
J. Kelemen and P. Sosík (Eds.): ECAL 2001, LNAI 2159, pp. 391–400, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The Difficulty of the Baldwinian Account
of Linguistic Innateness

Hajime Yamauchi

Language Evolution and Computation Research Unit,
Department of Theoretical and Applied Linguistics,

The University of Edinburgh, Edinburgh, UK
hoplite@usa.net

Abstract. Turkel [16] studies a computational model in which agents try to es-
tablish communication. It is observed that over the course of evolution, initial
plasticity is significantly nativised. This result supports the idea that innate lan-
guage knowledge is explained by the Baldwin effect [2][14]. A more biologi-
cally plausible computational model, however, reveals the result is unsatisfac-
tory. Implications of this new representation system in language evolution are
discussed with a consideration of the Baldwin effect.

1   Introduction

For decades, the innate capacity of language acquisition has been one of the central
issues of the study of language. How heavily does language acquisition rely on innate
linguistic properties? This question, often called the ‘nature & nurture problem’,
brings endless debates in linguistics and its adjacent fields. Indeed, a number of phe-
nomena that occur during language acquisition are quite puzzling when one tries to
determine what parts of language acquisition are innate or attributed to postnatal
learning. An intensive array of studies has gradually revealed that this twofold struc-
ture of language acquisition never appears as a clear dichotomy. Rather, the intriguing
interaction between innate and learning properties of language acquisition seems to
require a new avenue of linguistic studies.

1.1   The Baldwin Effect and Language Evolution

James Mark Baldwin [2] assumed that if an individual is capable of acquiring an
adaptive behavior postnatally, addition of such a learning process in the context of
evolutionary search potentially changes the profile of populational evolution; the
learning paves the path of the evolutionary search so that evolution can ease its burden
of search. In addition, this special synergy of learning and evolutionary searches has a
further effect, known as ‘genetic assimilation’ [18]. This is a phenomenon in which “a
behavior that was once learned may eventually become instinctive” [17].
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Then this learning-guided evolution scenario, known as the Baldwin effect, possibly
provides a strikingly attractive perspective to the nature-nurture problem in linguis-
tics. It has been attested by a number of computer simulations in the field of computer
science that if an environment surrounding the population is prone to shift to a new
environment, some part of the behavior is better preserved for learning. If those envi-
ronments do not share any commonality, an individual who relies in every aspect of
behavior on learning will be the most adaptive. However, if those environments hold
some universality, an individual who has partially nativised and partially learned be-
havior will be the most adaptive; for example, the nativised part of the behavior covers
the universality and the learned part of the behavior covers the differences. Consider
this in the case of language evolution. The whole human population is well divided
into a number of sub-populations in many aspects; races, cultures, and so forth.
Boundaries of language diversities often coincide with those of the sub-populations.
Then, for children, it is a great advantage to keep some part of the linguistic knowl-
edge for learning while the other is innately specified. This helps the child even if he is
reared in a different linguistic society from his parents; he still may acquire the soci-
ety’s language. Therefore, the nature-nurture problem in linguistics can now be con-
sidered in the context of the evolution of language. Universality of the world’s lan-
guages may correlate to the evolution of nativised linguistic knowledge while linguis-
tic diversities are correlated to learning. Since this universality-nature, diversity-
nurture correlations are perfectly compatible with Chomsky’s Language Acquisition
Device theory [4], and as the Baldwin effect and the LAD theory both involve genet-
ics, the study of the Baldwin effect in the domain of LAD becomes particularly ap-
pealing.

The Baldwin effect in linguistics may also provide an attractive solution for a long-
standing problem. Preliminary studies suggest that language evolution is out of the
scope of natural selection mainly because of its dysfunctional nature. For those re-
searchers, language evolution is a consequence of exaptation or a big leap in evolution
[13]. This no-intermediate scenario would be, however, explicable by natural selection
when it is guided by learning since learning can smooth the no-intermediate landscape.
Subsequently, it has been a popular idea that the Baldwin effect is a crucial factor in
the evolution of language (e.g., [14][16]).

1.2   The Principles and Parameters Approach

Given its logical complexity, researchers agree that linguistic input is the most impor-
tant ingredient of language acquisition. Counter-intuitively, however, such vital lin-
guistic input employed to construct knowledge of a language is importantly often
insufficient [3]. In other words, children have to acquire their target languages under
qualitatively and quantitatively insufficient circumstances. Absence of “Negative
Evidence” in language acquisition is one of the clearest examples of this. As a part of
the insufficiency, usually children are not provided negative feedback for their gram-
matical mistakes while such information is vital for any second language learners.
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To reduce this complication, Chomsky has claimed some special synergy of innate
linguistic knowledge and the acquisition mechanism is required. The basic concept of
his original formulation of the nature of language acquisition, called Principles &
Parameters theory,  [6] is as follows. In the P&P approach, two types of limited innate
linguistic knowledge are accessible, called ‘principles’ and ‘parameters’. Principles
are universal among all natural languages and considered as genetically endowed.
Parameters are partially specified knowledge which are encoded in binary parametric
values. Setting of each parameter is triggered by post-natal linguistic experiences. We
can conceive the possible mechanism of the LAD as an incomplete learning device in
which certain binary information is missing

2   Implementation of the LAD in Dynamic Systems

The combination of genetically hardwired features and postnatal learning processes in
the Baldwin effect is perfectly compatible with Chomsky’s P&P theory of the LAD.
Together with its “genetic assimilation” process [18], the Baldwin effect may shed
light on the nature of the current relationship between innateness and postnatal learn-
ing in language acquisition.

Precisely because of this compatibility it is crucial to pay careful attention to the
implementation of the P&P approach in a genetic search. Given an assumption that the
LAD is one of the most elaborated cognitive abilities, it is highly unlikely that such
ability is DIRECTLY coded in the genes. Rather it is more plausible to assume that
linguistic innateness relies on some degree of polygenic inheritance [1].

More specifically, principles and parameters are not coded by a simple concatena-
tion of genes. Rather a combination of those genes expresses one principle/parameter.
This genetic mechanism is called “epistasis”. Epistasis is a situation in which the phe-
notypic expression of a gene at one locus is affected by the alleles of a gene at other
loci. Pleiotropy, in a very crude form, means that one gene contributes to express more
than one phenotypic character. Thus, one gene in the model will affect an expression
of one phenotypic trait, but also will determine other traits.

In the next section, we examine the effect of the two phenomena in the study of the
evolution of the LAD.

3   The Experiments

To test the effect of epistasis and pleiotropy on the Baldwin effect, we conducted two
different types of simulations. The basic part of our model is adapted from the study of
Turkel [16] to appear). First, an exact replication of Turkel’s simulation was tested.
Then modified versions were tested. In those modified simulations, Stuart Kauffman’s
[11] NK-Landscape model was introduced to implement epistasis and pleiotropy. The
specific explanation of NK-Landscape in these simulations is given later. Here the
basic structure of the model is explained. In Kauffman’s NK-Landscape model, unlike
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ordinary GA models where one gene expresses one trait of a phenotype, a SET of
genes determines one trait of a phenotype. In other words, one specific part of the
phenotype (a phenotype consists of 12 traits in this simulation) may be decided by two
or more distinctive genes. How many genes are required to express one trait is speci-
fied in the value of K. The values of K are always between 0 and N-1 where N desig-
nates the number of the genes. Dependency of genes is either contiguous or non-
contiguous. In the case of contiguous dependency, a gene forms a concatenation with
other adjacent genes. Note that in the contiguous dependency case, which we employ
in this paper, both ends of a chromosome are considered as neighbors of each other so
that K-dependency of phenotypes is available in all loci.

In terms of evolutionary search, the increase of the value of K toward N means that
the fitness landscape becomes increasingly rugged. In a rugged landscape, evolution-
ary search tends to be trapped in local optima. The correlation between the fitness and
similarity of genotypes (typically measured by Hamming distance) is also kept low in
the landscape. Therefore, an identical phenotype of two agents does not guarantee for
them to have an identical genotype. In a simulation using this model, a look-up table is
created at the beginning of the simulation. The size of tables corresponds to N times 2K

since each allele is affected by 2K possible combinations of other genes.
In the next section, we look at the result of Turkel’s original study, then make a

comparison to our obscured phenotype model. All results of these simulations are
averages of 100 runs.

3.1   Simulation1: Replication of Turkel

Based on Hinton & Nowlan’s simulation [10], Turkel conducts an experiment that
holds a populationally dynamic communication system. While Turkel mostly adopts
Hinton & Nowlan’s genetic encoding method (fixed, and plastic genes), he provides
an external motivation for it according to P&P approach. Turkel considers those fixed
genes —0s and 1s— as ‘principles’, and the plastic genes —?s— as ‘parameters’.
The algorithm of Turkel’s simulation is quite straightforward and mostly intuitive.
Most parts of the algorithm are quantitatively the same as Hinton & Nowlan; initially
200 agents are prepared. The ratio of 0:1:? In Turkel is different in his four different
configurations of simulations —2:2:8 (High-plasticity), 4:4:4 (Equal ratio), 3:3:6
(Original), and 6:6:0 (No-plasticity)— respectively. Distribution of these genes in an
individual agent is randomly decided initially. In the initial population, generally there
is no case that two agents hold the same genotype. The reproduction process includes
one-point crossover with 20% probability. Considering the spirit of GA, it is some-
what odd but mutation is not included [10] mutation was not included also). Two
agents (one is selected from 1st agent to 200th in order, and its partner is randomly se-
lected) compare their genotype. If those two agents’ genotypes are exactly the same
pattern including loci of ?s, the first-chosen one is assigned 2 fitness points. If the
agents do not exactly match but those no-matching alleles have 0-? Or 1-? Combina-
tions, they are considered as potentially communicable. Then they are sent to learning
trials. By changing all ?s into either 1s or 0s randomly, the two agents attempt to es-
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tablish communication within 10 trials. If the agents succeed to possess exactly the
same phenotype within ten trials, communication is considered to be established. In
each trial, the agents reset their phenotype and express new phenotypes from their
genotypes. During the learning process, learning cost is introduced implicitly. The size
of decrement per trial is 1 from the highest fitness value of 12. The range of the fitness
values is, thus, from 12 (immediate success) to 1 (complete failure). If two agents
have any 1s and 0s combination in the same allele, they are assigned the fitness value
of 1 since it would be impossible to establish communication.

In our replication experiment, we choose Turkel’s “Original” configuration where
the number of ?s is 6 and the number of both 1s and 0s are 3 each.
The result obtained from our simulation was, as expected, almost identical to Turkel’s
original simulation. Fig. 1 shows the average number of 0s, 1s, and ?s in the evolved
population.

Fig. 1.

In the figure, a steep descent of ?s is observable in an early period. Once the popu-
lation reaches the “plateau” condition, no further change takes place. On the plateau,
virtually all agents have one unified genotype. The reason for this is the lack of muta-
tion; the one-point-crossover reproduction process does not produce any turbulence
under the unified situation.

It is often the case that before the Baldwin effect eliminates all plastic genes, a
population reaches this plateau. This was especially salient in his preliminary studies
where populations were more plastic. In those situations, the Baldwin effect did not
have enough space to enjoy its power; before doing so, the populations typically con-
verged to one genotype. Thus, at the end of each run, a comparatively large number of
plastic genes remained, although the number of plastic genes was fewer than in the
initial populations in almost all cases. To make it clearer, consider the following
points. First, when the entropy of genotypes in a population is high (as in an initial
period), high plasticity is advantageous; the more plastic, the more chance an agent
has of proceeding to the learning trials. On the contrary, a fixed agent suffers great
difficulty in this kind of situation; the fitness value is most likely 1 since the chance of
exact match is extremely slim.
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Too much plasticity cannot increase the actual fitness value either. Although highly
plastic agents can often potentially communicate with other agents, the actual prob-
ability of establishing communication is quite low as the number of possible 0 and 1
combinations increases exponentially.

If the agent fails to establish a communication, the fitness value is 1. Thus, although
it is somewhat contradictory, the best strategy to maximise fitness value is to keep the
number of parameters as small as possible. It effectively means increasing the chance
of establishing communication within 10 learning trials. To do this, it is necessary to
reduce the number of plastic genes —genetic assimilation. Genetic assimilation, how-
ever, increases the number of fixed genes. Since the penalty for discrepancy of fixed
genes on the same locus is most fatal (one Hamming distance is enough), this elimi-
nation process has to be done by increasing the identical genotype except in the loci of
plastic genes. In other words, low plastic agents have to make sure that they meet
either agents who have exactly the same genotype or all-the-same-but-partially-plastic
agents. This turns out to be a selective pressure toward a uniform genotype. Therefore,
genetic assimilation must intrinsically go hand in hand with convergence to identical
genotypes. Importantly, however, these two processes are quasi-independent proc-
esses; although the force of both pressures comes from natural selection through the
reproduction process, genetic assimilation is required from the learning trial per se
while the convergence pressure comes into the place by more general requirement,
“parity”. As noted above, when two agents are compared their pre-learning phenotype
(= genotypes), discrepancy of principles is strongly malign —even with one discrep-
ancy in their principles, the two agents have no possibility of establishing communi-
cation— while parameters always match with any principles or other parameters. As
long as any loci that have principle-principle pairs match, an agent can have any num-
ber of parameters on any locus; although a lot of parameters indeed decrease the
chance of communication but never reduce the chance completely while discrepancy
between principles extinguishes it. In this regard, parameters are more benign than
principles. Thus the pressure of convergence is generally greater than that of genetic
assimilation. Since the pressure of convergence drives the agents to align their geno-
types, consequently the population typically converges into a single genotype before
complete genetic assimilation takes place. This is the reason why when the population
is highly plastic, the absolute number of plastic gene remains higher than in a popula-
tion.

3.2   Simulation2: Implementation of NK-Landscape Model

Our next simulations incorporate the NK-Landscape models while most of Turkel’s
algorithms are untouched. A brief description of the simulation is given.

First, we determine the number of gene dependency regarding the expression of the
phenotype. K designates the number. The value of K is fixed within a simulation; the
same value is always applicable to any locus (this means that at any locus, the degree
of gene dependency is not affected), any agents, and any generation. Since the range
of K is from 2 to N-1, the maximum value is 11 (N=12) in these simulations.
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Then, we prepare 200 agents. All agents consist of 12 genes. This time, instead of
the three types of genes —0, 1, ?— only two types of genes exist, namely 0 and 1.
Thus, at this level, there is no plasticity. These genes are equally shuffled into the 12
loci. The number of the two types of genes are the same in one agent, 6 each. These 12
genes are randomly distributed into 12 loci.

 Thirdly, a look-up table is generated. This table correlates a genotype and pheno-
type. Below, an example is provided (Table 1).

Table 1.

000 001 010 100 011 101 110 111

Locus1 0 ? 1 1 ? ? 0 ?

Locus2 ? ? ? 0 1 1 0 ?

Locus12 ? 1 1 0 ? ? 0 ?

The number of rows corresponds to the number of loci —12. The number of column
corresponds to the number of possible combinations of genes. If K=3, the number of
column is 23. To project a principle/parameter in the first position of a phenotype, we
have to check the first row –“Locus1”. If three genes from the first locus are 0, 0, 1,
respectively in the genotype, we put ? in the first position of the phenotype (the cell in
the table is emphasized). To project a principle/parameter in the second position of the
phenotype, the second row is referred to. At the end of this projection process, the
phenotype contains 12 principles/parameters in total. This is compatible with Turkel’s
genes. To make the simulations comparable to the former simulation, the ratio of 0, 1,
and ? is set as 1:1:2. This is done by controlling the ratio of 0, 1, ? in look-up tables.
Once this process is done, the rest of the simulation is exactly the same as Turkel’s.

Although all possible values of K are tested, here we pick up three of the results;
K=2, K=7, and K=11. All are in Fig. 2. First, we look at the result of K=2. The graph
shows that genetic assimilation is still saliently observed.
6 parameters at the initial population are eliminated up to 2.9 (recall all results are an
average of 100 runs) around 90th generation. This is one parameter more than the
original simulation. Correspondingly, the position of the “plateau” shifts slightly to the
right hand side. This means that slightly more generations are required to reach a sin-
gle genotype. Secondly, K=7 is tested. The decrescent curve of the parameters is much
shallower than that of K=2. As a consequence, the left edge of the plateau shifts more
to the right. At this point, no decrement is observed. Rather, a small increase of plas-
ticity is observed. This is because the increase of plasticity may improve the chance to
obtain the fitness value of 2 or more. On the other hand, decrease of parameters is a
tougher demand since it has to come with genetic convergence; a parameter cannot be
replaced with 1-principle or 0-principle randomly; it must be par with other agents.
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Fig. 2.

 Fig. 3.

Fig. 3 shows the relationship between the value of K and the number of parameters
at the end of each simulation. The consequence is crystal clear —as the value of K
increases, more parameters remain in the population.

From these, it is apparent that the Baldwin effect is progressively weakened as the
genetic dependency increases. In other words, the Baldwin effect is highly sensitive to
epistasis and pleiotropy.

The results shown above beautifully reveal how epistasis and pleiotropy affect the
Baldwin effect in populational dynamic communication. These results strongly sug-
gest that parameters are hardly eliminated, even if keeping high plasticity may be a
costly option. From these, it is now clear that under these circumstances, the scenario
of the evolution of the LAD may severely undermine its elimination of parameters.
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4   Conclusion

The experiments show that pleiotropy and epistasis effectively dampen the emergence
of the Baldwin effect in the dynamic communication system. Although the modifica-
tion is simple and quite straightforward regarding its technical complexity, the actual
outputs are radically different. This has to be taken as a serious caution for our future
studies. In sum, epistasis and pleiotropy in genes for the LAD, thus, may require a
radical re-interpretation of the scenario of the evolution of the LAD.

However, there are some points we should improve the models to make a firmer
claim. For example, in the simulations presented here, during the communication
period, agents convert their ? characters to either 0 or 1 characters. We interpret this
attempt to establish communication as learning. Strictly speaking, it is difficult to
consider it as learning in a linguistic sense. In the simulations, learning takes place
without any input from previous generations or even from the same generation. Usu-
ally, language acquisition takes place with linguistic inputs in a linguistic community.
Adults’ utterances are learners’ primary linguistic inputs. When the learners become
adults, their speeches become the next generation’s inputs. Thus, linguistic inputs
generally come down from previous generations to next generations. Such inputs are
independent from genetic inheritance. Furthermore, the process does not include any
update process of an agent’s internal state.

Recently, more and more scholars have begun to reconsider the exact mechanism of
the Baldwin effect. Most of the studies of the Baldwin effect itself share their roots in
either Waddington's studies in vivo or Hinton & Nowlan's computer simulation in
silico. Although the Baldwin effect is alleged to be observed in both studies, it is also
true that the actual mechanisms for the Baldwin effect working in these studies are
quite different. As Simpson [15] and Depew [9] argue, the Baldwin effect is easily
dissected into its parts, and possibly the effect is simply just the sum of these parts. If
we strictly follow this point of view, there is no need to invoke the sum as "a new
factor in evolution [2]". In his exploration of language evolution, a biologist T. Dea-
con [8], however, has recently proposed a new type of mechanism of the Baldwin
effect. This new mechanism, called "niche construction" has a self-organizing, emer-
gent aspect in its core. This self-organizing, emergent type of mechanism seems to be
particularly attractive for the case of language evolution, as it might provide a solution
by which language evolution can circumvent the problem of pleiotropy and epistasis
raised here.
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