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ABSTRACT
To create multi-agent systems that are both adaptive and
open, agents must collectively learn to generate and adapt
their own concepts, ontologies, interpretations, and even
languages actively in an online fashion. A central issue is
the potential lack of any pre-existing concept to be learned;
instead, agents may need to collectively design a concept
that is evolving as they exchange information. This pa-
per presents a framework for mutual online concept learning
(MOCL) in a shared world. MOCL extends classical online
concept learning from single-agent to multi-agent settings.
Based on the Perceptron algorithm, we present a specific
MOCL algorithm, called the mutual perceptron convergence
algorithm, which can converge within a finite number of mis-
takes under some conditions. Analysis of the convergence
conditions shows that the possibility of convergence depends
on the quality of the instances they produce. Finally, we
point out applications of MOCL and the convergence algo-
rithm to the formation of adaptive ontological and linguistic
knowledge such as dynamically generated shared vocabulary
and grammar structures.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems, Languages and structures, Coherence and coordi-
nation; I.2.6 [Artificial Intelligence]: Learning—Concept
learning

Keywords
Online concept learning, Mutual learning, Perceptron algo-
rithm, Language evolution, Ontology evolution

1. INTRODUCTION
The development of foundational principles for multi-agent

systems has progressed significantly over the past twenty
to thirty years. But one area that has fallen far short of
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the general advance is the topic of multi-agent concept for-
mation, e.g., as a basis for communication[8, 16, 22]. The
standard approach to communication in the multi-agent sys-
tems community is to establish a) shared protocol standards
that define and fix the syntax (and some of the semantics)
of communications, and b) shared representational ontolo-
gies that define and fix the communicative lexicon (and its
semantics). KQML[11] and KIF[7] are such examples. Un-
fortunately, the effectiveness of both of these foundations is
questionable:

1. Under this model, the elements of language (e.g., con-
cepts, lexicon, syntax, semantics) must be defined and shared
before use. This means that the speed and scope of agent
adaptability is constrained to the adaptibility of the hu-
man groups establishing the standards, and the human, so-
ciotechnical standards propagation mechanisms. Also, these
elements by definition cannot be directly responsive to sit-
uations in which language is used.

2. No existing standard ontology or classification scheme
has ever actually proven to be stable in practice. New partic-
ipants, interests, and representational elements emerge and
must be accommodated in any ontology over time [3].

3. Even if shared concepts, ontologies, and linguistic el-
ements were fixed and stable as representations, there is
no way to guarantee stable interpretations of those repre-
sentations in a fundamentally distributed context. Any in-
terpretation depends on some interpretive procedure, which
itself must be based on some standard to be shared, and the
problem recurses for sharing and interpreting the interpre-
tive procedure [5, 6].

4. Neither completely stable nor completely volatile on-
tological and linguistic structures are useful in any ultimate
sense—a balance must be struck between the reliability of a
conceptual or linguistic structure for joint action, and abil-
ity of such a structure to adapt to new representational and
communicative needs. The degree of balance itself must be
conditioned situationally.

Thus it’s imperative to base multi-agent concept forma-
tion and communications on dynamic, distributed founda-
tions. But which foundations? We need theories of the
forms and limits of conceptual dynamics at the community
level (and we are beginning to have these), and we also need
specific implementation techniques that prescribe how to
program individual agents so that their adaptive concept
formation decisions lead to anticipatable global dynamics.
Models of global concept dynamics need to be augmented
by strong theories of individual and mutual agent concept
formation that exhibit globally desirable properties. Ulti-



mately, we are interested in formal and practical bases for
programmable theories of dynamic linguistic behavior and
ontology evolution in both individual agents and agent col-
lections.

For these reasons, we are investigating some new machine
learning techniques called mutual online concept learning
(MOCL), that apply to multi-agent situations. In conven-
tional machine learning, one agent serves as a learner and
another as a teacher who provides instances. The learner’s
goal is to adapt to the teacher’s concept, which is stable.
In MOCL, no agent has a priveleged view, and every agent
takes on both roles in an online fashion. There is no fixed
global (“teacher’s”) referent for any concept since 1) every
agent is both teacher and learner, 2) when teaching, each
agent takes its own current version of a concept as the model
of an instance to be transferred, and 3) when learning, each
agent tries to adapt to its teacher’s concept (so for n agents
there are as many as n concepts being taught and learned).
Since there is no obvious conceptual fixed point, the natural
questions under this scenario include whether, when, how,
and why multiple concepts can (fail to) converge to common
concepts under different parameters. These are the primary
questions investigated in this paper.

2. FRAMEWORK OF MUTUAL ONLINE
CONCEPT LEARNING
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Figure 1: Framework of Mutual Online Concept
Learning

A mutual online concept learning system consists of a set
of agents and a communication channel used by agents to
exchange information (see Fig. 1). In this paper we sup-
pose the communication channel is perfect without noise.
For one agent, the framework includes five elements: con-
cept, instances, instance producing mechanism, instance in-
trepreting mechanism, and concept adaption mechanism ( or
online concept learning).

We explain the five elements as follows:

Concept
In broad sense, a concept can be thought of as a mapping

from inputs to outputs. When treated as a function the out-
put is deterministic for a given input. When treated as a
mapping with associated probability distribution, the out-
put is probabilistic. The functional (deterministic) point of
view can be formalized as: f : X → Y . For example, for
Boolean concept, the domain X = {0, 1}n, and the range
Y = {0, 1}. When implementing a concept, we can use a
variety of representations, such as propositions, first-order
logic representations, or neural networks. The representa-
tion taken in this paper will be described in the following
subsection.

Instance
When we view the concept as a function, the instance is just
a specific case in the function’s domain, such as x ∈ X.

Production
When an agent plans to express some concept to the outside
world, it can use an inverse function to generate an instance
to express this concept. There might exist many instances
that can be used to express the concept if the mapping is
not one-to-one.

Interpretation
Interpretation of instances is very easy under the functional
interpretation of concepts: given an instance, apply the
function to the instance and output the function value.

Adaptation
When an agent receives an instance from another agent, it
may adapt its concept (e.g., probability, or network connec-
tion weights) such that the agent can perform a task better
(e.g., gaining more benefits or payoff) next time with this
new updated concept or knowledge. Formally speaking, sup-
pose the concept of agent i at time t is Ct

i , and the concept of
agent j (j 6= i) at time t is Ct

j . At time t, agent j generates
an instance denoted by instance(Ct

j), and the instance was
received by agent i. At next time t + 1, agent i updates its
concept to Ct+1

i .

Ct+1
i = adapt(Ct

i , instance(Ct
j)), j 6= i

2.1 Comments
Representation
Representation is important and sometimes critical for sys-
tem performance. In this paper, the instance space is an
n-dimensional space Rn for real value or {0, 1}n for Boolean
value. The concepts to be learned from instances are linear
threshold concepts, for which there is a hyperplane in Rn

separating the points on which the function is 1 from the
points on which it is 0 or −1.

Why do we take this kind of representation? First, linear
threshold functions can be learned in online mode such as
the Perceptron[18, 14, 4] and Winnow family algorithms[13].
Second, they have powerful representational capabilities. Third,
there is much good theoretical work on this area, and many
successful applications. For example, [19] showed that some
commonly-used statistics-based and machine learning algo-
rithms for natural language ambiguity resolution tasks can
be re-cast as problems of learning linear threshold functions
in the feature space.

Serial vs. concurrent interaction mode
Fig. 1 does not specify the time order of agent interaction.
The interactions between agents can be classified into two
modes: serial and concurrent. In the serial mode, at each
time step only one agent is generating instances or updating



concepts; other agents are doing nothing.
In the concurrent mode, the two agents are simultane-

ously generating their instances and updating their con-
cepts. There is no difference between the two agents in
concurrent mode, while in the serial mode the two agents
are not strictly equivalent since there must be one agent
who starts the mutual process first, and so makes an initial
impact on the direction of concept formation.

Single vs. multiple concepts
For convenience, the framework presented here only involves
a single concept. However, the approach remains general.
When we think of a concept as a function or a mapping,
the common basis of multiple concept and single concept
situations is evident, and there is much existing research on
transforming “multi-class” (multiple-concept) problems to
binary-class (single-concept) ones, e.g., [1].

Target concepts to be mutually learned
Before learning and interaction, initially, each agent may
have its own individual target function or preferences. Given
the multi-agent setting, the individual target function of dif-
ferent agents might be conflicting. They may want to co-
learn or collectively design a mutual target concept. In some
sense, such a mutual concept can be thought as a balance,
an equilibrium or an attractor. If every agent behaves under
the mutual concept, they can get the (local) optimal benefit.
If some agent moves away from a joint concept, it could be
attracted back, or if a new agent joins the society it could
break an existing balance (which may lead to a new, better
result).

Closely related work: teacher-learner model
In [9], Goldman and Rosenschein proposed a similar teacher-
learner model for mutually supervised learning, but their
approach relied heavily on a specific traffic signal control
scenario, which may be more difficult to generalize. It might
be possible to transform their scenario into our more gen-
eral representation based on n-dimensional space and linear
threshold functions.

2.2 Two example scenarios
Emergence of language conventions
The above framework can be used to model the origins and
evolution of language conventions such as a shared lexi-
con and grammar. In the case of lexicon conventions, the
task of the agent community is to build a shared lexicon so
that agents can understand each other[10, 21]. For exam-
ple, let there be five symbols or sounds {a, o, e, i, u}, and
some meanings in our mind or in the world. We repre-
sent each symbol as a feature that can take two values:
{present, absent}. Therefore we have five Boolean features:
{fa, fo, fe, fi, fu}. Each point in the space can be used as a
form to convey a meaning. Initially, different agents might
use different forms to represent a given meaning. The pur-
pose of the community is to form a shared form (e.g., fa∧fi)
bound to a certain meaning through mutual adaptation.

Evolution of social conventions
The goal of agents may be to establish some social conven-
tion with some global optimal utility. This global optimum
may be defined in several different ways, e.g. as the sum of
individuals’ utilities. There is significant work in this area,
e.g., [20]. The strategy taken by an agent may be mod-
eled as a concept instance, and it can also be represented as
a point in an n-dimensional space. For example, let there

be two agents {a, b} and two strategies {s, t}. Then the
simplest representation is using two features {fa, fb}, where
each feature can take one of the two strategies. If history is
considered, the feature space will of course be much larger.
This kind of representation is widely used coding of strate-
gies for “genetic” approaches, e.g, see [12]. Initially, an in-
dividual agent may not have any good idea (the concept to
be sought) about what is an optimal strategy to take, but
through mutual adaptation or evolution, agents may find
joint strategies that form effective cooperative conventions.
Note that in the game theory setting, the interaction mode
is concurrent.

3. SINGLE-AGENT ONLINE CONCEPT
LEARNING

We begin with an introduction to single-agent online con-
cept learning, where the environment or teacher from which
an agent learns is static. Then we discuss online concept
learning in the multi-agent setting, i.e., mutual online con-
cept learning (MOCL). In the MOCL setting, agents are
acting as the environments of each other, and hence there is
no “fixed” environment.

Online concept learning has also been called online learn-
ing from examples [13, 2]. The learning task is to discover
the target concept or target function f∗ : {0, 1}n → {1,−1}
which maps each instance1 to the correct label (or class)
by responding to learning instances and feedback from a
teacher.

The online learning takes place in a sequence of trials. In
one trial, events occur in the following order:

1) A learner receives an instance from a teacher;
2) The learner labels the instance as 1 or −1;
3) The learner is told by the teacher whether or not the label
was correct;
4) The learner uses the feedback to update its concept.

Each trial begins after the previous trial has ended.

3.1 Perceptron algorithm
The Perceptron algorithm was introduced first by Frank

Rosenblatt [17] to solve the linear threshold learning prob-
lem. A preceptron (also called LTU – linear threshold unit)
takes a vector of real-valued inputs2, calculates a linear com-
bination of these inputs, and outputs a 1 if the result is
greater than some threshold and −1 otherwise. More pre-
cisely, given an input instance ~x = (x1, ..., xn), the output
f(~x) computed by the perceptron is:

f(~x) =

�
+1 if

Pn
i=1 wixi > θ

−1 otherwise
(1)

where ~w = (w1, ..., wn) ∈ Rn, is the current weight vector
maintained by the perceptron. For convenience, usually the
threshold θ is set to 0. The reason is that we can add an
additional constant input x0 = 1 with a weight variable w0.

For brevity, we will sometimes write the perceptron func-
tion as:

f(~x) = sgn(~w · ~x)

1We use instance and example interchangeably.
2The instance space {0, 1}n is a special case of Rn.



where

sgn(y) =

�
+1 if y > 0
−1 otherwise

Note that each weight vector defines a perceptron func-
tion or concept. Updating a weight vector is equivalent to
updating a concept. So sometimes we may use weight vector,
function or concept interchangeably.

Learning a concept involves choosing values for the weight
vector ~w = (w1, ..., wn). Initially the algorithm starts with
a weight vector ~w = (0, ..., 0). Upon receiving an instance
~x = (x1, ..., xn), the learner predicts the label of ~x to be
f(~x). For brevity, sometimes we denote f(~x) by y.

If the predicted label is correct, then there are no changes
in the weight vector. However, if the prediction is wrong,
the weight vector is updated using the perceptron learning
rule:

~w ← ~w + λy · ~x (2)

where λ is the learning rate.
The Perceptron Convergence Theorem was proven in [15,

14, 4]; we sketch it here because we draw upon it in later
proofs of mutual perceptron convergence.

Theorem 1. Perceptron Convergence Theorem If
all instances are linearly separable, then a learner which uses
the Perceptron algorithm will only make a finite number of
mistakes. That is, the learning procedure converges.

Proof. The basic idea of the proof is to show that on
each mistake made by the learner, the distance between the
currently maintained weight vector (of the function f) and
the target weight vector (of the target perceptron function
f∗) becomes smaller after the update using the perceptron
learning rule.

4. MOCL: MUTUAL ONLINE CONCEPT
LEARNING FOR MULTIPLE AGENTS

Multi-agent mutual concept learning is one of several pos-
sible extensions of single-agent online concept learning. In
the multi-agent setting, each agent plays the roles of both
teacher and learner. In this case, the environment that an
agent learns from is dynamic since other agents, being part
of the learner’s environment, are also changing their con-
cepts as they learn from each other. There is no fixed con-
cept to be learned initially – no static teacher (or environ-
ment). The concept to be learned is dynamically formed as
the result of the interactions among agents.

4.1 Mutual Concept Learning Game
We model multi-agent mutual concept learning as a mu-

tual concept learning game. Initially each agent has its
own concept. This concept can be generated using ran-
dom weight vector. (In a language evolution context, this
could be interpreted to mean that there is initially only a
random relationship between meanings and communicative
symbols.) Different agents might have different weight vec-
tors at initialization. The game is played repeatedly in a
(finite or infinite) sequence of rounds. On each round, the
following events happen:

1. Two agents are randomly chosen from the agent pop-
ulation; one as learner and another as teacher. De-
note by ~wT the teacher’s weight vector, and by ~wL the
learner’s one.

2. The teacher randomly chooses a label from {1,−1},
and then generates an instance ~x = (x1, ..., xn) which
is consistent with the label. An instance ~x is consistent
with a label yT , if and only if sgn(~wT · ~x) = yT .

In terms of multiple concepts, randomly choosing a
label from {1,−1} can be understood as choosing a
concept from a set of concepts.

3. The learner receives the instance ~x, and predicts its
label as: yL = sgn(~wL · ~x).

4. The teacher tells the learner whether its predicted la-
bel is correct or not.

5. The learner takes some actions (e.g., updating its weight
vector or doing nothing), after getting the feedback
from the teacher. The teacher also takes some actions
(e.g., updating its weight vector or doing nothing) af-
ter sending the learner the feedback.

The goal of an agent in a learner’s role is to make as few
mistakes as possible during the mutual learning game. If
possible, we would like all agents to converge to a shared
concept so that no interpretation mistakes will be made in
the population. (That is why we call the algorithm mutual
learning.) We propose a mutual learning algorithm below
which under some conditions will converge to a shared con-
cept after making a finite number of mistakes.

4.2 The Mutual Perceptron Convergence Al-
gorithm: A MOCL Algorithm

We know that the critical part of single-agent online con-
cept learning is the actions taken by a learner after getting a
teacher’s feedback on its prediction. The approach taken by
the Perceptron algorithm and the Winnow family of algo-
rithms is to update the current concept only when a mistake
is made. The difference between the Perceptron and Win-
now algorithms is how weight vectors are updated.

In the multi-agent setting, the critical part is the same
as in the single-agent setting. When a learner’s prediction
is correct, no action should be taken. The question is how
to update weight vectors when the learner makes a mistake.
The Mutual Perceptron Convergence Algorithm introduces
an update rule that guarantees that the algorithm can con-
verge under certain conditions.

Given two agents T as teacher and L as learner with their
corresponding weight vectors: ~wT and ~wL, then when up-
dating weight vectors the mutual perceptron learning rule
is: �

~wL ← ~wL + λy · ~x
~wT ← ~wT − λy · ~x (3)

Note that both learner and teacher will update their weight
vectors. The intuition behind the joint update is that nei-
ther the teacher’s nor the learner’s existing concept is treated
as the ideal reference concept. In a sense, the learner has
made a mistake because the teacher, too, has made a mis-
take: if the teacher’s concept had been correct with respect
to the learner (i.e. identical to the learner’s concept), then
the learner would not have made a mistake.

4.3 Proof of Convergence
We want to show that under some conditions the Mutual

Perceptron Convergence Algorithm will converge after mak-
ing a finite number of mistakes. The basic idea is as follows.



If the learner makes a mistake on the instance given by the
teacher, we want to show that the ”distance” between the
weight vectors of the two agents will become smaller after
weight updating using the mutual perceptron learning rule.

However, if the number of agents is greater than two,
we also need to consider the new “distances” between con-
cepts of the learner/teacher agent and other agents in the
population—we want the entire population to converge. We
show that under some conditions, the sum of the new dis-
tances can be less or equal than the old distance, in which
case the algorithm is guaranteed to globally converge.

Before going ahead to prove the convergence, we need
some assumptions, some of which are also used in the clas-
sical single-agent perceptron convergence theorem proof.

Assumption 1. For any instance ~x, there exists a positive
constant κ such that ‖~x‖ ≤ κ.

Assumption 2. For any weight vector ~w maintained by
any agent, suppose for any instance and label pair (~x, y)
generated according to y = sgn(~w ·~x), there exists a positive
constant γ such that y ~w · ~x ≥ γ > 0.

To make the proof readable, we will first introduce some
definitions as follows.

Definition 1. Given two agents with weight vectors ~wA

and ~wB, the distance between them is defined as:

φ(~wA, ~wB) = ‖~wA − ~wB‖2

where ‖ · ‖ is the 2-norm (i.e., the Euclidean norm).

Definition 2. At time step t, the weight vectors of two
agents A and B are ~wA and ~wB. At time step t + 1, the
weight vectors become ~w′A and ~w′B. The variance of distance
between the two agents from time t to t + 1 is defined as:

ϕ(~wA, ~wB) = φ(~w′A, ~w′B)− φ(~wA, ~wB) = ∆

Definition 3. Distance reduction is defined as−∆ if ∆ < 0.

Definition 4. Distance introduction is defined as ∆ if ∆ > 0.

Lemma 1. Suppose on a round of the game, a learner L
makes a mistake on the instance ~x given by a teacher T ,
and both agents use the mutual perceptron learning rule to
update their weight vectors ~wL and ~wT . Then there exists

a positive constant δ = γ2

κ2 such that:

ϕ(~wT , ~wL) ≤ −δ. (4)

when the learning rate λ = γ
2κ2 .

Proof. When the learner L makes a wrong prediction
for the label of the instance ~x sent by the teacher T , it will
modify its weight vector from ~wL to ~w′L. According to the
definition of label generation and prediction, we have:

�
y = sgn(~wT · ~x)

−y = sgn(~wL · ~x)
(5)

Then we have the following inequalities
�

y · ~wT · ~x > 0
y · ~wL · ~x < 0

(6)

With the above Assumptions 1 and 2, we have

ϕ(~wT , ~wL) = φ(~w
′
T , ~w

′
L)− φ(~wT , ~wL)

= ‖(~wT − λy~x)− (~wL + λy~x)‖2 − ‖~wT − ~wL‖2
= −4λy ~wT ~x + 4λy ~wL~x + 4λ2‖~x‖2
≤ −4λ(γ − λκ2)

When the learning rate λ = γ
2κ2 , we have

ϕ(~wT , ~wL) ≤ −γ2

κ2
.

Let δ = γ2

κ2 , then ϕ(~wT , ~wL) ≤ −δ holds.

The above lemma shows that two agents can move their
concepts closer to each other through mutual learning or
adaptation after making mistakes. However, for the situa-
tion of more than two agents, it is possible that moving one
agent’s concept toward that of another agent will cause it to
move farther away from the concept of a third agent. Fig. 2
shows a very simple illustration.

e
A

e
B

u
B’

e
C´́3

Figure 2: Agent B moves to B′ which is closer to C,
but the distance between B′ and A becomes larger
than before.

We want to show that under some conditions, the total
distance reduction (see Definition 3) is larger than the to-
tal distance introduction (see Definition 4) after updating
the weight vectors of the two choosen agents (teacher and
learner) in a game round. The following lemma says that
when the learning rate is set to the positive constant de-
scribed in Lemma 1, then the reduction in the distance be-
tween the learner/teacher and other agents’ concepts has a
lower bound—there will be at least that much reduction in
distance. Thus the point is that with such a learning rate,
it is possible (but not yet certain) that the concepts may
converge.

Lemma 2. Given an instance ~x, and two agents A and B
with weight vector ~wA and ~wB. Suppose A’s label yA on
~x is different from B’s label yB, and A changes its weight
vector ~wA ← ~wA + yB ~wA~x, while B keeps its weight vector
~wB unchanged. Let learning rate λ = γ

2κ2 , then there exists

a constant ∆r = 3γ2/4κ2 > 0 such that

ϕ(~wA, ~wB) ≤ −∆r.

∆r is called the lower bound of distance reduction.

Proof.

ϕ(~wA, ~wB) = ‖(~wA + λyB~x)− ~wB‖2 − ‖~wA − ~wB‖2
= 2λyB ~wA~x− 2λyB ~wB~x + λ2‖~x‖2
≤ −2λγ + λ2κ2

= −3γ2/4κ2 = −∆r (7)



Assumption 3. For any weight vector ~w maintained by
any agent, suppose for any instance and label pair (~x, y)
generated according to y = sgn(~w ·~x), there exists a positive
constant β such that y ~w · ~x ≤ β.

Next, Lemma 3 says that the distance introduced between
the concepts of the learner/teacher and other agents has an
upper bound.

Lemma 3. Given an instance ~x, and two agents A and B
with weight vector ~wA and ~wB. Suppose A’s label yA on ~x
is the same as B’s label yB, and A changes its weight vector
~wA ← ~wA − yB ~wA~x (note, this is a mis-adaptation), while
B keeps its weight vector ~wB unchanged. Let learning rate
λ = γ

2κ2 , then there exists a constant ∆i = γ
κ2 (β − 3γ

4
) > 0

such that

ϕ(~wA, ~wB) ≤ ∆i.

∆i is called the upper bound of distance introduction.

Proof. It is obvious that ∆i = γ
κ2 (β − 3γ

4
) > 0 from the

fact β ≥ γ.

ϕ(~wA, ~wB) = ‖(~wA − λyB~x)− ~wB‖2 − ‖~wA − ~wB‖2
= 2λyB ~wA~x− 2λyB ~wB~x + λ2‖~x‖2
≤ 2λβ − 2λγ + λ2κ2

=
γ

κ2
(β − 3γ

4
) = ∆i (8)

Now we are ready to give the proof of the mutual percep-
tron convergence theorem.

Theorem 2. If β
γ
≤ 3

2
holds, then a population of agents

which use the mutual perceptron algorithm can converge to
a shared concept after making a finite number of mistakes.

We call β
γ
≤ 3

2
as the mutual perceptron convergence con-

dition.

Proof. The idea is simple. After a learner makes a mis-
take, we hope that by using our mutual perceptron learn-
ing rule for each weight vector update, the sum of new
inter-concept distances among all agents is smaller than be-
fore. Suppose there are N agents. Among these N agents,
there are two agents, learner and teacher respectively, whose
corresponding weight vectors are ~wL, ~wT . The weight vec-
tors of other agents are ~w1, ..., ~wN−2. (to be consistent, let
~wL = ~wN−1, and ~wT = ~wN .) Then the sum of distances can
be written as:
PN

i,j=1 φ(~wi, ~wj) = φ(~wT , ~wL) +
PN−2

i,j=1 φ(~wi, ~wj)

+
PN−2

i=1 φ(~wT , ~wi) +
PN−2

i=1 φ(~wL, ~wi)
(9)

And the sum of new distances after the mutual learning is
written as:
PN

i,j=1 φ
′
(~wi, ~wj) = φ

′
(~wT , ~wL) +

PN−2
i,j=1 φ

′
(~wi, ~wj)

+
PN−2

i=1 φ
′
(~wT , ~wi) +

PN−2
i=1 φ

′
(~wL, ~wi)

(10)

where φ
′
(~wi, ~wj) is the brief notation of φ( ~w′i, ~w′j).

Now let us compute the new total distances. Let ~x be the

instance on which the learner made a mistake. Denote by
yL the label computed by the learner, and by yT the label
from the teacher. On the instance ~x, other N−2 agents also
have their own labels, denoted by y1, ..., yN−2. Among these
N − 2 agents, suppose there are p agents whose labels are
the same as yT , and q agents whose labels are the same as
yL, where p+q = N−2. Without loss of generality, suppose
y1 = · · · = yp = yT and yp+1 = · · · = yp+q = yL.

So, according to the Lemma 2 and 3, the total distance
variance between the teacher’s concept and those of the
other agents (excluding the learner) is at most −p∆r + q∆i.
This is because we have
PN−2

i=1 φ
′
(~wT , ~wi) =

Pp
i=1 φ

′
(~wT , vwi) +

PN−2
i=p+1 φ

′
(~wT , ~wi)

≤ Pp
i=1 φ(~wT , ~wi)− p ·∆r

+
PN−2

i=p+1 φ(~wT , ~wi) + q ·∆i

and similarly, the total distance variance between the learner’s
concept and those of the other agents (excluding the teacher)
also is at most p∆i − q∆r. Again, this is because we have:

PN−2
i=1 φ

′
(~wL, ~wi) =

Pp
i=1 φ

′
(~wL, ~wi) +

PN−2
i=p+1 φ

′
(~wL, ~wi)

≤ Pp
i=1 φ(~wL, ~wi) + p ·∆i

+
PN−2

i=p+1 φ(~wL, ~wi)− q ·∆r

Putting these two inequalities together, plus

N−2X
i,j=1

φ
′
(~wi, ~wj) =

N−2X
i,j=1

φ(~wi, ~wj)

and Eq.(4):

φ
′
(~wT , ~wL) ≤ φ(~wT , ~wL)− δ,

we can express the total distance between all agents as fol-
lows (following Eqs. (9) and (10) ):

NX
i,j=1

φ
′
(~wi, ~wj) ≤

NX
i,j=1

φ(~wi, ~wj) + (p + q) · (∆i −∆r)− δ

If the mutual convergence condition β
γ
≤ 3

2
holds, then the

amount of reduction in distance is equal or greater than the
introduction in distance, i.e., the difference is less than or
equal to zero:

∆i −∆r = γ
κ2 (β − 3γ

4
)− 3γ2

4κ2

= γ
κ2 (β − 3

2
γ)

≤ 0

Therefore, the sum of new inter-concept distances among all
agents is smaller than before:

NX
i,j=1

φ
′
(~wi, ~wj) ≤

NX
i,j=1

φ(~wi, ~wj)− δ

where δ = γ2

κ2 .
Suppose the initial total distances among all agents is ∆σ,

then the algorithm will converge after making at most κ2

γ2 ∆σ

mistakes.

4.4 Analysis of the mutual perceptron conver-
gence condition

What is the interpretation of β
γ
≤ 3

2
?

We want to show that there is a relationship between the
quality of the concept instance produced by the teacher, and



the possibility of convergence. ¿From Assumptions 2 and 3
we know that,

γ = min
y,~w,~x

‖y ~w~x‖ (11)

β = max
y,~w,~x

‖y ~w~x‖ (12)

Without loss of generality, suppose all instances have unit
length. So, rewriting, we have:

‖y ~w~x‖ = |y| · ‖~w‖ · ‖~x‖ · |cos(~w, ~x)| = ‖~w‖ · |cos(~w, ~x)|
Then, the ratio between γ and β can be rewritten as:

γ

β
=

min~w,~x ‖~w‖ | cos(~w, ~x)|
max~w,~x ‖~w‖ | cos(~w, ~x)|

Suppose max | cos(~w, ~x)| = 1
and

max ‖~w‖ = ρ min ‖~w‖
where ρ ≥ 1.

Now we have

γ/β =
1

ρ
min
~w,~x

| cos(~w, ~x)|

Given all above assumptions, β
γ
≤ 3

2
is equivalent to:

min
~w,~x

| cos(~w, ~x)| ≥ 2

3
ρ

where 1 ≤ ρ ≤ 3
2
.

This analysis means that a sufficient condition for conver-
gence is that the instance generated by a teacher falls within
a certain distance region within the space of all possible in-
stances. This idea is expressed visually in Fig. 3.

The most representative instance, represented by the dark
vector in Fig. 3, occurs when ~x = η ~w, where η ∈ R and
η 6= 0, that is, when the instance coincides with the weight
vector or negative weight vector exactly.

a1

a2

mutual convergence
instance region

teacher’s 
weight vector

Figure 3: Region of instances satisfying the mutual
convergence condition (ρ = 1.06)

The shaded area of Fig. 3 shows the region of instances
that, when generated by the teacher, will satisfy the mutual

convergence condition given ρ = 3
√

2
4
≈ 1.06. Happily, this

region occupies half of the entire instance space.

4.5 Discussion
There are several additional points to make about con-

vergence. First, even though several pairs of agents may

simultantously updating their concepts independently in lo-
cal serial games, convergence is not affected. This is because
the total distance reduction (as computed in the proof of
Theorem 2) doesn’t change.

Second, in theory, it seems that the convergence condition
might be very hard to satisfy. But in practive, convergence
is easy to obtain, even when some of the strict convergence
conditions (such as the values of γ and β) are violated. We
have studied this in simulations, results of one of which are
shown in Fig. 4. Mistakes are shown for each generation.
In each generation, each agent has 10 chances of interacting
with other agents. That means one generation involves 100
rounds of the game if there are 10 agents, which also indi-
cates that the number of mistakes in one generation will not
be larger than 100.
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Figure 4: Simulation on the convergence of ten
agents with β/γ = 9.6/0.2 = 48 À 3/2.

This figure shows convergence of ten agents (instance space
is {0, 1}10) to a mutual concept after about 140 generations,
with γ = 0.2 and β = 9.6. These two values are obtained
during the simulation according to their definitions in As-
sumptions 2 and 3.

To give readers some image of what the concepts look like
before and after convergence, we conducted a simulation on
two agents on an instance space {0, 1}3 with three Boolean
variables {x1, x2, x3} and a threshold θ = 3. The two initial
concepts are x1 and x2, and the converged concept is x1∧x2.
The weight vectors are shown in Table 1.

Table 1: Weight vectors of concepts before and after
convergence.

concepts
weight vector

θ = 3
w1 w2 w3

initial
x1 3.1 1.2 0.7 → only w1 > θ
x2 0.5 3.3 1.3 → only w2 > θ

converged x1 ∧ x2 1.6 2.1 0.5 → only w1 + w2 > θ

5. CONCLUSION AND FUTURE WORK
As one of our efforts towards constructing the basis for

programmable theories of dynamic communication behavior
in both individual agents and agent collections, we have pro-
posed the mutual online concept learning framework. This
framework views the knowledge/language of a multi-agent
system as a dynamic set of concepts, where each agent has
its own concept/instance processing (production, interpre-
tation, and adaptation) mechanism. In this framework, each



agent uses its current version of a concept to produce and
publish an instance, and other agents can use that instance
update their own concepts. There is no pre-existing global
concept to be learned; instead, agents are in effect collec-
tively designing a concept that is evolving as they exchange
information.

We think the Mutual Online Concept Learning framework
is a general one that can be used for the study of emergence
and evolution of many kinds of information structures in-
cluding language, ontologies, and subject indexes. When
the concept used here is extended to multiple categories
to represent word meaning, and the instances are used to
represent word form (especially for constructing structured
word forms of the sort used by people), MOCL provides
a natural approach to an algorithm for vocabulary conver-
gence. We also believe that if we were to extend the concept
to multiple categories represented as a vector (points in a
multi-dimensional space), we might also get a grammatical
structure convergence algorithm. These extensions remain
for future work.
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