
CONSTRAINT BASED COMPOSITIONAL SEMANTICS

VAN DEN BROECK, WOUTER

Sony Computer Science Laboratory, 6, rue Amyot,
Paris, 75005, France
wouter@csl.sony.fr

Abstract
This paper presents a computational system that handles the grounding,

the formation, the interpretation and the conceptualisation of rich, compo-
sitional meaning for use in grounded, multi-agent simulations of the emer-
gence and evolution of artificial languages. Compositional meaning is de-
constructed in terms of semantic building blocks which bundle a semantic
function together with the relevant grounding and learning methods. These
blocks are computationally modelled as procedural constraints, while the
compositional meaning is declaratively represented as constraint programs.
The flexibility of the data flow in such programs is utilized to adaptively deal
with interpretation and learning. The conceptualisation is performed by a
sub-system that composes suitable constraint programs. The various meth-
ods used for managing the combinatorial explosion are discussed.

1. Introduction

One way to study the evolution of language is to simulate the emergence and
evolution of artificial languages in multi-agent experiments. An important is-
sue in such experiments concerns the involved meaning. This meaning has to
be “rich” for experiments that focus on the emergence of grammar. This pa-
per presents an integrated system that handles the grounding, the formation,
the interpretation and the conceptualisation of such meaning.

The kind of meaning covered by the system consists of concepts and
semantic functions. Concepts are here considered to be category-like enti-
ties such as colors, shapes, events, relations, roles, etc. The grounding of
these concepts requires some grounding method. Examples of such meth-
ods are neural networks as used in (Plunkett, Sinha, Moller, & Strandsby,
1992), probability density estimation as used in (Roy & Pentland, 2002), or
discrimination trees as used in (Steels, 1996). Each concept that is grounded
with a particular grounding method, corresponds to a particular set of concept
parameters, which are used by that method.

Each agent constructs and maintains its own repertoire of concepts. The
acquisition of a grounded concept requires a learning method for use with

the concerned grounding method. Back-propagation can for instance be used
as the learning method for concepts grounded in terms of multi-layered per-
ceptrons.

The role of a concept in the meaning of some utterance depends on the
semantic function that uses this concept. Concepts are for instance used to
categorise perceived entities in order to filter out those that do not fit the cat-
egory. Interpreting “the red ball”, for example, involves a filtering of the
context such that what is retained is the object that best corresponds with
both the color category RED and the shape prototype BALL. Other seman-
tic functions are quantification, predication, negation, deictic reference, etc.
Semantic functions are considered to be recruited from the general cognitive
capabilities. Their evolutionary origin is thus not considered here.

2. Semantic building blocks

Rich, compositional meaning often involves different types of concepts.
There is, however, no grounding method that is equally well suited for all
types of concepts. The proposed system therefore accommodates different
grounding methods. The structurally coupled evolution of language and con-
cept repertoires furthermore requires a close interaction between the ground-
ing and learning methods on one hand and the semantic functions on the
other. Each semantic function is therefore bundled together with the rele-
vant grounding and learning method, and encapsulated in a semantic build-
ing block. Each such block is equipped with a number of slots. These slots
are used to get or set the arguments, such as the concepts and contexts, over
which the semantic function operates.

An example of a semantic block is called filter-set-prototype. This block
has three slots for the arguments it takes, i.e. a source-set, a target-set and
a prototype concept. The behaviour of this semantic block depends on the
availability of the arguments. If the source-set and the prototype are given,
which is the case in a regular interpretation process, then the block can derive
the target-set. This set contains all entities in the source-set that match the
given prototype. If the source-set for instance contains all the objects in the
observed scene shown in figure 1, and the prototype concept is for example
the shape BALL, then the target-set will contain all ball-like objects in the
source-set, i.e. o3, o4 and o5. The meaning of the utterance “the balls” could
thus be represented by a structure that includes this filter-set-prototype block.

Different arguments are available in a learning situation. Consider for
instance a situation in which the speaker used the utterance “the frouple” to
discriminate object o1 in figure 1. The hearer indicated that he/she could not
understand this utterance. The speaker then drew the attention to the topic
by pointing to it. This presents a learning opportunity for the hearer. The
filter-set-prototype block now has the source-set, which includes all objects
in the scene, and the target-set, which contains the topic. It can try to infer the
concept that could account for the filtering from the source-set to the target-
set. The hearer could assume that this concept is the one meant by the word
“frouple” and add this mapping in his/her lexicon.

o2 o3 o4 o5 o6o1

Figure 1. A scene with a number of labelled objects of varying size and shape.

3. Constraint programs

A semantic building blocks can have multiple operational modes depending
on the availability of the arguments. Put differently, each block represent
an omnidirectional relationship among a number of variables. Such rela-
tionships can be computationally modelled as constraints. The encapsulated
functionality that implements the grounding and learning method and the se-
mantic function enforce the relationship. The resulting procedural constraints
can however be declaratively combined by linkinga relevant slots. The result
is a constraint program that represents compositional meaning.

The constraint paradigm is a model of computation in which val-
ues are deduced whenever possible [. . .]. One may visualize a
constraint ’program’ as a network of devices connected by wires.
Data values may flow along the wires, and computation is per-
formed by the devices. A device computes using only locally
available information (with a few exceptions), and places newly
derived values on other, locally attached wires. (Steele, 1980)

The interpretation of a constraint program can be seen as a constraint sat-
isfaction problem, for which efficient algorithms exist. Our implementation
uses a extension of the AC-4 algorithm (Mohr & Henderson, 1986) which im-
plements a strong form of generalized relational arc-consistency. It involves
constraint-ordering heuristics, and uses a look-ahead search to find the actual
solutions.

3.1. Examples

Figure 2 depicts the constraint program that represents the meaning for the
utterance “the bigger ball”. The particular values and data flow correspond
with the interpretation of this program in the context of the scene shown in
figure 1. The filter-set-protype constraint takes the context and the BALL

prototype, and yields the set that contains all balls. The filter-set-comparison
constraint takes this set and the comparator BIG and selects the bigger one,
i.e. the topic o4.

asuch links represent equality relationships

filter-set-
prototype

filter-set-
comparison

BALL BIG

{o1, ..., o6}
{o3,o4,o5}

o4

Figure 2. The constraint program and interpretation data flow for “the bigger ball”.

Figure 3 shows the data flow involved in a learning situation. The hearer
did not understand the modifier but was shown the topic o4. The hearer did
properly understand “ball” and could thus produce the source-set taken by
the filter-set-comparison constraint. This constraint can then, given the topic,
infer the modifier BIG, and a new entry can be added to the lexicon.

filter-set-
prototype

filter-set-
comparison

BALL BIG

{o1, ..., o6}
{o3,o4,o5}

o4

Figure 3. The data flow involved in the inference of the modifier concept.

Figure 4 depicts the program and interpretation data flow for “the box
close to the pyramid”. The filter-set-relation constraint takes the set of boxes
as source-set, the pyramid as landmark, and CLOSE-TO as relation concept.
Given these parameters, it can properly discriminate the topic o2.

filter-set-
prototype

PYRAMID

{o1, ..., o6}

filter-set-
prototype

filter-set-
relation

BOX CLOSE-TO

{o1, ..., o6}
{o2, o6}

o2

{o1}

Figure 4. The program and interpretation data flow for “the box close to the pyramid”.

4. Conceptualisation

We can now turn our attention to the conceptualisation of the compositional
meaning. Since this meaning is represented as constraint programs, its con-
ceptualisation must involve a process that constructs such programs. The
input for this process is a communicative goal, such as “discriminate topic

x in the sensory context”. It must construct a constraint program that, when
interpreted by the hearer, is expected to satisfy that goal. There are typically
many potential programs that could fulfil a given goal. Various criteria are
defined for measuring their relative strengths, such as the level of ambiguity
involved, the expressibility in an utterance, the complexity, etc.

Finding a suitable constraint program is a combinatorial problem. The
constraint program composer algorithm used in our system involves a number
of techniques and strategies for keeping the combinatorial explosion in check.

Eager, incremental search. The algorithm searches for suitable constraint
programs by incrementally expanding incomplete programs, one constraint
at a time. There can be many candidate constraints at each step. These candi-
dates are handled in separate branches. The expanded programs are evaluated
according to some heuristics to decide which branch to expand next. Solu-
tions are found more efficiently with this strategy.

Goal-directed search. If the goal is to discriminate a topic in a context,
then the target program must be such that the topic can be inferred from the
given concepts and context. In other words, one of the potential data flows
in that program must be a coherent, non-cyclic one from the context and
concepts to the topic. The algorithm tries to satisfy this requirement by only
adding constraints that incrementally extend the data flow backwards. Each
constraint is added to support a goal. The initial goal is the topic. Each
constraint supports a goal by adding a piece of data flow. The added data
flow connects the goal with the new sub-goals introduced by the constraint.
When a filter-set-prototype constraint is for example added and its target-set
slots is linked with the goal, then the new sub-goals are the source-set, unless
it is linked with the context, and the prototype, unless it is expressed in the
utterance. A more detailed description of this search process can be found in
(Van den Broeck, 2007).

All potential expansions that do not properly contribute to the data flow,
are ignored. This significantly reduces the size of the search space. The
number of potential combinations of r constraints from an inventory of n
constraints is

˙
n
k

¸
(the multi-set coefficient). The average number of po-

tential links between the slots of r constraints with an average arity of a is
s(k, a) = (k − 1) a ((k − 1) a + 1)/2. The total number of potential con-
straint programs of size k is thus approximately

˙
n
k

¸
2s(k,a), while the size of

the incrementally explored search space of constraint programs of maximum
size k is approximately

Pk
i=1

˙
n
i

¸
2s(k,a).

For a small test case with 5 kinds of constraints with an average arity
of 2.6 and a maximum program size of 6, the total number of partial con-
straint programs is approximately 5.199348e29. The goal-directed search
does however find a suitable program (if there is one) after on average 262
expansions when conceptualising a program for a randomly chosen topic in
our benchmark scene collection.

Interleaved constraint satisfaction. Determining if a constraint program
fulfils the goal is done by interpreting it using the aforementioned constraint
satisfaction algorithm. This algorithm also identifies branches with incon-
sistent partial programs, which can be pruned. Interleaving the constraint
satisfaction in the incremental search furthermore minimizes the amount of
consistency enforcing (when using AC-4), because all enforcing applied on
some partial program caries over to the expanded programs.

Chunking An additional technique we are currently exploring is chunking.
This technique consists of taking a (part of a) successfully used semantic pro-
gram and wrap it such that it can be re-used as a constraint in future programs.
We call these composite constraints, since they are composed of a number of
component constraints. The initially given constraints are in contrast called
primitive constraints. Figure 5 depicts a constraint program that involves a
composite constraint which wraps two primitive constraintsb. This compos-
ite constraint has four slots, which are internally linked with the appropriate
slots of the component constraints.

filter-set-
prototype

filter-set-
comparison

BALL BIG

{o1, ..., o6} o4

filter-set-
prototype

filter-set-
relation

BOX LEFT-OF

{o1, ..., o6}
{o2, o6}

o2

Figure 5. The constraint program and data flow for the interpretation of “the box left of the big ball”.
This program involves a composite constraint that wraps two primitive constraints.

The composite constraint inventory of an agent is initially empty. New
composites are created according to some chunking strategy. We currently
use a basic strategy that chunks complete constraint programs. The resulting
composite constraints are candidates, just like primitives, with which to ex-
pand incomplete programs. Adding a composite corresponds to jumping to
a point in the search space that previously proved to be useful. First experi-
ments show that chunking and re-using the resulting composites, significantly
improves the performance of the composer algorithm, as shown in figure 6.
These telling results were obtained in spite of the basic chunking strategy we
currently use.

The chunking strategy is also interesting because it can be relevant at
the language level. In particular the potential relationship between compos-
ite constraints and grammatical constructions is intriguing, but unfortunately

bcomposite constraints can also be hierarchically composed

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350

without chunking with chunking
conceptualisations

ru
n-

tim
e

pe
r c

on
ce

pt
ua

lis
at

io
n

Figure 6. Comparison of run-time needed to conceptualise a series of topics, with and without chunk-
ing.

beyond the scope of this paper. Finally we would like to note that the com-
poser is also useful when a hearer could not fully reconstruct the constraint
program due to misunderstanding or under-specification. The composer can
in these cases propose potential completions of the incomplete program.

5. Conclusions

In this paper we showed how representing rich, compositional meaning in
terms of constraints and constraint programs offers a uniform framework for
dealing with their interpretation and conceptualisation. We demonstrated
how the flexible data flows handles interpretation and appropriately adapts
to learning situations.

The bundling the semantic functions together with the grounding and
learning methods affords a tight interaction between the interpretation and
the concept acquisition. Encapsulating the procedural details of the bundled
functionality allows experimenters to combine different techniques transpar-
ently.

The constraint based representation of meaning enabled us to draw upon
the well-developed body of knowledge on constraint processing in the fields
of artificial intelligence and operations research. The interpretation of the
constraint based representation constitutes a constraint satisfaction problem,
for which optimal algorithms exist. The conceptualisation on the other hand,
is implemented as a incremental composer of constraint programs. A number
of techniques and strategies were discussed that effectively keep the involved
combinatorial explosion in check.

In traditional first-order logic representations of meaning, the concepts
are typically represented as predicates. In a constraint based approach, the
concepts are rather arguments for the semantic constraints, which can be
thought of as relational predicates. A constraint based semantics can thus
be regarded as a second-order semantics.

Finally, the proposed system does not favour any particular model or for-
malism concerning the emergence and evolution of language in general, or
grammar in particular. It should thus be adoptable in a wide array of experi-
mental and theoretical settings. One particular setting is presented elsewhere
in this collection (Bleys, 2008).

Acknowledgements

This research is supported by Sony Computer Science Laboratory in Paris
and the ECAGENTS project funded by the Future and Emerging Technolo-
gies programme (IST-FET) of the European Community under EU R&D con-
tract IST-2003-1940. It builds on the work first introduced in Steels (2000)
and elaborated on in Steels and Bleys (2005).

References

Blackburn, P., & Bos, J. (2005). Representation and inference for natural
language. a first course in computational semantics. CSLI Publica-
tions.

Bleys, J. (2008). Expressing second order semantics and the emergence of
recursion. In A. D. M. Smith, K. Smith, & R. F. i Chancho (Eds.), The
evolution of language: Evolang 7. World Scientific.

Dechter, R. (2003). Constraint processing. Morgan Kaufmann.
Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited.

Artificial Intelligence, 28(2), 225–233.
Plunkett, K., Sinha, C., Moller, M. F., & Strandsby, O. (1992). Symbol

grounding or the emergence of symbols? vocabulary growth in chil-
dren and a connectionist net. Connection Science, 4, 293—312.

Roy, D. K., & Pentland, A. (2002). Learning words from sights and sounds:
a computational model. Cognitive Science, 26, 113—146.

Smith, A. D. M. (2005). The inferential transmission of language. Adaptive
Behavior, 13(4), 311–324.

Steele, G. L. (1980). The definition and implementation of a computer pro-
gramming language based on constraints. Unpublished doctoral dis-
sertation, MIT.

Steels, L. (1996). Perceptually grounded meaning creation. In M. Tokoro
(Ed.), Icmas96. AAAI Press.

Steels, L. (2000). The emergence of grammar in communicating autonomous
robotic agents. In W. Horn (Ed.), Ecai2000 (pp. 764–769). Amster-
dam: IOS Press.

Steels, L., & Bleys, J. (2005). Planning what to say: Second order semantics
for fluid construction grammars. In A. Bugarin Diz & J. S. Reyes
(Eds.), Proceedings of caepia ’05. lecture notes in ai. Berlin: Springer
Verlag.

Van den Broeck, W. (2007). A constraint-based model of grounded compo-
sitional semantics. In Proceedings of langro’2007.

