
Understanding the Emergence of Conventions
in Multi-Agent Systems

Adam Walker and Michael Wooldridge∗

Department of Computing
Manchester Metropolitan University
Chester Street, Manchester M1 5GD

United Kingdom

Abstract

In this paper, we investigate techniques via which a group of autonomous
agents can reach a global agreement on the use of social conventions by
using only locally available information. Such conventions play a central
role in naturally-occurring social systems, and there are good reasons for
supposing that they will play a similarly important role in artificial social
systems. Following a short review of conventions and their use in distrib-
uted artificial intelligence, we present a formal model that rigorously defines
both our experimental methodology, and the performance measures we use
to quantify the success of our experiments. We then describe sixteen differ-
ent mechanisms for bringing about agreement on conventions, and present
experimental results obtained for each of these methods. A tentative ana-
lysis of these results is given, and the paper concludes with some comments
and issues for future work.

Topic areas: organization self-design, cooperation.

∗main contact — email: M.Wooldridge@doc.mmu.ac.uk

1

1 Introduction

Recent work in Distributed Artificial Intelligence (DAI) has investigated the pos-
sibility of using norms, conventions, and social laws in multi-agent systems. Ex-
amples of the issues investigated include the control of aggression [1], how con-
ventions might emerge within agent societies [7], the role of social structure in
the emergence of conventions [5], group behaviour [2], and the reconsideration of
commitments [4]. In addition, researchers working in philosophy, sociology, and
economics have considered similar issues. A good example is the work of Lewis
[6], who has made some progress towards a (non-formal) theory of normative
behaviour.

Conventions play a key role in the social process. They provide agents with a
template upon which to structure their action repertoire. They represent a behavi-
oural constraint, striking a balance between individual freedom on the one hand,
and the goal of the agent society on the other. As such, they also simplify an
agent’s decision making process, by dictating courses of action to be followed in
certain situations. One key issue in the understanding of conventions is to decide
on the most effective method by which they can come to exist within an agent
society. There are two main approaches:

Off-line design: In this approach, social laws are designed off-line, and hard-
wired into agents. Examples in the DAI literature include [8, 3, 1].

Emergence from within the system: This possibility is investigated by [7, 5],
who experiment with a number of techniques by which a convention can
‘emerge’ from within a group of agents.

The first approach will often be simpler to implement, and might present the sys-
tem designer with a greater degree of control over system functionality. However,
there are a number of disadvantages with this approach. First, it is not always the
case that all the characteristics of a system are known at design time; this is most
obviously true of open systems. In such systems, the ability of agents to organise
themselves would be advantageous. Secondly, in complex systems, the goals of
agents (or groups of agents) might be constantly changing. To keep reprogram-
ming agents in such circumstances would be costly and inefficient. Finally, the
more complex a system becomes, the less likely it is that system designers will
be able to design effective social laws. Here, flexibility from within the agent
society might result in greater coherence.

2

This paper is thus concerned with the latter approach — that of emergence
from within the society. Specifically, we investigate the efficiency of various
mechanisms via which a group of autonomous agents can come to reach a global
agreement on the use of social conventions by using only locally available inform-
ation. Thus each agent must decide on which convention to adopt based solely
on its own experiences, as recorded in its internal state; pre-defined inter-agent
power structures or authority relationships are not allowed. The key problem is to
design a strategy update function, representing an agent’s decision-making pro-
cess, that, when used by every agent in the society, will bring the society to a
global agreement as efficiently as possible. We begin, in the following section,
by presenting a formal model that rigorously defines the problem domain, our
methodology, and the performance measures we use to assess the effectiveness
of strategy update functions. In section 3, we describe our experimental environ-
ment, and present sixteen different strategy update functions, whose efficiency we
have evaluated by experiment. Our results are presented in section 4, and some
conclusions appear in section 5. Note that this work builds on that of [7, 1, 5].

2 The Formal Model

We begin by assuming a set Ag =
�
1, … , l � of agents. At any time, an agent

is assumed to have chosen one of a set Σ =
�
σ1, … , σm � of strategies. These

strategies represent the possible norms or conventions that an agent may fix upon.
Exactly what these strategies are is not significant, at least for the purposes of this
formal model. Initially, each agent is assigned an element of Σ at random.

An interaction occurs when two agents compare strategies. Formally, we
define the set I, of all interactions, by I = Σ×Σ. We always consider an interaction
ι ∈ I from the point of view of some particular agent; we write selƒ(ι) for the
strategy chosen by this agent in the interaction ι, and other(ι) for the strategy
chosen by the other participant in ι.

An agent’s memory consists of a finite sequence of interactions, representing
those that the agent has been involved in. Formally, the set M of all memory
states is defined by M = I∗. If m ∈ M, then |m| denotes the length of m; if
n ∈

�
0, … , |m| − 1 � , then m(n) denotes the n’th interaction in m. If σ ∈ Σ and

m ∈ M, then obs(σ , m) is the number of times that other agents have been seen
to use σ in m:

3

obs(σ , m) = |
�
n | n ∈

�
0, … , |m| − 1 � and other(m(n)) = σ � |

Note that in some domains, (such as the one we describe in section 3), there may
be times at which an agent is not involved in an interaction, but is performing some
other kind of action. However, these non-interactive ‘moves’ play no part in the
strategy selection process, and may therefore be ignored in the formal model.

Our aim in this paper is to investigate the properties of strategy update func-
tions. A strategy update function u has the signature u : M → Σ, i.e., it takes a
memory state, and, on the basis of the experiences recorded in this state, selects
a strategy. Let U be the set of all strategy update functions.

A run, r, is a function r : Ag×IN → I, that must satisfy the following invariant
property: ∀n ∈ IN, there exists an irreflexive bijection ƒn : Ag → Ag, such that
∀i ∈ Ag, if selƒ(r(i, n)) = σ and other(r(i, n)) = σ′, then selƒ(r(ƒn(i), n)) = σ′
and other(r(ƒn(i), n)) = σ . A run r represents one possible history of a system;
for each agent i ∈ Ag, and for each time point n ∈ IN, it assigns i an interaction
r(i, n) representing that which i was involved in at time n. The invariant on runs
ensures that interactions are symmetrical, i.e., that two agents are involved in
every interaction. Let R be the set of all runs.

We let mem(i, r, n) denote the memory of agent i ∈ Ag in run r ∈ R up to time
n ∈ IN. We can visualise mem(i, r, n) as the sequence (r(i, 0), r(i, 1), … , r(i, n)).
Note that, for simplicity, we have here assumed that agents have unbounded
memory. We say that a run r ∈ R is consistent with the use of strategy up-
date function u ∈ U, (notation uses(r, u)), iff ∀i ∈ Ag, ∀n ∈ IN, if r(i, n + 1) = ι,
then selƒ(ι) = u(mem(i, r, n)). We denote by Ru that subset of R whose members
are consistent with the use of u, i.e., Ru =

�
r | r ∈ R and uses(r, u) � . The set

Ru represents the characteristic behaviour of the strategy update function u. With
respect to Ru, we can define a number of performance measures, via which the
effectiveness of u can be measured.

Our aim when designing a strategy update function u ∈ U is that, by us-
ing it, the agents in a system will come to converge on a strategy. We begin
by formalising the notion of convergence. We denote by chosen(σ , n, r) the set
of agents that have chosen strategy σ ∈ Σ at time n ∈ IN in run r ∈ R, i.e.,
chosen(σ , n, r) =

�
i | i ∈ Ag and selƒ(r(i, n)) = σ � . We then define the conver-

gence of a run r ∈ R at time n ∈ IN, (denoted conv(r, n)), to be the fraction of
agents using the most popular strategy at time n in run r.

4

conv(r, n) =
max

�
|chosen(σ , r, n)| | σ ∈ Σ �

|Ag|

If |Σ| = 2, then convergence will range from 0.5 to 1.0; if |Σ| = 3, then convergence
will range from 0.33 to 1.0. If conv(r, n) = 1.0, then in run r at time n, every agent
has chosen the same strategy.

If u ∈ U, then we let � u
n denote the average convergence of all runs r ∈ Ru

at time n ∈ IN1. Note that we normally express � u
n as a percentage. The value

� u
n , for some n ∈ IN, is the first measure by which we assess the performance

of a strategy update function; we aim to design a function u ∈ U that will make
� u

n = 100 for as small n as possible.
The time it takes for a strategy update function to bring about convergence is

not the only performance measure that we can use. Another important criterion is
the average number of strategy changes per interaction. The intuition behind this
measure is that, in real-world situations, changing from one strategy to another
generally incurs a cost. Consider, for example, the financial and human resources
required for an organisation to move from one computer operating system to an-
other. Let sc(i, r, n) be the number of times agent i ∈ Ag changes strategy in run
r ∈ R up to time n ∈ IN:

sc(i, r, n) = |
�
o | o ∈ IN, o < n, and selƒ(r(i, o)) ≠ selƒ(r(i, o + 1)) � |

The average number of strategy changes per interaction in run r ∈ R up to time
n ∈ IN is then given by changes(r, n):

changes(r, n) =
�

i∈Ag sc(i, r, n)
n.|Ag|

We then let � u
n denote the average number of strategy changes per interaction up

to time n ∈ IN over each run r ∈ Ru, for strategy update function u ∈ U. The
value � u

n will range from 0.0 to 1.0; if � u
n = 1.0, then every agent changes strategy

after every interaction. Lower values of � u
n are thus preferable. The value � u

n

will be our second measure of strategy update function performance.

1This notation was introduced by [5].

5

Of particular interest to us are strategy update functions that guarantee stable
convergence. A function u has this property iff ∀r ∈ Ru, ∃n ∈ IN such that
∀o, p ∈ IN, and ∀i, j ∈ Ag, if o ≥ n and p ≥ n then selƒ(r(i, o)) = selƒ(r(j, p));
in other words, if u guarantees that the agents will come to agree on a strategy,
and then remain fixed on it. Note that if u guarantees stable convergence, then

� u
n → 0.0 as n → ∞.

As a third, and final performance measure, we consider the maximum number
of strategy changes that any agent incurs on any run r ∈ Ru up to time n. We
denote this value by � u

n. Obviously, low values of � u
n are preferable.

This completes our formal model. We can now describe our experimental
methodology. Our aim is to compare the effectiveness of a number of strategy
update functions, using the measures � u

n , � u
n, and � u

n. To do this, we take each
strategy update function u, and generate, by computer simulation, a set of runs of
u, that we hope are representative of Ru. We then analyse these runs, to empirically
determine the values � u

n , � u
n, and � u

n.

3 The Experimental Environment

In this section, we describe both our experimental environment and the sixteen
different strategy update functions that we investigate. Our experimental envir-
onment is based on that of [1]. In this environment, agents move about a grid in
search of food. They are endowed with a budget that is increased by eating an
item of food, but decreased by movement around the grid. Agents therefore have
the goal of eating as much food as possible in order to maximise their budget.
Agents can move only one square at a time in either a horizontal or vertical dir-
ection. Likewise, at any one time, they can ‘see’ only one square in each of these
directions. If they see an item of food in a square, then they move to that square
and eat the food. Otherwise, they move to a randomly selected empty square in
search of food. Naturally, more than one agent may at any time make a bid for the
same item of food. If this happens, then one of the agents is selected randomly.
However, agents can also attack others who are in possession of a food item. This
aggression costs both aggressor and victim a large slice of their budget, but may
be rewarding if the aggressor wins the food item. The winner in any confrontation
is always the agent with the highest budget.

The purpose of the experiments in [1] was to examine how aggression might
be reduced by the introduction of conventions into the system. Two conventions

6

were identified — one of ownership, where agents cannot attack those eating their
own food, and another where agents cannot attack others who are on their right-
hand side. Although these experiments provide a valuable insight into normative
behaviour, the conventions were nevertheless hard-wired into agent’s architec-
tures. Our experiments are concerned with how such conventions might come
to exist within the agent society using observation and a strategy update func-
tion. We want to provide our agent society with a variety of possible strategies
by which to reduce aggression, and a suitable update function, and measure how
effectively the agents come to agree on a single strategy or convention.

To achieve this, we have chosen the latter strategy of [1] — that of giving
precedence to agents in a particular location — but have extended it to consist of
four possible strategies: precedence to those on the right, to those above, to those
below, and to those on the left. Agents begin an experiment with one of these
strategies chosen at random, and as the experiment progresses, they observe the
strategies adopted by other agents. Using an update function, they may modify
their chosen strategy as they interact with other agents.

Some other minor modifications were needed to the world of [1], which, whilst
maintaining the functionality of the original system, extended it to allow more
meaningful results to be obtained within the context of our research goals. First,
100 agents were used, rather than the 12 of [1]. The agent to food ratio stays the
same at 2:1, giving a total of 50 food items at the start of each experiment. We
also use a larger world. The grid is a square of 225 cells — 15×15. Finally, we use
longer experiments. In [1], a match is over when all the food has been eaten, or all
the agents have ‘died’. (An agent dies when its budget falls below one.) Matches
do not allow sufficient time to assess the processes of norm evolution, and so we
extended each experiment to consist of 50 matches. At the end of each match the
food supply is renewed at random locations, and all dead agents are replaced by
new agents at the same location. Note that new agents do not retain the memories
of their predecessors, and their normative strategy is assigned afresh.

3.1 Basic Strategy Update Functions

We have evaluated four different basic strategy update functions in order to meas-
ure their effectiveness in producing convergence, using the experimental frame-
work described above. These basic strategy update functions are as follows2:

2The first three are adapted from [7]; the fourth is entirely new.

7

Simple majority: This is the simplest form of update function. Agents will
change to an alternative strategy if so far they have observed more instances
of it in other agents than their present strategy. If more than one strategy
has been observed more than that currently adopted, the agent will choose
the strategy observed most often.

Using the notation introduced in section 2, we may define this strategy
update function as follows:

u(m) = σ iff ⁄∃σ ′ ∈ Σ such that obs(σ ′, m) > obs(σ , m).

Simple majority with memory restart: This function is essentially the same as
simple majority, except that when an agent has changed strategy, he clears
his memory. (Note that the signature of this strategy update function is thus
u : M → Σ × M.)

Simple majority with communication by agent type: Agents are divided into
two types. As well as observing each other’s strategies, agents in these ex-
periments can communicate with others whom they can ‘see’, and who are
of the same type. When they communicate, they exchange memories, and
each agent treats the other agent’s memory as if it were his own, thus being
able to take advantage of another agent’s experiences. By restricting com-
munication to agents of the same type, we apply the ‘extroversion radius’
of [7]. In other words, agents are particular about whom they confide in.

Simple majority with communication on success: Here we use a utility func-
tion that employs a form of communication based on a success threshold.
When an individual agent has reached a certain level of success with a par-
ticular strategy, he communicates his memory of experiences with this suc-
cessful strategy to all other agents that he can ‘see’. Note, only the memory
relating to the successful strategy is broadcast, not the whole memory. The
intuition behind this update function is that an agent will only communicate
with another agent when it has something meaningful to say. This prevents
‘noise’ communication. In our experiments, the threshold chosen was a
strategy where the total observed was greater than 20, but was also at least
twice as much as any other strategy total.

8

3.2 External Majority Variations

The above strategy update functions, whilst differing in certain key aspects, all
cause agents to change strategy on the basis of a simple majority. This is an
intuitively appealing approach, and certainly performed significantly better than
the other update functions tested by Shoham and Tennenholtz [7]. However, we
had certain reservations about how accurately this approach accorded with our
own understanding of normative behaviour. Our concerns were:

• This methodology seems to be more akin to the phenomenon of imitation,
rather than norm convergence. Imitation represents a subconscious copying
of another’s actions, rather than a reasoned choice. Imitation can lead to
negative results — as in the case of riots. Thus, this function may not
guarantee that the best strategy is adopted. It could be argued that in our
experiments, no one strategy is preferable; the important point is that all
agents adopt the same one. However, in many instances — e.g., in the
world of standards — certain strategies may be preferable to others.

• The simple majority may lead to agents changing strategy frequently. As
we pointed out in section 2, frequent strategy changes are, in general, inef-
ficient. A better approach might be to change strategy only if it is observed
in considerably more agents than the current one.

Given these concerns, we decided to experiment with variations of the simple
majority update function, using majorities of greater than one. The intention was
to observe to what degree higher majorities affected the value of � u

n , but to balance
this against any improvements in the values of � u

n and � u
n. In addition to the

simple majority update function, the following three variations were tested:

Double majority: Agents changed from strategy σ to strategy σ′ if the number
of observations for σ′ was more than twice that for σ .

Quadruple majority: Agents changed from strategy σ to strategy σ′ if the num-
ber of observations for σ′ was more than four times that for σ .

Dynamic majority: In this variation, the size of the majority is a function of each
agent’s total number of strategy changes to date. If an agent has changed
strategy only once, then he will do so again should he observe a simple
majority of one against an alternative strategy. If he has changed strategy

9

twice, then he will not change again until he observes a total of more than
double for an alternative strategy — and so on. Using this variation, agents
become more reluctant to change as their number of strategy changes in-
creases. Note that with this variation, it is technically possible for a dead-
lock situation to arise, in which the system becomes fixed in a steady state.
However, we have not observed such a situation in practice.

4 Experimental Results

The four basic update functions described in section 3.1 were tested, using the
four variations described in section 3.2. This resulted in sixteen different strategy
update functions in total. Each of these functions was run for 50 matches, with
a match lasting, on average, for six interactions. Thus, the length n of each run
generated in each experiment was approximately 300. To avoid statistical anom-
alies, each experiment was repeated 80 times. The remaining parameters for the
experiments were as follows: agents can choose from 4 strategies, and so |Σ| = 4.
Each experiment consisted of 100 agents, and so |Ag| = 100.

4.1 Norm Convergence — � u
n

The experimentally determined values of � u
n , (the average convergence at time

n), for n � 300, are given in Table 1. Note that these values are expressed as
percentages. Rows (1–4) correspond to the four basic update functions described
in section 3.1, and columns (a–d) correspond to variants in the size of majority,
described in section 3.2.

We make the following observations on these results:

• By increasing the size of the majority, we appear to see a slight degradation
in � u

n . However, the significance of this is not clear. Certainly, there is very
little difference between a majority size of more than double, and one of
more than four times as much.

• In [7], the two update functions that performed best with respect to � u
n were

the memory restart function (2a), and the communication by agent type
function (3a). Both of these used a simple majority, (i.e., a majority of at
least one), and performed significantly better than using the simple major-
ity with full memory function (1a). We had similar expectations for our

10

Update Size of majority
function (a) (b) (c) (d)

Simple Double Quadruple Dynamic
(1) External majority 75 73 74 84
(2) Memory restart 82 77 76 77
(3) Communication by type 76 75 74 79
(4) Communication on success 99 80 73 86

Table 1: Experimentally Determined Values of � u
n , for n � 300

experiments, but these do not appear to have been fully borne out. Whilst
(2a) has shown some improvement, (3a) shows no significant gain over a
function using no communication at all.

• The dynamic majority variation appears overall to be the most efficient of
variations (b–d) with respect to � u

n . In two experiment sets — (1d) and (3d)
— it performs even better than the simple majority function.

• Our own update function, (4), produces the best results for � u
n . All exper-

iments using the simple majority reached a value for � u
n of either 100% or

99% for n � 300. We are unsure at present as to the processes that lead to
such a good result for norm convergence. However, (4) also produces the
most significant differences amongst the three majority variations of any
of the functions. Here, increasing the majority that agents use does have a
significant effect on � u

n .

4.2 Strategy Change Results — � u
n and 	 u

n

One possible drawback to the simple majority function is the number of strategy
changes that agents might make; as we noted in section 2, changes in strategy can
be costly, and lead to inefficiencies within a system. For this reason, we introduced

� u
n, the average number of strategy changes per interaction, which we use as the

second measure of strategy update function efficiency. Table 2 shows, for each of
the sixteen strategy update functions investigated, the experimentally determined
values of � u

n, for n � 300. Table 3 shows, for each of the sixteen strategy update

11

Update Size of majority
function (a) (b) (c) (d)

Simple Double Quadruple Dynamic
(1) External majority 0.021 0.016 0.012 0.019
(2) Memory restart 0.027 0.021 0.019 0.026
(3) Communication by type 0.062 0.026 0.014 0.032
(4) Communication on success 0.022 0.012 0.010 0.022

Table 2: Experimentally Determined Values of � u
n, for n � 300

Update Size of majority
function (a) (b) (c) (d)

Simple Double Quadruple Dynamic
(1) External majority 9 5 3 5
(2) Memory restart 20 11 10 11
(3) Communication by type 57 24 6 7
(4) Communication on success 26 4 3 4

Table 3: Experimentally Determined Values of � u
n, for n � 300

functions, the experimentally determined values of � u
n, (the maximum number

of strategy changes made by any agent up to time n), again for n � 300.
Some observations we can make from these results are as follows:

• Using the simple majority function, (1a), leads to a high value of � u
n, as

expected. However, (1a) is by no means the worst. The two modifications
to (1a) that were described in [7] — experiments (2a) and (3a) — also
perform poorly and in particular, communication by agent type (3a) leads
to a very high value of � u

n. The update function (4), which performed so
well with respect to � u

n , also performs poorly with respect to � u
n.

• Increasing majority size does lead to an improvement in � u
n, as expected.

However, in running the experiment using a dynamically determined ma-
jority, we expected an even better performance. This has not proved to be

12

the case. The performance of dynamically determined majority appears to
be comparable to that of the simple majority variation. The value of � u

n

for the dynamically determined majority is, however, more encouraging. It
is either equal to or better than that recorded against the double majority.

• The most significant differences across the four columns of Tables 2 and 3
occur in the two experiment sets that deal with communication.

Clearly, those update functions that perform best with respect to � u
n do not neces-

sarily perform as well with respect to � u
n and � u

n. What is needed is a trade-off
between the speed by which agents can come to agree on a norm, and the num-
ber of changes of strategy they incur in the process. Combining all three tables,
perhaps the best experiment set overall is (4b).

5 Concluding Remarks

Our research has been motivated by a concern, voiced in [7], that an understand-
ing of the mechanisms of convention evolution will be important for the design
of future multi-agent systems. Building on the work of [7, 1, 5], we have presen-
ted a new formal model that defines the problem domain, a methodology, and a
set of performance measures. We have described sixteen mechanisms by which
agents can come to a global agreement, and have evaluated these mechanisms
with respect to our performance measures. That some of our results have been
unexpected indicates how much further we need to pursue our understanding of
this complex topic. The development of a mathematical theory of convention
evolution — suggested in [7], and tentatively begun by us in section 2 — is an
obvious requirement. Other areas for future work include a further investigation
of different strategy update functions (see sections 3.1 and 3.2), and more detailed
investigation of the role played by social structure and communication (cf. [5]).

13

References

[1] R. Conte and C. Castelfranchi. Simulative understanding of norm function-
alities in social groups. In Simulating Societies-93: Pre-proceedings of the
1993 International Symposium on Approaches to Simulating Social Phenom-
ena and Social Processes, Certosa di Pontignano, Siena, Italy, July 1993.

[2] N. Findler and R. Malyankar. Alliances and social norms in societies of non-
homogenous, interacting agents. In Simulating Societies-93: Pre-proceedings
of the 1993 International Symposium on Approaches to Simulating Social
Phenomena and Social Processes, Certosa di Pontignano, Siena, Italy, July
1993.

[3] C. V. Goldman and J. S. Rosenschein. Emergent coordination through the
use of cooperative state-changing rules. In Proceedings of the Twelfth Inter-
national Workshop on Distributed Artificial Intelligence (IWDAI-93), pages
171–186, Hidden Valley, PA, May 1993.

[4] N. R. Jennings. Commitments and conventions: The foundation of coordina-
tion in multi-agent systems. Knowledge Engineering Review, 8(3):223–250,
1993.

[5] J. E. Kittock. Emergent conventions and the structure of multi-agent sys-
tems. In Proceedings of the 1993 Santa Fe Institute Complex Systems Summer
School, 1993.

[6] D. Lewis. Convention — A Philosophical Study. Harvard University Press:
Cambridge, MA, 1969.

[7] Y. Shoham and M. Tennenholtz. Emergent conventions in multi-agent sys-
tems. In C. Rich, W. Swartout, and B. Nebel, editors, Proceedings of Know-
ledge Representation and Reasoning (KR&R-92), pages 225–231, 1992.

[8] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for
artificial agent societies. In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), San Diego, CA, 1992.

14

