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Abstract. We propose a Finite-Memory Naming Game (FMNG) model with respect to the bounded ra-
tionality of agents or finite resources for information storage in communication systems. We study its
dynamics on several kinds of complex networks, including random networks, small-world networks and
scale-free networks. We focus on the dynamics of the FMNG affected by the memory restriction as well as
the topological properties of the networks. Interestingly, we found that the most important quantity, the
convergence time of reaching the consensus, shows some non-monotonic behaviors by varying the average
degrees of the networks with the existence of the fastest convergence at some specific average degrees. We
also investigate other main quantities, such as the success rate in negotiation, the total number of words in
the system and the correlations between agents of full memory and the total number of words, which clearly
explain the nontrivial behaviors of the convergence. We provide some analytical results which help better
understand the dynamics of the FMNG. We finally report a robust scaling property of the convergence
time, which is regardless of the network structure and the memory restriction.

PACS. 89.75.-k Complex systems – 05.65.+b Self-organized systems – 89.65.Ef Social organizations;
anthropology

1 Introduction

In the past few years, statistic physics was deemed im-
portant for understanding the collective social behavior
in systems consisting of adaptive agents. Typical exam-
ples include opinion formation, origin and evolution of lan-
guages and the dynamics of evolutionary games [1,2]. By
means of simple models, some interesting self-organized
behaviors have been observed. For instance, in the lan-
guage dynamics, a collective agreement on naming ob-
jects could emerge among agents via local communications
without global coordination [3]. In evolutionary games,
high-level cooperation can emerge and persist even though
defection action leads to higher payoffs of selfish agents [4].
These interdisciplinary issues have drawn a lot of interest
from various scientific communities [5].

Early studies have mainly focused on the cases that
agents either are able to interact with all other agents or
occupy nodes of regular lattices. These studies, although
not always consistent with real situations, can be con-
sidered as the groundwork in the process of understand-
ing the dynamics of real systems. Recently, due to the
rapid development of complex networks, it has been found
that nontrivial “small-world” and “scale-free” topological

a e-mail: wenxuw@gmail.com

properties are shared by many real-world networks [6,7].
Hence, it is natural to consider dynamics on networks with
these kinds of features. Understanding the influence of
network structures on dynamics has been considered an
important issue in many interdisciplinary fields [8].

In this paper, we study the evolutionary dynamics
of language based on the Naming Game (NG) model,
which is inspired by the field of semiotic dynamics, a new
area focusing on the development of shared communica-
tion systems composing of multiple agents [9]. A typical
example of such systems is the so-called Talking Heads
experiment [10], in which a robot assigns names to ob-
jects observed through cameras and negotiates with other
robots about these names. Recently, models of semiotic
dynamics have exhibited practical implication in a new
type of web tools, such as del.icio.us and www.flickr.com,
through which web users share information by tagging
items like pictures and web-sites [11]. The NG, as a model
of communicating agents reaching the global consensus
through local interactions, can well characterize the ori-
gin, spreading and convergence of words in a population.
However, because the NG can achieve the ultimate global
consensus from a multi-opinion state, which is apparently
different from other opinion models [12], it’s better to re-
gard the NG as an independent modeling approach for
opinion formation in a self-organized system.
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Recently, a minimal version of the NG was proposed
by Baronchelli et al. [13]. This model simplifies the origi-
nal NG model but can as well reproduce the same experi-
mental phenomena. Further work generalized the minimal
NG to lower-dimensional lattices [14] and other complex
networks [15–18]. Based on the minimal NG, we present
a modified NG with respect to the finite memories (in-
ventories) of agents, which takes the bounded rational-
ity of agents into account. We consider several kinds of
networks representing the relationships among agents as
well, including random networks, small-world networks
and scale-free networks. We focus on the time duration
that the system is needed to reach the global consensus.
The fast convergence in naming objects is of great prac-
tical importance in communication systems, not only for
the information sharing among agents, but also for saving
resources in information storage (such as web servers of
the new type of web tools). Interestingly, we found that
by tuning the connectivity density, there exists shortest
convergence time for all the three types of networks in
the Finite-Memory Naming Game (FMNG). Our findings
differ from previously reported results as there is no re-
striction of agents’ memories in which fully connected net-
works result in the fastest convergence [16]. We also did
theoretical predictions for better understanding the dy-
namical properties of the FMNG, like the success rate in
negotiation, maximal memory length of agents, and the
correlation between the maximal memory length and the
number of agents of full memories. Our analytical results
are in good accordance with simulations. We finally stud-
ied the scaling properties of the convergence time and the
maximum number of total words as the network size in-
creases. Simulation results show that the convergence time
shows a nonlinear scaling property, regardless of the net-
work topology and the memory restriction.

We organize the paper as follows. In Section 2, we de-
scribe the rules of the FMNG and models for generating
the required complex networks. In Section 3, we exten-
sively study the dynamics of the Naming Game for both
infinite and finite memory cases, which help explain the
non-monotonic behavior of convergence in the latter case.
In Section 4, we study the scaling properties of the con-
vergence time and the maximum total number of words.
In Section 5, we conclude the present work and discuss
the relations between the NG and other models.

2 The model

We first build some network structures for our study. We
adopt the Erdös-Rényi (ER) model [19] to generate ran-
dom networks. In the ER model, there is a parameter P ,
governing the probability of the connection between any
pair of vertices. The dependence of the average degree 〈k〉
on P is 〈k〉 = NP , where N is the number of vertices. We
generate small-world networks by adopting the Newman-
Watts (NW) model [20], which is a modified version of
the original Watts-Strogatz model [21]. In the NW model,
a parameter PNW determines the fraction of edges being

randomly added to a regular ring graph. Here, the coor-
dination number of the ring graph is 2, so that the NW
network possesses fewer triangular structures. Besides, we
generate scale-free networks by adopting the Barabási-
Albert (BA) model [22]. At each time step, a new vertex
is added with m edges being preferentially attached to the
existing network. The average degree of the BA network
is 〈k〉 = 2m.

In the following, we describe the evolutionary rules of
the FMNG model. Each site of a network is occupied by
an agent, thus the number of agents is equal to the net-
work size. N identical agents observe single object and
try to communicate its name with the others. Each agent
is endowed with an internal memory (inventory) to store
a number of words. The memory length L is a tunable
parameter. When L tends to be unlimited, our model re-
duces to the original minimal NG model. In FMNG, ini-
tially, each agent has an empty memory and the system
evolves as follows:

(i) At each time step, a speaker i is chosen at random
and then i randomly chooses one of its neighbors as the
hearer. This is referred to be the directed NG [16,18].

(ii) If the speaker i’s memory is empty, it invents a new
name for the object and records it; otherwise, if i already
knows one or more names, i randomly chooses one name
from its memory for the object. After that, the invented
or selected name is transmitted to the hearer j.

(iii) If the hearer j already has this name in its mem-
ory, the negotiation is successful, and both agents preserve
this name and cancel all other names in their memories;
otherwise, the negotiation fails. In the latter case, if the
memory of the hearer is not full, the new name will be in-
cluded in the hearer’s memory without canceling any ex-
isting names; else if the hearer’s memory is full of names,
with probability 0.5, the new name transmitted from the
speaker will randomly replace one existing name in the
hearer’s memory; with probability 0.5, nothing happens
to the hearer.

It shall be noted that the NG models can be considered
as belonging to the class of opinion formation models, but
they considerably differ from each other in the number of
selectable options of agents. For the Voter model [23–25],
each agent has only two options, while for the NG, before
reaching the final consensus, an agent can remember a
large number of different names for the same object. It is
also worth noting that our FMNG model considers only
one single object, while in reality, agents can observe a set
of different objects. This is due to the assumption that
the semantic correlation among objects is neglectable, so
different objects can be deemed independent of each other
in assigning names to simplify the modeling significantly.

3 Simulation and analytical results
of collective properties

We first study the most important quantity, the conver-
gence time Tc defined as the time for reaching the finial
consensus, in the FMNG over several kinds of networks.
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Fig. 1. (Color online). Convergence time Tc as a function of
average degree 〈k〉 in ER random networks for different mem-
ory lengths L. The 〈k〉 can be tuned by network parameter P .
The inset is the optimal average degree 〈k〉opt as a function of
network size N for different memory length L. The network size
N is 5000. Each data point is obtained by averaging over 1000
different simulations for each of the 10 network realizations.

The network size N is 5000 for all simulations in this sec-
tion. As shown in Figure 1, the convergence time Tc is
not a monotonic function of average degree 〈k〉, with a
shortest Tc in the middle range of the memory length L.
Hence, there exists an optimal 〈k〉 corresponding to the
fastest convergence. Similar phenomena can be observed
in NW and BA networks, as displayed in Figures 2 and 3,
respectively. Here, for the NW network, 〈k〉 can be tuned
by adding different numbers of edges [20]. For the BA net-
work, 〈k〉 is controlled by the parameter m while preserv-
ing the exponent of the power-law degree distribution [22].
This interesting non-monotonic behavior is contrary to
previously reported results in the minimal NG [14–16]. As
shown in Figures 1–3 for the minimal NG without mem-
ory restriction (L = infinity), Tc is a monotonically de-
creasing function of 〈k〉, that is, the mean-field type (fully
connected) networks result in the fastest convergence. In
contrast, in our FMNG model, the finite memory effect
induces the existence of an optimal connectivity density
among agents for all the three types of networks. Another
phenomenon in Figures 1–3 that should be noticed is that
the value of the optimal 〈k〉opt has dependence on the
memory length L, i.e., the higher values of the L, the
larger of the optimal 〈k〉. In the large limit of L, the de-
pendence of Tc on 〈k〉 will approach a monotonic behavior
with no optimal 〈k〉, which is consistent with the case of
no memory restriction studied previously. The dependence
of the optimal average degree 〈k〉opt on network size N is
shown in the insets of Figures 1–3. As N increases for all
three types of networks, 〈k〉opt decreases and the decre-
ment speed becomes more and more slower.

In order to explain the finite-memory effect on the con-
sensus achievement, we need to study evolutionary prop-
erties of some basic quantities, that is, the total number
of names in the system Nw(t) and the average rate of suc-

Fig. 2. (Color online) Convergence time Tc as a function of
average degree 〈k〉 in NW small-world networks for different
memory lengths L. The 〈k〉 can be tuned by adding edges to
a regular ring graph. The inset is the optimal average degree
〈k〉opt as a function of network size N for different memory
length L. The network size N is 5000. Each data point is ob-
tained by averaging over 1000 different simulations for each of
the 10 network realizations.

cess S(t) in negotiation. Before studying the finite mem-
ory case, we start with the simpler case of agents with
infinite-memory lengths. Recent works have extensively
studied the dynamics of the minimal NG, not only in fully-
connected networks [14] but also in homogenous and het-
erogenous networks [15,16,18]. A very useful analytical re-
sult is given for the evolution of S(t) at the early stage, by
assuming the success rate between two connected agents
to be proportional to the probability of choosing the edge
between them [16]. Since in the initial stage, most memo-
ries are empty, the repetition of interactions contributes to
the success rate S(t). We deem that this viewpoint can be
generalized to the stable stages after the transient stage.
Simulation results on S(t) for ER, NW and BA networks
are shown in Figures 4a1–4c1, respectively. One can find
that after a short period, S(t) reaches a plateau, which
is almost independent of time. Whereafter, S(t) quickly
increases to 1 and all agents reach the finial agreement in
naming the object. We argue that in the stable range, the
success of an interaction is still determined by the repe-
tition of interactions. If we assume that each agent i has
interacted typically with only one neighbor j, the proba-
bility for the repetition of such an interaction is

1
N

(
1
ki

+
1
kj

)
. (1)

Neglecting the degree correlation between vertices i and j,
and summing over all nodes i and j in the network, the
success rate in the stable range can be obtained as

Sf =
N∑

i,j=1

1
N

(
1
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+

1
kj

)
=

〈
2
k

〉
. (2)
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Fig. 3. (Color online). Convergence time Tc as a function
of average degree 〈k〉 in BA scale-free networks for different
memory lengths L. The 〈k〉 is controlled by the number of
edges new vertices attached to the existent network. The inset
is the optimal average degree 〈k〉opt as a function of network
size N for different memory length L. The network size N
is 5000. Each data point is obtained by averaging over 1000
different simulations for each of the 10 network realizations.

For ER and NW networks, due to the homogenous degree
distributions, we have

Sf � 2
〈k〉 . (3)

Simulation results on ER and NW networks are in good
accordance with predictions depicted in Figure 4a2 and
4b2, respectively, which validates the analytical results
based on some assumptions.

In the case of BA networks, due to the heterogenous
structural property, 〈 1

k 〉 �= 1
〈k〉 . Hence, we should consider

the degree distribution to calculate the dependence of Sf

on 〈k〉. Note that

Sf =
〈

2
k

〉
= 2

∫ kmax

kmin

1
k

P (k)dk, (4)

where P (k) = σk−3 for BA networks [22], with σ = kmin×
〈k〉, which can be easily obtained from

∫ kmax

kmin

σk−3kdk = 〈k〉. (5)

Substituting σ into equation (4) yields

Sf � 2
3k2

min

〈k〉 =
8

3〈k〉 , (6)

where kmin = 〈k〉/2. In Figure 4c1, S(t) for different 〈k〉
shows similar evolutionary behavior in BA networks as
that in ER and NW networks, i.e., there is a flat behavior
in the middle range of t. The values of S(t) in this range
are well predicted by equation (6), as shown in Figure 4c2.

Fig. 4. (Color online). The evolution of success rate S(t) in
(a1) ER random networks, (b1) NW networks and (c1) BA net-
works in the infinite memory case. (a2), (b2) and (c2) are the
comparison of simulations results and theoretical predictions
(the lines). The network size N is 5000. Data points are ob-
tained by averaging over several thousand runs. Sf (t) results
from the average over the data points in the flat range of S(t).

Next, we turn to the evolutionary behavior of the to-
tal number of names in the system Nw(t). Simulation re-
sults of Nw(t) on ER, NW and BA networks are shown
in Figure 5a1–5c1, respectively. One can find that in these
figures, there exist maximum values of the total mem-
ory Nmax

w for different 〈k〉, and the larger 〈k〉, the higher
Nmax

w . Below, we focus on the correlation between Nmax
w

and 〈k〉 and try to provide some theoretical results. In the
evolutionary process, there are two factors contributing to
the change of Nw(t): one is the success of a negotiation in
an interaction between two agents, which can result in the
deletion of names in both agents; the other is the failure,
which can result in one name included into the hearer’s
memory. We adopt the mean-field approximation, i.e., as-
suming the memory of each agent is approximately Nw/N ,
the evolution of Nw is expressed as

dNw(t)
dt

= −S(t)
(

2Nw(t)
N

− 2
)

+ (1 − S(t)), (7)

where the first term on the right is the contribution of
the success, while the second one is that of the failure. To
acquire a solution of equation (7), the expression of S(t)
is required. Due to the complex behavior of S(t), which
possesses three types of features, it is not easy to predict
such evolution. Fortunately, by combing Figures 4 and 5,
we found that Nmax

w emerges when S(t) stays in the stable
range with slight changes. The values of S(t) in this range
for different 〈k〉 have been analytically calculated, so that
by substituting these obtained results into equation (7),
the dependence of Nmax

w on 〈k〉 for distinctive networks
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Fig. 5. (Color online). Total number of names Nw(t) in (a1)
ER random networks, (b1) NW networks and (c1) BA networks
in the infinite memory case. (a2), (b2) and (c2) are the com-
parison of simulations results and theoretical predictions (the
lines). The network size N is 5000. Data points are obtained
by averaging over several thousand runs.

can be achieved. For ER and NW networks, considering
the extremum condition for Nw(t), i.e.,

dNw(t)
dt

∣∣∣∣
Nw(t)=Nmax

w

= 0, (8)

and by combing equation (3), we obtain

Nmax
w =

N

2

(
1 +

〈k〉
2

)
. (9)

In Figures 5a2 and 5b2, we give a comparison between the
above prediction and simulation results. They match well
for not-so-large 〈k〉. Similarly, for the BA network,

Nmax
w =

N

2

(
1 +

3〈k〉
8

)
. (10)

As shown in Figure 5c2, numerical simulations well con-
firm the prediction for not-so-large 〈k〉 in BA networks.
In the case of very large 〈k〉, many triangular structures
emerge, which enhance the success rate in negotiations.
When three agents form a triangle, if a name is transmit-
ted from agent i through its neighbor j to its neighbor’s
neighbor l, then the interaction between i and l will more
easily succeed. Hence, the presence of clustering structures
leads to some differences between our theoretical results
and simulation results. A detailed discussion about the ef-
fects of clustering structures on the dynamics of the NG
was given in reference [26]. Moreover, one can observe that
for BA networks, the differences between predictions and

simulations are more apparent than that of ER and NW
networks. This is due to the fact that memories of agents
are not identical in heterogenous networks; instead, the
memory has some positive correlation with agent’s de-
gree, as reported in reference [16]. Thus, assuming that
all agents have about the same number of names in their
memories by our mean-field approximation leads to larger
differences.

After we have identified a clear relationship between
dynamical properties of the main quantities and the aver-
age degree in the infinite memory case, we now study the
dynamical behavior of the FMNG. Compared to the NG,
the evolution of the FMNG is more complicated. A stable
value Sf not only is a function of 〈k〉, but also depends
on the memory length L. We first perform simulations of
Sf depending on L for different 〈k〉 in ER, NW and BA
networks, with results shown in Figures 6a1–6c1, respec-
tively. There is one common feature in these figures, that
is, the restriction of memory length reduces the values of
Sf , compared to the infinite memory case. When Sf does
not change for large L (Sf reaches a platform), it indicates
that the dynamics are not affected by the memory restric-
tion and the FMNG reduces to the minimal NG. The dash
lines are the theoretical estimations for the infinite mem-
ory case. Since there are slight differences between simu-
lation results and theoretical estimations for the infinite
memory case (as shown in Fig. 4), the simulation results
of Sf with no memory restriction (at the platforms) may
be slightly higher or lower than the estimations, as shown
in Figure 6. The phenomenon that the memory restriction
reduces Sf can be easily explained, since the decrease of
the number of names in each agent will naturally decrease
the number of shared names in each pair of connected
agents, leading to the decrease of the success rate in nego-
tiations. With the increase of L, the influence of memory
restriction becomes weaker and at last Sf approaches the
predicted value in the infinite memory case.

Similar to the analysis of the total number of names
Nw(t) for the infinite-memory NG, for the FMNG we can
write the following evolution equation:

dNw(t)
dt

= −S(t)
(

2Nw(t)
N

− 2
)

+ (1 − S(t))
N − NL

N
,

(11)
where NL is the number of agents with full memory, i.e.,
the memory length is L. As one can see, the above equa-
tion differs from equation (7) only in the last term on the
right-hand side. In the FMNG, when a negotiation fails,
a new name will be included into a hearer’s memory if
the hearer’s memory is not full; while if a hearer’s mem-
ory is full of names, a new name will randomly replace an
old one, or be dropped, which doesn’t contribute to the
change of Nw(t). The last term of equation (11) represents
the contribution of those agents without full memories to
the evolution of Nw(t). Using the extremum condition (8),
we obtain

NL = N − 2Sf (Nmax
w − N)

1 − Sf
. (12)

Here, we cannot get any theoretical result about Sf due to
its complexity. By substituting simulation results into the
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Fig. 6. (Color online). Left panels: Sf as a function of memory
length L in (a1) ER random networks, (b1) NW networks and
(c1) BA networks. The dash lines are predictions for the infinite
memory case. Right panels: the number NL of agents with full
memory as a function of the maximum total names Nmax

w in
(a2) ER, (b2) NW and (c2) BA networks. The hollow symbols
are rough estimations for comparison. Data points are averaged
over several thousand runs with N = 5000.

above equation, the correlation between NL and Nw can
be acquired. A comparison of simulation results and an-
alytical results is shown in Figures 6a2–6c2, respectively.
Each curve is for a given 〈k〉. The L of data points in each
curve from the top to the bottom corresponds to that of
data points from the left to the right in the right panels.
These results indicate that NL has a negative correlation
with Nmax

w for the same 〈k〉, but it is a nonlinear cor-
relation. On the other hand, for the same L, larger 〈k〉
means more agents of full memories. These phenomena
can be easily understood by noticing that in the original
minimal NG, larger 〈k〉 induces larger Nmax

w . Thus, for
the same degree of memory restriction L, more agents of
full memories emerge for larger 〈k〉. Moreover, for identi-
cal 〈k〉, because Nmax

w is the same in the infinite memory
case, higher degree of memory restriction leads to more
full-memory agents, hence more reductions in Nmax

w .
All the above results help explain the non-monotonic

behavior of the convergence time Tc versus 〈k〉 in the
FMNG. We know that in the infinite memory case, Nmax

w

is proportional to 〈k〉. Hence, for small 〈k〉, the memory
restriction almost has no influence on the FMNG and the
behavior of Tc in the FMNG is similar to that of the origi-
nal minimal NG, i.e., with the increase of 〈k〉, Tc decreases
correspondingly. On the other hand, for large 〈k〉, the sys-
tem demands a large total memory of agents to quickly
reach the consensus. In this case, the finite L strongly

affects the dynamical behavior of the FMNG. An agent
with degree k receives different names from all its neigh-
bors. Averagely the number of shared names between an
agent and one of its neighbors can be roughly estimated
by Nw(k)/k, where Nw(k) denotes the number of names
recorded by an agent of degree k without memory restric-
tion. For a finite L, in particular when L < Nw(k) (the
agent’s memory is full), the number of shared names be-
comes L/k. Thus, the success rate in the interaction of the
agent with its neighbors decreases since the success rate is
proportional to the number of shared names. Moreover, for
the same L, a larger 〈k〉 leads to a lower success rate. The
reduction of the success rate also depends on the number
of full-memory agents: the more the full-memory agents,
the lower the success rate. In Figure 6, on the right pan-
els, we have observed that for the same L, the number of
full-memory agents for larger 〈k〉 is much more than that
for smaller 〈k〉, so the success rate is reduced by the incre-
ment of 〈k〉, inducing longer Tc. From the above analyses,
we can conclude that in the large 〈k〉 range, Tc is posi-
tively correlated with 〈k〉. Combining the phenomena for
both small and large limits of 〈k〉, there should exist an
optimal value of 〈k〉 in its middle range, resulting in the
fastest convergence.

Another observed phenomenon is that as L increases,
the optimal 〈k〉 moves in the abscissa toward larger val-
ues. This can also be explained by noticing that weakening
the memory restriction enlarges the range of 〈k〉, in which
memory effects have no influences on Tc. Hence, the de-
creasing area of Tc becomes broader and the optimal 〈k〉
values increase.

4 Scaling properties

Previously reported results in reference [16] have demon-
strated that the convergence time and the maximum mem-
ory in the original NG scales with the size of networks.
Interestingly, these scaling properties are not affected by
the topological properties, such as the average degree, the
clustering and the particular degree distribution. In this
section, we focus on how the memory restriction influences
the scaling law. Is it independent of the memory length or
does the scaling behavior disappear?

We study the scaling property of our FMNG on ER,
NW and BA networks, respectively. In these networks, the
average degree is tunable. Hence, we explore the combing
effects of both the average degree 〈k〉 of each network and
the finite memory length L on the scaling properties of
convergence time Tc and the maximum total number of
words Nmax

w . We first fix 〈k〉 for each network to obtain
the dependence of Tc and Nmax

w on the network size N .
Figure 7a–7c show Tc as a function of N for different L on
ER, NW and BA networks, respectively. One can find that
the scaling property is preserved in the FMNG. We have
checked that the value of the scaling exponent is 1.4±0.2,
which is regardless of the memory length L for all consid-
ered networks. The obtained exponent is also consistent
with that in the original NG presented in reference [16],
which indicates that the scaling law of the convergence
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Fig. 7. (Color online.) The convergence time Tc as a function of the network size N for different memory length L on (a) ER,
(b) NW and (c) BA networks. The maximum total number of words Nmax

w as a function of N for different L on ER, NW and
BA networks are shown in (d), (e) and (f), respectively. The parameter P in ER networks is fixed to 0.015, so the average
degree 〈k〉 = 0.015N . The average degree of NW and BA networks are fixed to 〈k〉 = 16 and 〈k〉 = 30, respectively. Each data
point is obtained by averaging over 1000 different simulations for each of the 10 network realizations.

Fig. 8. (Color online.) The convergence time Tc as a function of the network size N for different average degrees on (a) ER,
(b) NW and (c) BA networks. The maximum total number of words Nmax

w as a function of N for different average degrees on
ER, NW and BA networks are shown in (d), (e) and (f), respectively. The memory length L is fixed to 8 for all networks. Each
data point is obtained by averaging over 1000 different simulations for each of the 10 network realizations.

time is a general robust feature regardless of both the
topological details and the memory length. Although the
scaling exponent is a general feature for different condi-
tions, the detailed convergence time differs as L varies. It
shows that longer memory length correspond to shorter
convergence time. Figures 7d–7f report the maximum to-
tal number of words Nmax

w as a function of N for ER, NW
and BA networks, respectively. Similar to the original NG,
Nmax

w scales linearly with the size of the network, but the
increase speed is positively correlated with L.

Next, we fix the memory length and vary the aver-
age degree 〈k〉 of considered networks to see whether the
robust scaling property is affected by 〈k〉 in the FMNG.
As shown in Figures 8a–8c, the convergence time Tc still
scales as N1.4 for different 〈k〉 on ER, NW and BA net-
works. These results indeed demonstrate that the conver-

gence time in the FMNG still follows a universal scaling
property, independent of the topological features of net-
works and the memory length of agents. The maximum
total number of words Nmax

w shows analogous linear scal-
ing (Figs. 8d–8f) with the network size, and the larger of
〈k〉, the higher values of Nmax

w .

5 Conclusion

In this paper, we have studied the dynamics of a new
model of the Finite-Memory Naming Game over three
types of representative complex networks. The finite mem-
ory takes into account the fact of bounded rational-
ity of agents or the finite resources for storing infor-
mation in communication systems. We have found an
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interesting phenomenon, that is, by tuning the average
degree of the network, there exists an optimal average de-
gree leading to the fastest convergence, which is contrary
to the previously reported results in the original infinite-
memory minimal Naming Game model, where the mean-
field type networks result in the fastest consensus conver-
gence. In order to explain such non-monotonic behavior in
the Finite-Memory Naming Game, we first considered the
infinite memory case by means of simulating the evolution-
ary behavior of some main quantities, including the suc-
cess rate in negotiation and the total number of names in
the network. We then carried out corresponding analysis,
which are in good accordance with simulations. Where-
after, based on the obtained results, we studied the effects
of memory length on the success rate, as well as the re-
lation between the maximum total number of names and
the number of agents with full memories. We gave a rough
estimation for this relation. With all obtained results, we
finally explained the emergence of the optimal value of
the average degree corresponding to the shortest conver-
gence time. We further investigate the convergence time
and the maximum total number of words depending on
the network size. We found a robust scaling property of
the convergence time, which is not affected by the net-
work topology and the memory restriction of agents. Our
work reveals that the finite-memory effect plays a signifi-
cant role in modeling the dynamics of games such as lan-
guage evolution in communication systems, with foresee-
able practical importance.
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