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Abstract. Compositionality is a fundamental property of natural lan-
guage. Explaining its evolution remains a challenging problem because
existing explanations require a structured language to be present before
compositionality can spread in the population. In this paper, I study
whether a communication system can evolve that shows the preservation
of topology between meaning-space and signal-space, without assuming
that individuals have any prior processing mechanism for composition-
ality. I present a formalism to describe a communication system where
there is noise in signaling and variation in the values of meanings. In
contrast to previous models, both the noise and values depend on the
topology of the signal- and meaning spaces. I consider a population of
agents that each try to optimize their communicative success. The re-
sults show that the preservation of topology follows naturally from the
assumptions on noise, values and individual-based optimization.

1 Major transitions in the evolution of language

Human languages are unique communication systems in nature because of their
enormous expressiveness and flexibility. They accomplish this by using com-
binatorial principles in phonology, morphology and syntax [8], which impose
important requirements on the cognitive abilities of language users. Explaining
the origins of the structure of language and the human abilities to process it is
a challenging problem for linguistics, cognitive science and evolutionary biology.
Mathematical and computational models have been invaluable tools for getting
a grip on this problem [11].

Jackendoff [8] has laid out a scenario for the various stages in the evolution
of human language from primate-like communication, that reflects a growing
consensus and can be summarized with the following “major transitions”:

1. From situation-specific signals (e.g. alarm calls), to signals that are non-
situation-specific but from a closed class;



2. From (1) to an open, unlimited (learned) class of signals and, subsequently,
a phonological combinatorial system;

3. From (1) to the concatenation of signals and, subsequently, the use of order-
ing of signals to convey semantic relations (“compositionality”);

4. From (2) and (3), which constitute the ingredients of a protolanguage, to
hierarchical phrase structure and recursion,

5. From (4) to modern language, with a vocabulary for abstract semantic re-
lations, grammatical categories, grammatical functions and a complex mor-

phology.

Presumably, all transitions have greatly increased the number of distinct
“signs” (signal-meaning pairs) that can be expressed, transmitted, memorized
and learned. Jackendoff argues convincingly that modern languages contain “fos-
sils” of each of the intermediate stages. E.g. the compound noun construction
in English can be viewed as a fossil of stage (3): the meaning of words like
“doghouse” and “housedog” is deducible (but not completely specified) from
the meaning of the component words and the order in which they are put.

Less consensus exists on how the transition from each stage to another could
have happened. Some have argued for extensive innate, language-specific cogni-
tive specializations that have evolved under natural selection (e.g. [1, 8]. This
is an appealing position, in line with dominant “nativist” theories in linguistics
and evolutionary biology. Unfortunately, explanations of this type have gener-
ally remained much underspecified. Jackendoff admits: “I will not inquire as to
the details of how increased expressive power came to spread through a popu-
lation [...]. Accepted practice in evolutionary psychology |[...] generally finds it
convenient to ignore these problems.” ([8], p. 237)

Ignoring this problem is an unfortunate tradition. Understanding how inno-
vations can spread in a population is the essence of any evolutionary explanation,
and a better end-result is neither a sufficient nor a necessary condition for the
spread of innovations. Specifically in the case of language, the spread of innova-
tions is not at all obvious, even if the end-result — when the whole population
has adopted an innovation — is demonstrably better, because of two important
difficulties that arise from the frequency-dependency of language evolution : (i) if
only the hearers benefit from communication, it is not clear why speakers would
evolve as to give away — altruistically — more and more information [15, 21]; (ii)
even if both speakers and hearers benefit, it is not clear how there can be a pos-
itive selection pressure on a linguistic innovation if that innovation appears in
a population that uses a language without it, and, moreover, how that pressure
can be strong enough to prevent it from being lost by drift [6, 3, 21].

A number of researchers have explored the possibilities of general learning
and cognitive abilities and cultural evolution explaining the transitions instead
(see [20, 11] for reviews and references), or, of cultural evolution facilitating
the genetic evolution of linguistic innovations [5, 9]. These models are useful in
clarifying the conditions for the “major transitions”, but face some new diffi-
culties themselves as well: (i) in many cases, the assumed cognitive abilities are
much more language-specific than one would like; (ii) cultural evolution, such as



the progressively better structured languages in the “Iterated Learning Model”
[10, 2], only takes off when there is already some initial, random structure in the
language.

Explaining the evolution of aspects of natural language like combinatorial
phonology and compositionality thus remain challenging problems because both
the genetic and the cultural evolution explanation require a structured language
to be already present in the population before the linguistic innovations can
successfully spread in a population. In this paper, I focus on compositionality:
the property that the meaning of the whole (e.g. a sentence) is a function of the
meaning of the parts (e.g. the words) and the way they are put together. I do not
study the evolution of compositionality itself, but explore a possible route for a
structured language to emerge without the capacity for compositionality present
in the population. That structure is topology preservation between meaning-
space and signal-space, i.e. similar meanings are expressed with similar signals.

In the next section I present a formalism to describe a communication system
where there is noise in signaling and variation in the values of meanings. In
contrast to previous models, both the noise and values depend on the topology
of the signal- and meaning spaces. In section 3 I present a model of a population
of agents that each try to optimize their communicative success under these
circumstances. The results, in section 4, show that the preservation of topology
between meaning-space and signal-space follows naturally from the assumptions
on noise, values and individual-based optimization.

2 A formalism for communication under noisy conditions

Assume that there are M different meanings that an individual might want
to express, and F different signals (forms) that it can use for this task. The
communication system of an individual is represented with a production matriz
S and an interpretation matriz R. S gives for every meaning m and every signal
f, the probability that the individual chooses f to convey m. Conversely, R gives
for every signal f and meaning m, the probability that f will be interpreted as
m. S is thus a M x F matrix, and R a F' x M matrix. Variants of this notation
are used by [7, 14] and other researchers.

In addition, following [13], T assume that signals can be more or less similar to
each other and that there is noise on the transmission of signals, which depends
on these similarities. Further, I assume that meanings can be more or less similar
to each other, and that the value of a certain interpretation depends on how close
it is to the intention. These aspects are modeled with a confusion matriz U (of
dimension F x F') and a value matriz V (of dimension M x M). This notation
is an extension of the notation in [13], and was introduced in [22].

These four matrices together can describe the most important aspects of a
communication system: which signals are used for which meanings by hearers
and by speakers, how likely it is that signals get confused in the transmission,
and what the consequences of a particular successful or unsuccessful interpreta-
tion are. Interestingly, they combine elegantly in one simple expression for the



expected payoff w;; of communication between a hearer ¢ and a speaker j [22]:
wi; = V- (S x (U x RY)) (1)

In this formula, “x” represents the usual matrix multiplication and “.” repre-
sents dot-multiplication (the sum of all multiplications of corresponding elements
in both matrices; the result of dot-multiplication is not a matrix, but a scalar).

A hypothetical example, loosely based on the famous Vervet monkey alarm
calls [17], might make the use of this formalism and measure clear. Imagine an
alarm call system of a monkey species for three different types of predators: from
the air (eagles), from the ground (leopards) and from the trees (snakes). Imagine
further that the monkeys are capable of producing a number (say 5) of different
sounds that range on one axis (e.g. pitch, from high to low) and tahte these are
more easily confused if they are closer together. Thus, the confusion matrix U
might look like in the left matrix of figure 1.

received signal

sent signal ||1kHz 2kHz 3kHz 4kHz 5kHz intentions
1kHz 0.7 02 01 0.0 0.0 interpretations ||eagle snake leopard
U= 2kHz 02 06 02 00 00 V= eagle 09 05 01
3kHz 00 02 06 02 00 snake 02 09 02
4kHz 00 00 02 06 02 leopard 01 05 09

5kHz 0.0 00 01 02 07

Fig. 1. Confusion and value matrices for the monkeys in the example, describing the
noise in signaling and the value of intention—-interpretation pairs in their environment.

Further, although it is obviously best to interpret a signal correctly, if one
makes a mistake, typically not every mistake is equally bad. For example, if a
leopard alarm is given, the leopard response (run into a tree) is best, but a snake
response (search surrounding area) is better than an eagle response (run into a
bush, where leopards typically hide) [17]. Thus the value matrix V might look
something like the right matrix in figure 1.

interpretation
sent signal received signal ||eagle snake leopard
intention J,‘lkHz 2kHz 3kHz 4kHz 5kHz 1kHz 1.0 0.0 0.0
S= eagle 1.0 00 00 0.0 0.0 R= 2kHz 1.0 00 0.0
snake 00 0.0 1.0 0.0 0.0 3kHz 0.0 1.0 0.0
leopard | 0.0 0.0 0.0 0.0 1.0 4kHz 0.0 0.0 1.0
5kHz 00 00 1.0

Fig. 2. Production and interpretation matrices for the monkeys in the example, de-
scribing which signals they use for which situations.

For any given production and interpretation matrix, we can through equa-
tion (1) calculate the expected payoff from communication. Assume a speaker §
with its S? as the left matrix in fig. 2, and a hearer j with its R/ as the right
matrix in that figure. The expected payoff of the interaction between i and j
if the constraints on communications are as in U and V in fig. 1 is, by proper
application of equation (1): w;; = 0.7 x 0.9+ 0.2 x 0.5+ 0.2 x 0.5+ 0.6 x 0.9+
0.2x054+01x054+02x09+4+0.7x0.9=2.33



In this simple example, the matrices U and V are very small, and reflect only
a 1-dimensional topology in both signal and meaning space. The matrices S and
R are set by hand to arbitrarily chosen values. In contrast, in the simulations
of this paper we will consider larger and more complex choices for U and V,
and we will use a hill-climbing algorithm to find the appropriate (near-) optimal
settings for S and R.

3 Distributed hill-climbing

Based on the measure of equation (1), I use a hill-climbing algorithm to improve
the communication. To speed up the simulations, I make the simplification that
the values in the S and R matrices are all either 1 or 0, i.e. they are deterministic
encoders and decoders, which can be shown to always perform better than their
stochastic versions [18, 16]. Hill-climbing in the simulations reported here is
distributed, i.e. I simulate a population (size 400) of agents that each try to
optimize their success in communicating with a randomly selected other agent
(see the author’s website for details). Experiments (not reported here) suggest
that distributed hill-climbing, although orders of magnitude faster, leads to very
similar results as global hill-climbing. In some of the simulations, agents are
placed on a grid (size 20 x 20) and interact only with their direct neighbors
(8, except for agents at the edge which have less neighbors), but also in this
condition very similar results are obtained.

The motivation for this style of optimization is (i) that it is fast and straight-
forward to implement; (ii) that it works well, and gives, if not the optimum, a
good insight on characteristics of the optimal communication system; and (iii)
that it shows possible routes to (near-) optimal communication systems, and in
a sense forms an abstraction for both learning and evolution.

The V and U matrices can be chosen to reflect all kinds of assumptions
about the signal and meaning space. In this paper I vary whether all meanings
are equally valuable (v = 1.0, labeled “homogeneous”), or get assigned a random
value (0.0 < v < 1.0, labeled “heterogeneous”). I further vary whether or not
there is a topology, and if so, of which dimensionality. The diagonal elements of
V are always v and of U always 1.0. Without a topology (“0d”), the off-diagonal
elements in U or V are 0. With a topology, the off-diagonal elements are given
by V(p,q) =v/(1+ D(p,q)) and U(p,q) = 1/(1 + D(p,q)), where D(p, q) gives
the squared Euclidean distance between the positions of the two meanings or
signals 4 and j. In the 1-dimensional condition (“1d”), the position of a meaning
or signal is simply defined as its index. In the 2d condition, the meaning and
signal spaces are 2-dimensional surfaces of size (v M x v/M) or (vF x V/F).
The x-coordinate is then given by the largest integer smaller than the root of
the index: # = int(v/i). The y-coordinate by: y = i modulo x. After these values
are set, the rows of both U and V matrices are normalized.

I monitor the behavior of the model with two measures. The first is the
average payoff, as given by equation (1), averaged over all individuals interacting
with all other individuals, both as speaker and as hearer. The second is a measure



for the degree of topology preservation between the meaning space and the signal
space in the emerging languages. Following [2], I use the correlation (“Pearson’s
") between the distance between each pair of meanings and the distance between
the corresponding signals:
r = correlation (D (m,m') , D (S[m], S[m'])), (2)
m,m’'eM
where S[m] gives the most likely signal used to express m according to S.
For 2-dimensional meaning spaces I also visualize the topology preservation
by plotting all meanings as nodes in a meaning space, and connecting those nodes
where the corresponding signals are (one of maximal 4) neighbors in signal-space.
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Fig. 3. Average payoff (a) and degree of topology preservation (b) for 2 x 108 iterations
under 3 conditions: (1) V:0d homogeneous, (2) V:1d homogeneous; (3) V:0d heteroge-
neous. The maximum average payoffs that are reached depend on the arbitrary chosen
values of the V matrices; hence, only the shapes of the curves are important. Common
parameters are P=400, M=16, F=49, U:1d.

4 Results

Figure 3 shows the average payoff and topology preservation for simulations
under 3 different conditions: (i) homogeneous and no topology in the meaning
space (“V:0d”); (ii) homogeneous and V:1d; (iii) heterogeneous and V:0d. The
results are plotted with a logarithmic x-axis. They show that convergence is more
than 10 times faster if there is a topology in the meaning space. Recall that in
the topology condition, interpretations with a meaning close to the intention
are also rewarded. That fact facilitates establishing conventions regarding which
signals to use for which meanings, because it creates more possibilities to break
the initial symmetry (when no convention is established, every signal-meaning
pair is equally good or bad).

Figure 4 shows the average payoff and topology preservation for 60 simula-
tions where the dimensionality of the signal space is varied, and where hearers



are selected randomly from either the whole population (“dis”), or from one of
the speaker’s 8 neighbors (“spatial”). In all cases, the payoff reaches high levels
(when the signal space is 1d) or intermediate levels (when the signal space is 2d
and the overall noise-level is consequently higher because each signal has more
neighbors). Also, in all cases the topology preservation reaches high levels (when
the dimensionalities of meaning and signal space match) or intermediate levels
(when the dimensionalities mismatch).
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Fig. 4. Average payoff (a) and degree of topology preservation (b) after 5 x 107 it-
erations for different parameters. Error-bars indicate standard deviations. Common
parameters are P=400, M=36 and V:2d heterogeneous.

The emerging communication systems are visualized in fig. 5 and 6 and can
be summarized with the following properties:

Specificity: every meaning has exactly one signal to express it and vice versa
(i-e. no homonyms, and no real synonyms: if different signals have the same
meaning they are very similar to each other).

Coherence: all agents agree on which signals to use for which meanings, and
vice versa. Specificity and coherence are also found in “language game” models
where there is no noise on signaling (e.g. [14, 19]).

Distinctiveness: in the S matrices, the used signals are maximally dissimilar
to each other, so that they can be easily distinguished (compare figure 5a, at the
start of the simulation, with 5¢, at equilibrium). In the R matrices, clusters of
neighboring signals all are interpreted as the same meaning. Typically, the most
central signal (except at the edges) in such a cluster is the one that is actually
used by the S matrix (compare figure 5¢ with 5d). Distinctiveness is also found
in the “imitation game” [4], where no meanings are modeled.

Topology preservation: if there is a topology in both the meaning- and signal-
space (as determined by V and U), similar signals tend to have similar meanings
[22]. This preservation is not perfect (there is one major irregularity and sev-
eral minor ones in the signal-meaning mapping of figure 5e and f. The topology
preservation, according to equation (2), is 7 = 0.915), but in all simulations per-
formed it is surprisingly high. “Bad” solutions, such as the S and R of figures 5c
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Fig. 5. (a)-(h) Examples of S and R matrices from the simulations of figure 3. For easy
comparison, the R matrices are transposed so that in all matrices meanings differ on
the vertical axis, and signals on the horizontal axis. Between the matrices the diagonal
values of the V matrix are plotted, where the diameter of a circle corresponds to value
of the corresponding meaning. Common parameters are P=400, M=16, F=49.

and d (7 = —0.073), are stable once established in the population, but have a
much smaller basin of attraction. In the case of a two-dimensional meaning space,
we can draw plots like figures 6a-d, which show that the topology is almost per-
fectly preserved if the dimensionalities of the meaning- and signal-spaces match
(6a), although it is skewed if different meanings receive very different values



(6b). But even if the dimensionalities do not match, there is a strong tendency
to preserve topology as well as possible (6¢ and d).

Valuable meanings first: When one analyzes the intermediate stages between
the random initialization and the equilibrium solutions (not shown here; see au-
thor’s website), it becomes clear that with a heterogeneous V valuable meaning-
signal pairs get established first, and change little afterward.

Meanings sacrificed: Finally, when the V matrix is heterogeneous (figure 6b
and d), or there is a dimensionality-mismatch (figure 6¢ and d), one can ob-
serve that meanings with very low value are sacrificed for the benefit of robust
recognition of more valuable meanings (a similar observation was made in [13]).
These sacrificed meanings “deliberately” get expressed with a signal that will be
interpreted with a meaning that is very close.
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Fig. 6. Topology preservation at equilibrium in 4 simulations with 1d and 2d U matri-
ces, and homogeneous and heterogeneous 2d V matrices. Nodes are meanings (diame-
ters correspond to value), edges connect neighbors in signal space (several signals can
map to a single meaning, such that nodes can have many neighbors; some meanings are
not expressed, and the corresponding nodes are not connected). Common parameters
are P=400, M=16, F=49.

5 Conclusions

In this paper, I have shown that from simple assumptions about topologies in
meaning- and signal-space, and individual-based optimization, communication
systems can arise that show a structured mapping from meanings to signals. In a
population where such a language is spoken, the fundamental new phenomenon
of compositionality can presumably much more easily evolve.

There is no space here to explore the many connection between these simu-
lations and the fields of Information Theory [16] and Evolutionary Game The-
ory [12]. In a sense, the matrices of figure 5 and 6 describe evolutionary stable
strategies, under the constraints of communication over a noisy channel. These
connections, and the analytic proofs that can be worked out in these frameworks,
will be the topic of future work.
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