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Abstract
The time evolution of Earth with her cities, languages and countries is

considered in terms of the multiplicative noise [1] and the fragmentation-
processes, where the related families, size distributions, lifetimes, bilinguals,
etc. are studied. Earlier we treated the cities and the languages differently
(and as connected; languages split since cities split, etc.). Hence, two dis-
tributions are obtained in the same computation at the same time. The
same approach is followed here and Pareto-Zipf law for the distribution of
the cities, log-normal for the languages, decreasing exponential for the city
families (countries) in the rank order over population, and power law –2 for
the language families over the number of languages in rank order are obtained
theoretically in this combination for the first time (up to our knowledge) in
the literature; all of which are in good agreement with the present empirical
data.

Keywords: Cities, Languages, Families

1 Introduction

On Earth there are 235 countries (states, where the provinces are disre-
garded), which have totally about few million cities, where more than 6
billion humans live and speak about 7000 languages, at present. The whole
life goes on over an area of some 510 million km2. Figure 1 is plotted utiliz-
ing the present empirical data [6] for the relative population of the countries
(divided by the world population, thick line) in rank order; i.e., the most
populous country (China) has the rank one, the next populous country (In-
dia) has the rank two, and the third populous country (USA) has the rank
three, etc., where the corresponding relative area of the countries (divided
by the area of the Earth) is designated by the plot in the thin line. The area
plot depicts fluctuation; yet, it roughly follows the population line. The inset
(Figure 1) is for the population density in capita per km2, which shows that

1

http://arXiv.org/abs/0710.2023v1


the population density is almost constant (about 18.5 capita per km2) over
the countries.

Our essential aim in the present contribution is to show that the time evo-
lution of the world with her cities, languages and countries, etc., might be
governed by two opposite processes: random multiplicative noise for growth
in size and fragmentation for spread in number and extinction. Secondly, we
aim at obtaining a wide panorama for the world (cities, languages, countries
and their distributions, lifetimes, etc.) in terms of a single simulation, where
the related results are obtained at the same time. The model is developed
in [3], where the cities and the languages are treated differently and as con-
nected; languages split since cities split, etc. (For a quantitative method for
the formation of the languages, please see references in [3].) Results for the
size distribution functions, the probability distribution functions (PDF) and
various other functions for both the cities and the languages are found to be
in good agreement with the empirical data. Yet, the results for the language
families (in [3]) are considerably far from reality.

In the present work, our focus is on the families; here the size distributions
of the families for both the cities (countries) and the languages are given
besides their distributions over the number of their members, etc. In [3],
the number of the language families was not changing in time and the city
families were not considered at all. Here, both the offspring cities and the
languages may create new families; in other words, the current families may
fragment as explained in Sec. 3.3. Secondly, we apply random punctuation
for the cities and random change of the languages, which was not followed in
[3]. We now also study bilinguals.[7] Thus, we present here a richer panorama
of the world, where all of the results are obtained in the same simulation, at
the same time for many parameters.

The following section is the model, and the next one is the applications
and results. The last section is devoted for discussion and conclusion. Ap-
pendix is a brief description of the model, which is given extensively in [3].

2 Model:

This section is the definition (2.1.) and a brief review (2.2.-2.4.) of the
model, where also introduced are the meaning of the relevant concepts and
the parameters, with the symbols in capital letters for the cities and those
in lower case for the languages. The subscript fam is used for the families.
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The initial world has M(0) ancestors for the cities (I) and m(0) ancestors
for the languages (i), with M(0) 6= m(0). Each city has a random size (PI(0))
and she speaks one of the initial languages, which is selected randomly. So,
PI(0) is the population of each ancestor city, and pi(0) is the number of
people speaking each ancestor language. (It is clear that the total number of
the citizens and the speakers is the same and it is equal to the initial world
population.)

2.1 Definition:

Populations of the cities grow in time t, with a random rate RI ≤ R, where
R is universal within a random multiplicative noise process,

PI(t) = (1 + RI)PI(t − 1). (1)

As the initial cities grow in population the initial languages grow in size
(pi(t)), where the cities (and consequently, the languages) fragment in the
meantime. If a random number (between 0 and 1; defined differently at
each time step t) for a city is larger than some G close to 1, then the city
becomes extinct (random elimination, punctuation); otherwise, if it is smaller
than some small H , the city splits after growing, with the splitting ratio
(fragmentation, mutation factor) S: If the current number of habitants of
a city I is PI(t), SPI(t) many members form another population and (1 −

S)PI(t) many survive within the same city. The number of the cities M(t)
increases by one if one city splits; if any two of them split at t, then M(t)
increases by two, etc. When a city is generated she speaks with probability
hf a new language, with probability hs a randomly selected current language,
and with the remaining probability 1−hf−hs the old language (of the mother
city).

2.2 Lifetimes for cities or languages:

Lifetime is the difference between the number of the time step at which a
city or a language is generated and that one at which the given agent became
extinct. The agent becomes extinct if its size becomes less then unity in terms
of fragmentation or if it is randomly eliminated (with G < 1). If all the cities
which were speaking a given language are eliminated (by any means), then
we consider the given language(s) as eliminated. And, if all the members

3



of a family become extinct (by any means), then we consider the family as
extinct. The age of a living agent (at the present) is considered as the time
passed from the time of their formation up to now.

2.3 Family trees for the cities or the languages:

We construct the family trees for the cities and the languages as follows: We
assume that the initial cities and the initial languages have different families;
i.e., we have F (0) many city families and f(0) many language families at
t=0. We label each city by these numbers, i.e. the city family number and
the language family number, which may not be the same later (for example,
due to long and mass immigration, as in reality). In this manner, we are able
to compute the number of the members of each family, as well as their sizes
at the present time, etc. (The given labels may be also utilized to trace the
generation level of the offspring agents.) It is obvious that the unification
(merging) of the cities or the languages are kept out of the present scope.

2.4 Bilinguals:

Some citizens of a given city (country) may select another language (other
than the common or official language of the home city, home country, i.e.,
the mother tongue) to speak, where several reasons may be decisive. We
consider here the size distribution of the second languages (bilinguals [7]),
where we assume that an adult (speaking a language i as a mother tongue)
selects one of the current languages if this language k is bigger than the
mother language, pk > pi. Then

p′(t)k ∝ p(t)i(p(t)k − p(t)i)λr′i, (2)

where, p(t)i < p(t)k and the prime denotes the second language. In Eq. (2)
r′i is a random number which is uniformly distributed between zero and one.
So; 0 ≤ λr′i < λ for a given λ, which is proportional to the percentage (up to
randomness) of the population of the language i the speakers of which select
k as the second language, and λ is taken as universal. It is obvious that,
λ has the unit per capita (person) and as the size difference (p(t)k − p(t)i)
increases, the language k becomes more favorite and the related percentage
((p(t)k − p(t)i)λr′i) increases.
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3 Applications and results:

The parameters for the rates of growth (Sect. 2, with the symbols in capital
letters for the cities and these in lateral ones for the languages) have units
involving time: here, the number of the interaction tours may be chosen as
arbitrary (without following historical time, since we do not have historical
data to match with); and the parameters (with units) may be refined ac-
cordingly. Yet, our initial conditions (with the given initial parameters for
ancestors) may be considered as corresponding to some 10, 000 years ago
from now. So the unit for our time steps may be taken as (about) 5 years,
since we consider 2, 000 time steps for the evolution. After some period of the
evolution in time we (reaching the present) stop the computation and calcu-
late PDF for size, and for some other functions such as extinction frequency,
lifetime, etc. (for the cities or the languages and their families, etc.).

Empirical criteria for our results are: i) The number of the living cities
(towns, villages, etc.) and that of the living languages may be different; but,
total size for the present time must be the same for both cases (and also for
the families of the cities or the languages), where the mentioned size is the
world population (Eqn. (2)). ii) World population increases exponentially
with time.[4, 5, 6] iii) At present, the biggest language (Mandarin Chinese) is
used by about 1.025 billion people and world population (as, the prediction
made by United Nations) is 6.5 billion in 2005, (and will be about 10 billion
in 2050) [4, 5, 6]; so the ratio of the size for the biggest language to (the total
size, i.e.,) world population must be (about) 1 : 6.5. iv) Size distribution for
the present time must be power law –1 for the cities (Pareto-Zipf law), and
this may be considered as slightly asymmetric log-normal for the languages.
We first consider the cities (Sect. 3.1), later we study the languages (Sect.
3.2), with the lifetimes, etc., in all; and the families are considered finally
(Sect. 3.3).

3.1 Cities:

The initial world population (W (0)) is about M(0)PI(0)/2, since the average
of uniform random numbers between zero and unity is 1/2. Thus, we assume
power law zero for the initial distribution of the cities or the languages over
size.

We tried many smooth (Gauss, exponential, etc.) initial distributions
(not shown); and, all of them underwent similar time evolutions within 2,000
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time steps, under the present processes of the random multiplication for
growth, and random fragmentation for spread and origination and extinction,
where we utilized also various combinations of the parameters H and G. We
tried also delta distribution, which is equivalent to assuming a single ancestor,
for the initial case; it also evolved into a power law about –1 (with different
set of parameters, not shown) in time. Since we do not have real data for
the initial time, we tried several parameters for M(0) (=1,000; 300; 50, etc.)
and for PI(0) (=1,000; 500) at t = 0. In all of them, it is observed that
the city distribution at present (Pareto-Zipf law) is independent of the initial
(probable) distributions, disregarding some extra ordinary ones. Please note
that, similar results may be obtained (not shown) for M(0) = 1, i.e., single
ancestor.

Evolution: As t increases, the cities start to be organized; and within
about 200 time steps, we have a picture of the current world which is similar
to the present world, where the distribution of the cities over population
is considerably far from randomness. With time, the number of the cities
(M(t)) and the population of the world (W (t)) increases exponentially with
different exponents.[3] Please note that these simulations have about two
million cities and the world population comes out as about 4.5 billion at
t = 2000 (present time, the year 2000), for M(0) = 1000, P (0) ≤ 1000,
R = 0.0075, H = 0.006, G = 0.9992 and S = 0.5. With another set of the
parameters; for R = 0.0073, H = 0.004 and G = 1 (keeping other parameters
same as before) we have about 450 thousand (M(2000)) cities with 6.7 billion
total citizens (W (2000)), etc.

In Figure 2 the plots in circles (open ones for t = 320 and solid ones
for t = 2000) represent the time evolution of size distribution of the cities
(PDF), all of which split and grow by the same parameters (Set 1), where
G = 0.9992. Thus, we have abrupt (punctuated) elimination of the cities
here, which is not followed in [3]; yet the results are not much different,
because the punctuation we applied here is light (low). This means that
it is not strong enough to disturb the running processes, where the negative
effect of the (light) punctuation (in decreasing the numbers) is diminished by
the positive effect of the fragmentation (in increasing the numbers). Please
note that, in Fig.2 the (dashed) arrow has the slope –1, which indicates the
(empirical) Pareto-Zipf law for the cities.

Furthermore, we observe that, as the initial cities spread in number by
fragmentation, the initial random distribution turns out to be log-normal for
intermediate times (as the parabolic fit indicates, for t = 320 for example)
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which becomes a power law –1 (at tail, i.e., for big sizes) for the present
time. The inset (right) in Fig. 2 is the distribution of the world population
(P ) at t = 320 (dashed line) and t = 2000 (solid line) over the cities (C),
which are in rank order along the horizontal axis. Please note that, in the
figure and in the inset, axes are logarithmic. It may be observed in the plots
in the inset (Fig. 2, right) that, the world population (along the vertical
axis, P ) increases slightly more rapidly than the number of the cities (along
the horizontal axis, C). So, Fig. 2 may be considered as the summary for
history of the evolution of the cities (or the languages, see Section 3.2.),
where two opposite physical processes underline the evolution; the random
multiplicative noise and the fragmentation.

Lifetimes: We obtain the time distribution of the cities (lifetime for ex-
tinct cities and ages of the livings ones, not shown here) as decreasing ex-
ponentials (disregarding the cases for small number of ancestors and high
punctuation) as given in the related figures in [3]. Simple probability (den-
sity) functions for the lifetimes are also exponential (not shown), which means
that the cities occupy the time distribution plots in exponential order; more
cities for small t, and fewer cities for big t, for a given number of time steps
in all.

3.2 Languages:

We guess that there were many simple languages (composed of some fewer
and simple words and rules), which were spoken by numerous small human
groups (families, tribes, etc.) at the very beginning. And, as people came to-
gether in towns, these primary languages might have united. Yet, we predict
that the initial world is not (much) relevant for the present size configuration
of the languages (as well as in the case for cities; see, Sect. 3.1). Moreover,
we may obtain similar target configurations for different evolution parame-
ters (not shown). Within the present approach, the ancestor cities and the
ancestor languages are associated randomly; since, the languages with their
words, grammatical rules, etc. might have been formed randomly ([3], and
references therein); the societies grew and fragmented randomly (as men-
tioned in Sect. 2); new cities randomly formed new languages or changed
their language and selected a new one randomly. We predict that, the index
i (roughly) decreases as I increases for small I (not shown). We predict
also the distribution of the present languages over the present cities, where
we have power law minus unity (not shown). It may be worthwhile to re-
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mark that, younger cities prefer younger languages; which means also that
the new cities (or the new countries which are composed of the new cities)
emerge mostly with new languages. Secondly, as t increases the indices I and
i increase, and the plot of I versus i extends upward and moves rightward,
since the number of the current languages (m(t)) and the number of cities,
which speak a given language, increase (as a result of the fragmentation of
the cities).

Furthermore, we compute the number (abundance) of the speakers for
the present languages (pi(t), in Eq. (2)) (not shown), where we have few
thousand (m(t = 2000) = 7587) living languages. Within this distribution of
the present languages over the speakers, we predict power law minus unity
(not shown). It may be worthwhile to remark that older languages have
more speakers; and in reality (Mandarin) Chinese, Indian, etc., are big and
old languages. For example, we have about one billion people speaking the
language number 1, which is one of the oldest languages of the world; and
less people speaking the language number 2, etc.

In Figure 2, we display the PDF for the size distributions of the languages
at t = 320 (historical, open squares) and t = 2000 (present, solid squares),
where the number of the ancestor languages (m(0)) is 300. We plotted several
similar curves for m(0) = 1 i.e., for the case where only one ancestor language
is spoken in each ancestor city and obtained similar results (not shown).
Splitting rate and splitting ratio for languages are not defined here, since
languages split as a result of splitting of the cities; and the splitting ratio
of the splitting language comes out as the ratio of the population of the
new city (which creates a new language) to the total population of the cities
which speak the fragmented language. Please note that, in the plots (Fig.2)
for the languages at the present time (solid squares for t = 2000) we have
slightly asymmetric Gauss for big sizes as the parabolic fit (dashed line)
indicates; and we have an enhancement for the small languages in agreement
with reality [8]. Fig. 2 may be considered as the summary for history of the
evolution of the cities and the languages.

We think that, the (random) elimination of the languages (with all of its
speakers) is not realistic (excluding the small languages with small number
of speakers), and it is not recorded in the history for the recent times. On the
other hand, changing (replacing) a language by another one may be realistic.
And, in case of random (light) elimination (i.e., changing the language with a
current one), the fragmentation rate may accordingly be increased to obtain
the empirical data for the number of the languages at the present. In other
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words, the number of the languages increases by hf and decreases by hs,
which may be considered as punctuation for the languages with 1 − hs < g.
In Fig. 2 (and in other related ones) we utilized hf = 0.0013 and hs = 0.0002.

Lifetimes for the languages and the related probability densities are de-
creasing exponentially (as for the cities); which means that many languages
(cities) become extinct soon after they emerge and the remaining ones live
long (not shown) as in reality. Please see Fig. 2 in [8] for the related empir-
ical data. The (negative) exponent of the present decay is about 0.0007 per
time step for 2000 time steps.

3.3 Families of the cities (countries) or the languages
and the bilinguals:

We obviously do not know how the city (language) families [9] are distributed
over the cities (languages) initially; since, we do not have any historical record
about the issue. Yet, we predicted that the initial conditions for the cities
(languages) are almost irrelevant for the present results. And we considered
several initial conditions for the city families and the language families, which
are discussed in [8] to some extent in empirical terms.

We think that, the number of the city families and the language families
were roughly the same, (yet, the number of the cities and the languages might
be different) initially; and we take F (0) = 30, f(0) = 18 (for M(0) = 1000
and m(0) = 300). Figure 3 and Figure 4 are for the city families and the
language families, with Hfam−f = 0.0005, Hfam−s = 0.0003 (Gfam = 1−Hfam−s)
and hfam−f = 0.0004, hfam−s = 0.0001 (gfam = 1 − hfam−s), all respectively;
where, other parameters are as before. Figs. 3 and 4 may be considered as
in good agreement with the empirical plots in Fig. 1 (and in refs. [4, 5, 6]).
Please note that, the families evolve in time here (with the parameters given
for the related fragmentation in this paragraph), which is not considered in
[3]. For the bilinguals we assume that a small fraction λ of the citizens selects
a second language out of the bigger ones and the introduced probability
increases with the difference in sizes. Figure 5 is the PDF for the distribution
of the bilinguals over the relative population (to the total), where Eq. (3) is
utilized with the present languages (Figs. 2 and 4) for λ = 0.01. We observe
in Fig. 5 that few big languages are favored as the second language by the
majority (about 90 %) of the speakers, with the given λ . We think that
selecting big languages as second languages may help increase the sizes of

9



the big languages.

4 Discussion and conclusion:

Starting with random initial conditions and utilizing many parameters in two
random processes (the multiplicative noise for growth and the fragmentation
for generation and extinction of the cities or the languages) for the evolution,
we obtained several regularities (for size and time distributions, etc.) within
the results; all of which may be considered as in good agreement with the
empirical data.

We predict that the results are (almost) independent of the initial condi-
tions, disregarding some extra ordinary ones. Furthermore, punctuation (be-
sides fragmentation) eliminates the ancestors, with time. For G 6= 1 (G ≈ 1),
we need longer time to mimic target configuration (if other parameters are
kept the same as before), where new generated cities or languages may be
inserted, in terms of fragmentation, provided Gcritical ≤ G, and 1 ≤ G + H .

Many cities or languages become extinct in their youth, and less become
extinct as they become old. In other words, languages or cities become ex-
tinct either with short lifetime (soon after their generation), or they hardly
become extinct later and live long (which may be considered as a kind of
natural selection). We consider the mentioned result (which is observed in
reality [8])as an important prediction of the present model and we had ob-
tained similar results for the evolution biological species [10], which may be
coming out because of the present random multiplicative noise and fragmen-
tation processes.

It might be argued (objected, by the reader) that, there are many param-
eters in the model. Each of them is needed for some measure of the related
evolution in reality. Secondly, as we predict that the initial conditions are (al-
most) irrelevant for the present results and many parameters (for t = 0) may
be ignored. Thirdly, the most important parameter in the model is R (the
rate for population growth), and H is related to R implicitly, since we need
more cities to be established (per time) as the world population increases.
The punctuation parameter G may also be considered as a parameter depen-
dent (implicitly) on R; since the probability for the emergence and spread of
wars, illnesses, etc. increases, as world population increases. The rates for
the languages (h, g, etc.) may also depend (implicitly) on R; since more new
languages (per time) are needed with the increasing world population, etc.
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The rates for the families certainly depend on the number of their current
members, the rate of which may (ultimately) be controlled by R. Speaking
geometrically, the area under each plot for the size distribution of the cities,
languages, language families, city families (countries) must always equal to
the world population at any time t; and this constraint constructs the bridge
for the given implicit dependence of the rate parameters (for the considered
functions) on R.

As a final remark we claim that the original model may be useful to
predict also the historical size distribution of the cities: We predict that the
initial distribution of the cities over the population becomes parabolic for
some intermediate time t (< 2000) in log-log scale and it turns to be power
law –1 as time goes on (i.e., for the present time; t = 2000). The mentioned
distribution may be checked within the archaeological data (as a subject of
a potential field of science; namely, physical history) for the ancient cities
(towns); where, the time evolution of the mentioned distribution into power
law –1 may also be considered.

5 APPENDIX

In the present model, we have (with the symbols in capital letters for the
cities and those in lower case for the languages; and the sub index fam is
used for the families) M(0) ancestors for the cities (I) and m(0) ancestors
for the languages (i), with M(0) 6= m(0). Each city has a random size (PI(0))
and she speaks one of the initial languages, which is selected randomly. So,
(PI(0)) is the population of each ancestor city, and pi(0) is the number of
people speaking each ancestor language. It is clear that the total number of
the citizens and the speakers is same (for any t) and it is equal to the current
world population;

W (t) =
M(t)∑

I=1

PiI(t) =
m(t)∑

i=1

pi(t). (A)

The cities have fixed growth rates (Ri), which are distributed randomly
over the ancestors and they (and, these for the offspring; where the offspring
carry the same growth rate as their ancestors) are not changed later; yet, the
maximum value (R) for the growth rates is constant for all of the cities (so
is for world). Furthermore, we have F (0) initial city families and f(0) initial
language families, with F (0) 6= f(0). Please note that, all of the introduced
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parameters are about physical quantities, which represent several situations
in reality.

The time evolution of the cities (or the languages and their families) is
considered in terms of two random processes, the multiplicative random noise
[1] and the random fragmentation [2], which are coupled; here, the cities or
the languages (and their families) are taken as a whole and the individuals are
ignored. The cities grow in number by splitting (with constant ratio S = 1/2)
where, the fragmentation rate is H ; and, the languages, the city families and
the language families follow them accordingly, with various fragmentation
rates: If a new city forms a new language (hf ) then it means that, the
language of the home city is fragmented; here, the splitting ratio (S) is the
ratio of the population of this new city to the total population of the cities
which speak the old language. It is obvious that hf is small (hf ≈ 0); yet,
many new languages may emerge at each time step, since many new cities
emerge in the mean time, and hf becomes important. On the other hand, a
new (and an old) city may change her language and select one of the current
languages as the new one (with hs ≈ 0, for all), where colonization may take
place or teachers may teach the new language [3], etc. In this case, size of the
old (new) language decreases (increases) by the population of the new city.
The language which is spoken by many cities has a higher chance for being
selected by a new city; and so, big languages are favored in case of selecting
a new language.

We consider the countries (city families) as follows: When a city is newly
generated she establishes a new country (state, as we know many historical
examples where each city was a state (city-state) and many new countries
started with a new city) with probability Hfam−f ; with probability Hfam−s

she is colonized (i.e., changes country); and, with the remaining probability
1 − Hfam−f − Hfam−s she continues to survive within the home country. It is
obvious that when a city (or a group of cities, due to the present randomness)
starts a new country, it means that the old country is fragmented. Secondly,
not only the newly generated cities but also the old ones may be colonized.
The countries with all of her cities may also be colonized (conquered) as
we know from many examples in history. Similar treatment may cover the
language families with the parameters hfam−f , hfam−s and 1− hfam−f − hfam−s

(the probability for starting a new language family, for changing the language
(and so the language family, while surviving within the home country, i.e.,
being culturally colonized) and for continuing to speak a language which
belongs to the home language family; respectively).

12



Please note that, the fragmentation causes new agents to emerge (birth),
and at the same time it drives them to extinction in terms of splitting, and
any agent with a member less than unity is considered as extinct. The
number of the cities increases, decreases, or fluctuates about M(0) for rela-
tively big numbers for H (high fragmentation) and G (low elimination), for
small numbers for H (low fragmentation) and G (high elimination), and for
H +G = 1 (equal fragmentation and elimination), respectively; out of which
we regard only the first case, where we have (for 1 < H + G) an increase in
the number of cities, and we disregard the others. We try several numbers
of the ancestors M(0), with sizes Pi(0), where we assign new random growth
rates for the new cities, which are not changed later, as well as the growth
rates for ancestors are kept as same through the time evolution.

It is obvious that H = 1 = G gives the gradual evolution for the cities,
where we have regular fragmentation with H (and with some S) at each time
step t. This case is kept out of the present scope, because we consider it as
(historically) unrealistic.

It may be worthwhile to stress that elimination (punctuation, G < 1)
plays a role which is opposite to that of fragmentation (H) and growth (R)
in evolution; here, H and R develop the evolution forward, and G recedes.
So the present competition turns out to be the one between H and R, and
G, where two criteria are crucial: For a given number of time steps, R, and
M(0), etc., there is a critical value for G; where, for Gcritical < G ∼= 1 cities
survive, and for smaller values of G (i.e., if G ∼= Gcritical) cities may become
extinct totally. (For similar cases in the competition between species in
biology, one may see [10].) Secondly, sum of H and G is a decisive parameter
for the evolution: If for a given G (with Gcritical < G), H + G = 1, then the
number of cities does not increase and does not decrease, but oscillates about
M(0), since (almost) the same amount of cities emerges (by H) and becomes
extinct (by G) at each time step, and we have intermediate elimination. On
the other hand, if H + G < 1, then the cities decrease in number with time
and we have high (strong, heavy) elimination. Only for 1 < H + G (with
G 6= 1) we have low (weak, light) elimination of cities, where the number
increases (yet, slowly with respect to the case for G = 1). In summary,
only light punctuation of the cities may be historically real, and it does not
affect the evolution and size distribution of the cities, as we observed in many
runs (not shown), where we increase the fragmentation (H) and population
growth rate (R) to compensate the negative effect of punctuation on the
number of cities and world population, respectively. Yet, the ancestor cities
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i.e., those at age of t at any time t, decay more quickly in time as (punctuation
increases) G decreases (since the generated cities may be substituted by new
generated ones after elimination; but the ancestor ones can not be re-built.)
It is obvious that punctuation of a city (together with all of the citizens) is
realistic as many (regrettable) examples occurred during many wars.
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Figure 1: The population (thick curve; in rank order along the horizontal
axis, which is linear) and the area (fluctuating thin curve) of the present
countries. The inset is for the population density per km2, where the two
sided arrow designates the average which is about 18.5 people per km2. Please
note that, many (about 200) countries have the population density between
0.1 and 1 capita per km2. (Empirical data of [6] is utilized to produce the
plots.)
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Figure 2: Historical and present size distribution of the cities and the lan-
guages; open circles for the cities at t = 320, solid circles for the cities at
t = 2000, open squares for the languages at t = 320 and solid squares for
the languages at t = 2000. The dashed arrow has the slope = –1 (for the
cities) and the dashed curve is parabola (for the languages). We have 6417
historical cities, 2.046 million living cities, 504 historical languages and 7882
living languages; historical world population is 1.417 million and the present
world population is 4.532 billion (i.e., the areas under the related lines). The
inset (left) is the distribution of the speakers (N) at t = 320 (dashed line)
and at t = 2000 (solid line) over the languages (L) which are shown in the
rank order of the size along the horizontal axis. The inset at right is the same
as the other inset (left) but for the population (P ) over the cities (C). Please
note that, all of the distributions are obtained in the same computation at
the same time and the axes are logarithmic (in the figure and in the insets).
Parameters are given in Sect. 3.1 and 3.2.
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Figure 3: The city families (in rank order along the horizontal axis, which is
linear) and the population, which is relative to the total (along the vertical
axis, which is logarithmic) at the present time, where we have about 240
families (with 30 families at t = 0); other parameters are same as in Fig. 2.
Please note that, population is distributed in decreasing exponential over the
city families (countries) with small exponent, as in Fig.1 (empirical); yet, we
have here a shorter head (on the left), which may be due to the fact that
in Fig. 1 the biggest countries (China, India, USA, etc.) are displayed with
their provinces (where, the countries with provinces may be considered as
the families of the city families). Please note the similarity for relaxation at
the small population end in Fig. 1 and here. The inset is the distribution of
the present cities over the families.
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Figure 4: The language families (in rank order along the horizontal axis,
which is linear) and their number of the members (along the vertical axis,
which is logarithmic) at the present time, where we have about 140 families
(with 18 families at t = 0); other parameters are same as in Fig. 2. Please
note that, we have 7468 languages at t = 2000, and the dashed arrow has
slope –2. The inset is the size distribution of the present families, where 1.07
billion people speak the biggest language.
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Figure 5: The probability distribution function for the second languages
(bilinguals) over (arbitrary) size, where the bigger languages (than the
mother languages) are favored with the probability which is taken as pro-
portional to the difference in sizes. λ = 0.01; for the other parameters,
please see Sect. 3.
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