or learning or combination; from

that basis I will try to characterise the innovations proposed.
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Given a set of relevant meanings to express, and a set of distinctive signals (i.e sounds, or “forms”) that
can be produced and perceived, we can describe a communication system as a (probabilistic) mapping from
meanings to signals (in production), and from signals to meanings (in interpretation). These mappings can
be represented with matrices. Hence, we have a production matrix S and an interpretation matrix R. S
gives for every meaning m and every signal f, the probability that the individual chooses f to convey m.
Conversely, R gives for every signal f and meaning m, the probability that f will be interpreted as m. If
there are M different meanings and F’ different signals, then S is a M x F' matrix, and R a F' x M matrix.
Variants of this notation are used by Hurford (1989); Oliphant & Batali (1996) and other researchers.

Many different S and R matrices are possible. How can we measure the quality of specific combina-
tions? Or, in biological terms, how can we calculate the payoff (a fitness contribution) of specific S and
R matrices? An important component of such a payoff function is whether speakers and hearers agree on
which signals have which meanings. However, in many cases the similarities between signals also need to
be taken into account (because more similar signals are more easily confused), as well as the similarities
between meanings (because slightly wrong interpretations are often better than totally wrong ones).

The consequences of such similarities can be modelled with a confusion matrix U (of dimension F' X
F'), which gives for each possible signal the probability that it is perceived correctly or as any of the other
signals, and with a value matrix V (of dimension M x M), which gives for every intended meaning the
payoff of each of the possible interpretations. Typically, U and V will have relatively high values on the
diagonal (the correct signals and interpretations).

Together, these four matrices can describe the most important aspects of a communication system:
which signals are used for which meanings by hearers and by speakers, how likely it is that signals get
confused in the transmission, and what the consequences of a particular successful or unsuccessful in-
terpretation are. This notation is a generalisation of the notation in Nowak & Krakauer (1999), and was
introduced in Zuidema & Westermann (2003, see appendix C).

A hypothetical example, loosely based on the celebrated study of vervet monkey alarm calls (Seyfarth
et al., 1980; Seyfarth & Cheney, 1997), will make the use of this formalism clear. Imagine an alarm call
system of a monkey species for three different types of predators: from the air (eagles), from the ground
(leopards) and from the trees (snakes). Imagine further that the monkeys are capable of producing a number
(say 5) of different signals that range on one axis (e.g. pitch, from high to low) and that these are more
easily confused if they are closer together. Thus, the confusion matrix U might look like the left matrix in
figure 3.2.

received signal

sent signal | | 16kHz 8kHz 4kHz 2kHz 1kHz interpretations

16kHz 0.7 0.2 0.1 0.0 0.0 intentions | | eagle snake leopard

U= 8kHz 0.2 0.6 0.2 0.0 0.0 V= eagle 0.9 0.2 0.1
4kHz 0.0 0.2 0.6 0.2 0.0 snake 0.5 0.9 0.5
2kHz 0.0 0.0 0.2 0.6 0.2 leopard 0.1 0.2 0.9
1kHz 0.0 0.0 0.1 0.2 0.7

Figure 3.2: Confusion and value matrices for the monkeys in the example, describing the noise in signalling
and the value of intention—interpretation pairs in their environment.

Further, although it is obviously best to interpret a signal correctly, if one makes a mistake, typically
not every mistake is equally bad. For example, if a leopard alarm is given, the leopard response (run into

a tree) is best, but a snake response (search surrounding area) is better than an eagle response (run into

3The actual alarm calls of vervet monkeys are very different from the ones I use in this example. For instance, eagle alarm calls
are low-pitched rather than high-pitched, and all three types of alarm calls have a temporal structure. The example here is just to
illustrate the use of the formalism.
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a bush, where leopards typically hide) (Seyfarth & Cheney, 1997). Thus the value matrix V might look
somewhat like the right matrix in figure 3.2.

interpretation
sent signal received signal | | eagle snake leopard
intention | ‘ 16kHz 8kHz 4kHz 2kHz 1kHz 16kHz 1.0 0.0 0.0
S= eagle 1.0 0.0 0.0 0.0 0.0 R= 8kHz 1.0 0.0 0.0
snake 0.0 0.0 1.0 0.0 0.0 4kHz 0.0 1.0 0.0
leopard 0.0 0.0 0.0 0.0 1.0 2kHz 0.0 0.0 1.0
1kHz 0.0 0.0 1.0

Figure 3.3: Production and interpretation matrices for the monkeys in the example, describing which signals
they use for which meanings.

Now, assume a speaker i with her S’ as the left matrix in fig. 3.3, and a hearer j with his R7 as the
right matrix in that figure. What will happen in the communication between 7 and j? One possibility is
that (i) the speaker sees an eagle, (ii) she sends out the 16kHz signal, (iii) the hearer indeed perceives this
as a 16kHz signal and (iv) he correctly interprets this signal as “eagle”. The contribution to the expected

payoff is:

Ps(16kHz sent | eagle observed) X

Py (16kHz perceived | 16kHz sent) %

Pr (eagle interpreted | 16kHz perceived) X
V (eagle interpreted, eagle observed)) = 1x.7x1x.9=0.63. 3.1)

Another possibility, with probability 0.2, is that the hearer misperceives the signal as a 8kHz signal, but
with probability 1 still interprets it correctly. We can thus work out all possible scenarios and find that the
expected payoff w;; of the interaction between ¢ and j, given the constraints on communications as in U
and Vinfig. 3.2,is: wy; = .Tx.9+.2X 941X 242X .5+.6 X.9+.2X.54+.1x.24+.2Xx.9+.7x.9 = 2.4.

More generally, such calculation can be expressed by one simple expression for the expected payoff
w;; of communication between a speaker i with production matrix S and a hearer j with interpretation
matrix RJ (Zuidema & Westermann, 2003):

wi; =V - (8" x (UxRY)). (3.2)

In this formula, “x” represents the usual matrix multiplication and *“-” represents dot-multiplication (the
sum of all multiplications of corresponding elements in both matrices; the result of dot-multiplication is
not a matrix, but a scalar).

In this simple example, the matrices U and V are very small, and reflect only a 1-dimensional topology
in both signal and meaning space. The matrices S and R are set by hand to arbitrarily chosen values. In
contrast, in the simulations of chapter 5 I will consider larger and more complex choices for U and V, and
I will use a hill-climbing algorithm to find the appropriate (near-) optimal settings for S and R.

Note that the S and R matrix describe the production and interpretation behaviour of an individual (the
E-language), but they do not necessarily model the mechanism that individuals use to map meaning onto
signals and vice versa (the I-language). The values can even be chosen such that an individual’s S matrix is
incompatible with her own R matrix, that is, that she cannot understand her own utterances. More realistic,
perhaps, is to assume an underlying lexicon of (bi-directional) associations between meanings and signals
(Steels, 1995; Komarova & Niyogi, 2004). Such associations can be modelled with an association matrix
A. S and R are then functions of A, such that for instance, an element in S is 1 if the corresponding
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element in A is the highest in its row, and 0 otherwise. Similarly, an element R can be set to 1 only if the
corresponding element in A is the highest in its column.

Jackendoft’s second innovation — an open, unlimited class of symbols — can be viewed as the evolution
of a learning procedure to set the values of the elements in S and R or A. Assume that the set of possible
relevant meanings and the set of possible signals are determined by an individual’s habitat and anatomy
and can be defined a priori. An innate, closed call system then corresponds to settings of the elements of
the matrices that are not dependent on input and show no variation; conversely, a learnt, open call system
corresponds to settings that do depend on environmental input and vary with varying inputs. Innate calls
appear to be the norm in primate communication. For instance, Seyfarth & Cheney (1997) argue that,
although there might be social learning of response behaviour (interpretation), the production of calls in
most primates must be considered innate.

Human language, in contrast, clearly is an open system, where the meanings of words are not naturally
given, but rather emerge as conventions in a population of language users (Lewis, 1969; Gamut, 1991).
Conventions are negotiated in a population, by individuals learning from (and adapting to) each other.
Different learning strategies lead to different languages, and have different consequences for the biological
fitness of individuals in a population, as is studied by (Hurford, 1989) and others. The main results from
these studies is that (i) a stable communication system can emerge in a population where everybody learns
from everybody else, without a need for central control (Steels, 1995); (ii) the best “response language” is
not necessarily the same as the current language in the population (Hurford, 1989; Komarova & Niyogi,
2004), and (iii) Saussurean learners (where S matrices are modelled after R matrices) and synonymy and
homonymy avoiders outcompete other learning strategies (Hurford, 1989; Oliphant & Batali, 1996; Smith,
2004).

These studies are interesting, but do not really address Jackendoff’s transition from a closed, innate
vocabulary to an open, learnt vocabulary. The selective advantages of such a transition — to what biologists
call “phenotypic plasticity” — depend on the constraints on the innate system, the properties of the envi-
ronment and the accuracy of the learning mechanism. If a learnt vocabulary can contain more signals than
an innate vocabulary — as Jackendoff asserts — that must be because of biological constraints preventing
the innate system to be as large. Moreover, a learnt vocabulary can be easily extended to include a word
for a new concept, but whether or not this confers an advantage depends on how often such new relevant
concepts appear. These are interesting issues, but it is difficult to tell what reasonable assumptions are.
Oliphant (1999) argues quite convincingly that the computational demands of learning are unlikely to have
been the limiting factor in this transition; rather, he argues, the difficulties to identify what meaning a signal
is meant to convey explain why learnt communication systems are so rare in nature.

In conclusion, I agree with Jackendoff (2002), Oliphant (1999) and many others that the emergence of
an open class of symbols is an important transition in the evolution of language. Moreover, I believe it can
be formalised using the matrix notation introduced above. Many models that use such a formulation in one
form or another have been studied. In this thesis, however, I will not address this problem. In chapter 5
I will study a model where I simply assume that every learning step will increase an agent’s ability to
communicate with others (i.e. they optimise their S and R matrices), and focus on the effects of different
U and V matrices. As we will see, specific choices for these matrices have consequences for the evolution

of both combinatorial phonology and compositional semantics.

3.6 Modelling Compositionality

The matrices discussed above can describe, for each particular meaning, which signals are associated with

it or vice versa. However, they cannot make explicit any regularity in the mapping from meanings to
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signals. In both non-human and human communication such systematic relations between meanings and
signals exist. For instance, in most species high pitch sounds are associated with danger, and low pitch
sounds with aggression. In vervet-monkey calls, there are clear similarities between the calls used in
social interactions, which are all very different from the alarm calls (Seyfarth & Cheney, 1997). In human
language, on the level of words, there is some evidence — albeit controversial — that similar words tend to
refer to similar objects, actions or situations, and that humans generalise such patterns to nonsense words
(Hinton et al., 1995). Uncontroversially, on the level of morphosyntax it is clear that similar sentences
mean similar things, that is, the mapping from meanings to signals is compositional.

We can describe the systematicities in the meaning—signal mappings as the preservation of topology
between meaning space and signal space, that is, meanings that are close are expressed with signals that
are close. In the S, R and A matrices, such “topology preservation” might be noticeable as a non-random
pattern if both the meaning and signals axes are ordered. We can be more precise, however, by systemati-
cally comparing each pair of associations. Brighton (2002) proposes using the correlation (“Pearson’s ")

between the distance between each pair of meanings and the distance between the corresponding signals:

r= C%ﬁil/%%m (D (m,m"), D (S[m],S[m'])), (3.3)
where S[m] gives the most likely signal used to express m according to S, D(m, m’) gives the distance
between two meanings m and m’, and D(f, f') between two signals f and f’. Although only a correlate of
compositionality, such a measure can reveal a tendency for related meanings to be expressed with related
signals. Hence, expressed in this formalism, Jackendoff’s fourth and fifth innovation (concatenation and
compositionality) correspond to a high values of r in equation (3.3).

We can go further, however, and explicitly model the way in which combinations of signs form more
complex signs. The common way to deal systematically with the meanings of combinations of lexical
entries, is Church’s lambda calculus (see e.g. Gamut, 1991, for a discussion). Semantic descriptions, such
as discussed in section 3.3 should be extended with the possibility to include lambda (\) terms. Lambda
terms can be seen as listing the variables that still need to be substituted; they disappear when a complete
semantic description is reached. Formally, a lambda term in front of an expression turns that expression into
a function that maps an argument onto a new expression where that argument has found its proper place.
For instance, we can model the semantics of the verb walks as AxW (z) and apply it to an argument j (for
John) to yield W (j) (for John walks). Similarly, the following is the semantic description for approaches
in the “flat notation” of De Beule et al. (2002):

Azy(x | (approach z) (agent z x) (patient z y)) (3.4
When applied to the following semantic description
p| (circle p) (3.5)
the resulting description is as follows:

My (p | (approach z) (agent z p) (patient z y) (circle p)) (3.6)

That is, the variable x in (3.4) is replaced by the head of (3.5), and the Az is removed. (3.6) means

something like “the circle approaches y”, where y still needs to be filled in. (3.6) can in turn be applied to,
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for instance, the description of a block, yielding a description that would mean “The circle approaches the
block™.

The lambda calculus gives a mechanical procedure to derive the semantic expression that results from
applying a function to an argument. A word (or phrase) corresponding to the function is said to dominate
a word corresponding to the argument. Hence, if we model the compositional semantics of “John walks”
with a function Az () and an argument j, then we have assumed that walks dominates John.

In modern languages, this dominance structure is, to a large extent, determined by principles of word
order and morphological marking. Thus, if we model the semantics of the transitive verb hates in “George
hates broccoli” as A\yAzH (z,y) (i.e. as a function with two arguments), the principles of word order need
to guarantee that hates dominates broccoli, and hates broccoli dominates George. In the fourth and fifth
stage of Jackendoff’s scenario there is no phrase-structure or morphological marking, so the dominance
structure is largely underdetermined. The word order principles of “agent first”, “focus last” and “group-
ing” that Jackendoff proposes, constrain the structural ambiguity that arises from this underdeterminacy.

In conclusion, we have with equation (3.3) a provisional measure of compositionality in the E-language.
Moreover, we can characterise compositionality in the I-language by identifying the units and rules of
combination. In chapter 5 I will study the transition to compositional semantics using the former, and
argue that the compositionality in the I-language can more easily evolve if some form of compositionality

in the E-language has already been established for other reasons.

3.7 Modelling Hierarchical Phrase Structure

One of the defining characteristics of human language is that sentences exhibit phrase-structure, and the
ability to represent phrase-structure has, since Chomsky (1957), been the one of the most important criteria
in judging the adequacy of linguistic formalisms. Rewriting grammars, such as proposed by Chomsky,
remain the archetype formalism for describing syntax. I will first introduce this formalism in some detail,
and then define phrase-structure in terms of it.

Rewriting grammars are specified by four sets: the terminal symbols, the nonterminal symbols, the
production rules and the start symbols. Terminal symbols (V;) are in a sense the atoms of a language
without further syntactic structure (e.g., the words or morphemes of a language) but possibly also complete
idioms or frozen expressions. Nonterminal symbols (V,,;) are variables that stand for constituents of a
sentence, and can correspond to anything from the syntactic category of a word (or morpheme) to a whole
sentence. Production rules (R) specify which nonterminal symbols can be replaced by which terminal
or non-terminal symbols in the process of deriving a sentence, starting with a start-symbol (S). If the
production rules are of the form o — w where the lefthand-side is a nonterminal symbol (o € V,,;), and
the righthand-side is any (non-null) string of terminals and nonterminals, the grammar is said to be context-
free (because the context in which « occurs is not relevant for the applicability of the rule). Figure 3.4 gives
an example context-free rewriting grammar for a fragment of English.

Chomsky (1957) showed that more restricted versions of this formalism such as finite-state grammars
or their probabilistic version, Markov processes, are unable to describe the long-range dependencies that
are observed in natural languages. English, for instance, requires agreement between the number of a
subject and the number of the verb, such as in example 3.7(a), but not 3.7(b). But English also allows the
insertion of one or more prepositional phrases such as “that chases the dog” as a modifier of the subject,
such as in examples 3.7(c, d). Hence, the distance between “the cat” and “admires” can —in principle— be
arbitrarily long, and the dependency between them cannot be described in terms of transition probabilities

between words.
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S — NPV (1) At — the | a (6ab)
NP — ArtN (2) N +— cat | dog (7ab)

N — NSP (3) V +— chases | admires (8ab)
VP — VNP (4 S ' the cat fears the dog  (9)
SP +— thatVP (5) S ' thedog fears the cat  (10)

()

Figure 3.4: An example context-free grammar for a fragment of English, with a terminal alphabet V; =
{the, a, dog, chases, admires, that} and a non-terminal alphabet V,,;, = {S, NP, VP, Art | N, V}. Production
of a sentence (“derivation”) always starts with the symbol S and proceeds by replacing symbols matching
the left-hand side of some rule, with the string at the right-hand side of that rule. “Parsing” means searching
the sequence of rewriting steps that would produce the sentence with a given grammar. Rules 1-4 are
“combinatorial”’; rule 5 is “recursive”. The grammar can generate infinitely many sentences such as “the
cat chases the dog” or “a dog admires a cat that chases a dog that admires a cat” etc. Rule 6-8 constitute
what is traditionally described as the lexicon, and can be represented in the same formalism. Rule 9 and 10
illustrate a “lexical”, non-combinatorial and much less efficient strategy for generating sentences. Context-
free grammars are considered to be not quite sufficiently powerful to describe natural languages. The
formalism can be extended in several ways. For instance, it can be extended to attribute in a systematic
way meanings to words and sentences; the resulting system is “compositional”.

3.7 a.  The cat admires the dog.
b. *The cat admire the dog”.
c.  The cat that chases the dog admires the dog.
d.  The cat that chases the dog that admires the cat admires the dog.

Crucially, adequate formalisms for natural language need to represent phrase-structure, that is, they
need to recognise that “the cat”, “the cat that chases the dog” and “the cat that chases the dog that admires
the cat” all have the same role in their respective sentences. Moreover, phrase-structure is hierarchical;
the first “the dog” in example 3.7(c) is a noun phrase that is a component of the whole subject noun
phrase. The hierarchical phrase-structure of a sentence can be visualised as a tree, as is exemplified in
figure 3.4(b). Phrase-structure can be viewed as the necessary intermediate representation in mapping
complex sounds (“phonological form”, PF, in Chomsky’s terminology) to complex meanings (“logical
form”, LF). It specifies both the word order (“linear precedence’) and the dominance structure (“immediate
dominance”).

Context-free grammars can represent hierarchical phrase-structure. Starting with a start symbol, one
can iteratively apply the production rules by replacing an occurrence of the left-hand side of a rule by the

right-hand side. The phrase-structure of figure 3.4(b) can be derived as follows:
Solo206a07a0408bo6aoTh= “the cat admires the dog”, 3.8)

where t o r gives the result of applying rule r to a tree ¢ (I here assume it is applied to the left-most
nonterminal in tree ¢, which ensures that there is a single derivation for each unique phrase-structure tree).

Parsing refers to a search procedure for finding the phrase-structure and corresponding derivation for
a given sentence and a given grammar. For the purposes of this chapter it is sufficient to note that parsing

is a non-trivial problem. Naive, exhaustive, bottom-up search algorithms have a time complexity that is

4The asterix indicates, in line with linguistic convention, that this sentence is ungrammatical.

(b)

The

cat

admire:
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exponential in the number of words in a sentence; with some clever book-keeping to avoid redundant
work, the time complexity can be reduced to O(n?), which is still a significant limitation for real-world
applications and for cognitive realism. Such problems are, in Chomsky’s view, part of the domain of
performance, and not of major concern for theorists of language competence.

Context-free grammars are a powerful formalism, but Chomsky (1957) argued (for the wrong reasons,
it emerged later) that they are not powerful enough to model certain phenomena in language. Chomsky’s

examples are the following:

3.9) the scene of the movie was in Chicago
the scene of the play was in Chicago
the scene of the movie and of the play was in Chicago

a
b
c

(3.10) a.  the scene of the movie was in Chicago
b.  the scene that I wrote was in Chicago
c

*the scene of the movie and that I wrote was in Chicago

Chomsky argued that the rule to describe the proper use of “and” (coordination), as in example 3.9(c)
but not 3.10(c), requires itself knowledge of the phrase-structure. That is, the “and” rule is a meta-rule
that uses the phrase structure of 3.9(a) and (b) to decide that (c) is possible because “the movie” and “the
play” are of the same type, and, conversely, uses the phrase-structure of 3.10(a) and (b) to decide that (c)
is not possible. Such meta-rules were termed transformations and were used not only for coordination, but
for many other common linguistic constructions such as questions (wh-movement), gapping, passives and
topicalization.

With his discussion of finite-state grammars, context-free grammars and transformations, Chomsky dis-
covered a fundamental hierarchy of grammars that is now termed the Chomsky Hierarchy (see table 3.1).
This prompted a long (and still continuing) debate on where to locate human language on the hierarchy. Al-
ready in the 1960s it was realised that the original transformational grammars, which are context-sensitive,
were too powerful, because they made necessary a long list of rather ad-hoc constraints and exceptions
to exclude obviously ungrammatical sentences (for instance, the “coordinate structure” constraint and the
“across the board exception” in Ross, 1967). In the 1970s and 1980s efforts were made to find a formalism
that could do away with tranformations, but would still be sufficiently powerful to deal with phenomena
like coordination, wh-movement and gapping. Solutions, such as GPSG, essentially work by systemat-
ically increasing the number of non-terminals enormously (that is, they give with slashes or indices the
non-terminals an internal structure).

There seems to be a relative consensus now that the necessary level of generative power is slightly more
than context-free, a level now termed “mildly context-sensitive” (Joshi et al., 1991). The additional power
over context-free grammars is needed for relatively rare constructions such as the crossed-dependencies
in the Dutch example 3.12(a). Examples (b) and (c) show the translation in English and German. Differ-
ent fonts are used to show the different types of dependencies: crossing in dependencies in Dutch, local
dependencies in English, center-embedding in German.

(3.12) a. Gilligan beweert dat Kelly Campbell BLAIR het publiek zag helpen BEDRIEGEN.
b.  Gilligan claims that Kelly saw Campbell help BLAIR DECEIVE the public.
c.  Gilligan behaupte dass Kelly Campbell BLAIR das Publikum BELUGEN helfen sah.

Given a formal definition of complexity in terms of the Chomsky Hierarchy, and a consensus about
where modern human language should be situated, it is perhaps natural to try to describe the evolution
of language as a climb of that hierarchy. In such a scenario, selection for increased computational power

removed one by one the computational constraints for dealing with the full complexity of modern language.
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Definition 1 (Chomsky hierarchy) A grammar G = (P, S, V., Vi) is
classified according to the following restrictions on the form of rewriting
rules of P:

1. A grammar is of TYPE 3 (the “right-linear’” or “regular gram-
mars”) if every rule is of the form A — bC or A — b, where
A,C € V,,and b € V£ or b = )\ (the “‘empty” character).

2. Agrammar is of TYPE 2 (the “context-free grammars”) if every rule
is of the form A — w, where A € Vi, and w € (V,; U Vie )™

3. Agrammar is of TYPE 1 (the *““context-sensitive grammars™) if every
rule is of the form vAw — wvzw, where z is any combination of
terminal or non-terminal symbols: z € (V,,; U Vie)* and z #£ A. In
addition, a single rule S — X is allowed if S does not appear at any
right-hand side of the rules.

4. Any rewriting grammar, without restrictions, is of TYPE O.

This classification constitutes a strict hierarchy of languages. Hence, if £;
is the set of all languages of type 7, then the following is true:

£3C£2C£1C£0. (3.11)

Table 3.1: The Chomsky Hierarchy

An explicit example of such a scenario is Hashimoto & Ikegami (1996), but it is implicit in many other
accounts (e.g. Fitch & Hauser, 2004).

However, there are a number of problems with such an attempt. First, we have to be very careful
with what we mean with phrases like “at least context-free power”, “human language syntax is mildly-
context sensitive” or “where human language is situated on the Chomsky Hierarchy”. The classes of
formal languages on the Chomsky Hierarchy are subsets of each other (equation (3.11)). Chomsky’s (1957)
analysis that finite state grammars are insufficient, and subsequent analysis that context-free grammars
are also insufficient, suggests that natural languages are in that subset of the context-sensitive languages
that cannot be modelled with a finite-state grammar or context-free grammars (that is, in the complement
of the context-sensitive in the context-free languages). Most context-sensitive languages, however, have
very little in common with natural languages; natural languages are thus constrained in many ways (e.g.
semantics, learnability) that have nothing to do with the Chomsky Hierarchy.

Second, it would be wrong to assume that complexity in terms of the Chomsky Hierarchy is actually
hard to get. Just a few neurons connected in specific way can generate temporal patterns that are of type 1
or 0 in the Chomsky Hierarchy (i.e. that can only be described with context-sensitive or Turing complete
grammars). Like natural language, such patterns would justify the label “at least context-sensitive”, even
though they are not likely to be interesting from the point of view of encoding information. In short, the
classes of the Chomsky Hierarchy divide up the space of formal grammars in a way that is not particularily
relevant for the evolution of language. That is, it is possible that most of the evolutionary developments of
natural language grammar occurred within one and the same class on the Chomsky Hierarchy. Moreover,
even if a class boundary was crossed, formalisation in terms of the Chomsky Hierarchy and architectural
constraints offers no insights about the causes for crossing it.

Are there ways to divide up the space of formal grammars that do suggest an incremental, evolutionary
path to the complexity of modern language? A starting point for answering that difficult question might
be a precise model of how natural language is learnt. In chapter 6 I will discuss a learning algorithm for

natural language grammar. I will argue that — before we can usefully propose an incremental pathway
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for the evolution of syntax (including Jackendoff’s remaining innovations of grammatical categories, in-
flectional morphology and grammatical functions) — we need to recognise the fact that language learning
is a peculiar learning problem. Languages are transmitted culturally, and can therefore lead to a form of
cultural evolution. As we will see in these chapters, the incremental evolution of the human capacity for
language can only be understood as a co-evolution of languages and the brain (Deacon, 1997).

3.8 Conclusions

Humans show in their communication system a number of “design features” that distinguish us from non-
human primates and, by assumption, from our pre-linguistic ancestors. Jackendoff’s list of innovations
in the evolution of languages provides a useful framework to address the origins of these design features.
Jackendoff’s account can, however, be improved in a number of ways.

First, I have argued that although a scenario with successive stages is an important ingredient of an
evolutionary explanation, Jackendoff does not address the important other ingredient: how did the tran-
sitions happen? Evolutionary explanations require a plausible account of how innovations spread in the
population.

Second, although Jackendoff makes liberal use of diagrams, trees and logic formulae, his account is
not precise enough to be implemented in formal models. In this chapter I have tried to sketch the formal
tools we need to describe evolutionary innovations in meanings, sounds and the mapping between them.
From that discussion it has become clear that Jackendoff’s first innovation, the use of symbols, cannot be
precisely defined. In contrast, combinatorial phonology, compositional semantics and hierarchical phrase-
structure can be precisely characterised. These innovations will be the topics of the next three chapters.

Third, Jackendoff’s evolutionary scenario does not make a distinction between the structure of the
language as observed from ‘outside’ (E-language), and the structure of the representations used in an
individual’s brain (I-language). As we have seen in the discussion of this chapter, it is possible for a
language to show the hallmarks of combinatorial phonology, compositional syntax and perhaps phrase-
structure, without the language user being able to actively exploit it. In the chapters 4 and 5, I will explore

how that observation can be a solution to the problem of coordination discussed in chapter 2.






CHAPTER 4

Combinatorial Phonology'

A fundamental, universal property of human language is that its
phonology is combinatorial. That is, one can identify a set of basic,
distinct units (phonemes, syllables) that can be productively combined
in many different ways. In this chapter, I review a number of theories
and models that have been developed to explain the evolutionary tran-
sition from holistic to combinatorial signal systems, but find that in all
problematic linguistic assumptions are made, or crucial components
of evolutionary explanations are omitted. I present a novel model to
investigate the hypothesis that combinatorial phonology results from
optimising signal systems for perceptual distinctiveness. The model
differs from previous models in two important respects. First, signals
are modelled as trajectories through acoustic space. Hence, both holis-
tic and combinatorial signals have a temporal structure. Second, I use
the methodology from evolutionary game theory. Crucially, I show a
path of ever increasing fitness from holistic to combinatorial signals,
where every innovation represents an advantage even if no-one else in

a population has yet obtained it.

I'This chapter describes research that builds on joint work with Bart de Boer, as published in de Boer & Zuidema, 2003 (see
appendix C of this thesis). However, all modelling, text and graphs in this chapter are my own, except where indicated otherwise.
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4.1 Introduction
4.1.1 Natural language phonology is combinatorial

One of the universal properties of human language is that its phonology is combinatorial. In all human
languages, utterances can be split into units that can be recombined into new valid utterances. Although
there is some controversy about what exactly the units of (productive) combination are, there is general
agreement that in natural languages — including even sign languages (Deuchar, 1996) — meaningless atomic
units (phonemes or syllables) are combined into larger wholes; these meaningful combinations (words,
or morphemes) are then further combined into meaningful sentences. These two levels of combination
constitute the duality of patterning (Hockett, 1960).

In the traditional view, the atomic units are phonemes (minimal speech sounds that can make a distinc-
tion in meaning), or the distinctive features of these phonemes (Chomsky & Halle, 1968). Signal repertoires
that are built-up from combinations of phonemes are said to be “phonemically coded” (Lindblom et al.,

9 9

1984). For instance, the words “we”, “me”, “why” and “my”, as pronounced in standard British English,

[T ]

and “y”, which can all be used in many different

NS L) “e!’

can be analysed as built-up from the units “w”, “m”,
combinations. One popular alternative view is that the atoms are syllables, or the possible onsets, codas
and nuclei of syllables (e.g. Levelt & Wheeldon, 1994). A second alternative theory uses exemplars, which
can comprise several syllables or even words, as its basic units (e.g. Pierrehumbert, 2001). In this chapter, I
will avoid the debate about the exact level of combination — and the conventional term “phonemic coding”
— and instead focus on the uncontroversial abstract property of “combinatorial phonology”2.

Note that, whichever the real level of combination is, there is no logical necessity to assume that all
recurring sound patterns observed in speech, are in fact units of productive combination in the speaker’s
brain. For instance, if one accepts that syllables or exemplars are the units of combination used by the
speaker, phonemes are still a useful level of description to characterise differences in meaning. I distinguish

between:

1. productively combinatorial phonology, where the cognitive mechanisms for producing, recognising
and remembering signals make use of a limited sets of units that are combined in many different
combinations. Productive combinatoriality is a property of the internal representations of language
in the speaker (I-language).

2. superficially combinatorial phonology, where parts of signals overlap with parts of other signals.
Superficial combinatoriality is a property of the observable language (E-language). Importantly, the
overlapping parts of different signals need not necessarily also be the units of combination of the
underlying linguistic representations.

This chapter is concerned with mathematical and computational theories of the evolution of combinato-
riality of human languages at both these levels. It has often been observed that natural language phonology
is discrete, in that it allows only a small number of basic sounds and not all feasible sounds in between. In
this chapter, I argue that it is important to distinguish between discreteness per se, and superficial and pro-
ductive combinatoriality. In section 4.2, I will review existing models of Liljencrants & Lindblom (1972),
Lindblom, MacNeilage & Studdert-Kennedy (1984), de Boer (2001) and Oudeyer (2001, 2002), and argue
that they are relevant for the origins of discreteness, but have little to say about the origins of superficial
and combinatorial phonology. Nowak & Krakauer (1999) do address the origins of productive combinato-
riality, but their model has a number of shortcomings that make it unconvincing as an explanation for its

evolution.

%In the animal behaviour literature the term “phonological syntax” (coined by Peter Marler, see Ujhelyi, 1996) is often used, and
Michael Studdert-Kennedy also uses the term “particulate principle” (coined by W. Abler, see Studdert-Kennedy, 1998). Jackendoff
(2002, p.238) uses the term “combinatorial, phonological system” on which my terminology is based.
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In my own model, that I will introduce in section 4.3, I address the questions of why natural language
phonology is both discrete and superficially combinatorial. I assume, but do not show in this chapter, that
superficial combinatoriality is an important intermediate stage in the evolution of productive combinatori-

ality.
4.1.2 The origins of combinatorial phonology

Although discrete, combinatorial phonology has often been described as a uniquely human trait (e.g. Hock-
ett, 1960; Jackendoff, 2002), it is increasingly realised that many examples of bird and cetacean songs (e.g.
Doupe & Kuhl, 1999; Payne & McVay, 1971) and, importantly, non-human primate calls are combinatorial
as well (Ujhelyi, 1996). For instance, the “long calls” of tamarin monkeys are built up from many repe-
titions of the same element (e.g. Masataka, 1987), and those of gibbons (e.g. Mitani & Marler, 1989) and
chimpanzees (e.g. Arcadi, 1996) of elaborate combinations of a repertoire of notes.

Such comparative data should be taken seriously, but it is unwarranted to view combinatorial long calls
in other primates as an immediate precursor of human combinatorial phonology, because there are some
important qualitative differences:

o Although a number of building blocks might be used repeatedly to construct a call, it does not appear

to be the case that rearranging the building blocks results in a call with a different meaning.

e [t is unclear to what extent the building blocks of primate “long calls” are flexible and whether they

are learnt.

e In human language, combinatorial phonology functions as one half of the “duality of patterning”:

together with recursive, compositional semantics it yields the unlimited productivity of natural lan-

guage, but it is unclear if the single combinatorial system of primates can be seen as its precursor.

Nevertheless, combinatorial phonology must have evolved from holistic systems by natural selection.

There are at least two views on what the advantages of combinatorial coding over holistic coding are:

1. It makes it possible to transmit a larger number of messages over a noisy channel (the “noise robust-
ness argument”, an argument from information theory, e.g. Nowak & Krakauer, 1999). Note that this
argument requires that the basic elements are distinct from each other, and that signals are strings of
these basic elements. The argument does not address, however, how signals are stored and created;

2. It makes it possible to create an infinitely extensible set of signals with a limited number of build-
ing blocks. Such productivity provides a solution for memory limitations, because signals can be
encoded more efficiently, and for generalisation, because new signals can be created by combining
existing building blocks (the “productivity argument”, a point often made in the generative linguis-
tics tradition, e.g. Jackendoff, 2002). Note that this argument deals purely with the cognitive aspects,

and views the acoustic result more as a side-effect.

These views are a good starting point for investigating the question of why initially holistic systems
(which seem to be the default for smaller repertoires of calls) would evolve toward combinatorial systems.
However, as I explored in chapter 2, just showing an advantage does not constitute an evolutionary expla-
nation. At the very least, evolutionary explanations of an observed phenotype, involve a characterisation
of (i) the set of possible phenotypes, (ii) the fitness function over those phenotypes, and (iii) a sequence
of intermediate steps from an hypothesised initial state to observed phenotype. For each next step, one
needs to establish that (iv) it has selective advantage over the previous, and thus can invade in a population
without it. In section 4.2 T will criticise some existing models because they lack some of these required
components.

In language evolution, fitness will not be a function of the focal individual’s traits alone, but also of
those of its conversation partners. That is, the selective advantage of a linguistic trait will depend on the
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frequency of that trait and other traits in a population (it is “frequency dependent”). Therefore, evolutionary
game-theory (Maynard Smith, 1982) is the appropriate framework for formalising evolutionary explana-
tions for language (Nowak & Krakauer, 1999; Komarova & Nowak, 2003; Smith, 2004; van Rooij, 2004;
Jdger, 2005). In this framework, the crucial concept is that of an evolutionary stable strategy (henceforth,
ESS): a strategy that cannot be invaded by any other strategy (Maynard Smith & Price, 1973). Thus formu-
lated, the challenge is to show that (i) repertoires of signals with a combinatorial phonology are ESSs, and
that (ii) plausible precursor repertoires, without combinatorial phonology, are not evolutionarily stable.
There are also theories of the origins of combinatorial phonology that do not assume a role for natural
selection. For instance, Lindblom et al. (1984), de Boer (2001) and Oudeyer (2001, 2002) see “self-
organisation” as the mechanism responsible for the emergence of combinatorial phonology. These authors
use the term self-organisation in a very broad sense, where it can refer to almost any process of pattern
formation other than classical, Darwinian evolution. Liljencrants & Lindblom (1972) use an optimisation
heuristic, but do not make explicit which process underlies the optimisation. In the next section I will argue
that self-organisation and natural selection need not be put in opposition, but can be seen as detailing prox-
imate and ultimate causes respectively (Tinbergen, 1963; Hauser, 1996), where natural selection modifies

the parameters of a self-organising process (Waddington, 1939; Boerlijst & Hogeweg, 1991).

4.2  Existing Approaches

4.2.1 Maximising discriminability

Liljencrants & Lindblom (1972) argued that one can understand the structure of the sound systems in
natural language as being optimised for perceptual discriminability and articulatory ease, rather than as
arbitrary settings of parameters (as in the theories from the generative phonology tradition, e.g. Chomsky
& Halle, 1968). In the initial paper they focused on the discriminability of vowel repertoires, and proposed

the following metric to measure their quality:

1 1 1
E=; > d—QZZZE .1

ij#i€ER W =2 j=1 U

where R is a repertoire with | R| distinct sounds, and d;; is the perceptual distance between sound ¢ and
sound j. The perceptual distance between vowels is determined by the position of peaks (resonances) in
the vowel’s frequency spectrum. The frequency of the first and the second peak can be used as coordinates
in a two-dimensional space. The weighted Euclidean distance between two such points turns out to be a
good measure of perceptual distance between vowels. E' is a measure for the quality of the system, where
lower values correspond to a better distinguishable repertoire. The E stands for “energy”, in analogy with
the potential energy that is minimised in various models in physics.

Liljencrants & Lindblom (1972) performed computer simulations using a simple hill-climbing heuris-
tic, where at each step a random change to the repertoire is considered, and adopted only if it has a lower
energy than the current state. Their results compare favourably to observed data on vowel system distri-
butions. In figure 4.1, I show similar results from a simple model with an abstract acoustic space that is a
simple 1 x 1 square.

Liljencrants & Lindblom’s results were important because they showed that the configuration of sound
systems in natural languages is not arbitrary, and can be understood as the result of more fundamental prin-
ciples. However, a number of questions remain. First of all, what in the real world exactly is the optimisa-
tion criterion meant to be modelling? The Lindblom & Liljencrants model is often described as “maximis-
ing the distances between vowels” or “minimising the probability of confusion”. It is important to realise,

however, that the optimisation criterion in equation (4.1) is neither. Minimising £ = % vaj 2il / dfj by
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(a) 5 signals (b) 9 signals (c) 40 signals

Figure 4.1: Configurations of 5, 9 and 40 signals in an abstract acoustic space, when optimised according to
the Liljencrants & Lindblom (1972) criterion (equation 4.1). Shown are the configuration found after 2000
hillclimbing steps, with distortions drawn from a Gaussian distribution around each point (o, = o, =
0.05), starting from initial configurations where each signal has (uniformly) random coordinates.

changing the configuration of a set of vowels in a restricted acoustic space, is not necessarily the same a
maximising the average distance d = % ZZV] i dij (or squared distance), nor is it the same as minimis-
ing the average confusion probability C = + vaj +i P(j perceived|i uttered). Atintermediate distances,
these three criteria behave very similarly. The crucial difference is at distance 0, when Liljencrants & Lind-
blom’s E goes to infinity, and at large distances, when both the F and C' measures, but not d, approach 0.
In section 4.3.2 I will argue that in some cases Liljencraft and Lindblom’s E in fact behaves unrealistically
and that minimising the average confusion probability (or equivalently, maximising the distinctiveness
D =1 —C) is a better criterion.

Second, we should ask which mechanism in the real world is responsible for the optimisation? Lind-
blom himself has referred to both natural selection and self-organisation. As is discussed in chapter 2, the
frequency dependence of language evolution means that natural selection on the level of the individual can-
not be equated with optimisation on the level of the population. Before we can invoke natural selection, we
need to do at least a game-theoretic analysis to show that each new configuration of signals in the acoustic
space can invade in a population where it is extremely rare. Models of this type will be discussed in the
next section.

For self-organisation, the mechanism for optimisation has been worked out more precisely. De Boer
(2000; 2001) has studied a simulation model of a population of individuals that each strive to imitate
the vowels of others, and be imitated successfully by others. The agents in the model have simplified
but realistic mechanisms for recognition and articulation of vowels. They maintain a repertoire of vowel
prototypes, and modify the repertoire depending on their success in imitating the vowels of others, as well
as the success in being imitated. De Boer showed that in this process of self-organisation — where all agents
learn from each other — similar configurations of vowels emerge as in the Liljencrants & Lindblom (1972)
model, and as found empirically in the languages of the world. De Boer’s model does not explain, however,
where the specific learning procedures come from.

Finally, the important question remains of how to extend these models to more complex signals? The
models of Liljencrants, Lindblom and De Boer only deal with vowels and, hence, only with the discrete
aspect of human phonology. They have little to say about the evolution of superficial and productive
combination. Lindblom et al. (1984), and similarily de Boer (1999, chapter 7), have studied models where
signals are trajectories, going from a point in a consonant space, to a point in a vowel space. But in these
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models the issue still really is the emergence of categories, because the sequencing of sounds is taken as

given and there is no interaction between the dynamics in consonant space and those in vowel space.

4.2.2 Natural selection for combinatorial phonology

Nowak & Krakauer (1999) apply notions from information theory and evolutionary game theory to the
evolution of language. They derive an expression for the “fitness of a language”. Imagine a population
of individuals, a set of possible signals and a set of possible meanings to communicate about. Speakers
choose a meaning to express (the intention), and choose a signal for it with a certain probability. Hearers
receive the signal, possibly distorted due to a certain degree of noise. Hearers subsequently decode the
(distorted) signal and arrive at an interpretation. Using similar notation as in section 3.5 of the previous
chapter, the payoff of the interaction between a speaker and a hearer is described with the equation:

M N N

w=> 33 (SmiUyRjm), 4.2)
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where w is the expected payoff from an interaction between a speaker and a hearer, S,,,; gives the probabil-
ity that the speaker will use signal 7 to express meaning m, U;; gives the probability that 7 is perceived as
j,and R, gives the probability that the hearer interprets j as m. This equation is identical to equation 3.1
when all possible meanings are equally valuable and equally frequent (that is, the reward matrix V is the
identity matrix).

Nowak & Krakauer define a language as the combination of a production and interpretation matrix,
i.e. L = {S,R}. The fitness of a language L in a situation where one needs to communicate with users
of a language L' (where L’ = {S’,R’}), is now given by (assuming speaking and hearing are equally

important):
M
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Nowak et al. observe that when communication is noisy and when a unique signal is used for every
meaning, the fitness is limited by an “error limit”: only a limited number of sounds can be used — and thus a
limited number of meanings be expressed — because by using more sounds the successful recognition of the
current signals would be impeded. Nowak et al. further show that in such noisy conditions, fitness is higher
when (meaningless) sounds are combined into longer words. When the environment is combinatorial
(i.e. objects and actions occur in many combinations) the fitness is highest when meaningful words are
combined into longer sentences (compositionality). These results are essentially particular instantiations
of Shannon’s more general results on “noisy coding” (Shannon, 1948), as is explored in a later paper by
the same group (Plotkin & Nowak, 2000).

More interesting is the question how natural selection could favour a linguistic innovation that intro-
duces combinatorial phonology, in a population where that innovation is still very rare (the “invasibility
requirement”, discussed in chapter 2). Nowak & Krakauer (1999) do not address that specific problem
mathematically. They do, however, perform a mathematical, game-theoretic analysis of the evolution of
“compositionality”, and point out that this analysis can be easily adapted to the case of combinatorial
phonology. It is worth spelling out the analysis for combinatorial phonology, because it reveals some
strong assumptions.

In the analysis of compositionality, all mixed strategies are considered where both holistic and com-

positional signals are used. Nowak & Krakauer show that strategies that use more compositionality can
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invade strategies that use less. This means that under natural selection, languages should evolve compo-
sitionality. When applied to combinatorial phonology?, the analysis starts with S- and R-matrices of the

following form:

my mg Mg My
a 1 0 0 0

a b c d AA AB BA BB b 0 1 0 0

my | 1—=x 0 0 0 T 0 0 0 c 0 0 1 0

S= ma 0 1—x 0 0 0 T 0 0 s R= d 0 0 0 1
ms 0 0 11—z 0 0 0 T 0 AA | 1 0 0 0

my 0 0 0 11—z 0 0 0 x AB| 0 1 0 0

BA| 0 0 1 0

BB | 0 0 0 1

where  is a single variable that describes how often the holistic strategy is used (with signals a, b, ¢, d) vs.
how often the combinatorial strategy is used (with words built-up out of the phonemes A and B). Nowak
& Krakauer further assume that the confusion between holistic signals (uy,) is larger than the confusion
between words (u.), and that there is no confusion between the two types of strategies. Hence, if we write

out the resulting confusion matrix U, it looks like this:

a b ¢ d AA AB BA BB

a |up - . . 0 0 0 0

b up . 0 0 0 0

c up 0 0 0 0

U= d - . - up O 0 0 0 )

AA |10 0 0 0 1w
AB|{ 0O 0O 0 O U
BA| O O 0 0 Ue
BB| 0O 0 0 O Ue

where the entries marked with a ‘-” can be ignored because they will be multiplied with 0.

With these assumptions, it is straightforward to describe the fitness of speakers of languages L and
L’ when communicating with their own type or with the other, using equation (4.3) (many terms simplify
because of the many zero’s in S, R and U). If L has a tendency « to use the combinatorial strategy, and

L' atendency x’, these fitnesses are:

F(L,L) = M((1-2)up+ zu.) (4.4)
F(L, L) = %M(((l—z) up + zue) + (1 — 2" ) up + 2'ue)) 4.5)
F(L', L'y = M1 —2")up+2'u.). (4.6)

From these equations, it follows immediately that a more combinatorial language can always invade a

population with a less combinatorial language. Note the following inequalities:
F(L',L') > F(L, L") > F(L, L) if (' >2)A (uc < up). 4.7)

This satisfies the criterion of invasibility discussed in chapter 2. If L’ is very infrequent, then all speakers of
language L (the “residents”) will have a fitness of approximately F'(L, L) and the rare speakers of language
L’ (the “mutants”) will have fitness of approximately F'(L, L), because for both residents and mutants the

vast majority of interactions will be with speakers of language L. Once the frequency of mutants starts to

3Note that, even though we are only interested in phonology here, “meanings” do have a role because they determine how many
signals have to be kept distinct.
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rise, the residents will gain in fitness, that is, move toward a fitness F'(L, L’). However, the mutants will
gain even more by interacting more and more with other mutants, that is, move toward F(L’, L’).
Although this model is a useful formalisation of the problem and gives some important insights, as
an explanation for the evolution of combinatorial phonology (and compositionality) it is unconvincing.
The problem is that the model only considers the advantages of combinatorial strategies, and ignores two
obvious disadvantages: (1) by having a “mixed strategy” individuals have essentially two languages in
parallel, which one should expect to be costly because of memory and learning demands and additional
confusion*. Nowak & Krakauer simply assume that the second system is in place, and that the hearer
interprets all signals correctly, even if x is close to 0, and the number of learning experiences is therefore
extremely small; (2) combinatorial signals that consist of two or more sounds take longer to utter and
are thus more costly”. A fairer comparison would be between holistic signals of a certain duration (where
continuation of the same sound decreases the effect of noise) and combinatorial signals of the same duration
(where the digital coding decreases the effect of noise). This is the approach I take in the model of this

chapter, but like Nowak & Krakauer, I will look at invasibility in addition to optimisation.

4.2.3 Crystallisation in the perception—imitation cycle

A completely different approach to combinatorial phonology is based on “categorical perception”. Cate-
gorical perception (Liberman et al., 1957; Harnad, 1987) is the phenomenon that categorisation influences
the perception of stimuli in such a way that differences between categories are perceived as larger and
differences within categories as smaller than they really are (according to an “objective”, cross-linguistic
similarity metric). For instance, infants of just a few months old already perceive phonemes as closer to
the closest prototype phoneme from their native language than it is according to an “objective” (cross-
linguistic) acoustical metric (Kuhl et al., 1992). Apparently, the frequency and position of acoustic stimuli
gives rise to particular phoneme prototypes, and the prototypes in turn “warp” the perception.

Oudeyer (2001, 2002) observes that signals survive from generation to generation because they are per-
ceived and imitated. Categorical perception will therefore shape a signal repertoire such that it conforms
more and more to the prototype phonemes. Thus, emitted signals shape perception, and distorted percep-
tion shapes the repertoire of signals in the cycle from emission to perception to emission (the perception—
imitation cycle; see also Westermann, 2001, for a model of sensori-motor integration and its relevance for
imitation and categorical perception).

Oudeyer (2001) presents a model to study this phenomenon. In this model, signals are modelled as
points in an acoustic space. The model consists of two coupled neural maps, one for perception and one
for articulation. The perceptual map is of a type known to be able to model categorial perception: its
categorisation behaviour changes in response to the input data. It is sketched in figure 4.2. In addition,
the associations between perceptual stimuli and articulatory commands are learned. Through this coupling
between perceptual and articulatory maps, a positive feedback loop emerges where slight non-uniformities
in the input data lead to clusters in the perceptual map, as well as weak clusters in the articulatory map,
and hence to slightly stronger non-uniformities in the distribution of acoustic signals. Oudeyer calls the

collapse of signals in a small number of clusters “crystallisation”.

4An interesting question is what exactly the costs of speaking are. Modern humans acquire and use their native language without
much effort, and with neglible energy use (Fitch & Hauser, 2002). However, that does not necessarily generalise to earlier stages of
language, and to the different variants that we consider in evolutionary models. Moreover, there always are, as I argued in chapter 2,
biophysical constraints on the available strategies. What counts in evolutionary modelling is not an absolute measure of costs, but
rather the relative advantages and disadvantages of the competing strategies. The best interpretation of “costs” here, is therefore
probably “missed opportunity costs”.

3Tt is, of course, slightly awkward to criticise a model that Nowak & Krakauer (1999) never actually worked out. The point
here is that if one takes all the assumptions that they do spell out in the paper, and work out the model as they suggest, the result is
unsatisfactory. A better model of the evolution of combinatorial phonology must start with different assumptions.
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Oudeyer (2002) generalised these results to a model with (quasi-) continuous trajectories, where a pro-
duction module triggers a sequence of targets in the articulatory map, which yield a continuous trajectory.
This trajectory is then discretised at a very fine sampling rate, and each point is presented to the neural map
as before. Also in this version of the model, well-defined clusters form in the perceptual and articulatory
maps. The signals can thus be analysed as consisting of sequences of phonemes.

Oudeyer’s model is fascinating, because it gives a completely non-adaptive mechanism for the emer-
gence of combinatorial phonology. However, the model does make a number of important assumptions,
such as the pressure for vocal imitation (a skill that is in fact very rare among primates; Fitch, 2000) and
the parameters of the neural maps. The validity of those assumed traits would be much strengthened if one
could show that these traits would be selected for in evolution. It therefore remains an important question
whether recombination increases the functionality of the language, and thus the fitness of the individual
that uses it. If not, one would expect selection to work against it.

In particular, in Oudeyer’s first model (2001), where signals are instantaneous, a large repertoire of
signals is collapsed into a small number of clusters. A functional pressure to maintain the number of
distinct signals would thus have to either reverse the crystallisation, or combine signals from different
clusters. In his second model (Oudeyer, 2002), signals are continuous trajectories and potentially a much
larger distinct repertoire can emerge. However, the functionality of the repertoire is not monitored, and
plays no role in the dynamics. It might or might not be sufficient. The number of “phonemes” (the discrete
aspect) that forms is a consequence of the parameters and initial configuration, and in a sense accidental.
The reuse (the superficial combination aspect) in the model is built-in in the production-procedure.

The assumption that signals already consist of sequences of articulatory targets is justified with con-
siderations from articulatory phonetics, as I discussed in chapter 3, section 3: constraints from articulatory
motor control, it is argued, impose combinatorial structure on any large repertoire of distinct sounds. Even
if one fully accepts this argument, the need for a large and distinctive repertoire is a functional pressure.
In Oudeyer’s model, however, there is no interaction between the number of phonemes that is created, and
the degree of reuse (the number of phonemes per signal) that emerges. This issue, which seems the core
issue in understanding the evolutionary origins of combinatorial phonology, is not modelled by Oudeyer.
In my model, in contrast, I ensure that the functionality increases rather than decreases.

4.2.4 Other models

All other models of the evolution of combinatorial phonology that I am aware of, also assume the sequenc-
ing of phonetic atoms into longer strings as given. They concentrate rather on the structure of the emerged
systems (Lindblom et al., 1984; de Boer, 2001; Redford et al., 2001) or on how conventions on specific
combinatorial signal systems can become established in a population through cultural transmission (Steels
& Oudeyer, 2000). Theories on the evolution of speech developed by linguists and biologists focus on
possible pre-adaptations for speech. MacNeilage & Davis (2000) propose oscillatory movements of the
jaw such as used in breathing and chewing as precursors for syllable structure. Fitch (2000) sees sexual
selection as a mechanism to explain the shape of the human vocal tract. Studdert-Kennedy (2002) explains
the origin of recombination and duality of patterning as the result of vocal imitation. Finally, connec-
tionist models of phoneme discovery (e.g. Kohonen, 1988; Waibel, Hanazawa, Hinton, Shikano & Lang,
1989; Guenther & Gjaja, 1996) learn from a samples from a language that already shows combinatorial
phonology.

These models and theories are interesting, and, importantly, bridge the gap with empirical evidence
on how combinatorial phonology is implemented in the languages of the world. However, they are of less
relevance here, because they do not address the origins of the fundamental, qualitative properties of discrete
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and combinatorial coding. That is, they leave open the question as to under what circumstances a system
of holistically coded signals with finite duration would change into a combinatorial system of signals.

4.3 Model Design

I will now present the design of a new model, that shares features with all three existing approaches. Like
Liljencrants & Lindblom (1972) and other models, it makes use of the concept of “acoustic space”, a
measure for perceptual distinctiveness and a hill-climbing heuristic. Like the Nowak & Krakauer (1999)
model, the measure for distinctiveness is based on confusion probabilities, and my study includes a game-
theoretic invasibility analysis. Finally, like Oudeyer (2002), I model signals not just as points, but as
trajectories through acoustic space.

In the model, I do not assume combinatorial structure, but rather study the gradual emergence of su-
perficially combinatorial phonology from initially holistic signals. I do take into account the temporal
structure of both holistic and phonemically coded signals. I view signals as continuous movements (“‘ges-

ELINT3

tures”, “trajectories”) through an abstract acoustic space. I assume that signals can be confused, and that the
probability of confusion is higher if signals are more similar, i.e. closer to each other in the acoustic space

according to some distance metric. I further assume a functional pressure that maximises distinctiveness.

4.3.1 The acoustic space

The model of this chapter will deal with repertoires of signals, their configuration and the similarities
between signals. This requires conceptualising signals as points or movements through a space. How
could we define such an “acoustic space”? An appropriate definition of acoustic space will, as much as
possible, reflect the articulatory constraints as well as perceptual similarities, such that signals that cannot
be produced fall outside the space, and that points in the space that are close sound similar and are more
easily confused.

For vowels, a simple but very useful acoustic space can be constructed by just looking at the peaks
in the frequency spectrum. These peaks (called “formants’) correspond to the resonance frequencies in
the vocal tract, and are also perceptually very salient. Artificially produced vowels with the correct peaks
but otherwise quite different frequency spectra, are recognisable by humans. From experiments where
subjects are asked to approximate vowels sounds by manipulating just two formant frequencies, it is clear
that a good representation of vowels can be given in just two dimensions, with the first formant as the first
dimension, and the effective second formant as the second dimension (Carlson et al., 1970). There are a
number of simple formulas (e.g. Mantakas, Schwartz & Escudier, 1986, discussed in de Boer 1999) for
calculating the effective second formant, F, given the second, third and fourth formant frequencies Fs, F3
and F; (measured in “Barks”, a scale based on psychophysical experiments, Traunmiiller, 1990).

Perceptual distance between two vowels a and b in the space of first and effective second formant is

typically defined as the (weighted) Euclidean distance:

dla,b) = [ (Fg — FP)? + 2 (Fg — F})?, (4.8)

where ) is a weight that balances the importance of the effective second formant relative to the first formant,
which is experimentally estimated at A = 0.3 (see de Boer, 1999 and references therein).

A related approach for defining an acoustic space works with cepstral coefficients (Bogert, Healy &
Tukey, 1963). These coefficients (obtained by taking the inverse Fourier Transform of the log of the fre-
quency spectrum) describe the general shape of the frequency spectrum. The first coefficient is a measure

of the total energy of the signal, and the subsequent coefficients give more and more detailed information
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about the signal. The cepstral coefficients thus define a sequence of features of the signal of decreas-
ing importance. Vowels and diphthongs can be accurately represented with the first two coefficients; for
consonants we need five or six.

Although formants work well for humans, and in particular for European languages, pitch is a more
salient variable in the vocalizations and perception of other animals (although it is now believed that several
mammal species are able to perceive formants as well, e.g. Reby, McComb, Cargnelutti, Darwin, Fitch &
Clutton-Brock, 2005). Of course, it is difficult to tell what the appropriate acoustic space is for modelling
articulation and perception of early hominids that feature in scenarios of the evolution of language (e.g
Lieberman, 1984; Jackendoff, 2002). However, the considerations that will be presented below remain the

same, independent of the exact nature of the underlying perceptual dimensions.

4.3.2 Confusion probabilities

Once we have constructed an acoustic space that captures the notion of perceptual similarity, we can ask
how distance in that space relates to the probability of confusion? Answering that question requires us to
make assumptions about the causes of confusion and the nature of categorisation. We can get a general
idea, by first looking at the simple example of a 1-dimensional acoustic space, with just 2 prototype signals
A and B (modelled as points in that space), and a distance d between them:

A~—d — B

Now assume that a received signal X, lying somewhere on the continuum, will be perceived as A or B
depending on which is closest (nearest neighbour classification). Finally, assume a degree of noise on the
emitted signals, such that when a signal, say A, is uttered, the received signal X is any signal drawn from

a Gaussian distribution around A:

Lq
2
A B

Now we can calculate the probability that an emitted signal A is perceived as B:

P(B perceived| A uttered) = N(p=0,0=40)dx
w:%d
oo 1 _ 22
= e 252 dx, 4.9
/g;—%d V) 4.9)

where § is the standard deviation® of the Gaussian, and hence the characteristic distance of the noise
function. This integral, which describes the area under the Gaussian curve right of the point %d, can be
solved numerically, as in figure 4.3 (the integral of the Gaussian is called the “error function”: erf(z)).
This function has a number of important features. First of all, if the two signals A and B are identical
(i.e. d = 0), the confusion probability is not 100%, as the naive first intuition might be, but 50%. Second,
with increasing d, the confusion probability first rapidly decreases and then slowly approaches 0 (see
figure 4.3). Of course, the confusion probability as a function of distance can have many different shapes

depending on the exact type of noise and the exact type of categorisation. Ultimately, this is an empirical

%To avoid confusion, I will use the symbol ¢ for the standard deviation (characteristic distance) of the acoustic noise function, p for
the standard deviation (the hill-climbing rate) of the hillclimbing heuristic that will be introduced later, and o for standard deviations
in general.
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Figure 4.2: Perceptual Warping, Categorical Perception and the emergence of combinatorial phonology.

Figure 4.3: The probability of confusion as a function of distance (numerical solutions to equation (4.9) for
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Learning

(a) Each neuron in the perceptual map responds
maximally to sounds at a specific point in the acous-
tic space (the “location” of that neuron, drawn as
black points in the graph), and with decreasing
strength to sounds that are further away. The re-
sponse (drawn as a green circle) of the perceptual
map to a given signal (the red circle) is calculated as
a weighted average of the locations of neurons. If
neurons are distributed uniformly over the acoustic
space (left panel) the response is accurate; if they are
distributed non-uniformly (right panel) perception is
warped.

(b) In learning, the “location” of neurons is shifted
towards the given signal (blue arrows). Over time,
the perceptual map will therefore reflect the distri-
bution from which the signals are drawn. The re-
sponse of the map will now be warped towards the
most frequently observed signals, which consti-
tutes a form of categorial perception. In the model
of Oudeyer (2001), the distribution of perceived
signals is again dependent, through the coupling of
the perceptual and articulatory maps, on the exist-
ing categorical perception. A slight effect of cate-
gorical perception will therefore be reinforced, un-
til very strong clusters of “phonemes” emerge.

3 4 5 6
d(A, B)

6 = 0.5 (bottom curve), 6 = 1 (middle curve), and § = 2 (top curve)).
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question. It seems, however, that the function will always have these general characteristics at d = 0 and
in the limit of d — oo.

In contrast, the previously discussed £ measure (Liljencrants & Lindblom, 1972), and average distance
measure d, do not have both these properties. For the purposes of this chapter they are therefore not ap-
propriate criteria for optimisation. Figure 4.1(c) serves as an illustration: here many signals are crammed
into a small space. The configuration that maximises £ will, regardless of the noise level, always keep
all signals distinct. The configuration that maximises d will, again regardless of the noise level, always
collapse all signals in 4 clusters in the four corners of the space. At intermediate noise levels, both con-
figurations are in fact suboptimal. A given noise level defines a “channel capacity” for the acoustic space:
cramming more or fewer signals in the space will in fact impede the amount of information that can be
encoded (Shannon, 1948).

If the acoustic space has more than 1 dimension, and if there are more than 2 signals, calculations
like in equation (4.11), quickly get extremely complex, and confusion probabilities are no longer uniquely
dependent on distance. We can, however, assume that the confusion probabilities are generally proportional
to a function of distance with a shape as in figure 4.3. Hence, let f(d) be a function of distance d of that

shape, parametrised by noise level ¢ :

f(d) = /z:d \/21_7‘_66_ d. (4.10)

I will call the result f(d) of a specific d the “f-score” of d. As a first approximation, we can assume
that confusion probabilities are proportional to these f-scores: P(B perceived| A uttered) < f(d(A, B)).
But we also know that the probabilities of confusing a signal with any of the other signals in a repertoire
(including the signal itself) must add up to 1: >y, P(X perceived A uttered) = 1. Hence, we can
estimate the probability of confusing signal A with signal B as:

P(B perceived| A uttered) = f(d(4, B)) . 4.11)

 Yxerfld(A, X))

From this, it is now straightforward to define a measure for the distinctiveness D(R) of a repertoire R
with T' signals. Let D be the average probability that a signal R; from R is correctly identified (assuming
all signals are used equally often):

1~ fld(R,Ry)
P =7 g Sty F(A(Ry, Rer)) 12

This equation relates the distances between signals in acoustic space to the probability of confusing a
random signal with another one, and thus gives a quality measure for repertoires of signals. The measure
plays an important role in the model I present here, even for more complex signals that I will consider
below. Ultimately, such a measure should of course be based on empirical findings. However, the results I
will present in this chapter do not depend on the exact properties of this measure. I will come back to this
issue later in this thesis.

4.3.3 Trajectory representation

We have a qualitative understanding of how to define the acoustic space with points representing signals,
and of how to estimate the confusion probabilities and distinctiveness as functions of the distances between
those points. We can now try to extend the model to deal with signals that have a temporal dimension. It
would be desirable if the same apparatus can still be used. I therefore define temporal signals as trajectories:
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movements through the acoustic space. In my approach, a trajectory is a connected sequence of points
(each of which could correspond to, for instance, the cepstral coefficients of the frequency spectrum of a
small interval in the waveform).

To illustrate the feasibility of deriving trajectory representations from acoustic data, I show in fig-
ure 4.4(a) a number of trajectories through vowel space that are based on actual recordings. The graph
shows the trajectories from a number of recorded vowels, which correspond to more-or-less stationary tra-
jectories in the space, and from recordings of a number of diphthongs, which correspond to movements
from one vowel’s region to another. Figure 4.4(b) and (c) show trajectories through the space defined by
three of the first 6 cepstral coefficients. In this space we can, to a certain extent, represent consonants as
well. Overlaid in both graphs are the resulting trajectories of two recordings, illustrating that the construc-
tion is repeatable, albeit with considerable variation.

In the model of this chapter I will not worry about the problems of constructing acoustic spaces and
drawing trajectories through them. Instead, I will take as the starting point a set of trajectories through
an abstract acoustic space. The model is based on piece-wise linear trajectories in bounded 2-D or 3-D
continuous spaces of size 1 x 1 or 1 x 1 x 1. Trajectories are sequences of points with fixed length
(parameter P), that always stay within the bounds of the acoustic space. In the standard model, each point
has a fixed distance (parameter S) to the immediately preceding and following points in the sequence. I will
also consider a variant, where this distance is not fixed but either completely unconstrained, or anything
between 0 and a given maximum value. That is, if ¢, and ¢, are neighbouring points, ¢, can lay
anywhere within a circle of the given radius around ¢, (in the graphs this is indicated as “segment size
unconstrained” or, e.g., “S < 0.17).

Signals in the real world are continuous trajectories, but in the model I need to discretise the trajectories.
To ensure that I do not impose the combinatorial structure we are interested in, I discretise at a much finer
scale than the phonemic patterns that will emerge. Hence, the points on a trajectory are not meant to model
atomic units in a complex utterance. They implement a discretisation of a continuous trajectory that can

represent either a holistically coded or phonemically coded signal.

4.3.4 Measuring distances and optimising distinctiveness between trajectories

How do we extend the distance and distinctiveness measures for points to trajectories? Perhaps the simplest
strategy would be to look at a repertoire of trajectories one time-slice at a time, and simply optimise — as
before — the distinctiveness between the points. This is similar to the approach in Lindblom et al. (1984).
With such an approach, however, the temporal dimension could just as well have been left out, and the
model has little to say about the emergence of superficial combination. Combinatorial phonology emerges
— if at all — as a trivial consequence of (i) the formation of categories (phonemes), and (ii) sequencing
imposed by the trajectory representation. Whether or not signals are repetitions of the same phoneme, or
combinations of different phonemes, depends on the initial configuration and the possible constraints on
the shape of trajectories. This is illustrated in figure 4.5.

Much more interesting is when we measure the distance between complete trajectories and optimise
their distinctiveness. In such an approach, there is a role for combinatorial phonology: the confusion
probability between two largely overlapping trajectories might be very low, as long as they are sufficiently
distinct along one stretch of their length. As a provisional measure, I define the distance between two
trajectories t* and ¢/, as the average distance between the corresponding points on the trajectories:

d(t', ) d(th, i), (4.13)

“M"U
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(a) 3 vowels and 3 diphthongs (b) two recordings of “een” (c) two recordings of “negen”

Figure 4.4: Trajectory representations derived from recorded acoustic data. Each point on a trajectory is
given by the cepstral coefficients of the frequency spectrum of a short time interval of the signal. In (a) the
first two coefficients are used; in (b) and (c) coefficients 1, 3 and 5 are used. The blue and red curves in
(b) and (c) are based on two different recordings each. The graphs illustrate that it is possible to construct
an acoustic space for trajectories with a meaningful interpretation. However, it is also clear that there is
much variation between different recordings, suggesting that much more work is needed for the trajectory
representation to be useful in any practical applications (see Goldenthal, 1994, and subsequent work on
using trajectory representations in speech recognition). (Graphs created by Bart de Boer).
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(a) t=0 (b) t=100 (c) t=200 (d) t=1300

Figure 4.5: Optimising distinctiveness in each time-slice independently. Shown are the initial configurations
of 5 trajectories (each consisting of just 2 points), two intermediate stages, and the stable equilibrium.
End-points are marked with a star symbol. The results can be interpreted as “combinatorial phonology” (2
trajectories share begin- end endpoints), but this is a trivial result from the fact that the begin-points and
the end-points move independently to their equilibrium configuration, although through chance, the begin-
and end-points of each particular trajectory can end up at different locations.
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where t; is the p-th point on the i-th trajectory in a repertoire, and d(a, b) gives the distance between two
points @ and b. This distance measure then provides the input to the same of distance-to-confusion function
that I derived for points (equation 4.12).

One may argue that the distance metric in equation (4.13) is too simplistic, and does not do justice
to the fact that slight differences in timing of two signals will not affect their perceptual similarity much.
One should thus expect a high probability of confusion between two such signals, even though according
to equation (4.13) they are very far apart. An alternative distance measures, that does take into account
such timing effects, is “dynamic time warping” (DTW). DTW is an efficient method that before the advent
of statistical models has been used with reasonable success in computer speech recognition (e.g. Sakoe &
Chiba, 1978). The distance between two trajectories ¢ and r is then defined as the sum of the distances
between all corresponding points in the best possible alignment of the two trajectories. In finding the best
possible alignment, one point from ¢ can be mapped on several neighbouring points in r and vice versa. In
this way trajectories that resemble each other in shape, but that do not align perfectly are still considered
close. DTW models the way humans perceive signals, and in the final part of this chapter I will look at a
simulation that uses it.

However, even with such an improved distance measure, it is not clear how accurate the estimate of
confusion probabilities is. The approach I have adopted here uses the pairwise distances of all signals
as an intermediate step in going from the configuration of trajectories to their confusion probabilities.
For trajectories, it is far from trivial to derive the exact shape of the distance-to-confusion, even if the
noise and categorisation mechanisms were completely known. More work is needed — both empirical
and theoretical — to study whether this approach yields realistic results. For the purposes of this chapter,
however, I will take a pragmatic approach. It seems, as I argued above, that the general shape of the
distance-to-confusion function is appropriate. I will therefore mostly use the simple distance measure of
equation (4.13), and consider several alternative distance-to-confusion functions to ensure that the results

do not crucially depend on this assumption.

4.3.5 The hill-climbing heuristic

Now that I have defined a distance metric, it is straightforward to use a hill-climbing heuristic such as
Liljencrants & Lindblom (1972) and apply it to much more complex signals. Hill-climbing is an iterative
procedure, where at each step a random change to the repertoire is considered, and if it improves the
distinctiveness it is applied. Then another random change is considered and the same procedure applies
over and over again. In pseudo-code, the procedure looks as follows:
% R is a repertoire of signals
% S is the segnent |ength paraneter
% pis the hill-clinbing rate paraneter
% 0 is the acoustic noise paraneter (characteristic distance)
for i=1to |

R’ = CONSTRAIN( R + DI STURBANCE( p ), 95);

if D(R',6)> D(R,5) then R=R/;
end for

Here, DISTURBANCE applies random noise (N (u = 0,6 = p)), to all of the coordinates of a (uni-

formly) random point on a random trajectory. D is the distinctiveness function given in equation (4.12).
CONSTRAIN is a function that enforces that all points on the trajectories fall within the boundaries of the
acoustic space, and that all segments have maximum length S. Hence, after a random point ¢, is moved to
a new random position, the CONSTRAIN function first moves it back, if necessary, within the boundaries

of the acoustic space; and then, it moves the two points on both sides of the moved point, ¢, 1 and t,_1, if



4.4. RESULTS 69

necessary, such that the distance to ¢, equals S. The direction from ¢, to ¢, 41 or t,_1 remains the same,
unless the point would cross the boundary of the space, in which case it is placed at a random point within
the boundary at distance 1 from ¢,. The same procedure is applied recursively to the neighbours of £, 1
and ¢, until the ends of the trajectory are reached.

Hill-climbing is just an optimisation heuristic; there is no guarantee that it will find the optimal config-
uration for the given criterion. Especially when the repertoire considered is relatively complex, the system
is likely to move toward a local optimum. Although better optimisation heuristics exist, this problem is in
general unavoidable for systems with so many variables. Also in Nature, the optimisation of sound systems
may not have escaped the problem of local optima; the real optimum is therefore not necessarily interesting
for describing the patterns in human speech. Instead, I will concentrate on general properties of the local

optima I find, and on the gradual route towards them.

4.4 Results

I have implemented versions of the basic model as outlined above in MatLab. I have run many simulations
with a large number of parameter combinations and a number of variations of the basic model. These
variations included two alternative noise-to-confusion functions (f(d) = m and f(d) = HTl%dz))
and an alternative CONSTRAIN function (S < S* and S = S*). Because no real differences were observed
in the results, I will here mostly present results with the standard model. In some cases the captions of
figures indicate that one of these alternatives is used. In the following I will first briefly give an overview
of the general behaviour of the model in these simulations by means of a representative example, and then
give a detailed analysis of why I observe the kind of results that I do. In this section I consider simple

optimisation; in the next section I will extend these results to a game-theoretic analysis.

4.4.1 An overview of the results

I will describe the behaviour of the model in many different simulations by using the representative example
depicted in figure 4.6. Figure 4.6(a) shows an the equilibrium configuration of 9 point signals in an abstract
acoustic space, optimised for distinctiveness at an intermediate noise-level (0 = 0.2). This particular
configuration is stable: no further improvements of the distinctiveness of the repertoire can be obtained by
making small changes to the location of any of the signals. The locally optimal distinctiveness is D = 0.66;
that is, with the given noise level, our estimate of the probability of successful communication of a signal
is 66%.

Figure 4.6(b) shows 9 trajectories, consisting of 10 points and hence 9 segments each. Each of these
trajectories was created by taking 10 copies of one of the points in figure (a) and connecting them. A
small amount of noise was added to each point, and the CONSTRAIN function, as described above, was
applied to each trajectory, enforcing a fixed distance (S = 0.1) between all neighbouring points on the
same trajectory. Due to this perturbation, the distinctiveness of this repertoire of trajectories is somewhat
lower, D = 0.62, than of the repertoire in (a). (The definitions of distance and distinctiveness are such that
a repertoire of stationary trajectories has the same D as a repertoire of points at the same locations; hence,
points and stationary trajectories, if all the same length, are equivalent in the basic model).

What will happen if we now optimise, through hill-climbing, the repertoire of trajectories for distinc-
tiveness? One possibility is that the applied perturbations are nullified as much as possible, such that the
system moves back to the configuration of (a). That is not what happens, however. Rather, the system
moves to a configuration as in figure 4.6(c). In this configuration, there are 3 trajectories along the left,
top and right boundaries; there are 4 trajectories bunched up in each of the four corners; and there are 2
trajectories crossing the acoustic space, one starting near the center and ending near the bottom-left corner,

and one starting in the bottom-right corner at ending near the center.
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(a) 9 instantaneous signals optimised for distinctive- (b) 9 trajectories at same locations as the signals in (a)
ness. D=0.66. Parameters: P = 1. with small perturbations. D=0.62. Parameters: P =
10, S = 0.1.

(c) 9 trajectories optimised for distinctiveness. D=0.69. (d) 9 instantaneous sounds at same location as end-
Parameters: P = 10, S = 0.1, p = 0.1, I = 5000. points in (c). D=0.55. Parameters: P = 1.

Figure 4.6: In a combinatorial phonology, distinctiveness of signals at each particular time-slice is sacri-
ficed for better distinctiveness of the whole trajectory. Instantaneous signal (or equivalently, stationary
trajectories) will be organised in patterns like (a) and not like (d) when optimised for distinctiveness. For
non-stationary trajectories, the same pattern, as in (b), is not stable, but will —after optimisation— instead
be organised like (c). Each individual time-slice, as illustrated with the end-points in (d) is suboptimal, but
the whole temporal repertoire is at a local optimum. Common parameters: 7' =9, § = 0.2
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This graph shows a number of important features. First, all trajectories start or end near to where
other trajectories start and end. The repertoire therefore can be said to exhibit a superficially combinatorial
phonology: if we label the corners A, B, C' and D, and the central region FE, starting top-left and going
clockwise, we can describe the repertoire as: { A, B,C, D, AB, BC CE, ED, DA}. Thatis, we need only
5 category labels (phonemes) to describe a repertoire of 9 signals. In contrast, the repertoire in (b) is most
easily described by postulating 9 categories, one for each trajectory’.

Second, some trajectories are bunched up in as small a region as possible, but other trajectories are
stretched out over the full length of the space. Third, the configuration of the repertoire appears somewhat
idiosyncratic and is in a local optimum?®. Fourth, at each time-slice the configuration of the corresponding
points is in fact suboptimal. For instance, in figure 4.6(d) just the endpoints of the trajectories in (c)
are shown. 8 out of 9 of these points are closer to their nearest neighbour than any of the points in (a).
Before I extend these results to simulations with many more trajectories of various lengths, and to acoustic
spaces with more dimensions, I will first look at a number of simple cases that explain why the optimised

repertoires have these features.

4.4.2 The optimal configuration depends on the noise level

To evaluate the role of the noise parameter 9, it is instructive to first look at a simple, 1-dimensional
example with signals as points. Consider a situation with 3 signals, 2 of which are fixed at the edges of
a I-dimensional acoustic space. The third signal is at distance x from the leftmost signal, and at distance

1 — z from the rightmost signal:

T

® o ®

Now what is the optimal distance = for maximising the distinctiveness? As it turns out, the optimal =
depends on the noise level 4. Recall that distinctiveness D is defined as the average probability of correct
recognition (equation 4.12). In this case, we have three terms describing the recognition probabilities of

each of the three signals. These are:

_ )
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The values of these three functions, for two different choices of the parameter § are plotted in fig-
ure 4.7(a) and (b). If we add up these three curves, we find, for different values of J, the curves in fig-
ure 4.7(c). Clearly, for low levels of noise the optimal value of x is x = 0.5. For higher noise levels,
however, this optimum disappears, and the optimal configuration has x = 0 or z = 1. That is, if there is
too much noise, it is better to have several signals overlap. At § = 1.0 (lowest curve in c), distinctiveness
as a function of z is a slightly hollow curve.

Figure 4.8(a) shows a 2-dimensional system of 9 points optimised for distinctiveness with a high noise
level (6 = 1). The optimal configuration under these conditions is to have each signal in one of the four

7I implicitly assume a model of categorisation here that favours robust and coherent categories. An interesting and important
question is how to measure the degree of “combinatoriality”, but in this thesis I will rely on an intuitive notion. I’ll briefly come back
to this issue in chapter 7.

8The stability of this configuration has not been rigorously established, but no qualitative changes have been observed in many
thousands of additional iterations of the hill-climbing algorithm.
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corners: 3 corners with 2 signals, and one corner with 3 signals. With this configuration, the distance
between the two or three signals that share a corner is d = 0, and their confusability high. But at least the
distance to the other signals is high (d = 1, or d = v/2).

Maximising distinctiveness is here dominated by maximising summed distance, because the f-scores
are alomost linear with distance. Consider a signal in the bottom right corner, and consider it moving to the
left, that is, away from the two signals already in that corner. The gain in distance from the bottom-right
corner (Adbr), will be exactly cancelled out by the loss in distance from the bottom left corner (Adbl). The
gain in distance from the top-right corner, however (Adtr), will not compensate for the loss in distance
from the top-left corner (Adtl). To see why, consider moving the signal a distance € to the left. The

summed distance will increase only if the gain in distance to the top-right:
Adtr? = [ +1] - [1] = €2, (4.17)
is larger than the loss in the distance to the top-left:
Adt? =[14+1] - [(1—e)* + 1 =[14+1] = [1 — 2 + € +1] = 2¢ — €%, (4.18)

which is never the case if 0 < e < 1.

In contrast, in figure 4.8(b) a system of 9 points is shown that has been optimised for distinctiveness
at a relatively low noise level (§ = 0.1). Here maximising distinctiveness is not equivalent to maximising
summed distance, because of the relatively low noise level. To see why the noise level determines whether
it is equivalent, consider a small change to the configuration, for instance moving the central point a bit
to the left. Such a change will decrease the distance to some points, and increase the distance to some
other points. Now, note that the distance-to-confusion function is approximately linear for relatively small
distances (see figure 4.9). Therefore, maximising distinctiveness corresponds approximately to maximising
average distances only if distances are small relative to the noise level, or equivalently, if the noise-level is

high relative to the distances.

4.4.3 Distinctiveness is a non-linear combination of distances

Figure 4.10 shows another 2-dimensional, 9 signal system. It has, after running the hill-climbing algorithm,
converged to a different local optimum (a). Why is this configuration stable? Consider moving the signal
« at the right-most end of the line, along that same line. For each alternative x-coordinate of that signal,
we can calculate the estimated probability of confusion with other signals. The f-values for all the other
signals are plotted in figure (b). For instance, the f-value of the central-left signal (its contribution to the
confusion about &) go from very high (0.3) if & would be on the left-most end of the line, to very low if o
is at the right-most end of the line.

The probability of correct recognition of «, and hence its contribution to the total distinctiveness, is
inversely proportional to the sum of all f-values. In figure 4.10(c) I therefore give a plot of the sum of
all these values (with the contribution of each signal indicated in different colors). That sum is in a local
minimum at the actual location of «, which suggests that — at least initially — distinctiveness will not
improve by shifting « to the left. The plot doesn’t tell the whole story, though, because the probability of
correct recognition of the other signals will also change due to the new position of a.. Nevertheless, it does
illustrate that the distinctiveness of a repertoire is a non-linear combination of the distances between the

signals. Due to this non-linearity, the resulting stable configurations are sometimes counter-intuitive.
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(@ Di(z) (bottom-left to top- (b) Di(x) (bottom-left to top- (©) D(z) =
right), Da(z) (bottom-left to right), Da(x) (bottom-left to % (D1(x) + D2(x) + D3(x))
bottom-right) and D3(x) (top-left bottom-right) and D3(x) (top- at 6 = 0.1,0.2,0.8,1.0 (top to
to bottom-right) at § = 0.1. left to bottom-right) at § = 1. bottom).

Figure 4.7: Distinctiveness as dependent on distance and noise, 1d example
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Figure 4.8: The noise level determines how many signals can be kept distinct (in a and c the configurations
shown are close to convergence, in b it is after convergence).
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Figure 4.9:

The f-scores (y-axis) as a function of distance (x-axis). § = 1.0 (top curve), § = 0.1 (bottom
curve).
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4.4.4 Why trajectories stretch out

Finally, in figure 4.11 I explore the question of why many trajectories in my simulations stretch out. In
figure (a) I show 5 signals (in the bottom-left corner there are 2 signals on top of each other). The signals
are points in the acoustic space, which I will here interpret as stationary trajectories of some arbitrary
length. The graph shows the configuration that maximises the summed distance between the signals. The
figure also gives the distance matrix, that gives for every pair of signals the distance between them. Of
course, the values are v/2 ~ 1.4 (across the diagonals), 1 (horizontally or vertically) and 0 (for the pair in
the bottom-left corner). The average distance is d = 10.2/10 = 1.02.

Figure 4.11(b) shows an alternative configuration, with the fifth signal in the center. The distance matrix
shows that the distance of the fifth signal to the bottom-left corner has increased, but at the expense of the
distances to the three other corners. As a result, the average distance has actually gone down to d = 0.96.
The reason is that this configuration doesn’t make optimal use of the longest available distances over the
diagonal. Importantly, however, at low noise-levels, the distinctiveness of this configuration is in fact
higher than of the configuration in (a). The reason is that with relatively little noise and long distances, the
distinctiveness—distance function flattens out. Hence, there is more to be gained from avoiding confusion
between the fifth and the bottom-left signal, than there is from maintaining the excessive “safety margin”
with the other signals. In other words, the configuration in (b) sacrifices some average distance, to gain a
more even distribution of distances and, hence, a lower average confusion probability.

In a restricted space, increasing the distance with one sound will usually decrease the distance with
another sound. That is, there is a crucial trade-off between maximising one distance at the expense of
another. Although maximising distinctiveness D will generally lead to larger distances d, due to the non-
linear dependence of D on d, that trade-off can work out differently when maximising D than when
maximising d.

Figure 4.11(c) shows yet another configuration, now with the fifth trajectory stretched out over the
whole diagonal. As is clear from the given distance matrix, this configuration yields larger distances than
in (b). To go from (b) to (c) there is no trade-off. The distances from the central, fifth signal to the top-left
and bottom-left corners can be increased without decreasing the distances to the other 2 signals. The reason
is that the distance between a stationary trajectory ¢ and a stretched out trajectory ¢’ is equal to the distance
between ¢ and the centroid of ¢ when ¢ (like the top-right and bottom-left signals) is on a line through all
the points of ¢/, but larger when it’s not (like the top-left and bottom-right signals). The distinctiveness in
(c) is even larger than in (b).

In figure 4.12 I show results from running the basic model under various parameter settings, including
with repertoires with many trajectories and with 3-dimensional acoustic spaces. These results show that
the observations made in the simple systems above generalise to a wide range of conditions.

4.5 Invasibility
4.5.1 Game-theoretic analysis

So-far, we have seen that repertoires of signals with a temporal structure will, when optimised for distinc-
tiveness, not be organised in as many little clumps as needed, but instead stretch out. Rather than staying
away as far as possible from other trajectories along its whole length, each trajectory will be close to some
trajectories for some of its length, and close to other trajectories elsewhere. In qualitative terms, these
systems show superficially combinatorial phonology. The model represents progress from existing work,
because it deals with the discrete and combinatorial aspects as well as with the trade-off between them. It
shows a possible sequence of fit intermediates, and, hence, a route up-hill on the fitness landscape.
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I have not, however, dealt with the invasibility requirement from chapter 2. Will an innovation, even
if it represents an improvement, be able to invade a population where it is very infrequent? To test for
invasibility, I adapt the definition of distinctiveness to tell us something about pairs of languages. This
way we can ask the question: how well will a repertoire R’ do when communicating with a repertoire R?
Pairwise distinctiveness D is defined as follows:

T
. f(d(Re, RY))
D(R,R) = t; 2521 f(d(Rt,Ré/))'

(4.19)

The quantity D(R, R’) can be interpreted as the estimated probability of a signal uttered by a speaker with
repertoire R, to be correctly interpreted by a hearer with repertoire R'.
When we now consider the invasion of a mutant repertoire R’ into a population with resident repertoire
R, four measures are of interest: D(R, R), D(R, R") , D(R/, R) and D(R’, R’). That is, how well does
each of the repertoires fare when communicating with itself or with the other repertoire, in the role of
speaker or of hearer? Specifically, for the invasion of R’, it is necessary that D(R’, R) > D(R, R) or
D(R,R’') > D(R, R), or some weighted combination of these requirements (depending on the relative
importance of speaking and hearing). That is, a successful mutant must do better against the resident
language, than the resident language does against itself. Can such situations arise?
Interestingly, this situation turns out to be very common. Consider the following 1d example:
T A B
—@ o o— ® o o

The configuration on the right (B) is better on all accounts. Obviously, there will be less confusion
between its signals because they are further apart (when z = 0.1 and 6 = 0.1, D(A) = D(A, A) = 0.70
vs. D(B, B) = 0.84). But configuration B will even do better when communicating with A, both as a
hearer (D(A, B) = 0.78) and as a speaker (D(B, A) = 0.76). The reason is that by having its prototypes
more pronounced, f-scores of the wrong signals decrease more than the f-score of the right signal. This
is illustrated in figure 4.13 for the slightly exaggerated case of x = 0.45. In this example, the f-scores of
distances to the left-most signal in A follow a linear regime (a decrease of ~ 0.1 at each step), whereas
the f-scores of the distances from B’s leftmost signal to the signals in A follow an exponential regime (a
decrease of ~ 50% at each step; see figure 4.13(d)).

Figure 4.14 and 4.15 show results from simulations with improved pairwise distinctiveness as the op-
timisation criterion. Here, at every step of the hill-climbing algorithm a random change to the existing

resident repertoire I? was considered, and kept only if the following condition is met:
D(R,R') > D(R,R) (4.20)

Hence, the algorithm is almost identical to the hill-climbing algorithm used before, but with the crite-

rion of distinctiveness replaced by the criterion of pairwise distinctiveness:
% R is a repertoire of signals
% S is the segnent | ength paraneter
% pis the hill-clinmbing rate paraneter
% 0 is the acoustic noise parameter (characteristic distance)
for i=11to I

R’ = CONSTRAIN( R + DI STURBANCE( p ), 95);

if D(R,R,é)>D(R,R,0) then R=R/;
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end for

Figures 4.14(a-f) show the configuration of the repertoire at different numbers of iterations of the hill-
climbing algorithm. Figure 4.14(g) gives the pairwise distinctiveness measures for each combination of
these 6 configurations. At the diagonal of this matrix are the distinctiveness scores of each configuration.
As is clear from this matrix, each next configuration can invade a population with the previous repertoire.
In bold-face we see the approximate evolutionary trajectory (the actual steps in the simulation are much
smaller and much more numerous). As is clear from figure 4.14(f), the final configuration shows the same
type of superficially combinatorial phonology that I found in the straightforward optimisation version of
the model.

This final configuration is probably an Evolutionarily Stable Strategy, as defined in chapter 2. However,
the condition of equation (4.20) is slightly weaker than the condition for an ESS. To establish rigorously
that this configuration R is an ESS we would need to show there is no alternative configuration R’ where
D(R,R') > D(R, R), or if there is such a configuration that D(R, R) > D(R’, R'). The condition here
also differs from the condition used in Nowak & Krakauer (1999). Whereas these authors assume that
the total payoff is the exact average of payoff as a hearer and payoff as a speaker (equation 4.3), in these
simulations only the payoff as a hearer was modelled®. I expect the behaviour of the model to change very
little, but it would be worthwhile to investigate the behaviour of the model with these different optimisation

criteria. These simulations have not yet been performed.

4.5.2 Individual-based model

As a final test of the appropriateness of the basic model, Bart de Boer and I studied an individual-based
simulation of a population of agents that each try to imitate each other in noisy conditions. This simulation
(the current version implemented by Bart de Boer) is similar to the model described above, but now each
agent in the population has its own repertoire, and it tries to optimise its own success in imitating and being
imitated by other agents of the population. Hence, a random change, as before, is applied to a random
trajectory of a random agent in the population. If this change improves the imitation success in interaction
with a number of randomly chosen other individuals in the population, it is kept. Otherwise, it is discarded.

This version of the model is like the imitation games of de Boer (2000). These only modelled holistic
signals (vowels) and did not investigate combinatorial phonology. The game implemented here is a slight
simplification of the original imitation game. First, all agents in the population are initialised with a
random set of a fixed number of trajectories. Then for each game, a speaker is randomly selected from
the population. This speaker selects a trajectory, and makes a random modification to it. Then it plays a
number of imitation games (50 in all simulations reported here) with all other agents in the population.
In these games, the initiator utters the modified trajectory with additional noise. The imitator finds the
closest trajectory in its repertoire (according to the Dynamic Time Warping, DTW, distance metric) and
utters it with noise. Games are successful if the imitator’s signals is closest to the modified trajectory in
the initiator’s repertoire. If it turns out that the modified trajectory has better imitation success than the
original trajectory, the modified trajectory is kept, otherwise the original one is restored.

For vowel systems, it has been shown that optimising a single repertoire leads to similar systems as a
population-optimisation system (compare Liljencrants & Lindblom, 1972; de Boer, 2000). As it turns out,
also for repertoires of trajectories these two types of models yield comparable results, at least if the noise
on the trajectories is time-correlated. That is, if distortions of a point on the trajectory are not completely

independent from distortions of its neighbouring points. This is illustrated in figure 4.16.

9That is, T used D(R, R') > D(R, R) rather than (%D(R, R') + %D(R’7 R)) > D(R, R). Thanks to Matina Donaldson for
pointing this out.
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In this figure the left frame shows the system of five trajectories that resulted from playing imitation
games in a population, using form-preserving noise. The right frame, for reference, shows a system of five
trajectories that resulted from optimising total distance (DTW metric) as in the basic model. Observe that
in both cases, the corners are populated by four trajectories, which are bunched up. The fifth trajectory,
in contrast, follows the diagonal. As before, an analysis in terms of phonemes suggests itself: the four
corners are basic phonemes, while the fifth trajectory uses one as the corners as a starting phoneme and the
opposite corner as the ending phoneme. Both models result in similar systems of trajectories.

The middle frame, on the other hand, shows that when noise is not time-correlated, a system results in
which all trajectories are bunched up and an analysis in terms of phonemes is therefore not possible. As
noise in real signals is band limited, it follows that shape will always be preserved to some extent. For
computational reasons, we have not performed simulations in the population condition with more than 5
trajectories. However, although less clean and not fully conclusive, the results from the individual-based
model seem to be consistent with the observations with the basic model.

4.6 Conclusions

Natural language phonology is discrete and combinatorial. What I have shown in this chapter is that these
properties have functional significance: they aid the reliable recognition of signals by the hearer. I have also
shown that there is a series of steps that lead from a signal system without to a system with these properties.
Crucially, I have shown that each step in this series represents an improvement, both in populations where
it is extremely rare (invasibility), and in populations where it is common.

These findings are consistent with several rather different scenarios for the emergence of combinatorial
phonology in the human species. In the simplest, but perhaps least plausible scenario, the starting point is
an ancestral population of individuals, each with a heritable repertoire of holistic signals. At some point,
a genetic mutation occurred in one individual that changed her repertoire slightly toward combinatorial
phonology. With the mutation, this individual communicated slightly more successfully with the others
in the population, even though her repertoire was not identical to theirs. Consequently, the new genotype
conferred a slightly higher fitness, and the mutated gene spread in the population. Then a second mutation
occurred, and a third etc. Many such slight modifications eventually led to a situation where the language of
the population was superficially combinatorial, such that the capacity for productive combination, another
type of gene mutation, could invade.

The problem with this scenario is that it is inconsistent with the facts about the acquisition of phonol-
ogy, at least in modern humans. Languages differ enormously in the number and nature of the units
of combination, but there seems to be no heritable variation in the ability to acquire any of these many
different phonologies. Perhaps this interpretation of my model has more relevance when applied to com-
binatorial vocalisations in other species, but for human phonology it is unrealistic to postulate many genes
responsible for the specific shape of the sounds in our languages.

An alternative scenario is that combinatorial phonology arose in a population of learners that each op-
timise their success in recognising and being recognised by making small adaptations to their repertoire of
signals. Combinatorial phonology, in this scenario, is the result of the interaction between many individuals
in a population — a process that could be called “self-organisation”.

The problem with such a scenario is that it requires powerful learning abilities of individuals, such that,
on average, the adaptations made represent improvements. That is, an individual must be able to change
her repertoire and accurately assess the relative benefits of the change in the communication with others
in the population. Modern humans seem to be able to make such adaptations, both in first and in second

language acquisition. But where does this successful learning ability come from? Perhaps it was just there,
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by lucky coincidence, as a side-effect of the evolution of other cognitive abilities; or perhaps the learning
ability itself evolved by natural selection. However, by simply postulating that there is such an ability, we
have shifted the explanatory challenge from the emergence of repertoires of signals, to the emergence of
learning procedures for repertoires of signals.

I argue that there is a third scenario that represents a middle way, and avoids both the excessive genetic
determinism of the first scenario, and the reliance on happy coincidences of the second scenario. Natural
selection favours fitter individuals over less fit ones, but it is, in a sense, blind for the (proximate) causes of
the fitness differences. All other things being equal, natural selection cannot tell the difference between an
individual born with an “innate” repertoire of signals R, and an individual that learned that same repertoire
from experience. Hence, a mutation that changes a learning rule such that it leads to a slightly more
distinctive repertoire than that of the resident population, is favoured by natural selection under the same
conditions as any other mechanism with the same effect (Harley, 1981; Maynard Smith, 1982, chapter 4).

We can thus view the signals in the model of this chapter as the outcome of a process of learning
from signals used in the population. The resident learning strategy will learn the repertoire as is'?; the
mutant learning strategy will learn a different repertoire. The mutant will be favoured by selection only if
the differences are slight, and if the repertoire learned is more distinctive. Once adopted by a significant
fraction of the population, the mutant learning strategy will itself change the shape of the population’s
repertoire: a process of self-organisation kicks in and makes the repertoire more combinatorial.

In this view, self-organisation and natural selection are not alternative explanations for the phenomenon
of combinatorial phonology. Rather, natural selection shapes the parameters of the self-organising process.
Hence, self-organisation is the substrate of evolution (Thompson, 1932; Waddington, 1939; Boerlijst &
Hogeweg, 1991). With such an interpretation, the model of this chapter is consistent with the ideas on
selforganisation of Lindblom et al. (1984), de Boer (2001) and Oudeyer (2002), while solving some of the
problems with their formal models, as well as with those of Liljencrants & Lindblom (1972) and Nowak
& Krakauer (1999).

10The repertoire will reflect the resident learning strategy employed in previous generations. See chapter 7.
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consider moving one signal o along when « is moved along the cline in all other signals when o is moved
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Figure 4.10: Figure (a) shows a local optimum of a 9-signal repertoire optimised for distinctiveness. What
would happen if we move the signal at the right end of the cline in (a) horizontally to left? The probability
of correct recognition of that signal, «, is inversely proportional to the sum of the f-scores of all other
signals (see equation 4.11). Figures (b) and (c) show why this probability is in a local optimum with « at
its current location. Parameters: § = 0.1.
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Figure 4.11: Why do trajectories stretch out? Three configurations and their distance matrices. Abbreviations:
bl: bottom-left, tr: top-right, ti: top-left, br: bottom-right, c centre.
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(a) 9 trajectories, length 2, segment (b) 40 trajectories, length 2, segment (c) 9 trajectories, length 2, segment
size unconstrained size unconstrained size S = 1.0

ae!
0,

W
7]

(d) 9 trajectories, length 15, S = (e) 16 trajectories in 3d, length 15, (f) 30 trajectories, length 20, S =
0.1 S=0.1 0.07

Figure 4.12: Various signal systems optimised for distinctiveness. Common parameters: § = 0.1, p = 0.05.
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(a) distances A vs. A (b) distances B vs. A (c) distances A vs. B

d__f(d)| d f(d)
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(d) f-scores
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26 .33 41 14 .29 57 14 .29 57

(e) confusion A vs. A (f) confusion B vs. A (g) confusion A vs. B

Figure 4.13: Distance matrices, f-scores and confusion matrices. Parameters: 6 = 0.1, z = 0.45.
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(f) t=13000

Figure 4.14: Invasability experiments. Parameters are: T=9, P=10, D=2, N=0.05, S=0.1. The confusion-

probabilities are proportional to ﬁ,
14+e's

where § = 0.1 and d is the average segment-by-segment Eu-

clidean distance. The approximate evolutionary trajectory is indicated with bold-face in the pairwise dis-

tinctiveness matrix of figure (g).
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(a) t=1000 (b) t=11000

Figure 4.15: A 16 trajectories signal system in a 3d acoustic space, after 1000 and 11000 iterations. At
each time step, a small random change is considered, and only adopted if it represents an improvement
according to the pairwise distinctiveness criterion (equation 4.19). Parameters are: P = 15,5 = 0.1,p =
0.05,d = 0.1. The final distinctiveness is D(R) = D(R, R) = 0.94.
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Figure 4.16: Comparison of population-based models with the optimisation model. Frame (a) shows the (five)
trajectories of four agents (from a population of ten), when noise preserves the shape of trajectories. Notice
the similarities with the optimised trajectories in frame (c). If noise does not preserve shape of trajectories,
the trajectories tend not to stretch out, as shown in the frame (b). Although it is rather hard to see, there are
four clusters in the corners, and one in the middle. (Graphs created by Bart de Boer).



CHAPTER 5

Compositional Semantics'

Compositional semantics — where the meaning of a combination is
a function of the meanings of the parts — is a fundamental property
of natural language. Explaining its evolution remains a challenging
problem because existing explanations require a structured language
to be present before compositionality can spread in the population.
In this chapter, I study whether a communication system can evolve
that shows the preservation of topology between meaning-space and
signal-space, without assuming that individuals have any prior pro-
cessing mechanism for compositionality. I present a formalism to de-
scribe a communication system where there is noise in signalling and
variation in the values (payoffs) of meanings. In contrast to previ-
ous models, both the noise and payoffs depend on the topology of the
signal- and meaning spaces. I consider a population of agents that each
try to optimise their communicative success. The results show that the
preservation of topology follows naturally from the assumptions on

noise, payoffs and individual-based optimisation.

I This chapter describes research that builds on joint work with Gert Westermann, as published in Zuidema & Westermann, 2003
(see appendix C of this thesis). However, all modelling, text and graphs in this chapter are my own. Some results have been published
in Zuidema, 2003c (see appendix C).
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5.1 Compositionality in Natural Language

After discussing the evolution of combinatorial phonology in the previous chapter, I will now focus on the
evolution of another combinatorial principle that is a universal property of natural language: compositional
semantics, or “compositionality”. It can be defined as follows:

Definition 2 (Compositionality) A language is compositional if it consists of a set of meaningful units
which can be combined into larger wholes, in such a way that the meaning of the whole is a function of the
meaning of the parts and the way they are put together.

From a formal point of view, this definition is more ambiguous than one would like, because the words
“meaning” and “function” leave much room for interpretation depending on the theoretical framweork one
works in. In the philosophy of language, theoretical linguistics and mathematical logic a vast literature
is associated with “compositionality” (see Janssen, 1997 for a review), and a strict interpretation of the
concept exists that excludes many of the example construction I will give below. In this thesis, however, I
will interpret compositionality in a broad, intuitive sense, as is common in the field of language evolution
(e.g. Batali, 1998; Wray, 1998; Kirby, 2000; Brighton, 2002; Hurford, 2002a). In this interpretation, com-
positional semantics is in contrast with a holistic semantics, where the meaning of an utterance cannot be
derived from the meaning of its parts at all.

However, I will restrict the use of the word “compositionality” to refer to a property of the mapping
between forms and meanings. That is, in my terminology, “meanings” cannot be compositional; they can
be combinatorial, i.e. be built-up from units that can be combined in many different ways?. Similarly,
forms are never compositional, but might be combinatorial. Thus, utterances with holistic semantics might
show combinatorial phonology, that is they can be built-up from meaningless elements (phonemes, sylla-

CLINT3

bles). The use of the words “holistic”, “combinatorial” and “compositional” in this thesis, is illustrated in

figure 5.1.
[psst] “hello” “I greet you”
l 1 7N
want(I,attention) greet(L,you) greet (I, you)
(a) Holistic phonology, (b) Combinatorial phonol- (¢) Combinatorial  phonology,
holistic semantics ogy, holistic semantics compositional semantics

Figure 5.1: Holistic, combinatorial and compositional

Together, combinatorial phonology and compositional semantics constitute duality of patterning (Hock-
ett, 1960). In English, compositionality in its broad sense is evident in, for instance, productive morphology
(such as the plural -s and the regular past tense suffix -ed), compound noun constructions (such as “thesis
deadline”, “dog house” and “bear country’), compound verbs (“move on”, “move out”, “keep on”, “keep
out”) and phrasal syntax (“John sees Mary”, “Mary sees John”, “Did Harry ever meet Sally?”’). Natural
languages use a range of compositional mechanisms, with much variation between languages in which
mechanisms are used, and to which degree. English, for instance, makes, in comparison with Turkish or
Russian, very little use of productive morphology.

As in phonology, the units of combination in each of these compositional mechanisms remain a topic
of debate. In morphology, it has long been recognised that utterances that look as if they are composed

of smaller units, might in fact be stored and retrieved as whole chunks. This is referred to with the term

2 At several points in this thesis, I will use (predicate) logic notation for such meanings. For logicians, such expressions have a
semantics themselves (for instance, its truth conditions given a model) which can be compositional. In this thesis, however, T will
only be concerned with the mapping between (phonological) form and (conceptual) meaning.
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semi-productive morphology. For instance, in what language typologists call fusional languages, one can
identify word stems and suffixes, but the combinations are not completely regular, i.e. there is no clear-cut
boundary between the morphemes in a word. Rather, the morphemes are often “fused” together and give
a single, unsegmentable morph. An example is Russian, where the words stol for “table” and lipa for
“lime-tree” are inflected as follows (examples from Comrie, 1981):

singularI pluralI | singularII  plural II
nominative stol stol-y lip-a lip-y
accusative stol stol-y lip-u lip-y
genitive stol-a stol-ov | lip-y lip
dative stol-u stol-am | lipea lip-am
instrumental  stol-om stol-ami | lip-oj lip-ami
prepositional  stol-e stol-ax | lip-e lip-ax

Such imperfect compositionality poses a challenge to formal models of language. On the one hand,
the irregularities force one to store the larger chunks as unanalysed wholes in a lexicon. In the Russian
example above, a formal model would need to store the genitive singular form of “lipa” as one unit “lipea”,
because that form cannot (or at least, not obviously) be derived from the stem “lip” and the regular suffix
-u or -a. On the other hand, one would like a formalism to take advantage of the manifest regularities
in the system. For English, this tension has led to the on-going past tense debate. In this debate (see
e.g. Clahsen, 1999, and the peer-commentaries in the same issue), one side denies the cognitive relevance
of semi-regular inflections such as sing-sang-sung, ring-rang-rung, and views the regularities solely as
remnants of an older stage of the English language. The other side argues that semi-regular and regular
inflection is all part of the same system, and that the right model of past tense inflection should therefore
include associative mechanisms.

More recently, researchers from diverse subfields of linguistics and from many different schools, have
argued that similar phenomena exists at all levels of language processing, from phonology to syntax3. For
instance, Bybee (2003) has argued that the construction “it’s”, although obviously a contraction of “it is”,
has linguistically and psychologically the profile of a single word. In usage-based theories of language
acquisition, it is proposed that children first acquire large chunks and only later discover the words and
morphemes they consist of (Langacker, 1987; Tomasello, 2000; Lieven et al., 2003). In computational
linguistics, Bod (1998, 2003) has shown that large-coverage parsers benefit from storing large chunks of
parse trees from a tree bank. Finally, even within generative linguistics, the issue of the unit of storage and
the need for a heterogeneous model has recently come to the forefront (Nooteboom et al., 2002; Jackendoff,
2002).

For theories of the evolution of compositional semantics, the issue of the unit of combination is rele-
vant in two ways. First of all, it matters of course what exactly needs to be explained. If, counter-factually,
morphology were not productive at all, there would be no need for an evolutionary explanation for pro-
ductive compositionality at this level of natural language. Second, the existence of semi-productive, or
“superficial” compositional patterns in languages raises the question of where these patterns come from. It
seems that either they are the remnants of an earlier phase of the language (which implies that productive

compositionality can become non-productive in historical language change), or they are the result of other

3From an evolutionary point of view, a mixture of regular and irregular systems is exactly what one would expect. For instance,
the evolved “genetic code” that defines the mapping from genes to proteins also combines regular with highly irregular rules (Nick
Barton, p.c.; Maynard Smith & Szathmadry, 1995). Models of the cultural evolution of language predict that frequent meanings will
be expressed with irregular words, whilst infrequent meanings are expressed with regular combinations (Kirby, 2001). I'll briefly
come back to these issues in chapter 7.
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mechanisms which bring about the appearance of compositionality. Both routes to superficial composi-
tionality suggest an interaction between storage and productive mechanisms, and hold important clues for

theories of the evolutionary origin of productive compositionality.

5.2 The Evolution of Compositionality

Although the unit of combination in productive morphology and syntax is an open problem, there is con-
sensus that productive compositionality, at some level, is an essential feature of human languages. In
animal signal systems, in contrast, compositionality occurs only rarely and only to a very limited extent.
A classic example of a compositional signalling system is the bee dance (von Frisch, 1965, 1974), used
to communicate the location of a newly discovered food resource. In these dances two features of the
“form”, the length and direction of the longest stretch, map on two aspects of the meaning: distance and
direction of the food source. Although a fascinating example, the facts that bees are a phylogenetically
extremely distant species from humans, that the dances can only be used to communicate distance and
direction of food, that the signals are analogue, and that a completely different medium is used, make it of
little relevance for the evolution of human language.

In non-human primates, little evidence of spontaneous use of compositionality exists. Chimpanzees
and bonobos seem to be capable, typically only after intense training, of using combinations of signs to ex-
press compound meanings (Savage-Rumbaugh et al., 1986; Savage-Rumbaugh & Lewin, 1994; Premack,
1971), but the evidence remains disputed (Pinker, 1994). Only anecdotal evidence about compositional
communication in wild chimpanzees and gibbons exists (Ujhelyi, 1996; Savage-Rumbaugh, 2000). An
intriguing example of compositionality in wild Campbell monkeys has recently been described by Zu-
berbiihler (2002). Like Vervet monkeys (Seyfarth et al., 1980), Campbell monkeys have an alarm call
system, with specific calls for a small number of predator categories. In addition, Campbell monkeys have
a distinct grunt that modifies the meaning of the call that follows: it weakens the meaning of the following
call. In playback experiments with monkeys from an other species (Diana monkeys), Zuberbiihler was
able to demonstrate that they respond reliably with the appropriate predator response when presented with
3 types of alarm calls, but respond halfheartedly or not at all when these same calls were preceded by the
cancel grunt*.

How did limited compositional communication like in Campbell monkeys and the extensive composi-
tionality of human language evolve? Jackendoff (1999, 2002) includes compositionality (“use of symbol
position to convey basic semantic relations’) as one of the major stages in his scenario for the evolution
of language. In this scenario, productive combination of signs emerged before the systems for word order,
phrase-structure, agreement and inflection were in place (see chapter 3). Jackendoff argues that modern
languages contain “fossils” of the compositionality stage. For example, the compositional compound noun
construction in English mentioned above can be viewed as such a fossil: the meaning of a compounds like
“gun shot” and “shot gun” is deducible (but not completely specified) from the meaning of the component
words and the order in which they are put. That is, typically the second noun in a compound determines
its type, making gun shot a type of shot (or wound) and shot gun a type of gun. The rules are not strict
however; pickpockets are not a type of pockets, and whereas a snow man is made of snow, a fire man is
not made of fire.

A compositional language, without all the niceties of modern morphosyntax (in particular, hierarchical

structure), corresponds roughly to Bickerton’s concept of protolanguage (Bickerton, 1990). Recall from

“It is unclear to me whether the call system is an example of productive compositionality; it seems this would be difficult to test,
because the alarm calls in monkeys tend to be innate (Seyfarth & Cheney, 1997). If new calls can be taught, one can easily distinguish
between a productive system (where the effect of the cancel grunt would have to generalise to the newly taught signal), and a holistic
system that is superficially compositional. But if a repertoire of calls is fixed, it is difficult to make this distinction.
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chapter 3 that protolanguage is the hypothetical precursor of modern language that is assumed to share
many characteristics with pidgin languages (the limited languages acquired by adults that need to commu-
nicate in a population where there is no dominant language) and “Basic Variety” (the limited proficiency
attained by adults learning a foreign language, Klein & Perdue, 1997).

For those researchers who believe in a gradualist scenario for the evolution of human language, the
assumption of a protolanguage with limited compositionality as an intermediate stage is relatively uncon-
troversial. However, the exact properties of protolanguage and its precursors are a topic of a debate (e.g.
Wray, 2000; Tallerman, 2005). For instance, Jackendoff imagines a transition from free concatenation to
more fixed word order, but Bickerton explicitly rejects this view (Bickerton, 2003a). Given the entirely
hypothetical status of “protolanguage”, this debate is conducted with surprising vigour. In the end, as I
have argued in chapters 1, 2 and 3, only a complete and formal scenario, with convincing explanations
for the transitions for one step to the next, will resolve these disputes. Hence, in our efforts to formalise
Jackendoff’s scenario, the real issue is to explain how the transition from a non-compositional stage to a
compositional stage could have happened.

Hurford (2002a) classifies explanations for the transition according to whether they postulate an ana-
lytic route, where holistic signals are reanalysed as consisting of meaningful parts, or a Synthetic route,
where pre-existing signals are combined in novel combinations. Whereas Jackendoff clearly favours a syn-
thetic route, the model of this chapter will explore an analytic route. As I will argue below, no convincing
formal model of an synthetic route has been proposed yet.

As with the other transitions, explanations for the transition to compositionality can be further classified
according to their reliance on language-specific, biological adaptations, versus their reliance on domain-
general learning mechanisms and self-organisation. Many researchers, including Pinker & Bloom (1990);
Nowak & Krakauer (1999); Nowak et al. (2000); Jackendoff (2002), have argued for innate, language-
specific cognitive specialisations for compositionality that have evolved under natural selection. Such
explanations can be further classified according to the assumed function of compositionality. Pinker and
Jackendoff’s verbal treatments keep this crucial issue rather vague, and refer to a diverse array of ad-
vantages, from those for learning, memorising and generalisation, to those for sharing information and
for impressing peers and sexual partners. The mathematical models of Nowak and colleagues are more
precise, but whereas in the model of Nowak & Krakauer (1999) the selection pressure is acoustic distinc-
tiveness, in Nowak et al. (2000) it is rather “learnability”. These models are discussed in more detail in
the next section. Unfortunately, explanations of this type — even the mathematical models — have generally
remained much underspecified, and have not adequately dealt with the invasibility constraint and the prob-
lems of cooperation and coordination that I discussed in chapter 2. In particular, as I will show below, the
only existing formal models of the biological evolution of compositionality, only establish that it leads to
more successfull communication once it has been adopted by the whole population.

The crucial question is, of course, how much the hominid brain has had to change to be able to process
compositional language (Lewontin, 1990). Most researchers, including Jackendoff, agree that prelinguistic
hominids, like modern Great Apes, must be assumed to have had a sophisticated, combinatorial concep-
tual apparatus®. It is unclear to what extent these hominids could have made use of such pre-existing
cognitive abilities for processing a simple compositional language. Although most theories of grammar
postulate computational procedures that appear very specific for language, some linguists have argued that

the disparity is more apparent than real. For instance, Steedman (2002b) finds that combinatory categorial

SAs T argued in chapter 3, it is difficult to give an exact characterisation of the kind of representations non-human primates,
prelinguistic hominids and prelinguistic human infants might have available. For the purposes of this chapter, it is probably safe to
think of these representations as something similar to (first-order) predicate logic. This is the assumption made in many formal models
of language acquisition (e.g. Pinker, 1979; Wolff, 1982; Buszkowski & Penn, 1990), as well as in most models of the evolution of
compositionality (Batali, 1998; Kirby, 2000; Hurford, 2000).
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grammar (a formalism for describing natural language syntax; Steedman & Baldridge, 2003) and classi-
cal planning algorithms (from artificial intelligence) make use of exactly the same type of fundamental
logical combinators. If the computational requirements for planning, tool use and navigation are not very
different from those for processing compositional language, then postulating biological innovations for
compositionality might not be necessary. The apparent failure of non-human primates to understand and
produce compositional messages, is perhaps better explained by their lack of attention to the intentions of
communication partners (Dunbar, 1998; Worden, 1998; Tomasello, 2003).

A number of researchers have studied formal models of the transition to compositionality, assuming
just general learning and cognitive abilities and cultural evolution as the driving force (Batali, 1998,
2002; Kirby, 2000, 2001; Kirby & Hurford, 2002; Hurford, 2000). These models are interesting, and
will play a major role in this thesis, but they face some new difficulties themselves as well: (i) in many
cases, the assumed cognitive abilities are much more language-specific than one would like; (ii) cultural
evolution, such as the progressively better structured languages in the “Iterated Learning Model” (Kirby,
2000; Brighton, 2002), only takes off when there is already some initial structure in the language.

Explaining the evolution of compositionality thus remains a challenging problem because both the
genetic and the cultural evolution explanation require a structured language to be already present in the
population before the linguistic innovations can successfully spread in a population. In the next section I
will first review a number of existing formal models, discuss the mentioned problems in more detail and
show that none of the models is complete or conclusive. I will conclude from this review that the need to
explore alternative explanations for the evolution of compositional semantics remains.

In the rest of the chapter, I will (unfortunately) not solve this problem. In fact, I will not study the
evolution of productive compositionality itself, but focus on superficial compositionality instead. I will
start from the observation that compositionality is a form of “topology preservation” in the mapping from
meanings to signals. That is, compositionality implies that similar meanings are expressed with similar
signals®.

In line with the consensus, I assume that the meaning space of early hominids was structured, i.e. that
the meanings expressed were not holistic, idiosyncratic, categorical objects, as in models of the evolution
of a simple lexica (such as signalling games in the tradition of Lewis, 1969, discussed in chapter 2, sec-
tion 2.6). Moreover, I will assume that communication was noisy, and that very similar signals were easier
confused than very distinct signals (as explored in chapter 4). Based on these observations, I present the
simplest possible extension of existing models, that allows the similarities between meanings, the similar-
ities between signals and the preservation of topology to be formally described. I will show that in this
model optimisation for noise robustness automatically leads to topology preservation. For now, I only look
at low dimensional signal and meaning spaces. As a model for the evolution of compositionality it is obvi-
ously incomplete, but I claim the model does make a start with an alternative route, and suggests possible

origins of structure in lexical communication.

5.3 Formal Models of the Evolution of Compositionality
5.3.1 Natural Selection for Compositional Semantics

The first game-theoretic model of the evolution of compositionality was studied by Nowak & Krakauer
(1999). The analysis presented by these authors is closely related to their analysis of the evolution of

combinatorial phonology, that I discussed in the previous chapter. It is worth considering the applicability

There are many difficulties with this statement, because there are many ways to define topologies for meanings and signals,
and many ways to define compositionality. For now, I will ignore these problems, but I will briefly come back to this point in the
discussion. In the model of this chapter I will consider only simple, one- or two-dimensional Euclidean similarity metrics. I will
leave more interesting topologies for future work.
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of the model to the issue of compositional semantics, and the problems with it, because it is the only formal
model that, like the model I develop in this chapter, considers the relation between noise robustness and
compositionality.

To briefly recapitulate, Nowak & Krakauer consider a set of available meanings, a set of available sig-
nals and three matrices S, R and U that describe production, interpretation and confusion respectively’.
For simplicity, they imagine a world where there are just objects and actions, and consider two types
of strategies, holistic (with a unique word for every object—action combination) and compositional (with
nouns for objects and verbs for actions). Their goal is to show that compositionality can evolve, and to
identify the conditions under which this will happen. Like in the analysis of combinatorial phonology
(“word formation”), Nowak & Krakauer view compositionality (“basic grammatical rules”) as a strategy
for improving the robustness against noise. They use the same measure for the quality (fitness) of a lan-

guage as before (equation 4.3):

M N N
F(L, L/) = Z Z (SmiUinljm + S/miUinjm) . 5.1)

m=1i=1 j=1

DN =

The analysis then starts with S- and R-matrices of the following form:

w1y wa w3 wy  NiVi NiVo NoVi Nolh
0141 |1 -2 0 0 0 T 0 0 0
S=1] 0,4, 0 11—z 0 0 0 T 0 0 ,
02 A1 0 0 1—=z 0 0 0 T 0
0245 0 0 0 1—=z 0 0 0 T
0141 0145 05A;7 0O5A,
w1 1 0 0 0
Wo 0 1 0 0
w3 0 0 1 0
R = Wa 0 0 0 1 )
N1Vp 1 0 0 0
N1Vs 0 1 0 0
NoVp 0 0 1 0
NoVo 0 0 0 1

where x is a single variable that describes how often the holistic strategy is used (with signals w, wa, w3, wy)
vs. how often the combinatorial strategy is used (where signals are combinations of nouns N, Ny and
verbs V7, V). Nowak & Krakauer further assume that the confusion between holistic signals (uy) is larger
than the confusion between combinations (u.), and that there is no confusion between the two types of
strategies.

The rest of the analysis is identical to the reconstructed analysis of combinatorial phonology in chap-
ter 4, and, with the same bit of algebra (see equations 4.4—-4.6), Nowak & Krakauer (1999) can therefore
draw the same conclusion: a more compositional language L’ = {S’, R’} can always invade a population

7In this paper (Nowak & Krakauer, 1999), and other papers of the same group, the symbols P and Q are used instead of S and R..
They call P the “active matrix”, and () the “passive matrix”. Hurford (1989) used for the same matrices the symbols T and R, and
talks about “transmission matrix”” and “reception matrix”’; Oliphant & Batali (1996) use the symbols s and r, and Smith (2002, 2004)
uses p and 7. I will use the notation and terminology introduced in chapter 2, which follows Oliphant & Batali and the standards in
information theory by using the letters S and R for sender and receiver, follows Nowak et al. in using the U for the confusion matrix,
and follows the mathematical convention to use boldface capitals to refer to matrices.
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with a less compositional language L = {S, R}, because the fitness of L’ in a population speaking L is
higher than the fitness of L:

F(L',L')> F(L,L') > F(L,L) if (&' >2)A (ue < up). (5.2)

It follows that only a fully compositional language is an Evolutionary Stable Strategy. Hence, if the
assumptions implemented in this model are correct, we should expect evolution to lead to fully compo-
sitional languages. One might ask: why, then, do not all species have a compositional communication
system? Nowak & Krakauer argue that not all combinations of objects and actions occur in the world
or are relevant for communication and survival. If only a fraction ¢ of all combinations are relevant, the
proper comparison is between a holistic system with N = ¢nh words (where n is the number of objects,
and h the number of actions), and a compositional system with n nouns and h verbs. Nowak & Krakauer
observe that under these assumptions, compositionality is only favoured if there are more relevant events
than the sum of nouns and verbs, i.e. N > n + h. They speculate that in other species compositional
language was either not a possibility due to other constraints, or not favoured by selection because there
were not enough relevant events to talk about (that is, /N and ¢ were too small).

Given that the analyses for combinatorial phonology and compositional semantics are almost identical,
it is unsurprising that the same objections apply. As I argued in chapter 4, the model considers only the

advantages of the combinatorial strategies, and not the disadvantages:

e By pre-determining where in the S and R matrix the non-zero entries are, the model effectively
rules out all misunderstandings except those due to acoustic noise. The model thus completely
ignores the problem of coordination. If we assume that individuals speaking a holistic language
do not necessarily understand the compositional signals, then compositionality cannot invade in the
population (the authors do note that in such a scenario, a holistic language is an ESS as well, but do
not elaborate on the consequences of this fact for their analysis).

e The model assumes there is no confusion between nouns and verbs and no confusion between the
parallel holistic and compositional systems. The confusion between nouns and between verbs is only
determined by how many nouns or verbs there are. Effectively, the compositional signals therefore
have double the duration of holistic signals (for the reasons explored in chapter 4 the confusion
between compositional signals could in fact be lower than between holistic signals in a model where
both have the same duration. However, the mechanism responsible for the results in that chapter falls

outwith the scope of the Nowak & Krakauer model).

However, the most important problem with the model is that compositionality here is fulfilling the exact
same function as combinatorial phonology. As I argued in the previous chapter, combinatorial phonology
is in fact a real solution for robustness against noise, and it can evolve through natural selection in the ways
that I explored. If this process is successful, all signals will be reliably transmitted, if that is possible under
the relevant constraints on noise and duration. If reliable transmission is not possible, a repertoire of signals
will be close to its information-theoretic optimum (the channel capacity). In either case, compositionality,
in the analysis of Nowak & Krakauer, has nothing extra to offer! That is, if signals are already composed of
meaningless phonemes such that the acoustic confusion is minimised under the relevant constraints, then

there is nothing more to be gained from combining meaningful words into sentences®.

8The authors mention that in addition to acoustic confusion, the mistakes can be due to “incorrect assignment of meaning”,
which would give compositional semantics a different role than combinatorial phonology. However, in the model, the confusion
probabilities of holistic, single word utterances and compositional, two word utterances are solely determined by the number of
words in the repertoire, and the number of words in a sentence. This is justifiable for confusion due to acoustic noise or incorrect
assignment of meaning that somehow depends on the phonological representations of words, if we assume that the word forms are
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5.3.2 Natural Selection for Learnability

In a later paper (Nowak, Plotkin & Jansen, 2000), Martin Nowak and colleagues present a model where
compositionality has a different function, which could be described as “learnability”. The model views
words as something akin to a disease: they spread through a population through contact between people
that know the word — are “infected” — and those that do not. Nowak et al. adapt a well-known equation
from mathematical epidemiology, and study the spread of words in the same holistic and verbs & nouns
conditions as in the previous model. Like in epidemiology, Nowak et al.’s model also considers how the
abundance of words again decreases when the individuals that know them die. This leads to an equilibrium
situation where individuals know only a limited set of words, and are only partly successful in the com-
munication with others. Because verbs and nouns can spread independently from each other, and can be
combined to express previously unseen meanings, the probability of successful communication is higher
in the compositional condition (if the number of relevant events is high enough, and learning nouns and
verbs not much more difficult than learning holistic signals). From this analysis, the authors conclude that
natural selection will favour the combinatorial strategy, once the number of relevant meanings has reached
a threshold value.

There are some serious problems with this model, from the points of view of both linguistics and
evolutionary biology. First of all, in the model only death limits the size of a language and the model
ignores aspects like meaning, memory limitations, ambiguity and signalling errors. Such aspects are in
fact more likely to limit the communicative success of a language, and existing models that take them into
account give rise to equilibria with very different characteristics (e.g. Hurford, 1989; Oliphant & Batali,
1996). In these models communicative failure arises most frequently from ambiguity, rather than from the
absence of the word in an individual lexicon, and compositionality will thus bring very different advantages
and disadvantages. Although the extreme case of ignoring all cognitive constraints might be interesting to
analyse, it is unwarranted to base an explanation of the evolution of compositionality on it, without making
any reservations.

Second, the author’s fail to establish the fitness advantage of an individual with a compositional lan-
guage in a population that speaks the holistic language (the invasibility requirement from chapter 2). In-
stead, they calculate the average fitness in a homogeneous group. This averaging completely obscures the
real problem of language evolution. The main “difficulties in imagining how language could have arisen by
darwinian evolution”, that the authors refer to, have to do with the problem of imagining how a syntactic
individual can be successful in a non-syntactic population. The basic idea of this model, that individu-
als learning a combinatorial language can generalise to unseen examples, whereas individuals learning a
holistic language cannot, is correct but hardly surprising. The conceptual problems I discussed, as well as

9

a number of technical ones”, can perhaps be dealt with. However, as it stands, the model is completely

unconvincing as an explanation of the evolution of compositional semantics.

distributed optimally over the available acoustic space. For incorrect assignment of meaning due to other causes, I see no reason why
the confusion probabilities would be as in the Nowak & Krakauer model.

9For instance, the comparison that the authors make between holistic and compositional strategies is inconsistent with the as-
sumptions they present in the preceding section on lexicon dynamics. In that section they assume that word frequencies follow Zipf’s
law of exponential decrease with rank, whereas the “methods” section reveals — without any motivation — that for the comparison
between holistic and compositional language equal frequencies are used. It is not hard to see that equal frequencies are in fact a
best-case scenario for compositionality. Fitnesses depend on the probability P (W) to know a relevant word W in the case of holistic
language, and the probability P(N A V') to know the relevant noun N — verb V' combination in the case of compositionality. The
probabilities P(W), P(N) and P(V') are in the equilibrium proportional to the relative frequencies of the words, nouns and verbs,
such that the average P(W.) over all relevant events e is independent from the frequency distribution, but the average P(Ne A Ve)
has its optimum at an equal distribution. Consequently, the fitness advantage of compositionality % Zf (P(Ne AVe) — P(We))
has its optimum at equal frequencies.
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5.3.3 Cultural Evolution of Compositional Semantics

A completely different class of formal models that deals with the origins of compositional semantics are

based on iterated learning. Iterated learning models (ILM) consider what happens when the output of an

induction process becomes the input for another induction process. The crucial insight is that languages

will become more learnable as a consequence of their cultural transmission from generation to generation.
To see how this happens in a formal model, consider the following situation where we start with a

grammar G with some set of rules 77 ...ry which produces a language L with some set of sentences

S1...SMm.

G — L = G’ — r = G”
production induction production induction
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If we now apply an induction procedure on the language L, we induce the grammar G’, which in turn
produces a language L’. In a deterministic framework, we can imagine that G is a grammar that the
induction algorithm cannot learn perfectly, and therefore G # G’. However, G’ is likely to be a learnable
grammar because it is a consequence of a learning process; when we then proceed to induce a grammar
G” from L', the induction algorithm has a good chance of finding the correct grammar, i.e. G’ = G”.
In a probabilistic framework, things are even more interesting because here the accuracy of learning will
increase over the course of a number of generations (Briscoe, 2000a, 2002b; Kirby, 2001; Zuidema, 2003a),
as will be explored in more detail in chapter 6.

The relevance of this for the evolution of compositionality becomes clear if one considers that — as
in the model discussed in the previous section — compositionality aids learnability. That is, the long,
idiosyncratic lists of signals of holistic languages are difficult to learn, because the learner needs to see an
example of every single instance. In contrast, compositional languages allow one to generalise from a fair
number of training samples, to (possibly infinitely) many more unseen cases. In cultural transmission with
a bottle-neck (a “poverty of the stimulus”), holistic language will therefore be unstable, and the language
will therefore continue to change until it has become learnable and hence compositional. Batali (1998)
and Kirby (2000) were the first to demonstrate in formal models that cultural transmission, with learners
learning from learners, can therefore yield a compositional semantics.

I believe the iterated learning models make an important point, and will explore in the next chapters the
important implications of these models for debates in linguistics on innateness, learnability and language
universals. One weakness of the models studied so-far, is that the relations with formal models and results
in theoretical linguistics and learnability theory have not been sufficiently explored. More importantly,
however, the problem with the models as explanations for the evolutionary transition to compositional
semantics, is that they — in two different ways, and to different degrees — already presuppose the existence
of what they are meant to explain.

First, In Kirby’s original models (Kirby, 2000, 2001, 2002a), the agents in the simulation come equipped
with the representational capacity for context-free grammars (enriched with semantics), and a specialised
learning algorithm to induce such grammars from example sentences. An important question is whether
it is necessary and reasonable to assume that such learning abilities existed in early hominids before the
object of learning, a compositional language, existed. It only is, of course, if one could demonstrate that the
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ability to induce context-free grammars, or any other sufficiently expressive formalism, is not language-
specific, but part of the general learning abilities that prelinguistic hominids can be reasonably assumed
to have had. Iterated Learning Models that use different formalisms and learning rules (e.g. Batali, 1998;
Smith, 2002; Brighton, 2002) seem less biased toward compositionality. Unfortunately, it is hard to judge
what kind of learning biases are reasonable.

Second, the success of an ILM is dependent on the probability that some kind of structure, that the
learning algorithm can detect, arises by chance. In Kirby’s (2000) model, random strings of characters are
generated for (compound) meanings that cannot be expressed by the current grammar. E.g. if the meaning
loves(Mary, Tiinde) cannot be expressed using the rules of the current grammar, a random string abacdddbe
might be generated to express it (“invention”). For a related meaning, e.g. hates(Mary, Tiinde) another
random string will be generated. Only when by chance both strings share a substring, will the learner
induce the corresponding compositional rules'”. In the simulations, the probability that this happens is
relatively high, because of specific choices for the number of possible characters and the random string
length. It is unclear, however, how realistic these choices are. Again, it is difficult to judge what kind of
invention biases are reasonable.

Kirby and colleagues are aware of these limitations. Kirby (2000) emphasises that the model shows,
contra Pinker & Bloom (1990), that there are processes other than Natural Selection capable of explaining
complex patterns in natural language. I believe it serves well as such a counterexample, and that the
mechanism at work in the iterated learning model will play an important role in understanding the features
of natural languages. However, for similar reasons as explored in chapter 4, I think it is worthwhile to
explore the fitness effects of increased compositionality, if only to evaluate whether natural selection will

work with such alternative processes, or against it.

5.4 Model Description

The model of this chapter follows Nowak & Krakauer (1999) in focusing on the interaction between noise
robustness and compositionality, but rather than viewing compositionality as a strategy to impose noise
robustness, it views compositionality as a side-effect of optimising signals for robustness. An assumption
in the model — and a crucial difference with Nowak & Krakauer’s — is that not all mistakes are equally
bad. If an interpretation is wrong but close, it is worse than the correct interpretation, but better than a
completely different interpretation. Another crucial difference with Nowak & Krakauer’s, is that in my

model agents always only know a single language.

5.4.1 Hill-climbing

Similarities between meanings are reflected in a value matrix V, that describes the value of each interpre-
tation for any given intention, as I discussed in chapter 3. The expected payoff between a speaker ¢ and a

hearer j then becomes (equation 3.1):
wi; =V - (8" x (UxRY)) (5.3)

In this formula, “x” represents the usual matrix multiplication and ““-” represents dot-multiplication
(the sum of all multiplications of corresponding elements in both matrices; the result of dot-multiplication
is not a matrix, but a scalar). There are M different meanings that an individual might want to express, and
F different signals (forms) that it can use for this task. S is a M x F' matrix that gives for every meaning m
and every signal f, the probability that the individual chooses f to convey m. Conversely, R is a F' x M

10K irby makes no claim that the learning algorithm used models human language acquisition. Kirby studies how the language
changes over the course of many generations; he has deliberately simplified the learning algorithm, inspired on Stolcke (1994), to
reduce the computational and conceptual complexity of the model.
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matrix that gives for every signal f and meaning m, the probability that f will be interpreted as m. U (of

dimension F' x F) gives for every uttered signal f the probability it is perceived as f’, V (of dimension

M x M) gives for every intention m the payoff of an interpretation m’'.

Based on this measure, I use some simple hill-climbing heuristics to improve the communication.
Specifically, I will report simulation results with three types of hill-climbing:

Global optimisation of a probabilistic lexicon: in this condition, there is a single S and a single R ma-
trix. The matrices are initialised with random, real-valued entries between 0 and 1 (and rows or
columns normalised). At every step in the simulation, an entry in one of the matrices is chosen at ran-
dom, a small degree of noise is added (from a Gaussian N (0, p), i.e. with mean p = 0 and standard
deviation o = p, the “learning rate” parameter) and the expected payoff w = V - (S x (U x R))
is measured. If w is at least as large as before, the change is kept, otherwise it is reversed. The ma-
trices describe the average production and interpretation probabilities in a population; this condition
thus corresponds to the unrealistic scenario where communication is optimised for the benefit of the
whole population. These simulations mirror the analytic calculation of maximum fitness in Nowak
& Krakauer (1999); the main difference is the V-matrix.

Local optimisation of a probabilistic lexicon: in this condition, a population (of size V) of individuals
is modelled with everyone having her own S and R matrices. The matrices are initialised with
random, real-valued entries between 0 and 1 (and rows or columns normalised). At every step in the
simulation, a random speaker ¢ and a random hearer j are selected, and the expected payoff between
them is calculated (equation 5.3). As before, an entry in either the speaker’s S or the hearer’s R
is chosen at random, a small degree of noise is added, and the change is kept if ng > w;;. This
version of my model is very similar to simulations reported in Nowak & Krakauer (1999); the main
difference is again the V-matrix.

Local optimisation of a deterministic lexicon: this condition is identical, except that the values of the
entries are restricted to either 1 or 0. That means that they are deterministic encoders and decoders,
which can be shown to always perform better than their stochastic versions (Shannon, 1948; Plotkin
& Nowak, 2000). This simplification allows for an enormous speed-up of the simulation (using the
algorithms in appendix B of this thesis), allowing for many more and larger-scale simulations. The
random change in the hill-climbing procedure is to move the only 1 in a random row or column to a
random other position in that row or column.

The motivation the local optimisation conditions is (i) that they are fast and straightforward to imple-
ment; (ii) that they work well, and give, if not the optimum, a good insight in the characteristics of the
optimal communication system; and (iii) that they consider the invasibility of linguistic traits in a popu-
lation where they are rare, and thus show possible routes to (near-) optimal communication systems, and
in a sense form an abstraction for both learning and evolution'!. If the simulations converge such that all
individuals have the same S and the same R matrix, these particular matrices define an Evolutionary Stable

Strategy (with respect to a strategy set containing all strategies that are 1-step mutations from the ESS).

5.4.2 Semantic Similarity and Acoustic Confusability

The V and U matrices can be chosen to reflect all kinds of assumptions about the signal and meaning
space. A V could theoretically be constructed from empirical observations, if one could list the “mean-

ings” available for communication, and measure the payoff from all of these meanings as interpretations

"There are no deep philosophical reasons for the difference in the way I deal with invasibility in this chapter and the previous.
The difference is an arbitrary modelling choice. In this chapter, an explicit population of agents is modelled, reflecting a preference
for such explicit models in the Artificial Life community (although the abstractions that I do make — for instance, using hill-climbing
rather than an observational or reinforcement learning paradigm — are quite unlike much Artificial Life work); in chapter 4, more in
line with work in evolutionary game theory, invasibility is dealt with without simulating a population.
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in the context of all these meanings as intentions. Alternatively, one could estimate these values from a
measure of semantic similarity and a function relating similarity to payoff. Similarly, the U matrix could
be constructed from empirical observations, if one could list all the possible “signals” available for com-
munication, and measure the probability of confusion between each possible produced signal and each
possible perceived signal'?.

In this chapter I will not be concerned with measures of semantic similarity or confusability. Instead,
I will study the consequences of some specific choices for V and U that reflect qualitatively different
assumptions on (i) whether all meanings are equally valuable or not, and (ii) whether or not there is a
topology in the meaning and signal space, and if so, of which dimensionalities.

For the V matrix, I will look at the following conditions. First, for the diagonal elements (the cor-
rect interpretations) the homogeneous condition assumes that there are no qualitative differences between
meanings. Hence, all diagonal values are 1. In the heterogeneous condition, in contrast, some meanings
are more important than others. In the simulations under this condition, I assign a random value v to each
meaning, which defines the corresponding diagonal element in V. For the off-diagonal elements in the V

matrix, I consider three conditions:

0d: There is no topology in the meaning space. Hence, every wrong interpretation is equally bad: all off-
diagonal values in V are 0. A homogeneous, O0d V matrix is a M x M unit matrix as in figure 5.2(a).

1d: There is a 1-dimensional topology in the meaning space. The position of a meaning in that space
corresponds to its index in the matrix. That is, I assume that if m3 is the intended meaning, inter-
pretation ms gives the highest payoff, my and m4 a lower but non-zero payoff, m; and ms an even
lower payoff and so forth. An example of a homogeneous, 1d V matrix is given in figure 5.2(b). An
example of a heterogeneous, 1d V matrix is given in figure 5.2(c). The exact values of the entries in
V are defined below.

2d: There is a 2-dimensional topology in the meaning space. Here I assume the meaning-space is a
perfect square. Each of the positions in this space is labeled with a unique number, as illustrated in
figure 5.3(a), which is the index of each particular meaning in the S, R and V-matrices. Figure 5.3(c)
is a V-matrix that reflects such a 2d topology.

Similarly, I will look at U matrices that reflect no topology, a 1-dimensional or a 2-dimensional topol-
ogy in the signal space. An example of the labeling of signals in a 2-dimensional signal space, with the
indices that are used in the S, R and U matrices, is given in figure 5.3b. In this chapter I will not look at
heterogeneous U matrices, but the generalisation is easily made, and in chapter 7 I will look at one simple
example of a simulation under this condition.

The precise values of entries of the V and U matrices are given by the following equations:

V(p,q) = v/(1+d(p,q)), (5.4)
U(p,q) = 1/(1+d(p,q)), (5.5)

where v = 1.0 in the homogeneous V condition, and a random value (0.0 < v < 1.0) in the “het-

erogeneous” V condition; without a topology (“0d”), the off-diagonal elements in U or V are 0 (i.e.

12For simplicity, I assume throughout this thesis that the set of meanings available as “intentions” is the same as the set available as
“interpretations”, and that the set of signals available as “articulations” is the same as the set available as “acoustic perceptions”. This
is in contrast to work on signalling games in the tradition of Lewis (1969), where the intentions (“situations”) are from a different set
than the interpretations (“actions”). For empirical estimates of the V, U, S and R matrices it might be more convenient to distinguish
between all these cases, but the essential apparatus developed in this chapter will still be available.
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Figure 5.2: Examples of V matrices that reflect different qualitative assumptions on the structure of the
meaning space. On the vertical axis are all meanings as intentions, on the horizontal axis all meanings
as interpretations. In (a) all meanings are equally valuable and interpretations only give a payoff if they
are absolutely correct. In (b) all meanings are equally valuable and correct interpretations give the highest
payoff (the diagonal entries), but slightly wrong interpretations still give some payoff. In (c) different
meanings have different values, and slightly wrong interpretations still give part of those payoffs. The size
of circles is proportional to the value of the corresponding entry; entries with value 0 are plotted as a small
dot.

d(p,q) = oo if p # ¢). With a topology, d(p, q) gives the squared Euclidean distance between the posi-
tions of the two meanings or signals p and g. After these values are set, the rows of both U and V matrices
are normalised'3 such that the values of each row add up to one.

In the 1-dimensional condition the position of a meaning or signal is simply defined as its index. In
the 2d condition, the meaning and signal spaces are 2-dimensional surfaces of size (\/M x VM ) or
(\/F X \/F) (see figure 5.3a,b). Each of the positions in those spaces is labeled with an index, with 0
in the bottom left corner, 1 one position higher and so-forth. When given an index, we can calculate the
corresponding x- and y-coordinates as follows:

e The x-coordinate is given by the largest integer smaller than the root of the index: x = int(ﬂ);

e The y-coordinate by: y = ¢ modulo x.

5.4.3 Performance Measures

I monitor the behaviour of the model with two measures. The first is the average payoff, as given by
equation (5.3), averaged over all individuals interacting with all other individuals, both as speaker and as
hearer. The second is a measure for the degree of topology preservation between the meaning space and the
signal space in the emerging languages. Following Brighton (2002), I use the correlation (‘“Pearson’s )

between the distance between each pair of meanings and the distance between the corresponding signals:

r= corre]at}'v?n (D (m,m"), D (S[m],S[m'])), (5.6)
m,m’€M
where S[m] gives the most likely signal used to express m according to S. This measure gives a value 1
when for every meaning—signal pair the coordinates in meaning space and signal space are identical (or
equivalent under mirroring and rotation), and 0 when the mapping is random (Brighton, 2003).
For 2-dimensional meaning spaces I also visualise the topology preservation by plotting all meanings

as nodes in a meaning space, and connecting those nodes where the corresponding signals are neighbours

13The normalisation of the V matrix is in fact unnecessary, and introduces an unfortunate boundary effect: meanings with fewer
neighbours have slightly higher diagonal values, as is apparent in the 1-dimensional condition at the top-left and bottom-right corners
(figure 5.2b) and in the 2-dimensional condition in the slightly different values for meanings with 2, 3 or 4 neighbours (figure 5.3c).
The effect is very small, however, and the simulations were therefore not redone.
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6 13 20 27 34 41 48
5 12 19 26 33 40 47
4 11 18 25 32 39 46
37 11 15 3 10 17 24 31 38 45
2 6 10 14 2 9 16 23 30 37 44
1 5 9 13 1 8 15 22 29 36 43
0 4 8 12 0 7 14 21 28 35 42

(a) The 4 X 4 meaning
space, with the indices
of 16 meanings

(b) The 7 x 7 signal space, with the indices
of 49 signals

(c) The 16 X 16 V-matrix, giving
for each of 16 possible intentions,
the payoff of each of 16 possi-
ble interpretations, and reflecting
the 2d topology of the meaning
space. (V:2d homogeneous)

(d) A 16 x 49 S-matrix, with 16 meanings on
the vertical axis and 49 signals on the horizontal
axis. The bottom left point represents meaning 0

(e) A 16 x 49 R” -matrix (transposed for easy
comparison), with 16 meanings on the vertical
axis and 49 signals on the horizontal axis.

and signal 0.

42 44 46 48
28 30 32 34
14 16 18 20
0 2 4 6

12 12 13 14 14 15 15
12 12 13 13 14 15 15
8 8 9 10 10 11 11
8§ 8 9 5 10 11 7
4 4 5 5 6 7 7
o o 1 2 2 3 3
o o 1 1 2 3 3

(f) The 4 X 4 meaning
space, with the indices of
16 corresponding signals,
according to S

(g) The 7 7 signal space, with the indices
of 16 corresponding meanings, according
to R (in boldface the preferred signals in
the S matrix).

(h) The 4 X 4 meaning
space, with neighbours in sig-
nal space, according to R,
connected by edges.

Figure 5.3: 2d meaning and signal spaces and visualising topology preservation.

97



98 CHAPTER 5. COMPOSITIONAL SEMANTICS

(one of maximum four) in signal-space. Figure 5.3 illustrates this visualisation technique, for the given
S and R-matrices (figure 5.3d,e; the origin of these matrices is not relevant here, but they result from the
same simulation as reported in figure 5.12a). The S matrix associates meanings with signals; in figure 5.3f
the indices of the signals are plotted at the locations of the corresponding meanings in meaning space. The
R matrix associates signals with meanings; in figure 5.3g the indices of the meanings are plotted at the
locations of the corresponding signals in signal space.

Finally, in figure 5.3h the representation I will use in this chapter is given. Here, points in meaning
space are connected if the corresponding signals are neighbours in signal space. Thus, signals 5, 6, 12 and
13 (the 4 signals in the top left corner, see 5.3b), are all interpreted as meaning 12 (see the top left corner
in 5.3g). The neighbours of these signals are 4, 11, 18, 19 and 20, which are interpreted as meanings 8, 8,
9, 13 and 13 respectively. Therefore, in the final representation meaning 12 is connected with meanings 8,
9 and 13. Using this representation, the topology preservation between meaning space and signal space,
which is almost perfect in this example, is immediately clear.

5.5 Properties of the Optimal Lexicon

To give an idea of the properties of the optimal lexicon — that might or might not be an evolutionary stable
strategy — I will in this section present results from some very simple simulations with the frequency-
independent hill-climbing heuristic (the “global optimisation of a probabilistic lexicon” condition).
Throughout this chapter, I assume that there are more signals available than meanings to express. This
is a fairly strong assumption, but there are two good reasons for choosing it as a starting point. First, if
signals are from a continuous space (as in chapter 4), and meanings from a finite (non-recursive), discrete
space (such as first-order predicate logic), then there will be (infinitely) many more possible signals than
meanings. Although the number of possible signals in the simulation is finite, the number of usable signals
will — as in reality — be determined by the amount of noise. Second, the assumption simplifies the dynamics
considerably and, if the noise level is sufficiently low, guarantees the existence of at least one Evolutionary
Stable Strategy in the “local optimisation” conditions. The dynamics of models with different assumptions
on the meaning- and signal-spaces (including continuous and hierarchically structured spaces) remain to

be explored (a start has been made with a related model by Matina Donaldson, p.c.).

5.5.1 Categorical Meanings, Noise-free Signalling

The simplest case is where there is categorical, noise-free communication. That is, every meaning is unique
and has no relation with other meanings, and signals are perceived as they are uttered. These conditions
(V : 0d, U : 0d) are described with a V and U that are both unit matrices (matrices with 1’s on the
diagonal, and 0’s everywhere else).

Optimising a population’s lexicon under these conditions using the hill-climbing algorithm described
above, gives results as in figure 5.4. The average payoff increases steadily and reaches the optimal value
(1.0). The S matrices in the population have maximal probability (= 1.0) for a specific signal (horizontal)
for each of the meanings (vertical), and probability O for all other signals. In the R matrix these signals
(vertical) are interpreted as the “correct” meanings. Because there are more possible signals than meanings,
some signals (f1, fs, fo, f11) are never used and have arbitrary interpretations.

This simple simulation illustrates two properties of the optimal lexicon: specificity, “one unique signal
for every intention, and one unique interpretation for every used signal”, if M < F, and coherence,

“everyone in a population uses the same signal for the same meaning”.

5.5.2 Categorical Meanings, Noisy Signalling

If there is noise on the signal (due to a noisy environment and sensory limitations of the hearer), the hearer

will sometimes hear a different signal than the speaker uttered. We can model this by introducing non-zero,
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Figure 5.4: The optimised lexicon in a population under categorical, noise-free conditions. The size of
circles is proportional to the value of the corresponding entry; entries with value 0 are plotted as a small
dot. (V:0d,U :0d, M =8, F =12, N =3,n =0.1).

off-diagonal entries in the matrix U. Here, I consider only the simplest case, where signals vary on one

axis determined by their index (U : 1d).
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(a) Development of communicative success (b) S matrix of a random individual. (¢) R matrix of the
over 100000 iterations same individual.

Figure 5.5: A local optimum of the lexicon in a population under categorical, noisy conditions (V : 0d,
U:1d,M =10, F =30, N =3,n=0.1).

Under these conditions, we expect a lower average payoff and S and R matrices that somehow min-
imise the chance of confusion. Figure 5.5 shows that this is indeed what happens. The S matrix shows
that for every meaning, there is a prototype signal that individuals use. For these prototype signals and
their direct neighbours, the interpretation is the “correct” meaning. Little clusters of neighbouring signals
are all interpreted in the same way, such that prototype signals are maximally distinct from each other.
Thus, in addition to specificity and coherence, distinctiveness is a property of the optimal lexicon when the
signalling is noisy. Note that, even though there are many more signals than meanings, all signals have a

specific “best” interpretation.
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5.5.3 Semantic Similarities & Noisy Signalling

If we include in the model the assumption that not only signals have similarity relations, but also meanings
relate to each other, we can identify a fourth criterion of the optimal lexicon: regularity. Figure 5.6 shows
results that are obtained by running the same hill-climbing algorithm, with V : 1d and U : 1d.
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number of iterations [ ] :

(a) Development of communicative success (b) S matrix of a random individual (¢) R matrix of the
over 100000 iterations same individual

Figure 5.6: Local optima for S and R under semantic similarities, noisy signalling conditions (V : 1d, U : 1d,
M =10,F =30,N =3,n=0.1).

The local optima found by the hill-climbing algorithm show not only specificity, coherence and dis-
tinctiveness, but also partial regularity: “similar signals tend to have similar meanings”, such that misinter-
pretations are still better than a random interpretation. The solution found is a local optimum; the observed
patterns suggest that the globally optimal lexicon is maximally regular: with the parameters of the simu-
lations in figure 5.6, meaning m; would be expressed with signal f;, and signals fs to fs are interpreted
as my; mo is expressed with f5, and f4 to fg are interpreted as mo etc. This optimum is not found in this
simulation; however, in the local optimum of figure 5.6 neighbouring clusters of signals are, with only a
few exceptions, associated with neighbouring meanings. Measuring the degree of regularity r shows that

it is consistently higher under conditions with semantic similarities than without.

5.5.4 Properties of the Optimal Lexicon

These simulations illustrate that the optimal lexicon must have the following properties (provided that
M << F, and that the off-diagonal U and V' values are relatively low):

specificity: every meaning has exactly one signal to express it and vice versa (i.e. no homonyms, and no
real synonyms: if different signals have the same meaning they are very similar to each other). In the
representation I use in this chapter, this property is present if there is only a single full-sized circle
in each row of the S and R-matrices (or each column of the R -matrix).

coherence: all agents agree on which signals to use for which meanings, and vice versa. This property is
present if all S and R-matrices in a population are identical.

distinctiveness: the used signals are maximally dissimilar to each other, so that they can be easily distin-
guished. In the U : 1d condition, this property is visible in the S-matrix if the circles are maximally
dispersed over the width of the matrix, and in the R-matrix as little clusters of signals that all have
the same interpretation. In the U : 2d condition, this property is visible in the distribution of pre-
ferred signals from the S-matrix in signal space (see, for instance, the boldface meaning-signal pairs

in figure 5.3g).
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regularity: in the mapping between meanings and signals there is a preservation of topology, i.e., similar
signals tend to have similar meanings. In the (V : 1d,U : 1d) condition, this property can be
seen in the S and R-matrices as local staircase-like patterns. In the V : 2d condition, it can be
visualised using the technique I described in section 5.4.3. In all cases, it can be roughly measured
with the r correlation measure of equation (5.6), where a value of =~ 1 indicates perfect topology

preservation.

These properties are quite different from the properties of the lexicon of any natural language, which
of course has not been globally optimised, where the V, U, M and F are all quite different, and where
the interpretation of each word is crucially dependent on the context. However, these properties do follow
naturally from the assumptions about topology in the meaning and signal spaces I made in this model.
If one were to design a code for communication over a noisy channel, without context, the same prop-
erties would emerge: (i) senders should consistently use a unique signal for each meaning they need to
express, and receivers should decode each signal with a unique meaning; (ii) everyone in the population
should agree on the same code; (iii) when there is a range of signals available, the signals used in the
code should be well-spread over the available space, and signals received with some distortion should be
decoded as the most likely (nearest) prototype; (iv) if there is freedom in how to organise the mapping, the
damage of unavoidable confusion should be minimised, such that misinterpreted signals receive the next
best interpretation.

The exact shape of the optimal lexicon will depend on the specific choices of V, U, M and F'. For
the purposes of this chapter, a qualitative understanding of its properties are sufficient. The real issue
for this chapter — and a recurrent theme throughout this thesis — is how traits that might or might not be
beneficial for the group, can invade in a population, i.e. emerge through local optimisation. In the next
sections I will study a simulation of a population of agents, where each agent tries to optimise her success

in communicating with a randomly picked other agent.

5.6 Local Optimisation of a Probabilistic Lexicon

Figure 5.7 shows results from a simulation with the same parameters as in figure 5.6, but with local hill-
climbing in a population with N = 40 agents and a higher learning rate (the random change in the hill-
climbing algorithm is from a Gaussian distribution with mean 0 and standard deviation p = 1.0). The
figure shows S and R matrices from one random individual at three points in the simulation: after 5 x 106
and 2 x 107 iterations, and in the stable equilibrium configuration (after almost 1 x 103 iterations)'.

The lexicon that develops shows all 4 characteristics of the optimal lexicon. In the S matrix at equilib-
rium (from around ¢ = 1 x 10%) every meaning is always expressed by one unique signal; in the R matrix,
that signal is always interpreted with the correct meaning (specificity). At equilibrium, all agents have the
same S and R matrices (coherence). It is not difficult to see why these properties emerge in a local opti-
misation set-up. Consider that at any point in the simulation, there is for each meaning one specific signal
that gives the highest chance of being understood (this is because all values are continuous, and the values
in the R matrices are therefore never exactly equal). For every speaker, it therefore pays off — on average —
to use that specific signal in the S matrix. Conversely, for every signal there is one specific meaning that is
the most probable interpretation. For every hearer, it therefore pays off — on average — to use that specific

14 An interesting question is whether 108 iterations is too long for these results to be relevant for scenarios of language evolution.
That is, whether or not there has been sufficient time (criterion 6 in chapter 2) for the mechanism modelled here to have played a role
in shaping natural language. This is an important issue, but one that goes beyond the scope of this thesis. Answering this question
requires first of all more robust results on how the time to convergence depends on the many parameters in the model, and second,
a more concrete interpretation of what the optimisation steps correspond to in the real world (genetic mutations, selection, learning
events).
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Figure 5.7: Development of specificity, coherence, distinctiveness and regularity in the lexicon of a popula-
tion under semantic similarities, noisy signalling conditions. At each time-step a random speaker interacts
with a random hearer and one of them performs a single hill-climbing step to improve the communication.
In this graph, R matrices are transposed, such that in both S and RT matrices meanings are on the vertical
axis and signals on the horizontal axis. The size of circles is proportional to the value of the corresponding
entry; entries with value 0 are not plotted. (a-c) show the S matrices, (d-f) the R7” matrices, and (g-1) the
R matrices (with open circles) with the S matrices (with closed circles) overlain. Parameters: V : 1d,
U:1d, M =10, F =30, N =40, p =1.0.

meaning in the R matrix. Only a lexicon with specificity and coherence can therefore be an Evolutionary
Stable State.

In the S matrix at equilibrium, the preferred signals are (almost) maximally dispersed. Figure 5.7i,
which shows the R” matrix from figure 5.7f (with open circles) overlain with the S matrix of figure 5.7¢
(with closed circles), shows that in the R matrix, each of these preferred signals (except at the edges) is
at the centre of a little cluster of signals that are all interpreted with the same meaning (distinctiveness).
The reason this property emerges is slightly more subtle. One way to see why it is inevitable is as follows.
Consider a population where the specificity and coherence of a lexicon have been established, but distinc-
tiveness has not. Assume futher that there are many more signals than meanings, such that there must be
signals that are not the preferred signal for any meaning (the non-preferred signals). Moreover, because of
the noise on transmission (as modelled by the U matrix), a signal s as the preferred signal for meaning m
is not always perceived correctly, but sometimes perceived as a neighbouring signal s’.

In this situation (a concrete example is given in figure 5.8a), it pays off for an agent to shift the in-
terpretation of any non-preferred signal s’ in the R matrix, to the same meaning R[s] = m as that of a
neighbouring preferred signal s. The same logic applies to non-preferred signals that are further away than
distance 1 from a preferred signal. Consequently, at least one little cluster in the R matrix forms, as in
figure 5.8c. Given that situation, it now pays off for an agent to shift the preferred signal in the S matrix
to the center of the cluster, or, if the cluster is at the edge of signal space, to this edge. This movement of
the preferred signal, then, will mean that some non-preferred signals are now closer to a different preferred

signal and should be moved in the R matrix, and the same process repeats. This sequence of steps does
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not describe the dynamics in the simulation, where distinctiveness already appears before specificity and
coherence have been established. It does, however, show that a non-distinctive lexicon is not an evolution-
ary stable state, because there exists a sequence of changes to lexicon that each improve the fitness of an

individual and can therefore invade in the population, as is illustrated in figure 5.8.
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Figure 5.8: Only distinctive lexicons are evolutionary stable states. Consider a coherent, specific lexicon as
sketched in (a). This diagram shows the same S + R -representation as in figure 5.7(g-i), with closed
circles representing the preferred signals in the S-matrix, and both open and closed circles representing the
interpretation for each signal in the R matrix. This lexicon does not define an evolutionary stable state,
because all the changes to non-preferred signals in the R-matrix, as indicated with vertical arrows in (b),
are beneficial for an individual, even if the whole population has adopted (a). These changes can therefore
invade in the population. If the whole population would adopt each of these change, (c) would describe the
new population lexicon. This is not a stable state either, because changing the preferred signals in the S-
matrix, as indicated with horizontal arrows in (d) again benefits an individual even if the whole population
uses lexicon (c). With a series of similar changes that can all invade the population as sketched in (e-g), we
end up with the maximally distinctive lexicon in (h). This lexicon does define an evolutionary stable state.

In final observation in the matrices of figure 5.7, is that, with 3 exceptions, all signal-clusters have
neighbouring signal-clusters that express a neighbouring meaning (regularity). The degree of regularity in
this simulation is only small (the r correlation measure is around 0.2). In general, regularity can be difficult
to obtain because to go from a irregular to a regular lexicon, many changes to the lexicon are required,
and these changes might involve a decrease in fitness for the individual that adopts them (because non-
regular lexicons can also be evolutionary stable states). Moreover, the contribution to the communicative
success is small in comparison to the other three properties, because it only plays a role for signals that
are radically misperceived. Nevertheless, regularity does emerge in many of the simulations. In the next
section I show results in the deterministic lexicon condition, where simulations run extremely fast. In this
condition, many more, and more large-scale experiments could easily be performed, such that I can report
quantitative results on the prominence of regularity.

5.7 Local Optimisation of a Deterministic Lexicon

Figure 5.9 shows the average payoff and topology preservation for simulations under 3 different conditions:
(i) homogeneous and no topology in the meaning space (“V : 0d”); (ii) homogeneous and V : 1d; (iii)
heterogeneous and V : 0d. The results are plotted with a logarithmic x-axis.

A first striking result from these simulations, is that convergence is more than 10 times faster if there is
a topology in the meaning space. To understand why, we should first ask why convergence takes so long
in the V : 0d condition. As I discussed above, at any point in the simulation, there is for each meaning
a specific signal that has the highest chance of being understood correctly, and similarly for each signal a

specific meaning that is its most probable correct interpretation. The optimal behaviour is therefore for all
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agents the same (assuming a large population). However, the local hill-climbing algorithm that agents use
bases its decisions at every step on a sample of just one agent from the population. Stochastic fluctuations
will therefore mean that initially (as long as the differences between alternate signals for one meaning, and
alternate meanings for one signal are small) different agents will make different changes to their lexicons,
and convergence is postponed.

Suppose that, at some point, there is for a particular signal s a specific dominant interpretation m
in the population’s R matrices. Now consider the changes the hillclimbing algorithm will favour in the
agents’ S matrices. In the V : 0d condition, a signal is either correctly interpreted or it is not. Unless the
random change the hill-climbing considers is signal s, an agent will thus remain at a random other signal
for meaning m. If there are 49 different signals, 48 out of 49 iteration of the hill-climbing algorithm do
not contribute to convergence. In the V : 1d condition, in contrast, it does make a difference which of the
“wrong” signals is used. Signals that are closer to s, even if they are not equal to it, will give a higher payoff
than those that are further a way. Many more of the 49 iterations will now contribute to convergence, if
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Figure 5.9: Average payoff (a) and degree of topology preservation (b) for 2 x 108 iterations under 3 condi-
tions: (1) V:0d homogeneous, (2) V:1d homogeneous; (3) V:0d heterogeneous. The maximum average
payoffs that are reached depend on the arbitrary chosen values of the V matrices (see also footnote 13);
hence, only the shapes of the curves are important. Common parameters are N=400, M=16, F=49, U:1d.

I suspect a similar mechanism is responsible for another striking result from these simulation. Fig-
ure 5.10 shows the average payoff and topology preservation for 60 simulations where the dimensionality
of the signal space is varied. In all cases, the payoff reaches high levels (when the signal space is 1d)
or intermediate levels (when the signal space is 2d and the overall noise-level is consequently higher be-
cause each signal has more neighbours). Importantly, in all cases the topology preservation reaches high
levels (when the dimensionalities of meaning and signal space match) or intermediate levels (when the
dimensionalities mismatch).

As we have seen above, lexicons do not need to show topology preservation to be evolutionary stable
states. Why then, does such a high degree of topology preservation emerge in these simulations? I sur-
mise that a similar mechanism I described above is responsible. Consider again a situation where not all
conventions have been established, but a strong association exists between a meaning m and a signal s.
What should an agent do to express a neighbouring meaning m’? As long as none of the signals has much
chance of being interpreted as m/, it pays off for an agent to use a signal s’ that is equal or close to s,
because interpretation m at least generates some payoff if m’ was intended. This intuition — which implies
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that lexicons with regularity have a larger basin of attraction — needs to be worked out more formally, and

tested in simulations.
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Figure 5.10: Average payoff (a) and degree of topology preservation (b) at the random initialisation and after
5 x 107 iterations for different parameters. Error-bars indicate standard errors (/0 /N, where N = 5
is the number of simulations with the particular parameters, and o is the standard deviation). Common
parameters are P=400, M=36 and V:2d heterogeneous.

Figure 5.11 shows examples of the S and R matrices at various stages in the simulations of figure 5.9.
Figure 5.12 shows examples of the communication systems in the simulations of figure 5.10. These results
(from local optimisation of a deterministic lexicon), show again the same characteristics as before. In
addition to specificity and coherence, distinctiveness can be recognised in the S matrices, in that the
used signals are maximally dissimilar to each other so that they can be easily distinguished (compare
figure 5.11a, at the start of the simulation, with 5.11c, at equilibrium). In the R matrices, clusters of
neighbouring signals all are interpreted as the same meaning. Typically, the most central signal (except
at the edges) in such a cluster is the one that is actually used by the S matrix (compare figure 5.11c with
5.11d).

Topology preservation is even more pronounced than in the probabilistic lexicon condition. Again,
preservation of topology is not perfect (there is one major irregularity and several minor ones in the signal—
meaning mapping of figure 5.11e and f. The topology preservation, according to equation (5.6), is 7 =
0.915), but in all simulations performed it is surprisingly high. “Bad” solutions, such as the S and R of
figures 5.11c and d (¥ = —0.073), are stable once established in the population, but have a much smaller
basin of attraction. In the case of a two-dimensional meaning space, we can draw plots like figures 5.12a-
d, which show that the topology is almost perfectly preserved if the dimensionalities of the meaning-
and signal-spaces match (5.12a), although it is skewed if different meanings receive very different values
(5.12b). But even if the dimensionalities do not match, there is a strong tendency to preserve topology as
well as possible (5.12¢ and d).

When one analyzes the intermediate stages between the random initialization and the equilibrium so-
lutions, it becomes clear that with a heterogeneous V valuable meaning-signal pairs get established first,
and change little afterwards. This can be seen for instance when comparing figure 5.12d.b with d.c.

Finally, when the V matrix is heterogeneous (figure 5.12b and d), or there is a dimensionality-mismatch
(figure 5.12c and d), one can observe that meanings with very low value are sacrificed for the benefit of
robust recognition of more valuable meanings (a similar observation was made in Nowak & Krakauer,
1999). These sacrificed meanings “deliberately” get expressed with a signal that will be interpreted with

a meaning that is very close. An analogue for this phenomenon in natural language is using a word like
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Figure 5.11: (a)-(h) Examples of S and R matrices from the simulations of figure 5.9. For easy comparison,
the R matrices are transposed so that in all matrices meanings differ on the vertical axis, and signals on the
horizontal axis. Between the matrices the diagonal values of the V matrix are plotted, where the diameter
of a circle corresponds to value of the corresponding meaning. Common parameters are P=400, M=16,
F=49.

“green” to express a color like turquoise, as happens in some languages, because a word “turquoise”
doesnot exist in the language and a slight misunderstanding is better than no understanding at all.

5.8 Discussion

I started this chapter with a brief sketch of compositional semantics in natural language, and some consider-
ations about its evolutionary origins. I agree with researchers like Jackendoff (2002) that compositionality
is a fundamental design feature of human languages. I also agree with Jackendoff that in the evolutionary
history of language a stage might have existed where language was productively compositional, but where
many of the intricacies of modern syntax, such as hierarchical phrase-structure, were still absent.
Identifying intermediate stages is an important step in constructing a plausible evolutionary scenario;
a crucial next step, as I have argued, is to explain the transitions between stages, in this case the transition

from a stage without compositionality to a stage with this feature. Moreover, I believe such a scenario must
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Figure 5.12: Topology preservation at equilibrium in 4 simulations with 1d and 2d U matrices, and homo-
geneous and heterogeneous 2d V matrices. Shown are results at initialisation (left column), intermediate
time (middle column) and at equilibrium (right column). Nodes are meanings (diameters correspond to
value), edges connect neighbours in signal space (several signals can map to a single meaning, such that
nodes can have many neighbours; some meanings are not expressed, and the corresponding nodes are not
connected). Common parameters are P=400, M=16, F=49.
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be formalised, such that its internal coherence can be evaluated using techniques from analytic mathematics
and computer simulation. Hence, the challenge is to formulate plausible assumptions on the available
strategy set and payoff function, and show how compositionality can invade in a population that speaks a
language without it.

In section 5.3 T have discussed a number of formal models that take up this challenge, and found that
neither is really convincing yet. I have argued that the assumed payoff-function in the model of Nowak &
Krakauer (1999) is implausible, because the additional costs of signals of longer duration are not taken into
account. If one does consider these constraints, compositional semantics has nothing extra to offer over
a phonology that minimises acoustic confusability. I have further argued that the model of Nowak et al.
(2000) does not deal properly with the invasion of innovations in a population; the model only makes the
rather obvious point that a compositional language, once established, allows for generalisation, and hence
a greater average fitness in the population. Finally, I have discussed Iterated Learning models, like Kirby’s
(2000), and argued that — for explaining the evolution of compositionality — these models assume too many
a priori cognitive abilities; a better model would consider a wider strategy set and consider the selective
advantages of compositional versus non-compositional strategies.

In the second part of the chapter I have studied a new model that focuses on a simpler, but related prob-
lem: the evolution of a lexicon with topology preservation, where similar meanings tend to be expressed
by similar signals. I have introduced a formalism to describe the quality of a lexicon, that includes a matrix
U that describes the confusion probabilities of signals depending on their similarity, and a matrix V that
describes the payoff for all intention—interpretation pairs. The strategy set the model considers corresponds
to all possible choices of S and R matrices; the payoff function is implicit in the U and V matrices. |
identified four qualitative properties of the optimal lexicon, and evaluated if they could invade in a popu-
lation with a language without these properties. I found that only lexicons that are specific, coherent and
distinctive are evolutionary stable strategies. Moreover, the simulation results suggest that evolutionary
stable lexicons that also show topology preservation are much more likely to emerge than those that do not.

Hence, compared to existing models, the model represents progress in meeting the requirements for
evolutionary explanations of chapter 2. The model should still be made more formal (with the intuitive
arguments for why only lexicons with the listed properties are evolutionary stable states turned into formal
proofs), and the “sufficient time” requirement needs to be studied (given that some of the simulations
needed 108 iterations to converge).

But what exactly is the model explaining? The model shows that with simple assumptions on topologies
in the meaning- and signal-spaces, and individual-based optimisation, communication systems can arise
that show a structured mapping from meanings to signals. The existence of a topology in the meaning-
and signal-space should not be controversial, although it is not obvious how many dimensions these spaces
should have, and how payoff and confusability decrease with distance in these spaces. It remains to be
shown that a significant degree of topology preservation also emerges if these spaces are of higher dimen-
sionality (and perhaps hierarchical structure).

However, the main limitation of the current model is that topology preservation is not the same thing as
compositional semantics. Compositionality does imply that similar meanings are associated with similar
sounds: a signal johnwalks is similar to both johnsleeps and marywalks. But topology preservation in
natural languages can also be due to sound symbolism, where “Words whose meanings lie close to one
another, are likewise accorded similar sounds” (von Humboldt, 1836, p. 74). The cognitive relevance
of sound symbolism — such as in examples like slippery, slimy, sluggish, sloppy, slithery, sleazy — is
controversial, but it is clear that the common sounds in such examples bear no direct semantic content, and

the signals are therefore not compositional.
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What then, does the model say about the evolution of compositional semantics? The assumption I
make is that in a population where a language with some sort of topology preservation is spoken, the fun-
damental new phenomenon of productive compositionality can more easily evolve. Consider the example
of figure 5.12a.c, which is the same system I used in figure 5.3 to explain the use of the two-dimensional
meaning- and signal-spaces and the visualisation of the topology preservation. Let us now interpret the hor-
izontal axis of the meaning space as describing agents, ranging from BABY to GRANNY, and the vertical
axis as describing actions, ranging from from LIES to RUNS. Meaning 10 in figure 5.13a would then mean
something like “the woman walks” (the meanings here are thus assumed to be “combinatorial”’; recall that
I reserved the term “compositionality” in this chapter for a property of the mapping between sounds and
meanings). Finally, let us interpret the axes of the signal space as describing two components of the signal,
for instance the horizontal axis as describing a first sound ranging from /bu/ to /bo/, and the vertical axis
as describing a second sound ranging from /mu/ to /mo/. Signal 18 in figure 5.13b would then correspond
with something like /bima/.

/mo/ | 6 13 20 27 34 41 48

5 12 19 26 33 40 47

/ma/ | 4 11 18 25 32 39 46

runs 3 7 11 15 3 10 17 24 31 38 45
walks 2 6 10 14 /mi/ | 2 9 16 23 30 37 44
sits 1 5 9 13 1 8 15 22 29 36 43
lies 0 4 8 12 /mu/ | O 7 14 21 28 35 42

| baby girfl woman granny /ou/ /bi/ /ba/ /bo/

(a) The 4 x 4 meaning space, with the indices
of 16 meanings

(b) The 7x 7 signal space, with the indices of 49 signals

42 44 46 48 bomu bomi boma bomo
28 30 32 34 bamu bami bama bamo
14 16 18 20 bimu bimi bima  bimo
0 2 4 6 bumu bumi buma bumo

(c) The 4 X 4 meaning space, with the indices of
16 corresponding signals, according to the S in fig-
ure 5.3d.

(d) The 4 X 4 meaning space, with the 16 cor-
responding signals

Figure 5.13: Topology preservation interpreted as compositional semantics.

The topology preservation that emerged in the simulation of figure 5.12a, under this interpretation of
the meaning and signal space, now describes a perfectly compositional system where a “word” like ba
means WALKS, and a word like mi means GIRL. Figure 5.13c (the same as figure 5.3f) and figure 5.13d
describe the same meaning space, but the latter represents signals according to the interpretation above.
This figure shows how topology preservation can, under some assumptions, be viewed as compositional
semantics.

Of course, the model does not model the evolution of productive compositionality. That is, it is not
concerned with the difficulties with or the benefits of generalising to unseen examples. However, in a
population where such a superficially compositional language is spoken, a mechanism for productive com-
positionality does not suffer from the initial selective disadvantages that it would in a population that spoke
a language without any structure in the mapping from meanings to signals (due to the problem of coordi-
nation). The model therefore represents a possible solution for the difficulties that exist with models like
those of Kirby (2000) and Nowak et al. (2000).
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5.9 Conclusions

The model I have presented in this chapter deals with a lexicon that relates meanings to signals and vice
versa. Unlike existing work, I have looked at situations where (i) the payoff of a meaning as an interpreta-
tion of a signal, depends on how similar it is to the intended meaning; (ii) where some meanings are more
valuable than others; and (iii) where signals can be confused with each other depending on their similarity.
I found that the optimal lexicon, as well as the evolutionary stable lexicon, show the following properties:
specificity, coherence, distinctiveness, regularity and the sacrificing of meanings with low value.

This model is perhaps interesting in itself, and the measures could potentially be related to empirical
observation of communication systems. For the evolution of compositional semantics it offers a possible
solution to some of the problems of existing models. Analogous to the model of chapter 4, this model
shows a path of ever increasing fitness from a non-compositional to a superficially compositional lan-
guage. I suggest that this can be the intermediate step that productive compositionality needs to invade in

a population.



CHAPTER 6

Hierarchical Phrase-Structure'

In this chapter I discuss a third major transition in the evolution of lan-
guage: the emergence of hierarchical phrase-structure. I first briefly
sketch what it is, and then introduce some of the formal models that
have been proposed to describe its nature, its acquisition and its evolu-
tion. I then present a new model that relaxes some of the simplifying

assumptions in existing models.

IThe work that I describe here builds on joint work with Paulien Hogeweg, which appeared in Zuidema & Hogeweg, 2000 (see
appendix C of this thesis), and with Tim O’Donnell, which appeared in O’Donnell & Zuidema, 2004 (see appendix C). Most results
described here have appeared in Zuidema, 2003a (see appendix C). All modelling, graphs and text in this chapter are my own.
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6.1 Introduction
6.1.1 Phrase-Structure in Natural Language

In the previous chapter I have discussed compositionality in natural language, where the meaning of com-
binations is a function of the meaning of the parts and the way they are put together. The combination of a
proper noun (Mary) and an intransitive verb (walks) is perhaps the simplest example: the meaning of the
compound depends on the meaning of the parts. However, the way words and morphemes are combined in

most natural language sentences is considerably more complex. Consider the following example sentence:
6.1 “The clever mouse enjoys seeing the dog chase the cat”.

Obviously, the meaning of the sentence depends on the meaning of the words, but crucially these meanings
need to be combined in a specific order. Thus, clever says something about the mouse, and not about the
dog or the cat. Similarly, only the mouse is enjoying and seeing, and only the dog is chasing. The words
clever and the mouse thus need to be first combined with each other, and subsequently with enjoying and
so-forth. Moreover, if we compare this sentence with for instance “the mouse enjoys sleeping”, it is clear
that the clever mouse and the mouse, and sleeping and seeing the dog chase the cat play the same parts in
their respective sentences. Such phrases (a word, or a number of words grouped together) can be used in
the same positions, and, hence, are of the same syntactic category. Other phrases cannot be used in the
same positions; they are of a different syntactic category.

The fundamental observation is that underlying a sentence like example 6.1 is a level of organisation
that we can call phrase-structure (Chomsky, 1955, 1957; Higginbotham, 1997). Phrases can be further
combined into larger phrases, i.e. the structure is hierarchical, and such larger phrases might be of the
same syntactic category as one of the smaller phrases they contain, i.e. the structure is recursive. All
combinations are guided by rules of combination that regulate which phrases of which category can be
combined into larger phrases. The phrase-structure of a sentence can be represented with brackets, or more

graphically as a tree. We can assign the following structure to the example sentence:
[[The [clever mouse]] [enjoys [seeing [[the dog] [chase [the cat]]]]]]. (6.2)

If we add linguistic category labels to each of the phrases, this becomes a cumbersome formula, which is
more clearly represented as the tree in figure 6.1 (here difficulties with inflection, agreement and articles
are ignored).

Since Chomsky (1957), recursive, hierarchical phrase-structure (henceforth, “phrase-structure”) has
been widely recognised as a crucial design feature of human language. Jackendoff (1999, 2002) lists
phrase-structure (without the subtleties of syntax in modern languages, such as function words, agreement
and case marking) as one of the major innovations in the evolution of language. Current linguistic theories
differ in whether they consider phrase-structure a primitive or an emergent property of resolving the seman-
tic and syntactic dependencies in a sentence (Rambow & Joshi, 1994). Nevertheless, there is consensus
that formalisms for describing natural language syntax need to account for the hierarchical and recursive
structure of sentences. Context-free phrase-structure grammars are the archetype formalism that can deal
with these features, but many other adequate formalisms exist. However, formalisms such as Markov
processes (probabilistic finite-state grammars) or schema’s with fixed slots (1st, 2nd, 3d word etc. in the
sentence), which occasionally emerge in debates about domain-specificity and innateness of language, fail
this requirement. In natural languages, phrases can, at any point in a sentence, be blown-up to arbitrary

length (e.g. replace “the clever mouse” with “the clever mouse, who all children in the world love and
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Figure 6.1: The conventional tree representation of the hierarchical phrase-structure of the example sentence.

admire,”). The inadequate formalisms would need a new path or schema for each extension, without a
systematic relation between subsequent versions of the sentence?.

In contrast, context-free phrase-structure grammars can deal with such long-distance dependencies,
and recursive, hierarchical phrase-structure in general. Context-free grammars are rewriting grammars,
and thus specified by two sets of symbols, the terminal symbols V;, and the non-terminal symbols V;,,
and a set of production rules (see table 3.1 in chapter 3). The set of strings that a rewriting grammar can
generate is called a language; context-free grammars can generate languages from the class of context-free
languages. Informally, the context-freeness implies that the production rules are restricted to those of the
form A — o, where A is a single, non-terminal symbol (A € V,;;), and o is a string of any number of
terminal or nonterminal symbols (o € (V,,+ U V4.)*). A sentence like example 6.1 is derived by starting
with a start-symbol S, and replacing it with the symbols NP and VP by applyingarule S — NP VP. The
tree in figure 6.1 shows all the subsequent applications of rules, all of which are context-free, necessary to
finally produce the whole sentence.

With the analysis of the power of different formalisms, Chomsky established a hierarchy of formal
languages that is now termed the Chomsky Hierarchy (introduced in chapter 3). Finite-state languages
in that hierarchy are languages that can be recognised by rewriting grammars with more restrictions than
context-free (there is only a single non-terminal on the right-hand side of rules, and all terminal symbols
occur on the right side of that non-terminal); context-sensitive languages can be recognised by grammars
with fewer restrictions (rules may be of the form vAw +— vow, where A and o are defined as before, but
v,w € (Ve U Vi)™ represent a context that is a necessary condition for application of the rule).

A fundamental task for theoretical linguistics has been to locate adequate formalisms for natural lan-
guage syntax on that hierarchy. Chomsky (1957) argued that even context-free grammars are not powerful
enough to model some frequent syntactic phenomena, and proposed “transformations” as a solution. In
the early eighties it was shown that Chomsky’s original arguments did not hold (Gazdar, 1981), and, in
most linguistic frameworks, the traditional transformations were abandoned again. Only a few years later,
it emerged that there are in fact syntactic phenomena in natural languages — although different from Chom-

sky’s examples — that place them outside the class of context-free languages (Huybrechts, 1984; Shieber,

2Researchers proposing such formalisms often argue that “language really is finite” (e.g. Reich, 1969); but the issue is not with
(in)finiteness, but with a systematic relation between grammatical sentences.
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1985). It is now believed that for adequately modelling natural languages, the weak generative capacity of
a formalism needs to be slightly more than context-free.

However, it is also clear that not all context-sensitive languages can be natural languages, because that
class includes languages that are completely dysfunctional for communication (for instance, languages
with only prohibitively long sentences). The class of possible natural languages is thus a different set,
that is likely to be a subset of the context-sensitive languages (and probably disjoint from the context-free,
and hence, finite-state languages?) but that is constrained in many ways that have nothing to do with the
Chomsky Hierarchy. This is sketched in figure 6.2. The class of possible human languages is sometimes
termed “Universal Grammar” (e.g. Nowak et al., 2002), although that term is more commonly used to

describe the universal, innate component of natural languages.

Type 3

SR

I\\

Figure 6.2: The four main classes of languages from the Chomsky Hierarchy and the class of possible natural
languages (UG). Type 3 languages are those recognised by finite-state grammars; type 2 those recognised
by context-free grammars; type 1 those recognised by context-sensitive grammars; type 0 those recognised
by any rewriting grammar (that is, by any computable function / Turing-machine). Note that L3 C Lo C
L1 C Ly. That is, the class of type 3 languages is a proper subset of the class of type 2 languages and so
forth.

Using empirical observations on linguistic diversity and language acquisition and use, linguists have
tried to identify the relevant constraints and to find formalisms that account for such constraints in the
most natural way possible. Joshi (1985) proposed, based on his work on “Tree-Adjoining Grammars”, that
the subclass of context-sensitive languages that are good models of natural language, can be characterised
as the class of mildly context-sensitive languages. Such languages have a number of special properties,
including being parsable in polynomial time and the so-called “constant growth” property. Since several
other popular formalisms have been shown or conjectured to be mildly context-sensitive (Joshi et al., 1991),
some consensus has emerged about the upper and lower bound on the power of grammar formalisms.

Unfortunately, otherwise much disagreement remains in the field about the appropriate formalisms and
the nature of these constraints, and a great many alternative frameworks for describing syntax exist, each

with many practitioners. I will not attempt to review these frameworks, but they include Government

3Note, however, that it has not been established that all natural languages fall outside the context-free or even the finite-state
languages, nor that no (currently unknown) syntactic constructions exist in some language that go beyond (mildly) context-sensitive
power. Hence, the class of possible natural languages could intersect with all main classes of the Chomsky Hierarchy. Most current
theories of syntax, however, assume that the computational procedures underlying all human languages are very similar; if the
semantics in one human language requires trans-context free power, then it is likely, according to these theories, that all human
languages do.
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& Binding / Principles & Parameters (GB/PP, Chomsky, 1981), Head-driven Phrase-Structure Grammar
(HPSG, Pollard & Sag, 1994), Combinatory Categorial Grammar (CCG, Steedman, 2000; Steedman &
Baldridge, 2003), Optimality Theory (OT, Prince & Smolensky, 2004), Lexical-Functional Grammar (LFG,
Kaplan & Bresnan, 1982), Tree Adjoining Grammars (TAG, Joshi et al., 1991), the Minimalist Program
(MP, Chomsky, 1995) and Construction Grammar (Kay & Fillmore, 1999; Goldberg, 1995). Common
themes can be identified in recent developments in these different frameworks. Other than mild context-
sensitivity, these include lexicalisation (where productive rules are always associated with specific words),
heterogeneity, redundancy and stochasticity. Nevertheless, the differences between the frameworks — both
in methodology and in content — are enormous, and a major obstacle for pursuing interdisciplinary work

on the psychology, biology or indeed the evolution of language.

6.1.2 Evolution of hierarchical phrase-structure

Despite the many controversies in linguistics, there seems to be a consensus that natural languages exhibit
recursive, hierarchical phrase-structure. It is clear that this feature poses requirements on the cognitive
abilities of language users. They need to be able to produce and interpret sentences with that structure.
Moreover, infants need to acquire the syntax of their native language from observations of the use of
language around them, without much or any explicit instruction. With language being such a salient be-
haviour of humans, the origins of these abilities in humans, and these patterns in natural languages, are a
fundamental question for both evolutionary biology and cognitive science.

However, the poly-paradigmatic state of linguistics presents evolutionists with a difficult problem: how
can we say anything sensible about the origins of phrase-structure and Universal Grammar, if we cannot
even agree on what it is and how we should describe it? In particular, even if we agree on a description of
hierarchical phrase-structure, how do we decide on a reasonable strategy-set and payoff function that we
need for an evolutionary scenario?

Many linguists have simply resisted speculating about these issues. Noam Chomsky, notably, has dis-
missed such speculations as untestable stories (e.g. Chomsky, 2002). Many non-linguists, on the other
hand, have simply ignored the complexities of syntax, and have focused on speech and compositionality
instead, apparently assuming that syntax would simply follow (as the rare linguists concerned with evolu-
tion complain, e.g. Newmeyer, 2003; Bickerton, 2003b; Hurford, 2002b). Yet others, including Pinker &
Bloom (1990) and Jackendoff (2002) have taken up the challenge and provided some intuition for selective
advantages of grammatical constructs. However, these verbal accounts have remained so much under-
specified that it is difficult to even start constructing the assumed strategy set, payoff function and initial
selective advantage.

In this chapter I will evaluate a number of more or less formal approaches to this issue. I will first
discuss the models of Batali (2002) and Kirby (2002a) and a number of related models. These authors
leave hardly any role for natural selection (in a sense, they consider a strategy-set in the evolution of
grammatical language that includes just one learning strategy). Batali and Kirby view hierarchical phrase-
structure as an emergent property of the negotiation or iterated learning of a communication system in
a population of agents. I will argue, as I did in previous chapters, that we need to evaluate the fitness
consequences of different outcomes of such self-organising processes. However, I will also argue that
these models show that the evolution of recursive, hierarchical phrase-structure differs in important ways
from the evolutionary problems considered in chapters 4 and 5.

Secondly, I will discuss a number of studies (Hashimoto & Ikegami, 1996; Nowak et al., 2002; Fitch
& Hauser, 2004) that implicitly or explicitly use classes from the Chomsky Hierarchy as the strategy set.
This is an attractive approach, because the Chomsky Hierarchy offers some well-understood concepts and

tools, and the location of natural language on the Hierarchy is one of the few topics in linguistics for which
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a broad consensus exists. Nevertheless, I will argue that the Hierarchy is not suitable to serve as a strategy
set, because it is not fine-grained enough and because the different class boundaries in the hierarchy have
no natural biological interpretation.

Thirdly, I will discuss a model by Nowak et al. (2001). This model is based on what we can call the
Uniformity Assumption: the idea that all possible languages are of equal quality and equally likely to be
the target of learning. This model is interesting because it is elegant and ambitious. However, I will argue
that the crucial dependence on the Uniformity Assumption ultimately makes the model of Nowak et al. of
limited use.

In the rest of this chapter I will present a new model that further illustrates the difficulties with the
Uniformity Assumption in language evolution models, and highlights the interactions between cultural
and biological evolution. I will argue, based on this model, that a better understanding of this interaction

is crucial for understanding the origins of phrase-structure.

6.2 Related Work
6.2.1 Cultural Evolution in Expression—Induction models

Batali (2002) presents an explanation for the origins of phrase-structure in natural languages that does
not involve biological evolution. Batali is interested in the properties of a language “negotiated” between
agents in a population. The agents in his simulation come equipped with the ability to represent grammat-
ical structures, to produce and interpret sentences, and to learn from experience (induction)*. In every step
in the simulation, a random speaker is selected from the population and confronted with a logical formula
from a predefined meaning space. The speaker produces an utterance, and the hearer receives both the
utterance and the meaning and updates her memory. The model is an instance of what Hurford (2002a)
calls “Expression—Induction models”, where structure emerges in a cycle of expression of I-language as
E-language, and induction of I-language from E-language.

In the model, knowledge of words and grammar is encoded in a collection of “exemplars”, each with
an associated cost. When an agent in the role of speaker is presented with a meaning, she searches for the
cheapest way to express it. In the initial phase of the simulation, there is no common language and she
simply generates a random string of characters, even though a high cost (proportional to the number of
symbols in the signal and the number of predicates in the meaning) is associated with this operation. When
agents, in the role of hearers, receive an unrecognised form—meaning pair, they simply store it as a holistic
exemplar (a tree of depth 1), with associated initial cost ¢y = 1.0.

After a number of cycles, agents will have stored a number of different exemplars. With more and
more exemplars stored, it becomes increasingly likely that the cheapest way to express a given meaning is
by reusing an existing exemplar, or by combining or modifying exemplars. Two exemplars A and B, when
combined, yield an exemplar F that is a tree, with as root the combination of the meanings of A and B
(with the arguments possibly renamed), and as daughters the two exemplars (see figure 6.3). An exemplar
can be modified by replacing a subtree. The costs of a combination of exemplars is the sum of the costs of
the parts, plus an additional cost for modifying and combining them. This way, tree-structured exemplars
are created; nodes in these trees are labelled with semantic information (predicate logic expressions, rather
than conventional part of speech tags).

The “best” phrase-structure of a given sentence in Batali’s model, is the one that has the lowest total
costs. Costs in Batali’s model thus play the same role as probabilities in the probabilistic grammar for-
malisms used in computational linguistics (e.g. Manning & Schiitze, 1999). In its reliance on storage of

many exemplars, the model is reminiscent of the Data-Oriented Parsing model from that field (Bod, 1998).

“I use the terms “learning” and “induction” interchangeably and in a very broad sense, that includes any change in knowledge and
behaviour in response to environmental input.
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(a) Exemplar A with
cost kp, pairing the
signal “ala” with the
meaning “object 1 is a
snake”.

(b) Exemplar B with
cost kp, pairing the
signal “eqeg” with
the meaning “object 1
sang”.

(c) Exemplar C' with cost
ko, pairing the signal

isi” with the meaning
“object 1 is a moose”.

(snake 1)(sang 1)
|

zapodo

(snake 1)(sang 1)

(snake 1)

(sang 1)
|

(d) Exemplar D, resulting from

ala eqeg

the “invention” operation, with
cost kp = kinvention, pair-
ing the signal “zapodo” with the
meaning “the snake sang”.

(e) Exemplar E = A o B, result-
ing from combining existing exemplars,
withcost kg = ka +kB +kcombine
pairing the signal “alaeqeg” with the
meaning “the snake sang”.

(moose 1)(sang 1)

(moose 1) (sang 1)

isi eqeg

(f) Exemplar F' = E «— C with cost
kr = kg +kc + kmodi - pairing the
signal “isieqeg” with the meaning “the
moose sang”.

Figure 6.3: Exemplars and combinations of exemplars in Batali’s (2002) model.

When an exemplar is reused and leads to a successful communication (that is, the speaker’s intention
and the hearer’s interpretation are identical), its cost goes down. Therefore, exemplars that prove useful in
different combinations will be favoured, giving rise to the cultural evolution of language structure. Batali
finds that the competition between exemplars leads to recursive and compositional grammars, with which
the agents can communicate about many more meanings than they have exemplars. Batali estimates that
the languages negotiated in the final stages of the simulations can accurately convey 2.3 x 10'? different
meanings (with a communicative accuracy of around 98%), after fewer than 10 thousand learning obser-
vations and with several hundreds of exemplars stored (unused exemplars are removed after a few cycles).
Crucially, the languages in these simulations, as in the Iterated Learning Model (Kirby, 2000), change and
adapt to the bias of the learning algorithm. The emerging languages share some important characteris-
tics with natural language including compositionality, phrase-structure and recursion, as well as specific

features such as agreement, reflexives and function words.

ST will use the term “cultural evolution” here in a broad sense, without specifying the reproducers, replicators and selection
pressures as discussed in chapter 2. It would be interesting to work out in detail the analogy between biological evolution and the
dynamics in the models of Batali and others, but for now it suffices to note that in these models structure emerges over time (hence,
“evolution”) in a process where learners learn from learners (hence, “cultural”).
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Steels (2004) presents a similar model, with a population of agents that negotiate grammatical rules to
express predicate-logic formulae. Like Batali, Steels’ rules can associate a single word or chunk of words
with a single meaning, or associate with complex meanings. Also like Batali, Steels associates a score with
each of the rules in the emerging grammars. These scores go up and down with successful or unsuccessful
use, and regulate the choice from a set of alternative parses.

The model differs from Batali’s in a numbers of ways. First, Steels’ formalism is much more complex
and, among other things, allows for both flexible and fixed constituent order rules. Such rules are expressed
as optional constraints. E.g., precedes(x,y) expresses the constraint that the yield of constituent  must
precede the yield of constituent . The formalism decouples immediate dominance from linear precedence
(Gazdar & Pullum, 1981). Second, in Steels’ “constructivist” approach, a speaker uses herself and her
knowledge of language as a model of the hearer. When given a meaning that cannot be readily expressed
with existing rules, new rules are created to generate an utterance that the speaker herself would interpret
correctly. Finally, in Steels’ model the meanings are grounded in an actual machine vision system that
generates predicate-logic expressions from video input, which leads to occasional confusion about the topic
of a conversation. It is not clear, however, how these expressions differ qualitatively from the predefined
meaning space of Batali.

Steels’ ideas about the learning mechanism are interesting, but unfortunately difficult to evaluate be-
cause the algorithm is not precisely defined, the relation with existing models ignored® and very few results
have been reported. Both Steels and Batali have chosen to work with idiosyncratic formalisms instead of
some of the well understood formalisms from theoretical linguistics, presumably out of disagreement with
the “nativist” theories of language, in the context of which most of these formalisms were originally de-
veloped. Nevertheless, I strongly suspect their formalisms are in fact formally equivalent to some member
of the family of stochastic tree grammars (Joshi & Sakar, 2003); for comparison with other work, it would
be better to design learning models that work with well-understood formalisms instead.

Hurford (2000) and Kirby (2002a) present related models that do use such well-understood formalisms.
Both are versions of the iterated learning model discussed in chapter 5 (Kirby, 2000). Recall that in that
earlier model, individuals can produce and interpret sentences, and have a language acquisition procedure
to learn a context-free grammar from each other. The model considers the transmission of language from
generation to generation, where each generation is represented with just a single agent (or a small number
of agents, as in Hurford’s model). At every step the parent presents a relatively small number of examples
of form—meaning pairs to the child (the very first parent creates random strings for each of the meanings
it wants to express). The child then uses these examples to induce her own grammar. In the next iteration
the child becomes the parent, and a new individual becomes the child. The process is repeated many times.
In the iterated transmission steps the language becomes easier and easier to learn, because the language
adapts to the learning algorithm by becoming more and more structured. Note that knowledge of language
is transmitted vertically from generation to generation, unlike the models of Batali and Steels where the
language is negotiated horizontally with other members of a fixed population.

In Kirby (2000), there was a finite number of possible meanings — all combinations of agents, actions
and patients. Both Hurford (2000) and Kirby (2002a) use a predicate logic based semantics that has re-
cursive structure. They both find — using different learning algorithms — that the emerging grammars show
recursive, hierarchical phrase-structure. Not only simple compositionality, but also the phrase-structure of
natural languages could be the result of a cultural selection pressure for increased learnability. Interestingly,

the necessary constraints for learnability need not evolve as a separate restrictive Universal Grammar, as in

6Steels (2004), when introducing the syntactic formalism, makes no reference to existing linguistic formalisms (except construc-
tion grammar) despite obvious parallels, nor does he, when introducing the learning procedure refer to any existing work on grammar
induction, including even Batali’s.
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some “nativist” theories of language acquisition, but follow logically from the fact that a child only needs
to learn languages that have been learnt by previous generations. This point will be worked out later in this
chapter and in the next.

The use of more or less standard formalisms makes these models easier to understand, and reveals a
number of strong assumptions, including a recursive, hierarchically structured meaning space and “innate”
procedures for searching and combining the units of language. Similar assumptions were made in the
models of Batali and Steels, but because of the unconventional formalisms and the lack of details, it remains
difficult to describe and evaluate these assumptions. In Kirby’s model each generation consists of just a
single agent and the model considers a large meaning space. Hurford’s model considers a small population
of four agents per generation, and only a small meaning space. An important question is how much the
results depend on the specific choices for modelling learning, meaning, grammar, the interaction between
agents and for the population size. I am not aware of any subsequent work on Hurford’s model, but Smith &
Hurford (2003) reimplemented Kirby’s model and studied how well it fares in a larger population, where
agents learn from multiple “cultural” parents and from peers. They report that similar results could be
obtained, but only with a very careful choice of parameters.

More work remains to clarify the relation between the different models and to identify the necessary
and sufficient conditions for recursive, hierarchical phrase-structure to emerge. If the results are con-
firmed in subsequent work this would constitute a compelling explanation for the (proximate) origins of
phrase-structure in human languages: in a population of agents with cognitive abilities and communicative
intentions as in this model, it will emerge as the result of the negotiation of a language in the population.
The models, however, do not explain the (ultimate) origins of these cognitive abilities. Why do agents have
the production, interpretation and acquisition procedures that they have? It is possible, of course, that these
abilities are accidental properties of the human brain, that evolved under selection pressures independent
from language. It is difficult to assess the plausibility of that assumption. In the models, a process of
cultural evolution produces languages with interesting properties; as I argued in previous chapters, the next
step is to study the fitness consequences of such processes. Results such as those of Batali, Steels, Hurford
and Kirby would be much strengthened if one could show that the learning algorithm used is one from a
family of “natural” algorithms, and that within that family there is a path of ever increasing fitness towards
it.

I have reviewed these Expression—Induction models here at some length because I believe they bring an
important lesson for modelling the evolution of syntax. These models show — as does the model developed
later in this chapter — that, for each learning algorithm A, it is useful to distinguish between the set of
languages R 4 that can be represented by the formalism used by A, the set £ 4 that can be learnt by A, and
the set 7 4 that are stable outcomes of a process of cultural evolution that results from repeated application
of A. In this chapter, I will explore the implications of this distinction for scenarios of the evolution of
phrase-structure.

The difficulties with formulating relevant models of the evolution of hierarchical phrase-structure arise,
in part, from the fact that human languages are both the result and the object of a learning process. When
we talk about the biological evolution of language, we really talk about the evolution of the learning mech-
anisms. In the case of phonology and compositionality, it seemed reasonable to describe the strategy set for
evolution in terms of the end results of a learning process. Implicit in that decision was the assumption that
the signal space considered in chapter 4 and the signal-meaning mappings in chapter 5 were reasonably
close to the actual strategy sets of learning mechanisms available for evolution.

In the case of phrase-structure it is much harder to choose a reasonable strategy set, because the learning

problem is much more difficult. Given a fully defined learning algorithm like Batali’s (2002) or Kirby’s
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(2002), it is extremely difficult to describe (i) the set of languages that it can learn (L ), (ii) the languages
that would result from cultural evolution in a population (Z 4), (iii) the changes to these sets when we
make a small change in the learning algorithm. Yet, we need to characterise these sets to assess the fitness
consequences of changes to the algorithm. I will now discuss accounts of the evolution of phrase-structure
based on notions from the Chomsky Hierarchy, and argue that the failure to account for learning and

cultural evolution is where they go wrong.

6.2.2 Natural Selection & the Chomsky Hierarchy

When one, unlike Batali and others, tries to give an account of the origins of phrase-structure that does
involve natural selection, one immediately faces the problem of formulating a plausible strategy set and
payoff function. Given the consensus on characterising natural languages in terms of the Chomsky Hi-
erarchy, and the mathematical sophistication of such characterisations, it seems an attractive proposal to
define the strategies and payoffs in the evolution of syntactic language in the same terms. For instance,
Nowak et al. (2002), and similarly Komarova & Nowak (2003) review formal approaches to the evolution
of language. They present the Chomsky Hierarchy for describing language, along with (statistical) learn-
ing theory for describing language acquisition and the replicator equations for describing evolution. They
conclude that “these approaches need to be combined”, but do not attempt such an integration.

I believe a serious attempt to integrate these formal frameworks would soon show that the Chomsky
Hierarchy is in fact of little help in understanding the origins of syntax. As I briefly discussed in chapter 3,
the classes of the Chomsky Hierarchy are too coarse. When considering the architectural constraints on the
neural hardware, it seems that complexity in terms of the hierarchy is extremely easy to get (Siegelmann
& Sontag, 1991; Wolfram, 2002). When considering the difficulties of parsing or learning, it seems the
relevant distinctions cut through all main classes of hierarchy (Barton & Berwick, 1987; Gold, 1967).
Nevertheless, the idea of evolution having “climbed the Chomsky Hierarchy” is implicit in many accounts.
Two papers that have worked this out in some more detail are Fitch & Hauser (2004) and Hashimoto &
Ikegami (1996).

Fitch & Hauser (2004) attempt to show that in evolution, human processing capabilities have crossed
the boundary between finite-state and context-free languages, whereas those of tamarins (and by assump-
tion other non-human primates) have not. They presented human and monkey subjects in the experiment
with strings drawn from the finite-state language (ab)™ (with for instance the strings abab and ababab) or
from the context-free language a™b™ (with the strings aabb and aaabbb). The a’s and b’s are monosyllabic
sounds produced by a human male and female respectively. The n in the experiments is limited to values
upton < 3.

The subjects were trained on samples from one language, and then tested on whether they can dis-
tinguish samples from this language from the other. Fitch & Hauser found that humans easily pass this
test: when trained on either the finite-state or the context-free language, they reject samples from the other.
Tamarins, on the other hand, fail the test in the context-free condition. When trained on the context-free
language, they accept both the context-free and finite-state test samples.

These results are intriguing. At first sight they support the idea that humans have, in their evolution,
moved up to a different level of the Chomsky Hierarchy, and some researchers have already enthusiastically
hailed this conclusion (Friederici, 2004). However, there is a number of difficulties with this analysis.
First, in experimental formal language theory (O’Donnell, 2004) an inherent methodological difficulty is
that although formal languages are typically infinite, experiments necessarily work with finite data. To
support the conclusion above, one needs to show that the language human subjects acquire really is a
context-free language, and not the finite subset that they see during training (see figure 6.4). This can be

assessed by testing whether subjects generalise to samples with a larger n than they were trained on. In the
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supplementary material to Fitch & Hauser (2004), the authors report that this experiment was performed
and that the human subjects indeed seem to have acquired the context-free language, but a recent replication
disputes this claim (Perruchet & Rey, 2004).
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{AB, AABB, AAABBB}.

Figure 6.4: In formal language theory, a language is a possibly infinite set of strings over some alphabet,
such as the languages A"B™, A"B" or {AB, AABB, AAABBB}. A class of languages is a possibly
infinite set of languages. Two important classes are the finite-state languages (FSL), such as the language
A" B™, and the context-free languages (CFL), such as the language A" B™. Crucially, the class of finite-
state languages is contained in the class of context-free languages (fig. a). The problem for experimental
formal language theory is that every context-free language is a subset of some finite-state language, as
well as a superset of many other finite-state languages (fig. b). To make the argument that humans, but
not monkeys, can process a language that is outside the class of finite-state languages, one needs to show
that every possible way of distinguishing the grammatical from the ungrammatical utterances must involve
hypothesising some language outside the set of the finite-state languages. In the case of the Fitch and
Hauser experiments this involves, at the very least, ruling out the possibility that what has been learnt is
either a finite subset of a non-finite state language (by testing for generalisation to strings with n > 3) ora
finite-state superset of such a language (by testing for the ungrammaticality of strings with m # n).

The second, and more interesting problem is that there exists a finite-state grammar a™b™ that accepts
all context-free samples in the experiment, and rejects all finite-state samples (if n > 1). That is, the finite-
state language a™b™ properly contains a™b™ but not (ab)™. Even if one could show that the human subjects
did not acquire the finite-state superlanguage’, the question remains: if tamarins can learn finite-state
languages, why haven’t they acquired a™b™? The fact that they haven’t suggests the relevant constraints
on learning in this experiment, and the differences between humans and monkeys, are not captured by
notions from the Chomsky Hierarchy?.

A very different study that considers the applicability of the Chomsky Hierarchy to language evolution
is Hashimoto & Ikegami (1996). These authors present a simulation model of the evolution of phrase-
structure rules in a population of agents. The agents have a fixed, innate context-free grammar, with which

TTecumseh Fitch, p.c., reports that this has also been established experimentally.
8The fact that there exists a finite-state language that the tamarins cannot learn is not surprising of course. The point here is that
the monkeys might not acquire context-free a”b" for the very same reasons as why they do not acquire finite-state a™b™.
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they (in the role of speaker) generate strings, and (in the role of hearer) parse strings received from speakers.
The fitness of an agent in the model depends, through a rather complicated pay-off function, on the number
of successful interactions she has been involved in, either as a speaker or as a hearer, and the length and
novelty of the strings produced or received. After a number of interactions in which fitness is assessed,
agents produce offspring proportional to their fitness and die. Every agent of the next generation inherits
the grammar of a single parent. With fixed probabilities, some mutations occur that add or delete a random
rule, or add, delete or substitute a random symbol in a rule.

Of course, context-free grammars can model recursive, hierarchical phrase-structure, but they can also
model a simple (finite) “lexical” strategy (see figure 3.4) or (finite-state) tail-recursion. For instance,
a grammar {S — the cat fears the dog, S +— the dog fears the cat} generates two sentences holistically,
without assigning any phrase-structure to them. At the start of the simulations agents are initialised with
just one lexical rule in their grammar. Lexical grammars need one rule for each sentence they generate;
combinatorial and recursive grammars, in contrast, can generate many more sentences than they have rules.
Because there is no limit on the number of rules, both strategies could in principal generate all possible
strings in the finite domain that was used. However, in the mutation scheme used, at most one rule is
added at a time. Expressiveness (measured as the number of distinct strings of some finite maximum
length) grows much faster with grammar size using a syntactic strategy, and, under the parameter settings
considered, syntactic agents can therefore out-compete non-syntactic ones.

Hashimoto & Tkegami make an unconvincing attempt to discuss these results as the initial phase of a
climb in the Chomsky Hierarchy. Indeed, the finite grammars used at initialisation are finite-state, whereas
the grammars in final stages are not. However, that fact appears accidental, rather than saying anything
substantial about the evolutionary dynamics in the simulation. First, with the mutation scheme used, even
random drift for a small number of generations would take the grammars out of the finite-state class. For
instance, finite-state {S — ab} is only two mutations away from context-free {S — ab,S — aSb}.
Second, whether or not a grammar is finite-state or not, appears to have very little to do with fitness. The
fitness scheme used only considers the number of different strings a grammar can produce and parse. Now
observe that a finite-state grammar {S — a|b|aS|bS} is maximally expressive (for Vi, = {a, b}), and much
more so than for instance context-free grammar {S — ab|aSb}.

Note that in this model a grammar that accepts every possible string has maximum fitness, whereas
in natural language the whole notion of “grammaticality” implies that many possible strings are in fact
ungrammatical. Despite this unrealistic feature, Hashimoto & Ikegami’s model fitness scheme leads to
some interesting observations. The payoff function has some counterintuitive and interesting consequences
due to the fact that it is not a fixed measure, but depends on the kind of grammars that are present in the
population. For instance, they find that the most expressive agents are not necessarily the most successful,
because they are poorly understood by others in the population, and that a score for not being recognised
accelerates the evolution of complex phrase-structure.

In my own previous work (Zuidema, 2000; Zuidema & Hogeweg, 2000), I have reimplemented, sim-
plified and extended the Hashimoto—Ikegami model. This new model still uses context-free grammars as
the strategy set, and the number of strings in an agent’s language that are shared with others as the basis
for the payoff function. I found that the reason “syntax” evolved in the original model, is that the authors
used a rather arbitrary scoring scheme, where there is a significant payoff for agents that produce novel
and complex strings, independent of whether they are understood or not (i.e. a selection pressure that is,
in part, frequency-independent).

When this unrealistic scoring scheme is replaced by a number of simple payoff functions, an interest-

ing paradox emerges (Zuidema & Hogeweg, 2000). If both speakers and hearers benefit from successful
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communication (the mutual benefit condition), every linguistic innovation represents an initial selective
disadvantage, because it leads to increased confusion. In this condition, complex syntax does not evolve®.
On the other hand, if only hearers benefit (the hearer benefit condition), the willingness to speak is lost,
because only the speaker’s competitors benefit from her speaking. In the first version of the model, where
production is enforced, this shows itself in the development of excessively complex grammars, which make
the produced strings often impossible to parse with the parsing procedure used. In a later version of the
model, a parameter was introduced that regulates the probability of producing strings. When allowed to
evolve, the parameter went quickly to 0, which meant that agents did not communicate at all anymore.

The paradox is thus that if you benefit from others understanding you, you shouldn’t say anything novel,
whereas if you don’t benefit, it’s best not to say anything at all. This paradox is a natural consequence of
the problems of coordination and cooperation that I discussed in chapter 2, and it occurs also in simple
models of the evolution of phonology and vocabulary. It is important, however, to work out solutions to
this paradox that are relevant for the evolution of phrase-structure.

Pinker & Bloom (1990) suggest one such solution. They observe that for complex syntactic construc-
tions, comprehension is always ahead of production, in acquisition, in use and perhaps also in evolution.
We can thus imagine a scenario where syntactic innovations do offer an immediate selective advantage
in the mutual benefit condition, because hearers can understand the new constructions even though they
cannot actively use them themselves. It would be interesting to work out this proposal in a formal model.

Alternatively, under the hearer-benefit condition, a possibility might be that the willingness to speak is
maintained through kin selection, whereas the evolution of complex syntax is driven by both the benefits of
sharing more information with kin, and the benefits of making messages difficult to understand to non-kin.
This could be called the encryption hypothesis (Will Lowe, p.c.). In Zuidema (2000) and Zuidema &
Hogeweg (2000) we studied a simulation model where agents are placed on a 2d spatial grid. Preliminary
results supported this hypothesis, but more formal work on this hypothesis, in the framework of social
evolution theory (chapter 2), would be worthwhile. A related idea is what Fitch (2000) calls the “password
hypothesis” about the evolution of complex patterns in bird song, which says that the function of these
patterns is to distinguish kin from non-kin intruders.

In summary, there have been efforts by Fitch & Hauser (2004), Hashimoto & Tkegami (1996), myself
and others to find a plausible scenario for the evolution of recursive, hierarchical phrase-structure using the
classes of rewriting grammars from the Chomsky Hierarchy. In such a scenario, two or more stages are
postulated (that is, finite-stateness and context-freeness), and experiments or simulations are performed to
show that non-human primates are in one stage, and humans in another, or that simulated evolution can
guide a population from one stage to the other.

These efforts run into a number of problems. First, it is clear that the actual strategy set available
to evolution is much more constrained. For instance, the tamarins in the Fitch & Hauser experiments
do not learn a™b™ and the agents in the simulations cannot parse many of the finite-state and context-
free languages that could have been useful. How to formalise the constraints on the strategy set from
learning and parsing — that is, how to define the set of learnable languages £ 4 — is a difficult question. In
simulations we can of course use specific learning, production and interpretation algorithms that implement
these constraints without a formal characterisation of the set £ 4. This is the approach taken in this chapter,
but it is somewhat unsatisfactory, because it is difficult to evaluate the generality of a specific simulation.

Second, it is not clear how to assign payoffs to the strategies in such a set. One proposal is to make
payoff proportional to the number of strings in a language that are shared with others in the population. The

problem is that this gives maximum potential fitness to grammars that accept any string over the alphabet

9 Although it would be stable once it got established, because it is always best to have the same language as everyone else in the
population.



124 CHAPTER 6. HIERARCHICAL PHRASE-STRUCTURE

used, which is clearly not what we see in natural language. Also, it seems that fitness in such a scheme is
completely independent from the location on the Chomsky Hierarchy. More natural is a fitness scheme that
is based not on whether a sentence can be parsed, but on whether it is interpreted correctly '’. In simulation
models we can explicitly incorporate a semantics — and reward correct interpretations — circumventing the
problem of having to evaluate the payoff of grammars on a purely syntactic level. This is perhaps the best
way forward, but again somewhat unsatisfactory because of the lack of generality.

Third, even if we choose a rather arbitrary strategy set and payoff function, it is still not trivial to show
the evolution of phrase-structure, because of the problems of cooperation and coordination. Solutions to

these problems remain an open issue.

6.2.3 The Uniformity Assumption

An approach that circumvents these problems and does give general results, is presented in Nowak, Ko-
marova & Niyogi (2001) and follow-up papers (Komarova, Niyogi & Nowak, 2001; Mitchener & Nowak,
2002). This approach builds on a tradition of models of language known as Principles & Parameters
(Chomsky, 1981), and of certain abstract models of learning in learnability theory (e.g. Bertolo, 2001;
Niyogi, 1998). The core idea of the Principles & Parameters approach is to parameterise the variation in
possible natural languages. That is, to find a description of natural languages where all differences between
languages are characterised by different values of a set of binary parameters. With such a description in
hand, the task of learning a language can now be described as the setting of these parameters. Theoret-
ically, a description of language variation and acquisition that fits this scheme is a logical possibility, if
the number of possible grammars is finite. In practise, however, such a description might be prohibitively
complex.

The description simplifies enormously with the assumption that all possible grammars are equivalent
in important ways. Such an “Uniformity Assumption” states, for instance, that all languages are equally
useful for communication and equally easy or difficult to learn. Note that such an assumption implies
that L4 = Zg4, that is, it excludes the possibility that cultural evolution favours some languages over
others. The mathematically convenient symmetry such an assumption introduces allows one to formulate
simple models of language acquisition that use only the number of possible grammars and the number
of available sentences to learn from as parameters. Note, however, that such an assumption forces one
to treat grammatical rules as separate from the lexicon (as lexical variation clearly is unbounded), and to
view child language development as a process of jumping from one adult grammar to another (because the
Uniformity Assumption excludes growth in grammatical complexity). The assumption therefore goes hand
in hand with a view that knowledge of language is specified in great detail in an innate Universal Grammar
(UG)'". The term UG, in this tradition, can refer to both the innate language faculty and the set of possible
grammars it allows.

In line with this tradition, Nowak et al. (2001) present a model of the evolution of Universal Grammar,
where the UG is passed on to the next generation genetically and the actual grammars passed on culturally.
Each individual “knows” one of the grammars from UG. That knowledge is passed on — strictly vertically —
to her offspring, but mistakes are made in learning. If a mistake is made, the child ends up with a different

grammar from the set of possible grammars. Finally, the authors assume that knowing a grammar ¢ confers

10The assumed function of phrase-structure in models like Hashimoto & Ikegami (1996) and Zuidema & Hogeweg (2000) is simply
to generate more messages, i.e. the quantitative advantages, and little attention has been paid to the likely advantages in the kind of
semantic information that can be encoded and the kind of generalisations it allows in learning, i.e. the qualitative advantages. Perhaps
the Chomsky Hierarchy is of more relevance there.

1Of course, many models of grammar learning have been proposed that do assume such an extensive UG, but do relax the
Uniformity Assumption somewhat. For instance, Niyogi & Berwick (1995) assume a learning model where parameters are set based
on triggers in the input data, which occur at different frequencies; Briscoe (2002a) incorporates the possibility of prior biases in
his statistical parameter procedure; in Yang (2000) the language learner maintains multiple settings of parameters in parallel, and in
learning converges to a single setting.
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a fitness advantage that depends on the frequency of grammar 7 in the population. That is, speakers of
the most frequent language receive most offspring. An evolving population, where the UG is constant,
can thus be described in terms of the changes in the relative frequencies x; of each grammar type ¢ in
the population, the probabilities ();; that a child ends up with grammar j when learning from her parent
with grammar 4, and the fitness F; of a grammar ¢ (F; = > ;%5 fji» where f}; gives the payoff from the
communication between two individuals speaking ¢ and j).

The first result that Nowak et al. obtain is a “coherence threshold”. This threshold is the necessary
condition for grammatical coherence in a population, that is, for a majority of individuals to use the same
grammar. They show that this coherence depends on the chances that a child has to correctly acquire her
parent’s grammar. This probability is described with the parameter q. Nowak et al. show analytically that
there is a minimum value for ¢ to keep coherence in the population. If ¢ is lower than this threshold value,
all possible grammar types are equally frequent in the population and the average communicative success
is minimal. If ¢ is higher than this value, one grammar type is dominant; the communicative success is
much higher than before and reaches 100% if ¢ = 1.

The second result relates this required fidelity (g;) to an upper and a lower bound on the number b of
sample sentences that a child needs. The authors consider two learning strategies, that they claim represent
the extremes on the possible strategies. The first is the “memoryless learner”, that starts with a random
grammar k& in UG, and jumps to a random other grammar %k’ every time it is confronted with a training
sentence that is inconsistent with grammar k. The second is the “batch learner” that memorises all b
training sentences it receives, and picks a random grammar from the set of grammars consistent with all
those sentences. The authors are aware, of course, that these learning algorithms are unrealistic. However,
they argue that the algorithms represent an upper and a lower bound on the performance of realistic learning
strategies.

In particular, the authors claim that the batch learner’s performance is the best possible; the minimum
number of sentences b. it needs to reach the required fidelity ¢g; for grammatical coherence therefore
represents a lower bound for any learning algorithm. The authors show that b, is proportional to the total
number of possible grammars N. The actual number of sample sentences b is finite; Nowak et al. conclude
that only if [V is relatively small can a stable grammar emerge in a population. I.e. the population dynamics
require a restrictive Universal Grammar (UG).

However, in a companion paper this claim is weakened. The authors write:

“Note that the number of candidate grammars can also be infinite, provided that children have

a prior probability distribution specifying that some grammars are more likely than others”.

(Komarova, Niyogi & Nowak, 2001, p. 44)
Here, they (correctly) present the finiteness of the hypothesis space as an assumption, rather than a con-
clusion from the model. The authors do, however, still make the claim that human language learning must
have an intermediate performance in between that of the “memory-less learner” and the “batch learner”.
This claim is the core of the approach, because it allows the authors to study aspects of the cultural and
biological evolution of language, without solving the problem of specifying the set of languages that can
be learnt by a specific algorithm (L 4) or the set that results from cultural evolution (Z4). In this chapter,
however, I will show that this claim again depends on the uniformity assumption. In iterated learning, even
a biased learning algorithm as mediocre as the one I present in section 6.3.1, will outperform the unbiased
batch learner, because its bias is automatically the right one.

In the third part of Nowak et al. (2001), the authors consider the biological evolution of alternative
UGs. In their scenario, a more restrictive UG can invade a population with a less restrictive UG, because

it improves the learning accuracy. Mitchener & Nowak (2002) work out formally the conditions for such
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invasions, in simple examples with 1 or 2 UGs, that allow for 1 or 2 grammars. This analysis thus deals
with the invasibility constraint, and provides a path of ever increasing fitness. However, the analysis gets
extremely complex at times, even though only extremely simplified situations are considered. Moreover,
it is unclear if the methods can be extended to deal with an non-uniform evolutionary scenario that starts
with a limited proto-language and ends with a language approaching the complexity of modern language.

In short, Nowak and colleagues worked out an elegant framework to relate evolution and acquisition of
grammars. If it could be adapted to deal with the evolution of phrase-structure per se, and other key features
of syntax, that would be major progress. Unfortunately, the tractability of the equations depends largely
on the simplifying assumption that all grammars are, in important senses, equivalent to each other. Such
uniformity is a respectable null hypothesis in many issues in linguistics'?, but when applied to language
evolution it is problematic (Newmeyer, 2003). Non-uniformity brings qualitatively different dynamics, as
I will show below, but it is unclear how the framework can be extended to deal with such cases.

Implicit in the analysis, as in other learnability models (e.g. Gold, 1967; Wexler & Culicover, 1980), is
the assumption that every possible grammar from some set is equally likely to become the target grammar
for learning. If even the best possible learning algorithm cannot distinguish between all grammars from
that set, the set of allowed grammars must be restricted. However, Expression—Induction models such
as those discussed above give reason to believe that this assumption is not the most useful for language
learning. Language learning is a very particular type of learning problem, because the outcome of the
learning process at one generation is the input for the next. The samples from which a child learns with
its learning procedure, are therefore biased by the learning of previous generations that used the same
procedure (Kirby, 1994; Christiansen, 1994; Deacon, 1997). In the rest of this chapter I will develop a
new computational model that explores the consequences of this phenomenon for the thinking about the

evolution of hierarchical phrase-structure.

6.3 Model Description

I have discussed a number of vastly different approaches to understand the origins of phrase-structure in
natural languages. I first reviewed models known as Expression—Induction models, that show that from
rather general learning procedures languages with a non-trivial recursive, hierarchical phrase-structure can
emerge in a process of cultural evolution. I argued that these models fall short as ultimate explanations for
the origins of phrase-structure, because they do not explain the origins of the particular learning abilities.
The models do, however, have important implications, because they show that for non-trivial learning
algorithms, the set of languages that can be represented R 4, the set that can be learnt £ 4 and the set of
languages that emerges in cultural evolution 7 4 are radically different sets.

I then reviewed two mathematically convenient ways to define a strategy-set, one based on the Chomsky
Hierarchy and the other based on the Uniformity Assumption. It emerged from this review that in both
approaches it is extremely difficult to incorporate the constraints from learning, parsing/production and
cultural evolution. The classes of the Chomsky Hierarchy are not suitable to define a biological meaningful
strategy set or payoff function. The Uniformity Assumption does allow one to define strategies and payoffs
and to study invasibility, but the techniques to do so do not extend to systems without uniformity.

Hence, it seems the best way forward is to design and study simulation models — as Smith (2003b)
did for learning strategies for vocabulary and simple compositionality — that do (i) explicitly incorporate
computational procedures for the learning, interpretation and production of hierarchical phrase-structure,

(i) model a population with cultural transmission and cultural evolution, (iii) consider variants in these

12Especially, of course, in political debates about the status of minority languages.



6.3. MODEL DESCRIPTION 127

procedures, and (iv) associate different fitnesses with different outcomes. Such models are bound to be-
come excessively complex, so we should search for minimal models that do include these components. In
the following I will present the design of a model that represents a step in this direction. It will not yet
incorporate all four of these components. In particular I will not deal with (iii), because I consider only
a single learning algorithm. The goal is to design a model that includes components i, ii and iv, and is
as simple as possible, but sufficiently rich to illustrate the problems with models based on the Chomsky
Hierarchy and the Uniformity Assumption.

In the next section, 6.3.1, I will present a simple learning algorithm for context-free phrase-structure
grammars. In section 6.4.1 I briefly discuss its learning abilities, and in section 6.4.2 I will present a
simple iterated learning model. Finally, in section 6.4.3 I include natural selection, and show how cultural
evolution makes the dynamics deviate from predictions in existing work.The model I develop in these
sections thus integrates learning, cultural evolution and natural selection. Although it has so far little to say
about the evolutionary origins of the ability to learn phrase-structure per se, I hope it represents another

step toward an formal account of the evolution of phrase-structure.

6.3.1 A Simple Model of Grammar Induction

The first step is to design a grammar induction algorithm that is simple, but can nevertheless deal with some
non-trivial induction problems. The algorithm uses context-free grammars to represent linguistic abilities.
In particular, the representation is limited to grammars where all rules are of one of the following forms: (1)
A—t,(2)A— BC, (3) A— Bt. The nonterminals A, B, C' are elements of the non-terminal alphabet
Vi.t, which includes the start symbol S. ¢ is a string of terminal symbols from the terminal alphabet V;.

Hence, we can easily characterise the set of language representable by this algorithm (R 4). Note
that, beyond context-freeness, the restrictions on the rule-types above do not limit the scope of languages
that can be represented: rule types (1) and (2) are those of the Chomsky Normal Form, with which, as
is well known, any context-free language can be modelled. They are, however, relevant for the language
acquisition algorithm; rule type (3), for instance, allows a simple formulation of the compression step
(described below), such that only a single new non-terminal needs to be introduced at every learning step.
Note further that the class of languages that this formalism can represent is unlearnable by Gold’s criterion
(Gold, 1967). That is, there will always be multiple hypotheses consistent with the training data, such
that the target grammar can not be uniquely identified. Note finally that the model involves no semantics.
Although I believe semantics plays a major role in language learning and language evolution, as explored
also in chapter 5, the goal of this chapter is to evaluate the applicability of the Chomsky Hierarchy and
the Uniformity Assumption in these questions. Semantics has so-far not played much of a role in the
discussion; my approach is therefore to see how far we get without the extra complication.

For determining the language L of a certain grammar G I use simple depth-first exhaustive search of the
derivation tree. For computational reasons, the depth of the search is limited to a certain depth d, and the
string length is limited to length [. The set of sentences (L’ C L) used in training and in communication is
therefore finite. In production, strings are drawn from a uniform distribution over L’. In the communication
between two agents, the speaker chooses a random element s from her language, and the hearer checks if
s is an element of his own language. If so, the interaction is a success, otherwise it is a failure (the success
of interactions will play a role in the version of model that includes natural selection, as will be discussed
below).

The language L is generated by calling the function sear ch- subt r ee( “S”,d) , which can be de-
fined in pseudo-code as follows:

%! is the maxi mumstring | ength paraneter.
% L is an initially enpty set.
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sear ch-subtree(s,d)
if (d <1 OR LENGTH(s) >1) stop
if (ALLTERMI NAL(s)) add s to | anguage L
for all rules r
for each fit of r on s
apply r to s, yielding ¢
sear ch-subtree(s’,d —1)

The grammar induction algorithm used in the model consists of three operations: (i) incorporation,
(ii) compression and (iii) generalisation. The learner learns from a set of sample strings (sentences) that
are provided by a teacher. The design of the learning algorithm is originally inspired by Kirby (2000)
and is similar to the algorithm in Wolff (1982). The algorithm fits within a tradition of unsupervised
grammar induction algorithms that search for compact descriptions of the input data (e.g. Solomonoff,
1960; Stolcke, 1994; Rissanen & Ristad, 1994; van Zaanen & Adriaans, 2001). The three operations are
defined as follows:

Incorporation: extend the language, such that it includes the encountered string; if string s is not already
part of the language, add a rule S +— s to the grammar.

Compression: replace frequent and long substrings with a nonterminal, such that the grammar becomes
smaller and the language remains unchanged; for every valid substring z of the right-hand sides of
all rules, calculate the compression effect v(z) of replacing z with a nonterminal A; replace all valid
occurrences of the substring z’ = argmaz ,v(z) with A if v(z’) > 0, and add a rule A — 2’ to the
grammar. “Valid substrings” are those substrings which can be replaced while keeping all rules of
the forms 1-3 described above. The compression effect is measured as the difference between the
number of terminal and non-terminal symbols in the grammar before and after the replacement (i.e.
the sum length of all rules in the grammar). The compression step is repeated until the grammar does
not change anymore. At every step, the number of non-terminal symbols increases by 1.

Generalisation: equate two nonterminals, such that the grammar becomes smaller and the language
larger; for every combination of two nonterminals A and B (B # S), calculate the compres-
sion effect v of equating A and B. Equate the combination (A’, B') = argmaz 4 pv(A, B) if
v(A’, B") > 0; i.e. replace all occurrences of B with A. The compression effect is again measured
as the difference between the number of symbols before and after replacing and deleting redundant
rules. The generalisation step is repeated until the grammar does not change anymore. At every step,

the number of non-terminal symbols decreases by 1.

For the grammar acquisition algorithm these three operations can be used in several set-ups. For the
purposes of this chapter, I have chosen simple off-line learning: compression and generalisation occur after
all training strings have been received. I have added one additional step to this basic algorithm. To avoid
insufficient expressiveness, the generalisation phase concludes with a check for the size of the language. If
this size is smaller than some minimum, E = size(L) < E)y, I generate Ey; — E random strings13 and
i ncor por at e them in the grammar. This procedure can be considered a substitution for the semantics
that is left out in the model, because it prevents the simulation to collapse to the perfectly learnable, but
totally pointless language with just a single sentence (expressiveness &2 = 1). Thus, in pseudo-code, the

learning algorithm is:

% i,7 are agent objects, each with their own granmar G and | anguage L;
% ly is a paraneter for the initial string |ength;

3These strings have a maximum size [y which is an important parameter in the results section (Ip < I).
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% V,e is the term nal al phabet;
t each(i,j)
repeat T times
i generates randomstring s from L;
j calls incorporate(s)
repeat until G; does not change anynore
j calls conmpress()
repeat until G, does not change anynore
j calls generalise()
if (E<Ey)
repeat FEy — F tinmes
generate a randomstring se (Vi)* of size <l
j calls incorporate(s)

6.4 Results
6.4.1 Learnable and Unlearnable Grammars

The algorithm described above is implemented in C*+ and tested on a variety of target grammars. |
will not present a detailed analysis of the learning behaviour here, but limit myself to a simple example
that shows that the algorithm can learn some (recursive) grammars, while it cannot learn others. The
induction algorithm receives three sentences (abcd, abcabed, abcabcabced). The incorporation, compression
(repeated twice) and generalisation steps (without the extend expressiveness step, i.e. with F/y; = 0) yield

subsequently the following grammars:

(a) Incorporation (b) Compression (c) Compression (d) Generalisation
S +— abcd S +— abcd S +— Yd S — Xd
S +— abcabced S — Xd S — Xd S +— Xabcd
S +— abcabcabcd S +— Xabced S ~— Xabced X - XX
X +— abcabc X - YY X +— abc
Y +— abc

In (b) and (c) the substrings “abcabc” and “abc” are subsequently replaced by the non-terminals X and
Y. In (d) the non-terminals X and Y are equated, which leads to the deletion of the second rule in (c). One
can check that the total size of the grammar reduces from 24, to 21 and further down to 19 and finally 16
characters.

From this example it is also clear that learning is not always successful. Any of the four grammars
above ((a), (b) and (c) are weakly equivalent, i.e. generate the same string language) could have generated
the training data, but with these three input strings the algorithm yields grammar (d). Many target grammars
will never be learnt correctly, no matter how many input strings are generated. In practise, each finite set
of randomly generated strings from some target grammar, might yield a different result. Thus, for some
number of input strings 7', some set of target grammars are always acquired, some are never acquired,
and some are some of the time acquired. This variation in difficulty is an important precondition for the
occurrence of cultural evolution.

If we can enumerate all possible grammars, we can describe this with a matrix Q, where each entry
Q;; describes the probability that the algorithm learning from sample strings from a target grammar ¢,
will end up with grammar j (since the learning algorithm is deterministic, this means that Q;; gives the

proportion of possible sets of example sentences — “texts” in learnability theory jargon — generated by a
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parent grammar ¢ that will lead to a child grammar j). Q;; is the probability that the algorithm finds target
grammar ¢.

We can now be a bit more precise about “learnability” and “learnable languages”. A class of lan-
guages L is learnable, in Gold’s (1967) sense of “identification in the limit”, only if there exists an al-
gorithm that can learn all languages ¢ in that class in the limit of infinitely many example sentences:
JAV: 1imTHOO(Q£’T = 1)} . For grammatical coherence, in the sense of Nowak et al. (2001), we need
for a specific algorithm A, a specific dominant language 7 and a given number of training samples 7', the
Qf; T to be above a threshold value q1-

A different definition of learnability is based on the degree of similarity (or expected communicative
success) between a target grammar ¢ and the learnt grammar j, where j is induced with algorithm A from
T training samples generated by ¢. This value CiAj’T can be estimated by counting how many out of a finite
sample of strings generated by grammar ¢ are accepted by grammar j. In the idealised model of Nowak
et al. (2001) all grammars/languages are at equal distance a from each other, and hence C f‘j’T =qifi # j,
and CZ-A}’T = 1if ¢+ = j. In such a model, only the probability that the correct grammar is induced is
relevant. In the current model, however, the probability that the induced grammar is identical to the target
grammar is vanishingly small for all interesting grammars. More relevant is whether or not the induced
grammar is sufficiently similar to the target grammar. This value will be reported in the simulation results.

Given the various concepts of learnability, how should we define the set of learnable languages £ 4? In
the current model it is probably best to think about this set as those languages with a C-score above a given
base-line. Given the limitations of the learning algorithm, how do we ensure that learning is successful?
The following section will show that for this we need nothing more than to assume that the output of one

learner is the input for the next.

6.4.2 Iterated Learning: the Emergence of Learnability

To study the effects of iterated learning, I extend the model with a population structure. In the new version
of the model individuals (agents, that each represent a generation) are placed in a chain. The first agent
induces its grammar from a number E' of randomly generated strings. Every subsequent agent (the child)
learns its grammar from 7' sample sentences that are generated by the previous one (the parent). Using
the matrix QQ from the previous section, we can formalise this iterated learning model with the following
general equation, where z; is the probability that grammar ¢ is the grammar of the current generation:

N
Al’i = Zl’jQJ‘i (63)
j=0

In simulations such as the one of figure 6.5 the communicative success C;; between child j and parent
1 rises steadily from a low value (here 0.65) to a high value (here 1.0). In the initial stage the grammar
shows no structure, and consequently almost every string that the grammar produces is idiosyncratic. A
child in this stage typically hears strings like “ada”, “ddac”, “adba”, “bcbd”, or “cdca” from its parent.
It cannot discover many regularities in these strings. The child therefore cannot do much better than
simply reproduce the strings it heard (i.e. 1" random draws from at least E; different strings; with the
given parameters, the expected C-score is 0.65, which is the baseline, above which I will call a language
learnable), and generate random new strings if necessary, to make sure its language obeys the minimum
number (Ey) of strings.

However, in these randomly generated strings, sometimes regularities appear. l.e., a parent may use

the randomly generated strings “dcac”, “bcac”, “caac” and “daac”. When this happens the child tends to

analyse these strings as different combinations with the building block “ac”. Thus, typically, the learning
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algorithm generates a grammar with the rules S — dcX, S — bcX, S — caX, S — daX, and X — ac.
When this happens to another set of strings as well, say with a new rule Y — b, the generalisation procedure
can decide to equate the non-terminals X and Y. The resulting grammar can then generalise from the
observed strings, to the unobserved strings “dcb”, “bcb”, “cab” and “dab”. The child still needs to generate

random new strings to reach the minimum F, but fewer than in the case considered above.
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(a) Learnability C;; (b) Number of rules (c) Expressiveness

Figure 6.5: Iterated Learning: although initially the target language is unstructured and difficult to learn,
over the course of 20 generations (a) the learnability (C;;, where 4 is the grammar at time ¢ — 1 and j
the grammar at time ¢.) steadily increases, (b) the number of rules steadily decreases (combinatorial and
recursive strategies are used), and (c) after a initial phase of over-generalisation, the expressiveness remains
close to its minimally required level. Parameters: V; = {a,b,c,d}, V, = {S,X,Y, Z, A, B, C}, T=30,
E=20, [p=3. Shown are the average values of 2 simulations.

Now consider the next step in the simulation, when the child becomes itself the parent of a new child.
This child is presented with a language with more regularities than before, and has a fair chance of correctly
generalising to unseen examples. If, for instance, it only sees the strings “dcac”, “bcac”, “caac”, “beb”,
“cab” and “dab”, it can, through the same procedure as above, infer that “daac” and “dcb” are also part of
the target language. This means that (i) the child shares more strings with its parent than just the ones it
observes and consequently shows a higher between generation communicative success, and (ii) regularities
that appear in the language by chance, have a fair chance to remain in the language. In the process of
iterated learning, languages can thus become more structured and better learnable.

Similar results with different formalisms were already reported before (e.g. Kirby, 2000; Brighton,
2002), but here I have used a standard grammar formalism (context-free grammars) without semantics
and an extremely simple learning algorithm. The results show that the effects of iterated learning do not
depend on semantics or other idiosyncratic features of previous models. Furthermore, the model provides
the simplest illustration of the fact that in iterated learning representable but unlearnable languages will
disappear, and that over the course of a number of generations the languages can become better and better
learnable.

Itis interesting to contrast the observations here with popular interpretations (e.g. Wexler, 1999; Bertolo,
2001) of negative results in learnability theory, such as Gold’s proof (Gold, 1967). Whereas in the usual
interpretations of that proof it is assumed that we need innate constraints on the search space in addition
to a smart learning procedure, here I show that even a simple learning procedure can lead to successful
acquisition, because restrictions on the search space automatically emerge in the iteration of learning. If
one considers learnability a binary feature — as is common in for instance Principles & Parameters theory
— this is a rather trivial phenomenon: languages that are not learnable will not occur in the next genera-
tion. However, if there are gradations in learnability, the cultural evolution of language can be an intricate

process where languages get shaped over many generations.
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6.4.3 Language Adaptation and the Coherence Threshold

When we study this effect in a version of the model where selection does play a role, it is also relevant
for the evaluating the claims of Nowak et al. (2001) and Komarova et al. (2001). The model is therefore
extended such that every generation consists of P agents. We can now not only measure the success in
communicating with a parent (the between generation success, Cpetween ), but also the success in commu-
nicating with other agents of the same generation (the within generation success, C'y;1hin )- Hence, we have
at every point a population of parents and a population of children. Children communicate with each other;
when they become parents themselves the expected number of offspring of any one of them (the fitness)
is determined by the number of successful interactions it had. Children still acquire their grammar from
sample strings produced by their parent. Adapting equation 1, this system can now be described with the
following equation (where, assuming an infinite population size, z; is now the relative fraction of grammar
1 in the population):
N
Az =z f;Qji — ¢ (6.4)
j=0

Here, f; is the relative fitness (quality) of grammars of type ¢ and equals f; = ; ©jFij, where Fj; is the
expected communicative success from an interaction between an individual of type ¢ and an individual of
type j. The relative fitness f of a grammar thus depends on the frequencies of all grammar types, hence it
is frequency dependent. ¢ is the average fitness in the population and equals ¢ = ), x; f;. This term is
needed to keep the sum of all fractions at 1.

This equation is essentially the model of Nowak et al. (2001). Recall that the main result of that paper
is a “coherence threshold”: there is a minimum value ¢; for the learning accuracy ¢ to keep coherence in
the population. If ¢ < ¢;, then coherence is lost because natural selection is not effective; if ¢ > q;, one
dominant grammar emerges. We can try to apply the calculations of Nowak et al. to a simulation with
the learning algorithm and selection as described above. In the simulation I will report below, learners are
presented 7' = 100 sample sentences, with initial string length [y = 12 and an alphabet of 4 characters.

The model of Nowak et al. uses three parameters: a (the similarity between two different languages),

T and N (the number of possible languages). The applicable expression for ¢; is the following:

__2Va
N1 a

(6.5)

Assuming a string length [ = 12, we can make an estimate of @ as follows. There are 412 strings of length

12 over the given alphabet. Assuming languages with 100 strings, the probability that a random string s is

part of the language L is P(s € L) = %. Given the large number of strings, the similarity a between two
random languages can be estimated as a &~ 100 - P(s € L) = 19999 Plugging this value in equation (6.5)

yields an estimate of the “coherence threshold” at learning accuracy q; ~ 0.05.
Crucial for grammatical coherence is that the accuracy of a given learning algorithm is above this value.
Nowak et al.’s calculation of the accuracy of the batch learner, qpqtch, is as follows:

(1—(1—aT)N).

(NaT)

Qbatch = (66)

Assuming string length and number of strings as above, an estimate of IV is:

412
N =~ 100 ~ 10°29. 6.7)
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Hence, Na”, the divider in equation (6.6), will be astronomical, on the order of 10420, Because the value
of the denominator will be between 0 and 1, it follows that gpqt.n, =~ 0 and therefore qpqtcp, << q1. Thatis,
the batch learner will, with so many possible languages and so few training samples, have almost no chance
of discovering the target grammar, and the system should therefore be below the coherence threshold.

Below the threshold, all languages occur at equal frequency, and we therefore expect the within gen-
eration communicative success to be equal to the similarity between languages, i.e. C ;... = a =~ 0.05.
This result depends on a number of strong assumptions. For instance, Nowak et al. (2001) assume that the
population is infinite, and that all grammars are of equal quality (uniformity), such that only the frequency
of a grammar in the population determines the payoff it will receive. But most importantly, the authors as-
sume that all possible grammars are at equal distance a from each other, whereas in the present simulation
model many distances are possible. These assumptions are all violated in the present model, as well as in
reality of course'*. Before discussing how to adapt the model of Nowak et al., I will first present the results
from the simulation model and compare them with the calculations above.

Figure 6.6 shows results from a simulation with the grammar induction algorithm described earlier in
this chapter. Unlike the simulations of figure 6.5, these simulations deal with a relatively difficult learning
problem: here the initial string length is long, i.e. {9 = 12, whereas before it was [y = 6. Learning
is therefore not successful. In the left region of the graph it can be seen that the between-generation C is
around 70%, which (with the given parameters) means that only the strings a child has seen during training,
are shared between a parent and a child. The child has not been able to make any correct generalisations.
Qualitatively, we see that the simulation in this phase is indeed below the coherence threshold. There is
no dominant grammar in the population, and agents score only about 15% in their communication with
peers. This is reasonably close to the predicted 5%; the disparity is explained by mentioned unrealistic

assumptions'”.
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Figure 6.6: Results from a run under fitness proportional selection. This figure shows that there are regions of
grammar space where the dynamics are apparently under the “coherence threshold” (Nowak et al., 2001),
while there are other regions where the dynamics are above this threshold. The parameters, including the
number of sample sentences 7, are still the same, but the language has adapted itself to the bias of the
learning algorithm. Parameters are: V; = {0,1,2,3}, Vi, = {S,a,b,¢,d, e, f}, P=20, T=100, E=100,
lp=12. Shown are the average values of 20 agents.

However, around generation 70 the behaviour of the simulation starts to diverge radically from these
analytical predictions. First, the between generation communicative success suddenly rises. Children are

now able to successfully generalise beyond the strings that are seen during training, and score around 90%

14See Wiehe (1997) for a critique of the error threshold model, on which the analysis of Nowak et al. (2001) is based.
15Because of the variation in distances between languages, we can expect the “effective similarity” to be higher, and therefore the
actual value of ¢1 and the equilibrium C';4pi,, as well.
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in communicating with their parents. The reason is the same as in the previous section: the languages have
adapted to the learning algorithm. Crucially, the grammatical coherence in the population also rises. In
this second phase, agents score between 30% and 70% in the communication with peers. With always the
same 7" (number of sample sentences), and with always the same grammar space, there are regions where
the dynamics are apparently under the “coherence threshold”, while there are other regions where the
dynamics are above this threshold. The language has adapted to the learning algorithm, and, consequently,
the coherence in the population does not satisfy the prediction of Nowak et al.

Recall that Nowak, Komarova & Niyogi (2001) and Komarova, Niyogi & Nowak (2001) considered an
upper and a lower bound on the performance of learning algorithms, and claimed that the performance of
human language learning must be in between those bounds. That is, they claimed that (i) the batch learner
represents the best possible learning strategy, and that (ii) the number of training samples it requires for
grammatical coherence, given by equations (6.5) and (6.6), represents a lower bound on the number of
samples children require, and hence a fundamental requirement for effective biological evolution of the
language faculty. Figure 6.6 falsifies that the claim. It shows that in iterated learning, a biased algorithm
can do better than the unbiased batch learner, because over time the languages will adapt to the bias.

Although it is clear that the simulation of figure 6.6 is inconsistent with the calculations in Nowak
et al. (2001) and Komarova et al. (2001), my results do not yet unambiguously prove that the batch learner,
if implemented with the same parameters as in the current simulation, would lead to worse grammatical
coherence in the population. The difficulties I see with demonstrating a difference in performance for this
particular case are many. First, it is extremely difficult to implement the batch learner in a computer pro-
gram, because of the astronomical number of possible languages (although I cannot exclude the possibility

that an ingenious way exists to encode which subset of 10°2°

possible languages are consistent with the
training data, and to choose a random language from a uniform distribution over that subset). Second,
although the equations above could in principle be adapted to include the effects of unequal distances, the
math quickly gets very complicated. The problem is that equations (6.5) and (6.6) are not valid if a is an
average rather than a constant.

On a more general level, however, there is no doubt that the central claim of Nowak et al. (2001) and
Komarova et al. (2001) that the batch learner provides a lower bound on the number of training samples
needed in human language acquisition is untenable. The batch learner is an unbiased learner: it chooses
a random language from all those possible languages that are consistent with the 7" sample sentences
received. It is unbeatable only if all possible languages have equal probability of becoming the target
language. If, however, there is a skew in the distribution of possible target languages, and if a learning
algorithm is biased towards the more likely targets, that algorithm can beat the unbiased learner. The
iterated learning model studied in this chapter provides the mechanism by which this situation will arise in
culturally transmitted systems such as language.

6.5 Conclusions

I believe that these results have some implications for our thinking about both language acquisition and
language evolution. In particular, I think the model and results offer a different perspective on the argument
from the poverty of the stimulus, and thus on one of the most central “problems” of language acquisition
research: the logical problem of language acquisition. This is the problem every child is facing when
acquiring the grammar of its native language: she has insufficient evidence to uniquely determine which is
the target grammar from the set of all grammars that would in principle be possible. I will discuss the new
perspective evolutionary models offer in the wider debate about such arguments in the next chapter.
Formal models of language learning often specify three components (Bertolo, 2001). The first is the

innate knowledge of language a child has, which defines a hypothesis space for language learning. The
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second is the primary linguistic data, which provides the input to the learning procedure. The third is the
learning procedure, that guides the child through the hypothesis space based on the input data it encounters.
Using such a scheme, one might be tempted to describe the model I presented in this chapter as follows:
it uses context-free grammars as the hypothesis space, unordered positive examples (“text”) as primary
linguistic data and a simple greedy, compression based heuristic as the search procedure. How can learning
be successful, given the often cited mathematical proof (Gold, 1967) that learning under these conditions
is impossible?

The answer is of course that the question is wrong. Gold’s proof is about certain classes of formal
languages and establishes that no algorithm can be guaranteed to learn any language from such a class. It
makes no claim about whether or not a specific algorithm will be able to learn lots of specific languages
from the class. Gold’s proof only implies that an algorithm cannot learn all the languages from the class.
Accepting for a moment Gold’s definition of learnability (which is different from the definition I adopted),
the proof shows that not all context-free languages can naturally occur as culturally transmitted codes.

Now, what determines which languages do, and which ones don’t? The present model illustrates that
it is unnecessary to assume — as theorists of language acquisition have often done (Wexler & Culicover,
1980; Bertolo, 2001) — additional, innate knowledge of language to constrain the set of naturally occurring
languages. The only languages a child will ever need to learn, are languages learnt and transmitted by
previous generations. Hence, the poverty of the stimulus is never a problem; rather, the ancestors’ poverty
is the solution to the child’s.

The relevance of this perspective for language evolution is two-fold. First, Gold’s proof and other math-
ematical learnability results are often — erroneously — cited as proof for domain-specific, innate knowledge
of language (Wexler, 1999), of a sort that could only have arisen if it were selected for in human evolution
(Pinker & Bloom, 1990). It is important to note that although the conclusion may be correct, the arguments
for it are not (Pullum & Scholz, 2002; Scholz & Pullum, 2002; Johnson, 2004). Parsimony suggests that
the natural explanandum for language evolution research is the learning strategy (which, in a process of
cultural evolution, gives rise to languages with the structure we observe today), and certainly not an ornate,
innate database of syntactic rules and principles, as some naive theories of language acquisition have it
(e.g. Cook, 1993).

Second, a methodological point for evolutionary linguistics is that the definition of a strategy set and
a payoff function must take into account the constraints from learning, usage and cultural transmission.
This might seem an obvious point, but it is an extremely difficult task. It is therefore tempting to simplify
the description of learning by considering random walk or parameter setting models as upper and lower
bounds on the performance of the real learning strategy. The problem with this approach is that — through
cultural evolution — the learning strategy will change the learning task. Derived lower and upper bounds
might therefore no longer be valid.

The model I presented does suggest some promising future directions for establishing more positive
results on the evolution of phrase-structure. The model incorporates most of the components of an evo-
lutionary analysis — only variation in the learning strategies is missing. A simple approach to introduce
variation would be to vary the parameters of the model: the terminal and non-terminal alphabet, the initial
string length /j, the minimal expressiveness E; and the number of training samples 7'. T haven’t imple-
mented such an extended model only because I believe real progress on these issues will come from a

second future direction: the development of better, more robust and more flexible learning algorithms.






CHAPTER 7

Conclusions

7.1  Summary

I started this thesis, in chapter 1, by arguing that theories of the evolutionary origins of language need to be
formalised and to entail complete scenarios of the transitions necessary to get from primate-like commu-
nication to modern human language. Theories with these features can be tested both by confronting them
with empirical data, and by evaluating their internal coherence and consistency with other tested theories.
In this thesis I have tried to contribute to such a testable theory, by surveying the formal requirements on
such scenarios (drawing on insights from mathematical population genetics, evolutionary game theory and
theoretical linguistics), and by proposing specific models for some of the transitions involved.

In chapter 2 I reviewed formal, foundational models from evolutionary biology. This review yielded a
list of criteria for evolutionary scenarios. The evolutionary process is described by (1) heritable traits, (2)
a strategy set and (3) a payoff function. To show that a strategy can evolve, one needs to show that it can
(4) invade a population without it, and that (5) there is a path of fit intermediates from the hypothesised
start point to the end point of evolution. Furthermore, one needs to show (6) that the mutational load has
not been too high, and that (7) the predicted time to fixation of innovations is realistic. These requirements
lead to two main problems in the evolution of communication and language, which I termed (8) the prob-
lem of cooperation, and (9) the problem of coordination, respectively. Finally, I argued that evolutionary
explanations need to (10) specify and relate the assumed levels of selection and heritability.

In chapter 3 I reviewed a specific scenario for the evolution of language, proposed by Ray Jackend-
off (2002). Jackendoff lists a number of different stages, and hints at the selective advantages of each of
the innovations. However, his treatment remains very informal. Based on an inventory of formal mod-
els from linguistics, I argued that there are three “major transitions” in the scenario that can be formally
characterised: the emergence of combinatorial phonology, of compositional semantics and of hierarchi-
cal phrase-structure. An important distinction in such characterisations is that between I-language, the
language system internal to the language user, and E-language, the observable language external to the
user.

In chapter 4 1 studied a model that addressed the first of these transitions: the evolution of combinato-
rial phonology. After arguing that existing models fail some of the listed requirements, I considered a new
model where the strategy set consists of all configurations of a set of trajectories in an acoustic space. I then
proposed a measure of confusability as the payoff function. In simulations, I showed that combinatoriality

in the E-language can emerge, without the I-language necessarily having that property. I argued that in a
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population where the E-language is combinatorial, an I-language which takes advantage of that fact can
more easily evolve.

In chapter 5 I discussed the evolution of compositional semantics. The strategy set of the model I
presented, included all possible S (production) and R (interpretation) matrices, which represent a mapping
from a meaning space to a signal space and vice versa. I considered a payoff function where the payoff
depends on the probability of correctly interpreting a received signal. This function took into account
noise and coordination. Crucially, I considered the case where, if the interpretation was different from
the intended meaning, the payoff was still higher for interpretations more similar to the intention than for
those less similar. In simulations, I showed that with these assumptions the mapping between sounds and
meanings can become structured (superficial compositionality), without the underlying cognitive proce-
dures necessarily making use of that property (productive compositionality). Analogous to chapter 4, I
argued that in a population with superficial compositionality, productive compositionality can more easily
evolve.

In chapter 6 I focused on the evolution of recursive, hierarchical phrase-structure. Formulating a
reasonable strategy set and payoff function for phrase-structure is difficult. I reviewed a number of existing
models, and then presented a new computational model that integrated many of their features. From this
study it emerged that, in general, the set of languages R 4 that can be represented, the set £ 4 that can be
learned, and the set Z4 of languages that are stable in cultural transmission, are all different. Moreover,
the relation between R4, L4, Z4 and the learning strategy A can be extremely complex. Definitions
of a strategy set based on R 4, such as those based on the Chomsky Hierarchy (which ignore learning),
and definitions based on the Uniformity Assumption (which exclude cultural evolution and imply that
Ra = La = Za), are therefore unsatisfactory. The computational model I developed in this chapter
showed the feasibility of a model that integrates learning, cultural evolution and natural selection. The
results from the simulations have important consequences for theorising about the acquisition and evolution
of syntax. They do not, however, present a satisfactory explanation for the third major transition — the
evolution of hierarchical phrase-structure — because the model did not yet present a reasonable set of

possible learning strategies. This issue is left for future work.

7.2 Contributions

The primary goal of this thesis has been to contribute to the development of scientifically rigorous theories
of the origins of human language. Formalisation and empirical testability are generally seen as the key
features of scientific theories. Although not of the level of mathematical and empirical sophistication of
some subfields of linguistics and biology, I hope this thesis includes some contributions to this end in a field
where consensus on the goals and requirements of research is still lacking. Another important criterion for
scientific theories is the potential to connect them with theories in related fields. I believe there are many
such connections to be made, both within linguistics and within biology. In this section I will discuss
some possible contributions of this thesis concerning testability; in sections hereafter I will raise some
implications for related fields.

In this thesis, I have adopted a gradual scenario, with the complexity of modern language evolving in a
number of steps rather than in one “big bang”. With Pinker & Bloom (1990), Jackendoff (2002) and many
others, I have assumed that the driving force behind this evolution has been the need to reliably convey
more and more information. In chapters 2 and 6 I briefly mentioned alternative selection pressures where
complex language serves to impress peers or sexual partners (e.g. Dessalles, 1998), or to communicate
with kin (e.g. Fitch, 2004). Of course, it is impossible to measure empirically which of these selection

pressures really was responsible for each of the transitions. However, we can evaluate the coherence of a
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complete scenario if it is precise and formal enough, and we can derive specific predictions from such a
scenario that can be empirically tested.

This thesis has presented a framework, rather than a complete scenario. This was most obvious in chap-
ter 6, where a reasonable strategy set was still lacking. But also in chapter 4 and 5 I have not committed
myself to a very specific scenario. In these chapters I argued that the hillclimbing heuristic used can be
interpreted as describing either evolutionary optimisation, or optimisation through learning, or a combi-
nation of both!. Nevertheless, I think in either interpretation, there are many starting points for empirical

research. Some examples of specific testable issues are:

o In chapter 4 I proposed the use of trajectories through a low-dimensional acoustic space as the repre-
sentation of signals with non-zero duration. Although I provided some examples of real acoustic data
using this representation (courtesy of Bart de Boer), it remains an empirical issue whether signals in
animal and human communication can in general be adequately described in this representation.

e Alsoin chapter 4, I presented a measure for the quality of a repertoire of signals, based on the average
probability to confuse those signals. The function to relate distance to confusion probabilities was
motivated by an extremely idealised case of just two signals in a one-dimensional acoustic space with
Gaussian noise. The shape of the distance-to-confusion function in more realistic circumstances can
be empirically estimated.

e The model of chapter 4 predicts that combinatorial repertoires are less confusable than non-combinatorial
systems within the same acoustic and time constraints. This prediction can be tested empirically, both
in humans and in other animals.

e More theoretical work is needed on a measure for how combinatorial a signal repertoire is, but
within the same conceptual framework this could in principle be measured in human languages and
animal communication systems. This would yield comparative data on how unique combinatorial
phonology really is in nature.

o In chapter 5 I used a measure for the degree of topology preservation (proposed by Brighton, 2003).
If acoustic and semantic similarity are operationalised, this measure could be applied to natural
language data (as worked out by Shillcock et al., 2004). It would be interesting to apply this measure
to empirical data on primate communication as well.

e The model in chapter 6 suggests languages adapt to the language users in order to become easier to
learn. It would be interesting to analyse empirical data on creolisation (Bickerton, 1990) and rapid

language change in Nicaraguan sign language (Senghas et al., 2004) from this perspective.

Possible contributions toward formalisation, and thence testability of the internal coherence of theories

of language evolution are:

e The list of formal requirements on scenarios of the evolution of language from the perspective of
evolutionary biology in chapter 2.

e The steps toward formalisation of Jackendoff’s scenario for the evolution of language in chapter 3.

e The strategy set using the trajectory representation in chapter 4, which is an improvement over
representations used in Nowak & Krakauer (1999) and Liljencrants & Lindblom (1972), but very
similar to the representation used in Oudeyer (2002). The relation with trajectory models in speech
recognition remains to be explored (Goldenthal, 1994).

e The payoff function based on confusability in chapter 4, which is an improvement over the measures
used in Liljencrants & Lindblom (1972); Lindblom et al. (1984); the relation with work in phonetics

and signal detection theory remains to be explored.

IThe validity of this argument can be further investigated in simulation models where the processes of evolution and learning are
modelled at a more concrete level.
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o The payoff function that includes the “value matrix” V in chapter 5, which is an improvement over
the measures used in for instance, Oliphant & Batali (1996), Steels (1995) and Nowak & Krakauer
(1999); the relation with work in distortion theory and compression theory remain to be explored.

o The learning algorithm in chapter 6, which is a simplification of algorithms presented in, for instance,
Wolff (1982), Stolcke (1994) and Kirby (2000).

e The distinction between the sets of representable, learnable and stable languages in chapter 6.

7.3 Implications for Linguistics

I believe the main implication of this and related work for the field of linguistics concerns a debate we
can call the “nativism—empiricism debate” (even though these terms are overstating the positions of actual
researchers involved). Nativists have postulated that children must be born with extensive knowledge of
the structure of human languages. Empiricists, on the other hand, assume that children are able to acquire
natural languages using just general-purpose learning mechanisms. They have attempted to show this in
neural network models of learning and development, but have by and large failed to convince nativists.
Based on the models and results from this thesis and related work, I argue that the persistence of the
disagreement can be understood from the fact that empiricists have not provided a satisfactory answer to

two fundamental questions:

1. How can it be that children always guess right? That is, from the wide range of logical possibilities,
how come children always choose the ones that are consistent with observed constraints on natural
languages?

2. How can children learn the class of human languages without specific prior knowledge in the light

of all the negative formal learnability results?

Each of these questions leads to a variant of the “argument from the poverty of the stimulus” (see
Pullum & Scholz, 2002, for a brief history), which states that much of human language must be innate
because there is insufficient information in the “primary linguistic data”. I will briefly review both versions
of the argument, and then consider the new twist that evolutionary models as studied in this thesis can give
to this old debate.

7.3.1 The Poverty of the Stimulus |

Despite many revisions of theories in the nativist tradition, the argument from the poverty of the stimulus
continues to be the prime justification for assuming an extensive, innate Universal Grammar. For example,

Jackendoff (2002, p. 69) uses the following quote from Chomsky (1965) to explain the argument:

“It seems clear that many children acquire first or second languages quite successfully even
though no special care is taken to teach them and no special attention is given to their progress.
It also seems apparent that much of the actual speech observed consists of fragments and
deviant expressions of a variety of sorts. Thus it seems that a child must have the ability
to “invent” a generative grammar that defines well-formedness and assigns interpretations to
sentences even though the primary linguistic data that he uses as a basis for this act of theory
construction may, from the point of view of the theory he constructs, be deficient in various
respects.” (Chomsky, 1965, p. 200-1)

Well-known examples of the miraculous choices that children make concern, among others, wh-
transformation (i.e. the ways to formulate who, what and where questions), negations, pronouns and
quantification. For instance, in example 7.1 (from Crain, 1991), there are complex constraints on whether
or not “he” can refer to “the Ninja Turtle”.
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7.1 a.  The Ninja Turtle danced while he ate the pizza
b.  He danced while the Ninja Turtle ate the pizza
c.  While he danced the Ninja Turtle ate a pizza

Children know that “he” in sentence (b) cannot refer to the “the Ninja Turtle”, and, according to the
argument, they need innate syntactic constraints because “there are no data available in the environment
corresponding to the kind of negative facts that constraints account for”” (Crain, 1991).

Jackendoff (2002, p. 85) uses the following example, from Gruber (1965), to explain what he calls the

“Paradox of Language Acquisition’:

(7.2) Every acorn grew into an oak.
Every oak grew out of an acorn.

An oak grew out of every acorn.

g0 o P

*An acorn grew into every oak.

“Every” in the first three examples quantifies over both the oak and the acorn, while in (d) it quantifies
only over the oak, making the sentence uninterpretable. There seems to be no “natural” solution to this
idiosyncracy of language. The paradox is that while linguists struggle with the construction, children

miraculously always get it right:

“The community of linguists, collaborating over many decades, has so far failed to come up
with an adequate description of a speaker’s knowledge of his or her native language. Yet every
normal child manages to acquire this knowledge by the age of ten or so, without reading any
linguistics textbooks or going to any conference. How is it that in some sense every single

normal child is smarter than the whole community of linguists?” (Jackendoff, 2002, p. 83)

Chomsky, Crain, Jackendoff and many others have used such examples to argue for the existence of
innate, language-specific knowledge. If children always make the right choice, even though clearly sensible
logical alternatives exist based on the available evidence, then obviously they must have prior knowledge
of the task. Universal Grammar is the theory of that prior knowledge. Pinker & Bloom (1990) and others,
have argued that it is “vanishingly unlikely” that this innate knowledge is a side-effect of the evolution
of general learning mechanisms; rather, they claim, it must be the result of a gradual process of natural
selection. That is, the Universal Grammar is a language-specific adaptation of humans for the use of

natural language:

“[..] it would be vanishingly unlikely for something that was not designed as a television set
to display television programs; the engineering demands are simply too complex. [...] We
suggest that human language is a similar case. We are not talking about noses holding up
spectacles. Human language is a device capable of communicating exquisitely complex and
subtle messages, from convoluted soap opera plots to theories of the origin of the universe.
Even if all we knew was that humans possessed such a device, we would expect that it would
have to have rather special and unusual properties suited to the task of mapping complex
propositional structures onto a serial channel, and an examination of grammar confirms this
expectation.” (Pinker & Bloom, 1990)

7.3.2 The Poverty of the Stimulus - 11

The case for such a view on Universal Grammar is often said to be strengthened by mathematical results
from learnability theory. This different version of the argument from the poverty of stimulus starts from the
observation that the formalisms that are needed to describe natural language have to be able to represent

recursive, hierarchical phrase-structure. Humans can generalise from the sentences they have heard to
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completely new expressions, many of which might not have been used by anyone ever before. This is
known as the “productivity argument” (Chomsky, 1955). In fact, as I discussed in chapter 6, although
there is now a wide range of competing grammatical theories, there is also converging evidence that a
proper formalism for human language has to be mildly context-sensitive (Joshi et al., 1991). Moreover,
there is broad consensus that children have to learn their language from primary linguistic data that is
relatively impoverished: children cannot solely rely on negative evidence, semantic information, carefully
selected training sentences (“motherese”) or statistical cues (e.g. Atkinson, 2001).

It is therefore not unreasonable to study the learnability properties of popular formalisms, and try to
derive general results on whether it is possible to learn grammars (of the type that linguists agree are
necessary for human language) from primary linguistic data (of the type that psycholinguists believe is
available to the child). The first to establish such general results was Mark Gold (1967). He emphasised
the interrelatedness of assumptions about the nature of human grammar and the nature of the language

acquisition process:

“[...] a model of the rules of usage of natural languages must be general enough to include the
rules which do occur in existing natural languages. This is a lower bound on the generality
of an acceptable linguistic theory. On the other hand, the considerations [on learnability]
impose an upper bound on generality: For any language which can be defined within the
model there must be a training program, consisting of implicit information, such that it is
possible to determine which of the definable language is being presented.” (Gold, 1967, p.
448)

Gold put forward a criterion for learnability and a formal characterisation of the available training data.
Gold’s learnability criterion, “identification in the limit”, is a criterion for a class of languages, and not for
individual languages per se>. He showed, for each of these types of data and for a number of formal classes
of languages, whether or not they were identifiable in the limit. Most famous is his result that super-finite
classes of languages, which include the classes of context-free and of context-sensitive languages, are not
learnable from positive data. Similar negative learnability results have been obtained with less restrictive
learnability criteria (e.g. Wexler & Culicover, 1980, discussed in Bertolo, 2001). These negative results
have led to a consensus among theorists of language acquisition in the generative tradition that human

languages are simply not learnable without serious innate constraints:

“The basic results of the field [of learnability theory] include the formal, mathematical demon-
stration that without serious constraints on the nature of human grammar, no possible learning

algorithm can in fact learn the class of human grammars.” (Wexler, 1999)

However, after initial pessimism on the learnability of formal grammars, more positive results also
emerged. Most notably: (i) Horning (1969, discussed in Bertolo, 2001), which showed that the class
of stochastic context-free grammars are identifiable in the limit; (ii) Wexler & Hamburger (1973, dis-
cussed in Batali, 2002) which showed that context-free grammars are identifiable in the limit if the in-
put includes the proper semantic information for every sentence; and (iii) Angluin (1980, discussed in
Kanazawa, 1998), which showed that non-trivial classes of grammars, that include subsets of context-free
and context-sensitive grammars, are identifiable in the limit from positive data.

Encouraged by such positive results, a small number of researchers has worked on designing algorithms
that indeed induce grammars from examples (e.g. Wolff, 1982; Stolcke, 1994; Clark, 2001; Klein & Man-
ning, 2002; Adriaans et al., 2002), with some success. How can such positive results be reconciled with

2With respect to a specific algorithm, it makes sense to ask whether it can learn a specific language. Gold, however, asks whether
any algorithm can learn all the languages from a given class. Hence, the words “learnable” and “learnability” can mean rather
different things when they are used in the context of a specific algorithm, or in the general sense with reference to a class of languages.
Unfortunately, much confusion about this distinction exists in the literature (Scholz & Pullum, 2002; Johnson, 2004)
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the negative learnability results that are quoted so often in the nativist tradition? It is worth considering
that question in some detail, since it relates directly to the connectionist and evolutionary models that we
will discuss later.

Gold (1967), in fact, is very careful in his discussion of the relevance of his negative results. He dis-
cusses three solutions for the learnability problem (i) additional restrictions on the class of possible human
grammars, (ii) indirect negative evidence and (iii) a priori restrictions on the class of training samples that a
child may expect. We can interpret each of the mentioned positive results as elaborations on these possible
solutions. That is, Horning (1969) is variant of solution (iii), because it assumes that the learner can rely on
statistical information in the training data; Wexler & Hamburger (1973) is a variant of solution (ii), because
it assumes that learner can derive indirect negative evidence from the semantics of training sentences; and
Angluin (1980) is variant of solution (i) by identifying non-trivial, but restricted classes.

Much discussion has followed on whether or not the child has negative evidence available, and whether
or not parents adapt their infant-directed speech to facilitate language learning. Again a consensus has
emerged among nativists that these potential solutions are empirically invalidated and that suggestions of
the contrary can be safely ignored. For example, in Bertolo (2001), a recent introduction to “learnability
theory” with contributions from 6 different authors, none of the theoretical and algorithmic positive results
above, except for Horning’s, has even been referred to. Instead, researchers in this field have concentrated
on models within a Principles and Parameters framework, in which learning is restricted to setting a small
number of parameters. It is important to note, however, that even if Gold’s solution (i) is adopted, there
is still a significant jump to make to go from restricting the class of possible grammars, to assuming an
extensive innate Universal Grammar with “parameter setting” as the only challenge in the acquisition of
syntax (Scholz & Pullum, 2002). Gold describes solution (i) as follows:

“The class of possible natural languages is much smaller than one would expect from our
present models of syntax. That is, even if English is context-sensitive, it is not true that any
context-sensitive language can occur naturally. Equivalently, we may say that the child starts
out with more information than that the language it will be presented is context-sensitive.
In particular, the results on learnability from text imply the following: The class of possible
natural languages if it contains languages of infinite cardinality, cannot contain all languages
of finite cardinality.” (Gold, 1967)

Nothing in these formal results shows that the necessary constraints are language-specific adaptations;
they could simply be generic properties of the human brain, or, as in the model of chapter 6, the result of
a form of cultural evolution. On intuitive grounds, that possibility is dismissed as “vanishingly unlikely”.
Moreover, also the nature of the available linguistic data is an empirical and not a formal issue. Although
solid empirical results exist that make many of proposed sources unlikely, the jump in the nativist literature
to (always) assume the worst-case scenario of only positive data® (“text”) is premature*. Nevertheless,
research that makes different assumptions is often treated with rather unjustified disdain in the learnability

literature. For example:

“It seems that some psychologists, suspicious of the innateness claims which have provided the
intellectual backdrop to so much of the progress in modern linguistics, have found it difficult
to give up on the belief that linguistic environments really do have properties (if only we could

identify them) which would enable us to see them as providing a sufficient basis for grammar

3In fact, the assumption is even stronger than just “positive data”, because it considers positive data in any order, no matter how
bizarre.

4Tt seems even in contradiction with other empirical results; see the discussion on children (not) learning language from television
conversations in Pinker (1994, p. 278).
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induction. We can be fairly confident in our conclusions under this heading, but we owe it to
the skeptics to provide some justification for this confidence.” — (Atkinson, 2001, p. 16)

Hence, we can conclude that the variant of the argument from the poverty of stimulus that has emerged
from the field of learnability theory is based on firm, formal results that show that learning is impossible
without the proper and interrelated assumptions on what grammars are possible in the first place, and what
primary data is available. In a sense, these results reflect the widely accepted view that “pure empiricism”,
that is, learning without a bias (starting with a “tabula rasa”) is an untenable position (as even anti-nativists
emphasise, Elman et al.,, 1996). From that basis, a much less formal argument can be made that the
necessary constraints must be innately specified because it is so unlikely that they derive from general

constraints on cognition, communication and learning.

7.3.3 Empiricist Arguments

The challenge to empiricists is to provide an adequate response to this intuitive stance, and to present
an alternative theory that is general enough to include observed rules in human languages and restricted
enough to allow their acquisition. Empiricists have attempted to show the feasibility of such an alterna-
tive account (see e.g. Seidenberg, 1997, for a review). The most prominent approach has been to build
fully specified neural network models that can display some realistic linguistic behavior. Rumelhart &
McClelland’s (1986) English Past Tense model without “rules” and Jeff Elman’s (1991) Simple Recurrent
Neural Networks to learn (fragments of) context-free languages and their successor models are the most
well-known examples.

Elman’s models, for instance, are specifically designed to disprove the poverty of the stimulus argu-
ment, as is evident from titles like Learning the unlearnable (Lewis & Elman, 2001). However, there
are some serious theoretical problems with the kind of syntactic patterns these networks can represent in
principle (long-distance dependencies, see for instance, Steedman, 2002a), as well as some lack of clarity
about what the networks have actually learned®. Steedman (2002a), Jackendoff (2002) and many others
have laid out unsolved challenges for connectionists for modelling syntactic and semantic phenomena.

More generally, however, the problem with the whole approach of disproving the poverty of the stim-
ulus, is that such models, even when successful, do not do away with language specific innate knowledge,
shaped by natural selection in a process of biological evolution (Pinker & Bloom, 1990). They may push
back how much language-specific knowledge must be assumed innate, but they still depend on a large num-
ber of crucial parameters and architecture design choices: parameters that regulate when to insert a new
hidden unit, different activation functions for hidden and output units, mechanisms to update weights and
topological relations between hidden units, phonological feature extraction, inflection classes. Presumably,
these design choices are all crucial for the observed behaviour.

Therefore, although connectionist models might suggest modifications to the nativist theories, they do
not solve the poverty of the stimulus: the primary linguistic data and general purpose learning mechanisms
are not sufficient. Hence, even if connectionists would meet all these challenges (and work by Pollack,
1988 and subsequent work, comes a long way; moreover, formal results on Turing equivalence of neural
networks, Siegelmann & Sontag, 1991, ensure that it is possible), nativists could simply argue that all
they have accomplished is a lower-level implementation of the nativist theory. These architectures and
parameters are language specific, and not some random variant of general learning mechanisms; and that
infants have the proper innate architectures and parameters for learning language is exactly what nativist

theory has been claiming all the time. They are the Universal Grammar.

STypically, error rates on predicting the next word are reported, but these conflate performance on trivial task, e.g. nouns follow
determiners, with performance on syntactically challenging tasks.
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Kirsh (1992), in an early (constructive) critique of connectionist responses to the stimulus poverty
arguments, formulates this as follows:

“[...] to discover a network that will learn successfully, designers must choose with care the
network’s architecture, the initial values the weights are set to, the learning rule, and the num-
ber of times the data set is to be presented to the network [...]. If such parameters are not
controlled for, successtul learning is extremely improbable. In thoughtful modelling, these
parameters are chosen on the basis of assumptions about the nature of the function the system
is to learn. That is, on the basis of assumptions about the task and task domain. Prima facie,
then, although the learning mechanism operating on data is a general one, the success of this
mechanism depends equally on a set of antecedent choices that seem to be domain specific.”
(Kirsh, 1992, p. 297)

7.3.4 Language Evolution

Instead, from the field of language evolution a simple but much more promising answer has been put
forward: children are so good at learning language, because languages have adapted to the idiosyncracies
of infants learning strategies:
“Human children appear preadapted to guess the rules of syntax correctly, precisely because
languages evolve so as to embody in their syntax the most frequently guessed patterns. The
brain has co-evolved with respect to language, but languages have done most of the adapting.”
(Deacon, 1997, p. 122)

It might be “extremely improbable” that a random learning mechanism learns a random language
successfully, it does not necessarily follow that the learning mechanism therefore has to be adapted to the
task (Fodor, 1989; Kirby, 1994; Christiansen, 1994; Deacon, 1997). The probability that a random learning
mechanism is successful when learning a language that is shaped by generations that were using the same
mechanism, is something entirely different and could be very high. This proposal — in its informal, verbal
presentation — has been met with some understandable skepticism by nativists. In response to the quote

above, Jackendoff has commented:

“But this puts the cart before the horse. Deacon is correct that human languages do not push
the envelope of Universal Grammar very much. But our question is: What is this envelope
anyway such that languages, however they evolve over time, must conform to it? Given all
the differences among the languages of the world, what is it about them that enables children
to “guess the rules of syntax” so well? This something, whatever it is, is what is meant by
Universal Grammar.” (Jackendoff, 2002, p. 81-82)

This criticism reflects the common idea in generative linguistics that the structure of languages which
we observe, directly reflects the structure of the innate “envelope” for language. In other words, this is the
idea that the theory of language universals is the same as the theory of language innateness. If one accepts
the Uniformity Assumption, and the restricted notion of UG that comes with it, Jackendoff’s stance is
correct. For instance, Niyogi & Berwick (1995), Yang (2000) and others have studied models of language
change based on parameter-setting learning algorithms. Unsurprisingly, the dynamics in such models are
rather straightforward. In a Principles and Parameters framework, the innate “envelope” is so restrictive,
that all there is left for the cultural process is to move from one particular setting of the parameters to
another, without any qualitative change in the expressivity or learnability of the language (Zuidema, 2003b;
see appendix C of this thesis).

However, if the “envelope of Universal Grammar” is less restrictive, can more interesting things hap-

pen? That is, if we do not start from the assumption that there is a restrictive, innate UG, but rather allow
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the cultural transmission process to favor certain types of languages over others and actually make qual-
itative changes in the language, do we observe anything like the process that Deacon describes? This is
exactly what the model in chapter 6, and the related Expression—Induction models discussed in that chap-
ter, address. These models show that if we make the obvious assumption that the result of learning in one
generation is the output for the next, then the necessary constraints for learnability automatically emerge.
Moreover, these models show that the Uniformity Assumption is in some sense a worst case scenario for
learnability. If we, in contrast, assume that the innate “envelope” allows a wide range of qualitatively dif-
ferent languages, a process of language adaptation will shape the languages over successive generations to
become progressively better learnable.

The fact that languages can change over time and adapt to the language user creates an interesting
methodological problem for research on language evolution®. Because of this fact, the “appearance of de-
sign” cannot, by itself, be taken as evidence for adaptation, although it is used as such in many studies (e.g.
Pinker & Bloom, 1990; Jackendoff, 2002; Pinker & Jackendoff, 2004). For instance, Pinker & Jackendoff
(2004) present the fact that human vowel perception appears to be different from non-human primate vowel
perception as evidence for the view that human hearing has been shaped by natural selection for speech
perception. If we accept the idea, however, that languages can adapt to their users, there is a reasonable
alternative hypothesis: any arbitrary feature of human hearing, whether or not it has been selected for, will
be reflected in the structure of human language because language will adapt to it.

To illustrate this idea I have run the model of chapter 5 with a U matrix where randomly chosen signals
are more reliably recognised than others (see figure 7.1a). After running the hill-climbing heuristic, we
see in the resulting language, figure 7.1b, that language reflects these arbitrary features of the agents’
perception. Language adapts to the language user, rather than the other way around. If we interpret the hill
climbing in the model of chapter 5 as learning, there is a perfectly valid explanation for the match between
language and user that involves no biological evolution (see Kirby, 1999, for an analogous argument about
syntactic patterns in language and cognitive constraints on parsing).

We can conclude that in addition to (i) a theory on what must be innate given the available primary
linguistic data, we need (ii) a sophisticated theory on how the structure of the languages of the world has
emerged given the (innate) learning abilities, the cognitive, articulatory and perceptual features of humans
and the processes of cultural transmission (Kirby, 1999). It is clear that the model discussed in chapter 6
is a poor version of such a theory. The model was designed to be as simple as possible and to study the
phenomenon of language adaptation in abstracto and its relevance for arguments from learnability theory.

A likely conclusion from this new line of research is that with “general” learning algorithms that did
not evolve for language, only languages that are structurally quite different from contemporary, human
languages will emerge. The door is therefore open for language-specific adaptations as imagined in the
nativist tradition. However, some of their critics have emphasised that they have no principled objections
against such adaptations (Elman et al., 1996). For instance:

“Once it finally appeared on the planet, it is quite likely that language itself began to apply
adaptive pressure on the organization of the human brain [...].” (Bates & Goodman, 1999)
The picture that emerges is one where children’s learning mechanisms shape the languages over a num-

ber of generations, and natural selection shapes the learning mechanisms. Senghas et al. (2004) recently

6Tt also poses a methodological problem for language acquisition research: “Children must discover the rules that generate an
infinite set, with only a finite sample. They evidently possess additional language-learning abilities that enable them to organize their
language without explicit guidance. These abilities diminish with age and may be biologically based. However, scientific efforts to
isolate them experimentally encounter a methodological complication: given that today’s languages were acquired by children in the
past, language input to children already includes products of innate biases. It is therefore difficult to determine whether any particular
linguistic element observed in a child’s language is inborn or derived.” (Saffran et al., 2001; references omitted).
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(a) The heterogeneous U matrix, with (b) From top to bottom: U matrix diagonal values, S matrix and
randomly chosen diagonal values. R matrix. S and R at t = 1000000 (at equilibrium).

Figure 7.1: Results from a simulation with the model of chapter 5, a heterogeneous U matrix in the “local
optimisation of a deterministic lexicon” condition. The resulting language reflects arbitrary features of the
agents’ perception.

phrased a very similar conclusion, based on many years of empirical research on the emergence of a new
sign language in a school for the deaf in Nicaragua:
“In this way, evolutionary pressures would shape children’s language learning (and now,
language-building) mechanisms to be analytical and combinatorial. On the other hand, once
humans were equipped with analytical, combinatorial learning mechanisms, any subsequently
learned languages would be shaped into discrete and hierarchically organized systems.” (Sen-
ghas et al., 2004, p.1782)

Such a perspective turns the argument from the poverty of the stimulus on its head. Language — by
virtue of it being a culturally transmitted code — is necessarily learnable. Some of its features, such as
hierarchical phrase-structure, do not present a problem for learning, but rather a solution for cultural trans-
mission through a bottleneck. Children only appear to have prior knowledge, because they happen to make
the same arbitrary choices as all the generations before them; they appear to have been adapted for lan-
guage, because the sounds, meanings and rules of language have been shaped by the learning and usage
of previous generations. However, the learning mechanisms might in turn have been shaped by natural
selection such that the complex outcome of the cultural evolution is biological adaptive. Perhaps it is not
totally inconceivable that such a view will help to bring the ongoing empiricism—nativism debate to an end.

7.4 Implications for Biology

The most obvious implication for biology of the work described in this thesis, is for issues in the evolution
of animal communication. The combinatorial phonology in the songs of birds, cetaceans and gibbons
(Ujhelyi, 1996), as well as the topology preservation in vervet alarm calls (Seyfarth & Cheney, 1997) and
rudimentary compositional semantics in Campbell monkey calls (Zuberbiihler, 2002), bee dances (von
Frisch, 1965, 1974) and perhaps gibbon calls (Ujhelyi, 1996), might all have evolved the same way as they
did in human language. Similarly, the syntactic patterns and recursion observed in the songs of some birds,
might have the same origin as such patterns in human language. The models of chapters 4, 5 and 6, or
adaptations of these models, might therefore be applicable to evolutionary questions about communication
in all these other species.
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The observation that languages themselves can evolve culturally points at another possible connection
with evolutionary biology. A whole tradition exists of drawing parallels between biological evolution and
language change, going back at least to Charles Darwin. Darwin was influenced by observations from
historical linguistics before he formulated his theory of evolution by natural selection (Darwin, 1859), and
wrote about the parallels in his later work. For instance, in the Descent of Man, Darwin writes (as quoted
in Mesoudi et al., 2004):

“A struggle for life is constantly going on amongst the words and grammatical forms in each
language. The better, the shorter, the easier forms are constantly gaining the upper hand, and

they owe their success to their own inherent virtue.” (Darwin, 1871, p.91)

In modern terminology, we can draw parallels between species and language, between the gene and
the words and rules’ of a language, between speciation and language birth, and between extinction and
language death and so-forth. This is not just an amusing curiosity; potentially, the tools and concepts of
evolutionary biology can be used to analyse data from historical linguistics and linguistic typology. For
linguists, one benefit is that the field of mathematical modelling of evolution (as discussed in chapter 2)
is much more advanced than mathematical modelling of language change (e.g. Niyogi & Berwick, 1995;
Yang, 2000). For biologists, there could be benefits from applying and extending their tools to an alterna-
tive domain, where much empirical data is available (and more and more is easily accessible through the
internet).

Finally, a third possible connection between the models in this thesis and issues in biology, concerns the
origins of the genetic code. In descriptions of genetics, biologists have always used linguistic terminology,
such as code, information, expression, translation, transcription, “language of the genes”, and so-forth.
But the analogy goes deeper than that. Through a by now well understood code, almost universal for life
on earth, specific triplets of DNA nucleotides (the building blocks of genes) code for specific amino-acids
(the building blocks of proteins). The origins of the genetic code are, like the origins of human language,
still largely an open issue and there are many parallels to be drawn (Maynard Smith & Szathmdry, 1995;
Nick Barton, p.c.). The DNA codon, or the transfer-RNA “copy” of it, is the analogue of a word, and the
amino-acids of its meaning.

Szathmdry (1993) has proposed a scenario for its origin, which involves an earlier stage where amino-
acids help ribozymes (RNA based enzymes) to catalyse reactions, and where RNA “handles” are the pre-
cursors of modern transfer-RNA. These handles attach to specific amino-acids, and help to position the
amino-acid precisely on the ribozyme. Szathmdry imagines that at this stage each amino-acid (the “mean-
ing”) can get attached to multiple RNA handles (“words”), as in models (as for instance, in chapter 5) of
the cultural evolution of language where each meaning can be expressed by many different words (sig-
nals). In this scenario, different amino-acid/RNA-handle combinations are in competition with each other.
Eventually, a specific handle gets established for each amino-acid, and a precursor genetic code emerges.
Interestingly, there is even a form of “topology preservation”, where similar codons tend to code for similar

amino-acids.

7.5 Future Work

This thesis provided an exploration of a complete and formal scenario of the evolution of language. Much
more work can and should be put into analysing and extending the models proposed in chapters 4, 5 and
6. An important extension to chapter 4 would be to provide a good measure of the degree to which a
signal repertoire is combinatorial. In chapters 4 and 5, I made the assumption that with a combinatorial

"The best analogy with the gene is probably the lexical entry (word) and its associated meaning and syntactic category or “su-
pertag” in lexicalised frameworks (e.g. Gamut, 1991; Steedman, 2000; Joshi, 2004).
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or compositional E-language, these features can more easily evolve in the I-language. This assumption
should be tested in follow-up models.

The model in chapter 6 should be replaced by a model with a much more robust learning algorithm, that
can be parametrised such that the evolutionary dynamics of a wide set of possible learning strategies can be
explored. I believe such a new model could be both important for theories of language evolution, and much
strengthen the discussed implications for linguistics and biology. Unfortunately, the unsupervised learning
of grammar is a major problem forms a whole project in itself. I have started to work on a new algorithm
for unsupervised grammar learning, that unlike the algorithm in chapter 6 works with a stochastic grammar
formalism (stochastic tree substitution grammars, which should make the learning more robust), includes
semantic representation (based on the lambda calculus, which should make the definition of payoff more
straightforward) and integrates, like Batali (2002), learning with parsing (based on memoised, left-corner
parsing techniques).

Is a serious scientific investigation of language origins feasible? As I discussed at the start of this
thesis, many scholars worry that the problem is underdetermined, that is, that there will always be many
explanations consistent with the scarce empirical facts. I hope to have shown in this thesis that evolution-
ary biology and linguistics bring enough formal constraints on evolutionary explanations to evaluate (and
reject) many current proposals, and to define clear challenges for mathematical and computational mod-
ellers. Whether the problem really is principally underdetermined is an open issue, but I feel there is every
reason to try to meet these challenges and work out rigorous scenarios in the framework sketched.

Ultimately, a detailed understanding of how language evolved will depend on a detailed understanding
of how language works: How can the biological hardware of the brain process language? How does a child
acquire the knowledge of her native language? How does the structure of natural languages depend on
these learning and processing mechanisms? These are formidable challenges. If evolutionary linguistics
can contribute anything to answering these questions, it will prove to be not only a fascinating but also a

worthwhile exercise.
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APPENDIX A

Wright’s Adaptive Topography

Consider the single locus, two alleles model of figure 2.1. Recall the expression for average fitness of the 3 possible genotypes
(equation 2.5):
W= p*waa + 2pqWAaa + ¢°Waa (A1)

Because p + ¢ = 1 this expression can be rewritten as:

W = p*waa+2p(1—p)waa+ (1 —p)*waa
= pQWAA + 2pwaq — 2p2wAa + Waa — 2pWaa + p2waa- (A2)

The derivative of w with respect to p is now (provided the fitness coefficients are independent of p):

dw

E = 2pwas +2wWAq — 4pWAG — 2Waa + 2PWaa
= 2 (prA + Waq — 2PWAq — Waa + pwaa)
= 2(pwaa+ (1 —p)waa — pwaa — (1 — p)Waa)
= 2(pwaa +qWaq — PWAs — Waa)

= 2(p(waa —waa) — ¢ (Waa — WAa)) - (A.3)

Now, recall the expression for the change in p (equation (2.6)), which can in a few steps be rewritten as:

Ap = p'—p
_ plpwaa + qwaa)
~ DRast duae)
_ plpwaa+ qwaa) pw
- w T w
= Z(pwaa+qwao ). (A4)

Inserting equation (A.1) into equation (A.4), and rearranging using the fact that ¢ = 1 — p, gives:

p
Ap = %(prA +qwaq — PPwaA — 2PqWAG — P Waa)

_ P 2 2

= %(prA — P WAA + qWAq — 2PqWAL — ¢ Waa)
p

= S(P(waa —pwaa) +qwae = 2pqwae — *Waa)
p

= %(p(l —P)waa + qWaq — 2PqWAG — ¢*Waa)

_ Pp 2

= %(pquA +qwaq — 2PqQWAG — ¢ Waa)

_ pq

= %(PWAA +WAq — 2PWAG — qWaa)

_ pq

= %(PWAA + WA — PWAG — PWAG — qWaa)

bq
= %(prA + (1 - p)wAa — PWAa — qwaa)
_ Pq
= %(prA +qWAa — PWAQ — qWaa)
pq
= g(p(wAA — WAa) — ¢(Waa — WAa))- (A.5)

Equation (A.5) and (A.3) can be combined into equation (2.9), as is explored in the main text.
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APPENDIX B

Local Optimisation of a Deterministic Lexicon

Distributed hillclimbing:
For g=0to I do
i «— random integer, 0 < i < P
j « random integer, 0 < j < P, j # 1
m «— random integer, 0 < m < M
f « random integer, 0 < f < F
if g is even do
w « quicksuccess-m(S?, R7, U, V, m)
f = Sim]
Sifm] — f
w' « quicksuccess-m(S?, R7, U, V, m)
ifw > w’ do S¥[m] — f
else do
w « quicksuccess-f(S7, R?, U, V, f)
m’ — R'[f]
R'[f] < m
w’ « quicksuccess-f(S7, R?, U, V, f)
if w > w’ do R[f] — m’
quicksuccessm(S, R, U, V, m) «—
Z?:O VIm][R[f]] x U[S[m]][f]

quicksuccessf(S, R, U,V, f) «—
M _o VImI[RIf]] x U[S[m]][f]
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