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Abstract

This paper illustrates how external (or social) symbol grounding can

be studied in simulations with large populations. We discuss how we can

simulate language evolution in a relatively complex environment which

has been developed in the context of the New Ties project. This project

has the objective of evolving a cultural society and, in doing so, the agents

have to evolve a communication system that is grounded in their inter-

actions with their virtual environment and with other individuals. A

preliminary experiment is presented in which we investigate the effect of

a number of learning mechanisms. The results show that the social sym-

bol grounding problem is a particularly hard one; however, we provide an

ideal platform to study this problem.

Keywords: Agent based modelling, language acquisition, referential inde-

terminacy, joint attention, principle of contrast, cross-situational learning.
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Introduction

Human language is thought to have evolved from an interaction among three

adaptive systems: biological evolution, individual learning and cultural evolu-

tion (Kirby & Hurford, 2002). The New Ties project1 aims to merge these

systems in a large scale simulation to evolve a cultural society of simulated

agents that are situated in a complex environment and that need to acquire be-

haviours to remain viable over extended periods of time. One important aspect

of this simulation is to evolve language that allows social learning, while being

grounded in a virtual world.

The symbol grounding problem (Harnad, 1990) has been studied in relation

to both language acquisition and language evolution using various robotic mod-

els (e.g., Roy, 2005; Steels, Kaplan, McIntyre, & Van Looveren, 2002; Vogt,

2002) and related simulations (e.g., Steels & Belpaeme, 2005; Cangelosi, 2001;

A. D. M. Smith, 2005; Vogt, 2005). For overviews, see, for example, Cangelosi

and Parisi (2002) or Vogt (2006). Most of these studies have focused on the abil-

ity of (simulated) robots to construct a shared symbolic communication system

that has no ‘survival’ function to the society (but see, e.g., Cangelosi, 2001, for

an exception). Such a survival function, however, is a crucial aspect of symbol

grounding (Ziemke & Sharkey, 2001). The New Ties project will focus on how

a language can evolve in a way that is relevant to the society’s survival. To

this end we need to deal with what Cangelosi (2006) has called social symbol

grounding, that is, symbol grounding in (potentially large) populations.

To arrive at a shared set of symbolic conventions, the agents have to learn
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language from each other. In doing that, they face a problem that is closely

related to the referential indeterminacy problem illustrated by Quine (1960).

Quine showed that when learning a new word, the word can have – logically

speaking – an infinite number of meanings. He used the example of an anthro-

pologist who is studying a native speaker of a – to him – unknown language.

When a rabbit suddenly scurries by, the native exclaims “gavagai!” and the

anthropologist notes that gavagai means rabbit. Although this may be a valid

inference, gavagai could also have meant undetached rabbit parts, dinner,

running animal or even it’s going to rain. To reduce the number of pos-

sible meanings, the anthropologist has to acquire more information regarding

the meaning of gavagai. People – especially children – are extremely good at

this, but for robots this has proven to be a very hard problem (Vogt, 2006).

Inspired by the literature on children’s language acquisition, several learning

mechanisms have been studied using computational models (see, e.g., A. D. M.

Smith, 2005; Vogt & Coumans, 2003). Based on such studies, we present a new

hybrid model that combines these learning mechanisms, which involve joint

attention, feedback, cross-situational learning and the principle of contrast, in

one model. We investigate the effect of these learning mechanisms on the ability

to evolve a shared language in a large population. The next section provides

more background on the symbol grounding problem. After that we present an

overview of the New Ties project, followed by a more detailed description of the

hybrid model that allows the population to evolve language. This description

is followed by the presentation of some experiments investigating the learning
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MEANING

FORM REFERENT

Figure 1: The semiotic triangle indicates the triadic relation among referent,

meaning and form. Note that the relation between referent and form is indirect

(hence the dotted line). When the relation between meaning and form is either

arbitrary or conventionalised, the triangle represents a symbol. (Figure adapted

from Ogden & Richards, 1923.)

mechanisms. The experiments and then discussed in relation to social symbol

grounding before the paper concludes.

Symbol grounding

Physical symbol grounding

When agents communicate about things that are relevant in the world, they

have to solve the symbol grounding problem (Harnad, 1990). Vogt (2002) has

argued that, to achieve this, agents need to construct a semiotic relation be-

tween a referent (being something concrete or abstract), a meaning (being a

representation inside an agent’s brain that has some function to the agent) and

a form (being the signal conveyed). This triadic relation (see Fig. 1) is what

Peirce (1931–1958) has called a symbol, provided the relation between form
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and meaning is either arbitrary or conventionalised.2 The hardest part of solv-

ing this physical symbol grounding problem (i.e., creating the semiotic triangle,

Vogt, 2002) is the construction of the relation between referent and meaning,

because this relation is often dynamic and complex. As the physical symbol

grounding problem may relate only to individual agents, the form could – in

principle – be any arbitrary signal or label associated with this relation (Vogt,

2006). However, in language, the forms have to be conventionalised through cul-

tural interactions and communicating forms have to be functional (e.g., it has

to invoke some response from the recipient). Hence the population has to deal

with external symbol grounding (Cowley, in press), which we interpret as social

symbol grounding (Cangelosi (2006)), i.e., symbol grounding in populations.

Social symbol grounding

Various studies have shown how a shared system of symbols can evolve from

scratch through (local) cultural interactions between agents and (individual)

learning mechanisms (Cangelosi, 2001; Steels & Belpaeme, 2005; Vogt, 2002).

In this approach, which assumes that language is a complex adaptive dynami-

cal system (Steels, 1997), a population of agents interact through a long series

of language games. During these language games, agents can adapt their lan-

guage, such that a shared structure (the external language) evolves through

self-organisation. We believe that crucial aspects in the success of social symbol

grounding are cognitive learning mechanisms, non-verbal interactions, physical

properties of the environment and population dynamics.
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Quine’s referential indeterminacy problem can make the social symbol ground-

ing problem more complicated than the physical symbol grounding problem.

Many learning mechanisms in developmental linguistics have been proposed to

deal with this problem (see, e.g. Bloom, 2000, for an overview). For instance,

Tomasello (1999) has proposed that joint attention is a crucial mechanism by

which two interlocutors focus their shared attention on a third object, allowing

a child to associate utterances to the same situation the adult is attending to.

This way, referential indeterminacy is reduced substantially, though the gavagai

example shows this is not sufficient. The anthropologist can infer that gavagai

relates to the rabbit, but is it the whole rabbit, its movement, its function,

or something else? Additional mechanisms therefore have to be part of the

cognitive learning mechanism.

Researchers have proposed a number of additional mechanisms that might

further reduce referential indeterminacy, such as, e.g., the principle of contrast

(Clark, 1993). In addition there is ample, though controversial, evidence that

children receive feedback from their caregivers regarding their language use – es-

pecially regarding word-meaning mappings (Chouinard & Clark, 2003). Finally,

evidence suggests that children may learn some words more straightforwardly

by taking the intersection of their possible meanings across situations (Akhtar

& Montague, 1999). This process, known as cross-situational learning, seems

to take place from very early in the development of infants (Houston-Price,

Plunkett, & Harris, 2005).

Previous computational studies have investigated some of these mechanisms,
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but in isolation. Joint attention is most often modelled through explicit mean-

ing transfer, where the hearer gets access to the exact intended meaning (e.g.,

Oliphant & Batali, 1997). More realistically, a number of robotic studies have

used pointing as an unreliable joint attention mechanism, so hearers could not

exactly determine the intended meaning, but could only estimate the intended

referent (Vogt, 2000). In many studies corrective feedback on the referent or

meaning has been the prime ingredient of the so-called guessing games, which

allows agents to acquire the right association and to disambiguate competing

word-meaning mappings through lateral inhibition (Steels & Belpaeme, 2005;

Steels et al., 2002; Vogt, 2002). Finally, cross-situational learning, which is

similar to the guessing game but without feedback, has been investigated ex-

tensively in computer models (Siskind, 1996; A. D. M. Smith, 2005; Vogt, 2000)

and mathematical models (K. Smith, Smith, Blythe, & Vogt, 2006).

In a study that has compared joint attention, feedback (through explicit

meaning transfer) and cross-situational learning, Vogt and Coumans (2003) have

found that cross-situational learning is hard to scale up for larger populations.

This is because in the early stages of evolution different agents invent differ-

ent words to convey the same meaning, which then have to be disambiguated

during further development in order for effective communication to take place.

If there is joint attention or feedback, disambiguation can be performed quite

efficiently. However, cross-situational learning is based on the assumption that

a word and its meaning are consistently co-occurring in different contexts. If

there are many different words for a meaning, more ambiguities can enter the
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language and this condition may no longer hold. It has been shown, however,

that cross-situational learning improves if there are additional biases such as

mutual exclusivity (A. D. M. Smith, 2005) or some other synonymy damping

mechanism (De Beule, De Vylder, & Belpaeme, 2006).

In the hybrid model that we introduce in Section , we combine the following

mechanisms:

Joint attention is modelled by a pointing mechanism which allows a hearer

to identify the target object reliably. This mechanism does not resolve

uncertainty about the meaning of an utterance, because this relates to a

feature of the object, such as colour or shape.

The principle of contrast allows agents to acquire the meaning of words

such that they tend to favour meanings that have not yet been associ-

ated with other words.

Feedback is used as a non-verbal signal to indicate whether the hearer ‘thinks’

it has understood the speaker. Thus, the feedback may be prone to er-

rors. Although negative feedback does not necessarily lead to correction,

it increases the chance that the speaker repeats himself while using joint

attention.

Cross-situational learning allows the refined learning of correct word-meaning

mappings, regardless of whether joint attention is present.

In the simulations reported in this paper, we investigate the effect of each

of these mechanisms on the ability to develop a shared lexicon.
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New Ties

The objective of this project is to set up a simulation in which a large population

of agents (i.e., more than 1,000) can evolve a cultural society using evolutionary,

individual and social learning. Sub-objectives include investigating the interac-

tion among these three adaptive systems and evolving a communication system

that facilitates social learning. It is the latter aspect which is relevant to social

symbol grounding and to this paper. Below is a brief description of the project;

for more details consult Gilbert et al. (2006).3

The New Ties world – inspired by Epstein and Axtell (1996)’s sugar-scape

world – is a virtual world with places of varying roughness that contain objects

such as tokens, edible plants and agents. Agents are provided with sensors and

actuators that allow them to see and act. The sensors are configured such that

an agent can see a number of perceptual features (e.g., colour, shape, direction,

distance) of the objects in their visual field. The actuators allow the agents to,

among others, move forward, turn left or right, eat, mate and talk. Each action

costs energy, the amount of which depends, for instance, on the weight carried

by the agents. When an agent’s energy falls to zero, it dies, but it can also die

of old age. Eating plants increases the agent’s energy level, which depends on

the ‘ripeness’ of the plant.

Agents develop their own control system using evolutionary, individual and

social learning. This control system is a decision Q-tree (DQT), which is a

stochastic decision tree that may change using reinforcement learning. The

details of this DQT are beyond the scope of this paper, and the interested
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reader is referred to Gilbert et al. (2006). Suffice it to say that the DQT takes

categories of perceived objects and interpreted messages as input and outputs

an action based on some decision process. The structure of the DQT can change

based on cross-over and mutation during reproduction, reinforcement learning

and social learning. As we will discuss in Section , social learning allows agents

to develop shared behavioural skills using socially grounded symbols.

The genome carries, apart from the initial structure of the controller, a num-

ber of biases influencing the behaviours of agents regarding aspects such as the

tendency to be social. The social bias is particularly important for language

evolution, as it regulates, for instance, the frequency with which agents com-

municate or assist each other with learning language. Interaction is achieved by

the predefined production and interpretation mechanisms, as explained in the

next section.

Language evolution in New Ties

Figure 2 shows the architecture of the agents. The architecture consists of

four modules, which are processed in sequential order from top to bottom. In

addition, each agent has a short term memory (STM) and a long term memory

(LTM). The input to an agent includes perceptual input regarding all objects

an agent can see in its visual field and all messages sent within its audible range.

There is no noise in perception, so it is assumed to be perfect. (Note that agents

do not exactly share their visual or audible fields as they cannot be at the same
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Figure 2: The basic architecture of the agents.

location simultaneously.)

The perceptual input is first sent to the categorisation module, where each

feature of each object is categorised with its nearest category. Categories are

represented as predefined prototypes stored in the LTM in one-dimensional con-

ceptual spaces (Gärdenfors, 2000). Each conceptual space relates to some quality

dimension, such as colour, shape, direction, etc. It is possible to specify which

categories are predefined and allow other categories to be acquired during devel-

opment by playing discrimination games similar to the ones described in (Vogt,

2005). In the simulations reported here, the prototypes have a one-to-one rela-

tion among all possible perceptual features of all objects in the visual field, and

the discrimination game has been switched off.

Since objects are perceived with different features (colour, shape, etc.), cat-
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egorising an object results in a category set stored in the STM for further

processing by other modules. The categories of all objects in the visual field

constitute the context (Cxt). The context and interpreted messages are used

by the control module to decide on an action to take. These actions can fail if

they are in conflict with the ‘physical’ laws of the environment (e.g., two agents

cannot be at the same location simultaneously).

When communicating, the agents construct physically grounded symbols

(i.e., the semiotic triangle). With respect to the current setup of the model, the

referent is a single perceptual feature of an object (e.g., a colour), the meaning

is represented by its category and the form is a single word. For the moment we

treat the meaning as a representation that has no real function regarding the

agents’ life task, though interpreting a message can influence the next action of

an agent as determined by the controller.

We now explain the interpretation and production modules in more detail.

Since we assume that objects’ perceptual features are categorised with given

prototypes, we focus this explanation on how a shared lexicon can arise as part

of the social symbol grounding process.

Interpretation

The language interpretation module (LIM) processes all messages that an agent

receives. A message can consist of multiple words. For each word an agent

receives, the LIM searches the lexicon (stored in the LTM) for entries that

match the word. The lexicon is represented by two association matrices (Fig.
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m1 . . . mN

w1 σ11 . . . σ1N

...
...

...
...

wM σM1 . . . σMN

m1 . . . mN

w1 P11 . . . P1N

...
...

...
...

wM PM1 . . . PMN

Figure 3: A simplified illustration of the lexicon. The lexicon consists of two

matrices associating meanings mj with words wi. The left matrix stores asso-

ciation scores σij , and the right matrix stores co-occurrence probabilities Pij .

3), one that maintains association scores σij ∈ [0, 1〉 and one that maintains a

posteriori probabilities Pij = P (wi|mj) of finding word wi, given meaning mj .

The association scores contain information about the association’s effectiveness

as evaluated through feedback. However, since we assume that feedback is not

always provided, nor always accurate, the agents also maintain the co-occurrence

probabilities allowing for cross-situational learning. The reason for using two

types of scores is that earlier studies have revealed that using the probability

type score is less efficient (read slower) if feedback is present, whereas using the

association scores σij does not work well for cross-situational learning (Vogt &

Coumans, 2003).

When a hearer searches its lexicon, it selects the association matching the

heard word and of which the association strength strLij is highest. (If the word

is not in the lexicon, the interaction fails and the word is adopted as explained

later.) The association strength is a coupling between the two scores σij and
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Pij :

strLij = σij + (1 − σij)Pij . (1)

This coupling assures that the association strength relies more on the association

score σij if it is high (i.e., it has been effective in previous interactions); otherwise

strLij relies more on the co-occurrence probability Pij .

To establish joint attention, the speaker may have pointed to a target object

ot that relates to the message’s meaning Mt, which is constructed by the speaker

(s) as a subset of the target’s category set CSs
t (i.e., Mt ⊆ CSs

t ). Suppose mj is

the interpretation of one word (wj) from the message. To estimate the outcome

of this interpretation, the following steps are taken:

1. If an object is pointed to, the context Cxt is reduced to the hearer’s

category set CSh
t of that target object. Now,

(a) if mi ∈ CSh
t , the interpretation of word wi is considered a success.

(b) if mi 6∈ CSh
t , there are two possibilities:

i. The association score σij > Θ (where Θ = 0.8 is a threshold), in

which case it is assumed that the interpretation is correct, but

the speaker got it wrong.

ii. If σij ≤ Θ, the interpretation is assumed to be the hearer’s fail-

ure.

2. If no object is pointed to, and
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(a) σij > Θ, then the interpretation is considered a success. Otherwise,

(b) the agent will – with some probability – either assume success or

assume a hearer failure.

If the interpretation was considered a success for all words in a message, the

controller adds it to the STM for further processing. Note that for step 2, the

target relating to the interpreted meaning need not be in the hearer’s context, so

the agents can ground some knowledge about the environment without actually

seeing it.

When the interpretation of all words has finished, the hearer may send a

hard-wired feedback signal to the speaker. This signal is sent with a probability

proportional to the socialness gene and inversely proportional to their social

bond.4 This way, if the agent is social and does not know the speaker well, it is

inclined to provide feedback, which should allow further learning. The feedback

signals that can be sent are

1. Success if the hearer considers the interpretation to be correct for all words.

2. Speaker-error if the hearer assumes the speaker to be wrong for at least

one word.

3. Interpretation-error if there is a hearer failure for at least one word or

when the hearer hears an unknown word.

Note that this feedback depends on the hearer’s estimation of the game’s out-

come, but the hearer may be wrong as it has no means of verifying exactly what
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the speaker’s meaning of a word is. This is different from the guessing games

used in, for example, Steels et al. (2002), where the agents verify whether they

refer to the same target.

If a success feedback signal was sent, the used association scores σij for both

agents are increased, while all competing association scores σkl (k = i or l = j,

but not both) are laterally inhibited. If an interpretation error signal was sent,

both agents also lower the association scores of the interpretation. In case of

a speaker error, only the speaker lowers the association score. In addition, in

all cases the co-occurrence probabilities Pij of each word with all meanings in

the context Cxt (or CS
s,h
t ) are adapted accordingly. (For more details on these

adaptations, consult Divina & Vogt, 2006).

When interpretation is assumed to have failed or when a word is not in

the lexicon, the LIM adds this word wn to the lexicon in association with all

categories in the Cxt (or CSh
t in case the target was pointed to), provided the

association does not already exists. The frequency counters of these associations

are set to 1 and – to simulate the principle of contrast – the association scores

σnj are initialised with:

σnj = (1 − max
i

(σij))σ0, (2)

where maxi(σij) is the maximum association score that meaning mj has with

other words wi, i 6= n and σ0 = 0.1 is a constant. This way, if the agent has

already associated the meaning (or category) mj with another word wi, the

agent is biased to prefer another meaning with this word (see Fig. 4 for an
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m1 m2

w1 0.8 0.2

w2 0.1 0.7

m1 m2 m3

w1 0.8 0.2 0.0

w2 0.1 0.7 0.0

w3 0.02 0.03 0.1

Figure 4: An illustration of the principle of contrast. Suppose the leftmost table

shows the lexicon containing the association scores before acquiring the word

w3, which is heard in the context Cxt = {m1, m2, m3}. Both w3 and m3 are

added to the lexicon, where the association scores of w3 with meanings m1 and

m2 are inversely proportional to the highest association scores already existing

for these meanings, and the association with m3 is highest, since this meaning

had no existing association.

example). It is important to note that since the agents do not share their visual

fields, the hearer may not have seen the object relating to the word’s meaning,

so the new acquisitions may be wrong.

Production

When the LIM has finished processing, the control module will decide upon an

action to take using all categories resulting from the categorisation and language

interpretation as input. So, the information acquired through interpreting a

message may influence this decision process.

Regardless of the action, the language production module (LPM) is started,
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because even if the action is not to talk, the LPM may nevertheless decide

to communicate about something. This happens with a probability propor-

tional to its socialness gene, provided the agent sees another agent. If the agent

received an ‘interpretation error’ message, the LPM always decides to commu-

nicate about the object it communicated about before, provided the object is

still in the context, but now the probability that the message is accompanied

by a pointing gesture is increased. If no interpretation error was received and

the agent has decided to communicate, a meaning is selected as follows.

First, a task complexity Ct is chosen. The task complexity is a value that

indicates how many words the message will contain. Ct is a value between 1 and

5 such that the agent will tend to speak shorter sentences to younger agents and

longer sentences to older agents. The rationale is that shorter sentences are eas-

ier to interpret by less skilled language users than longer sentences. Second, one

target object is selected randomly from the objects in the speaker’s visual field

and the message’s meaning Mt is formed from selecting Ct arbitrary categories

from the category set CSs
t relating to this target.

For each category, the LPM searches its lexicon for associations whose mean-

ing matches the category and for which the association strength strLij (Eq. 1)

is highest. The associated word is then appended to the message. If a category

has no entry in the lexicon yet, a new word is created as a random string and the

new association is added to the lexicon. It is important to realise that agents

are ‘born’ with an empty lexicon.

Once a message is thus constructed, the LPM decides, with a probability
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proportional to its social bias, whether the agent will point to an object that

directly relates to the message’s meaning. So, the more social the agent is, the

more likely the speaker is to provide its audience with hints as to what it is

referring to. This can, thus, be seen as a form of affective interaction as part of

external symbol grounding (Cowley, in press).

Experimental results

A number of experiments were done with the above model to investigate the

effects of particular aspects of the learning mechanisms such as feedback, the

principle of contrast, pointing and cross-situational learning. To keep our fo-

cus on these aspects, we switched off all evolutionary learning and individual

learning mechanisms.

All experiments were run for 36,500 time steps, which is slightly longer than

an agent’s maximum lifespan. Agents were able to reproduce after they lived for

3,650 time steps, so the population size remained constant at the initial size of

100 during the first 3,650 time steps. Thereafter the population size increased

slightly in all simulations, but kept fluctuating on average around 110 agents.

This is because from that moment, many agents tended to die from their loss of

energy expended during reproduction (offspring receives 50% of their parents’

energy). Throughout all simulations, about 20% of the population initiated a

language game each time step, so during one simulation – assuming an average

population size of 110 agents – about 739,200 messages were sent. The agents
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tend to talk only in small groups because of their spatial distribution.

On average, 44% of all language games were accompanied by a pointing

gesture, in 12% of all games a feedback singal was sent, and in 48% of all games

neither pointing nor feedback was used.

The effectiveness of the language evolution was monitored with communica-

tive accuracy (or accuracy for short). Accuracy was measured at every 30 time

steps by dividing the total number of successful language games by the total

number of language games played during that period. A language game is

determined successful if the hearer interpreted the speaker’s expression with

the exact intended meaning (not the intended referent). We prefer to use the

term communicative accuracy rather than, for example, communicative success,

because the interpretations need to yield intended meanings. Communicative

success would be used if success was evaluated based on identifying the intended

referent irrespective of the meaning representation. Since there is a one-to-one

relation between meaning and referent in the current setting, communicative

accuracy implies communicative success. For statistical purposes, all results we

present are averages of 10 different trials of each setting with different random

seeds.

In all simulations, the agents were given 6 feature channels (out of a maxi-

mum of 10) with which to detect 5 different types of objects having a total of 26

different perceptual features.5 This means that each object (except agents) was

perceived with 5 different perceptual features (colour, shape, characteristics, di-

rection and distance); agents were perceived with the additional feature of sex
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Figure 5: This figure shows the evolution of accuracy over time in the first

experiment.

(either male or female). So, if during a language game an object was pointed

to, the a priori chance of communicative accuracy is 1/5 (or 1/6). If no object

was pointed to, the a priori chance of accuracy was between 1/5 and 1/24 (or

between 1/6 and 1/26), depending on the number of objects in the context.

A first experiment

A first experiment was carried out with the model as described in the previ-

ous section. Figure 5 shows the evolution of accuracy during this experiment.

Accuracy increased rapidly during the first 2,000 time steps to a value around

0.6. From then on, accuracy remained more or less stable. Although accuracy

did not reach a high level (we discuss the reason why in Section ), the system
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performed better than expected.

Although the lexicons of individual agents increase to up to an average of

250 words, they tend to use far fewer words as some were heard perhaps only

once from an occasional contact with another agent. On average, the number

of words used by the whole population during the final 1,000 time steps was

50. This means that – on average – only two different words were used by the

population to express a meaning. This is surprising, since during their lifetime,

each agent does not meet every other agent, nor are they likely to communicate

with half of the population frequently enough to align their lexicons through

direct communication. Hence, the language seems to have diffused over the

population. However, given that individual lexicons contain an average of 250

words, there also may be considerable language change, though many of these

words could come from sporadic inventions by young agents and their use across

the populations.

Excluding learning mechanisms

In the second series of simulations, we varied the use of particular learning mech-

anisms by running experiments in which we switched off one of the following

learning mechanisms:

No feedback. In these experiments, the agents did not provide feedback sig-

nals. As a result, the association scores σij were never adapted, though

their initial scores were still initialised following Eq. (2).

No principle of contrast. In these simulations, the principle of contrast was
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Figure 6: This figure shows accuracy measured at the end of each set of simu-

lations for (A) the standard model and those that exclude either (B) feedback,

(C) principle of contrast, (D) pointing or (E) cross-situational learning. Error

bars indicate the standard deviations across different runs.

switched off (i.e., Eq. (2) was not used) and each novel association was

initialised with the same association score σ0.

No pointing. In this setting, no message was accompanied by a pointing ges-

ture, so each context size was somewhere between 6 and 26, depending on

the number of objects in the hearer’s visual field.

No cross-situational learning. In these simulations, the co-occurrence prob-

abilities Pij were never updated. So strLij = σij , which is only updated

through feedback and the principle of contrast.
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Figure 6 shows the results of his experiment as measured at the end of each

set of simulations. For comparison, the results of the standard model used in

the previous section are included. The graph shows that feedback and the prin-

ciple of contrast had little influence on the level of accuracy. A Wilcoxon rank

sum test has shown that the effect of removing the principle of contrast was

more significant (p = 0.0177) than that of removing feedback (p = 0.0526).

We introduced feedback, because we believed that this would improve learning

enough to allow for damping of synonymy when adapting the association scores;

a mechanism that was shown to be important in cross-situational learning in

large populations (De Beule et al., 2006). We introduced the principle of con-

trast as an extra bias against synonymy, and although the effect is small, it

appears significant.

Pointing and cross-situational learning, however, had a large impact. Point-

ing, of course, is used to reduce referential indeterminacy to the number of per-

ceptual features. Cross-situational learning then refines the learning of word-

meanings. Note that removing cross-situational learning does not reduce the

model to the guessing game, because the infrequent updates of the association

scores are based on unreliable feedback.

Discussion

In this paper we study social symbol grounding in a multi-agent simulation

of a relatively complex world. This study focuses on how a shared system of
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grounded symbols can evolve based on a model that combines learning mecha-

nisms such as feedback, the principle of contrast, joint attention (through point-

ing) and cross-situational learning. In this section, we discuss the experimental

results, their implications and some future work.

We argued in Section that the social symbol grounding problem is probably

harder than the physical symbol grounding problem (which is symbol ground-

ing for an individual), because of the referential indeterminacy problem (Quine,

1960) that arises with the need for making conventions. The experiments have

shown that to acquire and understand the verbal communication of other in-

dividuals, participants of language games benefit from engaging in triadic be-

haviours such as joint attention, because it reduces referential indeterminacy

from all possible meanings in the context to all possible meanings relating to

the attended object.

This means that the social activity of engaging in joint attention is crucial

for this model. It is hard to generalise this finding to human societies, but since

the point at which infants start to use joint attention activities coincides with

the start of language use (Tomasello, 1999), joint attention skills seem crucial

for social symbol grounding in general.

As mentioned before, pointing is not sufficient to eliminate all referential

indeterminacy, because an object has a number of perceptual features and – in

this model – a word refers to a single perceptual feature. (As the gavagai exam-

ple illustrates, this holds in general.) To deal with the remaining uncertainty of

a word’s meaning, cross-situational learning could be a crucial mechanism, as
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this, too, has an significant impact on the success of evolving a shared lexicon

in the model.

Although it has been shown mathematically that cross-situational learning

can work if the context size is relatively large (K. Smith et al., 2006), for large

populations it has been shown that evolving a coherent lexicon is quite hard,

even for small context sizes (Vogt & Coumans, 2003). It must therefore be ben-

eficial for cross-situational learning if agents engage in joint attention activities

as this reduces the effective context size.

Feedback and the principle of contrast have little influence in this model,

but it is even harder to validate these findings in general, because that would

require more comparative experiments using more controlled environments. Re-

garding feedback, the small effect is most likely due to the fact that feedback

does not make use of a mechanism to evaluate the success of a language game

reliably. Agents only assume success if the association strength reaches a certain

threshold. Feedback based on the evaluation of success, using explicit meaning

transfer or verifying whether both agents have identified the same referent, has

proven to be very effective (Steels et al., 2002; Vogt & Coumans, 2003). Future

extensions of this model should therefore consider a means to evaluate successful

interpretation more reliably.

It is likely that the contrast implemented (i.e., the differences between initial

association scores) is too small, so that it only has an effect for a brief period.

To prolong that period, we need to enlarge the initial differences by using a

larger initial score σ0 in Eq. (2).
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Figure 7: A possible situation for a language game. The two agents, A1 and

A2 are inside each other’s visual field (dashed arcs), but they do not share a

context (i.e., visual field). As a result, the hearer may not have seen the intended

target. Note that this is a near ideal situation; many situations will have more

dissimilar contexts.

Although much better than chance, the level of accuracy reached in the

experiments (±60%) is far from optimal. It is hard to assess exactly why this

is the case, but we can identify at least two reasons why grounding a shared

lexicon is hard. First, a word does not always co-occur in a context containing

its meaning, because the hearer may not have seen the target object intended by

the speaker. The reason for this is that the speaker and hearer cannot be at the

same location at the same time (see Figure 7). Furthermore, the speaker does
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not check the hearer’s orientation, so both agents may have completely different

visual fields. This is no problem if the hearer already acquired the word-meaning

mapping reliably, but it is harmful for learning. Previous tests have shown that

when agents use explicit meaning transfer (i.e., the exact meaning is provided

to the hearer), accuracy increases to 97% (Divina & Vogt, 2006).

Second, because agents develop their own lexicon independently and from

scratch, different agents may create different words to express the same mean-

ings, so the maximum number of words created in a lexicon increases with the

population. The task for the population is then to reduce the number of words

being used. Such a reduction works well if the agents have a strong form of

explicit meaning transfer, but it becomes harder if there is no strict one-to-one

bias between words and meanings. We hope to improve accuracy in the fu-

ture by incorporating the one-to-one bias model introduced by De Beule et al.

(2006).

The extent to which accuracy can be improved remains to be seen. We

are currently trying to improve the model by investigating the effect of chang-

ing parameter settings and modifying methods. We have described a different

evaluation mechanism for the feedback process, changing the initial association

score for improving the principle of contrast and the model of De Beule et al.

However, the effectiveness of the social symbol grounding process is not only

realised by the learning mechanisms and the quality of non-verbal interactions,

but also by environmental constraints and population dynamics.

Regarding the former, we described the problems in sharing the context.
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More sophisticated methods for checking the ‘focus’ of attention might be de-

veloped to improve setting a common ground. This way, an agent might take

into consideration what the other agent sees (and perhaps even knows). Hence,

they might need something like a Theory of Mind (Premack & Woodruff, 1978).

In addition, to allow better generalisations toward human societies, we need to

perform comparative experiments using other platforms, such as the Talking

Heads simulator (Vogt, 2005).

Regarding the population dynamic, the world is a spatial environment and

agents are distributed over the entire world, though clusters (of agents and

language) may emerge in the population.6 Since agents move around, they will

encounter new agents who speak another language, which has a negative effect

on accuracy. The rate of population flow, their distribution in the world and the

speed with which they can move will influence accuracy. Interestingly, though,

language contact also seems to allow language diffusion (unless the language

changes rapidly), which could explain how large language communities form.

Further studies should investigate more thoroughly what exactly is happening.

In future experiments, we plan to extend the simulations, such that they

are integrated with evolutionary, individual and social learning. Regarding the

latter, we intend to extend the model with the social learning of skills where

skills are transmitted using language. To accomplish this, the agents will com-

municate parts of their decision process as evaluated by their controller. As

mentioned, the controller is a decision Q-tree that can be adapted using rein-

forcement learning (Gilbert et al., 2006). The idea is that agents adapt their
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DQTs by inserting new nodes based on the heard decision process of other

agents, thus allowing them to align parts of their DQTs with those of oth-

ers. This way, communicated meanings become more meaningful regarding the

agents’ survival, therefore surmounting true (social) symbol grounding (Ziemke

& Sharkey, 2001)

Conclusions

In this paper we explore how the social symbol grounding problem can be in-

vestigated using large scale multi-agent systems to evolve social and other be-

havioural skills to survive in a complex environment over extended periods of

time. In particular, we investigate a novel hybrid model of language learning

that involves joint attention, feedback, cross-situational learning and the prin-

ciple of contrast.

The experiments show that – although the system does not work optimally –

levels of communicative accuracy better than chance evolve quite rapidly in this

system. In addition, they show that accuracy is mainly achieved by the joint

attention and cross-situational learning mechanisms and that feedback and the

principle of contrast do not contribute much. However, further experiments

using different parameter settings, platforms and learning mechanisms are re-

quired to generalise these findings.

The research to be carried out with the New Ties platform has only just

started and, to increase the number of related studies, the New Ties platform
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has been made publicly available.7 We encourage other researchers to use this

platform – which we think allows the study of symbol grounding in a social

context – and challenges will be published to set out benchmark experiments.

One way to extend the current model is to allow populations using language

to learn behavioural skills from each other. This would take social symbol

grounding to a higher level.
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Notes

1New Ties stands for New Emerging World models Through Individual, Evolutionary and

Social learning. See http://www.new-ties.org.

2Note that Peirce used a different terminology than that adopted here. He used object, in-

terpretant and representamen to denote what we call referent, meaning and form, respectively.

The adopted terminology is more common in modern cognitive science.
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3The current state of the project is that most parts have been implemented and tested,

and preliminary experiments are being carried out.

4The social bond is based on the frequency with which two agents have interacted with

each other.

5In Divina and Vogt (2006) we have investigated the effect of the number of feature channels

on the level of accuracy. The results have shown that, if the agents perceive up to 6 features,

accuracy evolves to a lower level and then more or less stabilises, because additional features,

such as age, are not always observable for some objects.

6Methods are being developed to discover clusters in the population regarding similarities

in language and controllers.

7http://www.new-ties.org.
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