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The study of language evolution has revitalized recently due to converging interests 
from many disciplines. Computational modeling is one such fruitful area. Various as-
pects of language evolution have been studied using mathematical modeling and simu-
lation. In this paper we discuss several computational studies in language change and 
language emergence. 

1. Introduction 

The origin and evolution of language, the most distinctive aspect of our species, has in-
trigued the human mind since ancient times. Earlier speculations on these questions were sel-
dom fruitful because there was virtually no empirical foundation to build upon. It is well known 
that the linguistic societies in Paris and London banned such discussions in the 19th century. By 
the middle of the 20th century1, however, many of the disciplines relevant to these questions 
had began to come together. Our ability to deal scientifically with these questions has been 
increasing at an accelerated pace. 

These disciplines ranged literally from A to Z, from anthropological concern with the physi-
cal development of our remote ancestors, to zoological interest in animal communication and 
culture. More central here are the discoveries by linguists of universal tendencies found in all 
languages (Greenberg 1963), by psycholinguists of the dynamics of language acquisition and 
loss (Jakobson 1941), and by neuroscientists of how language is organized in the brain (Deacon 
1997). 

Over the last several decades, the range of disciplines has broadened in two major steps. 
First, genetics has come on board with important hypotheses regarding the age of our Most 
Recent Common Ancestor, and regarding the correlation between groups of peoples and groups 
of languages. This development started with the so-called classical markers, and has been suc-

                                                      

*This paper is based on a keynote address presented by the first author at the 2002 COLING in Taipei. 
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1 Some good landmarks for the return to respectability of the discussion of these issues include the well-
known paper by Hockett (1960), and the large conference anthologized by Harnad et al. (1976). 
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cessively refined to gender-specific materials, first mitochondrial DNA for the maternal line and 
then the Y-chromosome for the paternal line. Evidence is gradually emerging that although 
anatomically modern humans first appeared over 100,000 years ago, our Most Recent Common 
Ancestor may date to only some 50,000 years ago. Such a date correlates well with the sudden 
burst of cultural achievements at many sites in the world, including art, ritual, and the naviga-
tional skills to sail across large expanses of water. 

It is reasonable to think that language evolved to its modern form around this date, since it is 
most likely that the power of language facilitated these cultural achievements. A more recent 
emergence date certainly makes the question of emergence more tractable, since there has been 
less time to obscure the traces of our primordial language(s)2. Indeed, some bolder scholars have 
been prospecting for words that may have existed in the primordial language which have been 
preserved in most branches of the world’s languages today. And other scholars have been ex-
ploring the possibility that the unique click consonants still extant in South Africa were indeed 
part of the primordial language phonology which had become lost in the branch of humans that 
left Africa to populate the rest of the world. 

Fascinating as these explorations are, the fact remains that most of the pieces of evidence 
collected from the various disciplines are circumstantial3, and that it is not possible to directly 
reconstruct the stages whereby our ancestors invented language dozens of millennia ago. This 
leads us to the second major step after genetics — the use of computational linguistics in the 
study of language evolution, which for convenience we shall refer to as CSLE: computational 
study of language evolution. This is an area which has burst upon the scene with great vitality, 
attracting exciting research from a variety of viewpoints. This vitality can be seen from the 
many anthologies which have become available since 1998, including those by Hurford et al. 
(1998), Knight et al. (2000), Cangelosi and Parisi (2001), Briscoe (2001) and Wray (2002). 

Few proponents of CSLE take the innatist position that there is literally an autonomous or-
gan for language, that language requires a special bioprogram, or that language is based on any 
instinct exclusive to it. Obviously, a very wide array of abilities must have been in place before 
our ancestors were ready for language, ranging over sensory, motoric, memorial and cognitive 
dimensions, as well as social skills in courtship, forming alliances, collaborating in group activi-
ties, and strategizing against enemies. Many of these abilities are present to various extents in 
our ape relatives, although it is clear our ancestors must have had more language readiness than 
apes do. It is encouraging that some recent studies are beginning to give us hints on the neuro-
biological bases of some of these abilities, such as the discovery of the so-called mirror neurons 
and their implications for the ability to imitate. 

                                                      
2 It is still an open question whether language was invented only once (monogenesis), or several times 
independently (polygenesis).  Freedman and Wang  (1996) present some arguments to support the latter 
view. 

3 Writing was invented much later, after the advent of agriculture some 10,000 years ago. 
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The basic assumptions that CSLE makes are that numerous interactions among members of a 
community, as well as among members across communities, over a long span of time can result 
in behaviors and structures which are quite complex. Furthermore, the bottom-up paths leading 
to such complex structures often involve phase transitions, points in time at which there are 
abrupt non-linearities where the change seems to be more qualitative than quantitative. 

We see such phase transitions in the physical world, for instance, when ice changes abruptly 
to water, and then abruptly to steam, even when heat is added gradually and by a constant 
amount. Similarly, we can perhaps identify some phase transitions in the cultural evolution of 
language, as in the emergence of segmental phonology, the invention of hierarchic morphology 
and syntax, the use of recursion in sentence construction, etc. The points in time for such non-
linearities and the driving forces for change are not nearly as well-defined and uniform as in 
physical systems, of course. 

The linguistic analog to the addition of heat driving the phase transition in water would be 
the increasingly complexity of the communicative needs of early hominids as a result of their 
own expanding consciousness as they interacted with the environment (Schoenemann 1999). 
Furthermore, given that by 50,000 years ago there were numerous communities scattered in 
many parts of the Old World in diverse environmental niches, it is very likely that the evolution 
of language proceeded at different rates in these communities, each community crossing the 
various linguistic thresholds in its own way and at its own pace. 

We will now consider three distinct approaches to computational studies of language evolu-
tion: modeling of lexical diffusion and the snowball effect from a dynamical systems perspec-
tive, modeling the evolution of universal grammar, also using dynamical systems, and modeling 
the emergence of the lexicon from a multi-agent system perspective. 

2. Modeling lexical diffusion and the snowball effect 

In the middle of the 20th century, the dominant view of sound change was that the unit of 
change is the phoneme. This was a view that linguistics had essentially inherited from the influ-
ential Neogrammarians of the 19th century, who emphasized the doctrine that sound changes can 
have no exceptions. Taking cues from evolutionary theory in biology, the counter-proposal was 
that the unit of change is the word (Wang 1969). Wang suggested that a change proceeds by 
variation, often partitioning the relevant words into three classes: unchanged (U), variation (V) 
and changed (C). This view of language change was termed lexical diffusion, since the change 
diffuses itself across the population one word at a time. 

An early study of lexical diffusion was conducted by Don Sherman (1975), who investigated 
the growth of diatones in the history of English, that is, the increase in the number of noun-verb 
pairs like "permit"/"permit", "contract"/"contract", etc. The earliest pronouncing dictionary he 
could find, that of 1570, listed only 3 such pairs, the next dictionary listed 8 such pairs, and so 
on, up to 1934. Plotting the growth in numbers of diatones against time, the graph which results, 
shown in Figure 1, suggests that we may have the beginning of an S-curve. Apparently, such 
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curves are widely found in diffusions, both for cultural events and biological events. The biolo-
gists Luca Cavalli-Sforza and Marc Feldman (1981:29–30) wrote: 

The new word that becomes part of a language, … , is an innovation and can be 
considered as an analog of mutation in biology. … When the process of diffusion 
of an innovation is followed for a sufficiently long time, the frequency of use of the 
innovation almost always follows an S-shaped curve. At the beginning the number 
of acceptances rapidly increases. Then follows an approximately linear increase, 
and finally the increase slows down and is barely perceptible. 

Two centuries earlier, the poet Alexander Pope expressed the same idea in more social terms: 

In words, as fashions, the same rule will hold 
Alike fantastic, if too new or old 
Be not the first by whom the new are tried 
Nor yet the last to lay the old aside 

With the realization that lexical diffusion of a single word has an S-shaped trajectory, the 
question naturally follows as to whether the words which are cohorts in a given change influ-
ence each other, and on the nature of this influence. One answer to these questions may be 
summarized in the term snowball effect. The term takes its name metaphorically from a snow-
ball rolling down a snowy mountainside. The further down it rolls, the faster it goes, and the 
more snow it picks up along the way. So if the S-curve for the first word has a particular gradi-
ent, then the curve for the second word has a steeper gradient. Furthermore, the time delay be-
tween the first pair of words will be greater than that between the second pair of words, and so 
on. 

So far, there have been two empirical studies on the snowball effect. The study by Ogura & 
Wang (1996) deals with the development of the -s suffix in the third person singular present 
indicative in the history of English, starting from the Early Modern English of the mid-15th 

 

Figure 1. The chronological profile of diatone formation in English, after Sherman (1975). 
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century. The -s suffix competed with the -th suffix in this function for several centuries until it 
completely replaced the latter in the end. 

The other, more detailed study is by Shen Zhongwei (1997) on the merger of two nasalized 
vowels in modern Shanghai. Shen used the ages of his informants as virtual time. Assuming that 
a person’s habits of pronunciation are largely fixed by age 15, say, then an informant who is 60 
years old may reflect the speech of 45 years ago. Such a method is far from fail-safe, of course. 
But it is nevertheless very useful for shorter term changes which run their courses over several 
decades. Shen’s study has the merit of being based on a large number of informants — almost 
400. There are 28 relevant words in Shen’s list, each of which is pronounced with a nasalized 
low front vowel by some older speakers. One by one, the vowel in these relevant words moves 
back in its articulation, and the words become homophones with words which have back vow-
els. In other words, this is a classic case of vowel merger, of which there are numerous exam-
ples in language change. Our questions have to do with how the relevant words influence each 
other in the process. 

2.1  A dynamical system model of lexical diffusion — one word 

We begin our discussion of modeling lexical diffusion and the snowball effect by describing 
a dynamical system, first derived by Shen (1997), that models a sound change which effects a 
single word only4. The model applies to a group of homogeneous language users who can each 
adopt one of two possible forms for the word that is undergoing the change, either the un-
changed form, U, or the changed form, C; the model does not allow for free variation, V. The 
state of this system at any time instant, t, can be described in terms of the proportion, or fre-
quency, of individuals who use the unchanged form, u(t), and the frequency of individuals who 
use the changed form, c(t). Note that since each individual must adopt either U or C, u(t) + c(t) 
must sum to 1 for all t. 

It is assumed that the frequencies u and c at some time instant can be calculated from the 
frequencies at an earlier time instant. In particular, it is assumed that use of the changed form is 
propagated by contact between pairs of speakers, one of whom uses the unchanged form, the 
other uses the changed form; thus the increase in the frequency of changed forms is proportional 
to the product c(t) × u(t). The increase in the frequency is also proportional to the rate of effec-
tive contact (Shen 1997), α, and the length of time over which the sound change is observed, δt. 
Hence the frequencies of changed and unchanged forms at time t + δt can be written in terms of 
the frequencies at time t as 

( ) ( ) ( ) ( ) ttutctcttc δαδ +=+ , (1a) 

                                                      
4 We would particularly like to thank Jeff Chasnov of the Mathematics Department of the Hong Kong 
University of Science of Technology for his assistance in re-deriving Shen’s model for lexical diffusion 
of a sound change effecting a single word and deriving the models for a sound change effecting an arbi-
trary number of words — any errors in the presentation of these models are our own. 
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( ) ( ) ( ) ( ) ttutctuttu δαδ −=+ . (1b) 

The parameter α can also be interpreted as representing phonetic, social and other pressures on 
individuals to adopt the changed form. 

Figure 2 summarizes the rates at which the frequencies of changed and unchanged forms 
vary over a time interval of duration δt. Taking the difference in the values of c at time t and 
time t + δt, and dividing by the duration δt gives the rate of change of the frequency of changed 
forms: 

( ) ( ) ( ) ( )tutc
t

tcttc α
δ

δ
=

−+ . (3) 

Taking the limit as δt tends to zero produces the differential equation 

( ) ( )tutc
dt
dc α= . (4) 

Recalling that u + c = 1, we obtain the differential equation 

( ) ( )[ ]tctc
dt
dc

−= 1α . (5) 

The general solution to (5) is the well-known Logistic equation, 

( ) ( )
( )[ ]1exp1

exp
−+

=
t

ttc
αε

αε , (6) 

where ε is the initial frequency of changed forms at time t = 0. 

A plot of c(t) is given in Figure 3 for an initial value of ε = 1% and the rate of effective con-
tact α = 0.1. The plot exhibits the characteristic feature of the S-shaped logistic curve — a slow 
initial increase, followed by a period of more rapid, almost linear increase, which quickly drops 

Time  t : u c

u (1 −  α  c δt)Time  t + δt: α u c δt c

unchanged changed

 

Figure 2. Diffusion of unchanged and changed forms over a time interval of duration δt — 
one word.
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off again as the frequency approaches 100% — and indicates the gradual diffusion of the 
changed form throughout the entire population.  

2.2  A dynamical system model of lexical diffusion — multiple words 

Having derived an expression equivalent to (6), Shen (1997) went on to apply the model to 
the diffusion of a sound change across a group of words. He assumed that the frequency of 
changed forms for each word could be described independently by the model just discussed, 
determining parameter values with the best fit to data collected for 28 words in Shanghainese 
that exhibit the merger of /ɑ̃/ and /ã/. We take a different approach, however, extending the 
model just described by explicitly accounting for coupling among the words themselves, in 
addition to the coupling between speakers that has already been modeled; that is, we assume 
that the rate of diffusion of the sound change in one word may affect the rate of diffusion in 
other words. 

Given a group of n words that are effected by a sound change, we denote the frequency of 
unchanged forms of word i at time t by ui(t) and the frequency of changed forms of that word by 
ci(t), where ui(t) + ci(t) = 1. We extend the definition of Shen’s rate of effective contact (α 
above) by specifying for each pair of words the rate, αij, at which adoption of the changed form 
of word i is induced by the frequency of changed forms of word j — we call this the coupling 
rate of word j on word i, referring to αij for distinct i and j as cross-coupling, and to αii as self-
coupling. 

The rate of increase of changed forms of word i is assumed to depend on ui(t), as in Shen’s 
model. However, due to the coupling that we assume to exist between words, we propose that 
the rate of increase is proportional to the combined effect on word i of the frequencies of 
changed forms of all the words participating in the sound change. The frequencies of changed 
and unchanged forms at time t + δt can therefore be written in terms of the frequencies at time t 
as 
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Figure 3. The logistic curve. (ε = 1%, α = 0.1)
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( ) ( ) ( ) ( )∑
=

+=+
n

j

jijiii tctutcttc
1

αδ , (7a) 

( ) ( ) ( ) ( )∑
=

−=+
n

j

jijiii tctututtu
1

αδ . (7b) 

Figure 4 summarizes the rates at which the frequencies of changed and unchanged forms change 
over some time interval δt. 

Letting δt tend to zero, as previously, we obtain the following system of differential equa-
tions for the frequencies of changed forms: 

( ) ∑
=

−=
n

j

jiji
i cc

dt
dc

1

1 α . (8) 

We have found no analytic general solution to (8) but we note, in particular, that the frequency 
of changed forms of any word does not follow a logistic curve, as assumed by Shen, unless the 
cross-coupling is zero, i.e., aij = 0 for all i ≠ j. We can however characterize the behavior of the 
system using numerical methods. 

Figure 5 shows the frequencies of changed forms predicted by the model for four words with 
the coupling rates and initial values given in Table 1. The system is initiated with only a single 
word having undergone any change. The other three words are distinguished by their having 
different coupling rates. In order to simplify the system somewhat, we have set the cross-
coupling rate of each word with respect to all other words to a constant, although the value of 
the constant differs for each word. 

At first, Word 1 grows at a faster rate than the other words. This is due to the frequency of 
changed forms of Word 1 far exceeding those of the other words — growth due to the self-
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Figure 4. Diffusion of unchanged and changed forms over a time interval of duration δt — 
multiple words.
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coupling of Word 1 therefore exceeds that due to cross-coupling. Because the frequencies of 
changed forms of the other words are initially zero, their growth is initiated by cross-coupling 
between themselves and Word 1. As the sound change progresses, the growth rates gradually 
increase as self-coupling is strengthened, although the rate of increase is initially greater for 
those words with higher cross-coupling. For example, at about t = 10, the rate of increase of the 
frequency of changed forms of Word 2 exceeds that of either Word 3 or Word 4. The rate of 
increase of the earlier words then begins to fall, allowing the later words to catch up. Eventu-
ally, the words that commenced the sound change later overtake the words that preceded them. 
For example, soon after time t = 30, Word 2 has attained a higher frequency of changed forms 
than Word 1; some time later, Word 3 has also changed more than Word 1 (although this is not 
visible in the figure). This feature is not unreasonable: as Ogura and Wang (1996) observed in 
their study of the sound change -th to -s in English, most of the words that commenced the 
sound change later actually completed the change before the earlier words. In our example, the 
frequency of changed forms in each language eventually approaches 100%. 

Even for this simplified system, the relative progress of the sound change in each word does 
not behave in a transparent manner. For example, we do not know what combination of values 
of self-coupling and cross-coupling for each word cause certain words to attain a higher fre-
quency of changed forms despite having commenced changing more slowly. We therefore sim-
plify the system further such that the behavior becomes more transparent. We do this by setting 
both the self-coupling and the cross-coupling for each word to be constant. The coupling rates 
for a set of n words can therefore be represented by two parameters: the self-coupling, denoted 
by β, and the cross-coupling, denoted by γ, i.e. 





≠
== ji

ji
ij :

:
γ
βα . (9) 

Table 1. Coupling rates and initial frequencies of changed forms of four words 
undergoing lexical diffusion. 

Coupling: (αij) Word 1 Word 2 Word 3 Word 4 

Word 1 20% 1% 1% 1% 

Word 2 4% 14% 4% 4% 

Word 3 3% 3% 16% 3% 

Word 4 2% 2% 2% 18% 

ci(0) 1% 0 0 0 
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Figure 5. Predicted frequencies of changed forms for four words. 
(parameter values given in Table 1) 

Note that we require that β ≥ γ since we expect the influence of a word on itself to be at least 
that of other words. The differential equation (8) that describes the evolution of the frequency of 
changed forms of each word reduces to 

( )















+−= ∑

≠
=

n

ij
j

jii
i ccc

dt
dc

1

1 γβ . (10) 

Figure 6 shows the frequencies of changed forms predicted by this simplified model for four 
words with the coupling rates and initial values given in Table 2. Note that, since each word has 
the same values of self-coupling and cross-coupling, only different initial values of the fre-
quency of changed forms, ci(0), generate different curves. For this reason, we have encoded 
each word with a different initial value of c, which emulates the words’ starting to participate in 
the sound change at slightly different times. The figure clearly shows that initially the frequen-
cies of changed forms of words that participate in the sound change earlier grow at a faster rate 
than that of words that participate later. At about time t = 10, however, the rates of growth of the 

Table 2. Coupling rates and initial frequencies of changed forms of four words undergoing 
lexical diffusion — simplified model. 

Coupling: Word 1 Word 2 Word 3 Word 4 

All words ...      β = 20% γ = 2% … 

ci(0) 5% 2% 0.5 % 0.1 % 
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words are approximately equal. Later, the words that participate in the change later progress at a 
faster rate than the earlier words; in other words, we observe a snowball effect. Eventually, the 
frequency of changed forms in each language approaches 100%. At no time, however, does a 
later word attain a higher frequency of changed forms than an earlier word. The simplified 
model therefore does not replicate the behavior of the full model for which later words do some-
times attain a higher frequency of changed forms than earlier words (as Ogura and Wang (1996) 
observed). Nevertheless, we are able to demonstrate that the snowball effect — by which we 
mean that later words eventually adopt changed forms at a faster rate than earlier words — is 
inevitable under the simplified model (10), as follows.  

Suppose that a sound change effects a group of n words. To demonstrate the snowball effect 
we must show that when the frequency of changed forms of one word exceeds that of another 
word, the rate of change of the frequency of the latter word exceeds that of the former. We 
therefore specify the constraint 

( ) ( )tctc 21 >  (11) 

at some time instant t and determine the condition under which 

dt
dc

dt
dc 12 > . (12) 

By equation (10), (12) holds when 

( )( ) ( )( )kccckccc γγβγγβ ++−>++− 211122 11 , (13) 

where k is defined in terms of the frequencies of changed forms of the other words: 

∑
=

=
n

j

jck
3

. (14) 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n 
of

 C
ha

ng
ed

 F
or

m
s ,

 c
i(t

)

Time, t

Word 1
Word 2
Word 3
Word 4

 

Figure 6. Predicted frequencies of changed forms for four words — simplified model. (pa-
rameter values given in Table 2) 
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Thus (12) holds when 

( ) ( ) ( ) ( ) 0212121
2

2
2

1 >−+−+−−− cckcccccc γγββ ,  

 ⇒    ( ) 021 >++−+ kcc γγββ , 

 ⇒    γβγββ −>++ kcc 21 . (15) 

 Note that c1, c2 and k are all increasing functions of t, while β – γ is a constant. Hence 
equation (15) indicates that when the frequencies of changed forms of the two words, c1 and c2, 
are large enough, the frequency of the later word grows more quickly than that of the earlier 
word, thereby demonstrating a snowball effect. Note also that since the rates of increase of the 
frequencies of later words eventually exceed those of earlier words, the tendency is for the 
curves to converge over time. Whether or not the distance between successive curves is less for 
later words than for earlier words will depend on the initial values of ci. 

In Figure 7, we show the snowball effect for the four words with the parameter values speci-
fied in Table 2, drawing attention to the time instant at which later words adopt the changed 
form at a higher rate than the word immediately preceding them. The first such transition occurs 
at about time t = 13, when Word 4 begins to adopt the sound change at a faster rate than 
Word 3. Soon after, the rate of growth of Word 3 overtakes that of Word 2, followed by Word 2 
overtaking Word 1. The actual order of the transition depends on the initial values of ci. 

2.3  Discussion 

The dynamical system just described appears able to capture a number of features that are 
typically observed among a group of words that undergo a sound change. However, its utility as 
a realistic model of the diffusion of a sound change is yet to be established. In order to make 
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Figure 7. The snowball effect for four words — simplified model. 
Marked on the figure is the threshold time beyond which the rate of increase of the 

frequency of changed forms of each word exceeds that of the preceding word. 
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predictions about the behavior of the frequencies of changed forms for a sound change in pro-
gress, the values of the frequencies of changed forms of each word and the coupling rate be-
tween each pair of words would have to be known. While the former may be estimated (with 
some difficulty) by polling speakers of the dialect undergoing the sound change, the latter are 
not directly measurable. We must therefore perform a test of the model, much like that per-
formed by Shen (1997), by collecting data for various sound changes that have run their course 
and estimating the values of coupling and initial frequency that produce the best fit between 
predicted behavior and observed behavior. We intend to test our multiple-word model using the 
two data sets used by Shen (1997), allowing the two models to be compared directly, as well as 
locating other data, such as can be found in (Lee 2002), and collecting new data sets. 

Both the dynamical system developed by Shen and the extension of it that we present here 
model lexical diffusion under highly regular conditions: a sound change within an isolated, 
static population of language users, each behaving identically. While such models may capture 
very well the expected evolution of a sound change in isolation, the reality is nowhere near so 
regular. As Ogura (1993) shows graphically, diffusion often proceeds in fits and starts; Figure 8 
shows the progress of a syntactic change (periphrastic do in English) in various sentence types. 
Clearly the change was not regular; nor did it complete, the change being reversed in one of the 
sentence types analyzed. Realistic models of lexical diffusion should be able to capture such 
kinds of behavior. One way to extend the models discussed earlier to achieve this is to allow the 
coupling rates to vary with time. This should allow dynamic social and phonological pressures 

 

Figure 8. The progress of a syntactic change (periphrastic do in English), after Ogura (1993). 
Lines represent the progress of the change in sentences of distinct types. 
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to be modeled — diffusion can be “switched off” by setting the coupling rates to zero; compet-
ing changes can be modeled by introducing multiple changed forms; and so on. Of course, as 
we extend the expressive power of the model, so we render more complex the task of discover-
ing the history of a lexical diffusion process.  

2.4  Relationships to other systems 

Abrams and Strogatz (2003) have recently developed a dynamical systems model to describe 
language death. The model deals with a population of speakers who must choose between either 
of two languages, an endangered language and a prestige language, which differ in terms of 
their proportion of speakers and their social status. They assume that a language becomes more 
attractive as its number of speakers and its social status increase. The proportion of endangered 
language speakers, x, is modeled by the differential equation 

( ) ( ) ( )sxPxsxPx
dt
dx

yxyx −−−−= 1,1,1 , (16) 

where s is a constant indicating the social status of the endangered language and Pyx(x,s) is the 
attractiveness of that language to speakers of the prestige language. Abrams and Strogatz sim-
plify the system by assuming that Pyx(x,s) has the form 

( ) sxcsxP a
yx =, , (17) 

where c is a constant and a is a parameter that adjusts the effect of number of speakers on the 
attractiveness of a language. They show that such a system provides an excellent fit to data for 
the number of speakers of several endangered languages, including Scottish Gaelic, Quechua 
and Welsh. Their results indicate that each of these languages will soon become extinct unless 
strategies to increase their social status are undertaken. 

The similarity between the Abrams and Strogatz model for language death and Shen’s model 
for lexical diffusion is striking — by setting a = 1 in equation (17) (and suitable re-labeling), the 
Abrams and Strogatz model reduces to Shen’s model (cf. equation (5)). Although the model 
predicts that one language will always drive the other to extinction when the social status, s, is 
constant, other stable states become possible when s is allowed to vary. For example, control on 
s by active feedback can lead to a stable bilingual state, suggesting that linguistic diversity can 
be maintained by taking appropriate action to enhance the status of endangered languages 
(Abrams & Strogatz 2003). Extended to lexical diffusion, this approach may help us to model 
the effects of shifts in the relative social status of competing languages to the progress of a 
sound change. For example, there is some evidence that the sound change word initial /ŋ/ to 
nothing that is currently in progress in Hong Kong Cantonese is reversing, probably due to the 
ongoing increase in the social status of Mandarin ever since the return of sovereignty of Hong 
Kong to China in 1997. Application and extension of the Abrams and Strogatz model may bring 
us new insights into how sound changes and other lexical innovations diffuse across a popula-
tion of speakers. 
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As we consider in the next section, another computational model, which has been used to 
study the evolution of universal grammar, might also be adapted to the task of modeling lexical 
diffusion. 

3. Modeling language evolution — dynamical systems 

The area of lexical diffusion discussed in the previous section deals with language evolution 
at an intermediate window size, with changes taking place over decades or centuries. Language 
evolution can be studied at many time scales, however, from the short interchanges between 
mother and child in early language acquisition to the many millennia over which language has 
evolved since its first emergence. We now turn to the question of language emergence. 

Computational studies of language emergence provide a very valuable antithesis to the cur-
rently popular innatist position that there is literally an autonomous organ for language, or that 
language requires a special bioprogram, or that language is based on any instinct exclusive to it. 
If language emerged only very recently as recent studies in population genetics indicate, then 
the likelihood is small indeed that biological evolution could have put such an organ in place. 

On the other hand, it is obvious that a very wide array of abilities must have been in place 
before our ancestors were ready for language, ranging over sensory, motoric, memorial and 
cognitive dimensions, as well as social skills in courtship, forming alliances, collaborating in 
group activities, and strategizing against enemies. Some years back, Wang (1978:116) charac-
terized this point of view with words like ‘mosaic’ and ‘interface’. It was in this spirit that 
Tzeng and Wang (1983) carried out a set of experiments to argue for a common neuro-cognitive 
mechanism for both language and movements. 

A basic assumption that many computational studies make is that numerous interactions 
among members of a community, as well as among members across communities, over a long 
span of time can result in behaviors and structures which are quite complex. When Murray Gell-
Mann (1994) wrote of the evolution of “highly complex forms,” he could have easily included 
languages among his examples. 

The field of modeling language evolution by computer essentially began with Hurford’s 
(1989) discussion of the emergence of a consistent lexicon. Hurford considered the relative 
merits of three highly idealized learning strategies. Individuals adopting the Imitator strategy 
produce a particular utterance to indicate a certain object when they observe that nearby indi-
viduals typically produce that utterance to indicate the object. Similarly, they attend to a particu-
lar object when perceiving a certain utterance when they observe that nearby individuals typi-
cally attend to that object in response to the utterance. Calculators, however, use a particular 
utterance to indicate a certain object when they observe that others attend to the object when 
perceiving that utterance. Similarly, they attend to a particular object in response to an utterance 
when nearby individuals use that utterance to indicate the object. Hurford shows, however, that 
a better strategy is to follow the approach he refers to as Saussurean. Individuals adopting the 
Saussurean strategy copy the speech production patterns of nearby individuals, like Imitators. 
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But unlike Imitators, they make their perception consistent with their production. Thus, Saus-
sureans base both their production and perception on the speech production of other individuals. 

Surprisingly, perhaps, Hurford’s paper did not stimulate an immediate interest to take up the 
challenge of modeling language emergence by computer. The field had to wait for further 
stimulation in the fields of game theory, cellular automata and artificial neural networks before 
contributions in the mid-1990’s, such as by Clark & Roberts (1993), Batali (1994), Hutchins & 
Hazlehurst (1995), Steels (1995), and Noble & Cliff (1995), began to appear. 

While many models for language evolution have adopted the agent-based simulation para-
digm (which we discuss in Section 4), comparatively few models have been based on dynamical 
systems. An appropriately designed dynamical system is most useful for describing the qualita-
tive behavior of a system rather than predicting the exact behavior for a particular instance of 
the system. The behavior of a system can be described in terms of its stable and unsta-
ble equilibria, oscillations, the values of certain parameters at which the system bifurcates, and 
so on. Much of the recent work on modeling language change from a dynamical systems per-
spective has come from Martin Nowak and his associates. They have focused particularly on 
modeling the evolution of universal grammar, which we now discuss. 

3.1  Evolution of universal grammar  

Nowak, Komarova and Niyogi (2001) have proposed a dynamical system model of the evo-
lution of Universal Grammar (UG) among a population of heterogeneous language agents. Uni-
versal grammar is an abstract representation of one currently popular view of language acquisi-
tion. UG consists of a “mechanism to generate a search space for all mental candidate gram-
mars” and “a learning procedure that specifies how to evaluate sample sentences” (Nowak et al. 
2001). The UG model fits very well with the innatist viewpoint of language emergence: that our 
language faculties derive from a language-specific organ, the Language Acquisition Device 
(LAD). However, the model can equally well be applied without adopting an innatist position, 
provided we assume that children are able to develop a learning algorithm for acquiring lan-
guage without recourse to exclusively innate capabilities of some LAD. Nowak and colleagues 
also assume that the UG consists of a finite set of grammars. 

In the model, each agent uses a single grammar. In some cases, a sentence that can be parsed 
in one grammar may also be parsed in another grammar. Thus users of different grammars may 
often be able to communicate with some degree of success. For example, while the sentence “I 
might could do” is not grammatical in many English dialects (although many people would 
understand the intended meaning), it is grammatical in parts of Scotland and the USA (Trask 
1996); nevertheless, many sentences that are grammatical in those particular dialects are also 
grammatical in many other English dialects. The result is that such dialects are mutually intelli-
gible to such a degree that communication between them is essentially unimpaired. 

For each pair of grammars, the probability that a user of grammar Gi produces a sentence 
that can be parsed by a user of grammar Gj is denoted by aij, with 0 ≤ aij ≤ 1 and aii = 1. The 
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probability that two agents who use grammars Gi and Gj respectively can communicate success-
fully is therefore given by 

( ) ( )jiijji aaGGF += 2
1, . (18) 

The payoff of grammar Gi is then defined as the average probability that a speaker of Gi pro-
duces a sentence that can be parsed by an arbitrary individual, i.e. 

( )∑
=

=
n

j

jiji GGFxf
1

, , (19) 

where xj is the frequency of individuals using grammar Gj. The payoff associated with a particu-
lar grammar is assumed to be linked to the reproductive success of individuals who use that 
grammar. Nevertheless, children do not always learn the grammar of their parents. 

In the model, the distribution of the grammars that a child may learn depends on a matrix, 
Qji, whose values indicate the probability that a child with a parent who uses Gi learns to use Gj. 
Children do not select a grammar that is optimal in any sense; rather they acquire a grammar 
according to the probability distribution Qji. Nevertheless, selection pressure due to the linkage 
between payoff and reproductive success will tend to cause grammars that can parse sentences 
produced by many other grammars with high probability to gradually diffuse across the popula-
tion over successive generations. 

Nowak et al. propose the following language dynamical equation to explain the evolution of 
the system: 

∑
=

−=
n

j

ijijj
i xQfx

dt
dx

1

φ , (20) 

where ∑=
j jj fxφ , termed the grammatical coherence, measures the average probability of 

mutual understanding among members of the population. Equation (20), much like equations 
(8) and (10) in the section on lexical diffusion, describes a kind of diffusion process, although, 
as Nowak and colleagues demonstrate, the diffusion does not necessarily complete. They dis-
play a graph, repeated in Figure 9, to indicate under what (simplified) conditions a population 
converges to a single dominant grammar — distinct grammars are assumed to be equidistant in 
the sense that aij = a for some constant 0 ≤ a ≤ 1 and i ≠ j. They find that a single dominant 
grammar only diffuses across the population when the probability that children learn the gram-
mar of their parents, Qii, is sufficiently high; otherwise a state in which each grammar has equal 
frequency emerges. Even when a single dominant grammar does emerge, it does not diffuse 
across the entire population unless children learn the grammar of their parents perfectly — other 
grammars continue to be used by some members of the population, although with relatively 
small frequency. 

The UG model, (20), appears to have a formulation very similar to that of the lexical diffu-
sion (LD) model, (8), which we discussed earlier. Since, as we have just observed, the UG 
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model sometimes produces diffusional behavior, the question arises whether this model can be 
used to model some features of lexical diffusion. Equation (20) can be rearranged as 

( )∑
=

−=
n

j

jjiji
i xfxQ

dt
dx

1

. (21) 

The lexical diffusion equation (8) can be written as 

( )∑
=

−=
n

j

jiji
i cc

dt
dc

1

1 α . (22). 

The two sets of variables, xi in (21) and ci in (22), both represent the frequencies of a set of 
time-varying, measurable linguistic quantities. In the UG system the frequencies must sum to 1 
— the various grammars must therefore “compete” for users. However, in the LD system there 
is no such competition — the frequency of changed forms of any particular word may reach 1 
without forcing the frequencies for other words to fall. This substantially different behavior is 
introduced by the factor (Qji – xi); the UG frequencies increase whenever Qji > xi but fall when-
ever Qji < xi. 

In his initial formulation of lexical diffusion (1969), Wang had in mind that sound changes 
sometimes compete for words, causing apparent irregularities to appear in the changing phono-
logical system. For example, consider the two hypothetical sound changes R1 : A → B and 
R2 : A → C that describe the change of a segment A either to B or to C. Suppose further that R1 
commences first but is interrupted by R2 before it completes. Those words that have already 
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grammar, adapted from Nowak et al. (2001). 



 19

acquired B due to R1 will not be affected by R2. Only those words that still maintain the un-
changed segment A will be affected by R2. Some words, however, may be in the process of 
change, with some members of the population still using the unchanged form, A, while others 
use the changed form, B — in such cases the two sound changes will tend to compete for both 
words and speakers. The result then will be that some words will have replaced A with B, while 
others will have replaced A with C (some free variation between B and C (and perhaps A also) 
might persist among some speakers). A similar, apparent irregularity would emerge if the sec-
ond sound change were instead R2′ : B → C. 

What then can Nowak’s model of the evolution of universal grammar tell us about lexical 
diffusion and, more generally, about linguistic diffusion processes at large? Equation (20) tells 
us that the adoption of a single grammar by an entire population occurs only rarely, if ever. 
Instead of using the xi in (20) to represent the frequencies of the numerous possible grammars, 
we could consider using the xi to represent the frequencies of the various sounds that can arise 
due to a set of competing sound changes. If we take the parameters Qji to indicate the probabil-
ity that sound i is replaced by sound j, and substitute for fi a coefficient that measures the effect 
of coupling between both pairs of words and between sounds, we obtain a dynamical system 
describing the evolution of a set of competing sound changes. Developing such a model might 
allow us to gain more insight into the circumstances under which qualitatively different types of 
behavior emerge when a set of sound changes compete. 

4. Modeling language evolution — multi-agent systems 

The model proposed by Nowak et al. in studying language evolution is concerned with the 
evolution of universal grammar from the perspective that language as a whole evolves under the 
mechanism of natural selection. While this analytic approach is promising in providing a 
framework to study the dynamics of language evolution as a whole system, it gives us little hint 
on how a language system came into being. When speculating on the process of language emer-
gence, there can be few who believe that a complex language system with elaborate lexicon, 
morphology and syntax could have sprung up all of a sudden from scratch. Language must have 
emerged and evolved gradually and incrementally to reach its modern form. And this process 
must have developed due to the communication interactions among individuals. It is through 
these communication interactions that language emerged and evolved to meet the increasing 
communication needs. 

Our proposition is that, given the cognitive and physiological prerequisites being available, 
language emergence and evolution is basically a continuous conventionalization process, from 
the individual innovation of a new linguistic item, a word, a phrase or a syntactic construction, 
to the diffusion of the innovation through interactions among individual language users by imi-
tation and learning during language acquisition. A compelling scenario for the emergence of 
language is that first a set of early words or holistic signals emerged, and that later different 
word orders or relationships between words came to be used to signify different aspects and 
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moods, etc. in order to cope with the increasing need to express more complex meanings. Our 
view, therefore, is that one of the first steps in exploring the emergence of language in the 
macro scale should be to study how the first words emerged. 

4.1  The emergence of vocabulary 

Words are the smallest communicative functional units in language, a word (usually) being 
an arbitrary association between a meaning and a signal5. A modern individual typically has 
many thousands of words in his vocabulary through which he perceives his universe, and by 
means of which he communicates his needs and desires. At the outset, however, such symbols 
were much fewer — zoologists tell us that no animal in its natural state has more than several 
dozen symbols, be they vocal calls, facial expressions or body gestures (Wilson 1972, Hauser 
1996). While animals’ communication systems are mostly imprinted innately (though some of 
them are affected by learning, e.g. bird song, reported by Marler (1987)), the words used in a 
linguistic community are mostly established by conventionalization. Two great philosophers 
have pronounced similar ideas regarding the conventionalization of naming. Xunzi in China 
taught that “words have no intrinsic correctness” and “words have no intrinsic content” (transla-
tion by Wang (1989)), while at about the same time in Greece, Plato wrote that “any name 
which you give is the right one, and if you change that and give another, the new name is as 
correct as the old” (translation by Jowett (1953), quoted by Wang (1989)). 

We have designed several models to simulate the process of conventionalization leading to 
emergence of a shared vocabulary from a phylogenetic point of view (Ke et al. 2002b). We have 
made a number of assumptions which are hypothetically plausible for early hominids. First, the 
agents are assumed to already possess the ability of naming, or, more generally, are able to use 
symbolic signs, which is considered to be a species-specific trait of homo sapiens (Deacon 
1997). Second, there exists a set of meanings that are particularly salient in their daily life. Third, 
the agents are all able to produce the same set of utterances. The agents intentionally interact 
with each other to communicate these meanings by manipulating these utterances. The associa-
tion between meanings and utterances can be represented in various ways, for example, by a 
look-up table, an association matrix, or a neural network. Models reported in Ke et al. (2002b) 
adopt two different forms, following earlier studies, i.e. look-up tables (Steels 1995) and prob-
abilistic matrices (Hurford 1989, Oliphant 1997, Nowak et al. 1999).  

The emergence of a shared vocabulary refers to a stage in which agents have the same set of 
associations between meanings and utterances, for both speaking and listening. The question 
then is how these associations are formed and how members of a population reach the same set 
of associations (whether starting from scratch or from random creation by each agent). The 
answers to these questions lie in the modes of interaction among agents during communication.  

                                                      
5 In the following discussion of vocabulary or words, the terms of “signal”, “utterance” and “form” are 
used interchangeably,   
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Imitation is one of the most likely interaction mechanisms. The strong ability of humans to 
imitate, even from early infancy, has been extensively documented in the studies reported by 
many investigators, e.g. Meltzoff (1996). While other social animals, particularly the primates, 
also imitate (Dugatkin 2000), it appears that the tendency is by far the strongest and most gen-
eral in our species. We assume that imitation may serve as the most explanatory mechanism for 
the formation of a common vocabulary. Before establishing a consistent way of naming things, 
early humans very likely made use of their propensity for imitation; the younger ones imitating 
their elders, the followers imitating the leaders or, just by chance, their neighbors. In the simula-
tion model, we assume there to be a number of agents, each of which initially has its own set of 
mappings between meanings and utterances. When two agents interact, one imitates the other 
according to some strategy, either by random, by following the majority in the population, or by 
avoiding homophones. We demonstrate that the agents in the population always converge to a 
single identical vocabulary. Mathematical modeling using Markov chains has been used to 
prove the convergence (Ke et al. 2002b). 

While in the imitation model we adopt only one set of mappings for the associations between 
meanings and utterances, in a second simulation model we distinguish the active and passive 
vocabulary by using two sets of mappings: a speaking matrix and a listening matrix. This repre-
sentation is considered to be more realistic, and is necessary when considering the fact that 
active and passive vocabularies are generally not identical. An example of the two matrices with 
three meanings and three utterances is given in Table 3. Each element of the matrices represents 
the probability that an agent has an association between a certain meaning and a certain utter-
ance. The two matrices are stochastic matrices, having the constraint that each row of the speak-
ing matrix and each column of the listening matrix sum to one, to meet the assumption that each 
meaning is expressible, and each utterance is interpretable. 

We hypothesize another type of interaction, in which probabilistic changes are applied to the 
mappings, rather than imitation in the discrete manner used in the above model. At the begin-
ning of the simulation, the speaking and listening matrices of each agent are both randomly 
initialized. When two agents interact, a successful interaction occurs when the listener interprets 
the received utterance as the meaning intended by the speaker, resulting in a reinforcement of 

Table 3. An example of the speaking and listening matrices in the interaction model in 
Ke et al. (2002b) 

pij u1 u2 u3  qij u1 u2 u3 

m1 0.3 0.4 0.3  m1 0.1 0.3 0.6 

m2 0.4 0.55 0.05  m2 0.5 0.3 0.3 

m3 0.7 0.2 0.1  m3 0.4 0.4 0.1 
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the mapping used in the speaker’s speaking matrix and the listener’s listening matrix. On the 
contrary, if the listener interprets a meaning that differs from the one intended by the speaker, 
such a failed interaction will lead to weakening of the corresponding associations used by the 
two agents. The agents thus go through a process of iterative self-organization according to a 
sequence of such interactions. 

After a number of interactions, the system converges: a common lexicon emerges in the 
population (inter-agent convergence), and the speaking and listening matrices of each agent 
reach a compatible state (intra-agent convergence). When the number of meanings equals the 
number of utterances, the speaking and listening matrices of each agent are identical. However, 
when the number of meanings is larger than the number of utterances, the speaking matrix of 
each agent is a subset of the listening matrices. Nevertheless, in both cases, the speaking and 
listening matrices of each agent become compatible. 

The intra-agent convergence is an emergent property of the system as there is no explicit and 
obligatory mechanism forcing the speaking and listening matrices to be compatible. This leads 
us to speculate that it might not be necessary to presume a Saussurean strategy for the formation 
of vocabulary as proposed by Hurford (1989) — Hurford shows that a Saussurean strategy, in 
which the speaking and listening matrices are assumed to be identical, has the advantage of high 
communication effectiveness over other strategies and therefore might have been selected by 
biological evolution. 

Figure 10 shows the trends of three measures of convergence: similarity (SI), population 
consistency (PC) and individual consistency (IC), from a typical run of simulation. In the run, 
the population consists of 10 agents, each starting with a vocabulary in which each meaning is 
randomly associated with each utterance with a different probability. A consistent vocabulary is 
formed and shared by all agents after a long period of fluctuation. 

 

Figure 10. The convergence trends from an example simulation of the interaction model. 
Adapted from Ke et. al (2002) 
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It can be seen that the convergence is not gradual but rather is quite abrupt after about 3000 
interactions, exhibiting a “phase transition” characteristic. For a long period of time, the interac-
tions among agents only result in fluctuation, and there is little consistency in the population’s 
vocabularies. However, at some instant, there is an abrupt rise of the consistency, and the popu-
lation converges quickly after that period. The conditions of the model have not changed at all 
in the process toward convergence. The abrupt emergence of order in the population is the result 
of a sequence of interactions from which point agents evolve in the same direction, thus bring-
ing about a converging momentum. 

For this interaction model, we have also investigated the effects of various parameters. When 
the agents are prohibited from interacting with themselves, i.e. no “self-talk”, we observe an 
interesting window in the optimal population size, between 5 and 15, in which the population 
converges the most quickly. The existence of an optimal population size is unexpected. This 
may be an artifact of a very small population, in which contradictory changes happen often and 
therefore the matrices oscillate heavily.  

When “self-talk” is allowed, however, the convergence becomes much faster, and there is no 
such window effect: the smaller the population size, the easier it is for the population to achieve 
a consistent vocabulary. This is because self-talk allows an agent’s speaking behavior to influ-
ence not only other agents’ listening behaviors but also his own listening behavior through in-
teraction between his own speaking and listening behaviors, thereby speeding up the conver-
gence. However, the most important finding is that convergence time does not increase linearly 
with the increase of the population size, which suggests that there may be a threshold of popula-
tion size for the convergence to be realistically possible within a bounded period of time. This 
finding may be linked to speculations that our ancestors tended to gather into populations of 50 
to 100 members. It has been proposed that the social structure and size of groups of homo 
sapiens is one of the most important factors in the emergence of language (Dunbar 1993). 

The above models are highly simplified in many aspects, for example, the numbers of mean-
ings and utterances are pre-assigned, and each meaning is obliged to be associated with at least 
one utterance in the beginning, although in reality the meaning space gradually increases. Fur-
thermore, the agents are considered to be immortal, a simplification that is equivalent to consid-
ering only a single generation. Much further work should be carried out for various enhance-
ments, for example, to take into account an increasing semantic space, to simulate language 
learning in overlapping generations and in populations with different social structures, and to 
see how different clusters of agents share their specific subsets of the lexicon. 

4.2. Homophony and ambiguity 

The existence and abundance of ambiguity in languages has intrigued linguists for a long 
time. If we view language as a coding system to encode meanings with signals, it would seem 
that language is not optimal at all, because in an ideal code one signal should correspond to 
exactly one meaning. If there are one-to-many correspondences, ambiguities arise. Yet all lan-
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guages are rife with such ambiguities at various levels, from polysemy to homophony to syntac-
tic ambiguities. Indeed ambiguity has been the most formidable barrier to computational lin-
guistics since its start — from automatic summary, to machine translation, to speech recognition 
— and remains so today, even as methods of disambiguation are becoming increasingly sophis-
ticated and powerful6. 

In the following, we report some preliminary modeling work to investigate homophony, 
which is usually considered to be a major source of ambiguity in speech (Ke et al. 2002a). 
Homophones are pairs or sets of words which have the same phonological forms but different 
unrelated meanings. We are interested in understanding why and how homophones arise, and 
how they can survive. Nowak et al. (1999) use a mathematical model to demonstrate that within 
a given limited signal space, homophony is unavoidable if the least error limit is to be achieved. 
Steels and Kaplan (1998) have shown with a simulation model how homophony arises and per-
sists in the lexicon from the language change point of view. However, our model, also adopting 
a simulation framework, addresses the problem from an emergence perspective. 

The simulation model is designed within the “naming games” framework proposed by Steels 
(1995). Agents in the model are assumed to be able to produce a number of distinctive utter-
ances and to make use of such utterances to communicate a set of meanings. At the beginning, 
the agents do not have any words, a word here referring to an association between a meaning 
and an utterance. Agents can create new words at random, as well as learn the words created by 
other agents.  

At each time step, two agents are chosen to communicate, one as the speaker and the other as 
the listener. The speaker decides a meaning he/she wants to communicate, looks for or creates 
an utterance which is associated with the meaning, and transmits the utterance to the listener. 
The listener perceives the utterance and tries to interpret the meaning by searching his existing 
vocabulary. If he interprets the same meaning for the utterance, then this is considered to be a 
successful communication. Each word has a score; after each successful communication, the 
score of the word is increased. Otherwise, the score is decreased. When the score of the word 
becomes too small, the word is removed from the vocabulary. Upon failure, the listener learns 
the word from the speaker by adding an association between the perceived utterance and the 
intended meaning of the speaker. At the beginning, all agents have an empty vocabulary. How-
ever, after a long period of interaction, we observe that a set of associations between objects and 
utterances are shared by all agents.  

With the above construction, we compare the convergence for two different ratios between 
the number of meanings (M) and the number of utterances (U). Figure 11 shows simulation 
results for the two different ratios. When M = U, we can see that agents are able to acquire the 
same vocabulary, and their communications are successful 90% of the time, 20% of the words 
having homophones. When we increase the number of meanings that are to be communicated 

                                                      
6 Ambiguities sometimes serve various purposes in linguistic play — in puns, jokes, etc. — but these 

are surely developments which arose much later after ambiguities have taken root in languages. 
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by agents, for example, setting the meaning-utterance ratio to 3, the vocabularies of the agents 
no longer converge — every word has homophones — resulting in a low rate of communicative 
success (only about 30%).  

This situation, M > U, simulates a more realistic situation in which our semantic needs far 
exceed the number of forms we can utilize. Cheng (1998) has shown that there exists a general 
limit to the size of the active vocabulary used by various writers. If we assume that the number 
of meanings that humans can and desire to manipulate is infinite, the limit on the vocabulary 
size suggests that there may exist a cognitive constraint on the number of forms which can be 
memorized as a whole. As a result of the limited number of forms, the condition of M > U is 
realistically true. To meet the semantic need, it is obvious that the existence of homophony is 
inevitable under this condition. However, in spite of the considerable ambiguity implied by 
homophones, our daily communication does not seem to be much hampered by it, contradictory 
to what the above model shows. Therefore, we need to seek explanations for the effective com-
munication under the condition that M > U which the current model seems unable to demon-
strate. 

M = U;  1 word M = 3U;  1 word 

M = U;  2 words M = 3U;  2 words 

Figure 11. Simulation results the homophone evolution under four conditions. 
(upper left: M = U, one-word communication; upper right: M = 3U, one-word communication; 
lower left: M = U, two-word communication; lower right: M = 3U, two-word communication)
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In the above simulation, only one meaning is transmitted during each communication event. 
In a real situation, most of the time, we communicate with a phrase or a sentence. Words in the 
phrase or sentence are always semantically related. To simulate this situation, we have designed 
a two-word communication model. In a communication event, the speaker chooses two mean-
ings (m1 and m2) which are close to each other in the semantic space, and produces two utter-
ances (u1 and u2) to communicate with another agent. The listener receives the two utterances. 
If u1 has only one meaning, m1, and u2 has two or more meanings, say m3 and m4, then the 
listener will choose between m3 and m4 according to which is closer to m1 in the semantic 
space. If neither u1 nor u2 has a unique meaning, the same principle of disambiguation can be 
applied: the listener will choose that pair of meanings from the u1-meaings and the u2-meaings 
that are the closest in the semantic space.  

In this formulation, while the semantic proximity helps to disambiguate homophonous utter-
ances, random learning could cause trouble when the listener learns the wrong order of associa-
tion. Nevertheless, we observe a gradual increase in the rate of communicative success through 
successive interactions. When M = U, we see that the communicative success reaches 100%, 
much better than the early case of one-word communication, even with a degree of homophony 
as high as 70%. When we increase the semantic demand, we can see a much clearer improve-
ment of the system owing to the two-word communication. Homophony can be tolerated up to 
about 100%, with the rate of communicative success still rising to more than 80%. This simula-
tion demonstrates clearly that, with the help of context, the lexicon can tolerate a high degree of 
homophony, even when the number of meanings greatly exceeds that of utterances.   

The simulation model reported here illustrates the point that homophony can persist in the 
vocabulary while still maintaining a high communication effectiveness, given a realistic multi-
ple-word communication condition. As mentioned earlier, this model is undertaken from the 
perspective of emergence, i.e. vocabulary starting from scratch. However, we know that homo-
phones constantly emerge as the result of sound merger from language change. Also pairs of 
homophones exhibit various differentiation characteristics such as in frequency, in part of 
speech, etc., illustrating self-organization in a language system (Ke et al. 2002). How such self-
organization is implemented in the process of agents’ interactions will be a challenging topic for 
further modeling studies. 

5. Discussion 

It is clear that we should be encouraged by what the new area has achieved so far. The 
knowledge base for research on language evolution must rest on what linguistics has to offer, 
regarding how the several thousand languages available to us are organized, from the common 
core of this organization that is shared by all languages extending to the most idiosyncratic fea-
tures observed for just a few languages, which marks the outer periphery of what a language can 
be like. This knowledge base grew tremendously in the 20th century, when linguists described a 
broad range of languages in many parts of the world which had not been studied scientifically 
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before7. This linguistic knowledge has been joined by genetic knowledge since the 1980s in 
research on language evolution, and by computational studies since the 1990s. 

As we look back on this decade or so of CSLE, it is clear that the achievements have been 
impressive and encouraging. At the same time, we see that there are many central topics on 
language evolution which await careful formulation and investigation. In this final section, we 
would like to offer some concluding remarks on this exciting new area of CSLE regarding the 
assumptions and limitations of current methodologies, as well as regarding the road that lies 
ahead. 

Computational models can be used to demonstrate how certain linguistic structures emerge 
and/or change, such as the lexical diffusion model and the models of the emergence of vocabu-
lary and homophony we reported above. It is an advantage of computational models that various 
assumptions must be made explicit and implementable, and thus can be examined, verified and 
compared. For example, in simulating communication interactions among agents, the models 
have to clearly specify various details as to how agents’ meanings are represented, how mean-
ings are transmitted by the speaker, and how the listener interprets the received signals. And in 
simulating language acquisition, the models must be explicit regarding the properties that the 
learners are assumed to be endowed with, such as the learning algorithm, if any, which deter-
mines how the learners construct their own language by memorizing and extracting regularities 
from the linguistic input.  

A hypothesis supported by one model might not be supported by another model which is im-
plemented based on different assumptions. For example, Kirby (2001) demonstrates that a com-
positional language can emerge from a set of random meaning-signal mappings by an iterative-
learning model. However, in his model the mappings are represented by a version of Definite 
Clause Grammar and learners are assumed to have an induction algorithm which can look for 
common substrings and infer generalized rules generating them, which are highly biased toward 
language-like systems. He hypothesizes that a bottleneck effect, by which the learner is only 
exposed to a small subset of the possible language, is necessary for the emergence of composi-
tional language. However, in a critique of this model by Tonkes and Wiles (2002), a neural 
network model is implemented for which no explicit rules or generalizations are required. They 
show that compositionality still emerges without requiring a learning bottleneck. From these 
models, we can see that computational models allow different hypotheses to be evaluated and 
compared objectively as long as the assumptions and representations have been explicitly stated. 

                                                      
7 It is sad to note concurrently that the 20th century also marks the accelerated extinction of indigenous 
languages as these are replaced by a few international languages, empowered by economic and techno-
logical success. This development has a homogenizing effect which simultaneously expands the common 
core and shrinks the outer periphery of the space within which language locates. 
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Currently most models make rather strong assumptions or great simplifications of the real 
situations. For example, in our model of lexicon formation, we assume that meanings are trans-
mitted explicitly and listeners have no problem at all in knowing the meaning intended by the 
speaker. Many other computational models simulating the interactions between individuals 
adopt a similar assumption, especially those in which agents are represented by neural networks 
and learn the meaning-signal mappings by some training process (e.g. Batali 1998). However, 
the transparency of meaning in communication may not be true in many real situations as am-
biguous interpretations are almost always possible.  

Moreover, in the case of first language acquisition, it is not well-known how children can 
identify the meanings intended by adults. There have in fact been some studies addressing this 
problem by making the meaning interpretation more realistic. For example, in Steels (2002) the 
meanings being communicated are embodied by object detection and feature extraction; Cange-
losi et al. (2002) incorporate environmental information together with the signal during commu-
nication, and the listener interprets the meaning from the environmental information. With these 
embodiments implemented in the models, consistent communication still emerges without the 
prerequisites of meaning transference. It is through the process of identifying and then relaxing 
assumptions in the simulation models that more realistic frameworks are established. 

While there have been exciting simulations on the emergence of the lexicon, on the forma-
tion of phonological systems, and on the emergence of compositionality in syntax, not much is 
known about how hierarchical syntax emerged. Hierarchical structures are a hallmark of com-
plexity, as Herbert Simon noted decades ago (1962). When a chimpanzee takes off the top of a 
box to get at the banana inside, it presumably recognizes that the two parts of the box are dis-
continuous constituents of a single hierarchical unit which holds the banana. Cognitively it is 
comparable to separating constituents of language, such as taking apart ‘call up’ in ‘call him 
up’, or embedding large constructions within expressions like ‘what for’, such as in ‘what did 
you call him up for?’ Linguists have studied the dependency relations of constituents in great 
depth in a variety of languages — what can be moved, what can be deleted, what can cross over, 
etc. — and we can hope that computer simulations will soon be able to model such dependency 
relations within hierarchical structures.  

Hierarchical structures are the bases of recursiveness, and recursion is the central mechanism 
that makes language infinite via repeated conjoining and embedding. While it is undeniable that 
there is no longest sentence, the fact remains that most utterances in everyday language are quite 
short, and statistical approximations to these utterances can be very useful in helping us under-
stand the structure and function of such language. 

Another question that has intrigued us a lot in recent years is that of ambiguity. From a 
CSLE vantage point, an interesting research topic would be to see at which points various types 
of ambiguities emerge as the most rudimentary languages with the simplest lexicons gradually 
grow toward the level of complexity of modern languages. Embedded in this topic are several 
questions concerning a typology of ambiguities in the languages of the world: are there univer-
sal ambiguities, how do we typologize them, and how do we predict them from the structures in 
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which they reside? Since ambiguities are at once a robust phenomenon and probably unique to 
human communication, simulating their emergence can tell us much about the nature of lan-
guage. 

As our last point here, we would like to emphasize the tremendous heterogeneity of lan-
guage. To get our computer simulations started, it is natural to have small and simple models, 
with a limited community of members who speak a homogeneous language. However, as the 
simulations continue, as the members and generations multiply, and as the number of interac-
tions grows very large, we should expect the languages to become greatly diversified and the 
linguistic behaviors of the speakers increasingly heterogeneous.  

The fact that two people are talking with each other by no means leads to the conclusion that 
they really understand each other, or that they share the same grammar and linguistic represen-
tations. As communities become larger and more complex, their speakers become more diverse 
as well. One school of linguistics once claimed that the central focus of its research was on an 
ideal speaker-listener situated in a homogeneous community, an attitude that has been criticized 
as ‘monastic.’ As the empirical foundations for linguistics have grown, however, there has come 
to be a fuller and fuller realization of just how much speakers differ from each other, even in the 
same family. It is such variability, of course, when amplified manifold across time and space, 
which produces dialects, and eventually distinct languages. It would be a worthy goal for CSLE 
to eventually be able to simulate such evolutionary processes with realism. Given that the area 
has been progressing at such an exciting pace, such a goal may not be too far away. 
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