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Abstract

This paper presents a new computational model for studying the origins and evolution of
compositional languages grounded through the interaction between agents and their environment.
The model is based on previous work on adaptive grounding of lexicons and the iterated learning
model. Although the model is still in a developmental phase, the first results show that a composi-
tional language can emerge in which the structure reflects regularities present in the population’s
environment.

1 Introduction

Evolutionary computational linguistics has become a booming research area during the past decade,
see, e.g., [5, 9] for overviews. One particular area that has gained increasing attention is the emergence
of compositional languages, i.e. languages in which parts of an expression have a structured relation-
ship to their semantics. Strikingly, but not surprisingly, almost every study that has investigated the
emergence of compositional languages have assumed a predefined meaning space, e.g., [1, 8]. Conse-
quently, these studies are subject to thesymbol grounding problem[7], which relates to the question
how symbols become meaningful to the agent who uses them. One of the reasons why we should try
to avoid the symbol grounding problem is that a lot of linguistic structures may be induced from an
agent’s interaction with their environment.

The only known study that investigates the origins of grammatical structures in a grounded setting
has been reported by Steels [10]. In this work, Steels proposes a model in which agents construct a
procedural grammar of which the semantics are acquired through their interaction with their environ-
ment and the grammatical structures through a complex interplay between the semantics and linguistic
utterances produced by the agents. The experimental framework on which Steels’ model is based is
called theTalking Heads experiment[11]. In this experiment, a population of agents attempt to de-
velop a language with which they communicate about aspects of their environment. This environment
contains geometrical coloured figures that the robotic agents see with their steerable camera heads.

This paper presents a new computational model based on a simulation of the Talking Heads ex-
periment. This model combines theiterated learning modelas proposed by Kirby [8] with aspects
of symbol grounding aimed at researching the emergence of compositional languages. In particular,



the paper attempts to show how learners can induce syntactic and semantic structures by observing
the linguistic behaviours of adult speakers and by discovering visual regularities in their environment.
Through a process of invention and induction, a language is bootstrapped from scratch and transmitted
culturally to subsequent generations.

The following section presents some background on the state-of-the-art in iterated learning and
grounding. Section 3 presents the proposed model. Initial results are presented in Section 4, which
are discussed in Section 5.

2 Iterated learning and grounding

The iterated learning model (ILM) has been proposed to study aspects of language evolution, in par-
ticular the way language is transmitted culturally from one generation to another [4, 8]. The ILM
contains a population of adults and learners, where the adults teach their language to the learners
through linguistic interactions such as language games. After each iteration, the adults are replaced
by the learners and new learners enter the population. Kirby [8] has shown how the ILM could model
a transition from initial holistic protolanguage into compositional languages. In this study, the holistic
language was constructed from associations between predefined meanings (represented as predicate-
argument structures) and unstructured signals. Using a number of heuristics, the agents were able
to induce syntactic structures relating to the regularities of predicate-argument structures of the se-
mantic space. By applying a bottleneck on the transmission of the language, Kirby was able to show
how compositional languages emerged after a number of generations. One shortcoming of Kirby’s
simulations is that it was subject to the symbol grounding problem.

In [15], I applied the ILM to study the evolution of lexicons in a simulation of the Talking Heads
experiment [11]. In this study, a holistic language emerged based on agents’ observations of their
environment – thus providing a way of grounding – and on the learners’ observations of linguistic
behaviours of adults. In these simulations, a shared lexicon was constructed by processing numerous
language games in which agents tried to convey the meanings of observed objects. These mean-
ings were adaptively formed using discrimination games. If the agents failed to convey a meaning,
new (holistic) word-forms were invented, adopted or associations were weakened. If the agents were
successful, used associations were strengthened. In this paper the Talking Heads simulation – im-
plemented in the toolkitTHSim[16]1 – is used as the starting point for studying the emergence of
compositional languages.

The model proposed in this paper is based on finding conceptual spaces. In line with Gärdenfors
[6], I will use the termconceptual spaceas a space where concepts (or meanings) can be stored and
observations can be conceptualised. A conceptual space is spanned by a number ofquality dimensions.
Each quality dimension relates to some quality (or feature) that can be measured by an agent’s sensors.
For instance, the qualities Red, Green and Blue are quality dimensions of a conceptual space for colour
in artificial agents. For holistic languages, I assume that there is one conceptual space that is spanned
by all possible quality dimensions – I call this space theholistic conceptual space. In compositional
languages, conceptual spaces are of lower dimension and relate to certain qualities such as colour or
shape. According to G̈ardenfors, a conceptual space can form the semantic representation of linguistic
categories [6]. For the current study, I hypothesise that in language, holistic utterances (represented
in holistic conceptual spaces) evolved first, and compositional structures emerged from these holistic
utterances, cf. [8, 17]. Note that I do not claim that holistic utterances initially referred to holistic

1Current version THSim v3.2 can be downloaded from www.ling.ed.ac.uk/˜paulv/thsim.html. This version is still based
on holistic signalling only, future releases will include the compositional model described in this paper as well.



Figure 1: Some of the figures that can occur during a language game.

conceptual spaces, I merely adopt the hypothesis for practical reasons. Given this assumption, to find
linguistic categories in a holistic conceptual space, it suffices to discover conceptual spaces of a lower
dimension.

Discovering conceptual spaces is guided by a two way process in language development: On
one hand, semantic structures are induced from regularities in the interaction between agents and
their ecological niche, though constrained by the syntactic structures of their language. On the other
hand, syntactic structures are induced from regularities in culturally transmitted linguistic utterances,
though constrained by the semantic structures. This principle is based on the findings that language
and meanings co-develop [3]. The next section will describe the implemented model in detail. The
induction steps in the model are adapted from Kirby’s [8] model to integrate symbol grounding.

3 Discovering conceptual spaces

As mentioned, the model is implemented as an extension of the THSim toolkit [16]. In this tool a
population of agents can play a series of various language games to develop a language that allows
them to communicate about coloured geometrical figures that are displayed on the screen. Whenever
the agents fail to communicate successfully, they adapt their ontology (i.e., the set of meanings) and
linguistic knowledge (lexicon and grammar) to increase their performance in future games. In the
current paper, the population contains only one adult and one learner; the adult takes up the role of
speaker, while the learner acts as hearer. After playing a number of language games, the learner
replaces the adult and a new learner without any linguistic knowledge enters the population. The
period in which the population remains constant is called aniteration.

3.1 Sensing the environment

At the start of a language game, a contextC of geometrical coloured figures (or objectsoi) is generated
by the environment. Each figure is randomly selected from 10 different shapes such as rectangles,
circles, triangles, crosses and 6 other regular and irregular polygons (Fig. 1). In addition, each figure
is given a colour selected arbitrarily from a set of 12 different colours. So the environment contains a
total of 120 objects. In the current presentation, each language game concerns a different context of 8
objects.

The agents ‘look’ at the context and obtain for each objectoi ∈ C a feature vectorf i. A feature
vector contains a number of features (or qualities) measured by the agent. Currently, the agents use
four features, sofi = (fr, fg, fb, fs), wherefr, fg andfb relate to thergb colour space represen-
tation of the object, andfs is a shape feature. The way these features are calculated is not relevant
for this paper (see [16] for a description), it suffices to say that they can be measured by a real robot
and that each shape has a distinct shape feature. Unlike the real Talking Heads, the features are mea-
sured without any noise. This is done to reduce – for the time being – the complexity of the study.
After the agents obtained feature vectors for all objects in the context, the context can be described as
C ′ = {f1, . . . , fN}, whereN = 8 is the context size.



Once the context is set, the speaker of the language game arbitrarily selects one object from
the context as thetopic of the game and informs the hearer which object this is. This strategy of
informing the hearer about the reference of the game is based on establishing joint attention and is
called theobservational game[13]. It differs from theguessing game, which was originally played in
the Talking Heads experiments [11], where the speaker provides corrective feedback after the hearer
guessed what the topic was.

3.2 Meaning formation: the discrimination game

Given the contextC ′ and the topicot (described byft), the agents try to form a meaning to represent
the topic. One way to form meanings is to use the discrimination game model, e.g., [11, 13], which
is played by an individual agent. The aim of the discrimination game is to find one or moreseman-
tic hypothesesfor a topic that distinguishes the topic from all other objects in the context. Semantic
hypotheses are (compositions of) categories that are defined as regions in a conceptual space, repre-
sented by a prototype. A prototype is a point in the conceptual space and its category is that region of
which all points are nearest to the prototype.

Definition: A conceptual space is saidto covercertain quality dimensions. The holistic conceptual
space covers all quality dimensions, while a non-holistic conceptual space (orconceptual space
for short) covers only a subset of all quality dimensions.

The way a (holistic) conceptual space is covered is indicated by feature letters. For instance, in
the current study there are 4 quality dimensionsr, g, b ands. The holistic conceptual space covers
rgbs, the conceptual space for colour coversrgb and the ‘shape space’ coverss. If an agent has a
holistic category represented byc = (1.0, 0.0, 0.0, 0.1), this category can be decomposed into two
categories coveringrgb ands, represented byc′ = (1.0, 0.0, 0.0, ?) andc′′ = (?, ?, ?, 0.1), where the
?s are wild cards. If an object is observed by an agent, it could categorise its feature vector holistically
(yielding the category set{c}) or compositionally (yielding{c′, c′′}). All categoriesci of agenta are
stored in its ontologyOa = {c1, . . . , cp}, which is initially empty.

At the start of a discrimination game, the agent categorises allfi ∈ C ′ by searching those cate-
gories in each different conceptual space for which the feature vector is nearest to the category that
covers the conceptual space. From these categories, category sets are constructed such that the com-
positions cover all dimensions of the holistic space. This yields for each feature vectorfi ∈ C ′ a set
of category setsCa,i.

If all sets are constructed, the agent removes all category setsHn ∈ Ca,t for which for somei 6= t:
Hn ∈ Ca,i, yielding a semantic hypothesis setHa,t = {Hk} for topicft. In other words: the semantic
hypothesis set contains those category sets for the topic that are not category sets for any other object
in the context, thus distinguishing the topic.

If Ha,t = ∅, the agent has no hypothesis that allows it to distinguish the topic from the rest of the
context, and the discrimination game fails. In this case, the agent will create a new holistic category
by taking the topic’s feature vectorft as an exemplar. IfHa,t 6= ∅, the discrimination game succeeds
and the semantic hypothesis setHa,t is forwarded to the production or interpretation phase of the
language game.

3.3 Production

After the speaker has successfully played a discrimination game, it tries to produce an expression
to convey the reference to the topic. Production is done in three stages. First, the speaker searches



Grammar m\F bluesquare red triangle rue

r1 = S → bluesquare/rgbs m1 = (0, 0, 1, 1) 0.6 0.0 0.0 0.0
r2 = S → A/rgb B/s m2 = (1, 0, 0, 0) 0.1 0.0 0.0 0.0
r3 = A→ red/rgb m3 = (1, 0, 0, ?) 0.0 0.5 0.0 0.2
r4 = B → triangle/s m4 = (?, ?, ?, 0) 0.0 0.0 0.7 0.0
r5 = A→ rue/rgb m5 = (1, 0, ?, ?) 0.0 0.0 0.0 0.0

m6 = (?, ?, 0, 0) 0.0 0.0 0.0 0.0

Table 1: An example grammar and lexicon. The left column presents the grammar. The right part of
the table shows the lexicon where the formsF are presented in the columns and the meaningsm in
the rows. The values in the cells represent the association scoresσF,m.

grammatical rules that fit the semantic compositions of the semantic hypothesis set. Second, the
speaker tries to lexicalise the composed categories that fit a grammatical rule. Third, the speaker
selects that lexicalisation that has been most effective in the past.

During the agents’ lifetimes, each agenta constructs a private grammarGa = {r1, . . . , rq} with
rewrite rulesri like the ones presented on the left-hand side of Table 1. In this table, the symbolS
is the start symbol of a sentence, other upper case letters, such asA andB, are arbitrarily named
terminals, the italic lower case strings are word-forms and the bold face strings indicate the covering
of the terminals. One might expect that, rather than indicating which conceptual space is covered by
the word-forms (as in rules 1, 3, 4 and 5), one could indicate the forms’ meanings. However, a form
may be associated with more than one meaning (and vice-versa), as shown in the lexicon at the right
hand side of Table 1.

Each agenta additionally has a lexiconLa, defined as an associative memory that associates
formsFi with meaningmi mediated by an association scoreσFi,mi . An association score indicates
the effectiveness of an element in previous language games. Lexical elementsli ∈ La are notated by
li = 〈Fi,mi, σFi,mi〉. Initially, bothLa = ∅ andGa = ∅.

When searching rules that match the semantic compositions, the speaker searches for a way to
parse each semantic hypothesis with the grammar by matching the covers of the composition. Suppose
the speaker has obtained the semantic hypothesis setHs,t = {{m2}, {m4,m3}, {m5,m6}}. In this
case only the first two sets are parseable with respect to the grammar presented in Table 1. The first set
{m2} fits a rule liker1, because it coversrgbs. Likewise, the second set{m4,m3} fits ruler2 (note
that the order of categories is discarded in the semantic hypotheses, the grammatical rules represent
the order). The final set{m5,m6} does not fit any rule, because the composition coversrg andbs,
which do not combine to form a rule in the grammar.

Given these compositions, the speaker tries to find forms that match the categories of the compo-
sitions in the same way as done previously for holistic communication, e.g., [13, 16]. The speaker
searches its lexicon for elements of which the meaning matches one of the categories. Continuing our
example, composition{m2} can be lexicalised withbluesquare and{m4,m3} with triangle and
red. Thus the speaker has two ways to express the two hypotheses:bluesquare andredtriangle,
which are derived from compositionsr1 andr2◦r3◦r4 respectively. Note that the compositionr2◦r3
indicates that thatr3 is applied to the leftmost free terminal ofr2. Further note that when an expres-
sion is composed of more than one form, the forms are concatenated such that the hearer cannot
explicitly detect word-boundaries. Now the speaker will select the expression that was most effec-
tively in the past based on the average association scores of the lexical elements. In the example, the
association〈m2, bluesquare, 0.1〉 has an average score of 0.1, while the associations〈m3, red, 0.5〉



and〈m4, triangle, 0.7〉 have an average score of 0.6. As the latter is higher, the speaker will express
redtriangle.

If the speaker fails to produce an utterance, which is the case when it has no grammatical rule
to cover the semantics or when it (partially) has no matching association in its lexicon, the speaker
expands its grammar and lexicon. There are two possibilities:

1. The speaker has a rule of more than one constituent that covers the semantics, but there is no
matching (or partially matching) association in its lexicon.In this case the speaker invents one
or more new word-forms to associate with the meaning parts for each unassociated category.

2. The speaker has no rule to cover any of the semantic hypotheses.In this case the speaker invents
a new word-form that is associated with a holistic hypothesis. If no such hypothesis exists, the
categories of a compositional hypothesis are merged into a holistic category.2

The first case occurs, for example, when the speaker has the semantic hypothesis setHs,t =
{{(1, 0, 0, ?), (?, ?, ?, 1)}} and the above grammar and lexicon. In that case, it can select ruler2,
together with ruler3 to form a partial expressionred.... The speaker will then invent a new form,
for instancesquare, and adds the association〈square, (?, ?, ?, 1), 0.01〉 to its lexicon. In addition, it
will add the ruleB → square/s to its grammar. (Note that in the simulations forms are invented as
sequences of consonant-vowel pairs randomly selected from a finite alphabet.)

The second case occurs, for example, when the speaker has the semantic hypothesis setHs,t =
{{(0, 1, 0, 1

2)}}. In that case a new form is invented, saygreenpentagon, and the association〈green
pentagon, (0, 1, 0, 1

2), 0.01〉 is added to the lexicon. In addition, the ruleS → greenpentagon/rgbs
is added to the grammar. If the hypothesis set would have beenHs,t = {{(0, 1, ?, ?), (?, ?, 0, 1

2)}},
then the two categories are merged into(0, 1, 0, 1

2) and the above mentioned adaptations are made.
Note that the speaker is not able to invent new compositional structures; it can only exploit existing
ones.

3.4 Interpretation and induction

Interpretation Upon receiving the expression, the hearer (or learner) tries to interpret the expression.
If it fails, the hearer will try to induce new linguistic knowledge. Interpretation is processed in two
stages: parsing the expression and checking the semantics. Parsing is done at the syntactic level,
i.e. the expression is parsed relative to the grammar while the semantics is ignored. I will not go
into the details of the parser, as this is relatively straightforward. The only complication is that the
word-boundaries are not visible. For the time being, the parser results only in one possible parse. In
practise, however, there may emerge situations where more than one parse could be possible, but such
situations are currently disregarded for practical reasons. The parser results in a list of forms that are
interpreted, together with the interpreted composition.

When a parse is found, the resulting list of forms is evaluated relating to the hearer’s lexicon and
its semantic hypothesis setHh,t for the topic. So, if the parser returns the resultE = {e1, . . . , en},
where eachei is a part of the expression, the hearer searches for each elementei ∈ E a lexical element
lj = 〈ei,mj , σei,mj 〉 ∈ Lh for which the association scoreσei,mj > 0 andm ∈ H, whereH ∈ Hh,t is
a hypothesis. A semantic interpretation is complete if the entire expressionE can be fully interpreted
by aH ∈ Hh,t. If more such interpretations exist, the hearer selects that interpretationH for which
the average association score is highest. The language game is successful if the entire expression is
completely interpreted by a semantic hypothesis of the topic.

2This latter procedure is not ideal, but was implemented to solve impasses occurring when it was not done.



Following our example, suppose the hearer received the expressionredtriangle. Parsing this
expression to the grammar presented above, yields the following expressionE = {red, triangle} and
compositionr2 ◦ r3 ◦ r4. If the hearer’s hypothesis setHh,t includesH = {m3,m4} or {m4,m3},
then, given the lexicon of Table 1, thisH is the interpretation ofredtriangle. In this case the language
game is a success and the association scores between the used elements are increased byσ = η · σ +
1− η, while competing associations are laterally inhibited byσ = η · σ. An association is competing
if the form matches (part of) the expression but not its meaning or vice versa. Given this scheme,
the association scoresσred,m3 andσred,m4 are increased, whileσrue,m3 is inhibited. The speaker also
receives feedback on the outcome and adapts its association scores in a similar way. If the hearer fails
to interpret the expression, both agents lower the score of any of the used associations.

Induction When the learner fails to parse the expression syntactically and/or semantically, it will try
to induce new linguistic knowledge from the expression with respect to previously learnt knowledge.
There are basically three reasons why parsing can fail.

1. The hearer is able to parse the expression syntactically, but not semantically.This occurs
when the hearer obtained a non-empty expression listE, but failed to find an interpretation.
In this case the hearer associates the words of the expression with aH ∈ Hh,t of equal size
and of which the meaning parts cover the conceptual spaces of the terminals of the parsed
rule. Going back to our example, suppose the learner received the expressionruetriangle,
which it can parse using compositionr2 ◦ r5 ◦ r4. Further suppose that the onlyH that cov-
ers this composition is{(0, 0, 1, ?), (?, ?, ?, 1

4)}. The learner will then add the associations
〈rue, (0, 0, 1, ?), 0.01〉 and〈triangle, (?, ?, ?, 1

4), 0.01〉 to its lexicon.
2. The hearer is able to parse the expression partially on both the syntactic and semantic level.

This happens when the learner finds a composition by which only a part of the expression is
interpreted. In this case, the learner associates the not interpreted part of the expression with the
remaining elements of theH that is partially interpreted, constrained by the grammar. If there
are more ways to interpret the expression partially, the hearer prefers to adapt the remaining part
of the expression with the minimum number meaning parts. If there are more than one such
partial matches, the one with the highest average association score is selected. For example, if
the hearer receives the expressionbluetriangle while having aH = {(0, 0, 1, ?), (?, ?, ?, 0)} ∈
Hh,t, then, using compositionr2 ◦ r? ◦ r4, it is able to match the expression partially with the
association〈triangle,m4, 0.7〉. The remaining part of the expressionblue should then relate
to the ‘r?’ part of the composition. To achieve this, the association〈blue, (0, 0, 1, ?), 0.01〉 is
added to the lexicon and the new ruleA → blue/rgb is added to the grammar, which then
relates tor?.

3. The hearer cannot parse the expression at all.This occurs when there are no rules in the gram-
mar that match the expression. In this case, the learner tries to split the expression such that
it partially matches a split in an existing rule, both syntactically and semantically. Although
in principle splits could be applied to every type of rule, they are currently only applied to
holistic rules. For example, suppose the learner receivesyellowsquare that could relate to
H = {(1, 1, 0, 1)}. A split can then be made in ruler1 with the shared formsquare. Addition-
ally, a split can be made in the semantics (if this is not the case, the split is not pursued further),
yielding a shared category(?, ?, ?, 1). Rule r1 is now rewritten asS → A/rgb square/s,
and the rulesA → blue/rgb andA → yellow/rgb are added to the grammar. In addi-
tion the element〈bluesquare,m1, 0.6〉 is replaced by the elements〈blue, (0, 0, 1, ?), 0.6〉 and
〈square, (?, ?, ?, 1), 0.6〉. Also the association〈(1, 1, 0, ?), yellow, 0.01〉 is added to the lexi-



(a) (b)

Figure 2: (a) The compositionality during the final 50 games of each iteration. (b) How composition-
ality evolved during the first 5 iterations.

con.

If no split can be made, the expression is added holistically. This would occur, for example,
when the hearer receivedgreencircle or yellowsquare with H = {(1, 1, 0, 0)}. In this case, a
rule with start nodeS and coverrgbs is added to the grammar, and the association of the form
with a category coveringrgbs is added. If no such category exists, aH composed of two (or
more) categories is merged such that the resulting category is holistic again.

3.5 Generalise and merge

When the speaker or hearer has changed a rule, the agent will make sure the grammar contains no
redundancies bygeneralisingand/ormerging rules. If two non-holistic rules contain constituents
relating to the same linguistic category, these rules can be generalised. For example, if the grammar
contains the rulesS → A/rgb triangle/s andS → A/rgb circle/s, then both rules are removed
from the grammar and replaced by the rulesS → A/rgb X/s,X → triangle/s andX → circle/s,
where the terminalX can be any yet unused upper case letter.

If there are two rules that have constituents with different terminals that are acting on the same
conceptual space, these rules are merged. For instance, rulesS → A/rgb B/s andS → C/rgb B/s
will be merged intoS → A/rgb B/s and all terminalsC are replaced byA throughout the grammar.

4 Results

This section presents the results of a representative simulation. In this simulation, the population
contained one adult/speaker and one learner/hearer. The simulation was run for 5000 iterations of
350 language games each. Splitting of utterances was only processed on holistic signals with the
consequence that only compositions of two constituents could emerge. The simulation was repeated
10 times with different random seeds.

Figure 2 shows the averaged results of the 10 simulation runs. Graph (a) shows thecompositional-
ity at the end of each iteration. Compositionality is the average number of compositional expressions



R iteration 1 iteration 2500 iteration 4999
A S → x/rgbs(279) S → x/rgbs (110) S → x/rgbs(75)

S → A/s B/rgb(170) S → A/s B/rgb (258)
S → D/gbs gi/r(48) S → C/s D/rgb(0)
S → B/rgb bi/s(0) S → de/r A/gbs (1)

S → D/rgb hi/s(0)
L S → x/rgbs(21) S → x/rgbs(1) S → x/rgbs(7)

S → A/r B/gbs(5) S → A/s B/rgb (45) S → A/gbs B/r(3)
S → C/s D/rgb(0) S → C/gbs D/r (1) S → C/s D/rgb(0)
S → E/rgs ica/b(0) S → de/r A/gbs(1)
S → F/rbs da/g(1)

A S → x/rgbs(156) S → x/rgbs(140) S → x/rgbs(106)
S → A/r B/gbs(39) S → A/s B/rgb(132) S → A/gbs B/r(32)
S → C/s D/rgb(66) S → C/gbs D/r(44) S → C/s D/rgb(183)
S → E/rgs ica/b(8) S → de/r D/gbs(0)
S → F/rbs da/g(21)

Table 2: The grammar of some adults (A) and learners (L) that emerged during one simulation run.
Note that the symbolx in the holistic rules is a variable that is filled with different forms. See the text
for details.

produced or interpreted by the agents during the previous 50 language games. As the figure shows,
the compositionality is already established at approximately 50% from the second iteration onward.
Figure 2 (b) shows how the compositionality evolves within the first five iterations. It increases rapidly
toward a value near 50% after which it stabilises.

Table 2 shows parts of the private grammars that emerged during one of the simulation runs in
iterations 1, 2500 and 4999 of the adult (1st row) and learner (2nd row), and in iterations 2, 2501 and
5000 of the adult (bottom row). The numbers behind the brackets indicate how many times the rules
were produced or interpreted during one iteration of 350 language games. At the end of their lifetimes,
the agents have around 100 rules, of which about 40 are holistic rules. The table shows all rules that
have more than one constituent. Most interesting are the grammars of the adults from iteration≥ 2.
There you see that most of the produced expressions are compositional rather than holistic, although
the holistic expressions still make up a great deal of the utterances.

It is also interesting to see that of the compositions made, those that cover the compositionrgb
ands (representing the conceptual spaces for colour and shape) occur most frequently. These reflect
the regularities that can be found in the world, where there are a given number of objects (shapes) that
are combined with a given number of colours.

Although the table indicates a rather stable grammar (the grammars look very similar), further
analysis revealed that the word order flips very frequently (in about 40% of the iterations for rules
covering the compositionrgb ands). In addition, this combination is not always the most dominant
composition. It competes strongly with other compositions, most notably those coveringr andgbs,
which reflect regularities of thergb colours used. The colour/shape compositions are inexistent in
less than 1% of the iterations, while they are most dominant in about 65% of the iterations.

5 Discussion and conclusion

This paper presents a new computational model to study the origins and evolution of compositional
languages of which the semantics are grounded in the population’s interaction with their world. The



model combines previous work on the emergence of syntax [8] and lexicon grounding [11, 13] with
the idea of discovering conceptual spaces [6].

The first results do not show the expected transition from holistic protolanguages to compositional
languages, as was obtained by Brighton and Kirby [4, 8]. Their results were obtained by imposing a
bottleneck on the transmission of the language from one generation to the next, similar to the poverty
of the stimulus. In the current simulation no such bottleneck was imposed (more language games
were played than there are objects), because when it was used, compositional languages emerged
very infrequently within iterations and died away immediately after. However, looking at the number
of meanings that were formed, one could argue that there was a bottleneck, because there emerged
roughly an average of 105 meanings, including those covering non-holistic conceptual spaces. Never-
theless, no sudden transition toward compositional languages, after a large number of iterations with
holistic languages was observed.

Whether this finding is fundamental or not remains to be seen. It might be caused by a wrong
parameter setting, such as the size of the alphabet. This size controls the probability of finding regu-
larities in the initially unstructured expressions, which guides the formation of compositional rules in
the splitting part of the inducer. In the simulation presented, the alphabet contained only 6 consonants
and 3 vowels, which may be rather small. Future work should investigate the effect of this parameter
more carefully.

Another aspect that requires more attention is the selection of rules during production and in-
terpretation. At the moment, the parser stops when it has found a possible parse, which is the first
parse that occurs in its grammar. However, it is well possible that an agent has more ways to parse
a sentence or semantic hypothesis. If the agent can select a rule from different possible parses, for
instance, based on the effectiveness of the rule in previous language games, the transmission of the
language may become more stable. Candidates for such selection-based learning algorithms are, e.g.,
data-oriented parsing[2] andalignment-based learning[12].

In addition, the discrimination game is likely to be a source for the instability of the emerging
language. As the development of the agents is asynchronous, they have a different trajectory of con-
structing meanings. Furthermore, a discrimination game can succeed even if the semantic hypothesis
are no direct representations of the topic’s feature vector. This is because the semantic hypotheses
are formed from categories that arenearestto the topic’s feature vector and that distinguish the topic
from other objects in the context. Hence, because the context is of limited size and does not include
all objects in the world, the categories need not have a prototype that is in a (very) close proximity of
the feature vector. An alternative method would be what I have called theidentification game[14],
where a feature vector is categorised with the nearest prototype that is within a certain distance. If
no such category exists, a new one is constructed by taking the feature vector as an exemplar. If the
threshold distance is sufficiently low, the emerging ontology would correspond more closely to the
world. In the current study, the threshold could be set to a value asymptotically approaching 0 and
the ontology would resemble the observed objects exactly, because the sensing is not subject to noise.
However, this would not be interesting as it makes the grounding trivial, which in reality is not the
case.

Nevertheless, the results show that a compositional language which reflects the structure of the
world can emerge. The rules most frequently used were composed from colour and shape conceptual
spaces, whereas the second most frequently used rules were composed from conceptual spaces that
contained a major regularity of the colour space (ther component) and the remaining quality dimen-
sions. The mentioned improvement on rule selection could help to favour the most regular aspects of
the world. In addition, an incremental statistical analysis of the holistic conceptual space and how it
is used could be used to decide how new conceptual spaces should be constructed more reliably.



To conclude, the proposed model for evolving compositional languages grounded in the pop-
ulations’ ecological niche is a promising model to further investigate this problem, although more
research is required to improve the model. We are still far from understanding how human language
evolved and models such as the one presented here can help to increase our understanding of language
evolution. One aspect this model has shown is that languages may be shaped, at least to some extent,
by the way in which language users interact with the world.
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