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Agents in the process of bootstrapping a shared lexicon face immense uncertainty. The problem
that an agent cannot point to meaning but only to objects, represents one of the core aspects of
the problem. Even with a straightforward representation of meaning, such as a set of boolean
features, the hypothesis space scales exponential in the number of primitive features. Further-
more, data suggests that human learners grasp aspects of many novel words after only a few
exposures. We propose a model that can handle the exponential increase in uncertainty and
allows scaling towards very large meaning spaces. The key novelty is that word learning or
bootstrapping should not be viewed as a mapping task, in which a set of forms is to be mapped
onto a set of (predefined) concepts. Instead we view word learning as a process in which the
representation of meaning gradually shapes itself, while being usable in interpretation and pro-
duction almost instantly.

1. Introduction

Word learning is commonly viewed as a mapping task, in which the learner has
to map a set of forms onto a set of concepts (Bloom, 2000; Siskind, 1996). While
mapping might seem more straightforward than having to shape word meanings,
it is in fact more difficult and lies at the root of many problems.

The view that word learning corresponds to mapping forms onto concepts is
commonly accompanied by claims that a learner is endowed with several biases
(constraints) that guide him toward the right mapping (Markman, 1989). Whether
these constraints are language specific is yet another debate (Bloom, 2001). While
this approach recognises the uncertainty it largely circumvents it by invoking these
constraints. Another possibility is to propose some form of cross situational learn-
ing where the learner enumerates all possible interpretations and prunes this set
when new data arrives. This second approach would seem to have a problem ex-
plaining fast mapping, since it takes a large amount of time before the initial set
of hypotheses can be pruned to such an extent that it becomes usable.

To be clear, we are not unsympathetic to the idea of word learning constraints,
but we believe that it is only when viewing word learning as mapping that the
constraints become as inescapable as they seem. In this publication we try to



show that by trading the mapping view for a more organic, flexible approach of
word learning (in line with Bowerman and Choi (2001)), the constraints become
less cardinal. Moreover, the enormous diversity found in human natural languages
(Haspelmath, Dryer, Gil, & Comrie, 2005; Levinson, 2001) and the subtleties in
word use (Fillmore, 1977) suggest that language learners can make few apriori
assumptions and even if they would, they still face a towering uncertainty when
homing in on more subtle aspects of word meaning and use.

Some developmental psychologists emphasize human proficiency in interpret-
ing the intentions of others (Tomasello, 2003) or our endowment with a theory of
mind (Bloom, 2000). While being supportive of these ideas and even taking some
for granted in our experimental set-up, it is important to understand that intention
reading is no telepathy. It might scale down the problem, but not entirely solve
it. Any of these skills have to be accompanied by a model capable of coping with
immense uncertainty in large hypothesis spaces.

Siskind (1996) and others propose models based on cross situational learning
to bootstrap a shared lexicon. Unlike the current experimental setup their experi-
ments do not address an exponential scale-up in the number of hypotheses. Other
models such as De Beule and Bergen (2006), Steels and Loetzsch (2007), Steels
and Kaplan (2000) in different ways allow exponential scaling but tend to keep
the hypothesis space small. For example the experiments in De Beule and Bergen
(2006) are limited to 60 objects represented by 10 distinct features (there called
predicates). These papers, however, do not address scale-up and therefore do not
claim to handle it.

2. Overview of the model

Agents engage in series of guessing games (Steels, 2001). A guessing game is
played by two agents, a randomly assigned speaker and hearer, sharing a joint
attentional frame (the context). The speaker has to draw the hearer’s attention to a
randomly chosen object (the topic) using one or more words in its lexicon. After
interpretation, the hearer points to which he believes the speaker intended. In case
of failure, the speaker corrects the hearer by pointing to the topic.

To investigate referential uncertainty, which is the problem that an agent can-
not point to meaning but only to objects, we must ensure that multiple equally
valid interpretations exist upon hearing a novel word. It follows that explicit
meaning transfer (i.e. telepathy) or a non structured representation of meaning
are to be avoided. Even with an elementary representation of meaning such as
sets of primitive features the number of possible interpretations scales exponen-
tial in the number of features, given that word meaning can be any subset of these
features®. For example, upon hearing a novel word, sharing joint attention to an

2We do not claim such a representation to be realistic, but we believe it is the minimal requirement
that suits our current needs for investigating the problem of referential uncertainty.
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Figure 1. Left an association between form and meaning as in common in many models of lexicon
formation, scoring the complete subset. Right the refinement suggested in the proposed model, which
is related to fuzzy sets and prototype theory.

object represented by 60 boolean features, and having no constraints to favor par-
ticular interpretations the intended meaning could be any of 26° = 1.153 x 108
possibilities. Confronted with numbers of such magnitude one wonders how a
learner, given a stable input language, ever achieves in finding out the intended
meaning, let alone a population of agents bootstrapping, from scratch, a shared
lexical language. Word learning constraints seem to be the only viable way out.

With the number of hypotheses per novel word well over the billions a learner
cannot enumerate these possibilities and score them separately, neither can he
make series of one-shot guesses and hope for the best since finding the correct
meaning would be like winning in lottery.

The first step towards a solution is to include uncertainty in the representation
of word meaning itself. This is done by keeping an (un)certainty score for every
feature in a form-meaning association instead of keeping only one scored link per
word as in for example (De Beule & Bergen, 2006) (see figure 1). This repre-
sentation is strongly related to both fuzzy set theory (Zadeh, 1965) and prototype
theory (Rosch, 1973). A crucial difference with traditional cross situational learn-
ing approaches is that this representation avoids the need to explicitly enumerate
competing hypotheses.

The key idea during language use is that a weighted similarity can be cal-
culated between such representations. In the model we use a weighted overlap
metric using the certainty scores as weights. In short, shared features increase
similarity and the disjunct parts decrease it. Employing this similarity measure,
production amounts to finding that combination of words of which the meaning
is most similar to the topic and least similar to the other objects in the context.
This results in context sensitive multi-word utterances and involves an implicit
on-the-fly discrimination using the lexicon.

The most important corollary of using a similarity measure is the great flex-
ibility in word combination, especially in the beginning when the features have
low certainty scores. Thanks to this flexibility the agents can use (combinations
of) words that do not fully conform the meaning to be expressed, resembling what
Langacker (2002) calls extension. The ability to use linguistic items beyond their



specification is a necessity in high dimensional spaces to maintain a balance be-
tween lexicon size and coverage (expressiveness).

Interpretation amounts to looking up the meaning of all uttered words, taking
the fuzzy union of their features and measuring similarity between this set and
every object in the context. The hearer then points to the object with highest
similarity, again making interpretation flexible.

Flexible use of words entails that in a usage event some parts of the meanings
are beneficial and others are not. If all features of the used meanings are beneficial
in expressing the topic it would not be extension but instantiation, which is rather
the exception than the rule. As Langacker (2002) puts it, extension entails “strain”
in the use of the linguistic items which in turn affects the meanings of the used
linguistic items. This is operationalised by slightly shifting the certainty scores ev-
ery time a word is used in production or interpretation. The certainty score of the
features that raised the similarity are incremented and the others are decremented
resembling the psychological phenomena of entrenchment and its counterpart ero-
sion. Features with a certainty score equal or less than 0 are removed, resulting
in a more general word meaning. In failed games the hearer adds all unexpressed
features of the topic to all uttered words, thus making the meanings of those words
more specific.

Combining similarity based flexibility with entrenchment and erosion, word
meanings gradually shape themselves to better conform future use. Repeated over
thousands of language games the word meanings progressively refine and shift,
capturing frequently co-occurring features (clusters) in the world, thus effectively
implementing a search through the enormous hypothesis space, capturing what is
functionally relevant.

Word invention is triggered when the speaker’s best utterance cannot discrim-
inate the chosen topic. To diagnose possible misinterpretation the speaker inter-
prets his own utterance before actually uttering it, which is crucial in many models
(Batali, 1998; Steels, 2003). Given that his lexicon is not expressive enough, the
speaker invents a new form (a random string) and associates to it, with very low
initial certainty score, all so far unexpressed features of the topic. Because word
meanings can shift, it might not be necessary to introduce a new word. Chances
are that the lexicon needs a bit more time to be shaped further. Therefore the more
similar the meaning of the utterance is to the topic, the less likely a new word will
be introduced.

The hearer, when adopting novel words, first interprets all known words and
associates, again with very low certainty scores, all unexpressed features with all
novel forms.

3. Experimental results

In the multi-agent experimental setup we use a population of 25 agents endowed
with the capacities described in the previous section. Machine learning data-sets
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Figure 2. Left shows the performance of the proposed model on a small world (averaged over 5
runs), right for the much larger world (averaged over 3 runs) . Although the number of hypotheses
scales exponential the agents attain high levels of communicative success and lexicon coherence while
keeping reasonable lexicon size.

are used to obtain the large meaning spaces required to verify the claim that the
model can scale to large hypothesis spaces. We use both a small data-set contain-
ing only 32 objects represented by 10 boolean features with context sizes between
4 and 10 objects, and a much larger data-set comprising 8124 objects represented
by a total of 100 distinct boolean features and context sizes between 5 and 20
objects (Asuncion & Newman, 2007). This larger data-set confronts the agents
with incredible amounts of uncertainty but the the results (figure 2) show that the
model can manage this. The following measures are depicted:

Communicative Success (left axis): A running average (window of 500) of
communicative success as measured by the agents. A game is considered
successful if the hearer points to the correct topic. It is therefore different
from communicative accuracy as in Vogt and Divina (2007), Siskind (1996).

Lexicon Size (right axis): Represents the average number of words in the lexi-
cons of the agents.

Lexicon Coherence (left axis): Measures the similarity (using the same similar-
ity measure the agents use) between the lexicons of the agents. Coherence
of 1 indicates that for all words all agents have the exact same features asso-
ciated. It makes sense to be lower than 1 since it is not required to have the
exact same meanings to be able to successfully communicate. The agents
will not be aware of their (slightly) different meanings until a particular
usage event confronts them with it.

As a comparison we ran a model that does not score the individual features, but
instead keeps a score for the meaning as a whole as in figure 1 (left). It does not
employ a similarity measure and updates scores based on communicative success
instead of the more subtle entrenchment and erosion effects. Results show (figure
3) that the population can bootstrap a shared lexicon for small meaning spaces but
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Figure 3. Both graphs show the performance of a model that doesn’t score the individual features
and does not use a similarity measure. Left for the small meaning space, right for the larger space. The
model achieves success on the small one, but fails to scale to the larger meaning space.

cannot handle the scale up to the larger world. Also note that even in the small
world the agents using this second model reach only 20% communicative success
by game 20000 while with the proposed model they have already attained close to
99% communicative success by then.

Data from developmental psychology suggests that human learners can infer
aspects of the meaning of a novel word after only a few exposures. The graphs
in figure 2 do not give us any insight on these issues as they show the average of
a population in the process of bootstrapping a lexicon. By adding a new agent
to a population that has already conventionalised a shared lexicon we are able
to shed light on the behaviour of the proposed model regarding this issue. We
use the large world (8124 objects, 100 features), a stabilised population with an
average lexicon size of some 100 words and measure for a newly added agent
the average success in interpretation in relation to the number of exposures to the
word (see figure 4). The graph shows the average success in interpretation (i.e. the
new agent pointed correctly) of all words, in relation to the number of exposures.
Due to the way success is measured the first exposure is always a failure and so
average success is zero. Quite perplexing, on the second exposure a whopping
64% of the novel words are used in a successful interpretation. Further exposures
gradually improve this result and by the tenth exposure 70% of the words result in
a successful interpretation. This is the more baffling taking into account that the
other members of the population are unaware they are talking to a new agent, and
thus use multi-word utterances, including difficult to grasp words.

4. Conclusion

The proposed model tries to capture and bring together some insights from cogni-
tive linguistics (Langacker, 2002) and other computational models (Batali, 1998;
Steels & Belpaeme, 2005; De Beule & Bergen, 2006), while taking for granted in-
sights from developmental psychology (Tomasello, 2003) and criticising assump-
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Figure 4. The graph shows the performance in interpretation of one new agent added to a stabilised
population. Quite perplexing the average success in interpretation at the second exposure to a novel
word is already 64%.

tions made by others (Bloom, 2000; Markman, 1989). The main strength of mod-
elling is that it can operationalise ideas and so our main goal is in showing that a
more organic view on word learning combined with flexible language representa-
tion, use and alignment results in a powerful idea, both for scaling to very large
hypothesis spaces and arriving at operational interpretations after very few expo-
sures. Although our model can be interpreted as Whorfian this is only so if you
assume that word meanings and concepts are one and the same. We did not make
this assumption and do not take a position regarding the relation of concepts and
word meanings.
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