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Abstract

The main question we ask is how a common language might come abcomplex adaptive lan-
guage systems comprising many agents. Our primary obgeigtito analyze and design complex
language models so that a group of agents can converge onmaamolanguage from their initially
different languages by using reinforcement learning, aimmahinformation approach. Towards
this end, we present a game-based self-organizing landtagework, and study three important
cases of reaching linguistic consensus: word consenshsyreat communication, and grammar
consensus.

The study of word consensus concerns how agents can corteeag®mmon word to reliably
express a single shared meaning from their initially défeérwords. We have proposed a win-stay
lose-shift learning model, and have shown by computer sitiari and mathematical analysis the
conditions under which the agents in the model can convergecbmmon word.

The study of coherent communication concerns how agentsaarerge on a communication
system in which the word used by a sender to represent somanmgezan be interpreted correctly
by a receiver to extract the same meaning. We have proposéaimum reinforcement learning
model comprising two agents (a sender and a receiver), areldiown by computer simulation
and mathematical analysis the conditions under which agarthe model can converge to a co-
herent communication system.

The study of grammar consensus concerns how agents carrgemve& common grammar. In
the converged state, the sentences generated by one aiggrtisggrammar can be recognized by
another agent using her grammar. We have proposed a mutaapp®n learning model in which

grammars are modeled as Boolean functions that can be us#ds®fy or recognize Boolean



instances (sentences), and have shown by mathematicgsrthle conditions under which agents
in this model can converge to a common grammar (i.e., a conBooitean function).

This work has important implications for many kinds of distited semantic systems, such as
shared web ontologies, agent communication protocol&lmmative tagging, database schema

integration, and biological networks.
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Chapter 1

Introduction

1.1 The problem

The use of complex language is one of humanity’s most useifleique characteristics. Lan-
guage allows people to exchange knowledge and to pass iafimmacross time and space—it
represents the principal non-genetic information systentife human species (Maynard-Smith
and Szathmary, 1997). The technical and social developofdmiman groups cannot be fully
understood without understanding the development anddhgddanguage. The ability to coordi-
nate activity, divide labor, evaluate goals and optiorareskills, and many other capacities that
have fostered the emergence of human societies all depetite@mergence of languages with
adequate complexity and scope.

Two of the principal issues in language evolution are exyt@ its simultaneous properties of
collectivityandadaptivity. First, there is no single-agent language. Since a primarggse of a
language is communication, language is only useful if ihsred by several individuals, that is, by
apopulation Language is a collective distributed information systang it makes no sense as a
individualized concept. Second, even highly developeddmutanguages are not static; all natural
languages aradaptivesystems that evolved from earlier possibly more primitigenenunication
systems, and that continue to evolve as communicative regetisituations change.

Thus two of the central, complementary issues in languagkiten research are 1) how a
communicative population comprising autonomous indiglduwconverges to a language that is
common enough for mutual understanding, and 2) how the ptipal maintains this coherence

while evolving its language.



Beyond understanding the origins and dynamics of humanukzgpes, many researchers are in-
terested in howartificial agentsand other intentionally designed software programs mighebbp,
reconcile, and sustain their own sophisticated representand communication regimes from the
ground up (Steels, 1997, 2003, 2006). There are two reasotigd interest. First, the study of lan-
guage evolution informs many central problems of semalhicaiented distributed information
systems such as distributed database systems; collagotagiging systems and “folksonomies”
(Mathes, 2004; Sen et al., 2006; Golder and Huberman, 2@d@yed ontologies envisioned as
critical underpinnings for semantic web markup and infaroraquery expansion; information
integration and search; self-adapting communicationdaggs for web services and software
agents; and so on. We can model each of these applicatioa asea collection of “agents”
(defined below) that interact by using some form of langudgtle theory of the communica-
tion dynamics of these types of information system exigid, they are currently very difficult to
manage and make robust. Thus there are many potentialgaigictipacts of understanding the
collective dynamic properties of language.

Second, the ability to work with artificial agents promisesrengeneral insights than studies
based entirely on human language development. Human lgegauase in a context of unique
environments and survival problems, over a specific hisabperiod, in organisms with particular
genetic makeup and development. This limits data and thiegri With artificial agents, on the
other hand, research explorations are limited only by #téal constraints on agent representa-
tion and performance, so there is a much wider range of counakfdescriptive) and practical
(normative) options to explore than those built from ndthrstorical human scenarios. Indeed,
the collective dynamics of human language should spexific casavithin a general theory of
collective language dynamics.

In this thesis, then, we will engage the research issue d¢atole language dynamics by
studying how a population of artificial agents can convegga tommon language from a set of
initially different languages through pairwise interactiand learning. We will call this process

reaching linguistic consensus



It is no accident that a growing body of researchers is wagrkon discover the underlying
mathematical, computational, and implementation prilesiphat explain how languagés gen-
eral—both human and artificial—emerge, how they change, and hoguage-using populations
maintain stable communicativity while languages are ewglv These studies have naturally fo-
cused the work of researchers from many different disagsliimcluding evolutionary biology, psy-
chology, cognitive sciences, anthropology, and artificigglligence to name a few (Christiansen
and Kirby, 2003). See (Wagner et al., 2003; Steels, 2003 gvsad Minett, 2005; Brighton et al.,
2005) for typical overviews of this work, which will not berseeyed in depth in this thesis given
the existing literature.

Because the complexity of the collective dynamics problefranguage, most work to date
has been exploratory, using computer simulations andtivély interpreting them. While simula-
tion is an important, suggestive, and insightful methodgldo achieve a thorough understanding
of the emergence of shared languages, we need to augmenatimwstudies with mathemat-
ical characterizations of specific conditions and limdas under which agents can converge to
shared languages. This thesis aims filling some of this gapstly the emergence of common
languages using mathematical modeling and theoreticdysisa Our models and theories have
sometimes been inspired by our computational simulatiodets) but we generally use simula-
tions to discover and illustrate interesting phenomenacolmrast, we use mathematical theory
to define these phenomena exactly and then to derive andssxihrer dynamics and limits with

precision.

1.2 The general research question

As mentioned above, the class of distributed semanticnimétion systems we study can be char-
acterized as systems of “agents”. Shalizi has provided lgeneral definition of “agent” as “a
persistent thing which has some state we find worth reprieggrand which interacts with other

agents, mutually modifying each others’ states” (Shai8i03). For an agent who has the capa-



bility of language, the state that is worth representindnesagent’s language knowledge such as
the mechanisms (including parameters) of sentence priodyabterpretation, and grammar rule
acquisition. Note that people can be seen in a very abstasesas agents under this definition,
if we take people as having states of mind, interacting witters, and having influence on each
other. Of course people are presently much more compleiteateal, social, sentimental, and
political beings than the artificial, mathematical, or s@fte agents we model here, and we are
not claiming that our mathematical models provide a fulloaot of all processes of human lan-
guage development and convergence. Nonetheless, cangitlerguages a collective dynamic
information systemwe do believe that clear mathematical/computationatrireats of language
dynamics will be useful for understanding the potentiabisrape of human language dynamics
(for example, tractability limits). Such new models mayoatelp as foundations for the design
of application-specific languages and language procesgipgraches that exhibit greater repre-
sentational parsimony, communicative efficiency, simpjjor adaptivity than naturally occurring
human languages.

Given this agent-based viewpoint, there are four factoteerdesign of complex adaptive lan-

guage systems that may affect whether the agents can (avt¢@onverge to a common language:
e Population size: the number of agents in a population;

e Language complexity: the complexity of a language such astimber of words in a vo-

cabulary;

e Learning mechanism: how agents adapt or learn their larggtragugh pairwise interac-

tions;
e Interaction structure: who interacts with whom.

The general question we ask in this thesis is how these faffect the ways agents can con-
verge to a common language. In other words, we want to know relnges of “settings” of these

factors will lead toconvergence success or failuim a set of agents, and how the settings affect



the convergence speedVe want to understand these relationships in three litigusnsensus

cases, detailed in the next section.

1.3 Research scope

In this thesis, we study the above questions of how four facaffect convergence success and

speed in each of three important cases of linguistic consens

1. Word consensus:Converging on an agreement about which word, out of a numsos

sible words, will be used to reliably express a single sharedning.

2. Coherent communication: Converging on a coherent communication system in which the
word used by a sender to represent some meaning can be @téetrgorrectly by a receiver

to extract the same meaning.

3. Grammar consensus:Grammar is a shared structure for accurately interpretsgpaence
of words, namely, a sentence. Grammar consensus refersma lgyoup of agents can
converge to a common grammar by which the sentences gethdratene agent using his

grammar can be recognized by another agent using her grammar

These three problems play an important role in the studyeéthergence of language (Steels,
1997; Wagner et al., 2003). Among them, the first two are edl& developing a reliable shared
lexicon, and the third is related to developing a shared gram Lexicon and grammar are the
two most basic components of any language. The lexicon egalnl agent to represent meanings
(objects in the world or mental concepts) with symbols (veprand to interpret words back into
meanings. Grammar improves the efficiency and accuracydihgaomplex meanings (Nowak
et al., 2000; Plotkin and Nowak, 2000) and enables an agemtpess a large (possibly infinite)
number of meanings using only a finite number of words.

Existing work on these three problems can be classified imtogaradigmspbservational

learningor reinforcement learningaccording to what kind of feedback information is avaiéatalr
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a learning algorithm. In the case of the observational legrparadigm, an agent can have much
information available to it for learning, including any arfnation it can observe; for example, an
agent may observe the linguistic behavior of other agentleng it to imitate the entire observed
behavior or generalize from some specific observed belavinrcontrast, for the reinforcement
learning paradigm, the feedback information that is atéél@o an agent is limited to a feedback
score orreward from its interaction with other agents; for example, theragaay only know
whether a communication is “successful” or not.

This thesis is devoted to the reinforcement learning pgradiThis is a choice with important
consequences. Since reinforcement learning requiresaonigimumof feedback information, by
studying using this paradigm as our theoretical basis, web#ain lower bounds on the effective-
ness and efficiency of complex adaptive language systems.

As we mentioned earlier, because we are pursuing genetdiggs this thesis we are mainly
interested in the study of abstract language models ratf@@r teal human languages. The as-
sumptions made in the abstract models, though unrealsticprovide a starting point for further

development as well as theoretical values on guiding theyded artificial agents.

1.4 Research methods

Our approach to the study of the above questions is to usedootiputer simulation and math-
ematical analysis. With the tools of computer simulatioe, @an gather data on the effects of a
range of different parameter inputs over multiple runs. he words of Robert Axelrod (1997),
simulation is “driving a model of a system with suitable itpand observing the corresponding
outputs.” By running a simulation many times with differgrarameter settings, we can observe
the range of these settings under which the agents reaakidtigconsensus or fail to do so.

For complex adaptive systems with many agents such as thassiehere, computer simu-
lations are a common research approach because many métast@maalyses seem harder than

computational experiments. Though simulation is a coremtrtool that can quickly provide intu-



itive results, there are several disadvantages to sinoulafirst, a complex system usually involves
many parameters and the combinatorial parameter spaceertayge. In many situations we can
gain this intuitive understanding of the behavior of a mededystem by examining relatively few
special cases. Nonetheless, there are many types of prelhatnwould require us to systemat-
ically explore the whole parameter space to understan@rmsybehavior fully, and this can be a
formidable task. In addition, it is always hard to guararttest an implemented computational
model accurately reflects the system modeled and has noaseftwgs.

To have a solid understanding of a complex system, the bpsbagh is to combine computer
simulation and mathematical analysis. By using matheraladicalysis, we can obtain a complete
description on the relationship between different paransetwithout the need to run numerous
simulations to explore the whole parameter space. More itaptly, we can understand clearly
the phenomenon observed in the simulations. In additioresifilts obtained by simulation and
analysis fail to adequately match, that in itself is an iesting finding that can lead to identification
of software bugs or mathematical errors.

There is an important third point that we need to mention wdheriving mathematical equa-
tions from complex computational models. A complex comportel model often involves many
details that prevent a researcher from converting it diyento a precise mathematical descrip-
tion. To be able to derive a mathematical equation from a edatipnal model, we often need to
make some assumptions. The role of these assumptions isnioae unimportant details while
keeping essential elements of a model. However, if the ag8ans are incorrect about what de-
tails are unimportant, then even when the simulation coteligsfree the simulation results may
not agree with the results of mathematical analysis. Indhge, we have to examine whether the
assumptions are really catching the necessary causaltagfd¢le computational model. On the
other hand, if the simulation and analytical results matefi,we have strong evidence that we
have made accurate assumptions about what details aretanpor

The following procedure gives a summary of our research atktif combining simulation

and mathematical analysis.



1. Design a computational model that includes a collectibpasameter settings and gives

some output.
2. Run simulations, and observe what happens for differararpeter inputs to the model.
3. Try to derive mathematical equations from the computationodel.
4. If the results obtained by mathematical analysis andsitiom can explain each other, done!
5. Otherwise, check these possibilities:

(a) Check the program for bugs. If bugs exist, then revisedite, go to (2), and try again.

(b) Check the derivation of mathematical equations. If ihat correct or the assump-
tions made in the derivation are inaccurate, then re-déhigeequations or revise the

assumptions, and go to (3) and try it again.

1.5 Contributions

The main question we ask is how a common language might commgt &b complex adaptive
language systems. Our primary objective is to design angzsmaomplex language models so that
a group of agents can converge on a common language fromrtely different languages by
using reinforcement learning. Towards this end, we presgame-based self-organizing language
framework into which reinforcement learning can be naturfal Using the framework, we study
three important cases of reaching linguistic consensusd s@nsensus, coherent communication,
and grammar consensus.

In general, we have made the following contributions.

1. We have proposed a general game-based self-organiziggdge framework, and have
introduced two general language game models (the simuitenend sequential models).
These well-defined models can be easily used to frame the linguistic consensus prob-

lems studied in this thesis as well as existing models stigidore by others.
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2. We have studied three cases of linguistic consensus.

(@) In the case of word consensus, we have proposed a worérgussmodel in which

(b)

(©)

agents make adaptations using Wm-Stay, Lose-Shift (WSLEBarning rule (Matsen
and Nowak, 2004). We have shown by computer simulation anchathematical
analysis that the agents in the model can converge to a cormamhunder certain
conditions, and we give those conditions. We also give a iaiyesmequation on how
coherence changes over time when the convergence congitgatisfied. Our work
was motivated by (Shoham and Tennenholtz, 1997) and (MasdrNowak, 2004),
but compared to the Shoham-Tennenholtz model, ours reqaiminimum memory
load on the agents, and compared to the Matsen-Nowak madgegralytical result

gives a comprehensive description of the relationship anadirelated parameters.

In the case of coherent communication, we have proposethinum model which
consists of two agents (a sender and a receiver) who havasketreaching coherent
communication using simple reinforcement learning (Letsaet al., 2005). Again, we
have shown by computer simulation and by mathematical aizatilat agents in the
model can converge to a coherent communication system sodes conditions, and
we give those conditions. We also give a dynamics equatidroancoherence changes
over time when the convergence condition is satisfied. Coetpaith existing work,
ours is the first to give an analytical result on the condgionder which the agents can
reach coherent communication using reinforcement legrnvhich is, as noted above,

a minimume-information approach, and hence provides a |®wend.

In the case of grammar consensus, we have proposed almpeteaptron learning
model in which grammars are modeled as Boolean functions#éimebe used to classify
or recognize Boolean instances (sentences). We have shomathematical analysis
that agents in this model can converge to a common gramragrgicommon classifi-

cation function) under some conditions, and we have givesditonditions. Compared



with existing work on the grammar consensus problem (whahrhainly been done
within the observational learning paradigm), ours is th&t finat uses reinforcement

learning as the learning mechanism of agents.

1.6 Outline

The organization of this thesis is as follows. In Chapter 2, present the game-based self-
organizing language framework, including game model, agsrning model, interaction struc-
ture, and population coherence that measures the condewusblsf a population. Considering the
significant difference between two basic types of gamesukameous and sequential games, we
introduce two general self-organizing language modeldedahe simultaneous language game
and thesequential language ganmeodels. The simultaneous model will be used in Chapter 3 for
the case study of word consensus, and the sequential mdtlbewised in Chapter 4 for the case
study of coherent communication and in Chapter 5 for granooasensus. From Chapter 3 to 5,
we study the three linguistic consensus cases. We closeavsitimmary of the thesis and then we

point out some future directions.
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Chapter 2

A Game-Based Self-Organizing Language
Framework

2.1 Introduction

Language is a game that it takes (at least) two to play. Acalijuestion is how a shared com-
mon language might emerge from repeated pairwise interscbetween communicators (Pinker,
2000). The primary objective of this study is to design andlyae a mechanism under which a
group of adaptive agents, using reinforcement learningrguires only information about the
payoff received from an instance of a language game, carecg@to a common language from
their initially different languages.

In this chapter, we present a game-based self-organizinggége framework as a foundation
for studying how a common language can come about from reggetirwise game play. In the
successive three chapters we will use this framework toystiucte cases of reaching linguistic
consensus: word consensus, coherent communication, amhgr consensus.

Our framework for self-organizing language systems, asaho Fig. 2.1, consists of

a population of agents;

acoherenceneasure used to represent the degree of consensus in atpmpofagents;

a 2-player language game model that formalizes the paiimissaction between two agents;

an agent learning model that specifies how agents make degjsind especially how they

learn to improve decision making based on the payoff redeirem games they play; and,

an interaction structure that is used to specify which pafieggents interact.

11



2-player language game model

population
&

its coherence

agent learning model interaction structure

Figure 2.1: A framework of self-organizing language sysem

In the following sections, we will describe in depth the 2y®r game models, agent learning

models, interaction structures, and the coherence measure

2.2 2-player language games

To best situate our research, we will first give a brief intrciibn to some basic game theory
concepts that we will use later, including a general debnitof games and two representation
forms of games (normal form and extensive form). We will ti@noduce two types of language

games: simultaneous and sequential language games.

2.2.1 Definition and representation of games

In game theory, a game consists of the following three coraptsn(Osborne and Rubinstein,

1994):
e aset of players or agen{s,2,--- , K'};
e a set of actions (also called “strategiesl)) available to each playere {1,2,--- , K};

e a payoff function defined on each combination of strategregéch player, which is given

by m;(aq, -, a;, -+, ax ) Wherea; € A; is the action of playei.

12



A game can be represented in normal form or extensive forid.Jidn normal form, a game
is usually represented by a payoff matrix which shows thggsks actions, and payoffs. Fig. 2.2
illustrates an example of a 2-player game in which each plags three actions (scissors, rock,
and paper) and the payoff of a player is shown in the cellsehthatrix. The first number of a cell
is the payoff received by the row player (i.e., Player 1); $beond is the payoff for the column
player (i.e., Player 2). Suppose that Player 1 plays “scs$smd that Player 2 plays “rock”, then
Player 1 gets a payoff of -1, and Player 2 gets 1.

Player 2 r3)
scissors rock paper

SCissors 0,0 -1,1 1,-1

Player 1 ;)
rock 1,-1 0,0 -1,1

paper -1,1 1-1 0,0

Figure 2.2: Normal form (payoff matrix) of the 2-player “ssors, rock, paper” game.

When a game is represented in normal form, it is usually asduhmat each player acts simul-
taneously or, equivalently for purposes of analysis, adfsout any information about the actions
of other players. Otherwise, the game is usually repredantextensive form. Extensive form
games are often presented as trees, showing that there ésisgartant ordering to the sequence
of actions and to the information players obtain from thema bame tree, each node represents a
time point of action for one of the players, and the lines friti& node represent a possible action
for that player. The payoffs are specified at the bottom ofrébe. Fig. 2.3 illustrates an example of
2-player extensive form game in which Player 1 moves firstadmabses either L or R, and Player
2 sees Player 1's move and then chooses U or D. For examples case where Player 1 chooses

L and then Player 2 chooses D, Player 1 gets a payoff of 3 aryg¢iP2agets 0.

13



Player 1

Player 2

payoff
(71, m2) 1,1) (3,00 (1,20 (1,1

Figure 2.3: Extensive form of a 2-player game.

2.2.2 Simultaneous language games

In game theory, a game can be classified sitaultaneous gamex sequential gamegbid.).
Simultaneous games are games where both players move am@olisly, or if they do not move
simultaneously, the later players are unaware of the eglayers’ actions—making them ef-
fectively simultaneous in terms of information availabdeatgents. Sequential games are games
where later players have some knowledge about earliemactidormal form is typically used to
represent simultaneous games, and extensive form is tiypiseed to represent sequential ones.

Applying this classification scheme, we can then distinguvgo types of language games:
simultaneous language gamasd sequential language game®ne example is the ESP gaime
(von Ahn, 2006), a game in which two players label online isggith words. Players choose and
submit their label words without seeing those chosen by thegitner player. Players earn points
when the label words they have chosen match those of theirgygslayer. This is a simultaneous
language game, because the two players submit their wortleet& SP game system without
knowledge of each other’s word choices. In contrast, a comecation event that takes place
between a speaker and a hearer can be seen as a sequentiabgeause the speaker moves
(speaks) first and thus the hearer is aware of the utterandeiged by the speaker.

Fig. 2.4 shows a specific procedure for playing simultangauses with two agents. Fig. 2.5
illustrates an example of the payoff matrix of an ESP gamehildESP game, we suppose there

is an online image of a red car in a street. Both players walaltel the image using one of the

Ihttp://www.espgame.org/
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Agent 1 | Decision making| @action (word)q, M

Game payoff

Agent 2 | Decision making| gction (word)a2 ™ (a, )
» Qo

Figure 2.4: Procedure of a simultaneous language game.

Player 2 {r5)

car red street

car 1,1 0,0 0,0

Player 1 ;)
red 0,0 1,1 0,0

street| 0,0 0,0 1,1

Figure 2.5: Payoff matrix of a 2-player simultaneous larggugame.

three words “car”, “red”, and “street”. Suppose each plagailowed to submit only one word as

the label. Then each word represents an action (the actiohawsing that word and submitting

it). In the payoff matrix for this game, each cell has two ners) indicating the payoff for each

of the two players. For example, if Player 1 uses “car” ang&l& uses “street” as the label, the
payoff for Player 1 will ber (car, street) = 0, which in this case is also the payoff for Player
2. The specific structure of this payoff matrix also représéme information that the two players
both need to choose the same word to get the best payoff.

In Chapter 3, Reaching Word Consensus, the simultaneogadge game will be used as our

2-player game model.

2.2.3 Sequential language games

Since a primary function of language is for communicatiotween speakers and hearers, in a
typical situation of playing language games, there is aroa play between the two players.

To illustrate the concept, we present a cartoon example efjaential language game. Suppose
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there is a baby and a mother. The baby cannot speak any reds viout he can utter two different
sounds: “ah” and “oh”. Sometimes the baby is hungry (H) andetones he has a dirty diaper
(D). He may use “ah” to mean he is hungry and “oh” to mean thatdsea dirty diaper; but he
may also use “ah” for having a dirty diaper and “oh” for beingnigry. So his mother needs to
learn the true meaning of a sound. This baby-mother comratiaitprocess can be modeled as a
sequential game, as shown in Fig. 2.6. The need or meanitignghiaaby wants to communicate—
being hungry or having a dirty diaper—is decided by someofagkternal to the communication
game (i.e., the baby’s internal systems). A typical treainfer this in game theory (Kreps, 1990;
Osborne and Rubinstein, 1994) is to add an additional plegibed nature that moves first to
decide what need to create for the baby, according to sontmbpildy distribution. In the figure,
the number% indicates that half of the time nature makes the baby hungdyhealf of the time
nature produces a dirty diaper. The dashed lines in the tidieate that there are two different
paths to “ah” (or to “oh’), but the mother cannot tell the diftnce because she does not know to
which meaning the baby refers by the utterance “ah” (or “ot)the bottom of the figure are the
payoffs of the players; this example shows that when the enatbrrectly interprets the meaning

of the baby, both get a positive payoft.

Nature

Dirty diaper

Baby

Mom

payoff
(2,1 ©0 @1,421) @©O0 @©0OO @11 OO (@11

Figure 2.6: Payoff function of a sequential language game.

Fig. 2.7 shows a general procedure for carrying out suchesg@l game between a speaker
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and a hearer. In this procedure model, nature decides whatingethe speaker wants to com-
municate to the hearer. This decision of nature is repredeas a probability distribution over all
possible meanings (i.e. the actions of nature). Note tleafrtbaning in the head of the speaker is
information only known to the speaker himself, and unknowihie hearer. In game theory, the
particular nature-driven action for a player is called tyyge of the player (ibid.). For example, in
the example of baby and mother, there are two types of babyngriz baby and baby with a dirty
diaper. Later in this section, for the sake of generality,use termtypefor describing a specific

meaning choice in the general sequential language gamelmode

Speaker

m1(ao, a1,a2)

actionag Speaker actionay Hearer actionas
Nature———— s . -
meaning make decision| ord | make decision| meaning| Payoff

Wz(a07a17a2)

Hearer

Figure 2.7: Procedure of a sequential language game.

In Chapter 4 Reaching Coherent Communication and Chapteasting Grammar Consen-

sus, sequential language games will be used as our 2-plages qnodel.

2.3 Agent learning model

By specifying the payoffs in a game that agents or playerkredeive after their moves, games
provide a formal model of how to characterize the rationdldveor of players. A state dflash
equilibriumis the most classical model of the best set of moves for a settiohal players in a
game. The basic idea is that at Nash equilibrium every plageran action that yields the highest
payoff it can get given the action choices of others. Thusmitateral action switch will yield a
higher payoff for that agent, and this is true of all agentsns agent has a unilateral incentive

to switch—hence the equilibrium (ibid.). A critical probheof Nash equilibrium is that some
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games may have many equilibria. When there are many eqailiba game, which equilibrium
(i.e. which action choices of others) should a player as§ura example, in the game shown in
Fig. 2.5, there are three Nash equilibrigur, car), (red, red), and(street, street); in each the
two players should use the same word, but which word to use?

One solution to the problem is to extend a one-shot game tossipy infinite) set of repeated
games in which agents are allowed to change their actionighey reach some equilibrium (Fu-
denberg and Levine, 1998). But here the question is whatpikge should the agents use to decide
how to change their actions? This is the problem of agenhiegrin a repeated game. Here we
present several agent learning models for specifying h@amisgnake decisions on which actions
to take, and how they learn to change actions to improve idecimaking. In our model, each

agent has three components:
1. an internal stateé,

2. a decision functiorf that specifies how an agent makes decision on which actioak t

based on the agent’s current internal state; and,

3. a state update functiopthat specifies how an agent updates its state based on th&# payo

received from past games.

Fig. 2.8 illustrates a learning model for simultaneous leage games, and Fig. 2.9 a learning
model for sequential language games. In both figures, thrertheee types of functions: decision
making, state update, and game payoff functions. Among thieendecision making and state
update functions reflect the behavior of individual ageats] the payoff function represents the
pairwise interaction behavior between the agents.

Formally speaking, denote by the state of agent anda; the action of agent. Then the
decision making function of agentis given by the formf; : b; — a; for simultaneous games,
or f; : (b;,a;—1) — a; for sequential games. In addition, the state update fumcfaagent; is

given by the formy; : (b;, a;, m;) — b, for simultaneous games, 9y : (b;, a;_1, a;, m;) — b, for
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stateb State
Q update function

Agent 1 makDir?g; IfSL:cr)12tion action word), | ‘ _ﬂ_l <_ai7_a ?
| Game |
' payoff function |
Agent 2 Decision _ action (Word)az ——————————
making function [Fz(ah az)

@ state
2 update function

Figure 2.8: Agent learning model in simultaneous languayedas.

Speakers > Spedle
e update state

™ (a07 az, a?)

. . . (
actionag Speaker actiona; Hearer actionaz | Game |
Nature . I |
meaning makes decision| \ord | mMakes decision meaning ! payoff

- ==

|77F2(a0,a1,a2)

earers state update State

Figure 2.9: Agent learning model in sequential languageagam

sequential games. Note that statdoes not need to be a scalar variable. Actually, in many ¢cases
such as in the following example, the state of an agent iesgmted as a vector.

Here we give a concrete example to illustrate the concep&tabé, decision function, and
state update function. This is an example based on the ES&guassing game (Fig. 2.5). In
this example, the state of a player is modeled as a probadisitribution over all the wordsh =
(p(wq),- -+, p(w,)), wherew,, - - - , w, are the alk available words. Then, the decision function is
modeled as choosing the word with the largest probabiity: f(b) = arg max,, p(w). Suppose

the recently-chosen word is. Then the update of a state or a distribution can be implesaesd
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follows usinglinear reward-penalty schen{®ush, 1958; Narendra and Thathachar, 1989). If the

payoff is positive, then

p(w) = pw)+a(l—p(w))

p(w') = pw) — ap(w), forall w # w

p(w) = p(w) = Bp(w)

pw') = plw')+ Bz — pw')), forallw’ # w

where(0 < 8 < 1 is another update parameter.

2.4 Interaction structure

The 2-player language game models specified above only ergmsae constraints on the interac-
tion behavior oftwo agents. For a population éf > 2 agents, this poses a question: who plays
with whom and when? The job of interaction structure is toradsl this question.

A general approach is to use a joint probability distribatio specify when two agents play a
game. The idea behind this approach is that at any given poiimhe, any pair has some chance
to play a game, but that chance depends on a joint probabdiimed on the pair. Let there be
N agents, them;;, (ZlgiijNpij = 1), can be used to represent the probability of ageand
j being paired to play a game. Note that for simultaneous gathegrobability matrix should
be symmetrical, because the chance of agg@hying with agentj is the same as that of ageint
playing with agent. But for sequential games, the matrix does not need to be syrival. It is
possible that for two agenisandj, agent; is always a speaker while agenis always a hearer, as
was the case in the baby-and-mother communication gamelssabove.

Fig. 2.10 and 2.11 shows two cases of interaction structumesng/N = 4 agents. The first
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case is for both simultaneous and sequential games in wheaty agent is equally likely to play
a game with every other agent. The second case is only useddaential games in which some
pairs of agents have a better chance to play a game than @tingrgnd more specifically, for the
same pair of agents, one agent might play the role of speate aften than it plays the role of
hearer. For example, agent 2 has a chance of 0.2 of speakaggtd 4, but agent 4 never has a
chance of speaking to agent 2.
Agtl Agt2 Agt3 Agt4é
Agtl 0 1/12  1/12  1/12
Agt2 | 1/12 0 1712 1112

Agt3 | 1/12 1/12 0 1/212
Agtd | 1/12 1/12 1/12 0

Figure 2.10: Symmetrical joint probability matrix of anénaction structure.

Agtl Agt2 Agt3 Agt4é

Agt 1 0 1 1 1
Agt2 | 2 0 0 2
Agt 3 0 0 0 2
Agt 4 0 0 1 0

Figure 2.11: Asymmetrical joint probability matrix of antémaction structure. Rows stand for
speaker and columns for hearer.

The approach we take in this thesis. Since we are generally concerned with the overall degree
of linguistic consensus in a population of interacting dgeanother interesting modeling question
is when do we choose to measure the overall coherence of ludgtion in an ongoing sequence of
agent-agent games? For convenience of analysis (see tteeatrn), we will measure population
coherence only after every agent has already played exawtlgame with every other agent. This
means that our model gives every agent the chance to be paitiecvery other agent in the

manner illustrated by Fig. 2.10.
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Specifically, forN agents, in the case of simultaneous games, the populatioinérence will

L]\;‘l) games, and in the case of sequential games, the coherence

be measured evety = () =
will be measured every, = N(N — 1) games. As we will show in later chapters, we will call

the length of anteration; that is, during an iteration, there akegames or interactions.

2.5 Coherence as a measure of linguistic consensus

Given N agents, suppose their states a&re -- ,by. Then a general definition of population

coherence can be given by

dby, -+, by) = m Zsim(bz-, b;)
i#j

where0 < sim(b;,b;) < 1is the similarity between the states of two agerasd;j. Depending
on contexts, the definition ofim(b;, b;) will be different, as we will show in later chapters. For
example, in the case that statis a vector such as a probability distribution which wassiltated
at the end of Section 2.3jm(b;, b;) can be defined as the cosine between two vedicaiadb,,
namely,sim(b;, b;) = cos(b;, b;).

Given a specific definition of coherence, we can charactboaemuch consensus a population
has over time. Denote hy" the coherence at time stefi.e., at the-th iteration, see the previous

section), then the collective dynamics of the whole popoetan be given by
A — Gt

The procedure of a population of agents reaching or appkig its maximum linguistic co-
herence is calledelf-organizatiorof language. Characterizing the collective dynamics inoues

self-organizing language models, in terms of coherendébeithe main task of this thesis.
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2.6 Simultaneous and sequential language game models

We have presented the details of the components in the gglhizing language framework, and
now we can put them together to form two general self-orgagianguage models: simultaneous
and sequential models. These are shown by Fig. 2.12 and &nti3they constitute the basic
computational models for our studies in this thesis. Spegifi, the simultaneous model will be
used in Chapter 3, Reaching Word Consensus, and the seajuratlel will be used in Chapter 4,

Reaching Coherent Communication, and Chapter 5, Reachiagi@ar Consensus.

Settings

(1) population: N agents{1,--- ,N}

(2) game model: a 2-player simultaneous game that includes
- two agents:s andr
- n available actions for both agent&iy, - - , ay}
- a payoff function:r;(as, a,) for each agent € {s,r}

(3) agent learning model
- an internal staté
- a decision functiorm = f(b)
- a state update functidn = g(b, a, 7)

(4) a coherence measure on the consensus of the popula®®éstion 2.5)¢

Initialization
all agents’ initial states are randomized

Iterations (each iteration include®d (N — 1)/2 interactions (see Section 2.4 for details).)

During each interaction
1. two agentss andr, are paired according to Section 2.4
2. they play the 2-player game by each taking an action € {s,r}, based ona; = f(b;)
3. each agent receives a payoffas, a,)
4. each agent updates its state based on the received payoff(b;, a;, ;)

After each iteration, take a snapshot of the population @ty (t)

Figure 2.12: A general simultaneous language game model.

2.7 Discussions

The presented self-organizing language framework and dhesponding simultaneous and se-

guential models are very general. When the 2-player largygage in the framework is replaced
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Settings
(1) population:N agents{1,--- ,N}
(2) game model: a 2-player sequential game that includes
- two agents: a speaker, denotedshynd a hearer, denoted by

- m types for the speaker:y, - - - , x,,, €ach with a probability(x)
- n actions for the speakefy, - ,yn}
- [ actions for the hearez;, - - , 2}

- a payoff function:r; (x, y, z) for each agent € {s, r},
wherez, y, z are the speaker’s type, the speaker’s action and the hearion, respectively
(3) agent learning model
a. as a speaker, the agent has
- an internal staté,
- a production functiory; : (x,bs) — y
- a state update functiop, : (bs, x,y, 7s) — bl
b. as a hearer, the agent has
- an internal staté,
- an interpretation functiotf, : (y,b,) — z
- a state update functiag : (b,,y, z, 7 ) — b.
(4) a coherence measure on the consensus of the popula®®éstion 2.5)¢

Initialization
all agents’ initial states are randomized

Iterations (each iteration included’' (N — 1) interactions (see Section 2.4 for details).)

During each interaction
1. two agents are paired according to Section 2.4, one akespamad one as hearer
2. they play the 2-player sequential game
a. nature moves first to determine the typef the speaker
b. the speaker makes an actipbased on its statie, and its typer: y = fs(x, by)
c. the hearer makes an actioased on its statg. and the speaker’s actian z = f,(y, b,)
3. each agent receives a payoffz,y, z), i € {s,r}
4. each agent updates its state based on the received payoff
a. speaker’s new state = g4(bs, x,y, 7s)
b. hearer’s new staté. = g, (b, v, z, )

After each iteration, namely¥ (N — 1) interactions, take a snapshot of the population coherétge

Figure 2.13: A general sequential language game model.

with a different game, the framework or models can be appbecbntexts that are beyond self-
organizing language systems. For example, the simultanemael can be used in the study of
the evolution of cooperation, by specifying the 2-playemgaas the Prisoner’s Dilemma game
(Axelrod, 1984; Nowak and May, 1992). Studying other gamehsas the Prisoner’'s Dilemma

might result in a totally different collective dynamics. W@ant to emphasize that the games to
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be studied in this thesis have a common feature: the aggnts teach an agreement on using
a common language aspect (word, vocabulary, or grammarse&ahis, recall that in the pay-
off specification illustrated in the examples of both simoktous and sequential games (Fig. 2.5
and 2.6), both agents get the best payoff when they agreeeamstige of words or meanings. In
addition, it is this common feature that makes sense of tiemooherencer consensus

We also want to mention that there are some self-organizanguage systems that are not
covered by this framework. The currently widely used sotigging systems (e.g., Flickand
Del.icio.u$) are examples of such systems. When a user tags his docuimens®cial tagging
system, usually he will not modify those tags in the futureadidition, there is no notion of playing
games and receiving payoffs. However, social tagging sysio demonstrate self-organization
properties (Mathes, 2004; Golder and Huberman, 2006). Kihts of self-organization behavior
can be explained by other models. For example, consideniaigwthen a user tags a document
he can tag the document using words already familiar to hinuscng common tags shared by
other users, then we may adopt models such as preferenmsiehatent network models (Barabasi
and Albert, 1999) or source-item model (Egghe and Rous4€80). Such alternative models for

different phenomena as described here are not treate@funtkhis thesis.

2.8 Summary

In this chapter we presented a game-based self-organaimgyuége framework, including game
model, agent learning model, interaction structure, arulfation coherence. To distinguish the
significant difference between two basic types of gamesukameous and sequential games, we
also introduced two general self-organizing language nsodalledsimultaneous language game
andsequential language gammeodels. The simultaneous model will be used in Chapter 3er t
case study of word consensus, and the sequential model avillsbd in Chapter 4 for the case

study of coherent communication and in Chapter 5 for grantoasensus.

2http:/www.flickr.com/
3http://del.icio.us/
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Chapter 3

Case 1. Reaching Word Consensus

3.1 Introduction

In this chapter we present our study of the first case of Istriconsensus: reaching word consen-
sus. In the word consensus problem, a group of agents eadhadescribe an object (or concept,
or meaning) using a single word from their vocabulary (whigh set of words). All the agents
have the same vocabulary, but of course they may initialeydiferent words in the vocabulary
to describe the object. The agents’ job is to reach an agmeteomeusing one common word to
represent the object.

The agents are adaptive—they can change their chosen weed loa interactions they have
with each other. So a key question is how can we design adap@chanisms for such agents so
that they can converge from their initially different worldaices to using one common word. In

the design of the agents, there are four factors that magtdffe convergence:
1. Population size: the number of agents;
2. Vocabulary size: the number of words in the vocabulary;
3. Learning mechanism: how agents change their descriptiod,;
4. Interaction structure: who interacts with whom.

This chapter aims at studying how the population size andhwaary size affect the conver-
gence under a minimalist learning mechanism calleduimestay lose-shiffWSLS) rule (Matsen

and Nowak, 2004) and an all-to-all interaction network. Wk eonstruct a computational model
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using the self-organizing language framework presenté&thipter 2, and then conduct computer
simulation and mathematical analysis to find the conditiamder what the agents can converge
to a common word and to understand their convergence spd¢lee donvergence conditions are
satisfied.

In the next section we give a brief review of related work. e set up a WSLS learning
model and specify our research questions. Next we condengrasenting our computer simula-

tions and mathematical analyses of the questions. We clits@awummary of the chapter.

3.2 Related work

The word consensus problem studied in this chapter origethtbom the computational study of
the emergence afocial conventionswhich studies how a group of agents can come to reach a
global agreement on a common strategy of action (such ashvgiile of the road to drive on)

by using only locally available information (Shoham and Aemholtz, 1993; 1997). Obviously,

in the context of word consensus, words are just kinds ofasacnventions that are used in
communication activities.

The study of conventions can be traced back to the work by + €®69), who proposed
using game theoretical frameworks to study the conventtmszects of language and meaning. In
the last decade, various computational models of the emeegef social conventions have been
introduced to show that a population of agents can convergelopting one social convention
(Shoham and Tennenholtz, 1993; 1997; Kittock, 1993; Wadket Wooldridge, 1995; Delgado,
2002). In relation to the four factors presented in the ihticiion (population size, vocabulary
size, learning mechanism, and interaction structurepfaiese studies assumed that the space of
possible conventions over which the agents must agree{ctidepotential agreement spade a
recent general model of multi-agent agreement (Lakkanagu@asser, 2006)) is limited to only
two possible conventions. This translates into a two wartdtétion on the combined vocabulary

of all agents in the case of word consensus, which is a venyitighconstraint. Of course, all
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studies supposed there are many agents, namely, a largaopu

The principal difference among these studies lies in thenleg mechanisms and interaction
network they employed. For example, the work by Shoham andd®holtz (1993,1997) and by
Walker and Wooldridge (1995) focused on studying varioasrisng mechanisms while keeping
the interaction network as simple as possible (they uselda-all connection network). Shoham
and Tennenholtz were able to show the agents using a leaatgngthm callechighest cumula-
tive reward(HCR) can converge to using a common convention. Walker aodltvidge studied
sixteen specific mechanisms using computer simulation andd some interesting unexpected
results which implied how much further we need to pursue amdeustanding of this complex
topic. Along dimensions other than variance in the learmraghanism, Kittock (1993) and Del-
gado (2002) have begun investigating the role played byant®n structure. Kittock showed that
there is an important effect of using interaction netwohat tare not fully connected. Delgado
then investigated the case of complex social networks ss@mall-world networks (Watts and
Strogatz, 1998) and scale-free networks (Barabasi andtAlb@99) and compared the efficiency
of convention emergence in the two-convention case unésetbhomplex networks.

The most influential of these studtds the model of Shoham and Tennenholtz (1997). Our
model is based on theirs. In their design of a mechanism ®H®ER learning rule, an agent has
to remember a vector of payoffs, each entry of which repitsse total payoff that the agent has
received on a word in the past interactions with other agewthen there are many words this
vector is large and the effort of maintaining statistics mwards is high. (This is not a problem
for existing work because, as we mentioned above, existudjes on the emergence of social
conventions have a common feature: they only studied treeafasvo conventions.)

To overcome the limitations in this their model, in this tisewe propose to use the WSLS
learning rule—a simplest stochastic learning strategyp¢Raet al., 1999)—in which each agent

only needs to remember three things: its most recently-wsed, the number of times that word

1According to search results from Google Scholar with quamgnérgence convention” on December
10th 2006, Shoham and Tennenholtz (1997) has the mosboisaf91 citations).

28



has been used since it was chosen, and the number of sucttessesing the word since it was
chosen. The use and success statistics yield the successfriite word during the period since
it was chosen, and they are re-initialized when a new wordi@sen. The next section gives the

details of the WSLS learning model.

3.3 Reaching word consensus using win-stay lose-shift
learning

In terms of the self-organizing language framework givelChapter 2, here we present a word
consensus model that focuses on the following two compsnémh) a 2-player word consensus

game, and (2) an agent learning model (WSLS model).

Game model. The 2-player word consensus game is designed as a simulagame between
two agents. All agents have the same vocabulary (i.e.,rast, in terms of game theory) that
consists of: words (or actions). Let the words be(w - ,w,,). The payoff in the game is defined
as follows: if the agents use the same word, then both reeep@sitive payoff of 1, otherwise
0. Fig. 3.1 gives the payoff matrix of the 2-player game. (We tont w to mean a word in the
vocabulary, and fontv; to indicate a word submitted by agent In the payoff matrix, each cell
has two numberér;, 75 ), indicating the payoffs of the two agents. The payoff matrithe figure

tells that the two agents need choose the same word to ge¢sth@doyoff.

A general agent model. Here we present a general agent model, and later we will pré¢ise
specific WSLS model. In a general agent model, every agenthines components: a stdiea
decision functionf, and a state update functign We suppose that all agents have the same form
of decision and state update functions. The difference gniomagents is reflected in their state.

Fig. 3.2 shows how these components work together in a wardesssus game played by two
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Agent 2 (1)

W, W, - W,

w, |11]00/---]00

Agent 1 61—1) Wo 0,0 1,1 ce 0,0
w, 0,000} ---]1,1

Figure 3.1: Payoff matrix of a 2-player word consensus game.

by = g(br, w1, m1) State
@ update function

Decision
: . wo _ T (w1, w2)
Agent 1 making function Mduw; = foy) ‘ _____ |
| Game |
payoff function |
Agent 2 Decision duws = fb2)  TTTTTrTTTTC
making function wor [Wz(wl , W)

@ state
2 update function

by = g(be, wa, m2)

Figure 3.2: Agent model in a word consensus game.

agents. Denote the states of the two agentl by= 1, 2, then their actions (i.e., words) will be

T :m(wl,wg) :I(w1 :wg), 1= 1,2, (31)

where/(w; = w») is the indicator function that outputs 14f; = w,, otherwise 0 (Cover and

Thomas, 1990).
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Then the two agents update their states figno b, based on the received payoff in the form
of

v; = g(bs, w;, ™), i=1,2.

The WSLS learning model. Here we describe how to implement the above general agergimod

using the WSLS rule. In this model, the agent staterepresented as a triple
b=<w,u,v >,

wherew is the word used by the agent in the previous game and will bedaacently-used word

u andv are the number afisesandsuccessesf the wordw sincew has been used consecutively
by the agent. (In the first game that an agent participates,andv are set to 0, and there is no
recently-used word.)

According to the WSLS rule, the decision functipmvhich decides which word to use is stated
as follows. If the success ratio (defined as the ratio of titeasses to the uses), of the recently-
used word is above sonbreshold the agent will keep using the word; otherwise the agent will
choose a random word from the vocabulary. In WSLS learnimgthreshold is calledspiration
level Denote bya the aspiration level, then the decision functiprcan be formally represented

as

fb) = f(< w,u,v>)
w if 2> q, (3.2)

a randomly chosen word else (including the case of 0).

And, the state update functignis stated as follows. Supposeis an agent’s recently-used
word, andu andv are the uses and successes of the word. After a game, thendljemtrease the
usesu by 1. If the agent receives from the game a positive paypiff will increase the successes

v by 1; otherwise, if the ratio of the successes to the uses {).és below the aspiration level,
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the agent will set both numbers to 0. Formally, the agenessatipdated based on the following

rule
(u+1,v4+1) if >0,

(W, v) =< (u+1,v) if -5 > a, (3.3)
(0,0) else.

Coherence. In Section 2.5 of Chapter 2, we stated that: foragents, suppose their states are

by, -+, by, then a general definition of population coherence can btendmy
1 .
Cb(bl, cee bN) = m ; Slm(bi, b]) (34)

where0 < sim(b;,b;) < 1 is the similarity between the states of two agentnd j and its
definition depends on contexts.

In the context of the WSLS model, the definition of the similais given as follows

stm(b;, b;) = sim(< w;, w;, v; >, < wj, uj,v; >)

0 else.

A computational model of reaching word consensus. Fig. 3.3 gives the computation model of
reaching word consensus using the WSLS rule. This modelssdan the general one given in
Fig. 2.12 of Section 2.6 of Chapter 2. The simulations cotetlin the next section will be based

on this word consensus model.

3.4 Specific research questions

From the concrete computational WSLS model given in Fig, @& can see that there are three
input parameters: the number of available wongshe number of agentd, and the aspiration

level«; and one output: population cohererge) at some time point. Now, we ask the following
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Settings
population: N agents
language complexityn available words
agent state: each agerttas a staté; = (w;, u;, v;)
learning parameter: aspiration level

Initialization
each agent’s recently-used wards randomly chosen from the words, andu, v) = (0,0)

Iterations (each iteration include®’ (N — 1)/2 interactions (see Section 2.4 of Chapter 2 for details).)

During each interaction
1. two agents, denoted lyand2, are paired according to Section 2.4
2. they play the word consensus game by each using awotd f(b;), i = 1,2 (see Eq (3.2))
3. each agent receives a payoffw;, ws) (see Eq (3.1))
4. each agent updates its state based on the received payoff(b;, w;, 7;) (see Eq (3.3))

After each iteration, record the population coherep(g (see Egs (3.4) and (3.5))

Figure 3.3: The WSLS computational model.

guestions.
1. Is it possible for the agents to eventually reach word ensss?

2. What are the conditions that can make the agents convergsirig one common word?
Since in the design of WSLS rules, a critical question is howst the aspiration level (if
« is too low, it is very likely for the agents to diverge into ngidifferent words; ifx is too
high, the agents may never converge to using one common wbetgefore, in particular,
we ask, for a given number of wordsand a number of agent§, what is the minimum
aspiration levek that can make the agents converge to one common word witlastt de

coherence level gf = lim; ., ¢(t)?

3. How much time is needed for achieving a given level of cehee if the above conditions

are satisfied?

Research methods. We will use both computer simulation and mathematical aialio study

the above questions. For the details on the limitations aivdrgtages of using simulation and
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mathematical analysis, and the procedure of how to comhbméno approaches, please see Sec-

tion 1.4 of Chapter 1.

3.5 Simulations

In this section, we show that the agents in the WSLS model oamerge to some common word
when the aspiration level is chosen appropriately. To show this, four experimentsraade. The
first experiment aims to show how the coherence among agbatgyes over time, for a given
aspiration level (such as = 0.15). Fig. 3.4 shows the dynamics of the model, for a settintof
agents,100 words, and an aspiration levell5. The simulation shows the agents using the WSLS
rule can converge to the same word. In the figure, the dasieditines show the simulation result
obtained by averaging 1000 runs, 3 of which are shown in thesl A log timescale in subfigure

(b) is used for clarifying the detail of the dynamics in théial period (during the first 10 or 20

iterations).
1F 1F
= = = Average
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o I o L
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(a) Linear timescale (b) Log timescale

Figure 3.4: Simulated dynamics of the WSLS model for 10 agelf?0 words, and an aspiration
level of 0.15.

The second experiment is designed to explore how differaines of aspiration level affect the

convergence properties (convergence speed and evenhgkoae level). The simulation results
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are shown in Fig. 3.5. From the figure, we can see that whersfhie#ion level is set appropriately
(such asy = 0.15 or a = 0.2), the agents can achieve a coherence level of at least Ot&50-

th iteration. When the aspiration level is set too low (sugh a 0.05 or o = 0.1), the agents are
easily satisfied and so can quickly converge to a non-optiwta¢rence state (such as 0.45). When
the aspiration level is set too high (suchaas- 0.3), the agents find it difficult to get satisfied and
thus their words are switched back and forth. As a conse@ye¢hey may never converge or it

may take very long time to converge to a common word.

—O— lteration=500 |
—O— lteration=100
—3— Iteration=50
—/— |teration=10

09r
0.8t
0.7
0.6

0.5}

Coherence

0.4r
0.3r
0.2f
0.1rf

0 005 01 015 02 025 03 035 04
Aspiration level a

Figure 3.5: Coherence vs. aspiration level at differematten points. Parameter settiny: = 10
agents ana = 100 words.

The third experiment is designed to explore how differemhhars of agents affect the best
aspiration level. By “best aspiration level’, we mean thergg can converge to some common
word with high probability (such as at least 0.85, i.e., astea coherence level of 0.85) in a short
time. For two different aspiration levets, anda,, suppose the agents can converge to the same
coherence level of 0.85. Then if with the level ®f, the agents can converge faster, we say
is a better “aspiration level” thanm,. Fig. 3.6 shows that when the number of agents is given by
N = 20 while the number of words is held constant (i.= 100), the best aspiration level is

a = 0.1, compared tevr = 0.15 in the case ofV = 10.
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Figure 3.6: Coherence vs. aspiration level at differematien points. Parameter settiny: = 20
agents ana = 100 words.

The fourth experiment is designed to explore how differamhhers of words affect the best
aspiration level. Fig. 3.7 shows that when the number of werds small (e.g.n < 50), lowering
the number of words increases the best aspiration level.ekample, when there are only two
words, it is obvious that the success ratio has to exceed.8.54dt least half of population shares
the same word). When the number of words is large enough {e>g.50), there is no significant
difference in the best aspiration level for= 50 or n = 1000. We say “no significant difference”
because in our simulations the best aspiration level iSiddeat a coarse scale of with an interval
of 0.05.

From the simulations results obtained in the four experimee have the following general

observations:

1. The agents can converge to some common word when thetaspievel is chosen appro-

priately;

2. There is a relationship between the best aspiration,|lévelnumber of agentd and the
number of words:. When the number of words is fixed, the best aspiration legpedds

on the numbers of agents. However, when the number of agefitxed, the best aspiration
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Figure 3.7: Best aspiration level vs. number of word$arameter settingy = 10 agents.
level is similar whem.: is large enough.

Obviously, the above experiments are only suggestive, xtrdestive. The analysis given in the
next section aims at giving a comprehensive theoreticalwatoof the relationship between these

parameters.

3.6 Analysis

We will analyze the conditions for the agents to reach womdseasus and how much time is

needed for the consensus.

3.6.1 Settings for the analysis

The WSLS model presented above is based on a 2-player ganmad.nkad several reasons to be
shown below, we convert it into an N-player game mode€li¢ the population size, namely the

number of agents). In a N-player model, all agents submit therds at the same time, and each
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agent; receives a payoff that is defined as follows

71-i(ujla"' ,UJN) = EJ7£ZN(—1 J)v 1= 1727"' 7N (36)

wherewy, is the word submitted by ageht and/(w; = w;) is the indicator function. Obviously,
in an N-player game, the payoff that an agent can receive hasca richer range (from ON%
.-+, to 1) than the payoff an agent can receive in a 2-player gaittee( O or 1).

In addition to the advantage of having a rich payoff rangeheN-player game model, there
is no need to specify an interaction structure that defines pléys with whom as in the 2-player
game, because all thg agents participate the N-player game at the same time. Hiesatages
of the N-player game model make it convenient to conductyaial In fact, Matsen and Nowak
(2004) have already shown (though the authors did not eiplstate this in their article) that
when all agents play the N-player game, they can convergsitg wne word. We will use some
of their analysis technigues to explore the full relatiapdietween the parameters specified in our
guestions (Section 3.4).

Before we do the analysis using the N-game model, howevemust (1) make sure that
the N-player game model has a qualitatively similar behataadhe WSLS model based on the

2-player game; and (2) set up the conversion from the 2-plagelel to the N-player model.

Comparison between 2-player and N-player game models.To make sure that the N-player
game model has a qualitatively similar behavior to the WSldslehbased on the 2-player game,
we build a computational model for the N-player game whidinéssame as the 2-player one give
in Fig. 3.3 but with two exceptions. One exception is that reagh iteration only contains one
interaction. The other one is that the success fatiothe 2-player model now becomes the payoff
(see Eq (3.6)).

Then, we run 1000 simulations for the N-player model underséime parameter settings that

we used before for the 2-player model. By averaging the 100Qlations, we obtain two graphs
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that are shown in Fig. 3.8: one is on linear timescale andttier @n log timescale. By comparing
these graphs with the ones in Fig. 3.4 on the 2-player modelcan see that the dynamics of
the N-player model has similar behavior to the 2-player rhodée main difference is that the
convergence time for the N-player model is much longer. Tisecause in the N-player model
each agent only updates once in each iteration, while in thiayer model each agent updates

N — 1times in each iteration because an agent has to interacewgtty other agent.
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Figure 3.8: Simulated dynamics of the N-player modellfoagents] 100 words, and an aspiration
level of 0.15.

Redefining coherence and aspiration level. In the Matsen-Nowak model, the measure used for
analysis is different from our coherence measure given g/ (Bgt) and (3.5). To situate their
measure in our word consensus problem, we will call theirsusathdargest number of agents
sharing the same worar for brevitylargest cluster sizeFormally, the largest cluster size can be

defined as

(W) = Y(wr, -+, wy) = max > I(wi=wy).

For example, suppose among the 20 agents, 16 agents userthevead and 4 agents use some
other word, then the largest cluster size is 16.

To use the analysis technique from their work, we will usgéat cluster size as a measure
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of coherence. The measure of largest cluster size is syroagited to the previous definition of

coherence(w). To see this, let us normalize largest cluster size to

We can see that when all the wordsvinare the same, both measurgsv) and:(w) can reach
their maximum 1; when all the words w are unique, both measures reach their minimum O.
The introduction of the new measurementioes make some small difference on the collective
dynamics—we can show that(w) < (w) always holds; however, as far as the qualitative
dynamics behavior is concerned, there is no difference.

With the change of the measure from coherende largest cluster size, correspondingly,
we need to change the aspiration level from a fractional rerrfib< « < 1) to an integer number

denoted byK, as well as change the payoff from the fractional numberrgive
Ej;éi I(w; = wy)

ﬂ-i(wla"'awN): N —1 ; i:1727”'7N

to an integer number given by

7TZ'(’LU17-.-,1UN):Z[(’LUZ-:1U]-)7 221727’]\[
J#i

After these conversions, the WSLS rule for the N-player gamodel will read as follows. An
agent will keep using its recently-used word if the payadinfrthe word is at least” (hamely, the

agent shares its word with at ledstother agents); otherwise uses a randomly chosen word.

3.6.2 Conditions for reaching consensus

After the conversion from 2-player model to N-player modedtl asther corresponding changes

given above, our first question turns into the following: &given number of words, a number
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of agentsV, and a desired coherence levelpfvhat is the minimum aspiration levél that can
make the agents converge to a common word? Theorem 3.6.4 givanalytical result to the

guestion.

Theorem 3.6.1.For a given number of words and a number of agent¥, to reach a desired

coherence level, the aspiration leveK should be at least

(N—K—2)

K <1/p—1}. (3.7)

mln{K . W =~

Before we give the proof to the theorem, it is worth giving ogeometrical illustration to
Eq (3.7). The two graphs shown in Fig. 3.9 give such an ilaigin about how the aspiration level
K depends on the values of parametaisn, andp. From the graphs, we have the following
observations: (1) when the coherence level required fos@osus is higher (e.go, = 0.95 vs.
0.90), we may need to set the aspiration leleto be higher; (2) when there are many more words
than agentsiy’ = 2 will be sufficient for the agents to reach a high level of ceinee.

In addition, to make connections between the aspiratia#l lexthe form ofo: and the aspiration
in the form of K, we normalizeX to

K-1

With the normalizedy, Fig. 3.9(a) becomes Fig. 3.10. From this new graph, we cartlse for
the setting of» = 100, N = 10, andp = 0.95, the normalized aspiration levelis= 0.11. Now,
take a look at the value af in Fig. 3.5 for the same setting in the previous section, wesse
that,a = 0.11 is the lower bound for the aspiration level If « is lower than 0.11, then the agents
cannot reach consensus.

Now it is time to prove the theorem.

Proof. For convenience, we call a group of agents that share the wanteacluster According
to the WSLS rule in the N-player game model, if the word use@mygent is shared by at least

K other agents then the agent will use the word forever (becallishe agent in this cluster will
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not change their word). A cluster with size &f + 1 or more—recall that is the aspiration

level—will be called araspired cluster

If the aspiration levelK is too small (such a& = 1), it is very easy to form many aspired

@) p=0.95

(b) p = 0.90

Figure 3.9: How aspiration levél depends on the number of agents,the number of wordss,

and the coherence levgel
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Figure 3.10: How aspiration level, in the form af depends on the number of ageis the
number of words:, when the coherence levels held t00.95.

clusters when there are many agents. If the aspiration lEvisl big enough (such a& > 2),

it is not easy to form even one aspired cluster. Now suppos$e big enough, then according to
the WSLS rule, once the first aspired cluster is forfpéige agents in that cluster will stay in the
cluster at the next time step. An agent that is not in the edpituster, which we call aoutsider
will randomly choose another word at the next time step. &laee three possible outcomes when

an outsider agent randomly chooses a word:

1. the word is the same word shared by the agents in the ex&sipired cluster; in this case,

we say the agent is absorbed into the cluster;

2. this agent and some other outsiders form a second aspug@ércwhose members share a

word that is different from the one shared by the first clyster

3. neither outcome 1 nor outcome 2.

2|t is not easy to form one aspired cluster, so we can safelgaagpthat it is unlikely that two or more
aspired clusters can be formed simultaneously.
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Now, the critical point is that in order for all the agentséach a consensus, the chance that the
outsiders of the first aspired cluster to be absorbed intacthater, denoted by, should be much
larger than the chance that they form a second aspired gldsteoted byp,. The calculation of

p1 can be given by

1\ N-K-1
m=1-(1--) ",
n

N—-K-1
where<1 — %) indicates the probability that no outsider—there &re- K — 1 outsiders—

uses the word shared by the first cluster. And, the calcuaifg, can be approximately given

p= ("t ) e

) means the number of the ways to form a second cluster offsizel from the

by

N-K-1

where ( P

N — K — 1 outsiders, an@t)**!(n — 1) means the chance of tii€ + 1 “lucky” outsiders to fall
in any one of the remaining — 1 words.

Givenp; andp,, the eventual coherengethat the agents can achieve can be approximately
estimated by (the larger the difference betwgeandp, (p; —p-), the more accurate the estimation,

because we neglect many other possible outcomes such ad altister in the future)

A b1
D1+ D2

So, to achieve a coherence level of at leggasghe following inequality should hold

y4!
> p
p1+ D2

Pluggingp; andp, into the above equation, and making some simplificationk agsaeplacing

(n—1) by n, we have the aspiration lev&l should be at leashin{ K : % <1/p—1}. N
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3.6.3 Time for reaching consensus

Above we have given the conditions for the agents to reacharus. A general conclusion from
the condition theorem is that if the number of words is muecpdathan the number of agents, the
aspiration leveK can be set to quite low such &= 2 or K = 3. Here supposing the condition is
satisfied, we want to know how much time is needed for reachigigen level of coherence. One
motivation is that we know that a high value of the aspiratemel X can guarantee that the agents
will reach a consensus, but this may take infinite time tolmed&®r example, in the simulations
given earlier in this chapter (e.g. Fig. 3.5), we can see\me#n the aspiration level is too high,
then the agents can not reach any consensus within somedimiimber of time steps such as 500
iterations.

The computation of the time for reaching a given level of gehee is approached by deriving
a dynamics equation that specifies on the average how muehnerade can be obtained at a given

time step. This is given in the following theorem.

Theorem 3.6.2.In the N-player game model, if the conditions for reachingsensus is satisfied
(see Theorem 3.6.1), then the expected dynamics of theetwieeis described by the following

equation:

n

ot = vl + L) (1 1) > hl S L R SR
VK -1)(1-(1- %))HH (3.8)

wherey)(t) is the expected largest number of agents that share the sandeatv-th iteration (i.e.,

at time steg). (The computation af(0) is given in the next theorem.)

Proof. For convenience, we call a group of agents that share the wanteacluster Theni(t)
is the expected size of the largest cluster of agents tha¢ sha same word atth time step.
According to the WSLS rule in the N-player model, an agent uske a word forever if the

word is shared by at leasf other agents. In other words, there is an aspired clustez@®#s+ 1.
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Obviously, the time point when an aspired cluster is fornsed iandom variable, which can take
any value froml, 2, - - - . ¢. Denote this random variable iy, and denote by?(T' = i), 1 < i < t,
the probability that an aspired cluster is formed at time ste

If p is the probability that the agents can form an aspired dluistene time step for the first
time before there is any other aspired cluster, tR€f = i), the probability that an aspired cluster

is formed at time step can be computed as follows

As to the computation gf, it can be calculated by

b= ()i = 1wy (3.9)

—

( N
= (1 VR,

where in Eq (3.9)(,},) indicates the number of the ways to form a cluster of gize 1 from a
population of N agents(1/n)X+1(1 —1/n)N~5-!indicates the probability that exactly ti#é+ 1
agents in the cluster share the same word (considering dlcatagent randomly chooses a word
from n words), and» means there ane words that can be shared.

When such an aspired cluster is formed, the agents in theechwdl keep their word forever.
The agents outside the cluster (if not in another aspirestetuwill randomly update their word
until they join the cluster (or another aspired cluster)efdfiore, we want to know how the size
of the aspired cluster will change once the aspired clusierdeen formed. Note that, when the
aspiration levek is large enough (such as 3), it is very unlikely that two or enaspired clusters
will be formed.

Denote byg(7) the cluster size at time steps after that the aspired cluster has already been

formed. In other words, if the aspired cluster is formedmagtstep,, theng(7) means the cluster

size at time step + t,. For example, if the aspired cluster is formed at tigme- 100, andr = 30,
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theng(7 = 30) means the cluster size at time step 130 from the beginning.

The computation of(7) is as follows. In each time step, an agent that is outside shzex
cluster will have a chance df/n to be absorbed into the cluster, given that the agent chabses
word at random fromn words. So, during time steps, the probability for an outsider agent to join
the clusterisl — (1 — 1/n)". Fromg(0) = K + 1 and there aréV — K — 1 outsider agents, we
haveg(r) = (K +1)+ (N -K—-1)(1—-(1—1/n)".

According to strong Markov property (Norris, 1997), the egfed cluster size(t) should be

U(t) = w(0) + 30 P(T =) (g(t — i) = (0))

o)+ b (- )y [[1_ bisd) (- Y

nk n
1.\t
+(N - K — 1)(1 (- ﬁ)) H (3.10)
The proof is almost completed except that we have not shoevndmputation ofy(0), which
will be given in the next theorem. |

Theorem 3.6.3.For NV agentsy words, the expected largest number of agents that sharathe s

word at the beginningy(0), is

NI
¥(0) =N - > iyl - ke nN

Proof. The setting of N agents each choosing at random a word from sthavailable words
{wy,--- ,w,}, can be converted to a classical urn model, caMakwell-Boltzman urn model
(Rosen et al., 2000), which is about placiNgdistinguishable balls in distinguishable urns. The
result of theV agents each choosing a word can be characterized as suobratievks, - - - , k),
in which £, agents share word,, k, agents share word,, . . ., andk,, agents share word,,, with

the restrictiony_" | k; = N, k; > 0. Or, in terms of the urn model, the eveft, ko, - - - , k)
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meansk; balls in urn 1k, balls inurn 2,.. ., andk,, balls in urnn.

The probability of the evertc,, ko, - - - , ky,) iS given by

N N N
hk2~~h)/n T kol -kl

p(k17k27”' 7kn) = (

where (,ﬁkivkn) is a multinomial combinatorial number that gives the numtfethe ways that
resultin the eventky, ks, - - - , k).

Let X; be the number of agents that share wardrhen(X;, Xs, - - - , X,,) is a random vector,
from which we can give a definition to the largest number ohdgjthat share the same word—also

a random variable, denoted by
U =max{X;, Xo, -+, X,,}
Then we have the cumulative distribution(af

PlU <u)= Z plky, ko, - k)

0<k;<u

And finally, the expected value of the largest number of agémat share the same word, is as

follows

= IxPU=1)+2xPU=2)+--+NxP{U=N)
= Ix(PU<1)-PU<0)+2x (PU<2)—PU<1))+

+-+4+ Nx (P(U<N)-PU<N-1))

= NP(U<N)-PU<0)—PU<1)—---—P(U<N-1)
= N-— Z_P(U <wu) sinceP(U<N)=1landP(U <0)=0
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= N— Z p(k17k27"'7kn)
u=1 0<k;<u
kit +kn=N
N-1
NI
-N-Y Y -
Vol oo ko I pN
u—1 0<ki<u 1 ]{?2. k‘n n
k1+“‘+kn:N
Thus complete the proof. |

Remark. Though we give an explicit formula fap(0), it is very difficult to compute it, espe-
cially when N andn are large numbers. For the case/of= 20 andn = 100, by using an
approximate algorithm to the above theorem, we have oldaneapproximation)(0) = 1.964.

Actually, the average of 1000 runs of simulation shows th@t = 1.962.

Comparison between simulation and analytical results on dyamics. Fig. 3.11 gives the com-
parison between the simulation and analytical results. gdr@ameter setting for obtaining the
shown results isK = 3, N = 20, andn = 100. The plot of the dashed simulation line is ob-
tained by averaging 1000 simulations. From the figure, wesesmnthat there is a trend for the
theoretical result (as shown by smooth line) to eventuadlyehhigher coherence values than the
simulation result. This is because the theoretical resudbmputed based on Theorem 3.6.2, and
the theorem has an assumption that there are not two or mpired<€lusters. When there is a
chance for two or more aspired clusters to occur, the coberefil decrease (the maximum co-
herence is achieved when there is only one cluster). Claadyassumption does not always hold
in simulations, thus the simulation result will eventuahow lower coherence than the theoretical
(ideal case) result. In addition, this difference only beaes significant when time tends to infinity,
because the theoretical coherence will, according to @aumaption, tend to 1 while the simulation

result cannot.
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Figure 3.11: Comparison between the simulation and acalytesults.

3.7 Summary

In this chapter we studied our first linguistic consensug:cesaching word consensus. The word
consensus problem concerns how a group of agents can cergesgcommon word, out of a
number of possible words, for representing a single shaeshing.

In terms of the self-organizing framework given in Chaptew2 designed a word consensus
model that focuses on the following two components: (1) Hpa¥er word consensus game, and
(2) the agent learning model. In the design of the game, waelkits payoff function as follows:
if two agents use the same word, both receive a positive fiagtiferwise 0. In the design of
agents, the win-stay lose-shift (WSLS) learning rule wasdusAccording to the WSLS rule, an
agent will keep using its recently-used word unless theesgcatio of the word is below some
threshold.

Our work has the following contributions. First, we propgdsevord consensus model in which
agents make adaptations using the WSLS learning rule. Weeshby computer simulation and
mathematical analysis that agents in our model can conwergecommon word under certain

conditions, and we gave those conditions. We also gave amigeaquation on how coherence
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changes over time when the convergence conditions ardiesatiSecond, though our work was
motivated by (Shoham and Tennenholtz, 1997) and (MatserNamak, 2004), compared to the
Shoham-Tennenholtz model, ours requires a minimum menoa dn the agents, and compared
to the Matsen-Nowak model, our analytical result gives am@iensive description of the rela-

tionship among all related parameters.
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Chapter 4

Case 2. Reaching Coherent Communication

4.1 Introduction

In the word consensus problem we studied in the last chaptisupposed there is only one
meaning involved and the task of the agents is to reach aemgm® on using one common word
for representing the meaning. However, what will happeheafé are multiple meanings involved?
For example, suppose there are two meanifigsngry, thirsty} and two words{a,b}. It is
possible for the agents to use the same wordasay represent both meanings. If this happens,
then when a speaker uses the warth represent meaninkungry, it is possible for a hearer to
interpreta as the other meaningirsty.

In this chapter, to address the above situation where themany meanings, we study another
linguistic consensus case: coherent communication. Ircéieerent communication problem,
there are a set of meanings and a set of words. A group of agacdishave an encoding function
that can map a meaning to a word, and a decoding function #matm@ap a word to a meaning.
The agents may have incoherent (or incompatible) encodidglacoding functions and thus they
cannot communicate effectively. The job of the agents iseieetbp a coherent communication
system so that the intended meaning of one agent can be ttprteaveyed to another agent
through their encoding and decoding functions.

The agents are supposed to be adaptive—they can changedtigig functions based on in-
teractions they have with each other. So a key question ischovwe design adaptive mechanisms
for such agents so that they can converge to a coherent coitation system.

In the design of the agents, there are four factors that nfagtahe convergence which are

52



listed as follows.

1. Population size: the number of agents;
2. Vocabulary scale: the number of meanings and the numheoiafs;
3. Learning mechanism: how agents change their codingifumct

4. Interaction structure: who interacts with whom.

In this chapter, we will study how two agents (a sender andeiver) can converge to coherent
communication using a learning mechanism cafliedple reinforcement learnin@RL) rule. We
aim at studying how the vocabulary scale and SRL learningmaters affect the convergence. We
will construct a computational model using the self-orgarg language framework presented in
Chapter 2, and then conduct computer simulation and matieahanalysis to find the conditions
under what the agents can converge to a coherent commumcatstem and to understand their
convergence speed if the convergence conditions are sdtisfi

In the next section we give a brief review of related work. ke set up a simple reinforce-
ment learning model and specify our research questionst Wexoncentrate on presenting our
computer simulations and mathematical analyses of thetiqnes We close with a summary of

this chapter.

4.2 Related work

The coherent communication problem studied in this chaptes pioneered by James Hurford
(21989) in his seminal work on the computational study ofdfaelution of vocabularySince then,
many studies has been conducted onetna@ution of vocabulargr theemergence of communica-
tion, including, to cite a few of them, (Oliphant and Batali, 198ibwak et al., 1999; Smith, 2004;
Lenaerts et al., 2005).

According to the learning mechanism, the existing work carlassified into two paradigms:

observational learningand reinforcement learning The observational learning mechanism is
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mainly used in the study of vocabulary evolution throughuall transmission (Hurford, 1989;
Oliphant and Batali, 1997; Nowak et al, 1999; Smith, 2004)suich cultural transmission mod-
els, it is supposed that there are two kinds of agents: pmeert children, and vocabulary can be
transmitted from parents to children. During the procegssamismission, children acquire their vo-
cabulary (the encoding and decoding functions) by lear(ieg observing and generalizing) how
adults produce and interpret words, and then they becomgatfemts of the next generation. In
this way the collective vocabulary of the agents and theesponding communication coherence
change over generations.

On the other hand, the reinforcement learning is mainly usélde study of the emergence of
communication through self-organization (Steels, 19%gpIkn, 2000, 2005; De Jong and Steels,
2003; Lenaerts et al., 2005). The mechanism of self-orgdioiz is similar to our framework
presented in Chapter 2 (the difference is that ours is bas@dyame theoretical framework).

In this thesis we are particularly interested in reinforeatlearning which only requires a
minimum of feedback information for learning. Though theniallation of communication mod-
els underlying the studies using reinforcement learnirab&ract and straightforward, there is no
theoretical proof to show why or not a group of agents can ee/to a coherent communica-
tion system. For example, a recent article by Lenaerts e(24105) has done a comprehensive
study on using reinforcement learning for reaching cohtecemmunication, but all the results
were obtained using computer simulation. The difficulty ofimgg a theoretical proof might be
explained by that each agent has dual functions (encodidglacoding functions) which make
things complicated.

To make progress, we propose a minimum communication modehich there are only two
agents: a sender and a receiver. Different from existindwarour minimum model, the sender
only has an encoding function and the receiver only has adilegdunction. With this reduction,
we hope we can achieve a thorough understanding of the tiedr@spects of the reinforcement

learning model.
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4.3 A formal communication model

The objective of this chapter is to study how agents can raaherent communication. First we
need to clarify what we mean by communication. Our model ofrcmnication is adapted from
Hurford (1989), which is the basis for most work in studyihg emergence of communication or
the evolution of vocabulary. In a simple communication nidskee Fig. 4.1), there are meanings

X =A{zy, - ,zp}, nwordsY = {y,---,y,}, and two agents: sender and receiver. The sender
has an encoding (or production) functigh : X — Y that can produce a word to represent a
meaning, and the receiver has a decoding (or interprejdtioction f, : Y — X that can output

a meaning as an interpretation to a word. A basic assumptithreimodel is that the sender cannot
convey his meaning to the receiver directly; rather, he ¢dy convey a meaning via some word.
To communicate a meaning, saythe sender needs to call his encoding functfono convert
the meaning into a worg, in the form ofy = f,(x). For the receiver, once receiving the ward
she needs to call her decoding functifnto convert the word back to a meaningin the form

of z = f.(y). If the interpreted meaning is the same as the original meaninghen we say the
communication between the sender and receiver over theingeams successful; otherwise it is

failed. Later we will frame this communication process iatcommunication game.

' Sender 1‘ ' Receiver |

| by ‘
| N |

o encoding functionf, y ' LY decoding functiony, )

‘ roduction ‘ interpretation ,

 target (p ) word | | word (interp ) interpreted

| meaning L meaningJ

Figure 4.1: A communication model. Given a meaninghe sender encodes it into a word. When
receiving a word, the receiver decodes it to a meating

Remark. The meaning set is a discrete set, which implies that eachimgas atomic or
primitive. The word set is also a discrete set. Another aggiom is that the sender and receiver

have the same meaning s€tand the same word s&t.
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Communication coherence. Here we give a definition afommunication coherendeetween a
sender and a receiver, which is the probability of havingceasful communication between the
sender and receiver over any meaning. To be precisg, bet the encoding function of the sender,
f- be the decoding function of the receiver, arid) be the probability of meaning being used.

Then we can define the communication coherence betweenrtbersand receiver as

Ofos ) = D @) (z = f(fu()).

zeX

where](z = 2’) is the indicator function, and thugz = f,(f(z)) indicates the communication
coherence over one meaning
This coherence measurement will be used as the definitiorojpfilption coherence in our

minimum model that is to be given later (see Fig. 4.6).

A probabilistic implementation of coding functions. In the above communication model, the
encoding and decoding functiorfs and f, have not been specified yet. There are various ways
to implement the two functions. An elegant mathematicalttreent is to generalize the encoding
functiony = f(z) to be a conditional distribution(y|z), which allows each word to be used for
representing a given meaningvith some probability. Similarly, the decoding function= f,(y)

can be generalized to another conditional distributjon|y), which allows each meaning to

be used as an interpretation for a received wardror convenience, the distributigriy|z) will

be called theencoding distributiorof the sender, and the distributiafiz|y) will be called the
decoding distributiorof the receiver. With this treatment, we can easily definecimamunication

coherence between a sender and a receiver over meaaisg

6x(for ) = ¢2(p, @) = > plyla)q(zly)

wherep(y|x)q(z|y) indicates the probability that meaningcan be successfully communicated

via wordy, and thuszy p(y|x)q(x|y) is the probability that meaning can be successfully com-
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municated via all possible words. Then, the expected orageecommunication coherence over

all meanings is:

O(for fr) = [p(x)%(fs,fr)] => [p(x) Zp(ylx)Q(x\y)] :

x x y

As an example, consider the case that there are three meaXing {1, 25, x3}, and three
wordsY = {y1,y2,y3}. The encoding and decoding distributiong/|z) and¢(x|y) are given
in Fig. 4.2. The success ratio of communicating meaningia word y; will be: p(y1|z1) X
q(z1]y1) = 0.5 x 0.2 = 0.1, and the total success ratio on communicating meamings:
Gz = D, P(ylT1)g(21]y) = 0.1+ 0.4 + 0 = 0.5. If we suppose that all meanings are uniformly
distributed; i.e.p(x1) = p(z2) = p(x3) = 1/3, then the communication coherence between such

a sender and receiver is:

¢ =1/3 X (¢, + Guy + buy) = 1/3 x (0.5 4 0.2 + 0.42) = 0.37.

Y Y2 Y3 Ty T2 I3
zi1|.5 4 1 yi| .2 .2 .6
ze| 4 .3 .3 w1l 0 O
3| 0 .3 .7 y31 0 4 .6

(a) Sender’s encoding distributigry|x) (b) Receiver’s decoding distributiay{x|y)

Figure 4.2: Encoding and decoding distributions. Note thatsum of any row is 1, indicating a
distribution.

Coherent communication. For different encoding and decoding functions or distiiims, the
communication coherenc# f;, f.) could be very different: it could be as low as 0 or as high as 1.
When there aren meanings ana words, it is clear that the maximum coherence that any pair of

encoding and decoding functions can achieve will be

n
in{1, —}.
mln{,m}
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When a sender and a receiver can achieve their maximum ca®eréhe communication be-
tween them is calledoherent communicatiorzor example, Fig. 4.3 shows such a pair of encod-

ing/decoding distributions by which the sender and receiae achieve coherent communication.

Y Y2 Y3 Ty T2 I3
z1/1 0 O yr| 1 0O O
z9| O 0 1 2! O O 1
T3 0 1 0 Y3 0 1 0

(a) Sender’s encoding distributigriy|x) (b) Receiver’s decoding distributiay{x|y)

Figure 4.3: lllustration of a coherent communication syste

4.4 Reaching coherent communication using simple
reinforcement learning

In terms of the self-organizing language framework giveRhapter 2, here we present a model
for reaching coherent communication that focuses on tHewoilg two components: (1) a 2-
player communication game, and (2) an agent learning madledsimple reinforcement learning

model.

Game model. The 2-player communication game is designed as a sequéniglage game
which is illustrated by Fig. 4.4. From the figure, we can sexd there are three players: nature,
sender (he), and receiver (she). The player nature, who srioeg, is added here for modeling
that the sender has some private information that is unkrmwmcertain to the receiver. (See
Section 2.2.3 of Chapter 2 for details.) In our case of conmipaiion games, the private infor-
mation of the sender is the meaning he wants to convey. Tiaesé&nows the meaning, but the
receiver only knows the word produced by the sender. For pkgrn the figure, the left dashed
line illustrates that the receiver cannot tell which pathpr x5, the wordy; comes from. When

the receiver interprets a word correctly, both agents geisétipe payoff of 1; otherwise 0.
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Nature

Sender

Receiver

payoff

(1.1)

(0,0)

(1) (@©0) (@©0) (@1) @O0 (12

Figure 4.4: Communication game tree.

A general agent model. Here we present a general agent model, and later we will préise

specific simple reinforcement learning model. In a genegana model, every agent has three

components: a state a decision functiory, and a state update functigin We suppose that all

senders have the same form of decision and state updatéefusia@nd all receivers have the same

form of functions too. Since an agent can play the role of esead well as the role of receiver, so

it is required that an agent has dual states and dual fursction

meaningr
Nature
p(z)

Sender’s

statiay

Sender

Sender
decision

update state

775(1'7 Y, i’)

—— =

meaningt [ ‘game |

word y

Receiver !
decision | (interpretation) Payoff |

71—7‘(37’ ya 'ﬁl)

Receiver's Receiver
stateb, update state

Figure 4.5: Agent model in a communication game.

Fig. 4.5 shows how these components work together in a contation game played by a
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senders and a receiver. In a communication game, nature moves first, deciding whiehning
the sender wants to convey, according to probabjlity). When a meaning is given, the sender
will call his decision functionf, to encode the meaningto a wordy based on its internal stabe

in the form of

Yy = fS('rv bS)

Then, the receiver, when receiving the wardvill call her decision functiory, to decode the

word y to a meaning: based on her internal stdigin the form of

T= fr(ya br)

After the receiver gives an interpretation, both the seaterreceiver receive a payoff that is
given by

Ty = Wi(x7y7'%)7 (NS {S7T}'

And then, both agents update their state frigno 4, based on the received payoff. For the
sender, its update functiap is used to update its current stateto a new oné’, based on its

current encoding — y and the received payoft,, in the form of

bls = gs(bsvxvyaﬂ-s)-

For the receiver, its update functignis used to update its current stateto a new one/. based

on its current decoding — & and the received payoft., in the form of

b;" = gT(bT7 i'v y7 7Tr)-

The simple reinforcement learning model. Here we present a learning model calichple
reinforcement learningwhich is the most widely used one in the study of reachingeoatt com-

munication (Steels, 1996; Kaplan, 2000; De Jong and St2@0s; Lenearts et al., 2005). Specif-
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ically, the learning model we use here is adapted from Lesesral. (2005). In this learning
model, the agent state is represented as an association bettween meanings and words with
b(x,y) indicating the association strength or weight between iinganand wordy. Denote by
bs(z, y) the sender’s association matrix, andibyr, y) the receiver’'s matrix.

As shown in the above general agent learning model, theidadisnctions of the sender and

receiver are somewhat different. For the sender, his aecfanction is given by

Yy = fs(xv bs) = arng}sz(xvy/)v (41)
Y

which indicates for a given meaning he will choose the worg that has the strongest association
with the meaning:.

For the receiver, her decision function is given by
&= fr(y,b,) = argmaxb,(z',y), (4.2)

which indicates when receiving wogd she will interpret it as the meanirigthat has the strongest
association with the worg.

Suppose in a communication gamss the intended meaning of the sender (i.e., the meaning
decided by the external player naturg)s the word produced by the sender, ang the meaning
interpreted by the receiver, then the state update furebbthe two agents are as follows. For the

sender, his state update rule is

bs(z,y) + « if the payoff received from the game is positive
bs(z,y) = (4.3)
bs(x,y) — 3  else.
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And for the receiver, her update rule is

b (Z,y) + « if the payoff received from the game is positive
by (2,y) = (4.4)
b.(z,y)—p  else.

In these rules, the parameter> 0 is calledreward rate and the parameter$ > 0 is called

punishment rateNote that the two agents have the same behavior.

A minimum simple reinforcement learning model. All computer simulations in various ex-
isting work have shown, though not systematically, thatagrof agents designed as above can
converge to a coherent communication system. Howevee th@o theoretical proof to show why
(or not) a group of agents can converge to a coherent comationicsystem. To make progress,
we only study a minimum model in which there are only a senddraareceiver.

The minimum model is described in Fig. 4.6. In this modelr¢hare four parameters: the
number of meanings:, the number of words, reward ratev, and punishment rate. For conve-
nience of analysis, we will set agents’ punishment rate be larger than 1, which is the largest
difference between any two initial association weightsaltow the agent to choose a different
word (or meaning) in the next game in the case of failing to camicate in the current game. In
addition, for convenience, we define the length of eachtiteraasm interactions. Note that is

the number of meanings.

4.5 Specific research questions

As we mentioned before, the minimum model given in Fig. 4.6 floar parameters: the number
of meaningsn, the number of words, reward ratex, and punishment raté. There is also an
output from the model: the communication coherepg at thet-th iteration.

Now, we ask the following questions:

1. What are the conditions that can lead the agents to redwreat communication? Specif-
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Settings
population: 2 agents—a sender and a receiver
language complexityin meanings{x1, - - - , x,, }, andn words{y, - ,yn}
agent state: the association matrices of the sender andeeaeeb; (z, y) andb, (x,y), respectively
learning parameter: reward ratie and punishment raté

Initialization
the association weights in bob(z, y) andb, (x, y), are randomized to fall in the rang@ 1]

Iterations (each iteration includes: interactions).

During each interaction
1. a meaning is chosen from{z1, - - - , x,,, } with probability p(z)
2. the sender represents the meaning by wordarg max,, bs(x,y’)
3. the receiver interprets the word as mearning arg max, b, (', y)
4. if the interpreted meaningis correct (i.e.z = x)
bs(z,y) = bs(z,y) +
br(‘%ay) = br('@ay) +a
otherwise (i.e.z # x)
bs(z,y) = bs(z,y) — B
br(i'vy) = br(ivy) - B
After each iteration, namely: interactions, take a snapshot of the communication cobegft)

Figure 4.6: The minimum computational model of coherent mmmication using the simple re-
inforcement learning.
ically, for a given number of meanings;, and a given number of words, what kind of
values of reward rate and punishment raté can make the agents reach coherent commu-

nication?
2. How fast can the agents reach coherent communicatioa ddhditions are satisfied?

A careful reader might notice that there is one more (kincpbafameter in the model. That is,
the initial association matrices of the sender and recgivendb,. The initial matrices could be
parameters, but we will not consider them as parametersristady, for the following reasons.
First, we aim at studying the average or expected dynamisaviber of the agents. Second, we
want to know for any given initial association matrices, wznges of the settings ¢fr, n, «, 3)
would make the agents converge to a coherent communicatiord, the initial matrices could be

easily set to the ones that are already converged.
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Research methods. Like what we did in the last chapter, we will use both compsterulation
and mathematical analysis to study the above questionsthEadetails on the limitations and
advantages of using simulation and mathematical analgstthe procedure of how to combine

the two approaches, please see Section 1.4 of Chapter 1.

4.6 Simulations

Our goal in this section is to get some intuitions about thevalquestions by conducting simu-
lation on the minimum model given in Fig. 4.6. Without lossgeierality, we fix the number of
meaningsn and the number of words both to be30, and the punishment rate= 1. (For other
settings ofm, n, and3 > 1, the simulation results are qualitatively similar). Alswe suppose
that all meanings are uniformly distributed; in other words:;) = 1/m, i = 1,--- ,m because
there aren meanings. For each value of reward raten {0.1,0.2,---,1.8,1.9,2}, we run 100
times of the procedure given in Fig. 4.6. Aft&0 iterations, stop and record the communication
coherence, as the approximation of #heentualcoherence. Plotting the eventual coherence by
averaging the results of the 100 runs of simulation as a fomeif reward ratex, we obtain a
graph shown in Fig. 4.7.

The graph shows that when the reward rais around some critical valug* = 0.8, there is a
phase transition. Whem is abovex*, the two agents can eventually reach coherent communica-
tion; otherwise, they cannot. We want to mention that thicaidivalue ofa depends on the other
three parameters (as we will show later in Section 4.7.1}his case wheren = n = 30 and
£ =1, the critical value oty happens to bé.8.

The results shown in Fig. 4.7 only illustrates the eventwdderence (snapshot at iteration
500). To get a sense of how the communication coherence ekawgr time, Fig. 4.8 shows the
dynamics for the case of reward rate= 2, which is above the critical value* = 0.8. For other
settings of the number of meanings and words, the resultsiauiéar as long as the reward rate

is large enough. From the graph, we can see that the communicati@rerate has a trend to

64



' 600000000000
0.8
3
5 06 o
E
<
2 04}
qca
i
0.2
000
0looeo 2 -
0 0.5 1 15 2

Reward rate a

Figure 4.7: Phase transition.

converge to 1.

Fig. 4.9 shows the dynamics for the case of reward asate 0.5 which is below the critical
valuea* = 0.8. For other settings of the number of meanings and words,.e$dts are similar
as long as the reward ratessallenough. From the graph, we can see that the communication
coherence cannot get improved over time using the reinfioece learning—it oscillates around

some very low coherence value.

4.7 Analysis

4.7.1 Conditions for reaching coherent communication

In the last section, we have shown by simulation that wheghaot the agents can reach coherent
communication depends on the settings of the parametetise lcase of the number of meanings
m = 30, the number of words = 30, and punishment raté = 1, when reward rater is above
0.8, the two agents can eventually reach coherent communigaitberwise, they cannot. This
section aims at finding out what ranges of settings of the farameters will lead to coherent

communication.
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Figure 4.8: Simulated dynamics of the reinforcement legymnodel for large reward rate = 2.
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Figure 4.9: Simulated dynamics of the reinforcement lesymodel for small reward rate = 0.5.
The idea behind is that if the parameters are appropriased)ya temporary (or lucky) meaning-
word agreement between the sender and receiver will havesdegrchance to be reinforced by the

reward rule than to be weakened by the punishment rule. Oteraorary agreement has a better

chance to be reinforced than to be weakened, random walkytljorris, 1997) can tell us that
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the temporary agreement will have a positive probabilithe¢oming a stable agreement.

To facilitate our arguments and analysis, we give the falhgawnformal notations, which will
be defined formally later.

Reward probability.The probability that a temporary agreement is reinforceddiye reward
rule.

Punishment probability. The probability that a temporary agreement is weakened hbyeso
punishment rule.

Without loss of generality, let the first temporary agreetmas on the meaning-word pair
(x1,11). This means for the sender, it will use woydto represent the meaning, i.e.,y; =
fs(x1); for the receiver, it will use meaning, to interpret the wordy,, i.e.,z; = f,.(y1). In terms
of association matrix, according to the decision functiae, have, for the sendeéx(x,y;) =
maxy, bs(z1, yx ), and for the receiver, (x1, y1) = maxy, b.(zx, y1). FOr convenience, we denote by
s11 = bs(x1,y1) and byry; = b,.(x1,y1). That the agreement dumy, y;) is reinforced means both
s11 andrq; will increase bya, and that the agreement is weakened means at least ehaganid
r11 Will decrease bys.

If at the next round what is played is again the meanindghen the communication on meaning
x1 Will succeed, so the reward rule will be applied to beth andr;;. Since the probability of
playing meaning: is p;, thereward probabilityof the agreement will bg,, and then thexpected

reward amounbf the agreement will be

apq.

If at the next round what is played is not the meaninglet it bex, for example, then there is
a chance that the word produced by the sender to represenetii@ngr, happens to be the word
y1, and this chance can be written as the probabilityfRr.) = y;). If this does not happen, then
there is neither reward nor punishment, so it is of no intedéshis happens, the communication
will fail, since the interpreted meaning by the receivergpmust ber;, according to the decision

function given by Eq (4.2). And then, the association weightbetween word;; and meaning
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x1 In the receiver’'s matrix will decrease I3 according to the punishment rule of the receiver.
Similarly, at the same time, the weight, between meaning, and wordy; in the sender’s matrix
will decrease by3. (This means the punishment rule of the sender has no effettteoweight
s11.) Therefore, th@punishment probabilitgan be represented és— p; )Pr( fs(z2) = y1), where
(1—py) is the probability of playing a meaning other thanand P( f;(x2) = ;) is the probability
that the sender will usg, to represent the other meaning. As a result,akgected punishment

amountof the agreement will be

B(1 = p1)Pr(fs(z2) = y1).

Now we want to compute Pf(x2) = y;), the probability that the worg, is the one used by
the sender for the meaning. Considering that in our model words are produced by Eq (4.1)

nonlinear function, it is hard to give a precise estimati®a, we make the following assumption.

Assumption 4.7.1.(Random word production assumption.) The word producethé&génder for

a meaning thatis not in any (temporary or stable) agreemeassumed to be randomly generated.

With the assumption, we can suppose that the probabilityeofvordy; being the one produced
by the sender for meaning, Pr(f,(z2) = y1), can be approximated by, provided that there are
totally n words. (We will show by simulations that this is a good appredion, or the assumption
is a good one.)

Then, our task is to solve the following inequality, wheng is the expected reward amount,

andj3(1 — p1)2 is the expected punishment amount:

apy > (1 —p1) ! (4.5)

n .

Eq (4.5) is just the condition for the agents to develop tret fitable agreement. (Actually it
is very likely that more than one agreements can be establigarallel.) Now we need to find the

conditions for the other agreements to be established.r8efe go further, we make the following
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assumption about the order of developing agreements.

Assumption 4.7.2.(Sequential agreement establishment assumption.) Agrasrare established
in the sequential order of the frequency that their meaniagsused. If the probabilities of the
meanings have the relationship; > p, > ---, then we assume that the agreements will be

established in the order df:1, y;,), (22, y1,), - - -

Now suppose we already have- 1 established stable agreements that satisfy the above se-
quential assumption. Then we need to find the condition foeva agreement, thi* agreement,
to be established. Note that= 1 is the case we have just discussed above. Let the probadbiliti
of those meanings associated with the already establigjregments be; > --- > p,_;. By
applying the similar arguments as above, for thetemporary agreement to become stable, we
require the following inequality to hold
Lo

ap; > [(1 ;pk)n, (4.6)
where the terr’rEi:1 pr in the inequality comes from the fact that théseeanings can guarantee
their sender will not generate a word that would cause th@oeany agreement to be weakened.

In general, for the agents to establislagreements, we must require the followibhgequali-

ties to hold
l
1
Oépl>ﬁ<1_zpk)_7 (l:1727“'7L)7
k=1 n
which are equivalent to
«Q l 1
- > (1- Pr)—, 1=1,2,---,L), 4.7
5> kz Do ) (4.7)

When the agents can develbstable agreements on meanings: - - , x, the communicative

coherence of the system will be

S(L) = pr

k=1
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When meanings are uniformly distributed. Above we have shown that, for the agents to es-
tablish stable communication aih meaningsry, - - - , zz, the inequalities in Eq (4.7) should be
satisfied forl = 1,2, --- , L. Now we are ready to solve the inequalities to obtain the eagence
conditions for some specific distributions over meaningsteHve only consider the uniform dis-
tribution.

When the meanings are uniformly distributed, we hgve: % fori =1,...,m. For the agents

to establishl. agreements, by substitutipg= % into Eq (4.7), we have

e
3

It is clear that if% > mT‘l then for alll > 1, the above. inequalities will hold. In summary, the

condition for reaching coherent communication under unifdistribution of meanings is:

m—1

% > (4.8)

Specifically, if we fixm = n = 30 and/ = 1 (the same setting as in our simulation), then
S mT‘l ~ 0.97 will be the critical value of reward rate, above which theratgecan develop a
communication system. This value is larger than the onedrsitimulation where* ~ 0.8. This is
because we have made two assumptions in the analysigrdem word productiomssumption
and thesequential agreement establishmassumption. Of course, in the simulations, there is no
such assumptions. The difference between simulation aalgitazal conditions also indicates that
in the simulation, it is easier for the agents to reach catte@@mmunication.

Clearly, the two agents can develop as manyhas{m, n} stable agreements, since there are

at mostmin{m, n} distinct pairs of meaning-word, and thus, the maximum coyee communi-

cation coherence isin{m,n}L or equivalentlymin{2,1}.

70



4.7.2 Time for reaching coherent communication

In this section, we aim at giving an analytical answer to agosid question: how fast can the
agents reach coherent communication if the conditions atisfied? Our approach is to build
a dynamics equation describing how communication coherehanges over time as a result of
the agents updating their coding function by reinforcemeatning, and then to infer from the
equation how much time is needed for a given level of coherenc

Luckily, it turns out that the dynamics equation can be aareséd explicitly using the follow-

ing theorem.

Theorem 4.7.1.1f all the meanings are uniformly distributed and the cogegrce condition (given
in Eq(4.8)) is satisfied, then the expected communication coherentaationt is (each iteration

containsm interactions between the sender and receiver):

¢(0) = 0

(4.9)
Bt+1) = o)+ (1- o) (& - 22)

wherem is the number of meanings, ands the number of words.

Proof. In the above recursive relation(t) represents the current expected communication coher-
ence, andj(t + 1) the expected coherence at the next iteration. (For ¢(t))(1 — Z¢(t)) =+,

it represents the probability that a meaning will be commoatad successfully for the first time

by the agents at the next iteration—the meaning will be dallew lucky meaningWithin this

part, the term(1 — ™ ¢(t)) represents the probability that a randomly chosen word eansed

by the sender for representing the new lucky meaning. Thageucommunication coherence is
¢(t) means there are as manyag(t) words that have already been successfully and thus perma-
nently associated with some meanings, we can see that thieemwhremaining “fresh” words is

n — mao(t). Therefore, for a word which is randomly chosen frerwords to be a fresh word, its

probability must bén —me(t))/n = 1 — 2¢(t). Another term- represents the probability that a

word will be correctly interpreted by the receiver. Rech#ittthere aren meanings, so by random
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guess the probability of hitting the correct meaning&is |

Corollary 4.7.1. The expected communication coherence-at oo is:

Proof. The Eq (4.9) has two fixed points: and . As long as¢(t) < 1 and¢ < =, ¢(t)
will increase monotonely asincreases. Considering that the initial condition(®) = 0 <

min{1, >}, therefore, we havBm, ... ¢(t) = min{1, ™ }. |

Comparison between simulation and analytical results. Fig. 4.10 shows the comparison be-
tween the simulation and analytical results. The paransstiing for obtaining the results is:
(m,n,a, ) = (30,30,2,1). Itis the same setting as in the simulation given in Fig. 4rBthe
figure, the simulation result, shown by the dashed line, vaéaioned by averaging 100 simulations,
and is the same as Fig. 4.8. The theoretical result, showhésgrhooth line, is computed by the
dynamics equation which is given by Eq (4.9).

It turns out that the simulation result has a slightly higéegntual communication coherence
than the analytical one (compare the two coherence valugeweatOth iteration). This can be
explained by the comparison on the simulation and analytsalts on the convergence condition
(see the end part of Section 4.7.1). There, the simulatisaltlecompared with the analytical
result, shows a lower threshold of the reward ratevhich makes the agents in the simulation

context easier to reach higher coherence than that in tHgsésiaontext.

How much time is needed for achieving a given level of coherer? Suppose we can solve the
above recursive equation (Eq (4.9)) by a closed form such/as= ¢ (t), then we can represent
timet as a function of cohereneeh in the form oft = ¢~*(coh). For example, from Fig. 4.10,
we can estimate that to achieve a communication coheren@@%f the agents need around 250

iterations. Unfortunately, since there is no closed formsfaving the recursive equation exceptin
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Figure 4.10: Comparison between the simulation and amcalydiynamics.

very special cases such@as= n = 1, we cannot calculate explicitly the number of iteratioretth

is needed for a given level of coherence.

4.8 Summary

In this chapter we studied our second linguistic consenass:ccoherent communication. The
coherent communication problem concerns how a group oftagsm converge to a coherent
communication system in which the word used by a sender tesept some meaning can be
interpreted correctly by a receiver to extract the same mgan

In terms of the self-organizing framework given in Chaptew2 designed a reaching coherent
communication model that focuses on the following two conegs: (1) the 2-player communi-
cation game, and (2) the agent learning model. In the dedigmeagame, we defined the payoff
function as follows: if the sender’s intended meaning camcdreectly conveyed to the receiver,
both agents get a positive payoff; otherwise 0. In the desfgagents, we implemented the agent

state as an association matrix between words and meaningss, for a sender to represent an
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intended meaning, he will choose the word with the stronggesbciation to the meaning; and for
a receiver to interpret a word, she will choose the meaniri thie strongest association to the
word. Furthermore, agents were designed to update therfaesiusing thesimple reinforcement
learning rule If the communication between a sender and a receiver i®ssftd, both agents will
increase the association strength between their respgudiv of word and meaning by a number
calledreward rate otherwise decrease the strength by a number cpll@shment rate

Our work has the following contributions. First, we propgdseminimum model which only
consists of two agents (a sender and a receiver). We foundypuater simulations and mathe-
matical analysis that, for a given number of meanings andisydhere exists a critical value of
the reward-punishment ratio, above which the agents cavecga to a coherent communication
system, below which the agents cannot. We also gave a dysaqgitation on how coherence
changes over time when the convergence condition is satisBecond, compared with existing
work, ours is the first to give an analytical result on the abads under which the agents can

reach coherent communication using reinforcement legrnin
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Chapter 5

Case 3. Reaching Grammar Consensus

5.1 Introduction

In this chapter we present our study of the third case of istguconsensus: reaching grammar
consensus. In our grammar consensus problem, each ageatdrasyxmar which is modeled
as a function by which the agent can generate and recograrengatical sentences. When two
agents have different grammars, it is possible that theesest generated by one agent cannot be
recognized by the other agent. The task of the agents, themréach a common grammar so that
the sentences generated by one agent can be recognizedppther agent.

The agents are supposed to be adaptive—they can changgrdraimar based on interactions
they have with each other. So a key question is how can we masligptive mechanisms for such
agents so that they can converge from their initially défgrgrammars to a common grammatr. In

the design of the agents, there are four factors that magtdffe convergence:
1. Population size: the number of agents;
2. Grammar complexity: the number of variables in a grammaction;
3. Learning mechanism: how agents change their descriptiod,;
4. Interaction structure: who interacts with whom.

This chapter aims at studying how the population size anchgrar complexity affect the con-
vergence under a learning mechanism caflecteptron learning rul§Rosenblatt, 1958) and an

all-to-all interaction network. We will construct a comptibnal model using the self-organizing
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language framework presented in Chapter 2. Because of thplegity of grammar adaptation
that prevents from systematic simulation experiments, Wiewainly focus on mathematical anal-
ysis to find the conditions under what the agents can contergee common grammar.

In the next section we give a brief review of related work. e set up a mutual percep-
tron learning model and specify our research questions.t Wexconcentrate on presenting our

mathematical analysis of the questions. We close with a samyof this chapter.

5.2 Related work

Our grammar consensus problem can be seen as a special ¢hsestfdy of the emergence of
grammar. Various computational models have been propossddy the emergence of grammar.
A most classical one is Batali’s (1998) computational matiek is based on simple recurrent
network (SRN). In his model, a group of agents take turns &y fihe role of speaker (he) and
hearer (she). The speaker converts a vector of meaninga sgquence of characters{af, b, c}
using his SRN, and sends the sequence to the hearer. The tiheareonverts the sequence to a
meaning vector using her SRN. If the hearer’s interpretedmmg vector is wrong, the hearer will
update the connection weights in her SRN according to thecbmeaning vector provided by the
speaker. Batali’'s simulation shows that the agents canaeaeshared grammar that resembles in
many ways to human languages. However, because of the catgmethe SRN, it is difficult to
prove the convergence of the agents in Batali’'s model. (iBhadso true for most of the work on
the emergence of grammar.)

Recently, Cucker, Smale, and Zhou (2004) proposed an dlapatract model (CSZ model)
in which grammars are modeled as convex functions that taédarm of f : X +— Y, ! and
the grammar adaptation of an agent is modeled as learning the data (sentences) generated
from other agents. They have shown some very pleasant a@lptoperties in their model.

For example, the agents can converge to a shared grammae igent can learn (directly or

Ynfunction f : X — Y, X is a convex subset of-dimensional Euclidean spa®, andY is a convex
subset ofR.
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indirectly) from every other agent using Regularizatioarteng algorithm (Neumaier, 1998), and
the convergence speed depends on the eigenvalues of thectionmrmatrix (network) among the
agents.

Like the CSZ model, our work on reaching grammar consensalks@salong the direction of
building abstract models with a focus on modeling the gramadaptation of an agent as learning
from sentences generated from other agents. Howeverrathtférom the CSZ model, we focus
on building a grammar consensus model that has the follotwegmportant properties: (1) the
learning algorithm is online learning (rather than leagiirom the scratch as in the CSZ model);
(2) the grammar can be used by an agent to generate or reeagainmatical sentences. As we

will see later, our mutual perceptron learning model mestse two properties.

5.3 Modeling grammars and sentences

The objective of this chapter is to study how agents can raaadmmon grammar. Towards this
end, first we have to clarify what we mean by grammar (and serje In formal language theory, a
sentence is defined as a string of symbols, a language is Bssgitences, and a grammar is a finite
list of rules that define a language. For example, the set gkatences over the binary alphabet
{0,1} is {0,1,00,01,10,11,000,001,---}. A list of four rewriting rules{S — 0S; S —
A; A — 1A; A — e} whereeis a null element, is a grammar that defines a regular language
L = 0™1™. Whether a sentence belongs to a language or not dependseathewrthe sentence
can be generated by the grammar of the language or recogyzid corresponding grammar
recognition machine (Lewis and Papadimitriou, 1997). B@naple, the above grammar can tell
us that sentence “001” is grammatical while sentence “004.00t.

In a general sense, we can think of grammars as functiontatteathe form off : X — {0,1},
where f indicates a grammarX indicates the space of all possible sentences, and 1 or Osmean
whether a sentence is grammatical or not.

In this thesis, a sentence will be modeled as a data poil¢ddaktancehenceforth, in an n-
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dimensional Boolean spag¢é, 1}, and a grammar will be modeled as a Boolean (classification)
function which can classify an instance as grammaticali{pe} or not (negative). For example,

forx = (zy,--- ,16) € {0,1}°, if a classification functioryf (x) is defined as:

f({lj'l,"',l'(;):l ifandonlyif .1'2:1&1'4:0,

thenx = (1,1,1,0,0,0) is a positive instance while = (1,1,1,1,0,0) is not. Obviously, this
treatment is very different from the traditional formal ¢arage theory.

Though not realistic, our treatment has several advant&ges, it conforms to a fundamental
property of grammar: grammar can be used to generate gracainsgéntences and can also be
acquired or adapted by learning from sentences. Similartassification function can be used
to generate positive (or negative) instances and can alsodugred or adapted by learning from
instances.

Second, modeling grammars as Boolean functions would hrma@ theoretical possibility
of using the principles and parameters (P&P) framework (@i, 1981)—a framework that
is regarded by many linguists as the dominant form of masastr linguistics—to interpret the
spontaneous emergence of human languages such as theghecargn language (Senghas et al.,
2004). In the principles and parameters framework, thefggtaonmatical hypothesis is generated
by k binary parameters. At any time, a learner holds a partidutpothesis (or grammar) given
by a particular setting of these parameters. The learney matechange his grammar as long as the
received sentences can be recognized by the grammar. femnserarrives that is not recognizable,

then the learner might change some of the parameters (MatseNowak, 2004).

78



5.4 Reaching grammar consensus using mutual perceptron
learning

In terms of the game-based self-organizing language framewgiven in Chapter 2, here we
present a grammar consensus model that focuses on theifajlomo components: (1) a 2-player

grammar game, and (2) an agent learning model catletlial perceptron learninghodel.

Game model. The 2-player grammar game is designed as a sequential igagaane which is
illustrated by Fig. 5.1. From the figure, we can see that theeethree players: nature, speaker
(he), and hearer (she). The player nature is added here fdeling that the speaker has some
private information that is unknown or uncertain to the leea(See Section 2.2.3 of Chapter 2
for details.) In our case of grammar game, the private in&drom of the speaker is the class of
a sentence. The speaker knows the class, but the hearer mmls khe sentence produced by
the speaker, and her job is to predict the class of the semtéhtthe figure, the left dashed line
illustrates that the hearer cannot tell which pathor x,, the sentencg, comes from.) Nature
moves first and determines the class of a sentence to be padyche speaker. There are two
classes: grammatical (G) and ungrammatical (U), and naketermines a class according to the
probability of p(G) or p(U) = 1 — p(G). The game tree in Fig. 5.1 shows$G) = 0.9 and
p(U) = 0.1. When the hearer predicts correctly the class, both ageifitseseive a positive

payoff of 1, otherwise 0.

A general agent model. Here we present a general agent model, and later we will préise

specific mutual perceptron learning model. In a generaltagedel, every agent has three compo-
nents: a staté, a decision functiorf, and a state update functigh We suppose that all speakers
have the same form of decision and state update functiomlsakhimearers have the same form
of functions too. (As we will show in the specific model, we pape that an agent use a unified

function for the role of speaker and hearer.)
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Figure 5.1: Grammar game tree.
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Figure 5.2: Agent model in a grammar game.

Fig. 5.2 shows how these components work together in a gramamae played by a speaker
and a hearer. In a grammar game, nature moves first, deciding the elaSsor U, of a sentence
that the speaker will produce, according to probability). When class: is given, the speaker
will call his decision functionf, to generate a sentencehat has the class based on its state,

in the form of

x = fs(c, by).

The hearer, after receiving the sentencwvill call her decision functiory, to predict a class for
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sentence;, based on

¢ = fo(z,b).

After the hearer predicts the class of the sentence, bothitsgeceive a payoff that is given by
™ = mi(c, z, ¢).

And then, both agents update their state frignto 4, based on the received payoff. For the
speaker, its update functiap is used to update its current stateto a new oné’, based on its

current sentence productien— x and the received payoft,, in the form of
V, = gs(bs, ¢, 2, ms).

For the hearer, its update functignis used to update its current stafeo a new oné). based on

its current prediction: — ¢ and the received payoft., in the form of
v, = g.(br, ¢, x, 7).

The mutual perceptron learning model. As we stated in Section 5.3, a sentence is modeled
as an instance in an n-dimensional Boolean spéce {0,1}", and a grammar is modeled as
a classification function which can classify an instance as 11 (i.e., classify a sentence as
grammatical or not).

We use linear threshold function to implement the decistorcfion of an agent (Duda et al.,
2000). A linear threshold function is a function that usesmadr combination of the components

of its input instances € X for making its decision. It can be written as
Y= f(W7X) = @(W ’ X) = @(Z wixi)a

wherew = (wy, - -+ ,w,) € R" represents the state of the agent, &rd) is a threshold function
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that outputs 1 if: is above some threshold, otherwise -1.

This definition of decision function is straightforward foearer, who just needs to call the
function to output whether a received instarcis 1 or -1. But for the speaker, it is a little tricky.
If he wants to produce a positive (or negative) instancewg to implement it is to repeatedly
sample an instance from the instance spac€ until the instance satisfie§w,x) = 1 (or -1),
wherew is the hearer’s state.

The state update function is as follows. If both agents gedsitipe payoff, they will keep
their current state. Otherwise, they will update theirestataccording to the following perceptron
learning rule:

W =W — \yX,

where) > 0 is a parameter calldéarning rate In addition, for the hearey, is the predicted class
value (1 or -1), and for the speakeris the intended class of the senterceéNote that in the case
of zero payoff, the speaker and hearer’s class value aresdpDe. yspcaker = —Yhearer)-

To distinguish our perceptron learning from the traditioorze (Rosenblatt, 1958), which in-
volves only one agent (learner) updating its function todfikbother agent (teacher), we call ours

mutual perceptron learnindecause both speaker and hearer can update their functions

More about perceptron learning. To be prepared for the analysis of our model in the next
section, we introduce some concepts here about the tnaditipasic perceptron learning model in
which alearnerlearns from geacher

The basic perceptron algorithm was introduced first by Riols¢in(1958) to solve the linear
threshold learning problem. A perceptron takes a vectoealtvalued inpufs calculates a linear
combination of these inputs, and output$ & the result is greater than some threshold anid

otherwise. More precisely, given an input instasce: (x4, ..., z,,), the outputf(x) computed by

2The instance spad®, 1}" is a special case 6t".
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the perceptron is:

f(x) = ' (5.1)
—1 otherwise

wherew = (wy,...,w,) € R" is the current weight vector maintained by the perceptroor F
convenience, usually the threshalds set to0. The reason is that we can add an additional
constant input, = 1 with a weight variableu,.

For brevity, we will sometimes write the perceptron funotas:

F(x) = sgn(w - x)

where

+1 if y>0
sgn(y) =
—1 otherwise

Note that each weight vector defines a perceptron functiaeoision function. Learning a
perceptron involves choosing values for the weight veetet (wy, ..., w,). Initially the algorithm
starts with a weight vectox = (0, ..., 0). Upon receiving an instance= (z1, ..., z,), the learner
predicts the label ok to be f(x).

If the predicted label is correct, then there are no changtweiweight vector. However, if the

prediction is wrong, the weight vector of the learner is updaising thgerceptron learning rule

w—w—\f(x) x (5.2)

where is the learning rate.
The perceptron Convergence Theorem was proven in (Novik®62; Minsky 1969); we

sketch it here because we draw upon it in later proofs of nipiereptron convergence.

Theorem 5.4.1. Perceptron Convergence Theoreffiall instances are linearly separable, then

a learner which uses the perceptron algorithm will only maKkaite number of mistakes. That is,
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the learning procedure converges.

Proof. The basic idea of the proof is to show that on each mistake imathee learner, the distance
between the currently maintained weight vector (of the fiomcf) and the target weight vector (of
the target perceptron functioft) becomes smaller after the update using the perceptromitegar

rule. [ |

Coherence. In Section 2.5 of Chapter 2, we stated that: foragents, suppose their states are

by, -, by, then a general definition of population coherence can bendmy

d(by, - ,by) = m Z sitm(b;, b;)
i#j
where0 < sim(b;,b;) < 1 is the similarity between the states of two agentnd j and its
definition depends on contexts.
In the context of the mutual perceptron learning model, gfendion of the similarity is given
as follows. Since the state of an agent is a weight vestowe can define the similarity between

two statesw; andw, as follows:

. Wi - Wy
sim(wy, Wg) = cos(wy, Wy) = W,
1/|W2

where|w| denotes the length of vecter and is given byw| = /> ,_, wi.

Then the population coherence ovéragents can be given by

O(Wy, -, Wy) = N(N -1 1<;<N cos(wi, ;). (5.3)

A computational model of reaching grammar consensus. Fig. 5.3 gives the whole compu-
tational model of reaching grammar consensus using theahparceptron learning rule. This
model is based on the general model that presented in Figjo2 Section 2.6 of Chapter 2. In the

model, the dimensions of the instance spaces the number of grammar parameters in terms of
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the P&P framework (see Section 5.3). The analysis and stronleonducted in later sections will

be based on this model.

Settings
population: N agents
language complexityn dimensions of instance space
agent state: each agertias a weight vectow;
learning parameter: learning rate

Initialization
each agent’s weight vector is randomized

Iterations (each iteration included’ (N — 1) interactions (see Section 2.4 for details).

During each interaction
1. aclass:is chosen fror{U, G} with probability p(c)
2. the speaker generates a sentenadnose class ig
3. the hearer predicts the class of the sentanasc
4. if the predicted classis wrong (i.e., both agents receive a payoff of 0)
each agent updates its state based on perceptron learféng ru

After each iteration, namelyy (N — 1) interactions, take a snapshot of the population coherétge

Figure 5.3: The mutual perceptron learning model.

5.5 Specific research questions

The traditional perceptron learning model, which involeedy one agent (learner) updating its
function to fit to another fixed agent (teacher), is the firaténg algorithm that was shown to
converge under some conditions (Novikoff, 1962; Minsky 99%apnik, 1995). However, we
have no knowledge about the convergence property of muaraéptron learning because this is
a new learning model.

We ask the following questions:

1. Will the agents in our proposed mutual perceptron legrmiodel be able to converge to

some common grammar?

2. What are the conditions that can lead the agents to rearhngar consensus? Concretely

speaking, for a given dimensions of instance spa¢e given number of agentgy, and
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learning rate\, what kind of settings of these parameters will make the sgeach grammar

consensus?

Research methods. Unlike in the cases of the previous two chapters where we olidpiter
simulation first and then explored the problem by matherabaicalysis, here we will mainly focus
on using mathematical analysis to study the above questimhshen use computer simulation to

partly test the analytical result. (See Section 5.7 for #taited reasons.)

5.6 Convergence analysis

To conform to the terms used in traditional perceptron liegyrnin this section of analysis, we
will use “teacher” to stand for “speaker”, “learner” for “aker”, “mistake” for “nonpositive pay-
off”, “instance” for “sentence”, “classification functidfor “grammar”, and “label” for “class of

sentence”.

The purpose of this section is to show that under some congitihe perceptron learning
model will converge to a common classification function. Hasic idea is as follows. If the
learner makes a mistake on the instance given by the teaeh@vant to show that the “distance”
between the weight vectors of the two agents will become lemafter weight updating using
perceptron learning rule.

However, if the number of agents is greater than two, we adsalrto consider the new “dis-
tances” between functions of the learner/teacher agenbtret agents in the population—we
want the entire population to converge. We show that undaesmnditions, theum of the new
distancexan be less or equal than the old distance, in which case gbethim is guaranteed to
globally converge.

Before going ahead to prove the convergence, we need sonmaatésns, some of which are

also used in the traditional perceptron convergence thepreof (Thm. 5.4.1).

Assumption 5.6.1.For any instancex, there exists a positive constansuch thaf|x|| < .
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Assumption 5.6.2.For any weight vectow maintained by any agent, suppose for any instance
and label pair(x, y) generated according tg = sgn'w - x), there exists a positive constansuch

thatyw - x > ~v > 0.
To make the proof readable, we will first introduce some deding as follows.

Definition 5.6.1. Given two agents with weight vectoss, andw, the distance between them is
defined as:

AW, wp) = [[Wa — Wall”
where|| - || is the 2-norm (i.e., the Euclidean norm).

Definition 5.6.2. At time step, the weight vectors of two agentsand B are w, andw,. At
time step + 1, the weight vectors become, andw’,. The variance of distance between the two

agents fromtimetot + 1 is defined as:

A(wy,wgp) =d(W,,wh) —dw,,wy) =A

A) B

Definition 5.6.3. Distance reduction is defined asA if A < 0.
Definition 5.6.4. Distance introduction is defined asif A > 0.

Lemma 5.6.1. Suppose on a round of the game, a learhemakes a mistake on the instance
given by a teachef’, and both agents use the perceptron learning rule to updage wweight

vectorsw, andw,. Then there exists a positive constant Z—z such that:
A(wp,wy) < =4 (5.4)

when the learning rate. = 3.

Proof. When the learnef. makes a wrong prediction for the label of the instarcgent by the

teacher?’, it will modify its weight vector fromw, to w’ . According to the definition of label
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generation and prediction, we have:

y = sgnwy - x)

(5.5)
—y = Sgnw; - x)
Then we have the following inequalities
-Wr x>0
s (5.6)
y-wy,-x<0
With the above Assumptions 5.6.1 and 5.6.2, we have
Alwp,w,) = d(w;, W/L) —d(wy,wp)
= [I(wWr = Ayx) — (W, + dyx)[|* — [[wr — w,|?
= —ddyw,x + Dyw,x + 42%]|x]|?
< —4A(y = AR
When the learning raté = 555, we have
2
A(wp,wy) < —%.
Letd = Z—z thenA(w,, w,) < —é holds. [ ]

The above lemma shows that two agents can move their fusatioser to each other through
adaptation after making mistakes. However, for the situedif more than two agents, it is possible
that moving one agent’s function toward that of another agalhcause it to move farther away
from the function of a third agent. Fig. 5.4 shows a very sarifilistration.

We want to show that under some conditions, the total distetitiction(see Definition 5.6.3)

is larger than the total distang#roduction(see Definition 5.6.4) after updating the weight vectors
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Figure 5.4: An illustration of the complexity of mutual peptron learning. AgenB moves to5’
which is closer ta”, but the distance betwedsl and A becomes larger than before.

of the two agents (teacher and learner) in a game round. Tlogvfing lemma says that when the
learning rate is set to the positive constant described mrha 5.6.1, then theeductionin the

distance between the learner/teacher and other agentdidos has a lower bound—there will
be at least that much reduction in distance. Thus the pothiaiswith such a learning rate, it is

possible (but not yet certain) that the functions may caywer

Lemma 5.6.2. Given an instance, and two agentsA and B with weight vectorw, and w.
Supposed’s label y, onx is different fromB’s labely;, and A changes its weight vectev, «—

w, + ysw,x, While B keeps its weight vectox; unchanged. Let learning rat®& = -1, then

2K2 !

there exists a constar, = 3v?/4x? > 0 such that

A(w,y,wy) < —=A,.

A, is called the lower bound of distance reduction.

Proof.

Awaws) = [(Wa+Aysx) = ws|* — [wa — ws|
= 2\YpWaX — 2\yzWpX + )\2||X||2
< =20y + N2

— —372/4/{2 = —Ar (57)
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Assumption 5.6.3.For any weight vectow maintained by any agent, suppose for any instance
and label pair(x, y) generated according tg = sgnw - x), there exists a positive constanmt

such thatyw - x < 3.

Next, Lemma 5.6.3 says that the distance introduced betweeifunctions of the learner-

teacher pair and other agents has an upper bound.

Lemma 5.6.3. Given an instance, and two agentsA and B with weight vectorw, and w,.
Supposed’s label y, onx is the same a®’s label y,;, and A changes its weight vectay,, «
w, — ysw,x (note, this is a mis-adaptation), whife keeps its weight vectar , unchanged. Let

learning rateX = 51, then there exists a constaftt = % (3 — 1) > 0 such that

22

Alw,,wg) <A,

A,; is called the upper bound of distance introduction.

Proof. Itis obvious that\; = (5 — 3%) > 0 from the facts > ~.

AW, wp) = [[(Wa— Aysx) — WBH2 —[[wa— WBH2
= 2 \YpWaX — 2 \YpWpX + )\QHXHQ
< 203 =2\ + A2k2

- 2p-yon, (5.8)

K2 4

Now we are ready to give the proof of the convergence of thegpgron learning model.

Theorem 5.6.4.1f % < % holds, then a population of agents which use the perceptaming

rule can converge to a shared function after making a finitenber of mistakes.
We callg < % as theconvergence condition
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Proof. The idea is simple. After a learner makes a mistake, we hogtebth using our mutual
perceptron learning rule for each weight vector update stira of new inter-function distances
among all agents is smaller than before. Suppose ther& aagents. Among thes® agents,
there are two agents, learner and teacher respectivelysevbarresponding weight vectors are
w., w,. The weight vectors of other agents ave, ..., wy_,. (To be consistent, let, = w,_,,

andw,; = wy.) Then the sum of distances can be written as:

Zz]'?[jzl d(wi7 W]) = d(WTv WL) + Z;\jjijl d(W“ W])

(5.9)
+ ZZ\L_IQ d<WT7 WZ) + ZZJ\;_IZ d<WL7 WZ)
And the sum of new distances after the learning is written as:
N / / N-2 ¢
Zi,j:l d(wi,w;) = d(wr,w,)+ Em:1 d (wi, wj) (5.10)

+ it d (W, w;) + iy d(w,, w;)

whered (w;, w;) is the brief notation ofl(w’, w).

Now let us compute the new total distances. x &t the instance on which the learner made a
mistake. Denote by, the label computed by the learner, andipythe label from the teacher. On
the instance, other N — 2 agents also have their own labels, denotedby.., y5_,. Among these
N —2 agents, suppose there aragents whose labels are the samg,asndg agents whose labels
are the same ag, wherep + ¢ = N — 2. Without loss of generality, suppoge= - =y, = yr
andyp1 =+ = Yp1q = Yr.

So, according to the Lemma 5.6.2 and 5.6.3, the total distasadance between the teacher’s
function and those of the other agents (excluding the leaiaeat most—pA, + ¢gA,. This is

because we have

PR d (wr, w;) i1 d (W, vwi) + ZZN:;H d (Wr, w;)
?:1 d(WTv WZ) — D Ar

Z;V:;i‘,-l d(War, Wi) +q - A

IN

+
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and similarly, the total distance variance between thenkr& function and those of the other

agents (excluding the teacher) also is at mdst — ¢A,. Again, this is because we have:

Z?:f d(wy,w;) = i1 d (W, w;) + ZZN:;H d (wy,w;)
< ?:1 d(wLa WZ) +p- Az
+ sz‘\:;ﬂ—l d(va WZ) —q- Ar

Putting these two inequalities together, plus

and Eq (5.4):

d,(WT,WL) < d(Wy, W) — 0,

we can express the total distance between all agents aw$alfollowing Egs (5.9) and (5.10) ):

N N
D d(wi,wy) <> d(wi,wi) + (p+q) - (Ai—A) =6
ij=1 =1

If the convergence conditioﬁ < g holds, then the amount eéductionin distance is equal or

greater than thatroductionin distance, i.e., the difference is less than or equal to:zer

A-A, = (B -4

IA
o

92



M

wherej = 1.
Suppose the initial total distances among all agents,isthen the algorithm will converge after

making at most;éAU mistakes. [ |

Discussion of the convergence condition. What is the interpretation Gﬂ‘ < g?
We want to show that there is a relationship between the tyualithe function instance pro-
duced by the teacher, and the possibility of convergencemMPssumptions 5.6.2 and 5.6.3 we

know that,

v = min [[ywx]| (5.11)
Yy, W,X

B = max |lywx]| (5.12)
Without loss of generality, suppose all instances havelength. So, rewriting, we have:
lywx|| = [y] - [[wl] - [[x]| - |cos(w,x)| = [|w]| - [cos(w, x)|
Then, the ratio betweenand can be rewritten as:

7 ming [w]l | cos(w,x)|

8 maxy x ||[W]| | cos(w,x)|

Suppose
max | cos(w,x)| =1
and let
max ||w|| = p min [|w]|
wherep > 1.

Now we have

1
v/ = —min | cos(w,x)]
p wx
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Given all above assumption$,< 3 is equivalent to:

[GVRIN )

min | cos(w,x)| >

w,X

p

wherel < p < 3.

This analysis means that a sufficient condition for convecges that the instance generated
by a teacher falls within a certain distance region withi@ $ipace of all possible instances. This
idea is expressed visually in Fig. 5.5.

Themostrepresentative instance, represented by the dark veckgirb.5, occurs wher =
nw, wheren € R andn # 0, that is, when the instance coincides with the weight veatoegative

weight vector exactly.

a

mutual convergence
instance region

>

a1

teacher’s
weight vector

Figure 5.5: Region of instances satisfying the mutual cayemce conditiond = 1.06)

The shaded area of Fig. 5.5 shows the region of instancesathah generated by the teacher,
will satisfy the mutual convergence condition given- % ~ 1.06. Happily, this region occupies

half of the entire instance space.

5.7 Simulations

Above we have given the convergence analysis to the mutue¢pion learning model. In this

section we want to test by computer simulation if the agesitsgithe mutual perceptron learning
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rule can actually converge to a common function. To this gredesign two experiments. In the
first experiment, like the experiments we did in previousptles, we suppose the initial states
(weight vectors) of the agents are randomized. In the seerpéeriment, we set the initial weight
vectors of the agents to be orthogonal so that the populatibarence could be 0 at the beginning
of the self-organization.

The settings for both experiments are as follows. There @ragents, the instance space is
{0,1}1°, and the learning rate is = 0.1. In each iteration, every agent has a chance to interact
with every other agent twice, once as speaker (teacher)razedas hearer (learner). Together, there
are 90 games in an iteration. After each iteration, poputatoherence is calculated according to
Eq (5.3) and is plotted. Fig. 5.6 shows the result of the fixpeement with random initial weight
vectors, and Fig. 5.6 shows the result of the second expetimigh orthogonal initial weight

vectors. An example of orthogonal vectors is

(170707”' 7O>
(071707“' 7O>
(0707”' 7071)

In both experiments, the convergence conditigy < 3/2 is satisfied. The values efandj
are obtained during the simulation according to their didins in Assumptions 5.6.2 and 5.6.3.
From the figures, we can see that the agents can converge toraaoweight vector (i.e., linear
threshold function) with high coherence. We can also sdadtlikee is a difference between the two
experiments: the one with random initial states has muchdrigoherence at the beginning, and
the experiment with orthogonal initial states has a zercepatce. This difference can be easily
interpreted according to the definition of coherence givelaq (5.3).

So far we can only show by simulation that in some cases wheragients converge to a

common classification function, the analytical convergetundition 3 /v < 3/2) is satisfied. We
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Figure 5.6: Simulation on the convergence of 10 agents.

have not figured out how to test whether the convergence tondholds true or not by conducting
systematic simulations on the whole spacg 6f. This is because the values/@®&nd~, according

to their definitions in Assumptions 5.6.2 and 5.6.3, depanthe initial weights and the instances
generated during the self-organization. Recall that inptteious two chapters, we did not have
this problem because the learning behavior in those modelsnach simpler than that in the

mutual perceptron learning model in this chapter.

5.8 Summary

In this chapter we studied our third linguistic consensisecgrammar consensus. The grammar
consensus problem concerns how a group of agents can ceneeaggcommon grammar by which
the sentences generated by one agent using his grammar pagobeized by another agent using
her grammar.

In terms of the game-based self-organizing language framegiven in Chapter 2, we de-
signed a grammar consensus model that focuses on the fofjawo components: (1) the 2-player
grammar game, and (2) the agent learning model. In the de$itfre grammar game, grammar
is modeled as a Boolean classification function and sensem@emodeled as instances, and the
payoff function was defined as follows: if the hearer canectty predict the class of the instance

produced by the speaker, both agents receive a positivéfpagfeerwise 0. In the design of agents,
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perceptron learning algorithm was used.

Our work has the following contributions. First, we showedrbathematical analysis that
agents in our model can converge to a common grammar (i.emanon classification function)
under some conditions, and we gave those conditions. Secontpared with existing work on
the grammar consensus problem (which has mainly been ddahawhe observational learning

paradigm), ours is the first that uses reinforcement legragithe learning mechanism of agents.
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Chapter 6

Conclusions

6.1 Summary

The primary objective of this study has been to design antyamanechanisms that allow a group
of agents to converge to a common language from a set ofliptii#erent languages. Specifically,
our research aimed at studying how agents can converge tmm@a@o language using reinforce-
ment learning, a learning mechanism that only requires amoim of feedback information.

We presented a game-based self-organizing language frarkemto which reinforcement
learning can be naturally fit. Using the framework, we stddleree cases of reaching linguistic
consensus: word consensus, coherent communication, amufrgar consensus. The word consen-
sus problem concerns how agents can converge to a commonowbod many different words
to represent a single shared meaning. The coherent comatiam@roblem concerns how agents
can converge to a communication system in which the word bgealsender to represent some
meaning can be interpreted correctly by a receiver to extnacsame meaning. The grammar con-
sensus problem concerns how agents can converge to a comaromgr, so that the sentences
generated by one agent using his grammar can be recognizetbbyer agent using her grammar.

In the case study of word consensus, we proposed a win-staysluft (WSLS) model that
was based on the original social convention model introdlbageShoham and Tennenholtz (1997)
and the WSLS learning rule (Matsen and Nowak, 2004). The negults obtained from computer

simulation and mathematical analysis include the follayvin

1. Agents in the model can converge to a common word whendblpiration level—basically
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the ratio of successes to uses in the history of word agreerisrset to some appropriate

values (see Section 3.5);

2. We obtained an analytical result on the convergence tondj from which we can tell for
a given number of agents and words how high the aspiratia $hould be in order for the

agents to reach word consensus (see Section 3.6.2);

3. We obtained a dynamics equation that captures how coteranges over time when the
convergence condition is satisfied. From this equation,avetell how much time is needed

to reach a given level of coherence (see Section 3.6.3).

In the case study of coherent communication, we proposea@mim reinforcement learning
model which consists of two agents (a sender and a receiVé®. main results obtained from

computer simulation and mathematical analysis include:

1. Unlike existing work on coherent communication whichwhbd that the learning rates (i.e.,
reward and punishment rates) do not have critical effectagamts converging to a shared
communication system, we found that there exists a critmahrd-punishment ratio above
which the agents can converge to a coherent communicatste@raybelow which the agents

cannot (see Section 4.6);

2. We obtained an approximate analytical result on the agevee condition that tells how
the critical reward-punishment ratio depends on the nuobevords and the number of

meanings in a communication or vocabulary system (seed®etiv.1);

3. We also obtained a dynamics equation that captures hownoocation coherence changes
over time when the convergence condition is satisfied. Frosnequation, we can tell how

much time is needed to reach a given level of communicatibe@nce (see Section 4.7.2).

In the case study of grammar consensus, we have proposedal petceptron learning model
in which grammars are modeled as Boolean functions that eamsbd to classify or recognize

Boolean instances (sentences). We have presented theifalmain results:
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1. We obtained an analytical result on the convergence tiongdiwhich implies that a speaker
should generate representative instances, under whicgtrds can converge to a common

grammar using perceptron learning rule. (see Section 5.6);

2. We showed by computer simulation that the agents can ogete a common grammar

when the convergence condition is satisfied (see Sectign 5.7

6.2 Limitations and future research

First, in all of our models, we used an interaction model undgch the likelihood on any agent
interacting with any other agent is equal. This means thatutiderlying interaction network
is a completely connected graph. However, it is more realistassume some restrictions in the
interaction pattern an agent may have. For example, we e@sigime that the interaction networks
are regular graphs, or complex networks such as small-wetidorks (Watts and Strogatz, 1998)
or scale-free networks (Barabasi and Albert, 1999). The in&svaction patterns of agents under
these networks will provide a rich source for future work. [IMfie agents constrained by these
networks be able to converge or not? Will the convergencedpe faster or not? Many interesting
guestions await exploration along this dimension.

Second, the models studied in this thesis are very absffactugh of theoretical value, they
are far from realistic. To overcome this limitation, oneuig direction would be to use data from
real human-based language games such as the ESP imagedaisaie, collaborative tagging
systems, or historical linguistics. For example, it wouddibteresting to build a straightforward
model of the real ESP game and then analyze its dynamics. W atso imagine other kinds of
realistic language games such as games that allow morewlgplayers to play. Thinking along
the direction of realistic language games would open up nchances for the future research.

Third, the studies presented here assume that agents statheir converged language once
the agents reach a consensus. However, in reality, agemisbements are in a flux of constant

change; for example, new agents may be introduced into tpalaion, the meaning distribu-
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tion may change to reflect newly-important topics for agemtversations, etc. All of these sit-
uations imply there has to be in the long term a way for agemiariovate, de-converging and
re-converging on new languages. We must explore the exdevhich our current models do cap-
ture these dynamics, find ways to better characterize thigdynamics, and explore additional
approaches to modeling continuous agent-environmegukge relationships.

Last, we believe the study of self-organizing language$agén up many new possibilities
of developing novel approaches to information organiraiad access, as already seen by the
successful applications of social tagging systems, the gBRe, and other realms of “semiotic
dynamics” (Staab et al., 2002). The theoretical analysiexiton and grammar consensus in

this thesis represents only a small step in exploring thephitential of self-organizing language

systems.
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