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Abstract

The main question we ask is how a common language might come about in complex adaptive lan-

guage systems comprising many agents. Our primary objective is to analyze and design complex

language models so that a group of agents can converge on a common language from their initially

different languages by using reinforcement learning, a minimal information approach. Towards

this end, we present a game-based self-organizing languageframework, and study three important

cases of reaching linguistic consensus: word consensus, coherent communication, and grammar

consensus.

The study of word consensus concerns how agents can convergeto a common word to reliably

express a single shared meaning from their initially different words. We have proposed a win-stay

lose-shift learning model, and have shown by computer simulation and mathematical analysis the

conditions under which the agents in the model can converge to a common word.

The study of coherent communication concerns how agents canconverge on a communication

system in which the word used by a sender to represent some meaning can be interpreted correctly

by a receiver to extract the same meaning. We have proposed a minimum reinforcement learning

model comprising two agents (a sender and a receiver), and have shown by computer simulation

and mathematical analysis the conditions under which agents in the model can converge to a co-

herent communication system.

The study of grammar consensus concerns how agents can converge to a common grammar. In

the converged state, the sentences generated by one agent using his grammar can be recognized by

another agent using her grammar. We have proposed a mutual perceptron learning model in which

grammars are modeled as Boolean functions that can be used toclassify or recognize Boolean
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instances (sentences), and have shown by mathematical analysis the conditions under which agents

in this model can converge to a common grammar (i.e., a commonBoolean function).

This work has important implications for many kinds of distributed semantic systems, such as

shared web ontologies, agent communication protocols, collaborative tagging, database schema

integration, and biological networks.
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Chapter 1

Introduction

1.1 The problem

The use of complex language is one of humanity’s most useful and unique characteristics. Lan-

guage allows people to exchange knowledge and to pass information across time and space—it

represents the principal non-genetic information system for the human species (Maynard-Smith

and Szathmary, 1997). The technical and social developmentof human groups cannot be fully

understood without understanding the development and impact of language. The ability to coordi-

nate activity, divide labor, evaluate goals and options, learn skills, and many other capacities that

have fostered the emergence of human societies all depend onthe emergence of languages with

adequate complexity and scope.

Two of the principal issues in language evolution are explaining its simultaneous properties of

collectivityandadaptivity. First, there is no single-agent language. Since a primary purpose of a

language is communication, language is only useful if it is shared by several individuals, that is, by

a population. Language is a collective distributed information system,and it makes no sense as a

individualized concept. Second, even highly developed human languages are not static; all natural

languages areadaptivesystems that evolved from earlier possibly more primitive communication

systems, and that continue to evolve as communicative needsand situations change.

Thus two of the central, complementary issues in language evolution research are 1) how a

communicative population comprising autonomous individuals converges to a language that is

common enough for mutual understanding, and 2) how the population maintains this coherence

while evolving its language.
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Beyond understanding the origins and dynamics of human languages, many researchers are in-

terested in howartificial agentsand other intentionally designed software programs might develop,

reconcile, and sustain their own sophisticated representation and communication regimes from the

ground up (Steels, 1997, 2003, 2006). There are two reasons for this interest. First, the study of lan-

guage evolution informs many central problems of semantically oriented distributed information

systems such as distributed database systems; collaborative tagging systems and “folksonomies”

(Mathes, 2004; Sen et al., 2006; Golder and Huberman, 2006);shared ontologies envisioned as

critical underpinnings for semantic web markup and information query expansion; information

integration and search; self-adapting communication languages for web services and software

agents; and so on. We can model each of these application areas as a collection of “agents”

(defined below) that interact by using some form of language.Little theory of the communica-

tion dynamics of these types of information system exists, and they are currently very difficult to

manage and make robust. Thus there are many potential practical impacts of understanding the

collective dynamic properties of language.

Second, the ability to work with artificial agents promises more general insights than studies

based entirely on human language development. Human language arose in a context of unique

environments and survival problems, over a specific historical period, in organisms with particular

genetic makeup and development. This limits data and theorizing. With artificial agents, on the

other hand, research explorations are limited only by theoretical constraints on agent representa-

tion and performance, so there is a much wider range of conceptual (descriptive) and practical

(normative) options to explore than those built from natural historical human scenarios. Indeed,

the collective dynamics of human language should be aspecific casewithin a general theory of

collective language dynamics.

In this thesis, then, we will engage the research issue of collective language dynamics by

studying how a population of artificial agents can converge to a common language from a set of

initially different languages through pairwise interaction and learning. We will call this process

reaching linguistic consensus.
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It is no accident that a growing body of researchers is working to discover the underlying

mathematical, computational, and implementation principles that explain how languagesin gen-

eral—both human and artificial—emerge, how they change, and how language-using populations

maintain stable communicativity while languages are evolving. These studies have naturally fo-

cused the work of researchers from many different disciplines, including evolutionary biology, psy-

chology, cognitive sciences, anthropology, and artificialintelligence to name a few (Christiansen

and Kirby, 2003). See (Wagner et al., 2003; Steels, 2003; Wang and Minett, 2005; Brighton et al.,

2005) for typical overviews of this work, which will not be surveyed in depth in this thesis given

the existing literature.

Because the complexity of the collective dynamics problemsof language, most work to date

has been exploratory, using computer simulations and intuitively interpreting them. While simula-

tion is an important, suggestive, and insightful methodology, to achieve a thorough understanding

of the emergence of shared languages, we need to augment simulation studies with mathemat-

ical characterizations of specific conditions and limitations under which agents can converge to

shared languages. This thesis aims filling some of this gap. We study the emergence of common

languages using mathematical modeling and theoretical analysis. Our models and theories have

sometimes been inspired by our computational simulation models, but we generally use simula-

tions to discover and illustrate interesting phenomena. Incontrast, we use mathematical theory

to define these phenomena exactly and then to derive and express their dynamics and limits with

precision.

1.2 The general research question

As mentioned above, the class of distributed semantic information systems we study can be char-

acterized as systems of “agents”. Shalizi has provided a useful, general definition of “agent” as “a

persistent thing which has some state we find worth representing, and which interacts with other

agents, mutually modifying each others’ states” (Shalizi,2003). For an agent who has the capa-
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bility of language, the state that is worth representing is the agent’s language knowledge such as

the mechanisms (including parameters) of sentence production, interpretation, and grammar rule

acquisition. Note that people can be seen in a very abstract sense as agents under this definition,

if we take people as having states of mind, interacting with others, and having influence on each

other. Of course people are presently much more complex intellectual, social, sentimental, and

political beings than the artificial, mathematical, or software agents we model here, and we are

not claiming that our mathematical models provide a full account of all processes of human lan-

guage development and convergence. Nonetheless, considering languageas a collective dynamic

information system, we do believe that clear mathematical/computational treatments of language

dynamics will be useful for understanding the potential landscape of human language dynamics

(for example, tractability limits). Such new models may also help as foundations for the design

of application-specific languages and language processingapproaches that exhibit greater repre-

sentational parsimony, communicative efficiency, simplicity, or adaptivity than naturally occurring

human languages.

Given this agent-based viewpoint, there are four factors inthe design of complex adaptive lan-

guage systems that may affect whether the agents can (or cannot) converge to a common language:

• Population size: the number of agents in a population;

• Language complexity: the complexity of a language such as the number of words in a vo-

cabulary;

• Learning mechanism: how agents adapt or learn their language through pairwise interac-

tions;

• Interaction structure: who interacts with whom.

The general question we ask in this thesis is how these factors affect the ways agents can con-

verge to a common language. In other words, we want to know what ranges of “settings” of these

factors will lead toconvergence success or failurefor a set of agents, and how the settings affect
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the convergence speed. We want to understand these relationships in three linguistic consensus

cases, detailed in the next section.

1.3 Research scope

In this thesis, we study the above questions of how four factors affect convergence success and

speed in each of three important cases of linguistic consensus:

1. Word consensus:Converging on an agreement about which word, out of a number of pos-

sible words, will be used to reliably express a single sharedmeaning.

2. Coherent communication: Converging on a coherent communication system in which the

word used by a sender to represent some meaning can be interpreted correctly by a receiver

to extract the same meaning.

3. Grammar consensus:Grammar is a shared structure for accurately interpreting asequence

of words, namely, a sentence. Grammar consensus refers to how a group of agents can

converge to a common grammar by which the sentences generated by one agent using his

grammar can be recognized by another agent using her grammar.

These three problems play an important role in the study of the emergence of language (Steels,

1997; Wagner et al., 2003). Among them, the first two are related to developing a reliable shared

lexicon, and the third is related to developing a shared grammar. Lexicon and grammar are the

two most basic components of any language. The lexicon enables an agent to represent meanings

(objects in the world or mental concepts) with symbols (words) and to interpret words back into

meanings. Grammar improves the efficiency and accuracy of coding complex meanings (Nowak

et al., 2000; Plotkin and Nowak, 2000) and enables an agent toexpress a large (possibly infinite)

number of meanings using only a finite number of words.

Existing work on these three problems can be classified into two paradigms,observational

learningor reinforcement learning, according to what kind of feedback information is available for
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a learning algorithm. In the case of the observational learning paradigm, an agent can have much

information available to it for learning, including any information it can observe; for example, an

agent may observe the linguistic behavior of other agents, enabling it to imitate the entire observed

behavior or generalize from some specific observed behaviors. In contrast, for the reinforcement

learning paradigm, the feedback information that is available to an agent is limited to a feedback

score orreward from its interaction with other agents; for example, the agent may only know

whether a communication is “successful” or not.

This thesis is devoted to the reinforcement learning paradigm. This is a choice with important

consequences. Since reinforcement learning requires onlyaminimumof feedback information, by

studying using this paradigm as our theoretical basis, we can obtain lower bounds on the effective-

ness and efficiency of complex adaptive language systems.

As we mentioned earlier, because we are pursuing general results, in this thesis we are mainly

interested in the study of abstract language models rather than real human languages. The as-

sumptions made in the abstract models, though unrealistic,can provide a starting point for further

development as well as theoretical values on guiding the design of artificial agents.

1.4 Research methods

Our approach to the study of the above questions is to use bothcomputer simulation and math-

ematical analysis. With the tools of computer simulation, we can gather data on the effects of a

range of different parameter inputs over multiple runs. In the words of Robert Axelrod (1997),

simulation is “driving a model of a system with suitable inputs and observing the corresponding

outputs.” By running a simulation many times with differentparameter settings, we can observe

the range of these settings under which the agents reach linguistic consensus or fail to do so.

For complex adaptive systems with many agents such as the oneused here, computer simu-

lations are a common research approach because many mathematical analyses seem harder than

computational experiments. Though simulation is a convenient tool that can quickly provide intu-
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itive results, there are several disadvantages to simulation. First, a complex system usually involves

many parameters and the combinatorial parameter space may be huge. In many situations we can

gain this intuitive understanding of the behavior of a modeled system by examining relatively few

special cases. Nonetheless, there are many types of problems that would require us to systemat-

ically explore the whole parameter space to understand system behavior fully, and this can be a

formidable task. In addition, it is always hard to guaranteethat an implemented computational

model accurately reflects the system modeled and has no software bugs.

To have a solid understanding of a complex system, the best approach is to combine computer

simulation and mathematical analysis. By using mathematical analysis, we can obtain a complete

description on the relationship between different parameters, without the need to run numerous

simulations to explore the whole parameter space. More importantly, we can understand clearly

the phenomenon observed in the simulations. In addition, ifresults obtained by simulation and

analysis fail to adequately match, that in itself is an interesting finding that can lead to identification

of software bugs or mathematical errors.

There is an important third point that we need to mention whenderiving mathematical equa-

tions from complex computational models. A complex computational model often involves many

details that prevent a researcher from converting it directly into a precise mathematical descrip-

tion. To be able to derive a mathematical equation from a computational model, we often need to

make some assumptions. The role of these assumptions is to eliminate unimportant details while

keeping essential elements of a model. However, if the assumptions are incorrect about what de-

tails are unimportant, then even when the simulation code isbug-free the simulation results may

not agree with the results of mathematical analysis. In thiscase, we have to examine whether the

assumptions are really catching the necessary causal aspects of the computational model. On the

other hand, if the simulation and analytical results match well, we have strong evidence that we

have made accurate assumptions about what details are important.

The following procedure gives a summary of our research method of combining simulation

and mathematical analysis.
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1. Design a computational model that includes a collection of parameter settings and gives

some output.

2. Run simulations, and observe what happens for different parameter inputs to the model.

3. Try to derive mathematical equations from the computational model.

4. If the results obtained by mathematical analysis and simulation can explain each other, done!

5. Otherwise, check these possibilities:

(a) Check the program for bugs. If bugs exist, then revise thecode, go to (2), and try again.

(b) Check the derivation of mathematical equations. If it isnot correct or the assump-

tions made in the derivation are inaccurate, then re-derivethe equations or revise the

assumptions, and go to (3) and try it again.

1.5 Contributions

The main question we ask is how a common language might come about in complex adaptive

language systems. Our primary objective is to design and analyze complex language models so that

a group of agents can converge on a common language from theirinitially different languages by

using reinforcement learning. Towards this end, we presenta game-based self-organizing language

framework into which reinforcement learning can be naturally fit. Using the framework, we study

three important cases of reaching linguistic consensus: word consensus, coherent communication,

and grammar consensus.

In general, we have made the following contributions.

1. We have proposed a general game-based self-organizing language framework, and have

introduced two general language game models (the simultaneous and sequential models).

These well-defined models can be easily used to frame the three linguistic consensus prob-

lems studied in this thesis as well as existing models studied before by others.
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2. We have studied three cases of linguistic consensus.

(a) In the case of word consensus, we have proposed a word consensus model in which

agents make adaptations using theWin-Stay, Lose-Shift (WSLS)learning rule (Matsen

and Nowak, 2004). We have shown by computer simulation and bymathematical

analysis that the agents in the model can converge to a commonword under certain

conditions, and we give those conditions. We also give a dynamics equation on how

coherence changes over time when the convergence conditionis satisfied. Our work

was motivated by (Shoham and Tennenholtz, 1997) and (Matsenand Nowak, 2004),

but compared to the Shoham-Tennenholtz model, ours requires a minimum memory

load on the agents, and compared to the Matsen-Nowak model, our analytical result

gives a comprehensive description of the relationship among all related parameters.

(b) In the case of coherent communication, we have proposed aminimum model which

consists of two agents (a sender and a receiver) who have the task of reaching coherent

communication using simple reinforcement learning (Lenaerts et al., 2005). Again, we

have shown by computer simulation and by mathematical analysis that agents in the

model can converge to a coherent communication system undersome conditions, and

we give those conditions. We also give a dynamics equation onhow coherence changes

over time when the convergence condition is satisfied. Compared with existing work,

ours is the first to give an analytical result on the conditions under which the agents can

reach coherent communication using reinforcement learning, which is, as noted above,

a minimum-information approach, and hence provides a lowerbound.

(c) In the case of grammar consensus, we have proposed a mutual perceptron learning

model in which grammars are modeled as Boolean functions that can be used to classify

or recognize Boolean instances (sentences). We have shown by mathematical analysis

that agents in this model can converge to a common grammar (i.e., a common classifi-

cation function) under some conditions, and we have given those conditions. Compared
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with existing work on the grammar consensus problem (which has mainly been done

within the observational learning paradigm), ours is the first that uses reinforcement

learning as the learning mechanism of agents.

1.6 Outline

The organization of this thesis is as follows. In Chapter 2, we present the game-based self-

organizing language framework, including game model, agent learning model, interaction struc-

ture, and population coherence that measures the consensuslevel of a population. Considering the

significant difference between two basic types of games: simultaneous and sequential games, we

introduce two general self-organizing language models, called thesimultaneous language game

and thesequential language gamemodels. The simultaneous model will be used in Chapter 3 for

the case study of word consensus, and the sequential model will be used in Chapter 4 for the case

study of coherent communication and in Chapter 5 for grammarconsensus. From Chapter 3 to 5,

we study the three linguistic consensus cases. We close witha summary of the thesis and then we

point out some future directions.
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Chapter 2

A Game-Based Self-Organizing Language
Framework

2.1 Introduction

Language is a game that it takes (at least) two to play. A critical question is how a shared com-

mon language might emerge from repeated pairwise interactions between communicators (Pinker,

2000). The primary objective of this study is to design and analyze a mechanism under which a

group of adaptive agents, using reinforcement learning that requires only information about the

payoff received from an instance of a language game, can converge to a common language from

their initially different languages.

In this chapter, we present a game-based self-organizing language framework as a foundation

for studying how a common language can come about from repeated pairwise game play. In the

successive three chapters we will use this framework to study three cases of reaching linguistic

consensus: word consensus, coherent communication, and grammar consensus.

Our framework for self-organizing language systems, as shown in Fig. 2.1, consists of

• a population of agents;

• acoherencemeasure used to represent the degree of consensus in a population of agents;

• a 2-player language game model that formalizes the pairwiseinteraction between two agents;

• an agent learning model that specifies how agents make decisions, and especially how they

learn to improve decision making based on the payoff received from games they play; and,

• an interaction structure that is used to specify which pairsof agents interact.

11



2-player language game model

agent learning model interaction structure

population
&

its coherence

Figure 2.1: A framework of self-organizing language systems.

In the following sections, we will describe in depth the 2-player game models, agent learning

models, interaction structures, and the coherence measure.

2.2 2-player language games

To best situate our research, we will first give a brief introduction to some basic game theory

concepts that we will use later, including a general definition of games and two representation

forms of games (normal form and extensive form). We will thenintroduce two types of language

games: simultaneous and sequential language games.

2.2.1 Definition and representation of games

In game theory, a game consists of the following three components (Osborne and Rubinstein,

1994):

• a set of players or agents{1, 2, · · · , K};

• a set of actions (also called “strategies”)Ai available to each playeri ∈ {1, 2, · · · , K};

• a payoff function defined on each combination of strategies for each player, which is given

by πi(a1, ··, ai, ··, aK) whereai ∈ Ai is the action of playeri.
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A game can be represented in normal form or extensive form (ibid.). In normal form, a game

is usually represented by a payoff matrix which shows the players, actions, and payoffs. Fig. 2.2

illustrates an example of a 2-player game in which each player has three actions (scissors, rock,

and paper) and the payoff of a player is shown in the cells of the matrix. The first number of a cell

is the payoff received by the row player (i.e., Player 1); thesecond is the payoff for the column

player (i.e., Player 2). Suppose that Player 1 plays “scissors” and that Player 2 plays “rock”, then

Player 1 gets a payoff of -1, and Player 2 gets 1.

Player 2 (π2)

scissors rock paper

Player 1 (π1)
scissors 0,0 -1,1 1,-1

rock 1,-1 0,0 -1,1

paper -1,1 1,-1 0,0

Figure 2.2: Normal form (payoff matrix) of the 2-player “scissors, rock, paper” game.

When a game is represented in normal form, it is usually assumed that each player acts simul-

taneously or, equivalently for purposes of analysis, acts without any information about the actions

of other players. Otherwise, the game is usually represented in extensive form. Extensive form

games are often presented as trees, showing that there is some important ordering to the sequence

of actions and to the information players obtain from them. In a game tree, each node represents a

time point of action for one of the players, and the lines fromthe node represent a possible action

for that player. The payoffs are specified at the bottom of thetree. Fig. 2.3 illustrates an example of

2-player extensive form game in which Player 1 moves first andchooses either L or R, and Player

2 sees Player 1’s move and then chooses U or D. For example, in the case where Player 1 chooses

L and then Player 2 chooses D, Player 1 gets a payoff of 3 and Player 2 gets 0.
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Player 1

Player 2

payoff
(π1, π2)

1

2

L

b

(1,1)

U

b

(3,0)

D

2

R

b

(-1,2)

U

b

(1,1)

D

Figure 2.3: Extensive form of a 2-player game.

2.2.2 Simultaneous language games

In game theory, a game can be classified intosimultaneous gamesor sequential games(ibid.).

Simultaneous games are games where both players move simultaneously, or if they do not move

simultaneously, the later players are unaware of the earlier players’ actions—making them ef-

fectively simultaneous in terms of information available to agents. Sequential games are games

where later players have some knowledge about earlier actions. Normal form is typically used to

represent simultaneous games, and extensive form is typically used to represent sequential ones.

Applying this classification scheme, we can then distinguish two types of language games:

simultaneous language gamesandsequential language games. One example is the ESP game1

(von Ahn, 2006), a game in which two players label online images with words. Players choose and

submit their label words without seeing those chosen by their partner player. Players earn points

when the label words they have chosen match those of their partner player. This is a simultaneous

language game, because the two players submit their words tothe ESP game system without

knowledge of each other’s word choices. In contrast, a communication event that takes place

between a speaker and a hearer can be seen as a sequential game, because the speaker moves

(speaks) first and thus the hearer is aware of the utterance produced by the speaker.

Fig. 2.4 shows a specific procedure for playing simultaneousgames with two agents. Fig. 2.5

illustrates an example of the payoff matrix of an ESP game. Inthis ESP game, we suppose there

is an online image of a red car in a street. Both players want tolabel the image using one of the

1http://www.espgame.org/
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Agent 1 Decision making

Agent 2 Decision making

Game payoff

action (word)a1
π1(a1, a2)

action (word)a2 π2(a1 , a2)

Figure 2.4: Procedure of a simultaneous language game.

Player 2 (π2)

car red street

Player 1 (π1)
car 1,1 0,0 0,0

red 0,0 1,1 0,0

street 0,0 0,0 1,1

Figure 2.5: Payoff matrix of a 2-player simultaneous language game.

three words “car”, “red”, and “street”. Suppose each playeris allowed to submit only one word as

the label. Then each word represents an action (the action ofchoosing that word and submitting

it). In the payoff matrix for this game, each cell has two numbers, indicating the payoff for each

of the two players. For example, if Player 1 uses “car” and Player 2 uses “street” as the label, the

payoff for Player 1 will beπ1(car, street) = 0, which in this case is also the payoff for Player

2. The specific structure of this payoff matrix also represents the information that the two players

both need to choose the same word to get the best payoff.

In Chapter 3, Reaching Word Consensus, the simultaneous language game will be used as our

2-player game model.

2.2.3 Sequential language games

Since a primary function of language is for communication between speakers and hearers, in a

typical situation of playing language games, there is an order of play between the two players.

To illustrate the concept, we present a cartoon example of a sequential language game. Suppose
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there is a baby and a mother. The baby cannot speak any real words, but he can utter two different

sounds: “ah” and “oh”. Sometimes the baby is hungry (H) and sometimes he has a dirty diaper

(D). He may use “ah” to mean he is hungry and “oh” to mean that hehas a dirty diaper; but he

may also use “ah” for having a dirty diaper and “oh” for being hungry. So his mother needs to

learn the true meaning of a sound. This baby-mother communication process can be modeled as a

sequential game, as shown in Fig. 2.6. The need or meaning that the baby wants to communicate—

being hungry or having a dirty diaper—is decided by some factor external to the communication

game (i.e., the baby’s internal systems). A typical treatment for this in game theory (Kreps, 1990;

Osborne and Rubinstein, 1994) is to add an additional playercalled nature that moves first to

decide what need to create for the baby, according to some probability distribution. In the figure,

the number1
2

indicates that half of the time nature makes the baby hungry and half of the time

nature produces a dirty diaper. The dashed lines in the tree indicate that there are two different

paths to “ah” (or to “oh’), but the mother cannot tell the difference because she does not know to

which meaning the baby refers by the utterance “ah” (or “oh”). At the bottom of the figure are the

payoffs of the players; this example shows that when the mother correctly interprets the meaning

of the baby, both get a positive payoff.

Nature

Baby

Mom

payoff

0

1

Hungry 1
2

2

ah

b

(1,1)

H

b

(0,0)

D

2

oh

b

(1,1)

H

b

(0,0)

D

1

Dirty diaper1
2

2

ah

b

(0,0)

H

b

(1,1)

D

2

oh

b

(0,0)

H

b

(1,1)

D

Figure 2.6: Payoff function of a sequential language game.

Fig. 2.7 shows a general procedure for carrying out such sequential game between a speaker
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and a hearer. In this procedure model, nature decides what meaning the speaker wants to com-

municate to the hearer. This decision of nature is represented as a probability distribution over all

possible meanings (i.e. the actions of nature). Note that the meaning in the head of the speaker is

information only known to the speaker himself, and unknown to the hearer. In game theory, the

particular nature-driven action for a player is called thetypeof the player (ibid.). For example, in

the example of baby and mother, there are two types of baby: a hungry baby and baby with a dirty

diaper. Later in this section, for the sake of generality, weuse termtypefor describing a specific

meaning choice in the general sequential language game model.

Nature
Speaker

make decision
Hearer

make decision
Game
payoff

Speaker

Hearer

actiona0

meaning

actiona1

word

actiona2

meaning

π1(a0, a1, a2)

π2(a0, a1, a2)

Figure 2.7: Procedure of a sequential language game.

In Chapter 4 Reaching Coherent Communication and Chapter 5 Reaching Grammar Consen-

sus, sequential language games will be used as our 2-player game model.

2.3 Agent learning model

By specifying the payoffs in a game that agents or players will receive after their moves, games

provide a formal model of how to characterize the rational behavior of players. A state ofNash

equilibrium is the most classical model of the best set of moves for a set ofrational players in a

game. The basic idea is that at Nash equilibrium every playerhas an action that yields the highest

payoff it can get given the action choices of others. Thus no unilateral action switch will yield a

higher payoff for that agent, and this is true of all agents, so no agent has a unilateral incentive

to switch—hence the equilibrium (ibid.). A critical problem of Nash equilibrium is that some

17



games may have many equilibria. When there are many equilibria in a game, which equilibrium

(i.e. which action choices of others) should a player assume? For example, in the game shown in

Fig. 2.5, there are three Nash equilibria:(car, car), (red, red), and(street, street); in each the

two players should use the same word, but which word to use?

One solution to the problem is to extend a one-shot game to a (possibly infinite) set of repeated

games in which agents are allowed to change their actions until they reach some equilibrium (Fu-

denberg and Levine, 1998). But here the question is what procedure should the agents use to decide

how to change their actions? This is the problem of agent learning in a repeated game. Here we

present several agent learning models for specifying how agents make decisions on which actions

to take, and how they learn to change actions to improve decision making. In our model, each

agent has three components:

1. an internal stateb;

2. a decision functionf that specifies how an agent makes decision on which action to take

based on the agent’s current internal state; and,

3. a state update functiong that specifies how an agent updates its state based on the payoff

received from past games.

Fig. 2.8 illustrates a learning model for simultaneous language games, and Fig. 2.9 a learning

model for sequential language games. In both figures, there are three types of functions: decision

making, state update, and game payoff functions. Among them, the decision making and state

update functions reflect the behavior of individual agents,and the payoff function represents the

pairwise interaction behavior between the agents.

Formally speaking, denote bybi the state of agenti andai the action of agenti. Then the

decision making function of agenti is given by the formfi : bi 7→ ai for simultaneous games,

or fi : (bi, ai−1) 7→ ai for sequential games. In addition, the state update function of agenti is

given by the formgi : (bi, ai, πi) 7→ b′i for simultaneous games, orgi : (bi, ai−1, ai, πi) 7→ b′i for
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Agent 1
Decision

making function

stateb1
State

update function

Agent 2 Decision
making function

stateb2
state

update function

Game
payoff function

action (word)a1

π1(a1, a2)

action (word)a2

π2(a1, a2)

Figure 2.8: Agent learning model in simultaneous language games.

Nature

Speaker’s state

Speaker
makes decision

Hearer’s state

Hearer
makes decision

Game
payoff

Speaker
update state

Hearer
update state

actiona0

meaning

actiona1

word

actiona2

meaning

π1(a0, a1, a2)

π2(a0, a1, a2)

Figure 2.9: Agent learning model in sequential language games.

sequential games. Note that stateb does not need to be a scalar variable. Actually, in many cases,

such as in the following example, the state of an agent is represented as a vector.

Here we give a concrete example to illustrate the concepts ofstate, decision function, and

state update function. This is an example based on the ESP word-guessing game (Fig. 2.5). In

this example, the state of a player is modeled as a probability distribution over all the words:b =

(p(w1), · · · , p(wn)), wherew1, · · · , wn are the alln available words. Then, the decision function is

modeled as choosing the word with the largest probability:a = f(b) = arg maxw p(w). Suppose

the recently-chosen word isw. Then the update of a state or a distribution can be implemented as
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follows usinglinear reward-penalty scheme(Bush, 1958; Narendra and Thathachar, 1989). If the

payoff is positive, then











p(w) = p(w) + α(1− p(w))

p(w′) = p(w′)− αp(w′), for all w′ 6= w

where0 ≤ α ≤ 1 is an update parameter. Otherwise,











p(w) = p(w)− βp(w)

p(w′) = p(w′) + β( 1
n−1
− p(w′)), for all w′ 6= w

where0 ≤ β ≤ 1 is another update parameter.

2.4 Interaction structure

The 2-player language game models specified above only impose some constraints on the interac-

tion behavior oftwo agents. For a population ofN > 2 agents, this poses a question: who plays

with whom and when? The job of interaction structure is to address this question.

A general approach is to use a joint probability distribution to specify when two agents play a

game. The idea behind this approach is that at any given pointin time, any pair has some chance

to play a game, but that chance depends on a joint probabilitydefined on the pair. Let there be

N agents, thenpij , (
∑

1≤i,j≤N pij = 1), can be used to represent the probability of agenti and

j being paired to play a game. Note that for simultaneous games, the probability matrix should

be symmetrical, because the chance of agenti playing with agentj is the same as that of agentj

playing with agenti. But for sequential games, the matrix does not need to be symmetrical. It is

possible that for two agentsi andj, agenti is always a speaker while agentj is always a hearer, as

was the case in the baby-and-mother communication game described above.

Fig. 2.10 and 2.11 shows two cases of interaction structuresamongN = 4 agents. The first
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case is for both simultaneous and sequential games in which every agent is equally likely to play

a game with every other agent. The second case is only used forsequential games in which some

pairs of agents have a better chance to play a game than other pairs, and more specifically, for the

same pair of agents, one agent might play the role of speaker more often than it plays the role of

hearer. For example, agent 2 has a chance of 0.2 of speaking toagent 4, but agent 4 never has a

chance of speaking to agent 2.

Agt 1 Agt 2 Agt 3 Agt 4

Agt 1

Agt 2

Agt 3

Agt 4











0 1/12 1/12 1/12

1/12 0 1/12 1/12

1/12 1/12 0 1/12

1/12 1/12 1/12 0











Figure 2.10: Symmetrical joint probability matrix of an interaction structure.

Agt 1 Agt 2 Agt 3 Agt 4

Agt 1

Agt 2

Agt 3

Agt 4











0 .1 .1 .1

.2 0 0 .2

0 0 0 .2

0 0 .1 0











Figure 2.11: Asymmetrical joint probability matrix of an interaction structure. Rows stand for
speaker and columns for hearer.

The approach we take in this thesis. Since we are generally concerned with the overall degree

of linguistic consensus in a population of interacting agents, another interesting modeling question

is when do we choose to measure the overall coherence of the population in an ongoing sequence of

agent-agent games? For convenience of analysis (see the next section), we will measure population

coherence only after every agent has already played exactlyone game with every other agent. This

means that our model gives every agent the chance to be pairedwith every other agent in the

manner illustrated by Fig. 2.10.
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Specifically, forN agents, in the case of simultaneous games, the population’scoherence will

be measured everyL =
(

N

2

)

= N(N−1)
2

games, and in the case of sequential games, the coherence

will be measured everyL = N(N − 1) games. As we will show in later chapters, we will callL

the length of aniteration; that is, during an iteration, there areL games or interactions.

2.5 Coherence as a measure of linguistic consensus

GivenN agents, suppose their states areb1, · · · , bN . Then a general definition of population

coherence can be given by

φ(b1, · · · , bN) =
1

N(N − 1)

∑

i6=j

sim(bi, bj)

where0 ≤ sim(bi, bj) ≤ 1 is the similarity between the states of two agentsi andj. Depending

on contexts, the definition ofsim(bi, bj) will be different, as we will show in later chapters. For

example, in the case that stateb is a vector such as a probability distribution which was illustrated

at the end of Section 2.3,sim(bi, bj) can be defined as the cosine between two vectorsbi andbj ,

namely,sim(bi, bj) = cos(bi, bj).

Given a specific definition of coherence, we can characterizehow much consensus a population

has over time. Denote byφ(t) the coherence at time stept (i.e., at thet-th iteration, see the previous

section), then the collective dynamics of the whole population can be given by

φ(t) 7→ φ(t+1).

The procedure of a population of agents reaching or approximating its maximum linguistic co-

herence is calledself-organizationof language. Characterizing the collective dynamics in various

self-organizing language models, in terms of coherence, will be the main task of this thesis.
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2.6 Simultaneous and sequential language game models

We have presented the details of the components in the self-organizing language framework, and

now we can put them together to form two general self-organizing language models: simultaneous

and sequential models. These are shown by Fig. 2.12 and 2.13,and they constitute the basic

computational models for our studies in this thesis. Specifically, the simultaneous model will be

used in Chapter 3, Reaching Word Consensus, and the sequential model will be used in Chapter 4,

Reaching Coherent Communication, and Chapter 5, Reaching Grammar Consensus.

Settings
(1) population:N agents{1, · · · , N}
(2) game model: a 2-player simultaneous game that includes

- two agents:s andr
- n available actions for both agents:{a1, · · · , an}
- a payoff function:πi(as, ar) for each agenti ∈ {s, r}

(3) agent learning model
- an internal stateb
- a decision functiona = f(b)
- a state update functionb′ = g(b, a, π)

(4) a coherence measure on the consensus of the population (see Section 2.5):φ

Initialization
all agents’ initial states are randomized

Iterations (each iteration includesN(N − 1)/2 interactions (see Section 2.4 for details).)

During each interaction
1. two agents,s andr, are paired according to Section 2.4
2. they play the 2-player game by each taking an actionai, i ∈ {s, r}, based on:ai = f(bi)
3. each agent receives a payoffπi(as, ar)
4. each agent updates its state based on the received payoffb′i = g(bi, ai, πi)

After each iteration, take a snapshot of the population coherenceφ(t)

Figure 2.12: A general simultaneous language game model.

2.7 Discussions

The presented self-organizing language framework and the corresponding simultaneous and se-

quential models are very general. When the 2-player language game in the framework is replaced

23



Settings
(1) population:N agents{1, · · · , N}
(2) game model: a 2-player sequential game that includes

- two agents: a speaker, denoted bys, and a hearer, denoted byr
- m types for the speaker:x1, · · · , xm, each with a probabilityp(x)
- n actions for the speaker:{y1, · · · , yn}
- l actions for the hearer:{z1, · · · , zl}
- a payoff function:πi(x, y, z) for each agenti ∈ {s, r},

wherex, y, z are the speaker’s type, the speaker’s action and the hearer’s action, respectively
(3) agent learning model

a. as a speaker, the agent has
- an internal statebs

- a production functionfs : (x, bs) 7→ y
- a state update functiongs : (bs, x, y, πs) 7→ b′s

b. as a hearer, the agent has
- an internal statebr

- an interpretation functionfr : (y, br) 7→ z
- a state update functiongr : (br, y, z, πr) 7→ b′r

(4) a coherence measure on the consensus of the population (see Section 2.5):φ

Initialization
all agents’ initial states are randomized

Iterations (each iteration includesN(N − 1) interactions (see Section 2.4 for details).)

During each interaction
1. two agents are paired according to Section 2.4, one as speaker and one as hearer
2. they play the 2-player sequential game

a. nature moves first to determine the typex of the speaker
b. the speaker makes an actiony based on its statebs and its typex: y = fs(x, bs)
c. the hearer makes an actionz based on its statebr and the speaker’s actiony: z = fr(y, br)

3. each agent receives a payoffπi(x, y, z), i ∈ {s, r}
4. each agent updates its state based on the received payoff

a. speaker’s new stateb′s = gs(bs, x, y, πs)
b. hearer’s new stateb′r = gr(br, y, z, πr)

After each iteration, namelyN(N − 1) interactions, take a snapshot of the population coherenceφ(t)

Figure 2.13: A general sequential language game model.

with a different game, the framework or models can be appliedto contexts that are beyond self-

organizing language systems. For example, the simultaneous model can be used in the study of

the evolution of cooperation, by specifying the 2-player game as the Prisoner’s Dilemma game

(Axelrod, 1984; Nowak and May, 1992). Studying other games such as the Prisoner’s Dilemma

might result in a totally different collective dynamics. Wewant to emphasize that the games to
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be studied in this thesis have a common feature: the agents try to reach an agreement on using

a common language aspect (word, vocabulary, or grammar). Tosee this, recall that in the pay-

off specification illustrated in the examples of both simultaneous and sequential games (Fig. 2.5

and 2.6), both agents get the best payoff when they agree on the usage of words or meanings. In

addition, it is this common feature that makes sense of the notion coherenceor consensus.

We also want to mention that there are some self-organizing language systems that are not

covered by this framework. The currently widely used socialtagging systems (e.g., Flickr2 and

Del.icio.us3) are examples of such systems. When a user tags his documentsin a social tagging

system, usually he will not modify those tags in the future. In addition, there is no notion of playing

games and receiving payoffs. However, social tagging systems do demonstrate self-organization

properties (Mathes, 2004; Golder and Huberman, 2006). Thiskind of self-organization behavior

can be explained by other models. For example, considering that when a user tags a document

he can tag the document using words already familiar to him, or using common tags shared by

other users, then we may adopt models such as preferential attachment network models (Barabasi

and Albert, 1999) or source-item model (Egghe and Rousseau,1990). Such alternative models for

different phenomena as described here are not treated further in this thesis.

2.8 Summary

In this chapter we presented a game-based self-organizing language framework, including game

model, agent learning model, interaction structure, and population coherence. To distinguish the

significant difference between two basic types of games: simultaneous and sequential games, we

also introduced two general self-organizing language models, calledsimultaneous language game

andsequential language gamemodels. The simultaneous model will be used in Chapter 3 for the

case study of word consensus, and the sequential model will be used in Chapter 4 for the case

study of coherent communication and in Chapter 5 for grammarconsensus.

2http://www.flickr.com/
3http://del.icio.us/
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Chapter 3

Case 1: Reaching Word Consensus

3.1 Introduction

In this chapter we present our study of the first case of linguistic consensus: reaching word consen-

sus. In the word consensus problem, a group of agents each need to describe an object (or concept,

or meaning) using a single word from their vocabulary (whichis a set of words). All the agents

have the same vocabulary, but of course they may initially use different words in the vocabulary

to describe the object. The agents’ job is to reach an agreement on using one common word to

represent the object.

The agents are adaptive—they can change their chosen word based on interactions they have

with each other. So a key question is how can we design adaptive mechanisms for such agents so

that they can converge from their initially different word choices to using one common word. In

the design of the agents, there are four factors that may affect the convergence:

1. Population size: the number of agents;

2. Vocabulary size: the number of words in the vocabulary;

3. Learning mechanism: how agents change their descriptionword;

4. Interaction structure: who interacts with whom.

This chapter aims at studying how the population size and vocabulary size affect the conver-

gence under a minimalist learning mechanism called thewin-stay lose-shift(WSLS) rule (Matsen

and Nowak, 2004) and an all-to-all interaction network. We will construct a computational model
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using the self-organizing language framework presented inChapter 2, and then conduct computer

simulation and mathematical analysis to find the conditionsunder what the agents can converge

to a common word and to understand their convergence speed ifthe convergence conditions are

satisfied.

In the next section we give a brief review of related work. Then we set up a WSLS learning

model and specify our research questions. Next we concentrate presenting our computer simula-

tions and mathematical analyses of the questions. We close with a summary of the chapter.

3.2 Related work

The word consensus problem studied in this chapter originated from the computational study of

the emergence ofsocial conventions, which studies how a group of agents can come to reach a

global agreement on a common strategy of action (such as which side of the road to drive on)

by using only locally available information (Shoham and Tennenholtz, 1993; 1997). Obviously,

in the context of word consensus, words are just kinds of social conventions that are used in

communication activities.

The study of conventions can be traced back to the work by Lewis (1969), who proposed

using game theoretical frameworks to study the conventional aspects of language and meaning. In

the last decade, various computational models of the emergence of social conventions have been

introduced to show that a population of agents can converge to adopting one social convention

(Shoham and Tennenholtz, 1993; 1997; Kittock, 1993; Walkerand Wooldridge, 1995; Delgado,

2002). In relation to the four factors presented in the introduction (population size, vocabulary

size, learning mechanism, and interaction structure), allof these studies assumed that the space of

possible conventions over which the agents must agree (called thepotential agreement spacein a

recent general model of multi-agent agreement (Lakkaraju and Gasser, 2006)) is limited to only

two possible conventions. This translates into a two word limitation on the combined vocabulary

of all agents in the case of word consensus, which is a very limiting constraint. Of course, all
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studies supposed there are many agents, namely, a large population.

The principal difference among these studies lies in the learning mechanisms and interaction

network they employed. For example, the work by Shoham and Tennenholtz (1993,1997) and by

Walker and Wooldridge (1995) focused on studying various learning mechanisms while keeping

the interaction network as simple as possible (they use an all-to-all connection network). Shoham

and Tennenholtz were able to show the agents using a learningalgorithm calledhighest cumula-

tive reward(HCR) can converge to using a common convention. Walker and Wooldridge studied

sixteen specific mechanisms using computer simulation and found some interesting unexpected

results which implied how much further we need to pursue our understanding of this complex

topic. Along dimensions other than variance in the learningmechanism, Kittock (1993) and Del-

gado (2002) have begun investigating the role played by interaction structure. Kittock showed that

there is an important effect of using interaction networks that are not fully connected. Delgado

then investigated the case of complex social networks such as small-world networks (Watts and

Strogatz, 1998) and scale-free networks (Barabasi and Albert, 1999) and compared the efficiency

of convention emergence in the two-convention case under these complex networks.

The most influential of these studies1 is the model of Shoham and Tennenholtz (1997). Our

model is based on theirs. In their design of a mechanism for the HCR learning rule, an agent has

to remember a vector of payoffs, each entry of which represents the total payoff that the agent has

received on a word in the past interactions with other agents. When there are many words this

vector is large and the effort of maintaining statistics on all words is high. (This is not a problem

for existing work because, as we mentioned above, existing studies on the emergence of social

conventions have a common feature: they only studied the case of two conventions.)

To overcome the limitations in this their model, in this thesis we propose to use the WSLS

learning rule—a simplest stochastic learning strategy (Posch et al., 1999)—in which each agent

only needs to remember three things: its most recently-usedword, the number of times that word

1According to search results from Google Scholar with query “emergence convention” on December
10th 2006, Shoham and Tennenholtz (1997) has the most citations (91 citations).
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has been used since it was chosen, and the number of successesfrom using the word since it was

chosen. The use and success statistics yield the success ratio of the word during the period since

it was chosen, and they are re-initialized when a new word is chosen. The next section gives the

details of the WSLS learning model.

3.3 Reaching word consensus using win-stay lose-shift

learning

In terms of the self-organizing language framework given inChapter 2, here we present a word

consensus model that focuses on the following two components: (1) a 2-player word consensus

game, and (2) an agent learning model (WSLS model).

Game model. The 2-player word consensus game is designed as a simultaneous game between

two agents. All agents have the same vocabulary (i.e., action set, in terms of game theory) that

consists ofn words (or actions). Let the words be (w1,· · · ,wn). The payoff in the game is defined

as follows: if the agents use the same word, then both receivea positive payoff of 1, otherwise

0. Fig. 3.1 gives the payoff matrix of the 2-player game. (We use font wj to mean a word in the

vocabulary, and fontwi to indicate a word submitted by agenti.) In the payoff matrix, each cell

has two numbers(π1, π2), indicating the payoffs of the two agents. The payoff matrixin the figure

tells that the two agents need choose the same word to get the best payoff.

A general agent model. Here we present a general agent model, and later we will present the

specific WSLS model. In a general agent model, every agent hasthree components: a stateb, a

decision functionf , and a state update functiong. We suppose that all agents have the same form

of decision and state update functions. The difference among the agents is reflected in their state.

Fig. 3.2 shows how these components work together in a word consensus game played by two
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Agent 2 (π2)

w1 w2 · · · wn

Agent 1 (π1)

w1 1,1 0,0 · · · 0,0

w2 0,0 1,1 · · · 0,0

... · · · · · · · · · · · ·

wn 0,0 0,0 · · · 1,1

Figure 3.1: Payoff matrix of a 2-player word consensus game.

Agent 1
Decision

making function

stateb1
State

update function

Agent 2 Decision
making function

stateb2
state

update function

Game
payoff function

b′1 = g(b1, w1, π1)

wordw1 = f(b1)
π1(w1, w2)

b′2 = g(b2, w2, π2)

wordw2 = f(b2)
π2(w1, w2)

Figure 3.2: Agent model in a word consensus game.

agents. Denote the states of the two agents bybi, i = 1, 2, then their actions (i.e., words) will be

wi = f(bi), i = 1, 2.

After the two agent submit their words, they each receive a payoff given by

πi = πi(w1, w2) = I(w1 = w2), i = 1, 2, (3.1)

whereI(w1 = w2) is the indicator function that outputs 1 ifw1 = w2, otherwise 0 (Cover and

Thomas, 1990).
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Then the two agents update their states frombi to b′i based on the received payoff in the form

of

b′i = g(bi, wi, πi), i = 1, 2.

The WSLS learning model. Here we describe how to implement the above general agent model

using the WSLS rule. In this model, the agent stateb is represented as a triple

b =< w, u, v >,

wherew is the word used by the agent in the previous game and will be called recently-used word,

u andv are the number ofusesandsuccessesof the wordw sincew has been used consecutively

by the agent. (In the first game that an agent participates, its u andv are set to 0, and there is no

recently-used word.)

According to the WSLS rule, the decision functionf which decides which word to use is stated

as follows. If the success ratio (defined as the ratio of the successes to the uses,v
u
) of the recently-

used word is above somethreshold, the agent will keep using the word; otherwise the agent will

choose a random word from the vocabulary. In WSLS learning, the threshold is calledaspiration

level. Denote byα the aspiration level, then the decision functionf can be formally represented

as

f(b) = f(< w, u, v >)

=











w if v
u
≥ α,

a randomly chosen word else (including the case ofu = 0).

(3.2)

And, the state update functiong is stated as follows. Supposew is an agent’s recently-used

word, andu andv are the uses and successes of the word. After a game, the agentwill increase the

usesu by 1. If the agent receives from the game a positive payoffπ, it will increase the successes

v by 1; otherwise, if the ratio of the successes to the uses (i.e., v
u
) is below the aspiration levelα,
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the agent will set both numbers to 0. Formally, the agent state is updated based on the following

rule

(u′, v′) =























(u+ 1, v + 1) if π > 0,

(u+ 1, v) if v
u+1
≥ α,

(0, 0) else.

(3.3)

Coherence. In Section 2.5 of Chapter 2, we stated that: forN agents, suppose their states are

b1, · · · , bN , then a general definition of population coherence can be given by

φ(b1, · · · , bN) =
1

N(N − 1)

∑

i6=j

sim(bi, bj) (3.4)

where0 ≤ sim(bi, bj) ≤ 1 is the similarity between the states of two agentsi and j and its

definition depends on contexts.

In the context of the WSLS model, the definition of the similarity is given as follows

sim(bi, bj) = sim(< wi, ui, vi >,< wj, uj, vj >)

=











1 if wi = wj,

0 else.

(3.5)

A computational model of reaching word consensus. Fig. 3.3 gives the computation model of

reaching word consensus using the WSLS rule. This model is based on the general one given in

Fig. 2.12 of Section 2.6 of Chapter 2. The simulations conducted in the next section will be based

on this word consensus model.

3.4 Specific research questions

From the concrete computational WSLS model given in Fig. 3.3, we can see that there are three

input parameters: the number of available wordsn, the number of agentsN , and the aspiration

levelα; and one output: population coherenceφ(t) at some time pointt. Now, we ask the following
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Settings
population:N agents
language complexity:n available words
agent state: each agenti has a statebi = (wi, ui, vi)
learning parameter: aspiration levelα

Initialization
each agent’s recently-used wordw is randomly chosen from then words, and(u, v) = (0, 0)

Iterations (each iteration includesN(N − 1)/2 interactions (see Section 2.4 of Chapter 2 for details).)

During each interaction
1. two agents, denoted by1 and2, are paired according to Section 2.4
2. they play the word consensus game by each using a wordwi = f(bi), i = 1, 2 (see Eq (3.2))
3. each agent receives a payoffπi(w1, w2) (see Eq (3.1))
4. each agent updates its state based on the received payoffb′i = g(bi, wi, πi) (see Eq (3.3))

After each iteration, record the population coherenceφ(t) (see Eqs (3.4) and (3.5))

Figure 3.3: The WSLS computational model.

questions.

1. Is it possible for the agents to eventually reach word consensus?

2. What are the conditions that can make the agents converge to using one common word?

Since in the design of WSLS rules, a critical question is how to set the aspiration levelα (if

α is too low, it is very likely for the agents to diverge into using different words; ifα is too

high, the agents may never converge to using one common word), therefore, in particular,

we ask, for a given number of wordsn and a number of agentsN , what is the minimum

aspiration levelα that can make the agents converge to one common word with at least a

coherence level ofρ = limt→∞ φ(t)?

3. How much time is needed for achieving a given level of coherence if the above conditions

are satisfied?

Research methods. We will use both computer simulation and mathematical analysis to study

the above questions. For the details on the limitations and advantages of using simulation and
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mathematical analysis, and the procedure of how to combine the two approaches, please see Sec-

tion 1.4 of Chapter 1.

3.5 Simulations

In this section, we show that the agents in the WSLS model can converge to some common word

when the aspiration levelα is chosen appropriately. To show this, four experiments aremade. The

first experiment aims to show how the coherence among agents changes over time, for a given

aspiration level (such asα = 0.15). Fig. 3.4 shows the dynamics of the model, for a setting of10

agents,100 words, and an aspiration level0.15. The simulation shows the agents using the WSLS

rule can converge to the same word. In the figure, the dashed thick lines show the simulation result

obtained by averaging 1000 runs, 3 of which are shown in thin lines. A log timescale in subfigure

(b) is used for clarifying the detail of the dynamics in the initial period (during the first 10 or 20

iterations).
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Figure 3.4: Simulated dynamics of the WSLS model for 10 agents, 100 words, and an aspiration
level of 0.15.

The second experiment is designed to explore how different values of aspiration level affect the

convergence properties (convergence speed and eventual coherence level). The simulation results
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are shown in Fig. 3.5. From the figure, we can see that when the aspiration level is set appropriately

(such asα = 0.15 orα = 0.2), the agents can achieve a coherence level of at least 0.95 atthe500-

th iteration. When the aspiration level is set too low (such asα = 0.05 or α = 0.1), the agents are

easily satisfied and so can quickly converge to a non-optimalcoherence state (such as 0.45). When

the aspiration level is set too high (such asα = 0.3), the agents find it difficult to get satisfied and

thus their words are switched back and forth. As a consequence, they may never converge or it

may take very long time to converge to a common word.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aspiration level α

C
oh

er
en

ce

 

 
Iteration=500
Iteration=100
Iteration=50
Iteration=10

Figure 3.5: Coherence vs. aspiration level at different iteration points. Parameter setting:N = 10
agents andn = 100 words.

The third experiment is designed to explore how different numbers of agents affect the best

aspiration level. By “best aspiration level”, we mean the agents can converge to some common

word with high probability (such as at least 0.85, i.e., at least a coherence level of 0.85) in a short

time. For two different aspiration levelsα1 andα2, suppose the agents can converge to the same

coherence level of 0.85. Then if with the level ofα1, the agents can converge faster, we sayα1

is a better “aspiration level” thanα2. Fig. 3.6 shows that when the number of agents is given by

N = 20 while the number of words is held constant (i.e.,n = 100), the best aspiration level is

α = 0.1, compared toα = 0.15 in the case ofN = 10.
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Figure 3.6: Coherence vs. aspiration level at different iteration points. Parameter setting:N = 20
agents andn = 100 words.

The fourth experiment is designed to explore how different numbers of words affect the best

aspiration level. Fig. 3.7 shows that when the number of words,n, is small (e.g.,n < 50), lowering

the number of words increases the best aspiration level. Forexample, when there are only two

words, it is obvious that the success ratio has to exceed 0.5 (i.e., at least half of population shares

the same word). When the number of words is large enough (e.g., n > 50), there is no significant

difference in the best aspiration level forn = 50 or n = 1000. We say “no significant difference”

because in our simulations the best aspiration level is obtained at a coarse scale of with an interval

of 0.05.

From the simulations results obtained in the four experiments. We have the following general

observations:

1. The agents can converge to some common word when the aspiration level is chosen appro-

priately;

2. There is a relationship between the best aspiration level, the number of agentsN and the

number of wordsn. When the number of words is fixed, the best aspiration level depends

on the numbers of agents. However, when the number of agents is fixed, the best aspiration
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Figure 3.7: Best aspiration level vs. number of wordsn. Parameter setting:N = 10 agents.

level is similar whenn is large enough.

Obviously, the above experiments are only suggestive, not exhaustive. The analysis given in the

next section aims at giving a comprehensive theoretical account of the relationship between these

parameters.

3.6 Analysis

We will analyze the conditions for the agents to reach word consensus and how much time is

needed for the consensus.

3.6.1 Settings for the analysis

The WSLS model presented above is based on a 2-player game model. For several reasons to be

shown below, we convert it into an N-player game model (N is the population size, namely the

number of agents). In a N-player model, all agents submit their words at the same time, and each
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agenti receives a payoff that is defined as follows

πi(w1, · · · , wN) =

∑

j 6=i I(wi = wj)

N − 1
, i = 1, 2, · · · , N (3.6)

wherewk is the word submitted by agentk, andI(wi = wj) is the indicator function. Obviously,

in an N-player game, the payoff that an agent can receive has amuch richer range (from 0, 1
N−1

,

· · · , to 1) than the payoff an agent can receive in a 2-player game (either 0 or 1).

In addition to the advantage of having a rich payoff range, inthe N-player game model, there

is no need to specify an interaction structure that defines who plays with whom as in the 2-player

game, because all theN agents participate the N-player game at the same time. Theseadvantages

of the N-player game model make it convenient to conduct analysis. In fact, Matsen and Nowak

(2004) have already shown (though the authors did not explicitly state this in their article) that

when all agents play the N-player game, they can converge to using one word. We will use some

of their analysis techniques to explore the full relationship between the parameters specified in our

questions (Section 3.4).

Before we do the analysis using the N-game model, however, wemust (1) make sure that

the N-player game model has a qualitatively similar behavior to the WSLS model based on the

2-player game; and (2) set up the conversion from the 2-player model to the N-player model.

Comparison between 2-player and N-player game models.To make sure that the N-player

game model has a qualitatively similar behavior to the WSLS model based on the 2-player game,

we build a computational model for the N-player game which isthe same as the 2-player one give

in Fig. 3.3 but with two exceptions. One exception is that noweach iteration only contains one

interaction. The other one is that the success ratiov
u

in the 2-player model now becomes the payoff

(see Eq (3.6)).

Then, we run 1000 simulations for the N-player model under the same parameter settings that

we used before for the 2-player model. By averaging the 1000 simulations, we obtain two graphs
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that are shown in Fig. 3.8: one is on linear timescale and the other on log timescale. By comparing

these graphs with the ones in Fig. 3.4 on the 2-player model, we can see that the dynamics of

the N-player model has similar behavior to the 2-player model. The main difference is that the

convergence time for the N-player model is much longer. Thisis because in the N-player model

each agent only updates once in each iteration, while in the 2-player model each agent updates

N − 1 times in each iteration because an agent has to interact withevery other agent.
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Figure 3.8: Simulated dynamics of the N-player model for10 agents,100 words, and an aspiration
level of0.15.

Redefining coherence and aspiration level. In the Matsen-Nowak model, the measure used for

analysis is different from our coherence measure given by Eqs (3.4) and (3.5). To situate their

measure in our word consensus problem, we will call their measure thelargest number of agents

sharing the same word, or for brevitylargest cluster size. Formally, the largest cluster size can be

defined as

ψ(w) = ψ(w1, · · · , wN) = max
i

∑

1≤j≤N

I(wi = wj).

For example, suppose among the 20 agents, 16 agents use the same word and 4 agents use some

other word, then the largest cluster size is 16.

To use the analysis technique from their work, we will use largest cluster size as a measure
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of coherence. The measure of largest cluster size is strongly related to the previous definition of

coherenceφ(w). To see this, let us normalize largest cluster size to

ψ̄(w) =
ψ(w)− 1

N − 1
.

We can see that when all the words inw are the same, both measuresφ(w) andψ̄(w) can reach

their maximum 1; when all the words inw are unique, both measures reach their minimum 0.

The introduction of the new measurementψ does make some small difference on the collective

dynamics—we can show thatφ(w) ≤ ψ̄(w) always holds; however, as far as the qualitative

dynamics behavior is concerned, there is no difference.

With the change of the measure from coherenceφ to largest cluster sizeψ, correspondingly,

we need to change the aspiration level from a fractional number (0 < α < 1) to an integer number

denoted byK, as well as change the payoff from the fractional number given by

πi(w1, · · · , wN) =

∑

j 6=i I(wi = wj)

N − 1
, i = 1, 2, · · · , N

to an integer number given by

πi(w1, · · · , wN) =
∑

j 6=i

I(wi = wj), i = 1, 2, · · · , N.

After these conversions, the WSLS rule for the N-player gamemodel will read as follows. An

agent will keep using its recently-used word if the payoff from the word is at leastK (namely, the

agent shares its word with at leastK other agents); otherwise uses a randomly chosen word.

3.6.2 Conditions for reaching consensus

After the conversion from 2-player model to N-player model and other corresponding changes

given above, our first question turns into the following: fora given number of wordsn, a number
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of agentsN , and a desired coherence level ofρ, what is the minimum aspiration levelK that can

make the agents converge to a common word? Theorem 3.6.1 gives an analytical result to the

question.

Theorem 3.6.1.For a given number of wordsn and a number of agentsN , to reach a desired

coherence levelρ, the aspiration levelK should be at least

min{K :

(

N−K−2
K

)

(K + 1)nK−1
≤ 1/ρ− 1}. (3.7)

Before we give the proof to the theorem, it is worth giving some geometrical illustration to

Eq (3.7). The two graphs shown in Fig. 3.9 give such an illustration about how the aspiration level

K depends on the values of parametersN , n, andρ. From the graphs, we have the following

observations: (1) when the coherence level required for consensus is higher (e.g.,ρ = 0.95 vs.

0.90), we may need to set the aspiration levelK to be higher; (2) when there are many more words

than agents,K = 2 will be sufficient for the agents to reach a high level of coherence.

In addition, to make connections between the aspiration level in the form ofα and the aspiration

in the form ofK, we normalizeK to

ᾱ =
K − 1

N − 1
.

With the normalized̄α, Fig. 3.9(a) becomes Fig. 3.10. From this new graph, we can see that for

the setting ofn = 100, N = 10, andρ = 0.95, the normalized aspiration level is̄α = 0.11. Now,

take a look at the value ofα in Fig. 3.5 for the same setting in the previous section, we can see

that,ᾱ = 0.11 is the lower bound for the aspiration levelα. If α is lower than 0.11, then the agents

cannot reach consensus.

Now it is time to prove the theorem.

Proof. For convenience, we call a group of agents that share the sameword acluster. According

to the WSLS rule in the N-player game model, if the word used byan agent is shared by at least

K other agents then the agent will use the word forever (because all the agent in this cluster will
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not change their word). A cluster with size ofK + 1 or more—recall thatK is the aspiration

level—will be called anaspired cluster.

If the aspiration levelK is too small (such asK = 1), it is very easy to form many aspired
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Figure 3.9: How aspiration levelK depends on the number of agents,N , the number of words,n,
and the coherence levelρ.
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Figure 3.10: How aspiration level, in the form ofᾱ, depends on the number of agentsN , the
number of wordsn, when the coherence levelρ is held to0.95.

clusters when there are many agents. If the aspiration levelK is big enough (such asK ≥ 2),

it is not easy to form even one aspired cluster. Now supposeK is big enough, then according to

the WSLS rule, once the first aspired cluster is formed2, the agents in that cluster will stay in the

cluster at the next time step. An agent that is not in the aspired cluster, which we call anoutsider,

will randomly choose another word at the next time step. There are three possible outcomes when

an outsider agent randomly chooses a word:

1. the word is the same word shared by the agents in the existing aspired cluster; in this case,

we say the agent is absorbed into the cluster;

2. this agent and some other outsiders form a second aspired cluster whose members share a

word that is different from the one shared by the first cluster;

3. neither outcome 1 nor outcome 2.
2It is not easy to form one aspired cluster, so we can safely suppose that it is unlikely that two or more

aspired clusters can be formed simultaneously.
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Now, the critical point is that in order for all the agents to reach a consensus, the chance that the

outsiders of the first aspired cluster to be absorbed into that cluster, denoted byp1, should be much

larger than the chance that they form a second aspired cluster, denoted byp2. The calculation of

p1 can be given by

p1 = 1−
(

1−
1

n

)N−K−1

,

where
(

1− 1
n

)N−K−1

indicates the probability that no outsider—there areN −K−1 outsiders—

uses the word shared by the first cluster. And, the calculation of p2 can be approximately given

by

p2 =

(

N −K − 1

K + 1

)

(1

n

)K+1

(n− 1),

where
(

N−K−1
K+1

)

means the number of the ways to form a second cluster of sizeK + 1 from the

N −K − 1 outsiders, and( 1
n
)K+1(n− 1) means the chance of theK + 1 “lucky” outsiders to fall

in any one of the remainingn− 1 words.

Givenp1 andp2, the eventual coherenceρ that the agents can achieve can be approximately

estimated by (the larger the difference betweenp1 andp2 (p1−p2), the more accurate the estimation,

because we neglect many other possible outcomes such as a third cluster in the future)

ρ ≈
p1

p1 + p2
.

So, to achieve a coherence level of at leastρ, the following inequality should hold

p1

p1 + p2
≥ ρ.

Pluggingp1 andp2 into the above equation, and making some simplifications such as replacing

(n−1) byn, we have the aspiration levelK should be at leastmin{K :
(N−K−2

K )
(K+1)nK−1 ≤ 1/ρ−1}. �
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3.6.3 Time for reaching consensus

Above we have given the conditions for the agents to reach consensus. A general conclusion from

the condition theorem is that if the number of words is much larger than the number of agents, the

aspiration levelK can be set to quite low such asK = 2 orK = 3. Here supposing the condition is

satisfied, we want to know how much time is needed for reachinga given level of coherence. One

motivation is that we know that a high value of the aspirationlevelK can guarantee that the agents

will reach a consensus, but this may take infinite time to reach. For example, in the simulations

given earlier in this chapter (e.g. Fig. 3.5), we can see thatwhen the aspiration level is too high,

then the agents can not reach any consensus within some limited number of time steps such as 500

iterations.

The computation of the time for reaching a given level of coherence is approached by deriving

a dynamics equation that specifies on the average how much coherence can be obtained at a given

time step. This is given in the following theorem.

Theorem 3.6.2.In the N-player game model, if the conditions for reaching consensus is satisfied

(see Theorem 3.6.1), then the expected dynamics of the coherence is described by the following

equation:

ψ(t) = ψ(0) +

(

N

K+1

)

nK

(

1−
1

n

)N−K−1

×

t
∑

i=1

[

[

1−

(

N

K+1

)

nK

(

1−
1

n

)N−K−1]i−1[

K + 1− ψ(0)

+(N −K − 1)
(

1− (1−
1

n
)
)t−i]

]

(3.8)

whereψ(t) is the expected largest number of agents that share the same word at t-th iteration (i.e.,

at time stept). (The computation ofψ(0) is given in the next theorem.)

Proof. For convenience, we call a group of agents that share the sameword acluster. Thenψ(t)

is the expected size of the largest cluster of agents that share the same word att-th time step.

According to the WSLS rule in the N-player model, an agent will use a word forever if the

word is shared by at leastK other agents. In other words, there is an aspired cluster of sizeK + 1.
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Obviously, the time point when an aspired cluster is formed is a random variable, which can take

any value from1, 2, · · · , t. Denote this random variable byT , and denote byP (T = i), 1 ≤ i ≤ t,

the probability that an aspired cluster is formed at time step i.

If p is the probability that the agents can form an aspired cluster in one time step for the first

time before there is any other aspired cluster, thenP (T = i), the probability that an aspired cluster

is formed at time stepi, can be computed as follows

P (T = i) = p(1− p)i−1.

As to the computation ofp, it can be calculated by

p =

(

N

K + 1

)

n(1/n)K+1(1− 1/n)N−K−1 (3.9)

=

(

N

K+1

)

nK
(1− 1/n)N−K−1,

where in Eq (3.9),
(

N

K+1

)

indicates the number of the ways to form a cluster of sizeK + 1 from a

population ofN agents,(1/n)K+1(1−1/n)N−K−1 indicates the probability that exactly theK+1

agents in the cluster share the same word (considering that each agent randomly chooses a word

from n words), andn means there aren words that can be shared.

When such an aspired cluster is formed, the agents in the cluster will keep their word forever.

The agents outside the cluster (if not in another aspired cluster) will randomly update their word

until they join the cluster (or another aspired cluster). Therefore, we want to know how the size

of the aspired cluster will change once the aspired cluster has been formed. Note that, when the

aspiration levelK is large enough (such as 3), it is very unlikely that two or more aspired clusters

will be formed.

Denote byg(τ) the cluster size atτ time steps after that the aspired cluster has already been

formed. In other words, if the aspired cluster is formed at time stept0, theng(τ) means the cluster

size at time stepτ + t0. For example, if the aspired cluster is formed at timet0 = 100, andτ = 30,
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theng(τ = 30) means the cluster size at time step 130 from the beginning.

The computation ofg(τ) is as follows. In each time step, an agent that is outside the aspired

cluster will have a chance of1/n to be absorbed into the cluster, given that the agent choosesa

word at random fromn words. So, duringτ time steps, the probability for an outsider agent to join

the cluster is1− (1− 1/n)τ . Fromg(0) = K + 1 and there areN −K − 1 outsider agents, we

haveg(τ) = (K + 1) + (N −K − 1)(1− (1− 1/n)τ .

According to strong Markov property (Norris, 1997), the expected cluster sizeψ(t) should be

ψ(t) = ψ(0) +
t

∑

i=1

P (T = i)
(

g(t− i)− ψ(0)
)

= ψ(0) +

(

N

K+1

)

nK

(

1−
1

n

)N−K−1

×
t

∑

i=1

[

[

1−

(

N

K+1

)

nK

(

1−
1

n

)N−K−1]i−1[

K + 1− ψ(0)

+(N −K − 1)
(

1− (1−
1

n
)
)t−i]

]

(3.10)

The proof is almost completed except that we have not shown the computation ofψ(0), which

will be given in the next theorem. �

Theorem 3.6.3.ForN agents,n words, the expected largest number of agents that share the same

word at the beginning,ψ(0), is

ψ(0) = N −

N−1
∑

u=1

∑

0≤ki≤u

k1+···+kn=N

N !

k1!k2! · · · kn! nN
.

Proof. The setting ofN agents each choosing at random a word from then available words

{w1, · · · , wn}, can be converted to a classical urn model, calledMaxwell-Boltzman urn model

(Rosen et al., 2000), which is about placingN distinguishable balls inn distinguishable urns. The

result of theN agents each choosing a word can be characterized as such an event(k1, k2, · · · , kn),

in whichk1 agents share wordw1, k2 agents share wordw2, . . ., andkn agents share wordwn, with

the restriction
∑n

i=1 ki = N , ki ≥ 0. Or, in terms of the urn model, the event(k1, k2, · · · , kn)
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meansk1 balls in urn 1,k2 balls in urn 2,. . ., andkn balls in urnn.

The probability of the event(k1, k2, · · · , kn) is given by

p(k1, k2, · · · , kn) =

(

N

k1 k2 · · · kn

)

/nN =
N !

k1!k2! · · · kn! nN
,

where
(

N

k1k2···kn

)

is a multinomial combinatorial number that gives the numberof the ways that

result in the event(k1, k2, · · · , kn).

LetXi be the number of agents that share wordci. Then(X1, X2, · · · , Xn) is a random vector,

from which we can give a definition to the largest number of agents that share the same word—also

a random variable, denoted byU

U = max{X1, X2, · · · , Xn}

Then we have the cumulative distribution ofU

P (U ≤ u) =
∑

0≤ki≤u

k1+···+kn=N

p(k1, k2, · · · , kn)

And finally, the expected value of the largest number of agents that share the same word, is as

follows

E[U ] =
N

∑

u=1

P (U = u)

= 1× P (U = 1) + 2× P (U = 2) + · · ·+N × P (U = N)

= 1×
(

P (U ≤ 1)− P (U ≤ 0)
)

+ 2×
(

P (U ≤ 2)− P (U ≤ 1)
)

+

+ · · ·+N ×
(

P (U ≤ N)− P (U ≤ N − 1)
)

= NP (U ≤ N)− P (U ≤ 0)− P (U ≤ 1)− · · · − P (U ≤ N − 1)

= N −
N−1
∑

u=1

P (U ≤ u) sinceP (U ≤ N) = 1 andP (U ≤ 0) = 0
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= N −

N−1
∑

u=1

∑

0≤ki≤u

k1+···+kn=N

p(k1, k2, · · · , kn)

= N −

N−1
∑

u=1

∑

0≤ki≤u

k1+···+kn=N

N !

k1!k2! · · ·kn! nN
.

Thus complete the proof. �

Remark. Though we give an explicit formula forψ(0), it is very difficult to compute it, espe-

cially whenN andn are large numbers. For the case ofN = 20 andn = 100, by using an

approximate algorithm to the above theorem, we have obtained an approximationψ(0) = 1.964.

Actually, the average of 1000 runs of simulation shows thatψ(0) = 1.962.

Comparison between simulation and analytical results on dynamics. Fig. 3.11 gives the com-

parison between the simulation and analytical results. Theparameter setting for obtaining the

shown results is:K = 3, N = 20, andn = 100. The plot of the dashed simulation line is ob-

tained by averaging 1000 simulations. From the figure, we cansee that there is a trend for the

theoretical result (as shown by smooth line) to eventually have higher coherence values than the

simulation result. This is because the theoretical result is computed based on Theorem 3.6.2, and

the theorem has an assumption that there are not two or more aspired clusters. When there is a

chance for two or more aspired clusters to occur, the coherence will decrease (the maximum co-

herence is achieved when there is only one cluster). Clearly, the assumption does not always hold

in simulations, thus the simulation result will eventuallyshow lower coherence than the theoretical

(ideal case) result. In addition, this difference only becomes significant when time tends to infinity,

because the theoretical coherence will, according to our assumption, tend to 1 while the simulation

result cannot.
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Figure 3.11: Comparison between the simulation and analytical results.

3.7 Summary

In this chapter we studied our first linguistic consensus case: reaching word consensus. The word

consensus problem concerns how a group of agents can converge to a common word, out of a

number of possible words, for representing a single shared meaning.

In terms of the self-organizing framework given in Chapter 2, we designed a word consensus

model that focuses on the following two components: (1) the 2-player word consensus game, and

(2) the agent learning model. In the design of the game, we defined its payoff function as follows:

if two agents use the same word, both receive a positive payoff; otherwise 0. In the design of

agents, the win-stay lose-shift (WSLS) learning rule was used. According to the WSLS rule, an

agent will keep using its recently-used word unless the success ratio of the word is below some

threshold.

Our work has the following contributions. First, we proposed a word consensus model in which

agents make adaptations using the WSLS learning rule. We showed by computer simulation and

mathematical analysis that agents in our model can convergeto a common word under certain

conditions, and we gave those conditions. We also gave a dynamics equation on how coherence
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changes over time when the convergence conditions are satisfied. Second, though our work was

motivated by (Shoham and Tennenholtz, 1997) and (Matsen andNowak, 2004), compared to the

Shoham-Tennenholtz model, ours requires a minimum memory load on the agents, and compared

to the Matsen-Nowak model, our analytical result gives a comprehensive description of the rela-

tionship among all related parameters.
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Chapter 4

Case 2: Reaching Coherent Communication

4.1 Introduction

In the word consensus problem we studied in the last chapter,we supposed there is only one

meaning involved and the task of the agents is to reach an agreement on using one common word

for representing the meaning. However, what will happen if there are multiple meanings involved?

For example, suppose there are two meanings{hungry, thirsty} and two words{a, b}. It is

possible for the agents to use the same word, saya, to represent both meanings. If this happens,

then when a speaker uses the worda to represent meaninghungry, it is possible for a hearer to

interpreta as the other meaningthirsty.

In this chapter, to address the above situation where there are many meanings, we study another

linguistic consensus case: coherent communication. In thecoherent communication problem,

there are a set of meanings and a set of words. A group of agentseach have an encoding function

that can map a meaning to a word, and a decoding function that can map a word to a meaning.

The agents may have incoherent (or incompatible) encoding and decoding functions and thus they

cannot communicate effectively. The job of the agents is to develop a coherent communication

system so that the intended meaning of one agent can be correctly conveyed to another agent

through their encoding and decoding functions.

The agents are supposed to be adaptive—they can change theircoding functions based on in-

teractions they have with each other. So a key question is howcan we design adaptive mechanisms

for such agents so that they can converge to a coherent communication system.

In the design of the agents, there are four factors that may affect the convergence which are
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listed as follows.

1. Population size: the number of agents;

2. Vocabulary scale: the number of meanings and the number ofwords;

3. Learning mechanism: how agents change their coding function;

4. Interaction structure: who interacts with whom.

In this chapter, we will study how two agents (a sender and a receiver) can converge to coherent

communication using a learning mechanism calledsimple reinforcement learning(SRL) rule. We

aim at studying how the vocabulary scale and SRL learning parameters affect the convergence. We

will construct a computational model using the self-organizing language framework presented in

Chapter 2, and then conduct computer simulation and mathematical analysis to find the conditions

under what the agents can converge to a coherent communication system and to understand their

convergence speed if the convergence conditions are satisfied.

In the next section we give a brief review of related work. Then we set up a simple reinforce-

ment learning model and specify our research questions. Next we concentrate on presenting our

computer simulations and mathematical analyses of the questions. We close with a summary of

this chapter.

4.2 Related work

The coherent communication problem studied in this chapterwas pioneered by James Hurford

(1989) in his seminal work on the computational study of theevolution of vocabulary. Since then,

many studies has been conducted on theevolution of vocabularyor theemergence of communica-

tion, including, to cite a few of them, (Oliphant and Batali, 1997; Nowak et al., 1999; Smith, 2004;

Lenaerts et al., 2005).

According to the learning mechanism, the existing work can be classified into two paradigms:

observational learningand reinforcement learning. The observational learning mechanism is
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mainly used in the study of vocabulary evolution through cultural transmission (Hurford, 1989;

Oliphant and Batali, 1997; Nowak et al, 1999; Smith, 2004). In such cultural transmission mod-

els, it is supposed that there are two kinds of agents: parents and children, and vocabulary can be

transmitted from parents to children. During the process oftransmission, children acquire their vo-

cabulary (the encoding and decoding functions) by learning(i.e., observing and generalizing) how

adults produce and interpret words, and then they become theparents of the next generation. In

this way the collective vocabulary of the agents and the corresponding communication coherence

change over generations.

On the other hand, the reinforcement learning is mainly usedin the study of the emergence of

communication through self-organization (Steels, 1996; Kaplan, 2000, 2005; De Jong and Steels,

2003; Lenaerts et al., 2005). The mechanism of self-organization is similar to our framework

presented in Chapter 2 (the difference is that ours is based on a game theoretical framework).

In this thesis we are particularly interested in reinforcement learning which only requires a

minimum of feedback information for learning. Though the formulation of communication mod-

els underlying the studies using reinforcement learning isabstract and straightforward, there is no

theoretical proof to show why or not a group of agents can converge to a coherent communica-

tion system. For example, a recent article by Lenaerts et al.(2005) has done a comprehensive

study on using reinforcement learning for reaching coherent communication, but all the results

were obtained using computer simulation. The difficulty of giving a theoretical proof might be

explained by that each agent has dual functions (encoding and decoding functions) which make

things complicated.

To make progress, we propose a minimum communication model in which there are only two

agents: a sender and a receiver. Different from existing work, in our minimum model, the sender

only has an encoding function and the receiver only has a decoding function. With this reduction,

we hope we can achieve a thorough understanding of the theoretical aspects of the reinforcement

learning model.
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4.3 A formal communication model

The objective of this chapter is to study how agents can reacha coherent communication. First we

need to clarify what we mean by communication. Our model of communication is adapted from

Hurford (1989), which is the basis for most work in studying the emergence of communication or

the evolution of vocabulary. In a simple communication model (see Fig. 4.1), there aremmeanings

X = {x1, · · · , xm}, n wordsY = {y1, · · · , yn}, and two agents: sender and receiver. The sender

has an encoding (or production) functionfs : X 7→ Y that can produce a word to represent a

meaning, and the receiver has a decoding (or interpretation) functionfr : Y 7→ X that can output

a meaning as an interpretation to a word. A basic assumption in the model is that the sender cannot

convey his meaning to the receiver directly; rather, he can only convey a meaning via some word.

To communicate a meaning, sayx, the sender needs to call his encoding functionfs to convert

the meaning into a wordy, in the form ofy = fs(x). For the receiver, once receiving the wordy,

she needs to call her decoding functionfr to convert the word back to a meaningx̂, in the form

of x̂ = fr(y). If the interpreted meaninĝx is the same as the original meaningx, then we say the

communication between the sender and receiver over the meaning x is successful; otherwise it is

failed. Later we will frame this communication process intoa communication game.

Sender

encoding functionfs

(production)

x

target
meaning

y

word

Receiver

decoding functionfr

(interpretation)

y

word

x̂

interpreted
meaning

Figure 4.1: A communication model. Given a meaningx, the sender encodes it into a word. When
receiving a word, the receiver decodes it to a meaningx̂.

Remark. The meaning set is a discrete set, which implies that each meaning is atomic or

primitive. The word set is also a discrete set. Another assumption is that the sender and receiver

have the same meaning setX and the same word setY .
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Communication coherence. Here we give a definition ofcommunication coherencebetween a

sender and a receiver, which is the probability of having successful communication between the

sender and receiver over any meaning. To be precise, letfs be the encoding function of the sender,

fr be the decoding function of the receiver, andp(x) be the probability of meaningx being used.

Then we can define the communication coherence between the sender and receiver as

φ(fs, fr) =
∑

x∈X

p(x)I
(

x = fr(fs(x)
)

,

whereI(x = x′) is the indicator function, and thusI
(

x = fr(fs(x)
)

indicates the communication

coherence over one meaningx.

This coherence measurement will be used as the definition of population coherence in our

minimum model that is to be given later (see Fig. 4.6).

A probabilistic implementation of coding functions. In the above communication model, the

encoding and decoding functionsfs andfr have not been specified yet. There are various ways

to implement the two functions. An elegant mathematical treatment is to generalize the encoding

functiony = fs(x) to be a conditional distributionp(y|x), which allows each wordy to be used for

representing a given meaningx with some probability. Similarly, the decoding functionx = fr(y)

can be generalized to another conditional distributionq(x|y), which allows each meaningx to

be used as an interpretation for a received wordy. For convenience, the distributionp(y|x) will

be called theencoding distributionof the sender, and the distributionq(x|y) will be called the

decoding distributionof the receiver. With this treatment, we can easily define thecommunication

coherence between a sender and a receiver over meaningx as

φx(fs, fr) = φx(p, q) =
∑

y

p(y|x)q(x|y)

wherep(y|x)q(x|y) indicates the probability that meaningx can be successfully communicated

via wordy, and thus
∑

y p(y|x)q(x|y) is the probability that meaningx can be successfully com-
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municated via all possible words. Then, the expected or average communication coherence over

all meanings is:

φ(fs, fr) =
∑

x

[

p(x)φx(fs, fr)
]

=
∑

x

[

p(x)
∑

y

p(y|x)q(x|y)

]

.

As an example, consider the case that there are three meaningsX = {x1, x2, x3}, and three

wordsY = {y1, y2, y3}. The encoding and decoding distributionsp(y|x) andq(x|y) are given

in Fig. 4.2. The success ratio of communicating meaningx1 via word y1 will be: p(y1|x1) ×

q(x1|y1) = 0.5 × 0.2 = 0.1, and the total success ratio on communicating meaningx1 is:

φx1
=

∑

y p(y|x1)q(x1|y) = 0.1 + 0.4 + 0 = 0.5. If we suppose that all meanings are uniformly

distributed; i.e.,p(x1) = p(x2) = p(x3) = 1/3, then the communication coherence between such

a sender and receiver is:

φ = 1/3× (φx1
+ φx2

+ φx3
) = 1/3× (0.5 + 0.2 + 0.42) = 0.37.

y1 y2 y3

x1 .5 .4 .1
x2 .4 .3 .3
x3 0 .3 .7

(a) Sender’s encoding distributionp(y|x)

x1 x2 x3

y1 .2 .2 .6
y2 1 0 0
y3 0 .4 .6

(b) Receiver’s decoding distributionq(x|y)

Figure 4.2: Encoding and decoding distributions. Note thatthe sum of any row is 1, indicating a
distribution.

Coherent communication. For different encoding and decoding functions or distributions, the

communication coherenceφ(fs, fr) could be very different: it could be as low as 0 or as high as 1.

When there arem meanings andn words, it is clear that the maximum coherence that any pair of

encoding and decoding functions can achieve will be

min{1,
n

m
}.
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When a sender and a receiver can achieve their maximum coherence, the communication be-

tween them is calledcoherent communication.For example, Fig. 4.3 shows such a pair of encod-

ing/decoding distributions by which the sender and receiver can achieve coherent communication.

y1 y2 y3

x1 1 0 0
x2 0 0 1
x3 0 1 0

(a) Sender’s encoding distributionp(y|x)

x1 x2 x3

y1 1 0 0
y2 0 0 1
y3 0 1 0

(b) Receiver’s decoding distributionq(x|y)

Figure 4.3: Illustration of a coherent communication system.

4.4 Reaching coherent communication using simple

reinforcement learning

In terms of the self-organizing language framework given inChapter 2, here we present a model

for reaching coherent communication that focuses on the following two components: (1) a 2-

player communication game, and (2) an agent learning model calledsimple reinforcement learning

model.

Game model. The 2-player communication game is designed as a sequentiallanguage game

which is illustrated by Fig. 4.4. From the figure, we can see that there are three players: nature,

sender (he), and receiver (she). The player nature, who moves first, is added here for modeling

that the sender has some private information that is unknownor uncertain to the receiver. (See

Section 2.2.3 of Chapter 2 for details.) In our case of communication games, the private infor-

mation of the sender is the meaning he wants to convey. The sender knows the meaning, but the

receiver only knows the word produced by the sender. For example, in the figure, the left dashed

line illustrates that the receiver cannot tell which path,x1 or x2, the wordy1 comes from. When

the receiver interprets a word correctly, both agents get a positive payoff of 1; otherwise 0.
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Nature

Sender

Receiver

payoff

0

1

x1
1
2

2

y1

b

(1,1)

x1

b

(0,0)

x2

2

y2

b

(1,1)

x1

b

(0,0)

x2

1

x2
1
2

2

y1

b

(0,0)

x1

b

(1,1)

x2

2

y2

b

(0,0)

x1

b

(1,1)

x2

Figure 4.4: Communication game tree.

A general agent model. Here we present a general agent model, and later we will present the

specific simple reinforcement learning model. In a general agent model, every agent has three

components: a stateb, a decision functionf , and a state update functiong. We suppose that all

senders have the same form of decision and state update functions, and all receivers have the same

form of functions too. Since an agent can play the role of sender as well as the role of receiver, so

it is required that an agent has dual states and dual functions.

Nature

Sender’s
statebs

Sender
decision

Receiver’s
statebr

Receiver
decision

Game
payoff

Sender
update state

Receiver
update state

meaningx

p(x)

wordy meaningx̂

(interpretation)

πs(x, y, x̂)

πr(x, y, x̂)

Figure 4.5: Agent model in a communication game.

Fig. 4.5 shows how these components work together in a communication game played by a
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senders and a receiverr. In a communication game, nature moves first, deciding whichmeaning

the sender wants to convey, according to probabilityp(x). When a meaningx is given, the sender

will call his decision functionfs to encode the meaningx to a wordy based on its internal statebs

in the form of

y = fs(x, bs).

Then, the receiver, when receiving the wordy, will call her decision functionfr to decode the

wordy to a meaninĝx based on her internal statebr in the form of

x̂ = fr(y, br).

After the receiver gives an interpretation, both the senderand receiver receive a payoff that is

given by

πi = πi(x, y, x̂), i ∈ {s, r}.

And then, both agents update their state frombi to b′i based on the received payoff. For the

sender, its update functiongs is used to update its current statebs to a new oneb′s based on its

current encodingx 7→ y and the received payoffπs, in the form of

b′s = gs(bs, x, y, πs).

For the receiver, its update functiongr is used to update its current statebr to a new oneb′r based

on its current decodingy 7→ x̂ and the received payoffπr, in the form of

b′r = gr(br, x̂, y, πr).

The simple reinforcement learning model. Here we present a learning model calledsimple

reinforcement learning, which is the most widely used one in the study of reaching coherent com-

munication (Steels, 1996; Kaplan, 2000; De Jong and Steels,2003; Lenearts et al., 2005). Specif-
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ically, the learning model we use here is adapted from Lenearts et al. (2005). In this learning

model, the agent state is represented as an association matrix between meanings and words with

b(x, y) indicating the association strength or weight between meaning x and wordy. Denote by

bs(x, y) the sender’s association matrix, and bybr(x, y) the receiver’s matrix.

As shown in the above general agent learning model, the decision functions of the sender and

receiver are somewhat different. For the sender, his decision function is given by

y = fs(x, bs) = arg max
y′

bs(x, y
′), (4.1)

which indicates for a given meaningx, he will choose the wordy that has the strongest association

with the meaningx.

For the receiver, her decision function is given by

x̂ = fr(y, br) = arg max
x′

br(x
′, y), (4.2)

which indicates when receiving wordy, she will interpret it as the meaninĝx that has the strongest

association with the wordy.

Suppose in a communication game,x is the intended meaning of the sender (i.e., the meaning

decided by the external player nature),y is the word produced by the sender, andx̂ is the meaning

interpreted by the receiver, then the state update functions of the two agents are as follows. For the

sender, his state update rule is

bs(x, y) =











bs(x, y) + α if the payoff received from the game is positive

bs(x, y)− β else.
(4.3)
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And for the receiver, her update rule is

br(x̂, y) =











br(x̂, y) + α if the payoff received from the game is positive

br(x̂, y)− β else.
(4.4)

In these rules, the parameterα ≥ 0 is calledreward rate, and the parametersβ ≥ 0 is called

punishment rate. Note that the two agents have the same behavior.

A minimum simple reinforcement learning model. All computer simulations in various ex-

isting work have shown, though not systematically, that a group of agents designed as above can

converge to a coherent communication system. However, there is no theoretical proof to show why

(or not) a group of agents can converge to a coherent communication system. To make progress,

we only study a minimum model in which there are only a sender and a receiver.

The minimum model is described in Fig. 4.6. In this model, there are four parameters: the

number of meaningsm, the number of wordsn, reward rateα, and punishment rateβ. For conve-

nience of analysis, we will set agents’ punishment rateβ to be larger than 1, which is the largest

difference between any two initial association weights, toallow the agent to choose a different

word (or meaning) in the next game in the case of failing to communicate in the current game. In

addition, for convenience, we define the length of each iteration asm interactions. Note thatm is

the number of meanings.

4.5 Specific research questions

As we mentioned before, the minimum model given in Fig. 4.6 has four parameters: the number

of meaningsm, the number of wordsn, reward rateα, and punishment rateβ. There is also an

output from the model: the communication coherenceφ(t) at thet-th iteration.

Now, we ask the following questions:

1. What are the conditions that can lead the agents to reach coherent communication? Specif-
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Settings
population: 2 agents—a sender and a receiver
language complexity:m meanings{x1, · · · , xm}, andn words{y1, · · · , yn}
agent state: the association matrices of the sender and receiver arebs(x, y) andbr(x, y), respectively
learning parameter: reward rateα, and punishment rateβ

Initialization
the association weights in bothbs(x, y) andbr(x, y), are randomized to fall in the range[0, 1]

Iterations (each iteration includesm interactions).

During each interaction
1. a meaningx is chosen from{x1, · · · , xm} with probabilityp(x)
2. the sender represents the meaning by wordy = arg maxy′ bs(x, y′)
3. the receiver interprets the word as meaningx̂ = arg maxx′ br(x

′, y)
4. if the interpreted meaninĝx is correct (i.e.,̂x = x)

bs(x, y) = bs(x, y) + α
br(x̂, y) = br(x̂, y) + α

otherwise (i.e.,̂x 6= x)
bs(x, y) = bs(x, y)− β
br(x̂, y) = br(x̂, y)− β

After each iteration, namelym interactions, take a snapshot of the communication coherenceφ(t)

Figure 4.6: The minimum computational model of coherent communication using the simple re-
inforcement learning.

ically, for a given number of meanings,m, and a given number of words,n, what kind of

values of reward rateα and punishment rateβ can make the agents reach coherent commu-

nication?

2. How fast can the agents reach coherent communication if the conditions are satisfied?

A careful reader might notice that there is one more (kind of)parameter in the model. That is,

the initial association matrices of the sender and receiver, bs andbr. The initial matrices could be

parameters, but we will not consider them as parameters in our study, for the following reasons.

First, we aim at studying the average or expected dynamics behavior of the agents. Second, we

want to know for any given initial association matrices, what ranges of the settings of(m,n, α, β)

would make the agents converge to a coherent communication.Third, the initial matrices could be

easily set to the ones that are already converged.
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Research methods. Like what we did in the last chapter, we will use both computersimulation

and mathematical analysis to study the above questions. Forthe details on the limitations and

advantages of using simulation and mathematical analysis,and the procedure of how to combine

the two approaches, please see Section 1.4 of Chapter 1.

4.6 Simulations

Our goal in this section is to get some intuitions about the above questions by conducting simu-

lation on the minimum model given in Fig. 4.6. Without loss ofgenerality, we fix the number of

meaningsm and the number of wordsn both to be30, and the punishment rateβ = 1. (For other

settings ofm, n, andβ ≥ 1, the simulation results are qualitatively similar). Also,we suppose

that all meanings are uniformly distributed; in other words, p(xi) = 1/m, i = 1, · · · , m because

there arem meanings. For each value of reward rateα in {0.1, 0.2, · · · , 1.8, 1.9, 2}, we run 100

times of the procedure given in Fig. 4.6. After500 iterations, stop and record the communication

coherence, as the approximation of theeventualcoherence. Plotting the eventual coherence by

averaging the results of the 100 runs of simulation as a function of reward rateα, we obtain a

graph shown in Fig. 4.7.

The graph shows that when the reward rateα is around some critical valueα∗ = 0.8, there is a

phase transition. Whenα is aboveα∗, the two agents can eventually reach coherent communica-

tion; otherwise, they cannot. We want to mention that the critical value ofα depends on the other

three parameters (as we will show later in Section 4.7.1). Inthis case wherem = n = 30 and

β = 1, the critical value ofα happens to be0.8.

The results shown in Fig. 4.7 only illustrates the eventual coherence (snapshot at iteration

500). To get a sense of how the communication coherence changes over time, Fig. 4.8 shows the

dynamics for the case of reward rateα = 2, which is above the critical valueα∗ = 0.8. For other

settings of the number of meanings and words, the results aresimilar as long as the reward rate

is large enough. From the graph, we can see that the communication coherence has a trend to
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Figure 4.7: Phase transition.

converge to 1.

Fig. 4.9 shows the dynamics for the case of reward rateα = 0.5 which is below the critical

valueα∗ = 0.8. For other settings of the number of meanings and words, the results are similar

as long as the reward rate issmallenough. From the graph, we can see that the communication

coherence cannot get improved over time using the reinforcement learning—it oscillates around

some very low coherence value.

4.7 Analysis

4.7.1 Conditions for reaching coherent communication

In the last section, we have shown by simulation that whetheror not the agents can reach coherent

communication depends on the settings of the parameters. Inthe case of the number of meanings

m = 30, the number of wordsn = 30, and punishment rateβ = 1, when reward rateα is above

0.8, the two agents can eventually reach coherent communication; otherwise, they cannot. This

section aims at finding out what ranges of settings of the fourparameters will lead to coherent

communication.
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Figure 4.8: Simulated dynamics of the reinforcement learning model for large reward rateα = 2.
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Figure 4.9: Simulated dynamics of the reinforcement learning model for small reward rateα = 0.5.

The idea behind is that if the parameters are appropriatedlyset, a temporary (or lucky) meaning-

word agreement between the sender and receiver will have a greater chance to be reinforced by the

reward rule than to be weakened by the punishment rule. Once atemporary agreement has a better

chance to be reinforced than to be weakened, random walk theory (Norris, 1997) can tell us that
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the temporary agreement will have a positive probability ofbecoming a stable agreement.

To facilitate our arguments and analysis, we give the following informal notations, which will

be defined formally later.

Reward probability.The probability that a temporary agreement is reinforced bysome reward

rule.

Punishment probability.The probability that a temporary agreement is weakened by some

punishment rule.

Without loss of generality, let the first temporary agreement be on the meaning-word pair

(x1, y1). This means for the sender, it will use wordy1 to represent the meaningx1, i.e., y1 =

fs(x1); for the receiver, it will use meaningx1 to interpret the wordy1, i.e.,x1 = fr(y1). In terms

of association matrix, according to the decision function,we have, for the senderbs(x1, y1) =

maxk bs(x1, yk), and for the receiverbr(x1, y1) = maxk br(xk, y1). For convenience, we denote by

s11 = bs(x1, y1) and byr11 = br(x1, y1). That the agreement on(x1, y1) is reinforced means both

s11 andr11 will increase byα, and that the agreement is weakened means at least one ofs11 and

r11 will decrease byβ.

If at the next round what is played is again the meaningx1, then the communication on meaning

x1 will succeed, so the reward rule will be applied to boths11 andr11. Since the probability of

playing meaningx1 is p1, thereward probabilityof the agreement will bep1, and then theexpected

reward amountof the agreement will be

αp1.

If at the next round what is played is not the meaningx1, let it bex2 for example, then there is

a chance that the word produced by the sender to represent themeaningx2 happens to be the word

y1, and this chance can be written as the probability Pr(fs(x2) = y1). If this does not happen, then

there is neither reward nor punishment, so it is of no interest. If this happens, the communication

will fail, since the interpreted meaning by the receiver fory1 must bex1, according to the decision

function given by Eq (4.2). And then, the association weightr11 between wordy1 and meaning
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x1 in the receiver’s matrix will decrease byβ, according to the punishment rule of the receiver.

Similarly, at the same time, the weights21 between meaningx2 and wordy1 in the sender’s matrix

will decrease byβ. (This means the punishment rule of the sender has no effect on the weight

s11.) Therefore, thepunishment probabilitycan be represented as(1− p1)Pr(fs(x2) = y1), where

(1−p1) is the probability of playing a meaning other thanx1, and Pr(fs(x2) = y1) is the probability

that the sender will usey1 to represent the other meaning. As a result, theexpected punishment

amountof the agreement will be

β(1− p1)Pr(fs(x2) = y1).

Now we want to compute Pr(fs(x2) = y1), the probability that the wordy1 is the one used by

the sender for the meaningx2. Considering that in our model words are produced by Eq (4.1), a

nonlinear function, it is hard to give a precise estimation.So, we make the following assumption.

Assumption 4.7.1.(Random word production assumption.) The word produced by the sender for

a meaning that is not in any (temporary or stable) agreement is assumed to be randomly generated.

With the assumption, we can suppose that the probability of the wordy1 being the one produced

by the sender for meaningx2, Pr(fs(x2) = y1), can be approximated by1
n
, provided that there are

totallyn words. (We will show by simulations that this is a good approximation, or the assumption

is a good one.)

Then, our task is to solve the following inequality, whereαp1 is the expected reward amount,

andβ(1− p1)
1
n

is the expected punishment amount:

αp1 > β(1− p1)
1

n
. (4.5)

Eq (4.5) is just the condition for the agents to develop the first stable agreement. (Actually it

is very likely that more than one agreements can be established parallel.) Now we need to find the

conditions for the other agreements to be established. Before we go further, we make the following
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assumption about the order of developing agreements.

Assumption 4.7.2.(Sequential agreement establishment assumption.) Agreements are established

in the sequential order of the frequency that their meaningsare used. If the probabilities of the

meanings have the relationship:p1 ≥ p2 ≥ · · · , then we assume that the agreements will be

established in the order of(x1, yl1), (x2, yl2), · · · .

Now suppose we already havel − 1 established stable agreements that satisfy the above se-

quential assumption. Then we need to find the condition for a new agreement, thelth agreement,

to be established. Note thatl = 1 is the case we have just discussed above. Let the probabilities

of those meanings associated with the already established agreements bep1 ≥ · · · ≥ pl−1. By

applying the similar arguments as above, for thelth temporary agreement to become stable, we

require the following inequality to hold

αpl > β(1−
l

∑

k=1

pk)
1

n
, (4.6)

where the term
∑l

k=1 pk in the inequality comes from the fact that thesel meanings can guarantee

their sender will not generate a word that would cause the temporary agreement to be weakened.

In general, for the agents to establishL agreements, we must require the followingL inequali-

ties to hold

αpl > β(1−
l

∑

k=1

pk)
1

n
, (l = 1, 2, · · · , L),

which are equivalent to

α

β
> (1−

l
∑

k=1

pk)
1

npl

, (l = 1, 2, · · · , L), (4.7)

When the agents can developL stable agreements on meaningsx1, · · · , xL, the communicative

coherence of the system will be

φ(L) =

L
∑

k=1

pk.
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When meanings are uniformly distributed. Above we have shown that, for the agents to es-

tablish stable communication onL meaningsx1, · · · , xL, the inequalities in Eq (4.7) should be

satisfied forl = 1, 2, · · · , L. Now we are ready to solve the inequalities to obtain the convergence

conditions for some specific distributions over meanings. Here we only consider the uniform dis-

tribution.

When the meanings are uniformly distributed, we havepi = 1
m

for i = 1, ..., m. For the agents

to establishL agreements, by substitutingpl = 1
m

into Eq (4.7), we have

α

β
>
m− l

n
, (l = 1, 2, · · · , L).

It is clear that ifα
β
> m−1

n
, then for alll ≥ 1, the aboveL inequalities will hold. In summary, the

condition for reaching coherent communication under uniform distribution of meanings is:

α

β
>
m− 1

n
. (4.8)

Specifically, if we fixm = n = 30 andβ = 1 (the same setting as in our simulation), then

α∗ = m−1
n
≈ 0.97 will be the critical value of reward rate, above which the agents can develop a

communication system. This value is larger than the one in the simulation whereα∗ ≈ 0.8. This is

because we have made two assumptions in the analysis, therandom word productionassumption

and thesequential agreement establishmentassumption. Of course, in the simulations, there is no

such assumptions. The difference between simulation and analytical conditions also indicates that

in the simulation, it is easier for the agents to reach coherent communication.

Clearly, the two agents can develop as many asmin{m,n} stable agreements, since there are

at mostmin{m,n} distinct pairs of meaning-word, and thus, the maximum converged communi-

cation coherence ismin{m,n} 1
m

or equivalentlymin{ n
m
, 1}.
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4.7.2 Time for reaching coherent communication

In this section, we aim at giving an analytical answer to our second question: how fast can the

agents reach coherent communication if the conditions are satisfied? Our approach is to build

a dynamics equation describing how communication coherence changes over time as a result of

the agents updating their coding function by reinforcementlearning, and then to infer from the

equation how much time is needed for a given level of coherence.

Luckily, it turns out that the dynamics equation can be constructed explicitly using the follow-

ing theorem.

Theorem 4.7.1.If all the meanings are uniformly distributed and the convergence condition (given

in Eq (4.8)) is satisfied, then the expected communication coherence atiterationt is (each iteration

containsm interactions between the sender and receiver):











φ(0) = 0

φ(t+ 1) = φ(t) +
(

1− φ(t)
)

(

1
m
− φ(t)

n

) (4.9)

wherem is the number of meanings, andn is the number of words.

Proof. In the above recursive relation,φ(t) represents the current expected communication coher-

ence, andφ(t + 1) the expected coherence at the next iteration. For(1 − φ(t))(1 − m
n
φ(t)) 1

m
,

it represents the probability that a meaning will be communicated successfully for the first time

by the agents at the next iteration—the meaning will be called new lucky meaning. Within this

part, the term(1 − m
n
φ(t)) represents the probability that a randomly chosen word can be used

by the sender for representing the new lucky meaning. That current communication coherence is

φ(t) means there are as many asmφ(t) words that have already been successfully and thus perma-

nently associated with some meanings, we can see that the number of remaining “fresh” words is

n−mφ(t). Therefore, for a word which is randomly chosen fromn words to be a fresh word, its

probability must be(n−mφ(t))/n = 1− m
n
φ(t). Another term1

m
represents the probability that a

word will be correctly interpreted by the receiver. Recall that there arem meanings, so by random
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guess the probability of hitting the correct meaning is1
m

. �

Corollary 4.7.1. The expected communication coherence att→∞ is:

lim
t→∞

φ(t) = min{1,
n

m
}

Proof. The Eq (4.9) has two fixed points:1 and n
m

. As long asφ(t) < 1 andφ < n
m

, φ(t)

will increase monotonely ast increases. Considering that the initial condition isφ(0) = 0 <

min{1, n
m
}, therefore, we havelimt→∞ φ(t) = min{1, n

m
}. �

Comparison between simulation and analytical results. Fig. 4.10 shows the comparison be-

tween the simulation and analytical results. The parametersetting for obtaining the results is:

(m,n, α, β) = (30, 30, 2, 1). It is the same setting as in the simulation given in Fig. 4.8.In the

figure, the simulation result, shown by the dashed line, was obtained by averaging 100 simulations,

and is the same as Fig. 4.8. The theoretical result, shown by the smooth line, is computed by the

dynamics equation which is given by Eq (4.9).

It turns out that the simulation result has a slightly highereventual communication coherence

than the analytical one (compare the two coherence values atthe 500th iteration). This can be

explained by the comparison on the simulation and analytical results on the convergence condition

(see the end part of Section 4.7.1). There, the simulation result, compared with the analytical

result, shows a lower threshold of the reward rateα which makes the agents in the simulation

context easier to reach higher coherence than that in the analysis context.

How much time is needed for achieving a given level of coherence? Suppose we can solve the

above recursive equation (Eq (4.9)) by a closed form such ascoh = ψ(t), then we can represent

time t as a function of coherencecoh in the form oft = ψ−1(coh). For example, from Fig. 4.10,

we can estimate that to achieve a communication coherence of90%, the agents need around 250

iterations. Unfortunately, since there is no closed form for solving the recursive equation except in

72



100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

C
oh

er
en

ce

 

 

simulation
analytical

Figure 4.10: Comparison between the simulation and analytical dynamics.

very special cases such asm = n = 1, we cannot calculate explicitly the number of iterations that

is needed for a given level of coherence.

4.8 Summary

In this chapter we studied our second linguistic consensus case: coherent communication. The

coherent communication problem concerns how a group of agents can converge to a coherent

communication system in which the word used by a sender to represent some meaning can be

interpreted correctly by a receiver to extract the same meaning.

In terms of the self-organizing framework given in Chapter 2, we designed a reaching coherent

communication model that focuses on the following two components: (1) the 2-player communi-

cation game, and (2) the agent learning model. In the design of the game, we defined the payoff

function as follows: if the sender’s intended meaning can becorrectly conveyed to the receiver,

both agents get a positive payoff; otherwise 0. In the designof agents, we implemented the agent

state as an association matrix between words and meanings. Thus, for a sender to represent an
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intended meaning, he will choose the word with the strongestassociation to the meaning; and for

a receiver to interpret a word, she will choose the meaning with the strongest association to the

word. Furthermore, agents were designed to update their matrices using thesimple reinforcement

learning rule. If the communication between a sender and a receiver is successful, both agents will

increase the association strength between their respective pair of word and meaning by a number

calledreward rate; otherwise decrease the strength by a number calledpunishment rate.

Our work has the following contributions. First, we proposed a minimum model which only

consists of two agents (a sender and a receiver). We found by computer simulations and mathe-

matical analysis that, for a given number of meanings and words, there exists a critical value of

the reward-punishment ratio, above which the agents can converge to a coherent communication

system, below which the agents cannot. We also gave a dynamics equation on how coherence

changes over time when the convergence condition is satisfied. Second, compared with existing

work, ours is the first to give an analytical result on the conditions under which the agents can

reach coherent communication using reinforcement learning.
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Chapter 5

Case 3: Reaching Grammar Consensus

5.1 Introduction

In this chapter we present our study of the third case of linguistic consensus: reaching grammar

consensus. In our grammar consensus problem, each agent hasa grammar which is modeled

as a function by which the agent can generate and recognize grammatical sentences. When two

agents have different grammars, it is possible that the sentences generated by one agent cannot be

recognized by the other agent. The task of the agents, then, is to reach a common grammar so that

the sentences generated by one agent can be recognized by every other agent.

The agents are supposed to be adaptive—they can change theirgrammar based on interactions

they have with each other. So a key question is how can we design adaptive mechanisms for such

agents so that they can converge from their initially different grammars to a common grammar. In

the design of the agents, there are four factors that may affect the convergence:

1. Population size: the number of agents;

2. Grammar complexity: the number of variables in a grammar function;

3. Learning mechanism: how agents change their descriptionword;

4. Interaction structure: who interacts with whom.

This chapter aims at studying how the population size and grammar complexity affect the con-

vergence under a learning mechanism calledperceptron learning rule(Rosenblatt, 1958) and an

all-to-all interaction network. We will construct a computational model using the self-organizing
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language framework presented in Chapter 2. Because of the complexity of grammar adaptation

that prevents from systematic simulation experiments, we will mainly focus on mathematical anal-

ysis to find the conditions under what the agents can convergeto one common grammar.

In the next section we give a brief review of related work. Then we set up a mutual percep-

tron learning model and specify our research questions. Next we concentrate on presenting our

mathematical analysis of the questions. We close with a summary of this chapter.

5.2 Related work

Our grammar consensus problem can be seen as a special case ofthe study of the emergence of

grammar. Various computational models have been proposed to study the emergence of grammar.

A most classical one is Batali’s (1998) computational modelthat is based on simple recurrent

network (SRN). In his model, a group of agents take turns to play the role of speaker (he) and

hearer (she). The speaker converts a vector of meanings intoa sequence of characters of{a, b, c}

using his SRN, and sends the sequence to the hearer. The hearer then converts the sequence to a

meaning vector using her SRN. If the hearer’s interpreted meaning vector is wrong, the hearer will

update the connection weights in her SRN according to the correct meaning vector provided by the

speaker. Batali’s simulation shows that the agents can develop a shared grammar that resembles in

many ways to human languages. However, because of the complexity of the SRN, it is difficult to

prove the convergence of the agents in Batali’s model. (Thisis also true for most of the work on

the emergence of grammar.)

Recently, Cucker, Smale, and Zhou (2004) proposed an elegant abstract model (CSZ model)

in which grammars are modeled as convex functions that take the form off : X 7→ Y , 1 and

the grammar adaptation of an agent is modeled as learning from the data (sentences) generated

from other agents. They have shown some very pleasant analytical properties in their model.

For example, the agents can converge to a shared grammar if one agent can learn (directly or

1In functionf : X 7→ Y , X is a convex subset ofn-dimensional Euclidean spaceℜn, andY is a convex
subset ofℜ.

76



indirectly) from every other agent using Regularization learning algorithm (Neumaier, 1998), and

the convergence speed depends on the eigenvalues of the connection matrix (network) among the

agents.

Like the CSZ model, our work on reaching grammar consensus isalso along the direction of

building abstract models with a focus on modeling the grammar adaptation of an agent as learning

from sentences generated from other agents. However, different from the CSZ model, we focus

on building a grammar consensus model that has the followingtwo important properties: (1) the

learning algorithm is online learning (rather than learning from the scratch as in the CSZ model);

(2) the grammar can be used by an agent to generate or recognize grammatical sentences. As we

will see later, our mutual perceptron learning model meets these two properties.

5.3 Modeling grammars and sentences

The objective of this chapter is to study how agents can reacha common grammar. Towards this

end, first we have to clarify what we mean by grammar (and sentence). In formal language theory, a

sentence is defined as a string of symbols, a language is a set of sentences, and a grammar is a finite

list of rules that define a language. For example, the set of all sentences over the binary alphabet

{0, 1} is {0, 1, 00, 01, 10, 11, 000, 001, · · ·}. A list of four rewriting rules{S → 0S; S →

A; A → 1A; A → ǫ} whereǫ is a null element, is a grammar that defines a regular language

L = 0m1n. Whether a sentence belongs to a language or not depends on whether the sentence

can be generated by the grammar of the language or recognizedby its corresponding grammar

recognition machine (Lewis and Papadimitriou, 1997). For example, the above grammar can tell

us that sentence “001” is grammatical while sentence “0010”is not.

In a general sense, we can think of grammars as functions thattake the form off : X 7→ {0, 1},

wheref indicates a grammar,X indicates the space of all possible sentences, and 1 or 0 means

whether a sentence is grammatical or not.

In this thesis, a sentence will be modeled as a data point, called instancehenceforth, in an n-
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dimensional Boolean space{0, 1}n, and a grammar will be modeled as a Boolean (classification)

function which can classify an instance as grammatical (positive) or not (negative). For example,

for x = (x1, · · · , x6) ∈ {0, 1}
6, if a classification functionf(x) is defined as:

f(x1, · · · , x6) = 1 if and only if x2 = 1 & x4 = 0,

thenx = (1, 1, 1, 0, 0, 0) is a positive instance whilex = (1, 1, 1, 1, 0, 0) is not. Obviously, this

treatment is very different from the traditional formal language theory.

Though not realistic, our treatment has several advantages. First, it conforms to a fundamental

property of grammar: grammar can be used to generate grammatical sentences and can also be

acquired or adapted by learning from sentences. Similarly,a classification function can be used

to generate positive (or negative) instances and can also beacquired or adapted by learning from

instances.

Second, modeling grammars as Boolean functions would bringup a theoretical possibility

of using the principles and parameters (P&P) framework (Chomsky, 1981)—a framework that

is regarded by many linguists as the dominant form of mainstream linguistics—to interpret the

spontaneous emergence of human languages such as the Nicaragua sign language (Senghas et al.,

2004). In the principles and parameters framework, the set of grammatical hypothesis is generated

by k binary parameters. At any time, a learner holds a particularhypothesis (or grammar) given

by a particular setting of these parameters. The learner does not change his grammar as long as the

received sentences can be recognized by the grammar. If a sentence arrives that is not recognizable,

then the learner might change some of the parameters (Matsenand Nowak, 2004).
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5.4 Reaching grammar consensus using mutual perceptron

learning

In terms of the game-based self-organizing language framework given in Chapter 2, here we

present a grammar consensus model that focuses on the following two components: (1) a 2-player

grammar game, and (2) an agent learning model calledmutual perceptron learningmodel.

Game model. The 2-player grammar game is designed as a sequential language game which is

illustrated by Fig. 5.1. From the figure, we can see that thereare three players: nature, speaker

(he), and hearer (she). The player nature is added here for modeling that the speaker has some

private information that is unknown or uncertain to the hearer. (See Section 2.2.3 of Chapter 2

for details.) In our case of grammar game, the private information of the speaker is the class of

a sentence. The speaker knows the class, but the hearer only knows the sentence produced by

the speaker, and her job is to predict the class of the sentence. (In the figure, the left dashed line

illustrates that the hearer cannot tell which path,x1 or x2, the sentencey1 comes from.) Nature

moves first and determines the class of a sentence to be produced by the speaker. There are two

classes: grammatical (G) and ungrammatical (U), and naturedetermines a class according to the

probability of p(G) or p(U) = 1 − p(G). The game tree in Fig. 5.1 showsp(G) = 0.9 and

p(U) = 0.1. When the hearer predicts correctly the class, both agents will receive a positive

payoff of 1, otherwise 0.

A general agent model. Here we present a general agent model, and later we will present the

specific mutual perceptron learning model. In a general agent model, every agent has three compo-

nents: a stateb, a decision functionf , and a state update functiong. We suppose that all speakers

have the same form of decision and state update functions, and all hearers have the same form

of functions too. (As we will show in the specific model, we suppose that an agent use a unified

function for the role of speaker and hearer.)
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Figure 5.2: Agent model in a grammar game.

Fig. 5.2 shows how these components work together in a grammar game played by a speakers

and a hearerr. In a grammar game, nature moves first, deciding the classc, G or U, of a sentence

that the speaker will produce, according to probabilityp(c). When classc is given, the speaker

will call his decision functionfs to generate a sentencex that has the classc, based on its statebs,

in the form of

x = fs(c, bs).

The hearer, after receiving the sentencex, will call her decision functionfr to predict a clasŝc for
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sentencex, based on

ĉ = fr(x, br).

After the hearer predicts the class of the sentence, both agents receive a payoff that is given by

πi = πi(c, x, ĉ).

And then, both agents update their state frombi to b′i based on the received payoff. For the

speaker, its update functiongs is used to update its current statebs to a new oneb′s based on its

current sentence productionc 7→ x and the received payoffπs, in the form of

b′s = gs(bs, c, x, πs).

For the hearer, its update functiongr is used to update its current statebr to a new oneb′r based on

its current predictionx 7→ ĉ and the received payoffπr, in the form of

b′r = gr(br, ĉ, x, πr).

The mutual perceptron learning model. As we stated in Section 5.3, a sentence is modeled

as an instance in an n-dimensional Boolean spaceX = {0, 1}n, and a grammar is modeled as

a classification function which can classify an instance as 1or -1 (i.e., classify a sentence as

grammatical or not).

We use linear threshold function to implement the decision function of an agent (Duda et al.,

2000). A linear threshold function is a function that uses a linear combination of the components

of its input instancesx ∈ X for making its decision. It can be written as

y = f(w,x) = Θ(w · x) = Θ(
∑

i

wixi),

wherew = (w1, · · · , wn) ∈ ℜ
n represents the state of the agent, andΘ(z) is a threshold function
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that outputs 1 ifz is above some threshold, otherwise -1.

This definition of decision function is straightforward forhearer, who just needs to call the

function to output whether a received instancex is 1 or -1. But for the speaker, it is a little tricky.

If he wants to produce a positive (or negative) instance, theway to implement it is to repeatedly

sample an instancex from the instance spaceX until the instance satisfiesf(w,x) = 1 (or -1),

wherew is the hearer’s state.

The state update function is as follows. If both agents get a positive payoff, they will keep

their current state. Otherwise, they will update their statew according to the following perceptron

learning rule:

w = w − λyx,

whereλ > 0 is a parameter calledlearning rate. In addition, for the hearer,y is the predicted class

value (1 or -1), and for the speaker,y is the intended class of the sentencex. Note that in the case

of zero payoff, the speaker and hearer’s class value are opposite (i.e.,yspeaker = −yhearer).

To distinguish our perceptron learning from the traditional one (Rosenblatt, 1958), which in-

volves only one agent (learner) updating its function to fit to another agent (teacher), we call ours

mutual perceptron learning, because both speaker and hearer can update their functions.

More about perceptron learning. To be prepared for the analysis of our model in the next

section, we introduce some concepts here about the traditional, basic perceptron learning model in

which alearner learns from ateacher.

The basic perceptron algorithm was introduced first by Rosenblatt (1958) to solve the linear

threshold learning problem. A perceptron takes a vector of real-valued inputs2, calculates a linear

combination of these inputs, and outputs a1 if the result is greater than some threshold and−1

otherwise. More precisely, given an input instancex = (x1, ..., xn), the outputf(x) computed by

2The instance space{0, 1}n is a special case ofℜn.
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the perceptron is:

f(x) =











+1 if
∑n

i=1wixi > θ

−1 otherwise
(5.1)

wherew = (w1, ..., wn) ∈ ℜn is the current weight vector maintained by the perceptron. For

convenience, usually the thresholdθ is set to0. The reason is that we can add an additional

constant inputx0 = 1 with a weight variablew0.

For brevity, we will sometimes write the perceptron function as:

f(x) = sgn(w · x)

where

sgn(y) =











+1 if y > 0

−1 otherwise

Note that each weight vector defines a perceptron function ordecision function. Learning a

perceptron involves choosing values for the weight vectorw = (w1, ..., wn). Initially the algorithm

starts with a weight vectorw = (0, ..., 0). Upon receiving an instancex = (x1, ..., xn), the learner

predicts the label ofx to bef(x).

If the predicted label is correct, then there are no changes in the weight vector. However, if the

prediction is wrong, the weight vector of the learner is updated using theperceptron learning rule:

w← w− λf(x) · x (5.2)

whereλ is the learning rate.

The perceptron Convergence Theorem was proven in (Novikoff, 1962; Minsky 1969); we

sketch it here because we draw upon it in later proofs of mutual perceptron convergence.

Theorem 5.4.1. Perceptron Convergence TheoremIf all instances are linearly separable, then

a learner which uses the perceptron algorithm will only makea finite number of mistakes. That is,
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the learning procedure converges.

Proof. The basic idea of the proof is to show that on each mistake madeby the learner, the distance

between the currently maintained weight vector (of the function f ) and the target weight vector (of

the target perceptron functionf ∗) becomes smaller after the update using the perceptron learning

rule. �

Coherence. In Section 2.5 of Chapter 2, we stated that: forN agents, suppose their states are

b1, · · · , bN , then a general definition of population coherence can be given by

φ(b1, · · · , bN) =
1

N(N − 1)

∑

i6=j

sim(bi, bj)

where0 ≤ sim(bi, bj) ≤ 1 is the similarity between the states of two agentsi and j and its

definition depends on contexts.

In the context of the mutual perceptron learning model, the definition of the similarity is given

as follows. Since the state of an agent is a weight vectorw, we can define the similarity between

two statesw1 andw2 as follows:

sim(w1,w2) = cos(w1,w2) =
w1 ·w2

|w1||w2|
,

where|w| denotes the length of vectorw and is given by|w| =
√

∑n

k=1w
2
k.

Then the population coherence overN agents can be given by

φ(w1, · · · ,wN) =
2

N(N − 1)

∑

1≤i<j≤N

cos(wi,wj). (5.3)

A computational model of reaching grammar consensus. Fig. 5.3 gives the whole compu-

tational model of reaching grammar consensus using the mutual perceptron learning rule. This

model is based on the general model that presented in Fig. 2.13 of Section 2.6 of Chapter 2. In the

model, the dimensions of the instance space,n, is the number of grammar parameters in terms of

84



the P&P framework (see Section 5.3). The analysis and simulation conducted in later sections will

be based on this model.

Settings
population:N agents
language complexity:n dimensions of instance space
agent state: each agenti has a weight vectorwi

learning parameter: learning rateλ

Initialization
each agent’s weight vector is randomized

Iterations (each iteration includesN(N − 1) interactions (see Section 2.4 for details).

During each interaction
1. a classc is chosen from{U,G} with probabilityp(c)
2. the speaker generates a sentencex whose class isc
3. the hearer predicts the class of the sentencex asĉ
4. if the predicted clasŝc is wrong (i.e., both agents receive a payoff of 0)

each agent updates its state based on perceptron learning rule

After each iteration, namelyN(N − 1) interactions, take a snapshot of the population coherenceφ(t)

Figure 5.3: The mutual perceptron learning model.

5.5 Specific research questions

The traditional perceptron learning model, which involvesonly one agent (learner) updating its

function to fit to another fixed agent (teacher), is the first learning algorithm that was shown to

converge under some conditions (Novikoff, 1962; Minsky 1969; Vapnik, 1995). However, we

have no knowledge about the convergence property of mutual perceptron learning because this is

a new learning model.

We ask the following questions:

1. Will the agents in our proposed mutual perceptron learning model be able to converge to

some common grammar?

2. What are the conditions that can lead the agents to reach grammar consensus? Concretely

speaking, for a given dimensions of instance space,n, a given number of agents,N , and
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learning rateλ, what kind of settings of these parameters will make the agents reach grammar

consensus?

Research methods. Unlike in the cases of the previous two chapters where we did computer

simulation first and then explored the problem by mathematical analysis, here we will mainly focus

on using mathematical analysis to study the above questionsand then use computer simulation to

partly test the analytical result. (See Section 5.7 for the detailed reasons.)

5.6 Convergence analysis

To conform to the terms used in traditional perceptron learning, in this section of analysis, we

will use “teacher” to stand for “speaker”, “learner” for “hearer”, “mistake” for “nonpositive pay-

off”, “instance” for “sentence”, “classification function” for “grammar”, and “label” for “class of

sentence”.

The purpose of this section is to show that under some conditions the perceptron learning

model will converge to a common classification function. Thebasic idea is as follows. If the

learner makes a mistake on the instance given by the teacher,we want to show that the “distance”

between the weight vectors of the two agents will become smaller after weight updating using

perceptron learning rule.

However, if the number of agents is greater than two, we also need to consider the new “dis-

tances” between functions of the learner/teacher agent andother agents in the population—we

want the entire population to converge. We show that under some conditions, thesum of the new

distancescan be less or equal than the old distance, in which case the algorithm is guaranteed to

globally converge.

Before going ahead to prove the convergence, we need some assumptions, some of which are

also used in the traditional perceptron convergence theorem proof (Thm. 5.4.1).

Assumption 5.6.1.For any instancex, there exists a positive constantκ such that‖x‖ ≤ κ.
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Assumption 5.6.2.For any weight vectorw maintained by any agent, suppose for any instance

and label pair(x, y) generated according toy = sgn(w ·x), there exists a positive constantγ such

thatyw · x ≥ γ > 0.

To make the proof readable, we will first introduce some definitions as follows.

Definition 5.6.1. Given two agents with weight vectorswA andwB, the distance between them is

defined as:

d(wA,wB) = ‖wA −wB‖
2

where‖ · ‖ is the 2-norm (i.e., the Euclidean norm).

Definition 5.6.2. At time stept, the weight vectors of two agentsA andB are wA andwB. At

time stept+ 1, the weight vectors becomew′
A

andw
′
B
. The variance of distance between the two

agents from timet to t+ 1 is defined as:

∆(wA,wB) = d(w′
A
,w′

B
)− d(wA,wB) = ∆

Definition 5.6.3. Distance reduction is defined as−∆ if ∆ < 0.

Definition 5.6.4. Distance introduction is defined as∆ if ∆ > 0.

Lemma 5.6.1.Suppose on a round of the game, a learnerL makes a mistake on the instancex

given by a teacherT , and both agents use the perceptron learning rule to update their weight

vectorswL andwT . Then there exists a positive constantδ = γ2

κ2 such that:

∆(wT ,wL) ≤ −δ. (5.4)

when the learning rateλ = γ

2κ2 .

Proof. When the learnerL makes a wrong prediction for the label of the instancex sent by the

teacherT , it will modify its weight vector fromwL to w
′
L
. According to the definition of label
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generation and prediction, we have:











y = sgn(wT · x)

−y = sgn(wL · x)
(5.5)

Then we have the following inequalities











y ·wT · x > 0

y ·wL · x < 0
(5.6)

With the above Assumptions 5.6.1 and 5.6.2, we have

∆(wT ,wL) = d(w
′

T
,w

′

L
)− d(wT ,wL)

= ‖(wT − λyx)− (wL + λyx)‖2 − ‖wT −wL‖
2

= −4λywTx + 4λywLx + 4λ2‖x‖2

≤ −4λ(γ − λκ2)

When the learning rateλ = γ

2κ2 , we have

∆(wT ,wL) ≤ −
γ2

κ2
.

Let δ = γ2

κ2 , then∆(wT ,wL) ≤ −δ holds. �

The above lemma shows that two agents can move their functions closer to each other through

adaptation after making mistakes. However, for the situation of more than two agents, it is possible

that moving one agent’s function toward that of another agent will cause it to move farther away

from the function of a third agent. Fig. 5.4 shows a very simple illustration.

We want to show that under some conditions, the total distance reduction(see Definition 5.6.3)

is larger than the total distanceintroduction(see Definition 5.6.4) after updating the weight vectors
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Figure 5.4: An illustration of the complexity of mutual perceptron learning. AgentB moves toB′

which is closer toC, but the distance betweenB′ andA becomes larger than before.

of the two agents (teacher and learner) in a game round. The following lemma says that when the

learning rate is set to the positive constant described in Lemma 5.6.1, then thereductionin the

distance between the learner/teacher and other agents’ functions has a lower bound—there will

be at least that much reduction in distance. Thus the point isthat with such a learning rate, it is

possible (but not yet certain) that the functions may converge.

Lemma 5.6.2. Given an instancex, and two agentsA andB with weight vectorwA and wB.

SupposeA’s label yA onx is different fromB’s label yB, andA changes its weight vectorwA ←

wA + yBwAx, whileB keeps its weight vectorwB unchanged. Let learning rateλ = γ

2κ2 , then

there exists a constant∆r = 3γ2/4κ2 > 0 such that

∆(wA,wB) ≤ −∆r.

∆r is called the lower bound of distance reduction.

Proof.

∆(wA,wB) = ‖(wA + λyBx)−wB‖
2 − ‖wA −wB‖

2

= 2λyBwAx− 2λyBwBx + λ2‖x‖2

≤ −2λγ + λ2κ2

= −3γ2/4κ2 = −∆r (5.7)

�
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Assumption 5.6.3.For any weight vectorw maintained by any agent, suppose for any instance

and label pair(x, y) generated according toy = sgn(w · x), there exists a positive constantβ

such thatyw · x ≤ β.

Next, Lemma 5.6.3 says that the distance introduced betweenthe functions of the learner-

teacher pair and other agents has an upper bound.

Lemma 5.6.3. Given an instancex, and two agentsA andB with weight vectorwA and wB.

SupposeA’s label yA on x is the same asB’s label yB, andA changes its weight vectorwA ←

wA − yBwAx (note, this is a mis-adaptation), whileB keeps its weight vectorwB unchanged. Let

learning rateλ = γ

2κ2 , then there exists a constant∆i = γ

κ2 (β −
3γ

4
) > 0 such that

∆(wA,wB) ≤ ∆i.

∆i is called the upper bound of distance introduction.

Proof. It is obvious that∆i = γ

κ2 (β −
3γ

4
) > 0 from the factβ ≥ γ.

∆(wA,wB) = ‖(wA − λyBx)−wB‖
2 − ‖wA −wB‖

2

= 2λyBwAx− 2λyBwBx + λ2‖x‖2

≤ 2λβ − 2λγ + λ2κ2

=
γ

κ2
(β −

3γ

4
) = ∆i (5.8)

�

Now we are ready to give the proof of the convergence of the perceptron learning model.

Theorem 5.6.4. If β

γ
≤ 3

2
holds, then a population of agents which use the perceptron learning

rule can converge to a shared function after making a finite number of mistakes.

We call β

γ
≤ 3

2
as theconvergence condition.
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Proof. The idea is simple. After a learner makes a mistake, we hope that by using our mutual

perceptron learning rule for each weight vector update, thesum of new inter-function distances

among all agents is smaller than before. Suppose there areN agents. Among theseN agents,

there are two agents, learner and teacher respectively, whose corresponding weight vectors are

wL,wT . The weight vectors of other agents arew1, ...,wN−2. (To be consistent, letwL = wN−1,

andwT = wN .) Then the sum of distances can be written as:

∑N

i,j=1 d(wi,wj) = d(wT ,wL) +
∑

N−2

i,j=1 d(wi,wj)

+
∑N−2

i=1 d(wT ,wi) +
∑N−2

i=1 d(wL,wi)
(5.9)

And the sum of new distances after the learning is written as:

∑N

i,j=1 d
′

(wi,wj) = d
′

(wT ,wL) +
∑

N−2

i,j=1 d
′

(wi,wj)

+
∑

N−2

i=1 d
′

(wT ,wi) +
∑

N−2

i=1 d
′

(wL,wi)
(5.10)

whered
′

(wi,wj) is the brief notation ofd(w′
i,w

′
j).

Now let us compute the new total distances. Letx be the instance on which the learner made a

mistake. Denote byyL the label computed by the learner, and byyT the label from the teacher. On

the instancex, otherN−2 agents also have their own labels, denoted byy1, ..., yN−2. Among these

N−2 agents, suppose there arep agents whose labels are the same asyT , andq agents whose labels

are the same asyL, wherep+ q = N − 2. Without loss of generality, supposey1 = · · · = yp = yT

andyp+1 = · · · = yp+q = yL.

So, according to the Lemma 5.6.2 and 5.6.3, the total distance variance between the teacher’s

function and those of the other agents (excluding the learner) is at most−p∆r + q∆i. This is

because we have

∑

N−2

i=1 d
′

(wT ,wi) =
∑p

i=1 d
′

(wT , vwi) +
∑

N−2

i=p+1 d
′

(wT ,wi)

≤
∑p

i=1 d(wT ,wi)− p ·∆r

+
∑

N−2

i=p+1 d(wT ,wi) + q ·∆i
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and similarly, the total distance variance between the learner’s function and those of the other

agents (excluding the teacher) also is at mostp∆i − q∆r. Again, this is because we have:

∑N−2
i=1 d

′

(wL,wi) =
∑p

i=1 d
′

(wL,wi) +
∑

N−2

i=p+1 d
′

(wL,wi)

≤
∑p

i=1 d(wL,wi) + p ·∆i

+
∑

N−2

i=p+1 d(wL,wi)− q ·∆r

Putting these two inequalities together, plus

N−2
∑

i,j=1

d
′

(wi,wj) =

N−2
∑

i,j=1

d(wi,wj)

and Eq (5.4):

d
′

(wT ,wL) ≤ d(wT ,wL)− δ,

we can express the total distance between all agents as follows (following Eqs (5.9) and (5.10) ):

N
∑

i,j=1

d
′

(wi,wj) ≤
N

∑

i,j=1

d(wi,wj) + (p+ q) · (∆i −∆r)− δ

If the convergence conditionβ
γ
≤ 3

2
holds, then the amount ofreductionin distance is equal or

greater than theintroductionin distance, i.e., the difference is less than or equal to zero:

∆i −∆r = γ

κ2 (β −
3γ

4
)− 3γ2

4κ2

= γ

κ2 (β −
3
2
γ)

≤ 0

Therefore, the sum of new inter-function distances among all agentsis smaller than before:

N
∑

i,j=1

d
′

(wi,wj) ≤

N
∑

i,j=1

d(wi,wj)− δ
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whereδ = γ2

κ2 .

Suppose the initial total distances among all agents is∆σ, then the algorithm will converge after

making at mostκ
2

γ2 ∆σ mistakes. �

Discussion of the convergence condition. What is the interpretation ofβ
γ
≤ 3

2
?

We want to show that there is a relationship between the quality of the function instance pro-

duced by the teacher, and the possibility of convergence. From Assumptions 5.6.2 and 5.6.3 we

know that,

γ = min
y,w,x

‖ywx‖ (5.11)

β = max
y,w,x

‖ywx‖ (5.12)

Without loss of generality, suppose all instances have unitlength. So, rewriting, we have:

‖ywx‖ = |y| · ‖w‖ · ‖x‖ · |cos(w,x)| = ‖w‖ · |cos(w,x)|

Then, the ratio betweenγ andβ can be rewritten as:

γ

β
=

min
w,x ‖w‖ | cos(w,x)|

max
w,x ‖w‖ | cos(w,x)|

Suppose

max | cos(w,x)| = 1

and let

max ‖w‖ = ρ min ‖w‖

whereρ ≥ 1.

Now we have

γ/β =
1

ρ
min
w,x
| cos(w,x)|
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Given all above assumptions,β

γ
≤ 3

2
is equivalent to:

min
w,x
| cos(w,x)| ≥

2

3
ρ

where1 ≤ ρ ≤ 3
2
.

This analysis means that a sufficient condition for convergence is that the instance generated

by a teacher falls within a certain distance region within the space of all possible instances. This

idea is expressed visually in Fig. 5.5.

Themostrepresentative instance, represented by the dark vector inFig. 5.5, occurs whenx =

ηw, whereη ∈ ℜ andη 6= 0, that is, when the instance coincides with the weight vectoror negative

weight vector exactly.

a1

a2

mutual convergence
instance region

teacher’s 
weight vector

Figure 5.5: Region of instances satisfying the mutual convergence condition (ρ = 1.06)

The shaded area of Fig. 5.5 shows the region of instances that, when generated by the teacher,

will satisfy the mutual convergence condition givenρ = 3
√

2
4
≈ 1.06. Happily, this region occupies

half of the entire instance space.

5.7 Simulations

Above we have given the convergence analysis to the mutual perceptron learning model. In this

section we want to test by computer simulation if the agents using the mutual perceptron learning
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rule can actually converge to a common function. To this end,we design two experiments. In the

first experiment, like the experiments we did in previous chapters, we suppose the initial states

(weight vectors) of the agents are randomized. In the secondexperiment, we set the initial weight

vectors of the agents to be orthogonal so that the populationcoherence could be 0 at the beginning

of the self-organization.

The settings for both experiments are as follows. There are 10 agents, the instance space is

{0, 1}10, and the learning rate isλ = 0.1. In each iteration, every agent has a chance to interact

with every other agent twice, once as speaker (teacher) and once as hearer (learner). Together, there

are 90 games in an iteration. After each iteration, population coherence is calculated according to

Eq (5.3) and is plotted. Fig. 5.6 shows the result of the first experiment with random initial weight

vectors, and Fig. 5.6 shows the result of the second experiment with orthogonal initial weight

vectors. An example of orthogonal vectors is

(1, 0, 0, · · · , 0)

(0, 1, 0, · · · , 0)

· · ·

(0, 0, · · · , 0, 1)

In both experiments, the convergence conditionβ/γ ≤ 3/2 is satisfied. The values ofγ andβ

are obtained during the simulation according to their definitions in Assumptions 5.6.2 and 5.6.3.

From the figures, we can see that the agents can converge to a common weight vector (i.e., linear

threshold function) with high coherence. We can also see that there is a difference between the two

experiments: the one with random initial states has much higher coherence at the beginning, and

the experiment with orthogonal initial states has a zero coherence. This difference can be easily

interpreted according to the definition of coherence given in Eq (5.3).

So far we can only show by simulation that in some cases when the agents converge to a

common classification function, the analytical convergence condition (β/γ ≤ 3/2) is satisfied. We
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(a) Random initial weight vectors.
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(b) Orthogonal initial weight vectors.

Figure 5.6: Simulation on the convergence of 10 agents.

have not figured out how to test whether the convergence condition holds true or not by conducting

systematic simulations on the whole space ofβ/γ. This is because the values ofβ andγ, according

to their definitions in Assumptions 5.6.2 and 5.6.3, depend on the initial weights and the instances

generated during the self-organization. Recall that in theprevious two chapters, we did not have

this problem because the learning behavior in those models are much simpler than that in the

mutual perceptron learning model in this chapter.

5.8 Summary

In this chapter we studied our third linguistic consensus case: grammar consensus. The grammar

consensus problem concerns how a group of agents can converge to a common grammar by which

the sentences generated by one agent using his grammar can berecognized by another agent using

her grammar.

In terms of the game-based self-organizing language framework given in Chapter 2, we de-

signed a grammar consensus model that focuses on the following two components: (1) the 2-player

grammar game, and (2) the agent learning model. In the designof the grammar game, grammar

is modeled as a Boolean classification function and sentences are modeled as instances, and the

payoff function was defined as follows: if the hearer can correctly predict the class of the instance

produced by the speaker, both agents receive a positive payoff; otherwise 0. In the design of agents,
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perceptron learning algorithm was used.

Our work has the following contributions. First, we showed by mathematical analysis that

agents in our model can converge to a common grammar (i.e., a common classification function)

under some conditions, and we gave those conditions. Second, compared with existing work on

the grammar consensus problem (which has mainly been done within the observational learning

paradigm), ours is the first that uses reinforcement learning as the learning mechanism of agents.
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Chapter 6

Conclusions

6.1 Summary

The primary objective of this study has been to design and analyze mechanisms that allow a group

of agents to converge to a common language from a set of initially different languages. Specifically,

our research aimed at studying how agents can converge to a common language using reinforce-

ment learning, a learning mechanism that only requires a minimum of feedback information.

We presented a game-based self-organizing language framework into which reinforcement

learning can be naturally fit. Using the framework, we studied three cases of reaching linguistic

consensus: word consensus, coherent communication, and grammar consensus. The word consen-

sus problem concerns how agents can converge to a common wordout of many different words

to represent a single shared meaning. The coherent communication problem concerns how agents

can converge to a communication system in which the word usedby a sender to represent some

meaning can be interpreted correctly by a receiver to extract the same meaning. The grammar con-

sensus problem concerns how agents can converge to a common grammar, so that the sentences

generated by one agent using his grammar can be recognized byanother agent using her grammar.

In the case study of word consensus, we proposed a win-stay lose-shift (WSLS) model that

was based on the original social convention model introduced by Shoham and Tennenholtz (1997)

and the WSLS learning rule (Matsen and Nowak, 2004). The mainresults obtained from computer

simulation and mathematical analysis include the following:

1. Agents in the model can converge to a common word when theiraspiration level—basically
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the ratio of successes to uses in the history of word agreement—is set to some appropriate

values (see Section 3.5);

2. We obtained an analytical result on the convergence conditions, from which we can tell for

a given number of agents and words how high the aspiration level should be in order for the

agents to reach word consensus (see Section 3.6.2);

3. We obtained a dynamics equation that captures how coherence changes over time when the

convergence condition is satisfied. From this equation, we can tell how much time is needed

to reach a given level of coherence (see Section 3.6.3).

In the case study of coherent communication, we proposed a minimum reinforcement learning

model which consists of two agents (a sender and a receiver).The main results obtained from

computer simulation and mathematical analysis include:

1. Unlike existing work on coherent communication which showed that the learning rates (i.e.,

reward and punishment rates) do not have critical effects onagents converging to a shared

communication system, we found that there exists a criticalreward-punishment ratio above

which the agents can converge to a coherent communication system, below which the agents

cannot (see Section 4.6);

2. We obtained an approximate analytical result on the convergence condition that tells how

the critical reward-punishment ratio depends on the numberof words and the number of

meanings in a communication or vocabulary system (see Section 4.7.1);

3. We also obtained a dynamics equation that captures how communication coherence changes

over time when the convergence condition is satisfied. From this equation, we can tell how

much time is needed to reach a given level of communication coherence (see Section 4.7.2).

In the case study of grammar consensus, we have proposed a mutual perceptron learning model

in which grammars are modeled as Boolean functions that can be used to classify or recognize

Boolean instances (sentences). We have presented the following main results:
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1. We obtained an analytical result on the convergence condition, which implies that a speaker

should generate representative instances, under which theagents can converge to a common

grammar using perceptron learning rule. (see Section 5.6);

2. We showed by computer simulation that the agents can converge to a common grammar

when the convergence condition is satisfied (see Section 5.7).

6.2 Limitations and future research

First, in all of our models, we used an interaction model under which the likelihood on any agent

interacting with any other agent is equal. This means that the underlying interaction network

is a completely connected graph. However, it is more realistic to assume some restrictions in the

interaction pattern an agent may have. For example, we couldassume that the interaction networks

are regular graphs, or complex networks such as small-worldnetworks (Watts and Strogatz, 1998)

or scale-free networks (Barabasi and Albert, 1999). The newinteraction patterns of agents under

these networks will provide a rich source for future work. Will the agents constrained by these

networks be able to converge or not? Will the convergence speed be faster or not? Many interesting

questions await exploration along this dimension.

Second, the models studied in this thesis are very abstract.Though of theoretical value, they

are far from realistic. To overcome this limitation, one future direction would be to use data from

real human-based language games such as the ESP image labeling game, collaborative tagging

systems, or historical linguistics. For example, it would be interesting to build a straightforward

model of the real ESP game and then analyze its dynamics. We could also imagine other kinds of

realistic language games such as games that allow more than two players to play. Thinking along

the direction of realistic language games would open up manychances for the future research.

Third, the studies presented here assume that agents stay with their converged language once

the agents reach a consensus. However, in reality, agents’ environments are in a flux of constant

change; for example, new agents may be introduced into the population, the meaning distribu-
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tion may change to reflect newly-important topics for agent conversations, etc. All of these sit-

uations imply there has to be in the long term a way for agents to innovate, de-converging and

re-converging on new languages. We must explore the extent to which our current models do cap-

ture these dynamics, find ways to better characterize this sort of dynamics, and explore additional

approaches to modeling continuous agent-environment-language relationships.

Last, we believe the study of self-organizing languages will open up many new possibilities

of developing novel approaches to information organization and access, as already seen by the

successful applications of social tagging systems, the ESPgame, and other realms of “semiotic

dynamics” (Staab et al., 2002). The theoretical analysis oflexicon and grammar consensus in

this thesis represents only a small step in exploring the full potential of self-organizing language

systems.
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