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ABSTRACT. We study an evolutionary language game that describes how signals become
associated with meaning. In our context, a language, L, is described by two matrices: the
P matrix contains the probabilities that for a speaker certain objects are associated with
certain signals, while the ) matrix contains the probabilities that for a listener certain sig-
nals are associated with certain objects. We define the payoff in our evolutionary language
game as the total amount of information exchanged between two individuals. We give a
formal classification of all languages, L(P, @), describing the conditions for Nash equilibria
and evolutionarily stable strategies (ESS). We describe an algorithm for generating all lan-
guages that are Nash equilibria. Finally, we show that starting from any random language,
there exists an evolutionary trajectory using selection and neutral drift that ends up with
a strategy that is a strict Nash equilibrium (or very close to a strict Nash equilibrium).

1. INTRODUCTION

Theories for the evolution of language (Pinker & Bloom 1990, Bickerton 1995, Dunbar
1995, Pinker 1995, Deacon 1997, Hurford et al 1998) should address three points. First, they
have to study the evolution of the simplest possible communication systems. Second, they
should explore how natural selection can guide the transition from animal communication to
human language and thereby explain the evolution of the very simplest properties of human
language that are absent in animal communication. Third, they have to show how complex
features of modern human language can evolve by natural selection (Niyogi & Berwick 1997).

The present paper is concerned with the first point. We present a formal analysis of an
evolutionary game that was designed to capture the very first step of evolution toward a
communication system (Hurford 1989, Nowak & Krakauer 1999, Nowak et al 1999). We
explore how specific signals can evolve to become associated with specific objects. In the
simplest evolutionary language game, we imagine a group of individuals (early hominids or
other animals) that can produce a variety of signals. Signals can either be vocal, based
on signs or a combination of both. We are interested in how such signals can evolve to
become associated with specific objects. We use “object” in an extended sense to include
other animals, inanimate objects, actions, events or concepts. In our context, an “object” is
everything that can be referred to.
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Denote by P the n X m matrix whose entries p;; represent the probabilities that an
individual will send signal 7 when wanting to transmit the information “object i”. Let @ be
the m x n matrix whose entries g;; denote the probabilities that an individual will conceive
of “object ¢” when receiving signal j. Hence, there are n objects and m signals. We have

m n
Zpij =1 and ZjS =1.
j=1 i=1

We could also relax these constraints and allow for the possibility that an individual may
not always signal when seeing an object or, vice-versa, may not always conceive of an object
when receiving a signal. In this case, we would have

m n
Zpij <1 and ZjS <1.
j=1 i=1

Consider two individuals that use languages L(P, Q) and L'(P’,Q"). We define the payoff
as

n m
P(L, L) = (1/2) Y Y (pijdji + Pljasi)-

i=1 j=1
The probability of transmitting object i from L to L' is given by 3, pi;qj;. The payoff
function sums these probabilities for all objects and then takes the average over the two
situations, L signals to L' and L' signals to L. The specific assumptions of the payoff function
are that sending and receiving yield equal payoffs and that all objects contribute the same
amount to the payoff. Note that the payoff function is symmetric, F(L,L") = F(L',L). A
similar model was used by Hurford (1989) to study the evolution of the Saussyrian sign.

Following the notions of classical game theory, we can define a language L as a strict
Nash equilibrium if F(L,L) > F(L', L) for all languages L' # L. Furthermore, a language
L is a Nash equilibrium if F(L,L) > F(L',L) holds for all languages L. In terms of
evolutionary game theory (Maynard Smith 1982, Hofbauer & Sigmund 1998), a language L
is an evolutionarily stable strategy (ESS) if F(L,L) > F(L',L) holds for all L' # L, or if
F(L,L) = F(L', L) then we must have F(L', L") > F(L,L").

Nash equilibria or ESS are fixed points of evolutionary dynamics: if a whole population
uses a language that is either Nash or ESS then evolution will normally not change this
situation. In other words, mutant strategies — as long as they are rare — cannot invade
the population by natural selection. Strict Nash or ESS strategies are also protected against
invasion by random drift. This is not the case for general Nash equilibria: if F(L,L) =
F(L',L) = F(L',L') then L and L' are neutral variants. There is no selection, but random
drift can replace L by L'.

Two points are of general interest. First, while strict Nash equilibria or ESS are fixed
points of evolutionary dynamics, there is no necessity that they are evolutionary attractors.
Evolutionary dynamics can lead away from them (Nowak 1990, Hofbauer & Sigmund 1998).
Second, strictly speaking they are only stable against invasion by mutants in arbitrarily low
frequencies. Many reasonable phenomena, such as clustering, spatial effects, group selection
or kin selection, may help mutants to overcome the invasion barrier. Despite this limitations,
however, studying a new game always starts with an attempt to characterize all Nash or
ESS strategies. And this is what we will do here.

Section 2 makes some preliminary remarks. In Section 3, we show that a language is
a strict Nash equilibrium if and only if n = m, P is a permutation matrix and () is the
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transpose of P. A permutation matrix has exactly one 1 entry in every row and column,
while all other entries are zero. (The transpose of a matrix is the matrix that has rows and
columns interchanged. Thus @ is the transpose of P, Q = P, if ¢j; = pi;.)

Our result shows that the conditions for a strict Nash equilibrium are quite restrictive.
Specifically we need that each object must be associated with one unique signal and vice
versa. Hence, the number of objects and signals must be identical. For n = 2 there are two
strict Nash equilibria:

10 0 1
P:QT:(O 1) and PZQTz(l O)

For n = 3 there are 6 strict Nash equilibria. For a given number, n, of objects and signals
there are n! many languages which are strict Nash equilibria.

In Section 4, we show that a language, L, is ESS if and only if it is strict Nash. Hence, in
the evolutionary language game, strict Nash and ESS languages are identical.

In Section 5,we show that a language, L(P,Q) is a Nash equilibrium if the following,
somewhat unexpected, conditions are fulfilled:

(i) in each column of P, entries are either zero or a specific number between 0 and 1;

(ii) in each column of @, entries are either zero or a specific number between 0 and 1;

(iii) QT must be on the support of P

Conditions (i) and (ii) mean that in any one column of P (or ) all non-zero entries must
be identical. Thus, the entries of column j of the P matrix must be drawn from the set
{0,p;}, where p; is any number less than or equal to 1/n. The number p; is fixed for column
J, but different columns can have different numbers p;. In complete analogy, the entries of
column % of the @ matrix must be drawn from the set {0,¢;}. Condition (iii) means that g;;
is positive if and only if p;; is positive.

Let us consider an example of a Nash equilibrium language (which is not strict Nash) for
n=m=3:

1 0 0 1—y y O
P=11 0 0 Q= 0 01
0 1—z =z 0 0 1

Here z and y are arbitrary numbers between 0 and 1. For both P and @ all rows sum to one.
In this example, signal 1 refers to both object 1 and object 2, while signals 2 and 3 both refer
to object 3. Thus we have homonymy (one signal has two meanings) and synonymy (two
signals have the same meaning.) Let us check that all Nash equilibrium conditions hold: In
column 1 of P, entries are either 0 or 1, in column 2 they are either 0 or 1 — z, in column 3
they are either 0 or z. Similarly in column 1 of @), entries are either 0 or 1 — y, in column
2 they are either 0 or y, in column 3 they are either 0 or 1. Finally, we confirm that p;; is
positive if and only if g;; is positive.
Here is an example for n =4 and m =3

IR,
P = Q= 0 0 1—2z =z
01—z =z
0 0 1—2 =z
0 1—z =z

Here z, y and z are arbitrary numbers in (0,1). Again we have homonymy: signal 1 denotes
objects 1 and 2. There is also a case of “syno-homonymy”: signals 2 and 3 both denote
objects 3 and 4, but they have to do so in equal proportions. Thus, if object 3 induces signal
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3 with probability z, then object 4 must also induce signal 3 with probability z. This is
quite an unnatural constraint.

Note that the following P matrix cannot be part of a Nash equilibrium:

z 1—z 0
P= (0 11—z x)
While this P matrix fulfills the Nash criteria, it is not possible to construct a () matrix that
would fulfill the Nash criteria.

In summary, therefore, it seems that Nash equilibria have the following interesting prop-
erties (i) there can be homonymy: two or more objects are associated with the same signal,
but none of the objects is also associated with another signal. (ii) there can be synonymy:
one object is associated with two or more signals, but none of the signals are also associated
with other objects (unless in the unlikely situations where all of the signals are associated
in exactly the same proportion with another object) Section 5 also describes an algorithm
for constructing all languages which are Nash equilibria.

In Section 6, we show that starting from any arbitrary language, L1 (Py, Q1), there exists a
sequence of languages, L1, Lo, ..., Ly, such that for each 4, L; can replace L; ; via selection
or random drift, and so that the terminal language Ly is either: strict Nash, if n = m;
or, if n # m, Ly is of the form (Py,Qn = P}F), where Py is an eztended permutation
matrix. (Such a matrix is obtained by adding rows or columns of zeros to a permutation
matrix of size min{m,n}.) This latter situation can be understood in very simple terms.
Suppose for definiteness that there are more objects than signals (n > m). The terminal
language Ly then associates each signal to a unique object, and to such objects associates
the unique signal describing it. The remaining objects are neither associated to a signal
nor are there signals describing these objects. Said differently, the remaining objects are
completely ignored. The benefit of neglecting them is that there is no ambiguity (either
synonymy or homonymy) in the resulting language.

2. PRELIMINARIES
We begin by defining a function (the fitness function)
F : ({m x n real matrices} x {n x m real matrices})> — R
via
1
F((P,Q), (P, Q")) = §(Tf(PQ') + Te(P'Q)).

Given an m X n matrix A, we say that it is weak row stochastic if each of its rows consist
of positive real numbers that sum to a numerical less than or equal to 1; if the value is
exactly 1, the matrix is called row stochastic. An m X n matrix is called binary if all of its
entries are either 0 or 1. A binary m x m matrix is called a permutation matriz if each row
and column contains a unique nonzero entry. An m X n matrix is an extended permutation
matriz if it is obtained from a permutation matrix by adding rows and columns consisting
entirely of zeros. Note that any permutation matrix is row stochastic and that the transpose
of a permutation matrix is again a permutation matrix. Similarly any extended permutation
matrix is weak row stochastic, and its transpose is an extended permutation matrix.

A weak (m,n)-language L = (P, Q) is a pair of weak row stochastic matrices, one of size
m X n, the other of size n x m. Denote the set of (m,n)-languages by L7»". If P and @ are
actually row stochastic, then L is simply called a language. The set of all (m,n) languages
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is denoted L™"™. To avoid confusion with the modifier “weak” defined below, we refer to a
weak language as a w-language

We say that L € Ly" is strict Nash if F(L,L) > F(L,L’) for all L’ € Ly,"" with L' # L.
L is called Nash if F(L,L) > F(L,L') for all L' € Ly,"". Finally L is called an evolutionary
stable state (briefly ESS) if L is Nash and for every L' with F(L,L) = F(L,L'), we have
F(L,L) > F(L',L'). If the final strict inequality is relaxed to a weak one, L is called a weak
ESS. jFrom the definitions, the following chain of implications is clear:

strict Nash —> ESS — weak ESS — Nash.

(The asymmetry in the usage of the modifiers “strict” and “weak” is unfortunate, but
conventional.)

The obvious definitions apply to languages instead of w-languages. For instance we say
that L € L™" is Nash if F(L,L) > F(L,L') for all languages L' € L™"; similar definitions
apply for strict Nash, ESS, and weak ESS. But now a potential ambiguity arises. Conceivable
there could exist a language L € L™" which is Nash as a language, but not Nash as a w-
language. A little checking of the definitions shows that this kind of example never arises:

Lemma 2.1. A language L € L™" is strict Nash (respectively, Nash, ESS, or weak ESS)
as a language if and only if it is strict Nash (respectively, Nash, ESS, or weak ESS) as a
w-language.

It is helpful to introduce a little more notation. Given a weak m x n weak row stochastic
matrix A, consider the set of real numbers obtained by multiplying A by some weak n x m
row stochastic matrix and then taking the trace; more precisely, set

Sa={Tr(AB) | B is any n x m weak row stochastic matrix}.

Note that S4 is bounded and, moreover, that S4 actually achieves a maximum. Indeed,
for a fixed A, Tr(AB) is maximized by choosing B to be a binary row stochastic matrix
satisfying

B;j =1 = Aj; is a maximal entry in the 7th column of A.

We can thus define the set Max,,(A) to consist of all n x m weak row stochastic matrices
B so that Tr(AB) is indeed maximal. Similarly we define Max(A) to consist of all n x m
row stochastic matrices B so that Tr(AB) is maximal. By the above discussion, Max(A)
(and hence Max,,(A)) is never empty.

The next lemma, follows directly from the definitions, and quantifies the sense in which
they are symmetric.

Lemma 2.2. Suppose L = (P,Q) € Ly™" is strict Nash (respectively, ESS, weak ESS, or
Nash). Then L°° = (Q, P) € L™ is strict Nash (respectively, ESS, weak ESS, or Nash).

We find it useful to recast some of the definitions.

Lemma 2.3. 1. Suppose L = (P,Q) € Lyy". Then
(a) L is Nash, if and only if P € Max,(Q) and Q € Max,,(P).
(b) L is strict Nash if and only if {P} = Max,(Q) and {Q} = Max,,(P); i.e. P is
the unique element in Max,,(Q) and Q is the unique element in Max,,(P).
2. Suppose L = (P,Q) € L™". Then
(a) L is Nash, if and only if P € Max(Q) and Q € Max(P).
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(b) L is strict Nash if and only if {P} = Max(Q) and {Q} = Max(P); i.e. P is the
unique element in Max(Q) and Q is the unique element in Max(P).

Proof. We prove only part (1), with part (2) being identical. Consider the “only if”
assertion of part (a) of (1). Let L = (P, Q) be Nash and suppose P ¢ Max(Q). Choose
P’ € Max(Q) and define I/ = (P',Q). Necessarily L # L' and it is easy to check that
F(L,L'Y > F(L,L). This contradicts the Nash hypothesis on L, and hence we conclude
P € Max(Q). Lemma 2.2 implies that Q € Max(P), and thus the “only if” part of (a)
follows. For the converse in (a), suppose P € Max(Q) and @Q € Max(P). Then it follows
directly from the definitions that L is Nash. Part (b) is proved in the same way. O

3. STRICT NASH LANGUAGES

Here is a characterization of strict Nash languages.

Theorem 3.1 (Strict Nash Languages). 4 w-language L € Ly, is strict Nash if and
only if m = n, P is a permutation matriz, and Q = P'.

The rest of this subsection is devoted to proving the proposition. We start with a couple
of easy lemmas.

Lemma 3.2. Suppose L € L™ is strict Nash. Then in fact L € L™",
Proof. This is obvious. O

Hence, for the remainder of this section, we can restrict our attention exclusively to
languages (and not the more general setting of w-languages).

Lemma 3.3. Suppose L = (P,Q) € L™™. Then F(L,L) < m, and equality occurs if and
only if P = QY is a permutation matriz.

Proof. The first assertion is obvious, since P and () are weak row stochastic. Now

F(L,L) =m < ZPiiji =1, forall i
j
<= Qj; = 1 for every j such that P;; # 0,

with the latter condition holding since P is row stochastic. But since @) is also row stochastic,
the final condition is a contradiction unless P is a permutation matrix and Q = P'. O

Next we prove the easy half of Theorem 3.1.

Lemma 3.4. If L = (P, Q) is an (m,m)-language with P = Q' a permutation matriz, then
L is strict Nash.

Proof. If P = QY is a permutation matrix, then clearly we can assume that P = Q = I,
the m x m identity matrix. (This amounts to rearranging the order that we assign the
“sounds” in our language.) We want to show that if L' = (P',Q') € L™™ such that
F(L,L'Y > F(L,L), then L = L'. The condition F(L,L") > F(L,L) together with
Lemma 3.3 implies that we must have

S (T(Q) + Te(P)) > m.
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Since P’ and Q' are row stochastic, their traces are bounded by m; so the last displayed
equation implies that Tr(P') = Tr(Q') = m. Hence P' = Q' = I,,, and L = L', as we wished
to show. 0

Now we start to investigate the converse statement in Theorem 3.1. Here is a first step.

Lemma 3.5. Suppose L = (P,Q) € L™" is strict Nash. Then P is binary; i.e. each row of
P contains a single nonzero entry (which is necessarily 1). Moreover fix i and let j be the
unique index such that P;j = 1; then Qj; is the unique mazimal entry in the ith column of

Q.

Proof. Assume L = (P,Q) € L™" is strict Nash, and suppose P is not binary. Since P
cannot be zero, there is a row — say the ith row — with more than one nonzero entry.
Consider the ith column of (), and select an index j so that Q;; is maximal among the
entries in the sth column of Q). (At this point, we do not know j is unique — below we will
see it is however.) Define a new m x n row stochastic matrix P/ # P via

1 ifk=diandl =37
P,=<0 ifk=dandl#j.
Py, else

By construction Tr(P'Q) > Tr(PQ), so we conclude that both P and P’ are in Max(Q).
This contradiction Lemma 2.3(b), and hence we conclude that P has at most one nonzero
entry in each row.

Now consider the second assertion of the lemma. By the previous paragraph we may
assume P is binary. Fix a row 4, and let j be the unique index such that P;; = 1. The
analysis of the previous paragraph implies that @;; is a maximal entry in the jth column
of Q. Suppose this maximal entry is not unique; i.e. suppose there is an j' # j such that
Qji = Qjr;- Define a new matrix P’ # P by moving the nonzero entry in the ith row from
the 5 slot to the 5’ slot; i.e. define

1 ifk=sandl=j
P,=<0 ifk=dandl#j

Pkl else.
By construction, Tr(PQ) = Tr(P'Q) so both P and P’ are elements of Max(Q). Lemma 2.3(b)
again gives a contradiction. The proof is complete. O

Lemma 3.6. If L = (P,Q) € L™" is strict Nash, then P is a binary matriz with no two
nonzero entries in the same column. In particular, m = n.

Proof. Suppose L = (P, Q) € L™" is strict Nash. Lemma 3.5 implies that P is a binary
matrix. Suppose that there are two nonzero entries in some column of P; i.e. suppose we
can find indices 7,7 and j such that Pj; = Py; = 1. Consider the entries Q;; and Q. These
are nonzero by Lemma 3.5. Form a new matrix Q' obtained from @ by adding a sufficiently
small positive number to Q;;, subtracting the same amount from @Q;;r, but otherwise leaving
@ unchanged. Then @ # @' and Tr(PQ) = Tr(PQ') by construction, so both Q' and @ are
elements of Max(P). This contradicts Lemma 2.3(b) and the current lemma follows. O

Lemmas 3.4 and 3.6 complete the proof of Theorem 3.1, except for the assertion that
Q = P¥. This latter statement now follows from the last assertion of Lemma 3.5; so the
proof of the theorem is complete. .
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4. EVOLUTIONARY STABLE STATES

First we start with an easy observation.

Theorem 4.1 (Evolutionary Stable States). A language L = (P, Q) € Ly is an ESS
if and only if it is strict Nash (and hence satisfies the conditions of Theorem 3.1).

Proof. The “if” part of the assertion is immediate from the definitions. So, according to
Lemma 2.3, to prove the proposition, we need only show that if L is an ESS, Max,,(P) = {Q}
and Max,,(Q) = {P}. Since L is an ESS, it is Nash, so Lemma 2.3(1) implies that Q is
in Max,,(P) and P is in Max,(Q). It remains only to show that there does not exist a
Q' # Q such that Q' € Max,(P). (The analogous statement for Max,, (@) then follows
from Lemma 2.2.)

Suppose there does indeed exist Q' # @ such that Q' € Max,(P). Set L' = (P,Q").
Then F(L,L) = F(L,L') = Tv(PQ) = Tr(PQ') and so F(L,L) = F(L,L'), contradicting
the ESS assumption on L. Hence the theorem follows. O

The next example indicates that there exist Nash languages which are not weak ESS.
Example 4.2. Consider L = (P, Q) € L?? specified by
o (1/2 1)2
P=Q= (1/2 1/2) :
By Theorem 5.1 below (or by elementary computations), L is Nash. Consider L' = (P', Q")

defined by P! = Q' = Isx9. Then F(L,L) = F(L,L') =1, but F(L', L") = 2; so L is Nash,
but not weak ESS.

As the example suggests, it is probably not terribly difficult to classify weak ESS lan-
guages, but the answer is probably too complicated to be of much interest.

5. NASH LANGUAGES

As a complement to the above analysis, we include a classification of Nash languages.
The classification will eventually boil down to the following proposition. In its statement
and proof, it is helpful to introduce a little terminology. Given any matrix A, we define
the support of A, denoted supp(A), to be the set of those indices for which A has nonzero
entries; more precisely,

supp(4) = {(,7) € Nx N[ Ay # 0}.

Theorem 5.1 (Nash Languages). Consider L = (P,Q) € L™" and assume that no col-
umn of P (or Q) consist entirely of zero entries. Then L is Nash if and only if there exist
real numbers p1,...,p, and q1,...,qmn such that

1. For each j, the jth column of P has its entries drawn from {0,p;}. Moreover, P;j = p;

if and only if Qj; = g;; i.e. supp(P) = supp(Q*).
2. For each i, the ith column of Q has its entries drawn from {0,q;}. Moreover, recall

from (1) that supp(Q) = supp(P%).

Remark 5.2. The conditions on the columns of P and @ in the proposition may be a little
confusing. We want each column to contain exactly one nonzero value, but this value may
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be repeated in several different entries. For instance

1/2
1/2
0

is the kind of column we allow, but

3/4
1/2
0

is not.

Proof. Assume neither P nor @) has zero columns, and suppose that L = (P, Q) is Nash.
By Lemma 2.3, we have that P € Max(Q) and Q € Max(P). Fix 4, and consider the ith
column of @), and let ji,...,ji denote those indices such that Q;; # 0; i.e.

{15k} = {7 | Qi # 0}
Note that this set is nonempty, since we have assumed that ) has no zero columns. Now
consider the ith row of P. We claim that

{.7 | PZ] #0} C {jl,"'ajk}'

If not, any row stochastic matrix P’ whose ith row satisfies this property (but whose other
rows coincide with P) clearly has Tr(P'Q) > Tr(PQ) thus contradicting that P € Max(Q).
Arguing column by column, we conclude

supp(P) C supp(Q™).

Now reversing the roles of P and @ (or, alternatively, applying Lemma 2.2), we conclude
that

supp(Q) C supp(P").

The last two displayed equations imply that supp(P) = supp(Q*").

Hence if L = (P, Q) is Nash (and if neither P nor ) contains zero columns), supp(P) =
supp(Q*). Next, we must now prove that under these hypothesis, each column of @ (and P)
has its entries drawn from a two element set, one of whose elements is 0. Fix ¢ and consider
the ith column of (). Suppose that there are indices ji,... ji such that each Q;j, is neither
zero nor maximal amongst the elements in the first column of Q. (Here, of course, the
indices j; play a different role than they did in the preceding paragraph.) By the preceding
paragraph P;; # 0, for each index j. Consider any row stochastic matrix P’ which is
identical to P except in the ¢ row; which satisfies supp(P’) C supp(P); but for which every
(i,71) ¢ supp(P’). Then Tr(P'Q) > Tr(PQ) contradicting the fact that P € Max(Q). Hence
we conclude that for each ¢, there exists a nonzero real number ¢; such that the entries of
the ith column of @ are drawn from {0,¢;}. The analogous statement for P follows from
Lemma 2.2.

We have thus proved that if L = (P,Q) is Nash (and no column of P or @ is zero),
then conditions (1) and (2) of the proposition hold. To prove the converse, we must show
that any pair of matrices (P, Q) satisfying the conditions of the proposition define a Nash
language. Using arguments similar to those above, this is easy and routine by now. We
leave the details to the reader. O
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Remark 5.3. We return to the setting of w-languages. The argument above shows that any
Nash w-language L = (P, Q) satisfies the conditions of the theorem — but the argument for
the converse (which we omitted above) breaks down. For instance, the following w-language
satisfies the conditions of the theorem, but fails to be Nash (as the reader may easily verify):

1/2 0
P:(x L=z 0 ) Q=172 1/2
0 T 11—z 0 1/2

In fact, it is easy to see that any Nash w-language is in fact a Nash language, i.e. satisfies
the row stochastic condition. To see this suppose that L = (P, Q) is a Nash w-language.
We know it satisfies the conditions of the theorem. Suppose L is not in fact a language in
the strong sense, i.e. suppose that some row (of P, say) has entries which sum to a value
strictly less than one. Consider the matrix P’ obtained by modifying P by increasing one
of the nonzero entries in this row (but so that the sum of the entries is still less than 1).
Then the support condition of the theorem, together with the construction of P’ imply that
Tr(P'Q) > Tr(PQ), contradicting the Nash hypothesis on L. We thus conclude that the
only Nash w-languages (with no zero columns) are those appearing in Theorem 5.1.

Next we record the following easy and useful corollary of Theorem 5.1; its proof is easy.

Corollary 5.4. Let P be any binary matriz with no zero columns, and let Q be any row
stochastic matriz with supp(Q) = supp(PY). Then L = (P, Q) is Nash.

The next question to address is how to build all pairs (P, Q) described in the proposition.
They can all be described by a relatively simple algorithm, which we now explain. (The
reader is advised to consult the example below.) Begin with a row stochastic matrix P©)
subject to the first condition in (1) above; i.e. assume that for each j, the jth column

of P has its entries drawn from {0, pg-o)}. Consider the set of all matrices A(®) such

supp(A©) = supp(P'). Impose the conditions that A®) be row stochastic and that there
exist nonzero real numbers a1, ..., a,, such that the entries in the ith column of A are
drawn from {0, a;}. It requires a little subtle checking of the definitions to see that such an
A© always exists — the restrictions do not “overdetermine” A(®) — so choose a particular
matrix, say Q). Now if (P(©), Q(9)) satisfy the conditions of Theorem 5.1, we have produced
a Nash language and the algorithm stops. If not, then repeat the above prescription, applied
this time to Q) (instead of P(®) to obtain an m x n row stochastic matrix P("). Then
check whether (P() Q) satisfy the conditions of the proposition. If so, the algorithm
terminates; if not, it continues.

Note that after a finite number of steps, we must end up with a Nash language. The
reason is easy: if (P®*), Q) is not Nash, then the number of entries in P*+1) equal to
some p§k+1) is strictly less than the number of entries in P(*) equal to some pg-k). (Similar
statements of course hold if (P*), Q(*=1) is not Nash.) Hence the algorithm must terminate
after a finite number of steps. Note also that if we L = (P, Q) is Nash to begin with, and
we start the algorithm with PO = P then Q© can be taken to be @, and the algorithm
will recover the pair (P, Q). Hence the algorithm produces all Nash languages for which no
column of P or () consists entirely of zeros.
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Example 5.5. Consider

0 1/8 3/4 1/8
1/8 0 3/4 1/8
1/8 0 3/4 1/8

0 1/8 3/4 1/8

pO) —

Then A(® (described above) is of the form

00510420

Bi 0 0 po
YroY2 Y3 V4
01 03 d3 Oy

Imposing the additional requirements, we see that Q(© is any matrix of the form

0 a; Q9 0

B 0 0 p
0 a1 Qy 0 ’
0 a1 Q9 0

with a1 + a2 = 61 + B2 = 1, aqag1 52 # 0;

or

Oa1a20

b 0 0 b _
bi 0 0 b; ’ with a1 +ag = b1 + by =1, arazb1by # 0;
by 0 0 by

In either case, the pair (P(O), Q(O)) is not of the form required by Theorem 5.1, so we must
iterate again. The result is that, in the first case, P(!) is any matrix of the form

0 1 0 O
of 0 of of
of 0 of of

0 1 0 O

, with o + of + o = 1, o abaly # 0;

and in the second case,

0 af af) daf
1.0 0 O

0 0 0}

1 with a} + a + a} = 1, a}abal # 0;
! ! !
0 a7 ay aj

Note that in either case, the number of nonzero entries in P equal to some p;_o) is strictly

greater than the corresponding number for PV, Finally, in each case, we check that
(P(l), Q(O)) satisfy the conditions of the proposition, and hence define a Nash language.

The final point we need to address is the possibility of P or @) having zero columns. This
is clearly of practical interest, since such languages have unutilized sounds or indescribable
objects. An easy result in this direction is Lemma 5.7 below, but first let us consider an
example of how the conclusion of Theorem 5.1 can fail if zero columns are present.
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Example 5.6. The (3,2)-language specified by

1 0
100
P=10 1 and Q—(010>

* X

is Nash; here the ’s are arbitrary (subject to the row stochastic condition on P.) Note
that the columns of P may have entries drawn from three values, not just two (as in the
conclusion of Theorem 5.1). In fact, from this example generalizes easily: it isn’t difficult
to see that one can always obtain a Nash language by adding zero columns (and arbitrary
rows) to a strict Nash language.

As another example, consider the following (3,2) language specified by

1/2 12 12 1/2 0
F= }g 1?; and Q_(1/2 1/2 0)

Note that this example is obtained by adding a column of zeros to a Nash (not strict Nash)
language; also see Example 4.2 below.

Lemma 5.7. Suppose L = (P,Q) € L™" is Nash, and assume further that the jth column
of Q consists entirely of zero entries. Let P' be the (m—1) X n row stochastic matriz formed
by removing the jth row of P, and let Q' be the n X (m—1) row stochastic matriz formed by
removing the jth column of Q. Then L' = (P',Q’) is Nash. The analogous statement holds
with the roles of P and Q interchanged.

Proof. This is an easy consequence of Lemmas 2.2 and 2.3(1). O

Remark 5.8. The lemma holds verbatim for w-languages.

The above lemma, together with Theorem 5.1, reduces the classification of Nash languages
to deciding when it is possible to add a column of zeros to a Nash language. Here is that
answer — see Example 5.6 for illustrative examples.

Lemma 5.9. Suppose L = (P,Q) € L™" is a Nash language. Enumerate the mazimal
values of the columns of Q by qi, ..., qm, and consider the m x (n+1) row stochastic matriz,
say P', obtained by adding a column of zeros to P. Then there exist an (n+1) X m row
stochastic matriz Q' such that L' = (P', Q") is Nash if and only if 37, ¢; > 1. The analogous
statement holds if the roles of P and Q) are interchanged.

Proof. Consider the matrix ' obtained from @ by adding a new row Q1 15+, Qp41,m-
Clearly Q' € Max(P'), and the assertion of the lemma amounts to showing that we can
choose the @, ; in such a way that P' € Max(Q') if and only if 37, ¢; > 1.

We claim that Q' € Max(P') if and only if the @, ,, ; are chosen so that each @, ., ; < g;.
(Note that since Q' is row stochastic, the condition in the preceding sentence is possible if
and only if Z]- g; > 1; so establishing the previous sentence proves the lemma.) In turn,

this follows from an easy direct calculation. We omit the details. g

Remark 5.10. For w-languages the situation simplifies considerably, essentially because
the parenthetical sentence in the proof above is not an issue. Retain the notations of the
lemma, but this time assume only that (P, Q) is a w-language. Then there always exists a
weak row stochastic matrix Q' so that the (m,n+1) w-language (P’, Q') is Nash: as in the
proof above, we obtain @' by adding a row to @ by such that each new entry Q/, 41,5 18 less



NASH EQUILIBRIA FOR AN EVOLUTIONARY LANGUAGE GAME 13

than the corresponding ¢;. (Since @' is only weakly row stochastic, this is always possible,
even if 3, ¢q; <1.)

Lemmas 5.7 and 5.9, together with Theorem 5.1, thus complete the classification of Nash
languages. Remarks 5.3, 5.8, and 5.10 complete the classification of Nash w-languages.

6. EVOLUTIONARY DYNAMICS

The point of this section is to show that through a combination of neutral drift and
dominant invasion, any (m,n) w-language can be replaced by a w-language L = (P, Q)
where P and () are extended permutation matrices.

We begin by recalling the notions of neutral drift and dominance. Suppose that we are
given two w-languages L and L' satisfying one of the following conditions:

F(L',L'Y > F(L',L) > F(L,L); or
F(L',L'Y=F(L',L) > F(L,L); or
F(L',L') > F(L',L) = F(L, L).
Then we say that the language L' dominates L'. Similarly, if
F(L',L'Y=F(L',L) = F(L,L),
then we say that L can neutrally drift to L'. Here is the main result of this section.

Theorem 6.1. Given any w-language L € Ly,", there is a finite sequence of w-languages

L=1Ly=(Py,Qo), L1 =(P1,Q1), - ,Ln = (Pn,Qn),
such that

1. Py = QY% is an extended permutation matriz; and
2. At each stage, either L; 1 is dominated by L; or L; 1 can neutrally drift to L;.

Proof. The proof we give is entirely constructive. Suppose we are given a w-language
Ly = (Po, Qo). If it is of the final form described in the proposition, clearly there is nothing
to prove. So we can assume without loss of generality that P, is not an extended permu-
tation matrix. Construct an extended permutation matrix P; by defining its ith row to be
identically zero if the ith column of @ is identically zero; if the ith column of () is not
identically zero, choose a value j such that the entry @;; is maximal in the ith column of
Q, and define P;; = 1, while P;;, = 0 for k # j. These requirements define an extended
permutation matrix P;j.

Now set @1 = Qo and L1 = (P;,Q1). It is a trivial matter to check that indeed
F(L1,Ly) > F(Ly,Lo) > F(Lg, Lg); so either Ly can neutrally drift to L; or in fact Ly
is dominated by L.

Next we repeat the above construction with the roles of P and @ interchanged. Namely,
we construct an extended permutation matrix Qo by requiring its ith row to either be zero (if
the ith column of P; is zero) or to consist of unique nonzero entry 1 in the slot corresponding
to a maximal entry of the ith column of P;. We define P, = P; and Ly = (P», ()2) and again
it it easy to see that either L; can neutrally drift to Lo or in fact L; is dominated by Ls.

A moment’s thought (see the illustrative example below) shows that for some choices this
process must eventually converge; that is, at some stage we have Ly; = Ly for all M > N
and, moreover, that Py = Q%. This proves the theorem. O
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Example 6.2. Consider the (3, 3)-language Ly = (FPy, Qo) defined by

/2 1/2 0 /2 0 1/2
PBh=|0 1/2 1/2 Qo=P"=11/2 1/2 0
/2 0 1/2 0 1/2 1/2

(In fact, this is a Nash language — see the appendix for details.) Now we apply the algorithm
of the above proof. We have several choices for P;; here is one of them:

100
P=10 01
0 01

We set L1 = (P1,Q1 = Qo) Again applying the algorithm reversing the roles of P and @,
we get either

1 00 1 00
Qs=(0 00| o Q=1[001
0 01 0 00
In either case, set Ly = (P, = Pj,@Q2). Finally (again in either case) we compute Py = QY

and the process stops at L3 = (Ps = QY, Q3 = Q2).
Note that at the very first step we would have chosen

1 0 0
Po=1I33=({0 10 )
0 01

and the algorithm would have terminated at the next step with L) = (I3x3,I3x3). This
concludes the example.

Note that in the above example L, in fact dominates Ls. It is easy to see that this is a
general phenomenon: if the number of nonzero entries in Py (or Qu) is strictly less than
min{m,n}, we can modify Py and @y by adding appropriately placed 1’s, and the resulting
modification dominates Ly = (Py, Qn)- This leads to the following sharpening of the above
theorem.

Theorem 6.3. In the conclusion of Theorem 6.1, we may also impose the restriction that
the number of nonzero entries in Py (or Qn ) is equal to the minimum of m and n.

For simulations of specific evolutionary dynamics in this language game we refer to Nowak
et al (2000).

7. CONCLUSION

In this paper we have characterized Nash equilibria and ESS in the evolutionary language
game. We have shown that a language L(P, @) is a strict Nash equilibrium or an ESS if and
only if n = m, P is a permutation matrix and () is the transpose of P. Furthermore, we
have characterized all strategies which are Nash, but not strict Nash. Such strategies exist
for n # m and allow the same signal to be used for different objects (homonymy) and the
same object being described by different signals (synonymy). We have given an algorithm
to construct all Nash equilibria. Finally, we observe that starting from any language there
exists an evolutionary trajectory (using selection and drift) that ends up with a strict Nash
language (for n = m) or an extended permutation matrix for n # m.
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The current analysis should be extended in many different directions. We assumed that
correct communication about all objects has the same contribution to the payoff, but more
realistically objects have different values. It may be important to have a word for ‘lion’
but less important to have a word for ‘ant’. Furthermore, we assumed that only correct
communication leads to a payoff, while mistaking one object for another yields zero payoff.
Some mistakes may in fact be more costly than others. Thus a more general framework
should contain a matrix that describes the (positive or negative) payoff that is associated
with misunderstanding between individuals.
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