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1. Introduction  

One of the key aspects that distinguishes humans from other species is that humans 
use a complex communication system that is - among other things - symbolic, learnt, 
compositional and recursive, whereas all other species’  communication systems 
typically lack these properties. It is often thought that this unique human feature is the 
key to understanding the nature (and nurture!) of human cognition. In order to 
understand the foundations of this distinction between humans and other species, 
scientists study the origins and evolution of language.  

Traditionally the origins and evolution of language has been studied by biologists, 
anthropologists, psychologists, palaeontologists, philosophers and linguists - although 
the Linguistic Society of Paris had strangely enough banned any studies on this issue 
between 1866 and 1974, because too many theories were proposed that were hard to 
verify at the time. With the recent advancements in computational resources an 
increasing number of simulations studying various aspects of language origins and 
evolution have emerged (see, e.g., Steels, 1997; Cangelosi and Parisi, 2002; Briscoe, 
2002; Kirby, 2002 for overviews).  



Mostly, these computational studies incorporate a multi-agent system that can learn, 
or evolve, a communication system of varying complexity that allows the system to 
communicate about a predefined set of meanings. However, as human communication 
is about the real world, understanding the underlying principles of language requires 
an understanding of the mechanisms with which the languages’  meanings are rooted 
in reality. Models based on predefined meanings therefore face what is often referred 
to as the symbol grounding problem (Harnad, 1990). Few studies have tried to tackle 
this problem using robotic models of language origins and evolution, most notably 
(Marocco et al., 2003; Vogt, 2000a; Steels and Vogt, 1997; Steels et al., 2002).  

In this chapter, I will present an overview of robotic (and other related) studies on the 
evolution of language. The aim is to present why robotics is a fruitful approach to 
study language origins and evolution, identify the main topics, report the major 
achievements and problems and provide a roadmap to future studies. Although I will 
cover most robotic studies on the evolution of language, the overview is not 
exhaustive and will, for instance, not cover studies on language learning robots, such 
as (Oates et al., 2000; Steels and Kaplan, 2000; Sugita and Tani, 2005; Roy, 2000), 
since these deal with human-robot interaction rather than with multi-robot 
communication.  

In the next section, I will provide some theoretical background on language evolution, 
discuss an alternative view on the symbol grounding problem and present some 
foundations toward studying language evolution using robots. In Section 3, I will 
present an overview of topics that have been studied in language evolution robotics. 
These topics will be illustrated with case studies and a critical review of the 
approaches taken. An outlook to future endeavours is presented in Section 4. Section 
5 concludes this chapter. 

2. Background  

The question of why humans have evolved the ability to use natural language is one of 
the most intriguing in contemporary cognitive science, and possibly one of the hardest 
problems in science (Christiansen and Kirby, 2003). Looking at recent collections on 
the evolution of language (e.g., Christiansen and Kirby, 2003), we can find that most 
prominent questions include: For what purpose has human languages evolved? How 
have human sound systems evolved? How have we become symbolic species? How 
have we established a shared signalling system of symbols? How has syntax 
emerged? How has linguistic diversity emerged? How do languages change through 
time? Among these questions, the emergence of syntax is considered by many to be 
the most important question.  

One of the most prominent debates regarding language evolution concerns the nature 
versus nurture paradigm. On the one side, many scholars adhere to the nativist 
approach, which aims at explaining language universals in terms of biological 
adaptations (Chomsky, 1980; Pinker and Bloom, 1990). Only a few modellers take up 
this approach by developing models that try to evolve an innate Universal Grammar 
(e.g., Briscoe, 2000; Nowak et al., 2000; Yamauchi, 2004). On the other side of the 
debate are those who believe language is an empirically learnt system (Elman et al., 
1996, MacWhinney, 1999) or a culturally evolved system (Tomasello, 1999). Most 



computer modellers follow the cultural evolution paradigm and assume that language 
is a complex adaptive dynamical system (Steels, 1997). In this paradigm, language is 
assumed to have evolved through self-organisation resulting from cultural interactions 
and individual learning. Following Kirby and Hurford (2002), this paradigm regards 
language evolution as an interplay “between three complex adaptive systems:  

Learning.  
During ontogeny children adapt their knowledge of language in response to the 
environment in such a way that they optimise their ability to comprehend 
others and to produce comprehensible utterances.  

Cultural evolution.  
On a historic (or glossogenetic) time scale, languages change. Words enter and 
leave the language, meanings shift, and phonological and syntactic rules 
adjust.  

Biological evolution.  
The learning (and processing) mechanisms with which our species has been 
equipped for language, adapt in response to selection pressures from the 
environment, for survival and reproduction.”  (Kirby and Hurford, 2002, p. 
122)  

 
Figure 1: This figure illustrates how the three adaptive systems interact to explain the 
emergence of language. (Adapted from Kirby and Hurford (2002).) 

Figure 1 illustrates the interaction between these three complex adaptive systems. The 
remainder of this chapter will primarily focus on studies involving the complex 
adaptive system, as this is - up to now - the most studied paradigm in robotic studies.  

Although, as mentioned, questions relating to the emergence of syntax are generally 
considered the most important questions, it has been argued that the first important 
questions should relate to the emergence of symbolic communication (Deacon, 1997; 
Jackendoff, 1999). Traditional cognitivist approaches in cognitive science have 
assumed that human cognition can be seen as a physical symbol system (Newell and 
Simon, 1976). Physical symbol systems are systems that can store, manipulate and 
interpret symbolic structures according to some specified rules. Assuming this is a 
correct characterisation, we need to define symbols. Cognitivists have treated symbols 
as internal structures that - following De Saussure (1974) - relate representations of 
meanings with arbitrary signals or labels. In these approaches, it is left unspecified 
how the meaning relates to reality, which has caused famous fundamental problems 
such as the frame problem (McCarthy and Hayes, 1969), the Chinese Room problem 
(Searle, 1980), and the symbol grounding problem (Harnad, 1990). The main issue 
with these problems is that in the cognitivist approach, symbols are neither situated – 



i.e. they are not acquired in interaction with an environment, nor embodied – i.e. they 
are not based on bodily experiences (Clancey, 1997; Pfeifer and Scheier, 1999).  

To deal with these problems of cognitivism, Brooks (1990) proposed the physical 
grounding hypothesis, which states that intelligence should be grounded in the 
interaction between a physical agent and its environment. In the physical grounding 
hypothesis, Brooks has argued that symbols are no longer necessary; intelligent 
behaviour can be established by parallel operating sensorimotor couplings. Although 
physically grounded systems are both situated and embodied, from the point of 
linguistics, Brooks’  hypothesis is problematic, since human language is indeed 
considered to be symbolic.  

 
Figure 2: The semiotic triangle illustrates the relations that constitute a sign. When 
the form is either arbitrary or conventionalized, the sign can be interpreted as a 
symbol. (Adapted from Ogden & Richards (1923).) 

It has been argued that the true problem of the cognitivist approach lies in the 
definition of symbols. If we were to accept there must be symbols, they should be 
defined as structural couplings connecting objects to their categories based on their 
sensorimotor projections (Clancey, 1997; Maturana and Varela, 1992). I have argued 
(Vogt, 2002b), however, that such a definition is already present from the semiotic 
theorist Charles Sanders Peirce (1931-1958). Peirce has defined symbols as a triadic 
relation between a referent, a meaning and a form1 as illustrated in the semiotic 
triangle (Figure 2), where the relation between meaning and form is either arbitrary or 
conventionalised such that the relation must be learnt. This definition is very common 
among linguists and other cognitive scientists, e.g., (Lakoff, 1987; Deacon, 1997; 
Barsalou, 1999). To distinguish between the cognitivist and Peircean definitions of 
symbols, I have coined Peirce’s definition semiotic symbols (Vogt, 2002b). 

In this definition, the term meaning requires extra care. According to Peirce, the 
meaning of a symbol arises from the process of semiosis, which is the interaction 
between form, meaning and referent. This means that the meaning depends on how 
the symbol is constructed and with what function. As such, the meaning of a symbol 
is a functional relation between its form and referent based on an agent’s bodily 
experience and interaction with the referent. The experience is based on the agent’s 
history of interactions with the referent and/or form. The ways these bodily 
experiences are represented and memorized form the internal representation of the 

                                                 
1 Peirce actually used the terms object, interpretant and representamen to denote what I call reference, 
meaning and form respectively. Throughout the text I will also use the terms label, word and signal 
interchangebly to denote a form. 



meaning. The actual interaction between an agent and a referent ‘defines’  the 
functional relation.  

I have argued that when the semiotic definition of symbols is adopted, the symbol 
grounding problem no longer exists as a fundamental problem (Vogt, 2002b). This is 
primarily because semiotic symbols are per definition meaningful and grounded. The 
problem, however shifts into a hard technical problem, which I have called the 
physical symbol grounding problem, and which relates to the construction of the 
triadic relation between referent, meaning and form (Vogt, 2002b).2 (In the remainder 
of this paper, I will use the term symbol to denote a semiotic symbol. When I refer to 
the cognitivist sense of a symbol, this will be made explicit.)  

So, when studying the origins of symbolic communication, the symbols should arise 
from an interaction of an agent with its environment; this justifies the use of robotic 
models. Preferably physical robots are used, but simulated robots can offer a suitable 
platform too, since experiments with real robots may be very time consuming and 
costly. Ideally, the experiments have an ecological validity in that the robots have a 
“ life task”  to solve (Ziemke and Sharkey, 2001), but - as will become clear - most 
robotic models so far have little or no ecological validity.  

 
During the course of language evolution symbols have become culturally shared in a 
population, i.e. the members of a language society have learnt more or less similar 
meanings and references of signals. Learning the meanings of words is - in principle - 
a notoriously hard problem. In a seminal work, Quine (1960) has shown that when 
you hear a novel word, this word can - logically - have an infinite number of 
meanings. He illustrates this point by considering a linguist studying a language that 
he or she does not know. The linguist observes a native speaker exclaiming 
“gavagai!”  when a rabbit scurries by. It would be natural for the linguist to note that 
gavagai means rabbit, but logically, gavagai could mean an infinite number of 
different things, such as undetached rabbit parts, a running rabbit or even it 
is going to rain today. Deciding which meaning to associate with a signal is an 
extremely hard problem for robotic models, but humans solve this task seemingly 
very easily. Researchers in child language acquisition have proposed a number of 
constraints and means to reduce the number of possible inferences as to the meanings 
and references of words. Examples include representational constraints, such as a 
whole object bias (Macnamara, 1982) or a shape bias (Landau et al., 1988); 
interpretational constraints, such as mutual exclusivity (Markman, 1989) and the 
principle of contrast (Clark, 1993); and social constraints such as joint attention 
(Tomasello, 1999), corrective feedback (Chouinard and Clark, 2003) and Theory of 
Mind (Premack and Woodruff, 1978) that allows individuals to understand that others 
have intentions similar to themselves. For an overview, consult, e.g., (Smith, 2005b). 

Once a shared symbolic communication system was in place, humans are thought to 
have developed a protolanguage (Jackendoff, 1999). Some have argued that the 
protolanguage was formed from unstructured expressions of multiple words 

                                                 
2 This problem is similar to the anchoring problem (Coradeschi and Saffiotti, 2000), which deals with 
the technical problem of connecting traditionally defined symbols to the real world, see Vogt (2003a) 
for a discussion. 



(Bickerton, 1984), others have argued that expressions of the protolanguage were 
mainly single holistic utterances (Wray, 1998). It is widely assumed that from the 
protolanguage, grammatical structures have emerged that resemble modern languages 
(Jackendoff, 1999). Some scientists believe this transition was due to a biological 
adaptation in the brain (Bickerton, 1984; Pinker and Bloom, 1990); others think that 
the language itself has adapted to become learnable (Deacon, 1997). Although there 
have emerged many ungrounded computational models that simulate this transition 
(Batali, 2002; Brighton, 2002; Kirby, 2001), this area is still largely unexplored in 
robotics (but see Steels 2004; Vogt 2005a). One idea on which robotics can contribute 
to the study of grammar evolution is that robots can exploit structures that occur in the 
interaction between robots and their environment. Both the world and our interaction 
with the world contain combinatorial structures that could serve as the basis of the 
semantic structures, which - in turn - form the basis of the syntactic structures in 
languages. For instance, objects, such as apples, can have different colours, sizes or 
other properties, which could serve as the basis of what could be called adjective noun 
phrases, such as “ the red apple” . Another structure that could be exploited is that 
actions are typically performed by a subject on an object, which could have resulted in 
the universal tendency of languages to have expressions combining subjects, objects 
and verbs.  

 
Philosophically, the physical symbol grounding problem has provided sufficient 
ground to favour robotic models over what I call ungrounded models (i.e., models that 
have predefined meanings or no meanings at all), but what about more pragmatic 
reasons? Here I mention two reasons: First, ungrounded models may be built on false 
assumptions. For instance, in most ungrounded models, all agents have the same 
meanings. This is clearly not a realistic assumption, because in real life meanings 
arise from interactions of an individual with its environment and with other 
individuals, and therefore each individual will have different experiences. In addition, 
when the model uses a population turnover, in realistic models, the older experienced 
agents should have a matured set of meanings, while the new agents have not 
developed any meanings at all. Ungrounded models are completely ignorant about 
this. Ungrounded models also tend to assume that hearers can observe both the 
communicated signal and its meaning. Clearly, humans do not observe the meaning of 
a word that resides in a speaker’s brain, because that would make the signal redundant 
(Smith, 2003). In an idealised world, humans can observe a word’s reference, though - 
as mentioned - logically each word can have an infinite number of meanings (Quine, 
1960) and a learner has to infer the word’s meanings. In robotic models, the meanings 
typically develop during an agent’s lifetime. As a result, meanings are private and 
may differ substantially from agent to agent. Moreover, as a matter of principle, 
robots cannot observe other agents’  internal representations, unless the experimenter 
‘cheats’ , which can be useful if, for instance, joint attention is hard to achieve as in 
(Vogt, 2000a).  

Second, robotic models can actually exploit the nature of the interaction with the 
environment. I have already mentioned exploiting structures for constructing semantic 
structures. In addition, interactions and feedback mechanisms could be exploited to 
reduce the number of possible meanings of an expression. If the response of an action 
induced by a communication act is positive, the agents participating in the 
communication could use the positive reward to reinforce the used association 



between expression and meaning, thus allowing the agent to learn a word’s meaning 
more easily. 

3. Topics and case studies  

This section presents an overview of some robotic studies on the evolution of 
language. The overview is not exhaustive; for instance, I will not discuss the very 
interesting study on the evolution of communication channels by Quinn (2001), nor 
will I discuss language learning models based on human-robot interaction, such as 
(Oates et al., 2000; Sugita and Tani, 2005; Roy, 2000). Instead, the focus will be on 
language development in multi-robot systems, providing a clear review of the topics 
studied showing the state-of-the-art. The topics in this section are – more or less – 
increasingly complex. First, I present how semiotic symbols can be constructed. The 
learning of conventions is the subject of Section 3.2. At first, meaning formation is 
only treated as forming an internal representation of meaning (or category), rather 
than in a functional manner. The functional development of meaning is discussed in 
Section 3.4.3 

3.1 Constructing semiotic symbols  

The first problem that needs to be solved is the physical symbol grounding problem 
(i.e. creating the semiotic triangle). The problem can be decomposed into three parts: 
(1) Sensing and pre-processing of raw sensorimotor images, (2) categorisation or 
meaning construction, and (3) labelling. The labelling problem is either trivial (in case 
of using arbitrary forms) or it is based on learning conventions through language. In 
this subsection, I will assume the trivial solution and focus on the sensing, pre-
processing and meaning formation. Learning conventions will be discussed later. 

The discussion of how semiotic symbols can be constructed is presented for 
individual robots. Constructing a semiotic symbol usually starts with a sensori(motor) 
stimulation based on the robot’s interaction with the real world (when embedded in 
communication, construction can also start upon ‘hearing’  an expression). 
Sensorimotor stimulation can be based on a scene acquired by a camera, which may 
be static as in the Talking Heads experiment (Steels et al., 2002), or dynamic as in 
more recent experiments of Luc Steels (Steels, 2004; Steels and Baillie, 2003); the 
activation of infrared, sonar or simple light sensors (Vogt, 2003a); the flow of 
sensorimotor activity (Billard and Dautenhahn, 1999; Vogt, 2000b); or the activation 
of a sensorimotor coupling (Vogt, 2002a). Often, the raw data is pre-processed to 
reduce the huge amount of data. Typically regions of interest are identified and some 
feature extraction algorithm is used to describe such regions in terms of feature 
vectors. How this is done can be quite complex and is not discussed further in this 
chapter, for details consult the individual papers. When the sensing is based on the 
activation of sensorimotor couplings, pre-processing may not be required (Vogt, 
2002a). Furthermore, in simulations, the image is often more abstract, such as a 
bitstring representing mushrooms (Cangelosi et al., 2000) or just random vectors 
(Smith, 2003), which do not require any more pre-processing.  

                                                 
3 Although this is not necessarily more complex than the evolution grammar, it is treated at the end of 
this section because it is helpful to have the background provided in the first three sections. 



At the heart of creating semiotic symbols lies - technically - an agent’s ability to 
categorise the (pre-processed) perceptual data. Once these categories are in place, the 
agent can simply associate a label (or form) to this category, thus constructing the 
symbol. (Whether this symbol is useful or functional is another question, which will 
be dealt with in Section 3.4.) A number of techniques have been developed that allow 
a robot to construct categories from scratch with which it is able to recognise or 
discriminate one experience from another. These techniques usually rely on 
techniques that have been present in AI for quite some time, such as pattern 
recognition and neural networks. Some researchers use neural networks to associate 
(pre-processed) sensorimotor images with forms, e.g., (Marocco et al., 2003; 
Cangelosi et al., 2000; Billard and Dautenhahn, 1999), which - although they work 
well - makes it hard to analyse how the meanings are represented. Moreover, these 
techniques are often inflexible with respect to the openness of the system (see Section 
3.2), because typically, the number of nodes in a neural network are fixed. Another 
technique that is frequently used in grounded models of language evolution is the 
discrimination game (Steels, 1996b).  

The aim of the discrimination game is to categorise a sensorimotor experience such 
that this category distinguishes this experience from other experiences. If such a 
distinctive category (or meaning) is found, the game is considered a success. If it fails, 
a new category is formed based on the experience that is categorised, such that 
discrimination can succeed in a future situation. This allows the agent to construct a 
repertoire of categories from scratch, as illustrated in Figure 3.  

Figure 3: An illustration of three subsequent discrimination games using a prototype 
representation. The figure shows three instances of a combined feature space and a 
conceptual space. The x and + are feature vectors of observed objects (e.g., the 
location of an object in a 2D plane), the *  denotes a prototype, while A and B are 
categories. Each individual plot represents one discrimination game. In game (a), the 
robot observed 2 objects (x and +), but has not yet formed any categories. 
Consequently, the game fails and a new category (A) is added to the conceptual space 
of which the feature vector of the target object serves as an exemplar for its prototype 
- the *  in figure (b). In the second situation (b), again two objects are observed, which 
are now both categorised with category A. In this case, no distinction can be made. 
Suppose the + was the target (a.k.a. the topic) of the discrimination game, then a new 
category is formed by adding the feature vector + to the conceptual space as the new 
prototype of category B  in figure (c). Note that this alters the initial category A. In the 
third game (c), both objects can be categorised distinctively. Irrespective of which one 
is the topic, the discrimination game succeeds. Typically, when a discrimination game 



succeeds, the prototype is moved slightly in the direction of the topic’s feature vector. 

The discrimination game illustrated in Fig. 3 has successfully been implemented in 
the Talking Heads simulation THSim (Vogt, 2003c).4 Experiments have shown that 
the discrimination game is typically a fast learning mechanism and is very robust in 
using different representations for categories. The original implementation used 
binary trees (Steels, 1996b), which was used in various robotic experiments (Steels 
and Vogt, 1997; Steels et al., 2002) and simulations (Smith, 2003). Other 
representations that were used include binary subspaces (de Jong, 2000), radial basis 
function networks (Steels and Belpaeme, 2005), neural networks (Berthouze and 
Tijsseling, 2002), predicate logic (De Beule, 2004; Sierra-Santibáñez, 2001) and 
different variants of the prototype representation (Vogt, 2005a, 2003a, 2004).  

The discrimination game is context dependent; the robot always contrasts the topic 
with respect to other objects in the context. This has the consequence that the game 
may succeed, even if the observed feature vector has a relatively large distance to the 
category’s prototype, leading to an overgeneralisation of symbols. However, after a 
while, the categories become finer grained, thus allowing the agents to resolve 
overgeneralisation. It is a well known fact, however, that young children also tend to 
overgeneralise during early word-learning (Bloom, 2000). 

When the sensing typically yields only one region of interest (i.e. there is only one 
object or action), the discrimination game can only be applied in contrast to some 
sensorimotor images that are in the robot’s memory. In such cases different models 
can be used as well. The classification game was used in experiments with Sony’s 
AIBO where whole (segmented) images of the camera were stored as exemplars 
(Steels and Kaplan, 2000). The identification game was used to categorise the motor 
flow of robots following each other (Vogt, 2000b). The latter used a pre-processing of 
the raw sensorimotor flow based on constructing delay vectors from time series 
(Rosenstein and Cohen, 1998). The identification game is very similar to the 
discrimination game in that the delay vector (or feature vector) is categorised with the 
nearest prototype, provided its distance was within a certain threshold. If not, the 
delay vector is added to the ontology as an exemplar.  

As mentioned, once a category, which is a representation of the meaning in a semiotic 
symbol, is in place, the category can be associated with a form. This form may be 
arbitrary, but in language they need to be conventionalised. In language evolution 
models, this is often modelled by interactions called language games (Steels, 1996a) 
which will be explained hereafter.  

3.2 Sharing semiotic symbols  

Among the biggest problems in modelling language evolution using robots is the 
development of a shared communication system, which is related to Quine’s problem 
of the indeterminacy of meaning. The models will have to include some mechanism to 
established shared or joint attention to some object or event. Since human children 
face the same problems when they grow, it is important that robotic models are based 
on what is known about how children learn language.  

                                                 
4 THSim is freely downloadable from http://www.ling.ed.ac.uk/~paulv/thsim.html. 



Another important aspect relates to the openness of human languages. Unlike the 
communication systems of other animals, human languages are open systems (i.e. 
new words, meanings, objects, agents and grammatical structures appear, disappear 
and change rapidly). Many models assume that language is a closed system, for 
instance, by fixing the number of signals and meanings. Although this occurs in some 
grounded models (Billard and Dautenhahn, 1999; Marocco et al., 2003; Cangelosi and 
Parisi, 1998), it most frequently occurs in ungrounded models (e.g., Smith, 2002; 
Oliphant, 1999). Furthermore, in order to maintain efficiency in an open language 
system, humans must learn these changes; they cannot be innate, as is for instance the 
case with Vervet monkeys (Seyfarth and Cheney, 1986). Most models of language 
evolution (both grounded and ungrounded) acknowledge this principle and allow 
agents to learn language (Smith, 2002; Cangelosi et al., 2000; Oliphant, 1999). 
However, there are some models that violate the idea of language acquisition by using 
genetic algorithms to evolve the communication system (e.g., Marocco et al., 2003; 
Cangelosi and Parisi, 1998). One widely used open system is the language game 
model, which has successfully been implemented on physical robots to study the 
emergence of lexicons (Steels and Vogt, 1997; Steels et al., 2002).  

 

3.2.1 The language game 

 
Figure 4: The semiotic square illustrates the working of a language game. See the text 
for details. 

The language game, which is illustrated in Fig. 4, typically involves two agents - one 
speaker and one hearer - and a context of objects and/or actions. Both agents perceive 
(p) the context, extract feature vectors (f) and categorise these with meanings (m), 
e.g., by using the discrimination game. The speaker selects one object as the topic and 
tries to produce an utterance (u) based on its lexicon. The lexicon is typically an 
associative memory between meaning representations (or meanings for short) and 
forms, see Fig. 5 (a). Each association has a score σij that indicates the effectiveness 
(or occurrence frequency) of the association based on past interactions. These 
lexicons, like the ontologies, are private and thus can differ from one agent to another. 
The speaker searches its lexicon for an association that corresponds to the meaning of 
the topic and that has the highest score. If such an association is found, the 
corresponding form is uttered. When hearing a form, the hearer searches, for this 



form, the association that has the highest score (σij>0) for those meanings that are in 
the context or that relate to the topic, if this is known. 



 

 

Typically, the success of the game is evaluated and if the game succeeds, the used 
association are reinforced, while competing associations are laterally inhibited as 
illustrated in Fig. 5 (b). If the game fails, the scores of the used associations are 
decreased. These adaptations ensure that successfully used elements tend to be reused 
again and again, while unsuccessful ones tend to get weaker. This serves a self-
organisation of the lexicon shared at the global population. At the start of an agent’s 
lifetime, its lexicon is empty, so initially, most language games fail. When they do, 
the lexicon needs to be expanded. When the speaker encounters a meaning that has no 
association in its lexicon, the speaker can invent a new form. When the hearer 
receives a form that has no association in its lexicon, it will adopt the form associated 
this with the meaning of the topic, or with the meanings of all objects in the context if 
the topic is unknown. In this way, the language is an open system.  

 m1 m2 … mM 
w1  -   
w2 - + … - 
…  …   
wN  -   

 
                (a)                                             (b) 

 m1 m2 … mM 
w1 0.5 0.2 … σ1M 
w2 0.6 0.8 … σ2M 
… … … … … 
wN σN1 σN2 … σNM 

Figure 5: Figure (a) shows a typical open association matrix where forms wi are 
associated with meanings mj with some strength (or score) σij. Due to the openness of 
the system, N and M may grow - in principle - indefinitely and need not have the same 
values. However, since the memories are limited in size, N and M are bounded. When 
the speaker of a language game tries to produce an utterance about meaning mj, it 
searches the corresponding column for the highest score σij and finds its utterance wi 
in that row. When the hearer tries to interpret a word wi, it searches the corresponding 
row for the meaning mj with the highest score σij, provided this meaning is 
pragmatically possible (i.e. it should fit the context). Figure (b) illustrates the update 
of scores in case of a successful language game. Suppose that the association between 
word w2 and m2 was used successfully, the strength of σ22 is increased, while all 
competing associations σi2 and σ2j are laterally inhibited (i.e. those associations that 
are in the same row or column as the successful association: i=1,3,4,…,N and 
j=1,3,4,…,M). 



3.2.2 Lexicon grounding on mobile robots  

  
Figure 6: The LEGO vehicles used in the first physical implementation of language 
games. 

The first implementation of the language game on a physical system was done using 
LEGO robots, such as shown in Figure 6 (Steels and Vogt, 1997). In this experiment, 
the robots evolved a lexicon to name the different types of light sources in their 
environment, which they could detect using very simple light sensors mounted on the 
front of the robots. In order to acquire a sensory image of their environment, the two 
robots participating in the game first approached each other to stand facing each other 
at a close distance, after which each robot rotated 360 degrees. The raw image was 
then pre-processed to identify the different light sources, which were then described in 
feature vectors. The speaker selected a topic and ‘pointed’  at this object, so that the 
hearer could identify the topic as well. Then both robots played a discrimination game 
to categorise the topic’s feature vector. When the discrimination game succeeded, the 
remainder of the language game was played as explained above. Note that the type of 
language game in which the speaker points at the topic, thus establishing joint 
attention, has become known as the observational game (Vogt, 2000c, 2002b). 

Although the experiments were very successful, many problems have arisen during 
the development of the model (for more up-to-date details consult Vogt, 
2000a,2000c,2002b,2003a). Most problems had to do with the inconsistencies 
between what the two robots had seen during a language game, thus leading to 
different contexts, and with the difficulty in achieving joint attention by means of 
pointing. Importantly, these problems have helped in realising the effect that the false 
assumptions in ungrounded models have on the soundness and realism of their results.  



 
Figure 7: This semiotic landscape shows the associations between referents (Li), 
meanings (mi) and word-forms evolved for two robots in one of the robotic 
experiments on lexicon grounding. As can be seen, each referent was categorised 
using different meanings in different situations, but only a few forms were used to 
name the referents. The thickness and type of the line indicate the frequency with 
which associations were used. See the text for more details. 

 
The inconsistencies between the robots’  sensory images were due to the fact that 
when two physical bodies were standing opposite of each other, then each individual 
sensed something different, for instance, because one robot obscured the visibility of 
an object, or the distance from a light source was too large for one of the robots to 
detect it. Also differences in the sensitivity to noise of the sensors and different 
lighting conditions played a significant role. So, although the robots were designed to 
talk about the ‘here and now’  (something what young children also tend to do), the 
hearer may not have seen what the speaker was talking about. Moreover, even if the 
hearer saw the speaker’s topic, it could have detected a completely different sensory 
image of this object. Interestingly, the self-organisation and adaptiveness of the 
language game model partly solved this problem. By allowing an agent to acquire 
many categories, which they could employ in different situations for the same 
referent, while maintaining only one or two forms associated with a referent, the 
robots could communicate about the referents consistently and reliably. So, the robots 
acquired (near) one-to-one mappings between referent and form, and one-to-many 
mappings between referent and meaning and between form and meaning (Fig. 7). One 
consequence of this result is that the model thus might help us explaining how we deal 
with notions such as family resemblance (Wittgenstein, 1958) and object constancy. It 
is beyond the scope of this paper to repeat this argumentation, for details consult 
(Vogt, 2000c,2003a). 



 
Problems with respect to the unreliability of pointing made us look at other ways to 
solve the mapping problem. While trying to model how the robots could estimate the 
reliability of pointing, based on Steels and Kaplan (1998), it was found that the 
speaker’s pointing was not necessary, provided the agents could verify the success of 
the game in order to provide rewards to the learning mechanism. This has lead to the 
development of what has become known as the guessing game, which has also been 
applied in the Talking Heads experiment (Steels et al., 2002). In the guessing game, 
the hearer guesses the speaker’s reference and then success of the game is evaluated 
by the speaker who can - in case of failure - provide corrective feedback on the 
word’s meaning. In the LEGO robots (and the Talking Heads) this was done by the 
hearer ‘pointing’  (unreliably) at the object it guessed the speaker referred to, thus 
allowing the speaker to verify success, which is then signalled back to the hearer. In 
case of failure, the speaker could then point at its topic to provide the hearer with 
feedback in order to the hearer to acquire the proper meaning. But since this was 
adding another source of noise and the world only contained 4 light sources, 
associating the form with a randomly chosen meaning appeared just as effective 
(Vogt, 2000c).  

Experiments comparing the guessing game with the observational game (the game 
where the speaker points at the topic prior to the verbal communication) have shown 
that both methods can achieve high levels of communicative success. Although the 
high levels are reached faster by playing observational games, the lexicons that 
emerge from the guessing games contain more information, meaning that a form is 
used more specificly and consistently in naming a referent. This latter result is 
explained by realising that when hearers have to guess the reference of an utterance, 
the words have to be informative. When the hearer already knows the topic, this is not 
required. It has been argued that in both games a strong competition between 
associations exists, and that the guessing game provides more pressure to 
disambiguate the language (Vogt, 2000a; Vogt and Coumans, 2003); an effect that has 
recently been confirmed in a simple ungrounded model (Wedel, personal 
communication).  

Although many researchers in child language acquisition believe there is ample 
evidence of caregivers providing corrective feedback with respect to the meaning of 
words (Chouinard and Clark, 2003; Brown and Hanlon, 1970), its availability is 
controversial (Bloom, 2000). Since corrective feedback may be unrealistic and joint 
attention - in principle - cannot be assumed to be precise, a third game was developed. 
This selfish game5 is based on the principle of cross-situational learning (Hurford, 
1999; Siskind, 1996), or more precisely cross-situational statistical learning (Vogt 
and Smith, 2005). The idea is that the robots learn the meaning of a word solely based 
on co-variances that occur across different situations. Unfortunately, cross-situational 
statistical learning (CSSL) did not work on the in the LEGO robot experiments, 
because the environment was very minimal and few variations could be detected 
across situations - even when variation was imposed by the experimenter (Vogt, 
2000a, 2000c). Work by Andrew Smith (2003) and recent simulations of the Talking 
Heads (Vogt, 2004,2003b) have proved that CSSL may become a viable learning 

                                                 
5 The - unfortunately chosen - term selfish game refers to the selfishness of the robots’  not caring about 
the effectiveness of the game. 



strategy. Although the learning mechanism is much slower than the observational and 
guessing game models and coherence between the agents in the population is hard to 
achieve (Vogt and Coumans, 2003), results can improve if additional constraints on 
acquiring the meaning of new words, such as mutual exclusivity (Markman, 1989) are 
added (Smith, 2005a).  

3.2.3 Talking Heads and other related work  

Probably the best known robotic experiment regarding language evolution is the 
Talking Heads experiment (Belpaeme et al., 1998; Steels et al., 2002). This large scale 
experiment consisted of several installations distributed across the world and 
connected with each other through the Internet.6 Each installation contained two 
physical robots embodied as pan-tilt cameras connected to a computational unit. Each 
camera (or Talking Head) was oriented towards a white board on which geometrical 
coloured figures were pasted. The population contained a large number agents that 
could migrate from one site to another through the Internet; at each site, each agent 
then played a given number of guessing games. If an agent participated in a game, it 
first embodied itself inside a Talking Head. The speaker would select an arbitrary 
object from a randomly selected region of interest (a subset of the white board) as 
topic. The speaker then indicated (or ‘pointed’ ) to the hearer what the region of 
interest was, thus establishing the context, and the guessing game (explained above) 
started. Feedback was evaluated by the hearer ‘pointing’  at its guessed topic.  

Human users could interact with the experiment by launching agents, which they 
could send around the different installations, and by changing the words agents had 
acquired with words given by the human user. So, new agents entered the population 
and others left regularly. Furthermore, at the physical sites, people were allowed to 
alter the geometrical world, thus introducing new objects and removing others. 
Although this made the experiment largely uncontrolled, it added to the openness of 
the system. Two experiments were launched; the second and longest experiment had 
lasted for about 7 months in which a total of approximately 6,000 agents had played 
roughly 400,000 guessing games. The average communicative success was around 
60% during this period, see (Van Looveren, 2001; Steels et al., 2002) for detailed 
results. Although many agents had participated, one must realise that not all agents 
were present during the entire experiment; most were probably only present for short 
periods. Furthermore, although there was no central control of the language, some 
agents were present almost the entire experiment and were thus likely to have a large 
impact on the lexicon that evolved. Nevertheless, the Talking Heads experiment was a 
significant contribution in showing that a large open system of robotic agents was able 
to evolve a stable, though dynamic set of shared semiotic symbols in a world that had 
many different and varying conditions, especially with respect to the illumination.  

 
Another related set of experiments on mobile LEGO robots and in simulations was 
carried out by Billard and colleagues (Billard and Dautenhahn, 1999; Billard and 
Hayes, 1999). In these experiments, a (group of) learner robot(s) learnt a lexicon 
through interacting with a teacher robot that had its lexicon predefined. Although 
these experiments did not explicitly study the origins and evolution of language, the 

                                                 
6 See http://talking-heads.csl.sony.fr. 



experiments are related, since the experiments involved autonomous robot-robot 
communication and imitation learning. The robots were designed using a dynamical 
recurrent associative neural network architecture (DRAMA) that fully connected three 
sensorimotor modules: a communication input/output module, a sensor input module 
and an actuator output module. In essence, the learner robots were to follow the 
teacher in an environment that contained different patches on the surface (objects or 
places of interest) that the robots could communicate about. In addition, the robots 
could communicate about proprioceptive states and events, such as orientation, 
inclination and action. Interestingly, although the design was set up such that the 
robots avoided problems involved with pointing in, e.g, Steels and Vogt (1997), they 
were faced with other problems concerning the establishment of joint attention. These 
were mainly caused by the delay with which learners observed the objects or events 
the teacher talked about. The model was a closed system in the sense that the lexicon 
for the teacher was predefined with a fixed number of words. This disallowed the 
introduction of completely new objects without altering the teacher’s lexicon. 
Although different numbers of learners were allowed in the system, it might have 
proved difficult to allow a fully open system in terms of population dynamics, where 
agents continuously enter and leave the society.  

An alternative approach of evolving a shared vocabulary in a robotic model was 
issued by Marocco et al. (2003), in which a genetic algorithm (GA) was used to 
evolve a lexicon to coordinate interactions of a robot arm with two different objects: a 
sphere and a cube. The arm was a configuration of three segments with a total of 6 
degrees of freedom. The controller was an artificial neural network, of which the 
weights were evolved using a GA. Fitness was not calculated based on 
communication, but was assessed by counting the number of appropriate interactions 
of the robots with the objects: the arm had to touch the sphere and avoid the cube. It 
was shown that a reasonably well shared lexicon evolved that improved the fitness. 
The problem with this approach is that Marocco et al. used a GA as a model of 
evolution, but the system lacked a learning episode of each individual. This is thus not 
a realistic model of language evolution; rather these simulations use a GA as a 
machine learning technique to optimise the robot controller, which makes use of the 
evolved lexicon. A more realistic approach using a GA is to let the GA evolve the 
connections of the controller and/or the initial values of the weights in the neural 
network and then use a learning mechanism to adjust the weights of individuals while 
they interact with each. An example of such an approach is in Cangelosi et al. (2000), 
which will be discussed in Section 3.4. 

3.3 The emergence of grammar  

As mentioned, one of the most distinctive features of human languages is the high 
degree of compositionality they contain. This means that the utterances of human 
languages are highly structured in that parts of the utterances map onto parts of the 
whole meaning of these utterances. For instance, in the phrase “orange square” , the 
word “orange” refers to the colour orange and the word “square”  to a square. In 
contrast, in a holistic phrase such as “kick the bucket”  (referring to dying), no part of 
the utterance refers to a part of its meaning. One influential hypothesis suggests that 
during the course of evolution, human languages have changed into compositional 
languages from initially holistic protolanguages (Wray, 1998). Many ungrounded 



models have been developed, which provide support to this idea (Brighton, 2002; 
Smith et al., 2003; Kirby, 2001).  

What Brighton, Kirby, K. Smith and others (BKS for short) have shown is that when 
learners learn the language of an adult population while observing only a part of the 
language (i.e. there is a transmission bottleneck), holistic languages are not sufficient 
to allow for stable learnable communication systems. This can be understood by 
realising that when the learners become adults and start communicating to the next 
generation of learners, they have no means to produce expressions about 
objects/meanings they have not encountered before. Compositional languages, 
however, could allow a learner to produce utterances for previously unseen meanings 
when the learnt structures can be combined. For instance, if an agent has learnt the 
proper structures from the phrases “orange square” , “orange triangle”  and “ red 
square” , it would be able to produce the phrase “ red triangle” , even though it would 
never have encountered a red triangle before. BKS have shown that - given a 
predefined structured semantics and a learning mechanism that can discover such 
compositional structures - a compositional language can emerge from an initially 
holistic language, provided the language is transmitted through a bottleneck. In a way, 
the language changes to become more learnable for future generations.  

This approach has recently been implemented in a simulation of the Talking Heads 
experiment, in which the semantics was not predefined, but co-developed with the 
language (Vogt, 2005a,b,c,d). The agents could detect four perceptual features of 
objects: the three components of the RGB colour space and one feature indicating the 
shape of an object. The semantic structures developed from a combination of the 
discrimination game to construct categorical features (elements in one dimension) and 
an inducer to discover conceptual spaces7 of one or more dimensions that could serve 
to represent linguistic categories, such as colours or shapes (note that there was no 
restriction on which dimensions would constitute a conceptual space - all possible 
combinations were allowed). One the other hand, syntactic structures could be 
discovered by looking for coinciding substrings at the utterance level, in a very 
similar way to the approach taken in Kirby (2001). The model thus investigated the 
following twofold hypothesis:  

1. The emergence of compositional linguistic structures is based on exploiting 
regularities in (possibly random and holistic) expressions, though constrained 
by semantic structures.  

2. The emergence of combinatorial semantic structures is based on exploiting 
regularities found in the (interaction with the) world, though constrained by 
compositional linguistic structures.  

The model combines the two most familiar approaches taken in modelling language 
evolution: the iterated learning model (ILM) of BKS and the language game model. 
The iterated learning model typically implements a vertical transmission of language, 
in which the population contains adults and learners, the learners learn from 
utterances produced by adults. At some given moment the adults are replaced by the 
                                                 
7 The term conceptual spaces (Gärdenfors, 2000) is used to denote an n-dimensional space in which 
categories are represented by prototypes. The conceptual space is spanned by n quality dimensions that 
relate to some (preprocessed) sensorimotor quality. Gärdenfors (2000) has argued that conceptual 
spaces can form the semantic basis for linguistic categories. 



learners and new learners enter the population and the process repeats, thus providing 
a generational turnover. Typically (a part of) the language is transmitted from one 
generation to the next in one pass; without competition, but see Kirby (2000) for a 
model with competition; and in a population of size 2, i.e. with 1 adult and 1 learner. 
The integration of the ILM with the language game allows for competition between 
different rules and structures, but it requires more passes through the language in 
order for the language to be learnt sufficiently well.  

The experiments reported in Vogt (2005a) have revealed that learners from the first 
generation already develop a compositional structure, even in the absence of a 
transmission bottleneck. The reason for this rapid development of compositionality is 
to be sought in the statistically high level of reoccurring structures in both the feature 
spaces (thus speeding up the development of semantic structures) and in the signal 
space (thus increasing the likelihood of finding structures at the syntactic level), see 
Vogt (2005b) for a detailed analysis. In the case that the population was of size 2, this 
compositionality was rather stable, but when the population increased to a size of 6, a 
transmission bottleneck was required to provide stability in compositionality. 
(Instability of compositionality means that the compositional languages collapse and 
holistic ones take over.) This difference can be understood by realising that when a 
learner learns from only one adult, the input received by the learner is consistent, 
allowing them to adopt the compositional structures reliably. When multiple learners 
learn from multiple adults, who do not speak to each other, then the input to each 
learner is highly inconsistent, making it harder to learn the language and to converge 
on the language.  

 
Figure 8: The results of an experiment comparing the guessing game (left) with the 
observational game (right). In the experiment, the language is transmitted from one 
generation to another during an iteration (x-axis). The graphs show the evolution of 
compositionality, which measures the degree with which produced or interpreted 
expression have a compositional structure. Each line shows the evolution in one run 
of the experiment. The experiment was done with a population of size 6 and with a 
transmission bottleneck of 50%. 

With the ‘ larger’  population size of 6 agents, compositionality was only stable over 
multiple generations when the guessing game model was used. When the 
observational game was used, the transmission bottleneck caused compositional 
structures to remain longer in the population, but they eventually died out (Fig. 8). 
Like for the experiments on lexicon development, the differences between the 
guessing game and observational game could be explained by the pressure to 



disambiguate competing structures. Where in the guessing game this pressure is high, 
because the hearer has to guess the speaker’s topic based on the received expression, 
this pressure is absent in the observational game, because the hearer already knows 
the topic and the information of the expression is redundant. It appears that the lack of 
this pressure allows the meanings to drift through the conceptual spaces. If the 
meanings are part of a whole meaning, i.e. they are part of a compositional structure, a 
meaning shift affects a larger part of the language. However, when the meaning is 
associated holistically, a shift has little effect on the rest of the language. 
Consequently, the shift of meanings makes the language less stable and thus harder to 
learn than holistic structures.  

Another interesting result that was found is that when learners are allowed to speak as 
well, which is typically not the case in the BKS models, then no experimentally 
imposed transmission bottleneck is required for populations of 6 agents (Vogt, 
2005c). Instead of starting to speak when they are adults, the learners now speak 
during their development. In this way, the learners face the bottleneck earlier in life, 
because they have to produce utterance about previously unseen objects. This may be 
an important results, because it may help to explain why children are so good at 
learning grammar early in life. Moreover, this property may even explain why 
children are thought to be the driving force for the development of grammar in 
Nicaraguan sign language (Senghas et al., 2004).  

A recent study in which the population size was varied from 2 to 100 revealed that 
this model can lead to compositional structures in larger populations (Vogt, 2005d). 
However, the larger the population becomes, the less frequently compositionality is 
stable.  

 
A more complex model implemented in an extended physical version of the Talking 
Heads experiment is being developed by Steels and his co-workers (Steels, 2004; 
Steels and Baillie, 2003). In this experiment the cameras do not look at a static scene 
pasted on the white board, but the cameras observe a dynamic scene played in front of 
them, such as ‘pick up red ball’ . The events are processed through a visual processing 
system, which - although advanced - is still very limited. Only slow movements can 
be captured and only a few objects can be recognised, but only after training the 
visual module. The pre-processed events are then matched with top down generated 
world knowledge, which is represented in the form of predicate calculus of which the 
basic building blocks are predefined (Steels and Baillie, 2003).  

Using these event descriptions, the guessing game (or description game) proceeds. 
Where possible, the agents use the knowledge (lexicon, syntax and semantics) they 
already acquired, but when events or semantics cannot be described with the given 
knowledge, new parts of the language is invented, abducted or induced. New words, 
semantic categories, syntactic categories and hierarchical structures can be 
constructed using some complex techniques, which are largely based on existing 
techniques from computational linguistics. This way grounded construction 
grammars (Lakoff, 1987) can develop, as some preliminary experiments have shown 
(Steels, 2004).  



The experiments reported so far were carried out with two robots of one generation, 
which took turns in taking the role of speaker. Although using such small populations 
without a population turnover is not uncommon in robotic models (see, e.g., Steels 
and Vogt, 1997; Vogt, 2003a), the results achieved may not be stable in larger 
populations with a generational turnover as shown in Vogt (2005a,d). However, given 
that the model also incorporates the guessing game, which is in favour for a strong 
selective pressure on the competition between different structures in the language, the 
model is likely to scale up in terms of population size and population dynamics. Apart 
from the higher complexity in experimental set up and learning mechanisms, one of 
the main differences between Steels’  model and my own is that in Steels’  model the 
speaker can invent new grammatical structures, whereas in my model, this can only be 
achieved by the hearer. Although it is unclear what the implications are for this 
distinction, experiments with my model have confirmed that the productive power of 
speakers - even though they do not invent new compositional structures - has a 
positive effect on the stability of the evolved grammars (Vogt, 2005c).  

3.4 Ecological models  

All models discussed so far have completely ignored the ecological value of language 
and thus fail to investigate the functional meanings of semiotic symbols. In human 
societies language is clearly used to exchange information that can be used to enhance 
some aspect of behaviour. For instance, language can be used to indicate the 
whereabouts of food sources, the presence of predators or other dangers. So far, no 
physical robot study has been carried in which the evolved language is used to 
achieve something. There exist, however, a few grounded simulations in which the 
language is used to coordinate activity that improves the viability of the artificial 
organism.  

Well known are the studies on the emergence of symbolic communication in a world 
of edible and non-edible mushrooms (Cangelosi and Harnad, 2000; Cangelosi and 
Parisi, 1998). In these studies, the task of the agents was to approach the edible 
mushrooms and avoid the poisonous ones. The mushrooms were perceptually 
distinguishable through the encoding of a bitstring. The controller of the agents was 
implemented as a multilayered feedforward network. In Cangelosi and Parisi (1998) 
the weights of the network were trained using a GA, where the fitness was based on 
the organisms’  energy levels (the profit of eating edible mushrooms was smaller than 
the cost of eating non-edible ones). As mentioned before, training a neural network 
using only a GA is far from realistic for modelling language evolution, since it lacks a 
model of language acquisition.  

In Cangelosi and Harnad (2000) the agents do have a learning cycle in which the 
neural network is adapted using backpropagation and the initial weights evolve using 
the GA. Although this model is more realistic, backpropagation uses the output vector 
of the target behaviour to update the weights. Cangelosi and Harnad (2000) 
investigated two conditions: (I) one in which no communication was used to classify 
edible and non-edible mushrooms, and (II) one in which communication was used. 
They have shown that using communication achieved higher performance on 
categorisation than in the condition without communication, provided the population 
in condition II first evolved the ability to categorise the mushroom world using the 
method of condition I. This is in contrast with the language game model, in which the 



ability to categorise the world co-develops with the language. Given the rapid 
changing nature of natural language, co-development of meaning and forms seems 
more realistic.  

Interestingly, the analysis of the evolved neural networks has shown how the 
networks had emerged different internal representations in both conditions. Condition 
II yielded a more structured representation of the categories, allowing Cangelosi and 
Harnad (2000) to conclude that language influences the way in which the individuals 
observe the world. A similar Whorfian effect (Whorf, 1956) has also been observed 
with the language games (Steels and Belpaeme, 2005). A nice property of Cangelosi 
et al.’s experiments is that they show how language can emerge to improve the 
population’s fitness, which was not defined in terms of communicative accuracy.  

 

A related ecological experiment, where the categories co-developed with the language 
was carried out by de Jong (2000). This simulation, which was inspired by the alarm 
call system of Vervet monkeys, contained a number of agents, which were placed on a 
2 dimensional grid of size Nx3.8 At given times, a predator was present in one of the 3 
rows; the row in which it was present resembled the type of predator. In order to avoid 
the predator, the agents that were in that row had to move to another row. The agents 
had a vision system with which they could see the predator, but this system was 
subject to noise so the presence was not always detected. The agents were also 
equipped with a language game model, in which they could develop categories that 
represented their own position, location of the predator and the appropriate action to 
take. The categorisation was modelled using the discrimination game with an adaptive 
subspace representation that allowed the emergence of situation concepts (de Jong 
2000). Situation concepts relate – based on past experiences – perceptual categories 
with actions that need to be performed in order to remain viable. De Jong showed that 
the agents could successfully evolve a lexicon to avoid predators. Moreover, de Jong 
successfully showed that the lexicon development can be classified as attractor 
dynamics, thus providing support for considering the language game as a complex 
dynamical adaptive system. 

                                                 
8 See Loula et al. (2003) for another grounded study on the emergence of alarm calls among vervet 
monkeys. 



 
Figure 9: This figure illustrates the principles of the Braitenberg vehicles used in the 
experiments of Vogt (2002a). Different sensorimotor modules connect the sensors that 
are sensitive to a particular colour directly to the motors of the two wheels of the 
robot. These reactive systems make sure that when one module is activated, the robot 
will move towards the light source of the corresponding colour. Activation of a 
coupling could be regulated by the need of some energy source, or by the 
interpretation of a received signal. When a coupling was activated due to the need of 
some energy source, this robot would try to produce an utterance that is associated 
with this coupling (e.g., the “go-to-blue”  signal in the figure), using the standard 
guessing game. In turn, the hearer would interpret the signal, which could activate its 
associated sensorimotor coupling. If both robots then ended up visiting the same 
energy source, they receive energy which then served as a positive feedback 
mechanism for updating the association scores in the lexicon. 

 
Inspired by earlier work of Steels (1994) on ecological robot models, Vogt (2002a) 
reported an experiment in which two simulated mobile robots developed a lexicon to 
improve on their ability to remain viable over longer periods of time. The robots 
operated in an environment that contained four different charging stations at which 
they could increase their energy levels. The only way to get access to the energy was 
to arrive at a charging station simultaneously. Each charging station had a different 
colour and at some randomly selected moment9, one robot initiated a game and 
selected a charging station that was in its visual field. The robots played a guessing 
game and the hearer would guess where the initiator was going to and activate the 
corresponding sensorimotor coupling. When both robots arrived at the same charging 
station, their energy levels would be refilled, thus providing a positive feedback loop 
for updating the scores in their lexicons. The robots’  control mechanisms were based 
on a simple Braitenberg vehicle (Braitenberg, 1984) and had four excitatory 

                                                 
9 Currently, research is carried out to regulate the selection based on the need for energy and use the 
evolved language to pass on knowledge how to survive in this environment. 



sensorimotor connections sensitive to the four different light colours, which they used 
to navigate towards the corresponding light source (Fig. 9).  

Each connection served as a category and when activated, they could activate an 
associated form. This way, the semiotic symbols could be viewed as symbols that had 
as referent the action of moving towards a charging station in order to refill their 
energy supplies; the form is obviously the signal, which they conventionalised using 
the guessing game; and the meaning was represented by the activation level (0 or 1) of 
the sensorimotor connection that functioned as the “ life-task”  of the robots to 
maintain their energy levels. This, then could be an interesting step toward the 
development of a robotic model in which the meanings of the symbols are truly 
meaningful according to (Ziemke and Sharkey, 2001). A nice aspect with respect to 
the implementation is that the meaning of the actions are not represented in terms of 
the temporal (sensori)motor flow, as was the case in (Vogt, 2000b), but more directly 
in the activation of a reactive mechanism. This is much in line with Brooks’  (1990) 
remark that “once the essence of being and reacting are available”  the development of 
higher order functions, such as using language, would be rather simple.  

4. Future trends  

Up to date a lot has been achieved by using robots to study the origins and evolution 
of language. However, it is clear from the overview in this chapter, that we are still far 
from understanding the entire picture. Can we ever design a group of robots that can 
evolve languages similar to human languages? Personally, I think that the human 
brain and body is so complex that we may never be able to unravel all its secrets - like 
we may never unravel the complete working of our universe, which is similarly 
complex. Nevertheless, I think that we can use robotics profitably to answer some of 
the questions that are posed in our effort to understand language evolution. Much 
future research will need to focus on ecological models, models of grammar, 
categorisation of more human-like concepts, and on models of the theory of mind. 
Furthermore, the models will have to be scaled up at many levels, such as population 
size, sensorimotor complexity, and complexity of the world in which the robots 
operate.  

A recently started European project called New Ties10 aims at developing a simulation 
in which a large community of robots (over 1,000 agents) evolve a cultural society, 
including language. The society ‘ lives’  in an environment where they have to 
cooperate in order to survive (Gilbert et al., 2005). The agents will evolve and learn 
techniques to deal with the constraints set by the environment in order to improve 
their viability (Griffioen et al., 2005). In addition, the agents will be designed to 
evolve language as the motor for evolving the cultural society (Vogt and Divina, 
2005). The techniques these agents will use are heavily based on the language game 
techniques that have been developed so far. One of the major innovations - apart from 
its complexity and ecological setting - will be a design on the Theory of Mind, which 
at a later stage is intended to become subject of the evolution.  

                                                 
10 New Emerging World models Through Individual, Evolutionary and Social learning 
(http://www.new-ties.org). 



Given that many problems in modelling language evolution on robots relate to the 
difficulties in establishing joint or shared attention to the reference of the 
communication, studies into the nature of this ability is extremely important. Only 
few studies are known that investigate how joint attention can emerge, e.g., (Kaplan 
and Hafner, 2004). One of the key aspects with respect to joint attention and related 
issues is that agents need to infer the intentions of other agents. This ability can 
loosely be characterised by the Theory of Mind (Premack and Woordruff, 1978). It 
may well be that the ToM is one of the major innovations of the human species with 
respect to language origins, and therefore its origins deserves more attention in 
models of language evolution.  

On the physical side of the implementation, research is starting to focus on the 
development of more humanoid like platforms. Such implementations have more 
complex sensorimotor systems, which inevitably will provide more complex data 
from which a more complex language - in terms of grammar and vocabulary size - can 
develop.  

With respect to the origins and evolution of grammar and compositionality, research 
needs to done to study how the learning mechanisms have evolved that allow 
individuals to construct grammatical and compositional structures. Up to now, all 
studies on grammaticalisation have assumed that such learning mechanisms exist and 
therefore only investigate how grammar can emerge given these mechanisms. 

Another important direction that needs to be tackled is in relation to the grounding of 
more abstract and higher level symbols, such as - for instance - number systems, 
arithmetic, planning and ‘ feelings’  (internal states). Up to now, all research has 
focused on the emergence of language about events or objects that are directly 
observable to the robots. We humans often use language to communicate about events 
that happened in the past or that may happen in the future. Some work on the 
development of time concepts is done (De Beule, 2004), but it would be good if a 
robot could communicate, for instance, the presence of an interesting object at a 
distant location, which the robot has visited before.  

Most techniques used so far are based on simple language games where some aspect 
of a visible entity is communicated in one direction to investigate learning techniques. 
However, human language use is much more based on dialogues. Future robotic 
models should investigate how dialogues can aid in evolving language. This could be 
particularly interesting for applications where robots develop their own language in 
order to cooperate in environments we don’ t know, such as planets, or using sensors 
that we find difficult to read, such as infrared, sonar or other exotic sensors.  

5. Conclusions  

In this chapter, an overview of robotic (and other grounded) models of language 
evolution is presented. There are many reasons for using robotic models to study the 
evolution of language. The most fundamental one is that robots - necessarily - have to 
solve the symbol grounding problem (Harnad, 1990). It is argued that by using the 
Peircean definition of symbols (or semiotic symbols), the symbol grounding problem 
is solved, because these symbols are per definition grounded in the real world. This, 



however, shifts the problem in the physical symbol grounding problem (Vogt, 2002b), 
which deals with constructing these semiotic symbols. More pragmatic reasons for 
using robots to study language origins and evolution are:  

1. Robotic models can reveal false assumptions that are typically incorporated in 
ungrounded models, e.g., the assumption that all agents have the same 
meanings and are given the meaning of a signal during communication, and  

2. Robots can actually exploit the nature of the interaction with the environment 
to develop certain structures in language.  

The overview shows that in many areas, robots can successfully be used to study 
certain aspects of language evolution, though the state of the art is still extremely 
limited, especially when compared to human languages. The design of robotic models 
is extremely hard and time consuming for many difficult problems need to be solved. 
One of the most difficult problems that was identified in most models deals with the 
robots’  ability to infer the reference of a heard utterance. If we assume that this ability 
is the key aspect of a Theory of Mind (Premack and Woodruff, 1978; Bloom, 2000), 
then the studies indicate that the evolution of a ToM is perhaps the most important 
transition in human evolution with respect to language evolution.  

Robotics has successfully been applied to study the emergence of small lexicons and 
simple grammatical structures, and to study how language evolution can aid in 
operating cooperatively in an ecological environment. Most of the models presented 
started from the assumption that language is a complex dynamical adaptive system in 
which language evolves through self-organisation as a result of cultural interactions 
and individual learning. The studies reported have shown that the language game in 
general provides a robust model in which robots can develop a culturally shared 
symbol system despite (1) the difficulties they face in establishing joint attention and 
(2) the differences in their perception and meaning development. The studies have 
also revealed how agents can exploit structures they find in their interaction with their 
environment to construct simple grammars that resemble this structure. Furthermore, 
the studies reveal some of the effects that the nature of social interactions and the co-
development of language and meaning have on the emergence of language. In 
addition, ecological models on the evolution of language indicate how the functional 
use of language can provide feedback on the effectiveness of communication, which 
individuals can use to learn the language. Concluding, robotics provides a fruitful 
platform to study the origins and evolution of language, thus allowing us to gain more 
insights about the nature and nurture of human language.  
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