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Abstract. Communication is often required for coordination of collec-
tive behaviours. Social insects like ants, termites or bees make use of dif-
ferent forms of communication, which can be roughly classified in three
classes: indirect (stigmergic) communication, direct interaction and di-
rect communication. The use of stigmergic communication is predomi-
nant in social insects (e.g., the pheromone trails in ants), but also direct
interactions (e.g., antennation in ants) and direct communication can be
observed (e.g., the waggle dance of honey bee workers). Direct communi-
cation may be beneficial when a fast reaction is expected, as for instance,
when a danger is detected and countermeasures must be taken. This is
the case of hole avoidance, the task studied in this paper: a group of self-
assembled robots – called swarm-bot – coordinately explores an arena
containing holes, avoiding to fall into them. In particular, we study the
use of direct communication in order to achieve a reaction to the detec-
tion of a hole faster than with the sole use of direct interactions through
physical links. We rely on artificial evolution for the synthesis of neural
network controllers, showing that evolving behaviours that make use of
direct communication is more effective than exploiting direct interactions
only.
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1 Introduction

In collective robotics research, the coordination of the activities in a group of
robots requires the definition of communication strategies and protocols among
the individuals. These strategies and protocols need not, however, be particu-
larly complex. In many cases, simple forms of communication – or no explicit
communication at all – are enough to obtain the coordination of the activities
of the group [11]. This is the case of swarm robotics, that, drawing inspiration
from social insects such as ants, termites or bees, focuses on distributed robotic
systems characterised by limited communication abilities among robots.

Communication in social insects has been thoroughly studied, identifying
different modalities used for the regulation of the colony’s activities. The study
of the nest building behaviour of termites of the genus Macrotermes led Grassé
to the introduction of the concept of stigmergy [9]. Impressed by the complexity
of termites’ nests and by their dimension with respect to an individual, Grassé
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suggested that the cooperation among termites in their building activities was
not the result of either some direct interactions among individuals, nor some
other form of complex communication. On the contrary, cooperation could be
explained as the result of environmental stimuli provided by the work already
done – i.e., the nest itself. Another example of stigmergic communication has
been observed in the foraging behaviour of many ant species, which lay a trail
of pheromone, thus modifying the environment in a way that can inform other
individuals of the colony about the path to follow to reach a profitable foraging
area [8]. The concept of stigmergy describes an indirect communication among
individuals, which is mediated by the environment [4].

Stigmergy is not the only way of communication that can be observed in
social insects. Direct interactions – such as antennation, mandibular contact,
trophallaxis – account for various social phenomena. For example, in many
species of ants such as Œcophilla longinoda, recruitment of nest-mates for the
exploitation of a food source is performed with a mix of antennation and trophal-
laxis: when an ant returning from a food source encounters another worker, it
stimulates the other ant to follow the laid pheromone trail touching the nest-
mate with the antennas and regurgitating a sample of the food source [10].

Some forms of direct communication within insect societies have been studied,
a well-known example being the waggle dance of honey bees. A bee is able to
indicate to the unemployed workers the direction and distance from the hive of
a patch of flowers, using a “dance” that gives also information on the quality
and the richness of the food source [16]. Direct communication in ants has been
reported by Hölldobler and Wilson [10]: ants may use sound signals – called
stridulation – for recruiting or for help requests. In presence of a big prey, ants of
the genus Aphaenogaster recruit nest-mates using stridulation. Here, the sound
signal does not attract ants, but it serves as a reinforcement of the usual chemical
and tactile attractors, resulting in a faster response of the nest-mates.

The above examples suggest a possible taxonomy of different forms of com-
munications in insect societies that can be borrowed for characterising a collec-
tive robotic system. Defining what communication is and classifying its different
forms is not trivial, as confirmed by the number of different taxonomies that
can be found in the literature [1, 3, 6, 12]. In [12], Matarić distinguishes between
indirect or stigmergic, direct and directed communication, on the base of the
communication modality (through the environment versus through a “speech
act”) and of the receiver (unknown versus specified). In [3], Cao et al. introduce
three “communication structures” specific for a robotic system: interaction via
environment, via sensing and via communication. Defining yet another taxonomy
for different communication modalities is out of the scope of this paper. Thus,
we borrow the taxonomy introduced in [3], adapting it to the natural examples
introduced above. In doing this, we will use the above mentioned terminology,
partly borrowed by [12]. Summarising, we will talk of:

Indirect or Stigmergic Communication. A form of communication that
takes place through the environment, as a result of the actions performed by
some individuals, which indirectly influence someone else’s behaviour.
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Direct Interaction. A form of communication that implies a non-mediated
transmission of information, as a result of the actions performed by some
individuals, which directly influence someone else’s behaviour.

Direct Communication. A form of communication that implies a non-
mediated transmission of information, without the need of any physical in-
teraction.

As described above, all these forms of communication can be observed in
biological systems, and in particular in social insects: research in swarm robotics
focuses on the application of these simple forms of communication to artificial,
autonomous systems. Referring to the above taxonomy, in this paper we will
show how direct communication can be beneficial for reinforcing direct inter-
actions. In our work, we study a swarm robotic system composed of a swarm
of autonomous mobile robots, called s-bots, which have the ability to connect
one to the other forming a physical structure – called swarm-bot – that can
solve problems the single s-bots are not able to cope with1 [5, 13]. The physical
connections provide direct interactions among s-bots that can be exploited for
coordination. Additionally, s-bots are provided with a sound signalling system,
which can be used for direct communication. In this paper, we show that, using
the sound signalling system, s-bots can reinforce the information passed through
the physical connections, thus achieving a faster reaction.

The rest of this paper is organised as follows. Section 2 describes the problem
we are interested in, that is, the hole avoidance task. Section 3 details the exper-
imental setup used to perform the experiments. Finally, Section 4 is dedicated
to the obtained results and Section 5 concludes the paper.

2 The Hole Avoidance Task

The hole avoidance task has been defined for studying collective navigation
strategies. It can be considered an instance of a broader family of tasks, aimed
at the study of all-terrain navigation. This family of tasks includes scenarios in
which the robotic system has to face challenges such as avoiding holes or obsta-
cles, passing through narrow passages or over a trough, climbing steep slopes and
coping with rough terrain. With respect to these scenarios, the single robot ap-
proach may fail due to physical constraints or to limited individual capabilities.
Our approach consists in relying on a swarm of robots, that can cooperate to
overcome the individual limitations. Here, we address the all-terrain navigation
problems making use of self-assembled structures – i.e., the swarm-bots.

The hole avoidance task represents a relatively simple problem compared to
others in the all-terrain navigation family, but it is still very interesting for the
study of collective navigation behaviours for a swarm-bot. The s-bots are placed
in an arena presenting open borders and holes, in which the swarm-bot could

1 This research is carried out within the SWARM-BOTS project, funded by the Future
and Emerging Technologies Programme (IST-FET) of the European Community,
under grant IST-2000-31010.
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Fig. 1. The hole avoidance task. The picture shows the arena used, which presents
open borders and contains two large rectangular holes. A swarm-bot formed by four
linearly connected s-bots is shown.

fall (see Fig. 1). Four s-bots are rigidly connected in a linear formation. Their
goal is to efficiently explore the arena, avoiding to fall into the holes or out of
the borders of the arena.

The control of the swarm-bot is completely distributed, and s-bots can only
rely on local information. The problem consists in how to coordinate the activity
of the s-bots. In particular, the difficulty of the collective navigation is twofold: (i)
coordinated motion must be performed in order to obtain a coherent navigation
of the swarm-bot as a whole, as a result of the motion of its components; (ii)
holes are not perceived by all the s-bots at the same time. Thus, the presence of
an hazard, once detected, must be communicated to the entire group, in order
to trigger a change in the direction of motion.

The complexity of the task justifies the use of evolutionary robotics tech-
niques for the synthesis of the s-bots’ controller [15]. In a previous work, we
studied the hole avoidance problem evolving simple neural controllers that were
able to perform coordinated motion and hole avoidance, relying only on direct
interactions among s-bots [17]. In this paper, we focus on the use of direct com-
munication, in order to reinforce the direct interactions and therefore to obtain
more efficient behaviours. In fact, direct communication among s-bots speeds up
the reaction to the detection of a hole, thus it is beneficial for the efficiency of
the navigation.

3 Experimental Setup

As already mentioned, we studied hole avoidance in a previous work [17], obtain-
ing interesting results. In this paper, we aim at improving the obtained results
modifying the experimental setup as follows: (i) the simulation model of the s-bot
is modified, as described in Sec. 3.1; (ii) the controllers include the possibility
to actuate the speaker, thus enabling direct communication among s-bots (see
also Sec. 3.2); (iii) the fitness computation is simplified, taking into account only
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Fig. 2. Left: The simulated model of an s-bot. The light rays represent the position
of the ground sensors, mounted on the rotating turret. The dark circle painted on the
turret indicates that the s-bot is emitting a sound signal. Right: Description of the
encoding of the sensors integral with the turret to the virtual sensors integral with
the chassis. The filled circles indicate the position of the real sensors, while the empty
circles refer to the position of the virtual sensor with respect to the direction of the
chassis.

variables directly available to each s-bot, such as sensor readings or internal state
variables (see Sec. 3.3).

In order to test the effectiveness of the use of direct communication among
s-bots, we performed two sets of experiments: in the first setting only direct
interactions were used, while in the second direct communication capabilities
were added.

3.1 The Simulation Model

We developed a simulation software based on VortexTM, a 3D rigid body dy-
namics simulator that provides primitives for the implementation of detailed and
realistic physics-based simulations (see [13] for more details about the simula-
tor). We have defined a simple s-bot model that at the same time allows fast
simulations and preserves those features of the real s-bot that were important
for the experiments (see Figure 2 left). This model matches more closely the real
s-bot than the one used in the previous work [17], both in the geometries and in
the sensing abilities.

The s-bot has a differential drive motion provided by a traction system com-
posed of four wheels: two lateral, motorised wheels and two spherical, passive
wheels placed in the front and in the back, which serve as support. The four
wheels are fixed to the chassis, which also holds the cylindrical rotating turret.
The turret can rotate around its axis and it holds many sensory systems. Con-
nections among s-bots can be made using a virtual gripper, which is modelled
by dynamically creating a joint between two s-bots. The position of the virtual
gripper is represented by an arrow painted on the turret. Finally, the turret
also carries a loudspeaker that can be controlled to produce a tone that can be
perceived by the other s-bots.
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Each s-bot is provided with a traction sensor, which detects the forces that
are applied to the junction between the chassis and the rotating turret. Four
variables encode the traction force information from four different preferential
orientations with respect to the chassis (front, right, back and left, see [2] for
more details). Traction sensors are responsible for the detection of the direct
interactions among s-bots. In fact, an s-bot can generate a traction force that is
felt by the other s-bots connected through their grippers. This force mediates
the communication among s-bots, and it can be exploited for coordinating the
activities of the group: it proved to be important to evolve coordinated motion
strategies in a swarm-bot and for collective obstacle and hole avoidance [2, 17].

The presence of holes is detected using four ground sensors – infrared prox-
imity sensors pointing to the ground – that are integral with the rotating turret.
In order to account for the rotation of the turret, we encode the information
coming from the ground sensors in four virtual sensors integral with the chassis.
As pictured in the right part of Fig. 2, the value taken by the virtual sensors is
computed as the weighted average of the two closest ground sensors. In partic-
ular, if α and β are the angular differences from the two closest ground sensors,
then cos2(α) and cos2(β) are the weights for the average. Noise is simulated for
all sensors, adding a random value uniformly distributed within the 5% of the
sensor saturation value.

Each s-bot is also equipped with a loudspeaker and three directional mi-
crophones, used to detect the tone emitted by other s-bots. Also directional
microphones, being integral with the turret, are encoded in three virtual sound
sensors integral with the chassis following a procedure similar to the one used
for ground sensors. The loudspeaker can be switched on, simulating the emission
of a continuous tone, or it can be turned off. Exploiting this equipment, s-bots
have direct communication capabilities.

S-bots can control the two wheels, independently setting their speed in the
range [−6.5, 6.5] rad/s. The virtual gripper is used to connect to another s-bot.
However, in this work, the s-bots stay always assembled in a swarm-bot forma-
tion, thus connection and disconnection procedures have not been simulated.
Finally, the motor controlling the rotation of the turret is actuated setting its
desired angular speed proportionally to the difference between the desired an-
gular speed of the left and right wheels. This setting helps the rotation of the
chassis with respect to the turret also when one or both wheels of the s-bot do
not touch the ground [2].

The swarm-bot is composed of four s-bots rigidly connected to form a chain.
It is placed in a square arena of 4 meters side, that presents open borders and
two rectangular holes (80 × 240 cm, see Fig. 1). The dimensions have been
chosen to create passages that can be navigated by the swarm-bot, no matter its
orientation.

3.2 The Controller and the Genetic Algorithm

The s-bots are controlled by artificial neural networks, whose parameters are set
by an evolutionary algorithm. A single genotype is used to create a group of
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s-bots with an identical control structure – a homogeneous group. Each s-bot
is controlled by a fully connected, single layer feed-forward neural network – a
perceptron. Each input is associated with a single sensor, receiving a real value
in the range [0.0, 1.0], which is a simple linear scaling of the reading taken from
its associated sensor. Additionally, the network is provided with a bias unit – an
input unit whose activation state is always 1.0 – and two output neurons that
control the motors of the s-bot.

As mentioned above, we performed two sets of experiments, which differ in
the form of communication used. Thus, the neural networks controlling the s-
bots change depending on which sensors and actuators are employed. In all the
experiments, traction and ground sensors have been used. Specifically, 4 inputs
of the perceptron are dedicated to the traction sensors and 4 other inputs are
dedicated to the virtual ground sensors (see Sec. 3.1). If direct communication is
used, three more sensors are used, corresponding to the three microphones with
which an s-bot is endowed. These sensors are connected to three additional neural
inputs. Concerning the actuators, the two outputs of the perceptron are used to
control the left and the right wheel. Additionally, the same two outputs control
the turret-chassis motor, as described in Sec. 3.1. When direct communication is
used, the activation of the loudspeaker has been handcrafted, simulating a sort
of reflex action: an s-bot activates the loudspeaker whenever one of its ground
sensors detects the presence of a hole. Thus, the neural network does not control
the emission of a sound signal. However, it receives the information coming from
the three directional microphones, and evolution is responsible for shaping the
correct reaction to the perceived signals.

The weights of the perceptron’s connections are genetically encoded parame-
ters. A simple generational genetic algorithm (GA) is used [7]. Initially, a random
population of 100 genotypes is generated. Each genotype is a vector of binary
values – 8 bits for each parameters. The genotype is composed of 144 bits in
the first setting (using direct interactions only) and 192 bits in the second set-
ting (using direct communication). Subsequent generations are produced by a
combination of selection with elitism and mutation. Recombination is not used.
At every generation, the best 20 genotypes are selected for reproduction, and
each generates 4 offspring. The genotype of the selected parents is copied in the
subsequent generation; the genotype of their 4 offspring is mutated with a 3%
probability of flipping each bit. One evolutionary run lasts 150 generations.

3.3 The Fitness Computation

During the evolution, a genotype is mapped into a control structure that is cloned
and downloaded in all the s-bots taking part in the experiment (i.e., we make
use of a homogeneous group of s-bots). Each genotype is evaluated 5 times –
i.e., 5 trials. Each trial differs from the others in the initialisation of the random
number generator, which influences both the initial position of the swarm-bot
within the arena and the initial orientation of each s-bot ’s chassis. Each trial
lasts T = 200 simulation cycles, which correspond to 20 seconds of real time.
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The behaviour produced by the evolved controller is evaluated according to
a fitness function that takes into account only variables accessible to the s-bots
(see [15], page 73). In each simulation cycle t, for each s-bot s belonging to the
swarm-bot S, the individual fitness fs(t) is computed as the product of three
components:

fs(t) = ωs(t) · ∆ωs(t) · γs(t), (1)

where:

– ωs(t) accounts for fast motion of an s-bot. It is computed as the sum of the
absolute values of the angular speed of the right and left wheels, linearly
scaled in the interval [0, 1]:

ωs(t) =
|ωs,l(t)| + |ωs,r(t)|

2 · ωm
, (2)

where ωs,l(t) and ωs,r(t) are respectively the angular speed of the left and
right wheel of s-bot s at cycle t, and ωm is the maximum angular speed
achievable.

– ∆ωs(t) accounts for the straightness of the motion of the s-bot. It is computed
as the difference between the angular speed of the wheels, as follows:

∆ωs(t) =

{
0 if ωs,l(t) · ωs,r(t) < 0

1 −
√

|ωs,l(t)−ωs,r(t)|
ωm

otherwise
, (3)

where the difference is computed only if the wheels rotate in the same di-
rection, in order to penalise more any turning-on-the-spot behaviour. The
square root is useful to emphasise small speed differences.

– γs(t) accounts for coordinated motion and hole avoidance. It is computed as
follows:

γs(t) = 1 − max
(
Is(t), Gs(t)

)
, (4)

where Is(t) is the intensity of the traction force perceived by the s-bot s at
time t, Gs(t) is the maximum activation among the ground sensors. Both
can take values in the interval [0, 1]. This component favours coordinated
motion as it is maximised when the perceived traction is minimised, which
corresponds to a coherent motion of the swarm-bot. It also favours hole
avoidance because it is maximised if the s-bots stay away from the holes.

Given the individual fitness fs(t), the fitness Fθ of a trial θ is computed as
follows:

Fθ =
1
T

Tf∑
t=1

min
s∈S

fs(t), (5)

where T is the maximum number of cycles and Tf ≤ T is the cycle at which
the simulation ended, which may be smaller than the maximum allowed if the
swarm-bot happens to fall into a hole. Averaging the individual components
on T rather than on Tf simulation cycles puts an additional selective pressure
for the evolution of hole avoidance. Additionally, at each simulation cycle t we
select the minimum among the individual fitnesses fs(t), which refers to the
worst-behaving s-bot, therefore obtaining a robust overall fitness computation.
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Fig. 3. Left: The average performance of the 10 replications is plotted against the
generation number for each experimental setting. Thick lines refer to the best individual
of the population, while thin lines refer to the population average. Right: trajectories
of the s-bots while performing hole avoidance. Movies of this behaviour are available
at http://www.swarm-bots.org/hole-avoidance.html.

4 Results

For both settings – using only direct interactions (hereafter indicated as DI) and
complementing them with direct communication (hereafter indicated as DC)
– the evolutionary experiments were replicated 10 times. The average fitness
values, computed over all the replications, are shown in Figure 3 left. The average
performance of the best individual and of the population are plotted against the
generation number. All evolutionary runs were successful. The average fitness
value of the best individuals reaches 0.4, where a value of 1 should be understood
as a loose upper-bound to the maximum value the fitness can achieve2. It is worth
noting that the average fitness of DC is slightly higher than in the case of DI.
This suggests that the use of direct communication among s-bots is beneficial
for the hole avoidance task.

A qualitative analysis of the behaviours produced by the two settings reveals
no particular differences in the initial coordination phase that leads to a coherent
motion of the swarm-bot (see Fig. 3 right). In both cases, the s-bots start to move
in the direction they were positioned, resulting in a rather disordered overall
motion. Within a few simulation cycles, the physical connections transform this
disordered motion into traction forces, that are exploited to coordinate the group.
When an s-bot feels a traction force, it rotates its chassis in order to cancel this
force. Once the chassis of all the s-bots are oriented in the same direction, the
traction forces disappear and the coordinated motion of the swarm-bot starts
(see also [17, 2]).

2 This maximum value could be achieved only by a swarm-bot coordinately moving
in a flat environment, without holes. In the arena shown in Fig. 3 right, the narrow
passages result in frequent activations of the ground sensors, and therefore in frequent
re-organisations of the swarm-bot.
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Fig. 4. Post-evaluation analysis performed evaluating 200 times the best individuals
obtained from each replication of the experiment. Boxes represent the inter-quartile
range of the data, while the horizontal bars inside the boxes mark the median values.
The whiskers extend to the most extreme data points within 1.5 of the inter-quartile
range from the box. The empty circles mark the outliers.

The differences between the two settings DC and DI are evident once the hole
avoidance behaviour is considered. When an s-bot detects an edge, it rotates the
chassis and changes the direction of motion in order to avoid falling. When using
only direct interactions, this change in direction produces a traction force for
the other s-bots, which triggers a new coordination phase that ends up in a new
direction of motion that leads the swarm-bot away from the edge. This simple
behaviour exploits the direct interactions among s-bots – shaped as traction
forces – to communicate the presence of an hazard – the hole to be avoided.
However, this strategy may fail as communication via traction is sometimes too
weak to be perceived by the whole swarm-bot. On the contrary, the evolved
controllers that makes use of direct communication react faster to the detection
of a hole: the s-bot that detects the hole emits a sound signal that is immediately
perceived by the rest of the group. Thus, the whole swarm-bot starts turning
away from the hole, without waiting to perceive a strong traction force. Traction
is then exploited again in order to perform coordinated motion.

From the qualitative analysis, the use of direct communication seems to con-
firm our expectations: direct communication provides a faster reaction to the
detection of a hole and therefore a more efficient avoidance behaviour. In order
to quantitatively assess the difference in performance between DC and DI, we
performed a post-evaluation analysis and compared the results obtained with
the two settings. For each evolutionary run, we selected the 20 best individuals
of the final population and we re-evaluated them in 200 trials, each characterised
by a different random initialisation. All individuals were tested using the same
set of trials. The performance of the re-evaluations was measured using Eq. (5).
We selected the individual with best mean performance in the post-evaluations
and discarded the other nineteen individuals. A box-plot summarising the per-
formance of these individuals is shown in Fig. 4. It is possible to notice that DC
generally performs better than DI.



140 Vito Trianni, Thomas H. Labella, and Marco Dorigo

On the base of these data, we performed a two-way analysis of variance to
test if there is a significant difference in performance between the settings [14].
The analysis considers 2 factors (the settings), 200 blocks (the testing trials) and
10 replications for each combination of factor/block (the evolutionary runs). The
applicability of the method was checked looking at the residuals coming from
the linear regression modelling of the data: no violation of the hypothesis to use
the analysis of variance was found. The result of the analysis allows us to reject
the null hypothesis that there is no difference among the two settings (p-value
< 0.0001). On the base of the mean performance of the two settings – 0.3316 for
DC and 0.2708 for DI – we can conclude that, in the experimental conditions
considered, a system that uses direct communication among the s-bots performs
better than one that exploits only direct interactions.

5 Conclusions

In this paper, we have shown how the use of direct communication in a swarm-
bot performing hole avoidance can be beneficial for the effectiveness of the group
behaviour. Comparing the use of direct communication with the case in which
only direct interactions among s-bots were possible, we found that the former
setting performs statistically better than the latter. It is worth noting that direct
communication acts here as a reinforcement of the direct interaction among s-
bots. In fact, s-bots react faster to the detection of the hole when they receive
a sound signal, without waiting to perceive a traction strong enough to trigger
the hole avoidance behaviour. However, traction is still necessary for avoiding
the hole and coordinating the motion of the swarm-bot as a whole. Finally, it is
important to remark that all controllers were synthesised by artificial evolution,
which proved to be an efficient mean for automatically developing behaviours
for homogeneous groups of robots.
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12. M. J. Matarić. Using communication to reduce locality in distributed multiagent
learning. Journal of Experimental and Theoretical Artificial Intelligence, Special
Issue on Learning in DAI Systems, 10(3):357–369, 1998.

13. F. Mondada, G. C. Pettinaro, A. Guignard, I. V. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo. SWARM-BOT: A new
distributed robotic concept. Autonomous Robots, 17(2–3):193–221, 2004.

14. D. C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, Inc.,
New York, NY, 5th edition, 1997.

15. S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. MIT Press/Bradford Books, Cambridge,
MA, 2000.

16. T. Seeley. The Wisdom of the Hive. Harvard University Press, Cambridge, MA,
1995.

17. V. Trianni, S. Nolfi, and M. Dorigo. Hole avoidance: Experiments in coordinated
motion on rough terrain. In F. Groen, N. Amato, A. Bonarini, E. Yoshida, and
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